WorldWideScience

Sample records for neutron direct interrogation

  1. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    International Nuclear Information System (INIS)

    Favalli, Andrea; Roth, Markus

    2015-01-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  2. Subthreshold neutron interrogator for detection of radioactive materials

    Science.gov (United States)

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  3. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  4. A review of conventional explosives detection using active neutron interrogation

    International Nuclear Information System (INIS)

    Whetstone, Z.D.; Kearfott, K.J.

    2014-01-01

    Conventional explosives are relatively easy to obtain and may cause massive harm to people and property. There are several tools employed by law enforcement to detect explosives, but these can be subverted. Active neutron interrogation is a viable alternative to those techniques, and includes: fast neutron analysis, thermal neutron analysis, pulsed fast/thermal neutron analysis, neutron elastic scatter, and fast neutron radiography. These methods vary based on neutron energy and radiation detected. A thorough review of the principles behind, advantages, and disadvantages of the different types of active neutron interrogation is presented. (author)

  5. Neutron interrogation of actinides with a 17 MeV electron accelerator and first results from photon and neutron interrogation non-simultaneous measurements combination

    Energy Technology Data Exchange (ETDEWEB)

    Sari, A., E-mail: adrien.sari@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Carrel, F.; Lainé, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Lyoussi, A. [CEA, DEN, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2013-10-01

    In this article, we demonstrate the feasibility of neutron interrogation using the conversion target of a 17 MeV linear electron accelerator as a neutron generator. Signals from prompt neutrons, delayed neutrons, and delayed gamma-rays, emitted by both uranium and plutonium samples were analyzed. First results from photon and neutron interrogation non-simultaneous measurements combination are also reported in this paper. Feasibility of this technique is shown in the frame of the measurement of uranium enrichment. The latter was carried out by combining detection of prompt neutrons from thermal fission and delayed neutrons from photofission, and by combining delayed gamma-rays from thermal fission and delayed gamma-rays from photofission.

  6. Passive neutron interrogation in systems with a poorly characterized detection efficiency

    International Nuclear Information System (INIS)

    Dubi, Chen; Oster, Elad; Ocherashvilli, Aharon; Pedersen, Bent; Hutszy, Janus

    2014-01-01

    Passive neutron interrogation for fissile mass estimation, relying on neutrons coming from spontaneous fission events, is considered a standard NDT procedure in the nuclear safeguard and safety community. Since most structure materials are (relatively) transparent to neutron radiation, passive neutron interrogation is considered highly effective in the analysis of dirty, poorly characterized samples. On the other hand, since a typical passive interrogation assembly is based on 3He detectors, neutrons from additional neutron sources (mainly (α,n) reactions and induced fissions in the tested sample) cannot be separated from the main spontaneous fission source through energetic spectral analysis. There for, applying the passive interrogation methods the implementation of Neutron Multiplicity Counting (NMC) methods for separation between the main fission source and the additional sources. Applying NMC methods requires a well characterized system, in the sense that both system die away time and detection efficiency must be well known (and in particular, independent of the tested sample)

  7. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    International Nuclear Information System (INIS)

    Dolan, J.L.; Marcath, M.J.; Flaska, M.; Pozzi, S.A.; Chichester, D.L.; Tomanin, A.; Peerani, P.

    2014-01-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and 235 U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators

  8. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, J.L., E-mail: jldolan@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Marcath, M.J.; Flaska, M.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tomanin, A.; Peerani, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Ispra (Italy)

    2014-02-21

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and {sup 235}U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators.

  9. Fissile materials in solution concentration measured by active neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-01-01

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a 252 Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.)

  10. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    International Nuclear Information System (INIS)

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1995-01-01

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation

  11. High-sensitive detection by direct interrogation of 14 MeV Acc neutrons, (1). Uranium-contained metal matrix in a waste dram

    International Nuclear Information System (INIS)

    Haruyama, Mitsuo; Takase, Misao; Tobita, Hiroshi; Mori, Takamasa

    2004-01-01

    Previously, authors reported that the 14 MeV-neutron direct interrogation method has made possible measure for the discrimination of clearance levels of concrete solidification uranium waste. In this paper, applicability of the method to metal waste matrix is discussed based on the results of simulation experiments by the continuation energy Monte Carlo calculation code (MVP). The problem is that self-neutron moderation effect in a waste cannot be expected when a waste matrix is metal. To solve this, a moderator is adopted so as to surround a metal waste drum and to slow down suitably a 14 MeV neutrons. The simulation calculation showed that this effect is satisfactorily large. The detection limit of radioactivity concentration to 4.5% enriched uranium has been found to be 0.0973 Bq/g in the metal waste model of 215.59 kg gross weight, in which 61 pipes are stuffed into its drum. Moreover, the position-dependent sensitivity difference in a metal waste drum can be settled as small as to ±13.5%. In conclusion, it can be said that 14 MeV-neutron direct interrogation method can be applied to the waste of a metal system: the detection sensitivity is high enough and the position-dependent sensitivity difference is small admittedly. Hence the method can be applied also to discrimination measurement of the clearance level of metal uranium waste. (author)

  12. System design considerations for fast-neutron interrogation systems

    International Nuclear Information System (INIS)

    Micklich, B.J.; Curry, B.P.; Fink, C.L.; Smith, D.L.; Yule, T.J.

    1993-01-01

    Nonintrusive interrogation techniques that employ fast neutrons are of interest because of their sensitivity to light elements such as carbon, nitrogen, and oxygen. The primary requirement of a fast-neutron inspection system is to determine the value of atomic densities, or their ratios, over a volumetric grid superimposed on the object being interrogated. There are a wide variety of fast-neutron techniques that can provide this information. The differences between the various nuclear systems can be considered in light of the trade-offs relative to the performance requirements for each system's components. Given a set of performance criteria, the operational requirements of the proposed nuclear systems may also differ. For instance, resolution standards will drive scanning times and tomographic requirements, both of which vary for the different approaches. We are modelling a number of the fast-neutron interrogation techniques currently under consideration, to include Fast Neutron Transmission Spectroscopy (FNTS), Pulsed Fast Neutron Analysis (PFNA), and its variant, 14-MeV Associated Particle Imaging (API). The goals of this effort are to determine the component requirements for each technique, identify trade-offs that system performance standards impose upon those component requirements, and assess the relative advantages and disadvantages of the different approaches. In determining the component requirements, we will consider how they are driven by system performance standards, such as image resolution, scanning time, and statistical uncertainty. In considering the trade-offs between system components, we concentrate primarily on those which are common to all approaches, for example: source characteristics versus detector array requirements. We will then use the analysis to propose some figures-of-merit that enable performance comparisons between the various fast-neutron systems under consideration. The status of this ongoing effort is presented

  13. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected

  14. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    Science.gov (United States)

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  15. Nondestructive assay of subassemblies of various spent or fresh fuels by active neutron interrogation

    International Nuclear Information System (INIS)

    Ragan, G.L.; Ricker, C.W.; Chiles, M.M.; Ingersoll, D.T.; Slaughter, G.G.

    1979-01-01

    Recent studies show that subassemblies containing various spent fuels could be assayed rapidly and accurately by a nondestructive assay system using active neutron interrogation and prompt-neutron detection. Subassembly penetration is achieved by 24-keV (Sb--Be) interrogation neutrons; the spent-fuel neutron background is overridden by using strong interrogating sources and prompt-neutron signals, and background gammas are absorbed by lead. Experiments have demonstrated the potential for assaying with better than 5% accuracy, three spent plutonium-fueled subassemblies per hour. Calculations, validated by experiments, predict even better performance for fresh or uranium-fueled subassemblies; several performance estimates are given

  16. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    International Nuclear Information System (INIS)

    Dietrich, D.; Hagmann, C.; Kerr, P.; Nakae, L.; Rowland, M.; Snyderman, N.; Stoeffl, W.; Hamm, R.

    2004-01-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM

  17. Development of active neutron interrogation techniques at Harwell

    International Nuclear Information System (INIS)

    Armitage, B.H.; Chard, P.M.J.; Packer, T.W.; Swinhoe, M.T.; Syme, D.B.

    1990-01-01

    Active neutron interrogation techniques capable of measuring the fissile content of a range of waste drum sizes and contents have been developed at Harwell. This paper describes measurements which have been made to investigate the behaviour of these assay systems for the difficult case of concreted waste in a heterogeneous matrix. The drums have been measured using a Cf shuffler and a differential die-away system, with supporting information obtained from a segmented gamma-scanner. Good correspondence has been observed between the two different neutron interrogation techniques. It was concluded that the measurement of highly heterogeneous wastes is likely to be more effective if calibration can be undertaken with representative artificial matrices. Further measurement and analysis remains to be undertaken

  18. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  19. Novel applications of fast neutron interrogation methods

    International Nuclear Information System (INIS)

    Gozani, Tsahi

    1994-01-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA - Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below. ((orig.))

  20. Fissile materials in solution concentration measured by active neutron interrogation; Mesure de concentration en matiere fissile dans les liquides par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-12-31

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a {sup 252} Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.). 6 refs.

  1. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  2. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-01-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240 Pu . On the other hand, identification of shielded uranium requires active methods using neutron or photon sources . Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials . In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers . Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1x10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2x10 4 n/cm 2 s.

  3. The SVM Method for Fissile Mass Estimation through Passive Neutron Interrogation: Advances and Developments

    International Nuclear Information System (INIS)

    Dubi, C.; Shvili, Israel I.

    2014-01-01

    Fissile mass estimation through passive neutron interrogation is now one of the main techniques for NDT of fissile mass estimation, due to the relative transparency of neutron radiation to structural materials- making it extremely effective in poorly characterized or dirty samples . Passive neutron interrogation relies on the fact that the number of neutrons emitted (per time unit) due to spontaneous fissions from the sample is proportional to the mass of the detected sample. However, since the measurement is effected by additional neutron sources- mainly (D±n) reactions and induced fission chain in the tested sample, a naive estimation, assuming a linear correspondence between the mass of the detected sample and the average number of detections, is bound to give an over estimation of the mass. Since most passive interrogation facilities are based on 3He detectors, the origin of the neutron cannot be determined by analyzing the energy spectrum (as all neutrons arrive at the detector in more or less the same energy), and a mathematical 'filter' is used to evaluate the noise to source ratio in the detection signal. The basic idea behind the mathematical filter is to utilize the fact that the different neutron sources have different statistical attributes- in particular, both the source event rate and the distribution of the number of neutrons released in each event differs between the different sources. There for, by studying the higher moments of the neutron population, new information about the source to noise ration may be obtained

  4. Design and characterisation of a pulsed neutron interrogation facility

    International Nuclear Information System (INIS)

    Favalli, A.; Pedersen, B.

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and 3 He proportional counter measurements. (authors)

  5. Scoping studies - photon and low energy neutron interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.; Harker, Y.; Jones, J. [LMITCo, Idaho Falls, ID (United States); Harmon, F. [Idaho State Univ., Pocatello, ID (United States)

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  6. Basic concepts underlying fast-neutron-based contraband interrogation technology

    International Nuclear Information System (INIS)

    Fink, C.L.; Guenther, P.T.; Smith, D.L.

    1992-01-01

    All accelerator-based fast-neutron contraband interrogation systems have many closely interrelated subsystems, whose performance parameters will be critically interdependent. For optimal overall performance, a systems analysis design approach is required. This paper provides a general overview of the interrelationships and the tradeoffs to be considered for optimization of nonaccelerator subsystems

  7. A l-nCi/g sensitivity transuranic waste assay system using pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Kunz, W.E.; Atencio, J.D.; Caldwell, J.T.

    1980-01-01

    We have developed a pulsed thermal neutron interrogation system and have demonstrated a sub-1-nCi/g assay sensitivity for high density TRU wastes contained in 200-liter barrels. We detect prompt fission neutrons, resulting in greatly enhanced sensitivity compared to techniques in which delayed fission neutrons are detected. We observe a linear assay response over at least three orders of magnitude in 235 U (or 239 Pu) mass. We also have measured a flat (to +-10%) interrogation flux profile throughout the volume of a 200-liter barrel filled with 200 kg of sand and vermiculite, which indicates flatness of response to fissile material at different locations within the barrel

  8. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  9. Enhancing the performance of a tensioned metastable fluid detector based active interrogation system for the detection of SNM in interrogation source in moderated/reflected geometries

    Science.gov (United States)

    Grimes, T. F.; Hagen, A. R.; Archambault, B. C.; Taleyarkhan, R. P.

    2018-03-01

    This paper describes the development of a SNM detection system for interrogating 1m3 cargos via the combination of a D-D neutron interrogation source (with and without reflectors) and tensioned metastable fluid detectors (TMFDs). TMFDs have been previously shown (Taleyarkhan et al., 2008; Grimes et al., 2015; Grimes and Taleyarkhan, 2016; Archambault et al., 2017; Hagen et al., 2016) to be capable of using Threshold Energy Neutron Analysis (TENA) techniques to reject the ∼2.45 MeV D-D interrogating neutrons while still remaining sensitive to >2.45 MeV neutrons resulting from fission in the target (HEU) material. In order to enhance the performance, a paraffin reflector was included around the accelerator head. This reflector was used to direct neutrons into the package to increase the fission signal, lower the energy of the interrogating neutrons to increase the fission cross-section with HEU, and, also to direct interrogating neutrons away from the detectors in order to enhance the required discrimination between interrogating and fission neutrons. Experiments performed with a 239 Pu-Be neutron source and MnO2 indicated that impressive performance gains could be made by placing a parabolic paraffin moderator between the interrogation source and an air-filled cargo container with HEU placed at the center. However, experiments with other cargo fillers (as specified in the well-known ANSI N42.41-2007 report), and with HEU placed in locations other than the center of the package indicated that other reflector geometries might be superior due to over-"focusing" and the increased solid angle effects due to the accommodation of the moderator geometry. The best performance for the worst case of source location and box fill was obtained by placing the reflector only behind the D-D neutron source rather than in front of it. Finally, it was shown that there could be significant gains in the ability to detect concealed SNM by operating the system in multiple geometric

  10. Design of a neutron interrogation cell based on an electron accelerator and performance assessment on 220 liter nuclear waste mock-up drums

    International Nuclear Information System (INIS)

    Sari, A.; Carrel, F.; Laine, F.; Lyoussi, A.

    2013-01-01

    Radiological characterization of nuclear waste drums is an important task for the nuclear industry. The amount of actinides, such as 235 U or 239 Pu, contained in a package can be determined using non-destructive active methods based on the fission process. One of these techniques, known as neutron interrogation, uses a neutron beam to induce fission reactions on the actinides. Optimization of the neutron flux is an important step towards improving this technique. Electron accelerators enable to achieve higher neutron flux intensities than the ones delivered by deuterium-tritium generators traditionally used on neutron interrogation industrial facilities. In this paper, we design a neutron interrogation cell based on an electron accelerator by MCNPX simulation. We carry out photoneutron interrogation measurements on uranium samples placed at the center of 220 liter nuclear waste drums containing different types of matrices. We quantify impact of the matrix on the prompt neutron signal, on the ratio between the prompt and delayed neutron signals, and on the interrogative neutron half-life time. We also show that characteristics of the conversion target of the electron accelerator enable to improve significantly measurement performances. (authors)

  11. X-ray and neutron interrogation of air cargo for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Liew, Seth

    2015-06-01

    A system for scanning break-bulk cargo for mobile applications is presented. This combines a 140 kV multi-view, multi-energy X-ray system with 2.5 MeV neutrons. The system uses dual energy X-ray radiography with neutron radiography. The X-ray and neutron systems were designed to be collocated in a mobile environment. Various materials were interrogated with the intent of distinguishing threat materials such as explosives from similar benign materials. In particular, the identification of threats and bengins with nearly identical effective atomic numbers has been demonstrated.

  12. X-ray and neutron interrogation of air cargo for mobile applications

    International Nuclear Information System (INIS)

    Van Liew, Seth

    2015-01-01

    A system for scanning break-bulk cargo for mobile applications is presented. This combines a 140 kV multi-view, multi-energy X-ray system with 2.5 MeV neutrons. The system uses dual energy X-ray radiography with neutron radiography. The X-ray and neutron systems were designed to be collocated in a mobile environment. Various materials were interrogated with the intent of distinguishing threat materials such as explosives from similar benign materials. In particular, the identification of threats and bengins with nearly identical effective atomic numbers has been demonstrated

  13. Evaluation of the neutron self-interrogation approach for assay of plutonium in high materials

    International Nuclear Information System (INIS)

    Russo, P.A.; Menlove, H.O.; Fife, K.W.; West, M.H.

    1987-01-01

    The pyrochemical scrap recovery processes, designed to extract impurities from plutonium metal and compounds, generate a variety of plutonium-laden residues consisting of high (α,n) matrices of varying chemical composition, and often containing grams to tens of grams of americium. For such materials, multiplication corrections based on real neutron coincidence count rate, R, and total neutron count rate, T, measurements cannot be applied because of the large, unknown, and variable (α,n) component in the total neutron emission rate. A study of the prototype self-interrogation assay method is in progress at the Los Alamos plutonium facility. In the self-interrogation approach, the assay signature R(IF)/T is a function of effective fissile plutonium content, where R(IF) is the induced fission component of the measured reals rate, and T is the measured, (α,n)-dominated totals rate. The present study includes a calibration effort using standards consisting of mixtures of PuO 2 and PuF 4 in a salt-strip matrix. The neutron measurements of the standards and the process materials have been performed at the Los Alamos Plutonium Facility. The precision and accuracy of the self-interrogation method applied to pyrochemical residues is examined in this study

  14. Detection of Special Nuclear Material in Cargo Containers Using Neutron Interrogation

    International Nuclear Information System (INIS)

    Slaughter, D.; Accatino, M.; Bernstein, A.; Candy, J.; Dougan, A.; Hall, J.; Loshak, A.; Manatt, D.; Meyer, A.; Pohl, B.; Prussin, S.; Walling, R.; Weirup, D.

    2003-01-01

    -ray emission and characteristic fast decay time. Fortunately, the fission product γ-radiation decays with a distinctive T 1/2 = 20-30 sec lifetime that is well matched to cargo scan speeds of about one minute per container. Experimental characterization of the γ-ray fluxes exiting thick cargos has not yet been undertaken. The work reported here leads to definite requirements for the interrogation neutron source that can be met with neutron commercially available source technology. A small (6-20 ft) deuteron accelerator producing about ∼ 1 mA, 2-5 MeV deuteron beam on a deuterium or beryllium target is required. Neutrons produced by such an accelerator are kinematically collimated in the forward direction, reducing shielding requirements while increasing the neutron flux on target to meet the intensity requirement even when there is thick intervening cargo. In addition, this technology provides a very penetrating beam in the energy range 4-8 MeV while remaining below the oxygen activation threshold. Maximum counting statistics and lowest error rates in the identification occur when the beam is pulsed with a 50 % duty cycle. The period for this pulsing must be comparable to the half-lives of the species that make up the signature, i.e. 10-60 sec. This is readily achieved with commercially available equipment and is well suited to rapid scanning of cargo containers

  15. INL Neutron Interrogation R and D: FY2010 MPACT End of Year Report

    International Nuclear Information System (INIS)

    Chichester, D.L.; Seabury, E.H.; Wharton, J.; Watson, S.M.

    2010-01-01

    Experiments have been carried out to investigate the feasibility and utility of using neutron interrogation and small-scale, portable prompt gamma-ray neutron activation analysis (PGNAA) instruments for assaying uranium for safeguards applications. Prior work has shown the potential of the PGNAA technique for assaying uranium using reactor-based neutron sources and high-yield electronic neutron generators (ENGs). In this project we adapted Idaho National Laboratory's portable isotopic neutron spectroscopy (PINS) PGNAA system for measuring natural-enrichment uranium yellowcake and metallic depleted uranium and highly enriched uranium. This work used 252Cf as well as deuterium-deuterium (DD) and deuterium-tritium (DT) ENGs. For PGNAA measurements a limiting factor when assaying large objects is the detector dead time due to fast-neutron scattering off of the uranium; this limits the maximum useable neutron source strength to O(107) neutrons per second. Under these conditions the low PGNAA reaction cross sections for uranium prohibited the collection of useful uranium PGNAA signatures from either the yellowcake or metallic uranium samples. Measurement of the decay product activation in these materials following irradiation in the PGNAA geometry similarly did not produce useful uranium activation product - fission product signatures. A customized irradiation geometry tailored to optimally thermalize the interrogation neutron source, intended only for generating long-lived activation products - fission products and not intended for PGNAA measurements, might be possible using small scale ENGs but an application need and a modeling simulation exercise would be recommended before advancing to experiments. Neutron interrogation PGNAA using a DT-ENG was found to be a quick and useful qualitative method for detecting the presence of oxygen in natural-enrichment uranium yellowcake. With a low effort of development work it would be reasonable to expect this measurement could be

  16. Radioactive waste package assay facility. Volume 2. Investigation of active neutron and active gamma interrogation

    International Nuclear Information System (INIS)

    Bailey, M.; Bunce, L.J.; Findlay, D.J.S.; Jolly, J.E.; Parsons, T.V.; Sene, M.R.; Swinhoe, M.T.

    1992-01-01

    Volume 2 of this report describes the theoretical and experimental work carried out at Harwell on active neutron and active gamma interrogation of 500 litre cemented intermediate level waste drums. The design of a suitable neutron generating target in conjunction with a LINAC was established. Following theoretical predictions of likely neutron responses, an experimental assay assembly was built. Responses were measured for simulated drums of ILW, based on CAGR, Magnox and PCM wastes. Good correlations were established between quantities of 235 -U, nat -U and D 2 O contained in the drums, and the neutron signals. Expected sensitivities are -1g of fissile actinide and -100g of total actinide. A measure of spatial distribution is obtainable. The neutron time spectra obtained during neutron interrogation were more complex than expected, and more analysis is needed. Another area of discrepancy is the difference between predicted and measured thermal neutron flux in the drum. Clusters of small 3 He proportional counters were found to be much superior for fast neutron detection than larger diameter counters. It is necessary to ensure constancy of electron beam position relative to target(s) and drum, and prudent to measure the target neutron or gamma output as appropriate. 59 refs., 77 figs., 11 tabs

  17. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Labeau, Pierre-Etienne; Pauly, Nicolas; Meer, Klaas van der

    2015-01-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of 239 Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of 239 Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a 239 Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to 239 Pu, in comparison with a 235 U fission chamber, with a 3 He proportional counter, and with a 10 B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the 239 Pu and 235 U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the 3 He and 10 B proportional counters to increase the sensitivity to 239 Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies

  18. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo, E-mail: rrossa@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Borella, Alessandro, E-mail: aborella@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Labeau, Pierre-Etienne, E-mail: pelabeau@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Pauly, Nicolas, E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Meer, Klaas van der, E-mail: kvdmeer@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium)

    2015-08-11

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of {sup 239}Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a {sup 239}Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to {sup 239}Pu, in comparison with a {sup 235}U fission chamber, with a {sup 3}He proportional counter, and with a {sup 10}B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the {sup 239}Pu and {sup 235}U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the {sup 3}He and {sup 10}B proportional counters to increase the sensitivity to {sup 239}Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies.

  19. Epithermal interrogation of fissile waste

    International Nuclear Information System (INIS)

    Coop, K.L.; Hollas, C.L.

    1996-01-01

    Self-shielding of interrogating thermal neutrons in lumps of fissile material can be a major source of error in transuranic waste assay using the widely employed differential dieaway technique. We are developing a new instrument, the combined thermal/epithermal neutron (CTEN) interrogation instrument to detect the occurrence of self- shielding and mitigate its effects. Neutrons are moderated in the graphite walls of the CTEN instrument to provide an interrogating flux of epithermal and thermal neutrons. The induced prompt fission neutrons are detected in proportional counters. We report the results of measurements made with the CTEN instrument, using minimal and highly self-shielding plutonium and uranium sources in 55 gallon drums containing a variety of mock waste matrices. Fissile isotopes and waste forms for which the method is most applicable, and limitations associated with the hydrogen content of the waste package/matrix are described

  20. Photon interrogation for bulk measurement of transuranic materials

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.

    1981-01-01

    Investigation and assay of high atomic number materials may be accomplished in near real-time through use of photon interrogation. Photon interrogation, as used here, involves the use of high-energy photons to induce fission and then detect neutrons associated with the fission. This technique has the advantage that the interrogating particle and the detected particle are different. The discussion here will include: (1) neutron production; (2) photon production; (3) neutron counting; (4) sensitivity; and (5) problems associated with large containers. In summary, the attributes and limitations of photon interrogation can be stated as: near real-time accountability; interrogating particle different than detected particle; ability to count prompt or delayed neutrons depending on matrix; radiography or therapy accelerators available; cannot distinguish between fission and fertile material; and interrogated material must be well characterized to obtain safeguards quality results

  1. Signal predictions for a proposed fast neutron interrogation method

    International Nuclear Information System (INIS)

    Sale, K.E.

    1992-12-01

    We have applied the Monte Carlo radiation transport code COG) to assess the utility of a proposed explosives detection scheme based on neutron emission. In this scheme a pulsed neutron beam is generated by an approximately seven MeV deuteron beam incident on a thick Be target. A scintillation detector operating in the current mode measures the neutrons transmitted through the object as a function of time. The flight time of unscattered neutrons from the source to the detector is simply related to the neutron energy. This information along with neutron cross section excitation functions is used to infer the densities of H, C, N and O in the volume sampled. The code we have chosen to use enables us to create very detailed and realistic models of the geometrical configuration of the system, the neutron source and of the detector response. By calculating the signals that will be observed for several configurations and compositions of interrogated object we can investigate and begin to understand how a system that could actually be fielded will perform. Using this modeling capability many early on with substantial savings in time and cost and with improvements in performance. We will present our signal predictions for simple single element test cases and for explosive compositions. From these studies it is dear that the interpretation of the signals from such an explosives identification system will pose a substantial challenge

  2. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  3. The simultaneous neutron and photon interrogation method for fissile and non-fissile element separation in radioactive waste drums

    International Nuclear Information System (INIS)

    Jallu, F.; Lyoussi, A.; Passard, C.; Payan, E.; Recroix, H.; Nurdin, G.; Buisson, A.; Allano, J.

    2000-01-01

    Measuring α-emitters such as ( 234,235,236,238 U, 238,239,240,242,244 Pu, 237 Np, 241,243 Am, ...), in solid radioactive waste allows us to quantify the α-activity in a drum and then to classify it. The simultaneous photon and neutron interrogation experiment (SIMPHONIE) method dealt with in this paper, combines both active neutron interrogation and induced photofission interrogation techniques simultaneously. Its purpose is to quantify fissile ( 235 U, 239,241 Pu, ...) and non-fissile ( 236,238 U, 238,240 Pu, ...) elements separately in only one measurement. This paper presents the principle of the method, the experimental setup, and the first experimental results obtained using the DGA/ETCA Linac and MiniLinatron pulsed linear electron accelerators located at Arcueil, France. First studies were carried out with U and Pu bare samples

  4. Monte carlo feasibility study of an active neutron assay technique for full-volume UF{sub 6} cylinder assay using a correlated interrogation source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A., E-mail: kamiller@lanl.gov [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States); Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johnna B. [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States)

    2013-03-01

    Uranium cylinder assay plays an important role in the nuclear material accounting at gas centrifuge enrichment plants. The Passive Neutron Enrichment Meter (PNEM) was designed to determine uranium mass and enrichment in 30B and 48Y cylinders using total neutron and coincidence counting in the passive mode. 30B and 48Y cylinders are used to hold bulk UF{sub 6} feed, product, and tails at enrichment plants. In this paper, we report the results of a Monte-Carlo-based feasibility study for an active uranium cylinder assay system based on the PNEM design. There are many advantages of the active technique such as a shortened count time and a more direct measure of {sup 235}U content. The active system is based on a modified PNEM design and uses a {sup 252}Cf source as the correlated, active interrogation source. We show through comparison with a random AmLi source of equal strength how the use of a correlated driver significantly boosts the active signal and reduces the statistical uncertainty. We also discuss ways in which an active uranium cylinder assay system can be optimized to minimize background from {sup 238}U fast-neutron induced fission and direct counts from the interrogation source.

  5. Assay of fissionable isotopes in aqueous solution by pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Campbell, P.; Gardy, E.M.; Boase, D.G.

    1978-04-01

    Non-destructive assay of uranium-235 and thorium-232 in aqueous nitric acid solutions has been accomplished by irradiation with pulses of neutrons from a 14-MeV Cockcroft-Walton neutron generator, and counting of the delayed neutrons emitted from the fissions induced. Design of the delayed neutron detector assemblies is described, together with the neutron pulse timing and counting systems. The effects of irradiation time, counting time, neutron moderation, detector design and sample geometry on the delayed neutron response from uranium-235 and 238 and thorium-232 are discussed. By using polyethylene to moderate the interrogating neutrons, solutions can be analyzed for both uranium-235 and thorium. Comparative analyses with chemical and γ-spectrometric methods show good agreement. The neutron method is rapid and is shown to be unaffected by the presence in solution of impurities such as iron, nickel, chromium, and aluminum. With the experimental equipment described, detection limits of 0.6 mg of 235 U and 9 mg of 232 Th in a sample volume of 25 mL have been achieved. Analyses of highly radioactive samples may be done easily since the measurements are not affected by the presence of large amounts of βγ radiation. Samples can be enclosed in small lead-shielded flasks during analysis to protect the analyst. The potential of the technique to on-line analysis applications is explored briefly. (author)

  6. Correcting the effects of the matrix using capture gamma-ray spectrometry: Application to measurement by Active Neutron Interrogation

    International Nuclear Information System (INIS)

    Baudry, G.

    2003-11-01

    In the field of the measurement of low masses of fissile material ( 235 U, 239 Pu, 241 Pu) in radioactive waste drums, the Active Neutron Interrogation is a non-destructive method achieving good results. It does however remain reliant upon uncertainties related to the matrix effects on interrogation and fission neutrons. The aim of this thesis is to develop a correction method able to take into account these matrix effects by quantifying the amount of absorbent materials (chlorine and hydrogen) in a 118- liter homogeneous matrix. The main idea is to use the gamma-ray spectrometry of gamma emitted by neutron captures to identify and quantify the composition of the matrix. An indicator from its chlorine content is then deduced in order to choose the calibration coefficient which best represents the real composition of the matrix. This document firstly presents the needs of control and characterization of radioactive objects, and the means used in the field of nuclear measurement. Emphases is put in particular on the Active Neutron Interrogation method. The matrices of interest are those made of light technological waste (density ≤ 0,4 g/cm 3 ) containing hydrogenated and chlorinated materials. The advantages of gamma-rays emitted by neutron captures for the determination of a chlorine content indicator of the matrices and the principles of the correction method are then explained. Measurements have been firstly realized with an existing Neutron Interrogation device (PROMETHEE 6). Such measurements have proven its inadequacy: no signal from the matrix hydrogen was detected, due to an intense signal from the polyethylene contained in some cell elements. Moreover, the matrix chlorine content appeared difficult to be measured. A new and specific device, named REGAIN and dedicated to active gamma-rays spectrometry, was defined with the Monte-Carlo N-Particle (MCNP) code. The experiments conducted with this new device made it possible to detect the hydrogen from the

  7. Design of a novel instrument for active neutron interrogation of artillery shells.

    Science.gov (United States)

    Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  8. Design of a novel instrument for active neutron interrogation of artillery shells.

    Directory of Open Access Journals (Sweden)

    Camille Bélanger-Champagne

    Full Text Available The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  9. Survey of Neutron Generators for Active Interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Calvin Elroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sundby, Gary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-02

    Some of these commercially available generators meet all of the requirements in Table 1, but there are other concerns. Most generators containing SF6 will be required to have the SF6 gas removed for shipping because of DOT regulations. However, Thermo Fisher has a DOT exemption. The P211 and B211 from Thermo Fisher meet the requirements listed in Table 1, but they are old designs and are no longer offered for sale. Also, they require 15 minutes or more of warmup before neutron output is available, and they lack a modern digital control. The nGen-300C from Starfire Industries is interesting because it is a portable system, but it uses the DD reaction for 2.5 MeV neutrons, which are not as penetrating as the 14 MeV neutrons from the DT reaction. The MP 320 from Thermo Fisher is another portable system, but the minimum pulse rate is 250 Hz, which is too fast for measurement of delayed neutrons and re-interrogation by delayed neutrons between pulses. The Genie 16 from Sodern (from France) probably meets the requirements, but the required power is probably too high for battery operation. The generators from Russia and China may be difficult to purchase, and service may not be available. The power required by some of these generators is low enough that batteries can be used. The portable units, nGen-300C and the MP320, could easily be operated with batteries. Other generators with low power requirements, as specified in the above vendors list, could possibly be operated with reason size batteries. The batteries do not need to be internal to the generator, but can be in a separate package. The availability of high capacity lithium batteries with sophisticated safety circuits makes battery operation more possible now than when lead acid batteries were used. The best path forward probably requires working with vendors of the existing systems. If Starfire Industries could be persuaded to put tritium in their nGen-300C generator, possibly in collaboration with a national

  10. Simultaneous photon and neutron interrogation using an electron accelerator in order to quantify actinides in encapsulated radioactive wastes; Double interrogation simultanee neutrons et photons utilisant un accelerateur d'electrons pour la caracterisation separee des actinides dans les dechets radioactifs enrobes

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F

    1999-09-24

    Measuring out alpha emitters, such as ({sup 234,235,236,238}U {sup 238,239,240,242,}2{sup 44P}u, {sup 237}Np {sup 241,243}Am...), in solid radioactive waste, allows us to quantify the alpha activity in a drum and then to classify it. The SIMPHONIE (SIMultaneous PHOton and Neutron Interrogation Experiment) method, developed in this Ph.D. work, combines both the Active Neutron Interrogation and the Induced Photofission Interrogation techniques simultaneously. Its purpose is to quantify in only one measurement, fissile ({sup 235}U, {sup 239,241}Pu...) and fertile ({sup 236,238}U, {sup 238,240}Pu...) elements separately. In the first chapter of this Ph.D. report, we present the principle of the Radioactive Waste Management in France. The second chapter deals with the physical properties of neutron fission and of photofission. These two nuclear reactions are the basis of the SIMPHONIE method. Moreover, one of our purposes was to develop the ELEPHANT (ELEctron PHoton And Neutron Transport) code in view to simulate the electron, photon and neutron transport, including the ({gamma}, n), ({gamma}, 2n) and ({gamma}, f) photonuclear reactions that are not taken into account in the MCNP4 (Monte Carlo N-Particle) code. The simulation codes developed and used in this work are detailed in the third chapter. Finally, the fourth chapter gives the experimental results of SIMPHONIE obtained by using the DGA/ETCA electron linear accelerators located at Arcueil, France. Fissile ({sup 235}U, {sup 239}Pu) and fertile ({sup 238}U) samples were studied. Furthermore, comparisons between experimental results and calculated data of photoneutron production in tungsten, copper, praseodymium and beryllium by using an electron LINear Accelerator (LINAC) are given. This allows us to evaluate the validity degree of the ELEPHANT code, and finally the feasibility of the SIMPHONIE method. (author)

  11. Expected total counts for the Self-Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo [Belgian nuclear research centre SCK.CEN (Belgium); Universite Libre de Bruxelles (Belgium); Borella, Alessandro; Van der Meer, Klaas [Belgian nuclear research centre SCK.CEN. Boeretang 200, 2400 Mol (Belgium); Labeau, Pierre-Etienne; Pauly, Nicolas [Universite Libre de Bruxelles. Av. F. D. Roosevelt 50, B1050 Brussels (Belgium)

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in spent fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron counts in the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach in this study consisted in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types were used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the total neutron counts that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of total neutron counts and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the total neutron counts by increasing the detector size. The study shows that the highest total neutron counts are achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the total neutron counts

  12. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  13. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A.; Peters, C.W.

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ''electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs

  14. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  15. Expected count rate for the Self- Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo [SCK.CEN, Belgian Nuclear Research Centre, Boeretang, 200 - B2400 Mol (Belgium); Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels (Belgium); Borella, Alessandro; Van der Meer, Klaas [SCK.CEN, Belgian Nuclear Research Centre, Boeretang, 200 - B2400 Mol (Belgium); Labeau, Pierre-Etienne; Pauly, Nicolas [Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels (Belgium)

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in the fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron flux integrated over the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach considered in this study consists in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types are used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the count rate that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of count rate and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the count rate by increasing the detector size. The study shows that the highest count rate is achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the count rate associated to each detector type

  16. Dual Neutral Particle Beam Interrogation of Intermodal Shipping Containers for Special Nuclear Material

    Science.gov (United States)

    Keith, Rodney Lyman

    Intermodal shipping containers entering the United States provide an avenue to smuggle unsecured or stolen special nuclear material (SNM). The only direct method fielded to indicate the presence of SNM is by passive photon/neutron radiation detection. Active interrogation using neutral particle beams to induce fission in SNM is a method under consideration. One by-product of fission is the creation of fragments that undergo radioactive decay over a time period on the order of tens of seconds after the initial event. The "delayed" gamma-rays emitted from these fragments over this period are considered a hallmark for the presence of SNM. A fundamental model is developed using homogenized cargos with a SNM target embedded at the center and computationally interrogated using simultaneous neutron and photon beams. Findings from analysis of the delayed gamma emissions from these experiments are intended to mitigate the effects of poor quality information about the composition and disposition of suspect cargo before examination in an active interrogation portal.

  17. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  18. Influence of fuel composition on the spent fuel verification by Self‑Interrogation Neutron Resonance Densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas; Labeau, Pierre‑Etienne; Pauly, Nicolas

    2015-01-01

    The Self‑Interrogation Neutron Resonance Densitometry (SINRD) is a passive Non‑Destructive Assay (NDA) that is developed for the safeguards verification of spent nuclear fuel. The main goal of SINRD is the direct quantification of 239Pu by estimating the SINRD signature, which is the ratio between the neutron flux in the fast energy region and in the region close to the 0.3 eV resonance of 239 Pu. The resonance region was chosen because the reduction of the neutron flux within 0.2-0.4 eV is due mainly to neutron absorption from 239 Pu, and therefore the SINRD signature can be correlated to the 239Pu mass in the fuel assembly. This work provides an estimate of the influence of 239 Pu and other nuclides on the SINRD signature. This assessment is performed by Monte Carlo simulations by introducing several nuclides in the fuel material composition and by calculating the SINRD signature for each case. The reference spent fuel library developed by SCK CEN was used for the detailed fuel compositions of PWR 17x17 fuel assemblies with different initial enrichments, burnup, and cooling times. The results from the simulations show that the SINRD signature is mainly correlated to the 239 Pu mass, with significant influence by 235 U. Moreover, the SINRD technique is largely insensitive to the cooling time of the assembly, while it is affected by the burnup and initial enrichment of the fuel. Apart from 239 Pu and 235 U, many other nuclides give minor contributions to the SINRD signature, especially at burnup higher than 20 GWd/tHM.

  19. Prosodic differences between declaratives and interrogatives in infant-directed speech.

    Science.gov (United States)

    Geffen, Susan; Mintz, Toben H

    2017-07-01

    In many languages, declaratives and interrogatives differ in word order properties, and in syntactic organization more broadly. Thus, in order to learn the distinct syntactic properties of the two sentence types, learners must first be able to distinguish them using non-syntactic information. Prosodic information is often assumed to be a useful basis for this type of discrimination, although no systematic studies of the prosodic cues available to infants have been reported. Analysis of maternal speech in three Standard American English-speaking mother-infant dyads found that polar interrogatives differed from declaratives on the patterning of pitch and duration on the final two syllables, but wh-questions did not. Thus, while prosody is unlikely to aid discrimination of declaratives from wh-questions, infant-directed speech provides prosodic information that infants could use to distinguish declaratives and polar interrogatives. We discuss how learners could leverage this information to identify all question forms, in the context of syntax acquisition.

  20. Correcting the effects of the matrix using capture gamma-ray spectrometry: Application to measurement by Active Neutron Interrogation; Correction des effets de matrice par spectrometrie des rayonnements gamma de capture: Application a la mesure par Interrogation Neutronique Active (I.N.A.)

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, G.

    2003-11-15

    In the field of the measurement of low masses of fissile material ({sup 235}U, {sup 239}Pu, {sup 241}Pu) in radioactive waste drums, the Active Neutron Interrogation is a non-destructive method achieving good results. It does however remain reliant upon uncertainties related to the matrix effects on interrogation and fission neutrons. The aim of this thesis is to develop a correction method able to take into account these matrix effects by quantifying the amount of absorbent materials (chlorine and hydrogen) in a 118- liter homogeneous matrix. The main idea is to use the gamma-ray spectrometry of gamma emitted by neutron captures to identify and quantify the composition of the matrix. An indicator from its chlorine content is then deduced in order to choose the calibration coefficient which best represents the real composition of the matrix. This document firstly presents the needs of control and characterization of radioactive objects, and the means used in the field of nuclear measurement. Emphases is put in particular on the Active Neutron Interrogation method. The matrices of interest are those made of light technological waste (density {<=} 0,4 g/cm{sup 3}) containing hydrogenated and chlorinated materials. The advantages of gamma-rays emitted by neutron captures for the determination of a chlorine content indicator of the matrices and the principles of the correction method are then explained. Measurements have been firstly realized with an existing Neutron Interrogation device (PROMETHEE 6). Such measurements have proven its inadequacy: no signal from the matrix hydrogen was detected, due to an intense signal from the polyethylene contained in some cell elements. Moreover, the matrix chlorine content appeared difficult to be measured. A new and specific device, named REGAIN and dedicated to active gamma-rays spectrometry, was defined with the Monte-Carlo N-Particle (MCNP) code. The experiments conducted with this new device made it possible to detect the

  1. INL Active Interrogation Testing In Support of the GNEP Safeguards Campaign

    International Nuclear Information System (INIS)

    David L. Chichester

    2008-01-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. Work at Idaho National Laboratory (INL) in the area of active interrogation, using neutron and photon sources, has been under way for many years to develop methods for detecting and quantifying nuclear material for national and homeland security research areas. This research knowledge base is now being extended to address nuclear safeguards and process monitoring issues related to the Global Nuclear Energy Partnership (GNEP). As a first step in this area preliminary scoping studies have been performed to investigate the usefulness of using active neutron interrogation, with a low-power electronic neutron generator, to assay Department of Transportation 6M shipping drums containing uranium oxide fuel rodlets from INL's zero power physics reactor. Using the paired-counting technique during the die-away time period of interrogation, a lower detection limit of approximately 4.2 grams of enriched uranium (40% 235U) was calculated for a 40 minute measurement using a field portable 2.5 MeV neutron source and an array of 16 moderated helium-3 neutron tubes. Future work in this area, including the use of a more powerful neutron source and a better tailored detector array, would likely improve this limit to a much lower level. Further development work at INL will explore the applicability of active interrogation in association with the nuclear safeguards and process monitoring needs of the advanced GNEP facilities under consideration. This work, which will include both analyses and field demonstrations, will be performed in collaboration with colleagues at INL and elsewhere that have expertise in nuclear fuel reprocessing as well as active interrogation and its use for nuclear material analyses

  2. Confirmatory measurements of UF6 using the neutron self-interrogation method

    International Nuclear Information System (INIS)

    Stewart, J.E.; Ensslin, N.; Menlove, H.O.; Cowder, L.R.; Polk, P.J.

    1985-01-01

    A passive neutron counting method has been developed for measurement of the 235 U mass in Model 5A cylinders of UF 6 . The unique neutronic properties of UF 6 containing highly enriched uranium (HEU) permit 235 U assay using only passive neutron counting. The sample effectively assays itself by self-interrogation. Shipped from enrichment plants and received at fuel fabrication and conversion facilities, 5A UF 6 cylinders hold up to approx.17 kg of 235 U each. Field measurements at the Portsmouth Gaseous Diffusion Plant (GDP) showed an average assay accuracy of 6.8% (1sigma) for 44 cylinders with enrichments from 6 to 98% and with a range of fill heights. Further measurements on 38 cylinders containing 97%-enriched material yielded an accuracy of 2.8% (1sigma). Typical counting times for these measurements were less than 5 min. An in-plant instrument for receipts confirmation measurements of 5A UF 6 cylinders has been developed for the Savannah River Plant. The Receipts Assay Monitor (RAM) is currently being tested and calibrated. It is designed to confirm declared fissile mass in all incoming 5A cylinders containing HEU in the form of UF 6 . One of the computer-controlled features is a removable cadmium liner for the sample cavity. The liner allows a sample fill-height correction, which significantly improves assay accuracy

  3. Electronics system for transuranic waste assays using a photon interrogation technique

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lawrence, R.S.

    1979-12-01

    This report documents the development of electronics for a neutron detection system used in experiments to demonstrate the feasibility of a photon interrogation technique for transuranic (TRU) waste assays. The system consists of the neutron detection and signal conditioning circuits, variable time-gate generators, and a data acquisition system. The data acquisition system is configured using commercially available scalers, timers, teletype, and control components. The remainder of the system, with the exception of the neutron detectors, uses components designed in-house. The neutron detection system consists of 3 He proportional counters installed in a polyethylene moderator assembly. The counters are direct-coupled to a high-count-rate, current-sensitive preamplifier. The preamplifier and an additional two-stage amplifier are also installed in the moderator assembly. Signal conditioning includes baseline restoration and fast discrimination. A variable time-gate generator with logic gates allows for separation of prompt and delayed neutron counts, and generation of prompt and delayed deadtimes. The 3 He proportional counters will detect not only the neutrons from the TRU waste sample, but also the high-energy photons used to induce fission in the sample. The burst of photons (gamma flash) tends to overload and paralyze the electronics. This system has been designed to recover from a worst-case gamma flash overload within 10 microseconds. The system has met all the requirements generated for the photon interrogation experiments

  4. APSTNG: Neutron interrogation for detection of explosives and drugs and nuclear and CW materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Peters, C.W.

    1993-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutron generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators

  5. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, D.L. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)], E-mail: david.chichester@inl.gov; Seabury, E.H.; Zabriskie, J.M.; Wharton, J.; Caffrey, A.J. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2009-06-15

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2x10{sup 8} n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1x10{sup 7} n/s), and {sup 252}Cf spontaneous fission neutron sources (6.96x10{sup 7} n/s, 30 {mu}g). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for {sup 252}Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  6. SIMULATION OF CARGO CONTAINER INTERROGATION BY D-D NEUTRONS

    International Nuclear Information System (INIS)

    Lou, Tak Pui; Antolak, Arlyn

    2007-01-01

    High fidelity, three-dimensional computer models based on a CAD drawing of an intermodal cargo container, representative payload objects, and detector array panels were developed to simulate the underlying physical events taking place during active interrogation. These computer models are used to assess the performance of interrogation systems with different sources and detection schemes. In this presentation, we will show that the use oversimplified models, such as analyzing homogenized payloads only, can lead to errors in determining viable approaches for interrogation

  7. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Adrienne M., E-mail: alafleur@lanl.gov; Menlove, Howard O., E-mail: hmenlove@lanl.gov

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties.

  8. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  9. Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material

    International Nuclear Information System (INIS)

    Clarke, Shaun D.; Flaska, Marek; Miller, Thomas Martin; Protopopescu, Vladimir A.; Pozzi, Sara A.

    2007-01-01

    The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a

  10. Unexploded Ordnance identification—A gamma-ray spectral analysis method for Carbon, Nitrogen and Oxygen signals following tagged neutron interrogation

    International Nuclear Information System (INIS)

    Mitra, S.; Dioszegi, I.

    2012-01-01

    A novel gamma-ray spectral analysis method has been demonstrated to optimally extract the signals of the signature elements of explosives, carbon (C), nitrogen (N) and oxygen (O) from 57–155 mm projectiles following tagged neutron interrogation with 14 MeV neutrons. The method was implemented on Monte Carlo simulated, synthetic spectra of Unexploded Ordnance (UXO) that contained high explosive fillers (Composition B, TNT or Explosive D) within steel casings of appropriate thicknesses. The analysis technique defined three broad regions-of-interest (ROI) between 4–7.5 MeV of a spectrum and from a system of three equations for the three unknowns namely C, N and O, the maximum counts from each of these elements were extracted. Unlike conventional spectral analysis techniques, the present method included the Compton continuum under a spectrum. For a neutron output of ∼2×10 7 ns −1 and using four 12.7 cm diameter×12.7 cm NaI(Tl) detectors, the C/N and C/O gamma-ray counts ratios of the explosive fillers were vastly different from that of an inert substance like sand. Conversion of the counts ratios to elemental ratios could further discriminate the different types of explosive fillers. The interrogation time was kept at ten minutes for each projectile.

  11. Development of the QA/QC Procedures for a Neutron Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Obhodas, Jasmina; Sudac, Davorin; Valkovic, Vladivoj [Ruder Boskovic Institute, 10000 Zagreb (Croatia)

    2015-07-01

    In order to perform QA/QC procedures for a system dedicated to the neutron interrogation of objects for the presence of threat materials one needs to perform measurements of reference materials (RM) having the same (or similar) atomic ratios as real materials. It is well known that explosives, drugs, and various other benign materials, contain chemical elements such as hydrogen, oxygen, carbon and nitrogen in distinctly different quantities. For example, a high carbon-to-oxygen ratio (C/O) is characteristic of drugs. Explosives can be differentiated by measurement of both C/O and nitrogen-to-oxygen (N/O) ratios. The C/N ratio of the chemical warfare agents, coupled with the measurement of elements such as fluorine and phosphorus, clearly differentiate them from the conventional explosives. Correlations between theoretical values and experimental results obtained in laboratory conditions for C/O and N/C ratios of simulants of hexogen (RDX), TNT, DLM2, TATP, cocaine, heroin, yperite, tetranitromethane, peroxide methylethyl-ketone, nitromethane and ethyleneglycol dinitrate are presented. (authors)

  12. Combined Photoneutron And X Ray Interrogation Of Containers For Nuclear Materials

    Science.gov (United States)

    Gozani, Tsahi; Shaw, Timothy; King, Michael J.; Stevenson, John; Elsalim, Mashal; Brown, Craig; Condron, Cathie

    2011-06-01

    Effective cargo inspection systems for nuclear material detection require good penetration by the interrogating radiation, generation of a sufficient number of fissions, and strong and penetrating detection signatures. Inspection systems need also to be sensitive over a wide range of cargo types and densities encountered in daily commerce. Thus they need to be effective with highly hydrogenous cargo, where neutron attenuation is a major limitation, as well as with dense metallic cargo, where x-ray penetration is low. A system that interrogates cargo with both neutrons and x-rays can, in principle, achieve high performance over the widest range of cargos. Moreover, utilizing strong prompt-neutron (˜3 per fission) and delayed-gamma ray (˜7 per fission) signatures further strengthens the detection sensitivity across all cargo types. The complementary nature of x-rays and neutrons, used as both probing radiation and detection signatures, alleviates the need to employ exceedingly strong sources, which would otherwise be required to achieve adequate performance across all cargo types, if only one type of radiation probe were employed. A system based on the above principles, employing a commercially-available 9 MV linac was developed and designed. Neutrons are produced simultaneously with x-rays by the photonuclear interaction of the x-ray beam with a suitable converter. A total neutron yield on the order of 1011 n/s is achieved with an average electron beam current of 100 μA. If fissionable material is present, fissions are produced both by the high-energy x-ray beam and by the photoneutrons. Photofission and neutron fission dominate in hydrogenous and metallic cargos, respectively. Neutron-capture gamma rays provide information on the cargo composition. The prompt neutrons resulting from fission are detected by two independent detector systems: by very efficient Differential Die Away Analysis (DDAA) detectors, and by direct detection of neutrons with energies higher

  13. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  14. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  15. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    Science.gov (United States)

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  16. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  17. Detection of SNM by Pulsed Neutron Interrogation

    International Nuclear Information System (INIS)

    Pedersen, Bent; Mayorov, Valeriy; Roesgen, Eric; Mosconi, Marita; Crochemore, Jean-Michel; Ocherashvili, Aharon; Beck, Arie; Ettedgui, Hanania

    2014-01-01

    A method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and easily applicable under field conditions is presented. The method applies neutron induced fission in SNM by means of an external pulsed neutron source with subsequent detection of the fast prompt fission neutrons. Liquid scintillation detectors surrounding the container under investigation are able to discriminate gamma rays from fast neutrons by the so-called pulse shape discrimination technique (PSD)

  18. Ion-induced gammas for photofission interrogation of HEU.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); Antolak, Arlyn J.; Morse, Daniel H.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM)

    2006-03-01

    High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

  19. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation

    International Nuclear Information System (INIS)

    Loche, F.

    2006-10-01

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ( 235 U, 239 Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,γ) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the γ ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  20. A proposed experiment for studying the direct neutron-neutron interaction

    International Nuclear Information System (INIS)

    Hassan Fikry, A.R.; Maayouf, R.M.A.

    1979-01-01

    An experiment for studying the direct neutron-neutron interaction is suggested. The experiment is based on the combined use of an accelerator, e.g., an electron linear accelerator, together with a mobile pulsed reactor; or using a pulsed beam reactor together with a mobile neutron generator

  1. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel—Design concept and experimental demonstration

    International Nuclear Information System (INIS)

    Henzlova, D.; Menlove, H.O.; Rael, C.D.; Trellue, H.R.; Tobin, S.J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  2. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel—Design concept and experimental demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, D., E-mail: henzlova@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Menlove, H.O.; Rael, C.D.; Trellue, H.R.; Tobin, S.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong [Korea Atomic Energy Research Institute, Daejeong (Korea, Republic of)

    2016-01-11

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  3. A programme for Euratom safeguards inspectors, used in the assay of high enriched (H.E.U.) and low enriched (L.E.U.) uranium fuel materials by active neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme AECC (Active Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurement data originating from active neutron interrogation of HEU and LEU fuel materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for the Active Well Coincidence Counters and Active Neutron Coincidence Counters deployed by the Euratom Safeguards Directorate, Luxembourg

  4. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  5. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  6. Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage

    Science.gov (United States)

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-01-01

    ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876

  7. Direct Fast-Neutron Detection

    International Nuclear Information System (INIS)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here

  8. Directionally positionable neutron beam

    International Nuclear Information System (INIS)

    Dance, W.E.; Bumgardner, H.M.

    1981-01-01

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  9. Nuclear materials identification by photon interrogation

    International Nuclear Information System (INIS)

    Pozzi, S.A.; Monville, M.; Padovani, E.

    2005-01-01

    We describe a preliminary modification to the Monte Carlo codes MCNP-X and MCNP-PoliMi that is aimed at simulating the neutron and photon field generated by interrogating fissile (and non-fissile) material with a high energy photon source. Photo-atomic and photo-nuclear collisions are modeled, with particular emphasis on the generation of secondary particles that are emitted as a result of these interactions. The simulations can be used to design and analyze measurements that are performed in a wide variety of scenarios. An application of the methodology to the interrogation of packages on a luggage belt conveyor is presented. Preliminary results show that it is possible to detect 5 Kg of highly enriched uranium in a package by measuring the correlation function between 2 detectors. This correlation function is based on the detection of prompt radiation from photonuclear events

  10. Accelerating fissile material detection with a neutron source

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  11. A novel method for active fissile mass estimation with a pulsed neutron source

    International Nuclear Information System (INIS)

    Dubi, C.; Ridnik, T.; Israelashvili, I.; Pedersen, B.

    2013-01-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding “neutron noise”. In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected

  12. A novel method for active fissile mass estimation with a pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Dubi, C., E-mail: chendb331@gmail.com [Physics Department, Nuclear Research Center of the Negev, POB 9001, Beer Sheva (Israel); Ridnik, T.; Israelashvili, I. [Physics Department, Nuclear Research Center of the Negev, POB 9001, Beer Sheva (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Via E. Fermi, 2749 JRC, Ispra (Italy)

    2013-07-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding “neutron noise”. In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected.

  13. Direct Discrete Method for Neutronic Calculations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    2002-01-01

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)

  14. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation; Controle des dechets radioactifs et couplage de mesures neutron/gamma: exploitation de la capture radiative pour corriger les effets de matrice penalisant la mesure de la masse fissile par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Loche, F

    2006-10-15

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ({sup 235}U, {sup 239}Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,{gamma}) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the {gamma} ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  15. A wide-range direction neutron spectrometer

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; D'Errico, F.; Hecker, O.; Matzke, M.

    2002-01-01

    A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors

  16. Detection of fission signatures induced by a low-energy neutron source

    International Nuclear Information System (INIS)

    Ocherashvili, A.; Becka, A.; Mayorovb, V.; Roesgen, E.; Crochemoreb, J.-M.; Mosconi, M.; Pedersen, B.; Heger, C.

    2015-01-01

    We present a method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and applicable under field conditions. The method uses an external pulsed neutron source to induce fission in SNM and subsequent detection of the fast prompt fission neutrons. The detectors surrounding the container under investigation are liquid scintillation detectors able to distinguish gamma rays from fast neutrons by means of the pulse shape discrimination method (PSD). One advantage of these detectors, besides the ability for PSD analysis, is that the analogue signal from a detection event is of very short duration (typically few tens of nanoseconds). This allows the use of very short coincidence gates for the detection of the prompt fission neutrons in multiple detectors while benefiting from a low accidental (background) coincidence rate yielding a low detection limit. Another principle advantage of this method derives from the fact that the external neutron source is pulsed. By proper time gating the interrogation can be conducted by epithermal and thermal source neutrons only. These source neutrons do not appear in the fast neutron signal following the PSD analysis thus providing a fundamental method for separating the interrogating source neutrons from the sample response in form of fast fission neutrons. The paper describes laboratory tests with a configuration of eight detectors in the Pulsed Neutron Interrogation Test Assembly (PUNITA). The sensitivity of the coincidence signal to fissile mass is investigated for different sample configurations and interrogation regimes.

  17. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Blanc, Pauline; Tobin, Stephen J.; Croft, Stephen; Menlove, Howard O.; Swinhoe, M.; Lee, T.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to 235 U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a ∼14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of 3 He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in 238 U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of

  18. Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei, E-mail: huj1@ornl.gov [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, MS-6172, Oak Ridge, TN 37831-6172 (United States); Tobin, Stephen J.; LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory (United States)

    2013-11-21

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is one of several nondestructive assay (NDA) techniques being integrated into systems to measure spent fuel as part of the Next Generation Safeguards Initiative (NGSI) Spent Fuel Project. The NGSI Spent Fuel Project is sponsored by the US Department of Energy's National Nuclear Security Administration to measure plutonium in, and detect diversion of fuel pins from, spent nuclear fuel assemblies. SINRD shows promising capability in determining the {sup 239}Pu and {sup 235}U content in spent fuel. SINRD is a relatively low-cost and lightweight instrument, and it is easy to implement in the field. The technique makes use of the passive neutron source existing in a spent fuel assembly, and it uses ratios between the count rates collected in fission chambers that are covered with different absorbing materials. These ratios are correlated to key attributes of the spent fuel assembly, such as the total mass of {sup 239}Pu and {sup 235}U. Using count rate ratios instead of absolute count rates makes SINRD less vulnerable to systematic uncertainties. Building upon the previous research, this work focuses on the underlying physics of the SINRD technique: quantifying the individual impacts on the count rate ratios of a few important nuclides using the perturbation method; examining new correlations between count rate ratio and mass quantities based on the results of the perturbation study; quantifying the impacts on the energy windows of the filtering materials that cover the fission chambers by tallying the neutron spectra before and after the neutrons go through the filters; and identifying the most important nuclides that cause cooling-time variations in the count rate ratios. The results of these studies show that {sup 235}U content has a major impact on the SINRD signal in addition to the {sup 239}Pu content. Plutonium-241 and {sup 241}Am are the two main nuclides responsible for the variation in the count

  19. Detection of actinides with an electron accelerator by active photoneutron interrogation measurements

    International Nuclear Information System (INIS)

    Sari, A.; Carrel, F.; Gmar, M.; Laine, F.; Normand, S.; Lyoussi, A.

    2012-01-01

    The solution for management of a nuclear waste package is chosen according to its radiological characteristics. One of the most important of these features is the α-activity which is due to actinides ( 235 U, 238 U, 239 Pu, etc.) If non-destructive passive methods are not sufficient to quantify the latter, non-destructive active methods based on the fission process represent a solution of interest. First, these methods consist in irradiating a package in order to induce fission reactions on the actinides, and then, to detect the prompt and delayed particles which are emitted following these reactions. Our aim is to conduct neutron interrogation measurements on nuclear waste packages using an electron accelerator as a photoneutron generator. One of the main interests of this approach is that the intensity of the neutron flux can be one or two orders of magnitude higher than the one delivered by a deuterium-tritium generator. With the objective of improving nuclear waste characterization, the development of this method could enable the integration of three complementary techniques on a single measurement cell (active neutron interrogation, active photon interrogation, and high-energy imaging). In this paper, simulation and experimental results are presented. A simulation study using MCNPX has been conducted in order to determine the characteristics of the photoneutron flux emitted by the electron accelerator of the SAPHIR facility owned by CEA LIST. Energy spectra, angular distribution and intensity of the photoneutron flux have been obtained. A photoneutron interrogation measurement cell based on this accelerator has been built and assessed by carrying out measurements on uranium samples. Delayed gamma-ray spectra have been acquired and enabled to confirm the experimental feasibility of our method. (authors)

  20. Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique

    International Nuclear Information System (INIS)

    Menlove, H.O.; Menlove, S.H.; Tobin, S.J.

    2009-01-01

    This paper presents a new technique for the measurement of fissile and fertile nuclear materials in spent fuel and plutonium-laden materials such as mixed oxide (MOX) fuel. The technique, called differential die-away self-interrogation, is similar to traditional differential die-away analysis, but it does not require a pulsed neutron generator or pulsed beam accelerator, and it can measure the fertile mass in addition to the fissile mass. The new method uses the spontaneous fission neutrons from 244 Cm in spent fuel and 240 Pu effective neutrons in MOX as the 'pulsed' neutron source, with an average of ∼2.7 neutrons per pulse. The time-correlated neutrons from the spontaneous fission and the subsequent induced fissions are analyzed as a function of time to determine the spontaneous fission rate, the induced fast-neutron fissions, and the induced thermal-neutron fissions. The fissile mass is determined from the induced thermal-neutron fissions that are produced by reflected thermal neutrons that originated from the spontaneous fission reaction. The sensitivity of the fissile mass measurement is enhanced by the use of two measurements, with and without a cadmium liner between the sample and a hydrogenous moderator that surrounds the sample. The fertile mass is determined from the multiplicity analysis of the neutrons detected soon after the initial triggering neutron is detected. The method obtains good sensitivity by the optimal design of two different neutron die-away regions: a short die-away for the neutron detector region and a longer die-away for the sample interrogation region.

  1. A new method to measure the U-235 content in fresh LWR fuel assemblies via fast-neutron passive self-interrogation

    Science.gov (United States)

    Menlove, Howard; Belian, Anthony; Geist, William; Rael, Carlos

    2018-01-01

    The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd2O3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate the 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. We have named the system the fast-neutron passive collar (FNPC).

  2. Design of a portable directional neutron source finder

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni

    2005-01-01

    An instrument that determines the direction of a remote existing neutron source has been designed. This instrument combines a polyethylene block and four 3 He counter tubes. The advantages of the instrument are portability and good angular resolution. The count from the detector was varied with the neutron incident angle due to the moderator. Using this characteristic, the direction of the neutron source can be measured precisely by revising the axis of the instrument so that the difference between the four detectors measurements is minimized. Consequently, the direction of the central axis of the instrument in which the response difference of the four detectors reaches a minimum indicates the direction of the neutron source. The practical use of the instrument was demonstrated by 252 Cf source irradiation experiment and MCNP simulation

  3. Development and application of a hybrid transport methodology for active interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Royston, K.; Walters, W.; Haghighat, A. [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech., 900 N Glebe Rd., Arlington, VA 22203 (United States); Yi, C.; Sjoden, G. [Nuclear and Radiological Engineering, Georgia Tech, 801 Ferst Drive, Atlanta, GA 30332 (United States)

    2013-07-01

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)

  4. Critical review of directional neutron survey meters

    Science.gov (United States)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument.

  5. Critical Review of Directional Neutron Survey Meters

    International Nuclear Information System (INIS)

    Balmer, M.J.I.; Gamage, K.A.A.; Taylor, G.C.

    2013-06-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. (authors)

  6. Dielectric RheoSANS - Simultaneous Interrogation of Impedance, Rheology and Small Angle Neutron Scattering of Complex Fluids.

    Science.gov (United States)

    Richards, Jeffrey J; Gagnon, Cedric V L; Krzywon, Jeffery R; Wagner, Norman J; Butler, Paul D

    2017-04-10

    A procedure for the operation of a new dielectric RheoSANS instrument capable of simultaneous interrogation of the electrical, mechanical and microstructural properties of complex fluids is presented. The instrument consists of a Couette geometry contained within a modified forced convection oven mounted on a commercial rheometer. This instrument is available for use on the small angle neutron scattering (SANS) beamlines at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). The Couette geometry is machined to be transparent to neutrons and provides for measurement of the electrical properties and microstructural properties of a sample confined between titanium cylinders while the sample undergoes arbitrary deformation. Synchronization of these measurements is enabled through the use of a customizable program that monitors and controls the execution of predetermined experimental protocols. Described here is a protocol to perform a flow sweep experiment where the shear rate is logarithmically stepped from a maximum value to a minimum value holding at each step for a specified period of time while frequency dependent dielectric measurements are made. Representative results are shown from a sample consisting of a gel composed of carbon black aggregates dispersed in propylene carbonate. As the gel undergoes steady shear, the carbon black network is mechanically deformed, which causes an initial decrease in conductivity associated with the breaking of bonds comprising the carbon black network. However, at higher shear rates, the conductivity recovers associated with the onset of shear thickening. Overall, these results demonstrate the utility of the simultaneous measurement of the rheo-electro-microstructural properties of these suspensions using the dielectric RheoSANS geometry.

  7. A Direction Sensitive Fast Neutron Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Antolkovic, B; Holmqvist, B; Wiedling, T

    1964-06-15

    A direction sensitive fast neutron monitor is described and its properties are discussed in some detail. The counter is a modification of the standard long counter of the Hanson and McKibben type. Directional sensitivity is obtained by increasing the shielding of the counter and providing it with a 70 cm long collimator channel. The behaviour of this long counter monitor is compared with that of a standard long counter when both are used in neutron experiments.

  8. Improving differential die-away analysis via the use of neutron poisons in detectors

    International Nuclear Information System (INIS)

    Jordan, Kelly A.; Vujic, Jasmina; Phillips, Emmanuel; Gozani, Tsahi

    2007-01-01

    Differential Die-Away Analysis (DDAA) is an active interrogation technique to detect special nuclear material (SNM). In DDAA, a pulsed neutron generator produces pulses of neutrons that are directed into a cargo to be interrogated. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. If SNM is present, the thermalized neutrons from the source will cause fissions that produce a new source of neutrons. The number of thermal neutrons decay exponentially with the diffusion decay time of the inspected medium, on the order of hundreds of μs. An external neutron detector which is designed to detect only epithermal neutrons, will measure only a single decaying exponential when there is no SNM present, and two exponentials when SNM is present. This paper shows that in many cases, a gain in detection sensitivity can be realized by introducing a thermal neutron poison (such as boron) into the detector. This poison will reduce the efficiency of the detector, but decrease its decay time. A decreased decay time will cause the separation between the detector and fission signal exponentials to occur at an earlier time. There is a balance between efficiency and time constant for a detector. The boron concentration to achieve the maximum sensitivity, and its magnitude, will be different for different detector designs

  9. Study and development of a method allowing the identification of actinides inside nuclear waste packages, by active neutron or photon interrogation and delayed gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Carrel, F.

    2007-10-01

    An accurate estimation of the alpha-activity of a nuclear waste package is necessary to select the best mode of storage. The main purpose of this work is to develop a non-destructive active method, based on the fission process and allowing the identification of actinides ( 235 U, 238 U, 239 Pu). These three elements are the main alpha emitters contained inside a package. Our technique is based on the detection of delayed gammas emitted by fission products. These latter are created by irradiation with the help of a neutron or photon beam. Performances of this method have been investigated after an Active Photon or Neutron Interrogation (INA or IPA). Three main objectives were fixed in the framework of this thesis. First, we measured many yields of photofission products to compensate the lack of data in the literature. Then, we studied experimental performances of this method to identify a given actinide ( 239 Pu in fission, 235 U in photofission) present in an irradiated mixture. Finally, we assessed the application of this technique on different mock-up packages for both types of interrogation (118 l mock-up package containing EVA in fission, 220 l mock-up package with a wall of concrete in photofission). (author)

  10. Adaptive interrogation for 3D-PIV

    International Nuclear Information System (INIS)

    Novara, Matteo; Scarano, Fulvio; Ianiro, Andrea

    2013-01-01

    A method to adapt the shape and orientation of interrogation volumes for 3D-PIV motion analysis is introduced, aimed to increase the local spatial resolution. The main application of this approach is the detailed analysis of complex 3D and vortex-dominated flows that exhibit high vorticity in confined regions like shear layers and vortex filaments. The adaptive criterion is based on the analysis of the components of the local velocity gradient tensor, which returns the level of anisotropy of velocity spatial fluctuations. The principle to increase the local spatial resolution is based on the deformation of spherical isotropic interrogation regions, obtained by means of Gaussian weighting, into ellipsoids, with free choice of the principal axes and their directions. The interrogation region is contracted in the direction of the maximum velocity variation and elongated in the minimum one in order to maintain a constant interrogation volume. The adaptivity technique for three-dimensional PIV data takes advantage of the 3D topology of the flow, allowing increasing the spatial resolution not only in the case of shear layers, but also for vortex filaments, which is not possible for two-dimensional measurement in the plane normal to the vortex axis. The definition of the ellipsoidal interrogation region semi-axes is based on the singular values and singular directions of the local velocity gradient tensor as obtained by the singular values decomposition technique (SVD). The working principle is verified making use of numerical simulations of a shear layer and of a vortex filament. The application of the technique to data from a Tomo-PIV experiment conducted on a round jet, shows that the resolution of the shear layer at the jet exit can be considerably improved and an increase of about 25% in the vorticity peak is attained when the adaptive approach is applied. On the other hand, the peak vorticity description in the core of vortex rings is only slightly improved with

  11. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  12. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Patton, Bruce W.

    2010-01-01

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. In this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.

  13. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  14. Critical review of directional neutron survey meters

    International Nuclear Information System (INIS)

    Balmer, Matthew J.I.; Gamage, Kelum A.A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. -- Highlights: • We critically review the existing literature into directional survey meters. • Instruments which could be adapted for this purpose are also reviewed. • Investigate the potential of much lighter portable real-time instrument. • Improvements to existing instruments are suggested to improve their design. • Boron-Doped liquid scintillator design is the most promising, but needs further work

  15. Preliminary experiment of fast neutron imaging with direct-film method

    International Nuclear Information System (INIS)

    Pei Yuyang; Tang Guoyou; Guo Zhiyu; Zhang Guohui

    2005-01-01

    A preliminary experiment is conducted with direct-film method under the condition that fast neutron is generated by the reaction of 9 Be(d, n) on the Beijing University 4.5 MV Van de Graaff, whose energy is lower than 7 MeV. Basic characteristics of direct-film neutron radiography system are investigated with the help of samples in different materials, different thickness and holes of different diameter. The fast neutron converter, which is vital for fast neutron imaging, is produced with the materials made in China. The result indicates that fast neutron converter can meet the requirement of fast neutron imaging; further research of fast neutron imaging can be conducted on the accelerator and neutron-generator in China. (authors)

  16. Improving Reasoning and Recall: The Differential Effects of Elaborative Interrogation and Mnemonic Elaboration.

    Science.gov (United States)

    Scruggs, Thomas E.; And Others

    1993-01-01

    Fifty-three adolescents with learning disabilities or mild mental retardation were taught reasons for dinosaur extinction. Those taught in a mnemonic elaborative interrogation condition recalled more reasons than did students who received direct teaching. Students in elaborative interrogation and mnemonic elaborative interrogation groups recalled…

  17. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  18. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas M., E-mail: millertm@ornl.gov; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.

    2013-12-01

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical.

  19. Investigations of active interrogation techniques to detect special nuclear material in maritime environments: Standoff interrogation of small- and medium-sized cargo ships

    International Nuclear Information System (INIS)

    Miller, Thomas M.; Patton, Bruce W.; Grogan, Brandon R.; Henkel, James J.; Murphy, Brian D.; Johnson, Jeffrey O.; Mihalczo, John T.

    2013-01-01

    In this work, several active interrogation (AI) sources are evaluated to determine their usefulness in detecting the presence of special nuclear material (SNM) in fishing trawlers, small cargo transport ships, and luxury yachts at large standoff distances from the AI source and detector. This evaluation is performed via computational analysis applying Monte Carlo methods with advanced variance reduction techniques. The goal is to determine the AI source strength required to detect the presence of SNM. The general conclusion of this study is that AI is not reliable when SNM is heavily shielded and not tightly coupled geometrically with the source and detector, to the point that AI should not be considered a via interrogation option in these scenarios. More specifically, when SNM is shielded by hydrogenous material large AI source strengths are required if detection is based on neutrons, which is not surprising. However, if the SNM is shielded by high-Z material the required AI source strengths are not significantly different if detection is based on neutrons or photons, which is somewhat surprising. Furthermore, some of the required AI source strengths that were calculated are very large. These results coupled with the realities of two ships moving independently at sea and other assumptions made during this analysis make the use of standoff AI in the maritime environment impractical

  20. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  1. PELAN - a transportable, neutron-based UXO identification technique

    International Nuclear Information System (INIS)

    Vourvopoulos, G.

    1998-01-01

    An elemental characterization method is used to differentiate between inert projectiles and UXO's. This method identifies in a non-intrusive, nondestructive manner, the elemental composition of the projectile contents. Most major and minor chemical elements within the interrogated object (hydrogen, carbon, nitrogen, oxygen, fluorine, phosphorus, chlorine, arsenic, etc.) are identified and quantified. The method is based on PELAN - Pulsed Elemental Analysis with Neutrons. PELAN uses pulsed neutrons produced from a compact, sealed tube neutron generator. Using an automatic analysis computer program, the quantities of each major and minor chemical element are determined. A decision-making tree identifies the object by comparing its elemental composition with stored elemental composition libraries of substances that could be contained within the projectile. In a series of blind tests, PELAN was able to identify without failure, the contents of each shell placed in front of it. The PELAN probe does not need to be in contact with the interrogated projectile. If the object is buried, the interrogation can take place in situ provided the probe can be inserted a few centimeters from the object's surface. (author)

  2. Simulation and preliminary experimental results for an active neutron counter using a neutron generator for a fissile material accounting

    International Nuclear Information System (INIS)

    Ahn, Seong-Kyu; Lee, Tae-Hoon; Shin, Hee-Sung; Kim, Ho-Dong

    2009-01-01

    An active neutron coincidence counter using a neutron generator as an interrogation source has been suggested. Because of the high energy of the interrogation neutron source, 2.5 MeV, the induced fission rate is strongly affected by the moderator design. MCNPX simulation has been performed to evaluate the performance achieved with these moderators. The side- and bottom-moderator are significantly important to thermalize neutrons to induce fission. Based on the simulation results, the moderators are designed to be adapted to the experimental system. Their preliminary performance has been tested by using natural uranium oxide powder samples. For a sample of up to 3.5 kg, which contains 21.7 g of 235 U, 2.64 cps/g- 235 U coincidence events have been measured. Mean background error was 9.57 cps and the resultant coincidence error was 13.8 cps. The experimental result shows the current status of an active counting using a neutron generator which still has some challenges to overcome. However, the controllability of an interrogation source makes this system more applicable for a variety of combinations with other non-destructive methods like a passive coincidence counting especially under a harsh environment such as a hot cell. More precise experimental setup and tests with higher enriched samples will be followed to develop a system to apply it to an active measurement for the safeguards of a spent fuel treatment process.

  3. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    International Nuclear Information System (INIS)

    Croft, Stephen; Martancik, David; Young, Brian; Chard MJ, Patrick; Estop J, Robert; Sheila Melton; Arnone, Gaetano J.

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL

  4. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  5. Contraband detection with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, Andy E-mail: abuffler@science.uct.ac.za

    2004-11-01

    Recent terror events and the increase in the trade of illicit drugs have fuelled the exploration of the use of fast neutrons as probes for the detection of hidden contraband, especially explosives, in packages ranging in size from small mail items to cargo containers. The various approaches using fast neutrons for contraband detection, presently under development, are reviewed. The role that a neutron system might play in the non-intrusive interrogation of airline luggage is discussed.

  6. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    International Nuclear Information System (INIS)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-01-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252 Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  7. Suicidality and interrogative suggestibility.

    Science.gov (United States)

    Pritchard-Boone, Lea; Range, Lillian M

    2005-01-01

    All people are subject to memory suggestibility, but suicidal individuals may be especially so. The link between suicidality and suggestibility is unclear given mixed findings and methodological weaknesses of past research. To test the link between suicidality and interrogative suggestibility, 149 undergraduates answered questions about suicidal thoughts and reasons for living, and participated in a direct suggestibility procedure. As expected, suggestibility correlated with suicidality but accounted for little overall variance (4%). Mental health professionals might be able to take advantage of client suggestibility by directly telling suicidal persons to refrain from suicidal thoughts or actions.

  8. Elements and process for recording direct image neutron radiographs

    International Nuclear Information System (INIS)

    Poignant, R.V. Jr.; Przybylowicz, E.P.

    1975-01-01

    An element is provided for recording a direct image neutron radiograph, thus eliminating the need for a transfer step (i.e., the use of a transfer screen). The element is capable of holding an electrostatic charge and comprises a first layer for absorbing neutrons and generating a current by dissipation of said electrostatic charge in proportion to the number of neutrons absorbed, and a second layer for conducting the current generated by the absorbed neutrons, said neutron absorbing layer comprising an insulative layer comprising neutron absorbing agents in a concentration of at least 10 17 atoms per cm 3 . An element for enhancing the effect of the neutron beam by utilizing the secondary emanations of neutron absorbing materials is also disclosed along with a process for using the device. (U.S.)

  9. Direct neutron capture and related mechanisms

    International Nuclear Information System (INIS)

    Lynn, J.E.; Raman, S.

    1990-01-01

    We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs

  10. Illicit substance detection using fast-neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d, n) source (E d =5 MeV). The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification. ((orig.))

  11. Illicit substance detection using Fast-Neutron Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Micklich, B.J.; Harper, M.K.; Novick, A.H.; Smith, D.L.

    1994-01-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen. Fast-Neutron Transmission Spectroscopy (FNTS) uses standard time-of-flight techniques to measure the energy spectrum of neutrons emitted from a collimated continuum source before and after transmission through the interrogated sample. The Monte Carlo transport code MCNP is used to model fast-neutron transmission experiments using a 9 Be(d,n) source [E d = 5 MeV]. The areal densities (number of atoms per cm 2 ), and the uncertainties, of various elements present in the sample are determined by an unfolding algorithm which includes the effects of cross-section errors and correlations. Results are displayed in the form of normalized densities, including their errors and correlations, which are then compared to the values for explosives and benign substances. Probabilistic interpretations of the results are discussed in terms of substance detection and identification

  12. Direct evidence for inelastic neutron 'acceleration' by 177Lum

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Rosse, B.; Belier, G.; Daugas, J.-M.; Morel, P.; Letourneau, A.; Menelle, A.

    2011-01-01

    The inelastic neutron acceleration cross section on the long-lived metastable state of 177 Lu has been measured using a direct method. High-energy neutrons have been detected using a specially designed setup placed on a cold neutron beam extracted from the ORPHEE reactor in Saclay. The 146±19 b inelastic neutron acceleration cross section in the ORPHEE cold neutron flux confirms the high cross section for this process on the 177 Lu m isomer. The deviation from the 258±58 b previously published obtained for a Maxwellian neutron flux at a 323 K temperature could be explained by the presence of a low energy resonance. Resonance parameters are deduced and discussed.

  13. Psychological Perspectives on Interrogation.

    Science.gov (United States)

    Vrij, Aldert; Meissner, Christian A; Fisher, Ronald P; Kassin, Saul M; Morgan, Charles A; Kleinman, Steven M

    2017-11-01

    Proponents of "enhanced interrogation techniques" in the United States have claimed that such methods are necessary for obtaining information from uncooperative terrorism subjects. In the present article, we offer an informed, academic perspective on such claims. Psychological theory and research shows that harsh interrogation methods are ineffective. First, they are likely to increase resistance by the subject rather than facilitate cooperation. Second, the threatening and adversarial nature of harsh interrogation is often inimical to the goal of facilitating the retrieval of information from memory and therefore reduces the likelihood that a subject will provide reports that are extensive, detailed, and accurate. Third, harsh interrogation methods make lie detection difficult. Analyzing speech content and eliciting verifiable details are the most reliable cues to assessing credibility; however, to elicit such cues subjects must be encouraged to provide extensive narratives, something that does not occur in harsh interrogations. Evidence is accumulating for the effectiveness of rapport-based information-gathering approaches as an alternative to harsh interrogations. Such approaches promote cooperation, enhance recall of relevant and reliable information, and facilitate assessments of credibility. Given the available evidence that torture is ineffective, why might some laypersons, policymakers, and interrogation personnel support the use of torture? We conclude our review by offering a psychological perspective on this important question.

  14. Interferometric interrogation of π-phase shifted fiber Bragg grating sensors

    Science.gov (United States)

    Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab

    2018-03-01

    Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.

  15. Police practices and perceptions regarding juvenile interrogation and interrogative suggestibility.

    Science.gov (United States)

    Meyer, Jessica R; Reppucci, N Dickon

    2007-01-01

    Recent media coverage has highlighted cases in which young suspects were wrongly convicted because they provided interrogation-induced false confessions. Although youth may be more highly suggestible and easily influenced by authority than adults, police are trained to use the same psychologically coercive and deceptive tactics with youth as with adults. This investigation is the first standard documentation of the reported interrogation practices of law enforcement and police beliefs about the reliability of these techniques and their knowledge of child development. Participants were 332 law enforcement officers who completed surveys about interrogation procedures and developmental issues pertaining to youth. Results indicated that, while police acknowledge some developmental differences between youth and adults, there were indications that (1) how police perceive youth in general and how they perceive and treat them in the interrogation context may be contradictory and (2) their general view is that youth can be dealt with in the same manner as adults. Copyright (c) 2007 John Wiley & Sons, Ltd.

  16. Detection of land mines using fast and thermal neutron analysis

    International Nuclear Information System (INIS)

    Bach, P.

    1998-01-01

    The detection of land mines is made possible by using nuclear sensor based on neutron interrogation. Neutron interrogation allows to detect the sensitive elements (C, H, O, N) of the explosives in land mines or in unexploded shells: the evaluation of characteristic ratio N/O and C/O in a volume element gives a signature of high explosives. Fast neutron interrogation has been qualified in our laboratories as a powerful close distance method for identifying the presence of a mine or explosive. This method could be implemented together with a multisensor detection system - for instance IR or microwave - to reduce the false alarm rate by addressing the suspected area. Principle of operation is based on the measurement of gamma rays induced by neutron interaction with irradiated nuclei from the soil and from a possible mine. Specific energy of these gamma rays allows to recognise the elements at the origin of neutron interaction. Several detection methods can be used, depending on nuclei to be identified. Analysis of physical data, computations by simulation codes, and experimentations performed in our laboratory have shown the interest of Fast Neutron Analysis (FNA) combined with Thermal Neutron Analysis (TNA) techniques, especially for detection of nitrogen 14 N, carbon 12 C and oxygen 16 O. The FNA technique can be implemented using a 14 MeV sealed neutron tube, and a set of detectors. The mines detection has been demonstrated from our investigations, using a low power neutron generator working in the 10 8 n/s range, which is reasonable when considering safety rules. A fieldable demonstrator would be made with a detection head including tube and detectors, and with remote electronics, power supplies and computer installed in a vehicle. (author)

  17. Active neutron technique for detecting attempted special nuclear material diversion

    International Nuclear Information System (INIS)

    Smith, G.W.; Rice, L.G. III.

    1979-01-01

    The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235 U of 239 Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds

  18. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  19. On-line analysis of bulk materials using pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Lebrun, P.; Tourneur, P. Le; Poumarede, B.; Bach, P.; Moeller, H.

    1999-01-01

    On the basis of our joint experience in neutronics for SODERN and in cement plant engineering for KRUPP POLYSIUS, we have developed a new on-line bulk materials analyser for the cement industry. This equipment includes a pulsed neutron generator GENIE 16, some gamma ray and neutron detectors, specially designed electronics with high counting rate, software delivering the mean elemental composition of raw material, and adequate shielding. This material is transported through the equipment on a conveyor belt, the size of which is adapted to the requirements. This paper briefly describes the equipment and some results, as obtained in dynamic test from a demonstrator installed in Germany

  20. On-line analysis of bulk materials using pulsed neutron interrogation

    Science.gov (United States)

    Lebrun, P.; Tourneur, P. Le; Poumarede, B.; Möller, H.; Bach, P.

    1999-06-01

    On the basis of our joint experience in neutronics for SODERN and in cement plant engineering for KRUPP POLYSIUS, we have developed a new on-line bulk materials analyser for the cement industry. This equipment includes a pulsed neutron generator GENIE 16, some gamma ray and neutron detectors, specially designed electronics with high counting rate, software delivering the mean elemental composition of raw material, and adequate shielding. This material is transported through the equipment on a conveyor belt, the size of which is adapted to the requirements. This paper briefly describes the equipment and some results, as obtained in dynamic test from a demonstrator installed in Germany.

  1. Study and development of a method allowing the identification of actinides inside nuclear waste packages, by active neutron or photon interrogation and delayed gamma-ray spectrometry; Etude et developpement d'une technique de dosage des actinides dans les colis de dechets radioactifs par interrogation photonique ou neutronique active et spectrometrie des gamma retardes

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, F

    2007-10-15

    An accurate estimation of the alpha-activity of a nuclear waste package is necessary to select the best mode of storage. The main purpose of this work is to develop a non-destructive active method, based on the fission process and allowing the identification of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu). These three elements are the main alpha emitters contained inside a package. Our technique is based on the detection of delayed gammas emitted by fission products. These latter are created by irradiation with the help of a neutron or photon beam. Performances of this method have been investigated after an Active Photon or Neutron Interrogation (INA or IPA). Three main objectives were fixed in the framework of this thesis. First, we measured many yields of photofission products to compensate the lack of data in the literature. Then, we studied experimental performances of this method to identify a given actinide ({sup 239}Pu in fission, {sup 235}U in photofission) present in an irradiated mixture. Finally, we assessed the application of this technique on different mock-up packages for both types of interrogation (118 l mock-up package containing EVA in fission, 220 l mock-up package with a wall of concrete in photofission). (author)

  2. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Nattress, J.; Jovanovic, I., E-mail: ijov@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the {sup 11}B(d,n γ){sup 12}C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from {sup 238}U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  3. Limitations and developing directions of pulsed neutron logging

    International Nuclear Information System (INIS)

    Wu Wensheng; Xiao Lizhi

    2007-01-01

    The paper explains briefly the principle of pulsed neutron logging method, summarizes the system and uses of the method in petroleum logging. The paper points out the limitations of pulsed neutron logging such as low precise measurements, low logging speed, plenty of influence factors, low vertical resolution, bad adaptability, difficult logging interpretation and so on, and expounds its developing directions in hardware, software, method and principle. (authors)

  4. Lies and coercion: why psychiatrists should not participate in police and intelligence interrogations.

    Science.gov (United States)

    Janofsky, Jeffrey S

    2006-01-01

    Police interrogators routinely use deceptive techniques to obtain confessions from criminal suspects. The United States Executive Branch has attempted to justify coercive interrogation techniques in which physical or mental pain and suffering may be used during intelligence interrogations of persons labeled unlawful combatants. It may be appropriate for law enforcement, military, or intelligence personnel who are not physicians to use such techniques. However, forensic psychiatry ethical practice requires honesty, striving for objectivity, and respect for persons. Deceptive and coercive interrogation techniques violate these moral values. When a psychiatrist directly uses, works with others who use, or trains others to use deceptive or coercive techniques to obtain information in police, military, or intelligence interrogations, the psychiatrist breaches basic principles of ethics.

  5. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    Science.gov (United States)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-07-01

    An extension of the point kinetics model is developed to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. The spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  6. Photon interrogation annual report for FY-1980

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Tsang, F.Y.; Lawrence, R.S.; Vegors, S.H. Jr.

    1980-12-01

    The Photon Interrogation Technique is being developed for the assay of transuranic materials. A description of source and detector geometry, die-away times and photon flux measurements is given. Considerable effort during FY-1980 was devoted to collimator construction and shielding materials and configurations. Boric acid was found to be a very efficient shielding material for this application. Descriptions and results of these efforts are presented. Results of photon flux determinations, system response to source position and their effects on accuracy are discussed. Changes in the detector system produced a considerable efficiency increase and instrumentation changes brought improved performance. The instrument system with additions can obtain neutron spectral information. A schedule for further development of the system is presented

  7. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  8. Neutron methods for the direct determination of the magnetic induction in thick films

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany)

    2016-03-15

    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed. - Highlights: • We present neutron methods for investigations of the thick magnetic films. • It is the methods for the direct determination of the magnetic induction. • Magnetic induction in bulk, at single interface and in a single domain. • It is Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. • These methods are complementary to polarized neutron reflectometry.

  9. Are the American Psychological Association’s Detainee Interrogation Policies Ethical and Effective?

    Science.gov (United States)

    Pope, Kenneth S.

    2011-01-01

    After 9–11, the United States began interrogating detainees at settings such as Abu Ghraib, Bagram, and Guantanamo. The American Psychological Association (APA) supported psychologists’ involvement in interrogations, adopted formal policies, and made an array of public assurances. This article’s purpose is to highlight key APA decisions, policies, procedures, documents, and public statements in urgent need of rethinking and to suggest questions that may be useful in a serious assessment, such as, “However well intended, were APA’s interrogation policies ethically sound?”; “Were they valid, realistic, and able to achieve their purpose?”; “Were other approaches available that would address interrogation issues more directly, comprehensively, and actively, that were more ethically and scientifically based, and that would have had a greater likelihood of success?”; and “Should APA continue to endorse its post-9–11 detainee interrogation policies?” PMID:22096660

  10. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  11. A pilot study of implantable cardiac device interrogation by emergency department personnel.

    Science.gov (United States)

    Neuenschwander, James F; Hiestand, Brian C; Peacock, W Frank; Billings, John M; Sondrup, Cole; Hummel, John D; Abraham, William T

    2014-03-01

    Implanted devices (eg, pacemakers and defibrillators) provide valuable information and may be interrogated to obtain diagnostic information and to direct management. During admission to an emergency department (ED), significant time and cost are spent waiting for device manufacturer representatives or cardiologists to access the data. If ED personnel could safely interrogate implanted devices, more rapid disposition could occur, thus leading to potentially better outcomes at a reduced cost. This was a pilot study examining the feasibility of ED device interrogation. This was a prospective convenience sample study of patients presenting to the ED with any chief complaint and who had an implantable device capable of being interrogated by a Medtronic reader. After obtaining informed consent, study patients underwent device interrogation by ED research personnel. After reviewing the device data, the physician documented their opinions of the value of data in aiding care. Patients were followed up at intervals ranging from 30 days out to 1 year to determine adverse events relating to interrogation. Forty-four patients underwent device interrogation. Their mean age was 56 ± 14.7 years (range, 28-83), 75% (33/44) were male and 75% (33/44) were hospitalized from the ED. The interrogations took less than 10 minutes 89% of the time. In 60% of the cases, ED physicians reported the data-assisted patient care. No adverse events were reported relating to the ED interrogations. In this pilot study, we found that ED personnel can safely and quickly interrogate implantable devices to obtain potentially useful clinical data.

  12. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  13. Characterisation of neutron fields: challenges in assessing the directional distribution

    International Nuclear Information System (INIS)

    Cauwels, Vanessa; Vanhavere, Filip; Reginatto, Marcel

    2014-01-01

    The SCK.CEN has carried out neutron field characterisation campaigns at several nuclear reactors. The main goal of these measurement campaigns was to evaluate the performance of different neutron personal dosemeters. To be able to evaluate the performance of neutron personal dosemeters in terms of H p (10), knowledge of the directional distribution is indispensable. This distribution was estimated by placing several personal dosemeters on all six sides of a slab phantom. The interpretation and conversion of this information into a reliable value for H p (10) requires great care. The data were analysed using three methods. In the first approach, a linear interpolation was performed on three perpendicular axes. In the other two approaches, an icosahedron was used to model the angle of incidence of the neutrons and a linear interpolation or a Bayesian analysis was performed. This study describes the limitations and advantages of each of these methods and provides recommendations for their use to estimate the personal dose equivalent H p (10) for neutron dosimetry. Neutron personal dosimetry is complicated by the fact that the neutron dose quantity H p (10) is strongly energy and angular dependent. Instead of simply assuming that the fluence is unidirectional or that the fluence is isotropic, an attempt was made to estimate the directional distribution of the neutron field using a relatively simple measurement procedure. A number of active and passive personal dosemeters were placed on the six faces of a slab phantom and the results were analysed via different algorithms to obtain partial fluences in several directions of incidence. The results from all calculations in this study show the importance of introducing information about the directional distribution of the neutron fluence for the estimation of the personal dose equivalent H p (10). The difference between H p (10) dose estimates carried out using a unidirectional or an isotropic distribution can be of up

  14. Direct fast neutron detection: A status report

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Hansen, R.R.; Craig, R.A.; Hensley, W.K.; Hubbard, C.W.; Keller, P.E.; Reeder, P.L.; Sunberg, D.S.

    1997-12-01

    This report describes the status of efforts to develop direct fast-neutron detection via proton recoil within plastic scintillator. Since recording proton recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the different pulse shapes that are to be expected primarily on the basis of the slower speed of the recoiling fission neutrons. Should this effort ultimately prove successful, the resulting novel technology will have the potential to significantly lower cost and increase capability for a number of critical neutron-detection applications. Considerable progress has been made toward a clear and compelling demonstration of this new technique. An exhaustive theoretical and numerical investigation of the method has been completed. The authors have been able to better understand the laboratory results and estimate the performance that could ultimately be achieved using the proposed technique. They have assessed the performance of a number of different algorithms for discriminating between neutron and gamma ray events. The results of this assessment will be critical when the construction of low-cost, field-portable neutron detectors becomes necessary. Finally, a laboratory effort to realize effective discrimination is well underway and has resulted in partial success

  15. The dynamic nature of interrogation.

    Science.gov (United States)

    Kelly, Christopher E; Miller, Jeaneé C; Redlich, Allison D

    2016-06-01

    Building on a substantial body of literature examining interrogation methods employed by police investigators and their relationship to suspect behaviors, we analyzed a sample of audio and video interrogation recordings of individuals suspected of serious violent crimes. Existing survey research has focused on the tactics reportedly used, at what rate, and under what conditions; observational studies detail which methods are actually employed. With a few notable exceptions, these foundational studies were static examinations of interrogation methods that documented the absence or presence of various approaches. In the present study, we cast interrogation as a dynamic phenomenon and code the recordings in 5-min intervals to examine how interrogation methods and suspect cooperation change over time. Employing the interrogation taxonomy framework, particularly 4 discrete domains-rapport and relationship building, emotion provocation, presentation of evidence, and confrontation/competition-we found that the emphasis of the domains varied across interrogations and were significantly different when suspects confessed versus when they denied involvement. In regression models, suspect cooperation was positively influenced by the rapport and relationship building domain, though it was negatively impacted by presentation of evidence and confrontation/competition. Moreover, we found that the negative effects of confrontation/competition on suspect cooperation lasted for up to 15 min. The implications of the findings for practice and future research include the benefits of a rapport-based approach, the deleterious effects of accusatorial methods, and the importance of studying when, not just if, certain interrogation techniques are employed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Neutronic measurements of radioactive waste; Les mesures neutroniques des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B

    1997-12-31

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author).

  17. Direct measurement of the inelastic neutron acceleration by 177mLu

    Directory of Open Access Journals (Sweden)

    Menelle A.

    2010-03-01

    Full Text Available The inelastic neutron acceleration (INNA cross section on the long-lived isomer state of 177mLu has been measured from a new isomeric target using a direct method. The detection of high energy neutrons has been performed using a specially designed setup and a cold neutron beam at the ORPHEE reactor facility in Saclay.

  18. The direct neutron decay of giant resonances in 208Pb

    International Nuclear Information System (INIS)

    Bracco, A.

    1988-01-01

    The neutron decay of the giant multipole resonance region from 9 to 15 MeV of excitation energy in 208 Pb has been studied. Neutron branching ratios for the decay to the ground state and to the low-lying excited states of 207 Pb were measured as a function of the excitation energy of 208 Pb and compared to Hauser-Feshbach calculations. While the neutron branching ratios from the energy region of the isoscalar giant quadrupole resonance are reproduced by the calculations, the ratios from the energy region of the isoscalar giant monopole resonance show a conspicuous excess with respect to the statistical model predictions. The neutron yield from this energy region was analysed in terms of a multistep model of the compound nucleus which includes collective doorway channels. The total direct escape width as well as the associated direct partial escape widths to the lowest five valence hole states of 207 Pb were determined. (orig.)

  19. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    International Nuclear Information System (INIS)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-01-01

    An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  20. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  1. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  2. Direct capture of low-energy neutrons by {sup 16}O

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Hideo [Tokyo Inst. of Tech., Nagatsuta, Yokohama (Japan). Interdisciplinary Graduate School of Science; Igashira, Masayuki

    1998-03-01

    A dispersive optical potential for the interaction between low-energy neutrons and {sup 16}O-nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. This potential is applied to direct-capture model calculations in explaining the observed off-resonance capture transitions to the ground (5/2{sup +}) and 871 keV(1/2{sup +}) levels in {sup 17}O at neutron energies of 20-70 keV. The model calculations take account of the spatial nonlocality of the neutron-nucleus interaction potential. (author)

  3. 8 CFR 343b.3 - Interrogation.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Interrogation. 343b.3 Section 343b.3 Aliens... NATURALIZATION FOR RECOGNITION BY A FOREIGN STATE § 343b.3 Interrogation. When Form N-565 presents a prima facie... issuance of the certificate. Interrogation of the applicant shall be conducted before the application is...

  4. Radioisotopes produced by neutron irradiation of food

    International Nuclear Information System (INIS)

    Albright, S.; Seviour, R.

    2016-01-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of "2"4Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that "2"4Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. - Highlights: • We show that neutron interrogation of food can produce many radioisotopes. • We show a strong dependance between food and certain radioisotopes. • Some isotopes are shown to have an energy dependence. • Previous claims that 24Na is the main threat is shown to only apply in special cases.

  5. Revenge versus rapport: Interrogation, terrorism, and torture.

    Science.gov (United States)

    Alison, Laurence; Alison, Emily

    2017-04-01

    This review begins with the historical context of harsh interrogation methods that have been used repeatedly since the Second World War. This is despite the legal, ethical and moral sanctions against them and the lack of evidence for their efficacy. Revenge-motivated interrogations (Carlsmith & Sood, 2009) regularly occur in high conflict, high uncertainty situations and where there is dehumanization of the enemy. These methods are diametrically opposed to the humanization process required for adopting rapport-based methods-for which there is an increasing corpus of studies evidencing their efficacy. We review this emerging field of study and show how rapport-based methods rely on building alliances and involve a specific set of interpersonal skills on the part of the interrogator. We conclude with 2 key propositions: (a) for psychologists to firmly maintain the Hippocratic Oath of "first do no harm," irrespective of perceived threat and uncertainty, and (b) for wider recognition of the empirical evidence that rapport-based approaches work and revenge tactics do not. Proposition (a) is directly in line with fundamental ethical principles of practice for anyone in a caring profession. Proposition (b) is based on the requirement for psychology to protect and promote human welfare and to base conclusions on objective evidence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    International Nuclear Information System (INIS)

    Gribkov, V A; Latyshev, S V; Miklaszewski, R A; Chernyshova, M; Drozdowicz, K; Wiacek, U; Tomaszewski, K; Lemeshko, B D

    2010-01-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E∼1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10 8 -10 9 2.45 MeV and 10 10 -10 11 14 MeV neutrons per pulse with pulse duration ∼10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH 3 OH), phosphoric (H 2 PO 4 ) and nitric (HNO 3 ) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  7. Language style matching and police interrogation outcomes

    NARCIS (Netherlands)

    Richardson, Beth H.; Taylor, Paul J; Snook, Brent; Conchie, Stacey M.; Bennell, Craig

    2014-01-01

    This research examined the coordination of interrogator and suspects’ verbal behavior in interrogations. Sixty-four police interrogations were examined at the aggregate and utterance level using a measure of verbal mimicry known as Language Style Matching. Analyses revealed an interaction between

  8. Are the American Psychological Association's Detainee Interrogation Policies Ethical and Effective?: Key Claims, Documents, and Results.

    Science.gov (United States)

    Pope, Kenneth S

    2011-01-01

    After 9-11, the United States began interrogating detainees at settings such as Abu Ghraib, Bagram, and Guantanamo. The American Psychological Association (APA) supported psychologists' involvement in interrogations, adopted formal policies, and made an array of public assurances. This article's purpose is to highlight key APA decisions, policies, procedures, documents, and public statements in urgent need of rethinking and to suggest questions that may be useful in a serious assessment, such as, "However well intended, were APA's interrogation policies ethically sound?"; "Were they valid, realistic, and able to achieve their purpose?"; "Were other approaches available that would address interrogation issues more directly, comprehensively, and actively, that were more ethically and scientifically based, and that would have had a greater likelihood of success?"; and "Should APA continue to endorse its post-9-11 detainee interrogation policies?"

  9. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  10. Direct measurement of the cross section of neutron-neutron scattering at the YAGUAR reactor. Substantiation of the experiment technique

    International Nuclear Information System (INIS)

    Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.

    2006-01-01

    The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru

  11. Neutron spectrometry for reactor applications: status, limitations, and future directions

    International Nuclear Information System (INIS)

    Gold, R.

    1975-08-01

    The ability of ''state-of-the-art'' reactor neutron spectrometry to provide definitive environmental results required for high fluence radiation damage experiments is reviewed. A formal definition of the neutron component is presented as well as general considerations which accrue from both this definition and the existence of the mixed radiation field generally encountered in reactors. A description of four selected methods of reactor neutron spectrometry is included, namely Proton Recoil (PR) methods, Time-Of-Flight (TOF) methods, the 6 Li(n,α) 3 H coincidence method, and Multiple Foil Activation (MFA) methods. These selected methods are compared. Future requirements and directions for reactor neutron spectrometry are discussed. In particular, the needs of future CTR research are stressed and the He 4 - recoil proportional counter spectroscopy method is advanced as a means of meeting these future requirements. 50 references. (auth)

  12. Recent advances in fast neutron radiography for cargo inspection

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Tickner, J.R.

    2007-01-01

    Fast neutron radiography techniques are attractive for screening cargo for contraband such as narcotics and explosives. Neutrons have the required penetration, they interact with matter in a manner complementary to X-rays and they can be used to determine elemental composition. Compared to neutron interrogation techniques that measure secondary radiation (neutron or gamma-rays), neutron radiography systems are much more efficient and rapid and they are much more amenable to imaging. However, for neutron techniques to be successfully applied to cargo screening, they must demonstrate significant advantages over well-established X-ray techniques. This paper reviews recent developments and applications of fast neutron radiography for cargo inspection. These developments include a fast neutron and gamma-ray radiography system that utilizes a 14 MeV neutron generator as well as fast neutron resonance radiography systems that use variable energy quasi-monoenergetic neutrons and pulsed broad energy neutron beams. These systems will be discussed and compared with particular emphasis on user requirements, sources, detector systems, imaging ability and performance

  13. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-01-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte-Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometer for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. Also other neutron related applications have been suggested. (author)

  14. Police interrogations through the prism of science

    Directory of Open Access Journals (Sweden)

    Igor Areh

    2016-03-01

    Full Text Available Several approaches can be employed for information gathering from human sources, differing in their theoretical basis, goals, realisation, and ethical acceptability. The paper critically presents and compares two prevalent approaches to suspect interrogation used by the police. The older, prevalent interrogation approach focuses on obtaining suspects’ incriminating statements and admissions, which severely elevates the risk of false confessions. Consequently, this interrogation approach is termed accusatorial or coercive since suspects are forced to admit to a crime. The newer interrogation approach is the information-gathering approach, also known as the investigative interview. It focuses on gathering accurate information in order to exclude or accuse a suspect in a criminal investigation. In comparison with coercive interrogation models, the information-gathering approach has a lower probability of false confessions since suspects are exposed to significantly lower levels of psychological pressure. Moreover, it is ethically more acceptable, has scientific grounds, enables the gathering of more accurate information, and has been found to be at least as effective as the coercive approach in criminal investigations. The investigative interview relies mainly on findings from social psychology. An analysis of coercive interrogation models reveals that they have no scientific basis and as such rely mainly on uncorroborated common-sense assumptions from authorities. In developed countries, coercive interrogation models are increasingly being replaced by the information-gathering approach, a trend connected with the enforcement of high human rights standards and a higher awareness of risks associated with coercive interrogation methods by the general public, academia, and professionals alike.

  15. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  16. Interrogative suggestibility in opiate users.

    Science.gov (United States)

    Murakami, A; Edelmann, R J; Davis, P E

    1996-09-01

    The present study investigated interrogative suggestibility in opiate users. A group of patients undergoing a methadone detoxification programme in an in-patient drug treatment unit (Detox group, n = 21), and a group of residents who had come off drugs and were no longer suffering from withdrawal syndrome (Rehab group, n = 19) were compared on interrogative suggestibility and various other psychological factors. Significant differences were found between the two groups, with the Detox group having more physical and psychological problems, and a higher total suggestibility score in comparison with the Rehab group. These findings are discussed in relation to the context of police interrogations and the reliability of confessions made by suspects and witnesses dependent on opiates.

  17. Fissile interrogation using gamma rays from oxygen

    Science.gov (United States)

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  18. Elemental analysis using temporal gating of a pulsed neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sudeep

    2018-02-20

    Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing device outputs data that is indicative of elemental composition of the sample based upon the binned pulses.

  19. Classifying threats with a 14-MeV neutron interrogation system.

    Science.gov (United States)

    Strellis, Dan; Gozani, Tsahi

    2005-01-01

    SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.

  20. Fast digitization and discrimination of prompt neutron and photon signals using a novel silicon carbide detector

    International Nuclear Information System (INIS)

    Brandon W. Blackburn; James T. Johnson; Scott M. Watson; David L. Chichester; James L. Jones; Frank H. Ruddy; John G. Seidel; Robert W. Flammang

    2007-01-01

    Current requirements of some Homeland Security active interrogation projects for the detection of Special Nuclear Material (SNM) necessitate the development of faster inspection and acquisition capabilities. In order to do so, fast detectors which can operate during and shortly after intense interrogation radiation flashes are being developed. Novel silicon carbide (SiC) semiconductor Schottky diodes have been utilized as robust neutron and photon detectors in both pulsed photon and pulsed neutron fields and are being integrated into active inspection environments to allow exploitation of both prompt and delayed emissions. These detectors have demonstrated the capability of detecting both photon and neutron events during intense photon flashes typical of an active inspection environment. Beyond the inherent insensitivity of SiC to gamma radiation, fast digitization and processing has demonstrated that pulse shape discrimination (PSD) in combination with amplitude discrimination can further suppress unwanted gamma signals and extract fast neutron signatures. Usable neutron signals have been extracted from mixed radiation fields where the background has exceeded the signals of interest by >1000:1

  1. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-07-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation-hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometry for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. (author)

  2. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    Science.gov (United States)

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  3. The synchronous active neutron detection system for spent fuel assay

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed open-quotes lock-inclose quotes amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound

  4. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  5. From neutron Compton profiles to momentum distribution: Assessment of direct numerical determination

    International Nuclear Information System (INIS)

    Senesi, R.; Flammini, D.; Romanelli, G.; Andreani, C.

    2013-01-01

    Inelastic neutron scattering at high momentum transfers, in the neutron Compton scattering regime, provides an access to the neutron Compton profiles, the analogous of Compton profiles in X-ray scattering. The line shape analysis of the neutron Compton profiles is usually carried out making use of multiparametric nonlinear fitting, garnering detailed information about the momentum distribution of the target atoms. This paper presents the proposal to directly determine numerically the momentum distribution from the profiles, thus eliminating the possible instabilities present in multiparametric fitting. A comparison with Monte Carlo simulations and with previous measurements on polycrystalline ice provides quantitative assessments of the proposed method

  6. Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.

    2009-10-25

    We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45°, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45° cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.

  7. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  8. Experimental Assessment of a New Passive Neutron Multiplication Counter for Partial Defect Verification of LWR Fuel Assemblies

    International Nuclear Information System (INIS)

    LaFleur, A.; Menlove, H.; Park, S.-H.; Lee, S. K.; Oh, J.-M.; Kim, H.-D.

    2015-01-01

    The development of non-destructive assay (NDA) capabilities to improve partial defect verification of spent fuel assemblies is needed to improve the timely detection of the diversion of significant quantities of fissile material. This NDA capability is important to the implementation of integrated safeguards for spent fuel verification by the International Atomic Energy Agency (IAEA) and would improve deterrence of possible diversions by increasing the risk of early detection. A new NDA technique called Passive Neutron Multiplication Counter (PNMC) is currently being developed at Los Alamos National Laboratory (LANL) to improve safeguards measurements of LightWater Reactor (LWR) fuel assemblies. The PNMC uses the ratio of the fast-neutron emission rate to the thermalneutron emission rate to quantify the neutron multiplication of the item. The fast neutrons versus thermal neutrons are measured using fission chambers (FC) that have differential shielding to isolate fast and thermal energies. The fast-neutron emission rate is directly proportional to the neutron multiplication in the spent fuel assembly; whereas, the thermalneutron leakage is suppressed by the fissile material absorption in the assembly. These FCs are already implemented in the basic Self-Interrogation Neutron Resonance Densitometry (SINRD) detector package. Experimental measurements of fresh and spent PWR fuel assemblies were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using a hybrid PNMC and SINRD detector. The results from these measurements provides valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. (author)

  9. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  10. On Functional Potential of Interrogative Structures in Academic Linguistic Discourse

    Directory of Open Access Journals (Sweden)

    Sergey Trofimovich Nefedov

    2015-11-01

    Full Text Available The paper deals with the language of scientific communication in the field of linguistics, namely, with the functional potential of the interrogative structures in the form of direct and embedded questions. From a pragmatic perspective the interrogative structures does not seem to be compatible with the contexts of scientific interaction: scientists do not ask for information, but they offer their own solutions for the problem situations. This is reflected in the extremely low frequency of questions in academic research articles and monographs. Their text frequency works out a little over 2 % of the total number of the text predications and that of direct questions is about 1 %. Therefore, their place in verbalization of scientific knowledge in linguistics is metaphorically characterized in this article as «interrogative prohibition» by analogy with the «prohibitions» of Harald Weinrich who introduced several notions point to rarely used linguistic units: «prohibition of authorization» – das «Ich-Verbot», «narrative prohibition» – das «Erzähl-Verbot»; «prohibition of metaphors»– das «MetaphernVerbot». In its turn, low frequency makes the analyzed structures an effective tool to formulate the discussed problems, enables further argumentation, integrate the current text into overall linguistic discourse, control the development of the argumentation in scientific text and finally to draw the recipient's attention to a crucial or unexpected argument.

  11. Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109 (United States)

    2014-11-11

    As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently developed concepts that relate total plutonium mass with SFA multiplication and passive neutron count rate. In this work, the multiplication of the SFA is determined from the die-away time in the early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is achieved.

  12. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  13. In-plant test and evaluation of the neutron collar for verification of PWR fuel assemblies at Resende, Brazil

    International Nuclear Information System (INIS)

    Menlove, H.O.; Marzo, M.A.S.; de Almeida, S.G.; de Almeida, M.C.; Moitta, L.P.M.; Conti, L.F.; de Paiva, J.R.T.

    1985-11-01

    The neutron-coincidence collar has been evaluated for the measurement of pressurized-water reactor (PWR) fuel assemblies at the Fabrica de Elementos Combustiveis plant in Resende, Brazil. This evaluation was part of the cooperative-bilateral-safeguards technical-exchange program between the United States and Brazil. The neutron collar measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron-interrogation source. The extended evaluation took place over a period of 6 months with both scanning and single-zone measurements. The results of the tests gave a coincidence-response standard deviation of 0.7% (sigma = 1.49% for mass) for the active case and 2.5% for the passive case in 1000-s measurement times. The length measurement in the scanning mode was accurate to 0.77%. The accuracies of different calibration methods were evaluated and compared

  14. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Sagamore Adams Laboratories, Lafayette, IN (United States); Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, IN 47907 (United States); Taleyakhan, Rusi P., E-mail: rusi@purdue.edu [Sagamore Adams Laboratories, Lafayette, IN (United States); School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, IN 47907 (United States)

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources ({sup 239}Pu–Be and {sup 252}Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient {sup 3}He sensor replacement was performed utilizing MCNP-PoliMi simulations

  15. Application of direct discrete method (DDM) to multigroup neutron transport problems

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid

    2003-01-01

    The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)

  16. Interrogative suggestibility in patients with conversion disorders.

    Science.gov (United States)

    Foong, J; Lucas, P A; Ron, M A

    1997-09-01

    We tested the hypothesis that increased interrogative suggestibility may contribute to the shaping and maintaining of conversions symptoms. Interrogative suggestibility was measured in 12 patients with conversion disorder and 10 control patients with confirmed neurological disease matched for age, premorbid intelligence, and as closely as possible in terms of their neurological symptoms to the patients with conversion disorder. Our observations do not support the contention that individual differences in interrogative suggestibility are of importance in the etiology of conversion disorders.

  17. Development of neutron interrogation techniques for detection of hazardous substances in containers port

    International Nuclear Information System (INIS)

    D’Amico, N. M. B; Mayer, R.E; Tartaglione, A.

    2013-01-01

    This work is aimed at contributing to the effort of nations seeking to control international borders movement of dangerous chemical substances and nuclear material, in accordance with a multitude of agreements signed to that purpose. At this stage, we try to identify the signature of pure substances: chlorine (Cl), nitrogen (N), chromium (Cr), mercury (Hg), cadmium (Cd), uranium (U) y arsenic (As) and, later, to detect their presence in simulated large cargo containers. The technique employed in previous and in current work, consists in the detection of prompt and early decay gammas induced by incident thermal neutrons or fast neutrons thermalized in the cargo array. Uranium has also been detected through the counting of fast neutrons originated in induced fissions. (author)

  18. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  19. Prospects for direct neutron capture measurements on s-process branching point isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, C.; Lerendegui-Marco, J.; Quesada, J.M. [Universidad de Sevilla, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Domingo-Pardo, C. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Kaeppeler, F. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Palomo, F.R. [Universidad de Sevilla, Dept. de Ingenieria Electronica, Sevilla (Spain); Reifarth, R. [Goethe-Universitaet Frankfurt am Main, Frankfurt am Main (Germany)

    2017-05-15

    The neutron capture cross sections of several unstable key isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, where high neutron fluxes and effective background rejection capabilities are required. At present there are about 21 relevant s-process branching point isotopes whose cross section could not be measured yet over the neutron energy range of interest for astrophysics. However, the situation is changing with some very recent developments and upcoming technologies. This work introduces three techniques that will change the current paradigm in the field: the use of γ-ray imaging techniques in (n, γ) experiments, the production of moderated neutron beams using high-power lasers, and double capture experiments in Maxwellian neutron beams. (orig.)

  20. The Nuclear Car Wash: Neutron interrogation of cargo containers to detect hidden SNM

    Science.gov (United States)

    Hall, J. M.; Asztalos, S.; Biltoft, P.; Church, J.; Descalle, M.-A.; Luu, T.; Manatt, D.; Mauger, G.; Norman, E.; Petersen, D.; Pruet, J.; Prussin, S.; Slaughter, D.

    2007-08-01

    LLNL is actively involved in the development of advanced technologies for use in detecting threats in sea-going cargo containers, particularly the presence of hidden special nuclear materials (SNM). The "Nuclear Car Wash" (NCW) project presented here uses a high-energy (En ≈ 3.5-7.0 MeV) neutron probe to scan a container and then takes high-energy (Eγ ⩾ 2.5 MeV), β-delayed γ-rays emitted during the subsequent decay of any short-lived, neutron-induced fission products as a signature of fissionable material. The components of the proposed system (e.g. neutron source, gamma detectors, etc.) will be discussed along with data processing schemes, possible threat detection metrics and potential interference signals. Results from recent laboratory experiments using a prototype system at LLNL will also be presented.

  1. The Nuclear Car Wash: Neutron interrogation of cargo containers to detect hidden SNM

    International Nuclear Information System (INIS)

    Hall, J.M.; Asztalos, S.; Biltoft, P.; Church, J.; Descalle, M.-A.; Luu, T.; Manatt, D.; Mauger, G.; Norman, E.; Petersen, D.; Pruet, J.; Prussin, S.; Slaughter, D.

    2007-01-01

    LLNL is actively involved in the development of advanced technologies for use in detecting threats in sea-going cargo containers, particularly the presence of hidden special nuclear materials (SNM). The 'Nuclear Car Wash' (NCW) project presented here uses a high-energy (E n ∼ 3.5-7.0 MeV) neutron probe to scan a container and then takes high-energy (E γ ≥ 2.5 MeV), β-delayed γ-rays emitted during the subsequent decay of any short-lived, neutron-induced fission products as a signature of fissionable material. The components of the proposed system (e.g. neutron source, gamma detectors, etc.) will be discussed along with data processing schemes, possible threat detection metrics and potential interference signals. Results from recent laboratory experiments using a prototype system at LLNL will also be presented

  2. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  3. Micro elements for interrogating magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2011-11-01

    This paper reports a new approach for interrogating a magnetoelastic sensor\\'s resonant frequency. Previously, the frequency of a magnetoelastic sensor was measured by using a large-scale solenoid coil of at least some millimeters both in diameter and length. Planar structures of straight-line and rectangular spiral coil are designed, fabricated and tested to interrogate the resonant frequency of a magnetoelastic sensor. A sensor of 4 mm length is measured to have a resonant frequency of 551 kHz in air. The ability to interrogate a magnetoelastic sensor with such microscale elements is a step towards the miniaturization of a magnetoelastic sensor system and integration of such a system in a microfluidics device. © 2011 IEEE.

  4. Functional interrogation of non-coding DNA through CRISPR genome editing.

    Science.gov (United States)

    Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H

    2017-05-15

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The development of enabling technologies for producing active interrogation beams.

    Science.gov (United States)

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  6. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  7. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  8. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  9. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  10. Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization

    Science.gov (United States)

    Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon

    2017-07-01

    This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.

  11. Application of active neutronic interrogation method to the line analysis in reprocessing plant

    International Nuclear Information System (INIS)

    Passard, C.

    1993-01-01

    In a reprocessing plant of irradiated spent fuels, the knowledge in real time (line analysis) of uranium and plutonium quantities present in solutions is an extremely important parameter to control the proceeding and for the apparatus safety. The active neutronic analysis give a nondestructive non intrusive and quick measure to know the concentrations. This method consists in inducing fissions in nuclides with a neutron source and then to detect the particles which come from

  12. A gamma/neutron-discriminating, Cooled, Optically Stimulated Luminescence (COSL) dosemeter

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.

    1992-07-01

    The Cooled Optically Stimulated Luminescence (COSL) of CaF 2 :Mn (grain sizes from 0.1 to 100 microns) powder embedded in a hydrogenous matrix is reported as a function of fast-neutron dose. When all the CaF 2 :Mn grains are interrogated at once, the COSL plastic dosemeters have a minimum detectable limit of 1 cSv fast neutrons; the gamma component from the bare 252 cf exposure was determined with a separate dosemeter. We report here on a proton-recoil-based dosemeter that generates pulse height spectra, much like the scintillator of Hornyak, (2) to provide information on both the neutron and gamma dose

  13. 32 CFR 637.21 - Recording interviews and interrogations.

    Science.gov (United States)

    2010-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel is...

  14. An adaptive sampling and windowing interrogation method in PIV

    Science.gov (United States)

    Theunissen, R.; Scarano, F.; Riethmuller, M. L.

    2007-01-01

    This study proposes a cross-correlation based PIV image interrogation algorithm that adapts the number of interrogation windows and their size to the image properties and to the flow conditions. The proposed methodology releases the constraint of uniform sampling rate (Cartesian mesh) and spatial resolution (uniform window size) commonly adopted in PIV interrogation. Especially in non-optimal experimental conditions where the flow seeding is inhomogeneous, this leads either to loss of robustness (too few particles per window) or measurement precision (too large or coarsely spaced interrogation windows). Two criteria are investigated, namely adaptation to the local signal content in the image and adaptation to local flow conditions. The implementation of the adaptive criteria within a recursive interrogation method is described. The location and size of the interrogation windows are locally adapted to the image signal (i.e., seeding density). Also the local window spacing (commonly set by the overlap factor) is put in relation with the spatial variation of the velocity field. The viability of the method is illustrated over two experimental cases where the limitation of a uniform interrogation approach appears clearly: a shock-wave-boundary layer interaction and an aircraft vortex wake. The examples show that the spatial sampling rate can be adapted to the actual flow features and that the interrogation window size can be arranged so as to follow the spatial distribution of seeding particle images and flow velocity fluctuations. In comparison with the uniform interrogation technique, the spatial resolution is locally enhanced while in poorly seeded regions the level of robustness of the analysis (signal-to-noise ratio) is kept almost constant.

  15. Interrogative constructions in Danish Sign Language (DSL)

    DEFF Research Database (Denmark)

    Hansen, Julie

    This study investigates the primary types of interrogative constructions: Polar and content questions. The aim is to identify how and in which types of interrogative constructions the non-manual patterns described by Engberg-Pedersen (1993, 1998)are used. Furthermore, the aim is to identify...

  16. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    a non-destructive technique for the determination of uranium in UO 2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author) [pt

  17. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    A non-destructive technique for the determination of uranium in UO 2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author) [pt

  18. First direct constraints on Fierz interference in free-neutron β decay

    Science.gov (United States)

    Hickerson, K. P.; Sun, X.; Bagdasarova, Y.; Bravo-Berguño, D.; Broussard, L. J.; Brown, M. A.-P.; Carr, R.; Currie, S.; Ding, X.; Filippone, B. W.; García, A.; Geltenbort, P.; Hoagland, J.; Holley, A. T.; Hong, R.; Ito, T. M.; Knecht, A.; Liu, C.-Y.; Liu, J. L.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Mendenhall, M. P.; Moore, S. D.; Morris, C. L.; Pattie, R. W.; Pérez Galván, A.; Picker, R.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Saunders, A.; Seestrom, S. J.; Sharapov, E. I.; Sondheim, W. E.; Tatar, E.; Vogelaar, R. B.; VornDick, B.; Wrede, C.; Young, A. R.; Zeck, B. A.; UCNA Collaboration

    2017-10-01

    Precision measurements of free-neutron β decay have been used to precisely constrain our understanding of the weak interaction. However, the neutron Fierz interference term bn, which is particularly sensitive to beyond-standard-model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding bn=0.067 ±0 .005stat-0.061+0.090sys , consistent with the standard model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the β spectrometer energy response.

  19. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    Science.gov (United States)

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.

  20. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  1. Non-destructive assay of mechanical components using gamma-rays and thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Erica Silvani; Avelino, Mila R. [PPG-EM/UERJ, R. Sao Francisco Xavier, 524, Maracana - Rio de Janeiro - RJ (Brazil); Almeida, Gevaldo L. de; Souza, Maria Ines S. [IEN/CNEN, Rua Helio de Almeida, 75, Ilha do Fundao, Rio de Janeiro - RJ (Brazil)

    2013-05-06

    This work presents the results obtained in the inspection of several mechanical components through neutron and gamma-ray transmission radiography. The 4.46 Multiplication-Sign 10{sup 5} n.cm{sup -2}.s{sup -1} thermal neutron flux available at the main port of the Argonauta research reactor in Instituto de Engenharia Nuclear has been used as source for the neutron radiographic imaging. The 412 keV {gamma}-ray emitted by {sup 198}Au, also produced in that reactor, has been used as interrogation agent for the gamma radiography. Imaging Plates - IP specifically designed to operate with thermal neutrons or with X-rays have been employed as detectors and storage devices for each of these radiations.

  2. Interrogating Planar Cyclooctatetraenes

    DEFF Research Database (Denmark)

    Hensel, Thomas

    ]circulenes were established. The antiaromaticity of the formal COT core of the hetero[8]circulenes was interrogated by comparison of the respective 13C-NMR carbon shifts with those of 3,6-dimethoxycarbazole (the starting material), tetrahydroxy intermediate and literature values. No uniform paratropic...

  3. Neutron induced gamma spectrometry for on-line compositional analysis in coal conversion and fluidized-bed combustion plants

    International Nuclear Information System (INIS)

    Herzenberg, C.L.; O'Fallon, N.M.; Yarlagadda, B.S.; Doering, R.W.; Cohn, C.E.; Porges, K.G.; Duffey, D.

    1977-01-01

    Nuclear techniques involving relatively penetrating radiation may offer the possibility of non-invasive, continuous on-line instrumental monitoring which is representative of the full process stream. Prompt gamma rays following neutron capture are particularly attractive because the penetrating power of the neutrons and the, typically several MeV, capture gammas makes possible interrogation of material within a pipe. We are evaluating neutron capture gamma techniques for this application, both for elemental composition monitoring and for mass-flow measurement purposes, and this paper will present some recent work on composition analysis by neutron induced gamma spectrometry

  4. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  5. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  6. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  7. Detection and identification of unexploded ordnance (UXO) by neutron interrogation

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Hartwell, J.K.; Krebs, K.M.; McLaughlin, G.D.

    1998-01-01

    This document reviews the principle of operation and unexploded ordnance (UXO) signatures of the PINS Chemical Assay System, a prompt-gamma-ray neutron activation analysis (PGNAA) for the identification of recovered UXO. Two related low cost methods for buried landmine detection are also suggested. Nuclear methods may compliment existing search techniques to improve the overall probability of detection and to reduce the false positive rate of other technologies. In addition, nuclear methods are a proven method for identification of UXO such as landmines

  8. 29 CFR 18.614 - Calling and interrogation of witnesses by judge.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Calling and interrogation of witnesses by judge. 18.614... interrogation of witnesses by judge. (a) Calling by the judge. The judge may, on the judge's own motion or at... thus called. (b) Interrogation by the judge. The judge may interrogate witnesses, whether called by the...

  9. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    International Nuclear Information System (INIS)

    Rhodes, E.; Peters, C.W.

    1991-01-01

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, can detect nuclear warheads by their characteristic strong gamma-ray absorption, or can count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. 5 refs., 12 figs

  10. Bright Lights and Questions: Using Mutual Interrogation

    Science.gov (United States)

    Adam, Aishikin; Alangui, Willy; Barton, Bill

    2010-01-01

    Mutual Interrogation is a research methodology for ethnomathematics proposed by Alangui in 2006 in an attempt to avoid the potential inequality set up when a restricted cultural practice is viewed through the lens of the near-universal and highly developed research domain of mathematics. Using three significant examples of mutual interrogation in…

  11. Safety and efficiency of emergency department interrogation of cardiac devices.

    Science.gov (United States)

    Neuenschwander, James F; Peacock, W Frank; Migeed, Madgy; Hunter, Sara A; Daughtery, John C; McCleese, Ian C; Hiestand, Brian C

    2016-12-01

    Patients with implanted cardiac devices may wait extended periods for interrogation in emergency departments (EDs). Our purpose was to determine if device interrogation could be done safely and faster by ED staff. Prospective randomized, standard therapy controlled, trial of ED staff device interrogation vs. standard process (SP), with 30-day follow-up. Eligibility criteria: ED presentation with a self-report of a potential device related complaint, with signed informed consent. SP interrogation was by company representative or hospital employee. Of 60 patients, 42 (70%) were male, all were white, with a median (interquartile range) age of 71 (64 to 82) years. No patient was lost to follow up. Of all patients, 32 (53%) were enrolled during business hours. The overall median (interquartile range) ED vs. SP time to interrogation was 98.5 (40 to 260) vs. 166.5 (64 to 412) minutes (P=0.013). While ED and SP interrogation times were similar during business hours, 102 (59 to 138) vs. 105 (64 to 172) minutes (P=0.62), ED interrogation times were shorter vs. SP during non-business hours; 97 (60 to 126) vs. 225 (144 to 412) minutes, P=0.002, respectively. There was no difference in ED length of stay between the ED and SP interrogation, 249 (153 to 390) vs. 246 (143 to 333) minutes (P=0.71), regardless of time of presentation. No patient in any cohort suffered an unplanned medical contact or post-discharge adverse device related event. ED staff cardiac device interrogations are faster, and with similar 30-day outcomes, as compared to SP.

  12. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    OpenAIRE

    Halpern, Abraham L; Halpern, John H; Doherty, Sean B

    2008-01-01

    Abstract After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very agg...

  13. Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Helenius, Ilkka [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Tuebingen University, Institute for Theoretical Physics, Tuebingen (Germany); Paukkunen, Hannu [University of Jyvaskyla, Department of Physics, P.O. Box 35, University of Jyvaskyla (Finland); Helsinki Institute of Physics, P.O. Box 64, University of Helsinki (Finland); Universidade de Santiago de Compostela, Instituto Galego de Fisica de Altas Enerxias (IGFAE), Galicia (Spain); Eskola, Kari J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, University of Jyvaskyla (Finland); Helsinki Institute of Physics, P.O. Box 64, University of Helsinki (Finland)

    2017-03-15

    A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-p{sub T} direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-p{sub T} hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region. (orig.)

  14. Visualization of direct contact heat transfer between water and molten alloy by neutron radiography. 1

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito.

    1997-01-01

    Design of an innovative Steam Generator (SG) for Liquid Metal Fast Reactors (LMFRs) using liquid-liquid direct contact heat transfer has been developing. In this concept, the SG shell is filled with a molten alloy, which is heated by primary sodium. Water is fed into the high-temperature, molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information needed to discuss the heat transfer mechanisms of direct contact between the water and molten alloy, this phenomenon was observed by neutron radiography. JRR-3M thermal neutron radiography at the Japan Atomic Energy Research Institute was used. This paper deals with the results of visualization of direct contact heat exchange in the molten alloy. (author)

  15. Determination for energy response and directionality of neutron survey meters

    International Nuclear Information System (INIS)

    Chen Changmao; Liu Jinhua; Xie Jianlun; Su Jingling

    1992-01-01

    The energy response and directionality of neutron survey meter type MK7 and 2202D are determined. The reactor thermal column beam, reactor filtered beams (6 eV, 24.4 keV and 144 keV), 226 Ra-Be, 241 Am-Be, 252 Cf and its moderated sources are used for the measurement. The results shows: the survey meters are influenced obviously by the direction; the response of middle-energy region is large, the energy response of 2202D is better than MK7

  16. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  17. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Science.gov (United States)

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  18. Future directions in high-pressure neutron diffraction

    Science.gov (United States)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  19. Quantum prisoners' dilemma under enhanced interrogation

    Science.gov (United States)

    Siopsis, George; Balu, Radhakrishnan; Solmeyer, Neal

    2018-06-01

    In the quantum version of prisoners' dilemma, each prisoner is equipped with a single qubit that the interrogator can entangle. We enlarge the available Hilbert space by introducing a third qubit that the interrogator can entangle with the other two. We discuss an enhanced interrogation technique based on tripartite entanglement and analyze Nash equilibria. We show that for tripartite entanglement approaching a W-state, we calculate the Nash equilibria numerically and show that they coincide with the Pareto-optimal choice where both prisoners cooperate. Upon continuous variation between a W-state and a pure bipartite entangled state, the game is shown to have a surprisingly rich structure. The role of bipartite and tripartite entanglement is explored to explain that structure. As an application, we consider an evolutionary game based on our quantum game with a network of agents on a square lattice with periodic boundary conditions and show that the strategy corresponding to Nash equilibrium completely dominates without placing any restrictions on the initial set of strategies.

  20. DD fusion neutron production at UW-Madison using IEC devices

    Science.gov (United States)

    Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard

    2017-10-01

    An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.

  1. The role of abusive states of being in interrogation.

    Science.gov (United States)

    Putnam, Frank W

    2013-01-01

    Interrogation, the questioning of persons detained by police, military, or intelligence organizations, is designed to extract information that a subject may resist disclosing. Interrogation techniques are frequently predicated on inducing mental states of despair, dread, dependency, and debility that weaken an individual's resistance. Descriptions of techniques from 2 Central Intelligence Agency training manuals are illustrated by examples from interviews of and writings by Murat Kurnaz, who was held at Guantánamo Bay Detention Camp for 5 years. Interrogation techniques are designed to create a destabilizing sense of shock; undermine an individual's grasp on reality; and provoke internal psychological division, self-conflict, and confusion. The long-term effects of interrogation often include posttraumatic stress disorder as well as states of anxiety, depression, and depersonalization.

  2. TMCC: a transient three-dimensional neutron transport code by the direct simulation method - 222

    International Nuclear Information System (INIS)

    Shen, H.; Li, Z.; Wang, K.; Yu, G.

    2010-01-01

    A direct simulation method (DSM) is applied to solve the transient three-dimensional neutron transport problems. DSM is based on the Monte Carlo method, and can be considered as an application of the Monte Carlo method in the specific type of problems. In this work, the transient neutronics problem is solved by simulating the dynamic behaviors of neutrons and precursors of delayed neutrons during the transient process. DSM gets rid of various approximations which are always necessary to other methods, so it is precise and flexible in the requirement of geometric configurations, material compositions and energy spectrum. In this paper, the theory of DSM is introduced first, and the numerical results obtained with the new transient analysis code, named TMCC (Transient Monte Carlo Code), are presented. (authors)

  3. Advanced FBG sensing through rapid spectral interrogation

    Science.gov (United States)

    Kunzler, Wesley; Newman, Jason; Wilding, Daniel; Zhu, Zixu; Lowder, Tyson; Selfridge, Richard; Schultz, Stephen; Wirthlin, Michael

    2008-03-01

    A fiber Brag grating sensor interrogator has been developed which is capable of gathering vectors of information from individual fiber Bragg gratings by capturing the full optical spectrum 3 kHz. Using a field programmable gate array with high speed digital-to-analog converters and analog-to-digital components, plus a kilohertz rate MEMS optical filter, the optical spectrum can be scanned at rates in excess of 10 million nanometers per second, allowing sensor sampling rates of many kilohertz while maintaining the necessary resolution to understand sensor changes. The autonomous system design performs all necessary detection and processing of multiple sensors and allows spectral measurements to be exported as fast as Ethernet, USB, or RS232 devices can receive it through a memory mapped interface. The high speed - full spectrum - fiber Bragg grating sensor interrogator enables advanced interrogation of dynamic strain and temperature gradients along the length of a sensor, as well as the use of each sensor for multiple stimuli, such as in temperature compensation. Two examples are described, showing interrogation of rapid laser heating in an optical fiber, as well as complex strain effects in a beam that had an engineered defect.

  4. Laser interrogation of latent vehicle registration number

    Energy Technology Data Exchange (ETDEWEB)

    Russo, R.E. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Lawrence Livermore National Lab., CA (United States). Forensic Science Center; Pelkey, G.E. [City of Livermore Police Dept., CA (United States); Grant, P.; Whipple, R.E.; Andresen, B.D. [Lawrence Livermore National Lab., CA (United States). Forensic Science Center

    1994-09-01

    A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

  5. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  6. NELIS - a Neutron Inspection System for Detection of Illicit Drugs

    International Nuclear Information System (INIS)

    Barzilov, Alexander P.; Womble, Phillip C.; Vourvopoulos, George

    2003-01-01

    NELIS (Neutron ELemental Inspection System) is currently being developed to inspect cargo pallets for illicit drugs. NELIS must be used in conjunction with an x-ray imaging system to optimize the inspection capabilities at ports of entry. Pulsed fast-thermal neutron analysis is utilized to measure the major and minor chemical elements in a non-destructive and non-intrusive manner. Fourteen-MeV neutrons produced with a pulsed d-T neutron generator are the interrogating particles. NELIS analyzes the characteristic gamma rays emitted from the object that are produced by nuclear reactions from fast and thermal neutrons. These gamma rays have different energies for each chemical element, and act as their fingerprints. Since the elemental composition of illicit drugs is quite different from that of innocuous materials, drugs hidden in pallets are identified through the comparison of expected and measured elemental composition and ratios. Results of tests of the system will be discussed

  7. Neutron detection with integrated sub-2 nm Pt nanoparticles and 10B enriched dielectrics—A direct conversion device

    Directory of Open Access Journals (Sweden)

    Haisheng Zheng

    2016-07-01

    Full Text Available We report a direct conversion solid-state neutron detection device fabricated by combining the large neutron capture cross-section of 10B with the charge trapping attributes of sub-2 nm Pt nanoparticles (Pt NPs in MOSCAP structures. The 10B embedded polystyrene based neutron conversion layer also serves as the dielectric layer. Neutron sensing is achieved through carrier generation within the active 10B based dielectric layer and subsequent transfer to the embedded Pt NP layers, resulting in a significant change of the device's flat-band voltage upon ex-situ characterization. Both single and dual Pt NP layer embedded architectures, with varying electron addition energies, were tested within this study. While dual-layer Pt NPs embedded direct conversion devices with higher electron addition energy are shown to successfully capture charges generated through energetic reaction product upon neutron capture, the single Pt NP layer embedded device structure with lower electron addition energy displays signs of charge loss attributable to direct tunneling in the ex-situ capacitance–voltage measurement. Although only ex-situ detector operation is demonstrated within the realms of this study, sensitive in-situ neutron detectors and ultra-stable ex-situ dosimeters may be achievable utilizing a similar structure by fine-tuning the Pt NP size and the number of Pt NP layers in the device. Keywords: Neutron detection, Sub-2 nm Pt nanoparticles, 10B enriched dielectrics, Direct conversion, MOSCAP, Coulomb blockade

  8. Notes on SAW Tag Interrogation Techniques

    Science.gov (United States)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only

  9. Police interviewing and interrogation of juvenile suspects: a descriptive examination of actual cases.

    Science.gov (United States)

    Cleary, Hayley M D

    2014-06-01

    Although empirical attention to police interrogation has gained traction in recent years, comparatively few studies have examined interrogation of juvenile suspects, and virtually none have examined actual interrogations. Despite a growing literature on youths' interrogation-related capacities, we still know very little about what actually transpires when police question youth. The present study examines electronically recorded police interviews with juveniles to describe the characteristics, processes, and outcomes that occur in actual juvenile interrogations, including interview duration, individuals present, and confessions. Fifty-seven electronic recordings from 17 police departments were analyzed using observational research software. The median juvenile interrogation lasted 46 min, though the range was extensive (6 min to nearly 5 hr). Youth frequently submitted to questioning without a parent or advocate present, and disruptions to the interview process were common. Interrogation outcomes varied and included full confessions, partially incriminating admissions, and denials of guilt. Results from this study provide context for interrogation research using other methods and suggest that youth may frequently consent to interrogation in the absence of important legal protections.

  10. 25 CFR 11.303 - Notification of rights prior to custodial interrogation.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Notification of rights prior to custodial interrogation. 11.303 Section 11.303 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER... to custodial interrogation. Prior to custodial interrogation, the suspect shall be advised of the...

  11. 29 CFR 18.611 - Mode and order of interrogation and presentation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Mode and order of interrogation and presentation. 18.611... of interrogation and presentation. (a) Control by judge. The judge shall exercise reasonable control... interrogation and presentation effective for the ascertainment of the truth, (2) Avoid needless consumption of...

  12. Innocence and resisting confession during interrogation: effects on physiologic activity.

    Science.gov (United States)

    Guyll, Max; Madon, Stephanie; Yang, Yueran; Lannin, Daniel G; Scherr, Kyle; Greathouse, Sarah

    2013-10-01

    Innocent suspects may not adequately protect themselves during interrogation because they fail to fully appreciate the danger of the situation. This experiment tested whether innocent suspects experience less stress during interrogation than guilty suspects, and whether refusing to confess expends physiologic resources. After experimentally manipulating innocence and guilt, 132 participants were accused and interrogated for misconduct, and then pressured to confess. Systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), respiratory sinus arrhythmia (RSA), and preejection period (PEP) responses quantified stress reactions. As hypothesized, the innocent evidenced smaller stress responses to interrogation for SBP, DBP, HR, and RSA than did the guilty. Furthermore, innocents who refused to confess exhibited greater sympathetic nervous system activation, as evidenced by shorter PEPs, than did innocent or guilty confessors. These findings suggest that innocent suspects underestimate the threat of interrogation and that resisting pressures to confess can diminish suspects' physiologic resources and lead to false confessions. PsycINFO Database Record (c) 2013 APA, all rights reserved

  13. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    Science.gov (United States)

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  14. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, J.-M [SENSeOR, 32 Avenue de l' Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l' Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  15. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    International Nuclear Information System (INIS)

    Friedt, J.-M; Droit, C.; Martin, G.; Ballandras, S.

    2010-01-01

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  16. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    Science.gov (United States)

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.

  17. Battery-less wireless interrogation of microstrip patch antenna for strain sensing

    International Nuclear Information System (INIS)

    Xu, X; Huang, H

    2012-01-01

    This paper presents a battery-less wireless interrogation system that can measure the resonant frequency of a microstrip patch antenna with a fine resolution. Since the antenna resonant frequency is sensitive to strain-induced deformations, wireless interrogation of the antenna sensor for strain measurement was demonstrated. By implementing a microwatt impedance switching circuit at the sensor node, the antenna backscattering is amplitude modulated at the sensor node so that it can be separated from the structural backscattering at the interrogator. The sensor node can be powered by a small photocell and thus achieve battery-less operation. The operating principle of the wireless interrogation system is first described, followed by the implementation and characterization of the wireless interrogation system. The antenna resonant frequency shifts were correlated to the applied strains through a static tensile experiment. An excellent agreement between the experimental results and the analytical prediction was obtained. A power transmission model was established and validated with experimental measurements. Based on this power transmission model, we estimated that the maximum interrogation distance of the wireless strain measurement system is 26 m. (paper)

  18. What do potential jurors know about police interrogation techniques and false confessions?

    Science.gov (United States)

    Leo, Richard A; Liu, Brittany

    2009-01-01

    Psychological police interrogation methods in America inevitably involve some level of pressure and persuasion to achieve their goal of eliciting confessions of guilt from custodial suspects. In this article, we surveyed potential jurors about their perceptions of a range of psychological interrogation techniques, the likelihood that such techniques would elicit a true confession from guilty suspects, and the likelihood that such techniques could elicit a false confession from innocent suspects. Participants recognized that these interrogation techniques may be psychologically coercive and may elicit true confessions, but believed that psychologically coercive interrogation techniques are not likely to elicit false confessions. The findings from this survey study indicate that potential jurors believe that false confessions are both counter- intuitive and unlikely, even in response to psychologically coercive interrogation techniques that have been shown to lead to false confessions from the innocent. This study provides empirical support for the idea that expert witnesses may helpfully inform jurors about the social science research on psychologically coercive interrogation methods and how and why such interrogation techniques can lead to false confessions. (c) 2009 John Wiley & Sons, Ltd.

  19. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R [Oakland, CA; Pohl, Bertram A [Berkeley, CA; Dougan, Arden D [San Ramon, CA; Bernstein, Adam [Palo Alto, CA; Prussin, Stanley G [Kensington, CA; Norman, Eric B [Oakland, CA

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  20. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  1. Technology for Polymer Optical Fiber Bragg Grating Fabrication and Interrogation

    DEFF Research Database (Denmark)

    Ganziy, Denis

    The aim of this project is to develop a new, high-quality interrogator for FBG sensor systems, which combines high performance with costeffectiveness. The work includes the fields of optical system design, signal processing, and algorithm investigation. We present an efficient and fast peak...... analyze and investigate errors and drawbacks, which are typical for spectrometer-based interrogators: undersampling, grating internal reflection, photo response nonuniformity, pixel crosstalk and temperature and long term drift. We propose a novel type of multichannel Digital Micromirror Device (DMD......) based interrogator, where the linear detector is replaced with a commercially available DMD, which leads to cost reduction and better performance. Original optical design, which utilizes advantages of a retro-reflect optical scheme, has been developed in Zemax. We test the presented interrogator...

  2. Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Bartlett, D.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lacoste, V.; Lindborg, L.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.

    2007-01-01

    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed. (authors)

  3. Rattling nucleons: New developments in active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  4. Interrogation: General vs. Local.

    Science.gov (United States)

    Johnson, Jeannette

    This paper proposes a set of hypotheses on the nature of interrogration as a possible language universal. Examples and phrase structure rules and diagrams are given. Examining Tamazight and English, genetically unrelated languages with almost no contact, the author distinguishes two types of interrogation: (1) general, querying acceptability to…

  5. Postmortem ICD interrogation in mode of death classification.

    Science.gov (United States)

    Nikolaidou, Theodora; Johnson, Miriam J; Ghosh, Justin M; Marincowitz, Carl; Shah, Saumil; Lammiman, Michael J; Schilling, Richard J; Clark, Andrew L

    2018-04-01

    The definition of sudden death due to arrhythmia relies on the time interval between onset of symptoms and death. However, not all sudden deaths are due to arrhythmia. In patients with an implantable cardioverter defibrillator (ICD), postmortem device interrogation may help better distinguish the mode of death compared to a time-based definition alone. This study aims to assess the proportion of "sudden" cardiac deaths in patients with an ICD that have confirmed arrhythmia. We conducted a literature search for studies using postmortem ICD interrogation and a time-based classification of the mode of death. A modified QUADAS-2 checklist was used to assess risk of bias in individual studies. Outcome data were pooled where sufficient data were available. Our search identified 22 studies undertaken between 1982 and 2015 with 23,600 participants. The pooled results (excluding studies with high risk of bias) suggest that ventricular arrhythmias are present at the time of death in 76% of "sudden" deaths (95% confidence interval [CI] 67-85; range 42-88). Postmortem ICD interrogation identifies 24% of "sudden" deaths to be nonarrhythmic. Postmortem device interrogation should be considered in all cases of unexplained sudden cardiac death. © 2018 Wiley Periodicals, Inc.

  6. Response of CR-39 based personnel neutron dosemeter in terms of directional dose equivalent, in free air and on phantom

    International Nuclear Information System (INIS)

    Pal, Rupali R.; Sathian, Deepa; Jayalakshmi, V.; Chougaonkar, M.P.

    2011-01-01

    CR-39 is the most sensitive of nuclear track detectors for protons and is recommended as an effective neutron dosimeter because of it's low threshold energy of 100 keV neutrons. The fraction of protons that gives detectable tracks in CR-39 depends on the energy of the proton angle of incidence and etching conditions. As a consequence the registration efficiency of neutrons in the CR-39 plastics used for neutron personnel monitoring is strongly influenced by the direction of radiation incidence. This paper presents the relative response of CR-39 at varying neutron incident angles, for 241 Am-Be neutron source spectra in free air and on ISO phantom, in terms of operational quantities. It is observed that the angular dependence of CR-39 for irradiations in air and on phantom is essentially the same indicating that the phantom does not affect the directional response of CR-39. (author)

  7. Some Semantic Properties of Romanian Interrogatives: "Care" and "Cine."

    Science.gov (United States)

    Vasiliu, E.

    The aim of this paper is to account for some semantic properties of Romanian interrogatives "ce" and "cine" by establishing some definite correlations between various contextual restrictions governing the use of these interrogative particles and the "meaning" which might be assigned to each of these particles in any…

  8. Development of fiber optic sensing interrogators for launchers

    Science.gov (United States)

    Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.

    2017-11-01

    We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible

  9. Simulation of Thermal Neutron Transport Processes Directly from the Evaluated Nuclear Data Files

    Science.gov (United States)

    Androsenko, P. A.; Malkov, M. R.

    The main idea of the method proposed in this paper is to directly extract thetrequired information for Monte-Carlo calculations from nuclear data files. The met od being developed allows to directly utilize the data obtained from libraries and seehs to be the most accurate technique. Direct simulation of neutron scattering in themmal energy range using file 7 ENDF-6 format in terms of code system BRAND has beer achieved. Simulation algorithms have been verified using the criterion x2

  10. Modeling and Interrogative Strategies.

    Science.gov (United States)

    Denney, Douglas R.

    Three studies to determine the effects of adult models on interrogative strategies of children (ages 6-11) are reviewed. Two issues are analyzed: (1) the comparative effectiveness of various types of modeling procedures for changing rule-governed behaviors, and (2) the interaction between observational learning and the developmental level of the…

  11. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori [Oregon State Univ., Corvallis, OR (United States)

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two

  12. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    International Nuclear Information System (INIS)

    Yang, Haori

    2016-01-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238 U and 239 Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two-fold approach was

  13. Quantitative comparison between experimental and simulated gamma-ray spectra induced by 14 MeV tagged neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); El Kanawati, W.; Carasco, C.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Valkovic, V. [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia); Sudac, D.; Obhodas, J. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Sannie, G. [CEA, LIST, Saclay, F-91191 Gif-sur-Yvette (France)

    2012-07-15

    Fast neutron interrogation with the associated particle technique can be used to identify explosives in cargo containers (EURITRACK FP6 project) and unexploded ordnance on the seabed (UNCOSS FP7 project), by detecting gamma radiations induced by 14 MeV neutrons produced in the {sup 2}H({sup 3}H,{alpha})n reaction. The origin of the gamma rays can be determined in 3D by the detection of the alpha particle, which provides the direction of the opposite neutron and its time-of-flight. Gamma spectroscopy provides the relative counts of carbon, nitrogen, and oxygen, which are converted to chemical fractions to differentiate explosives from other organic substances. To this aim, Monte Carlo calculations are used to take into account neutron moderation and gamma attenuation in cargo materials or seawater. This paper presents an experimental verification that C, N, and O counts are correctly reproduced by numerical simulation. A quantitative comparison is also reported for silicon, iron, lead, and aluminium. - Highlights: Black-Right-Pointing-Pointer Gamma-ray spectra produced by 14 MeV neutrons in C, N, O, Si, Al, Fe, and Pb elements. Black-Right-Pointing-Pointer Quantitative comparison with MCNPX simulations using the ENDF/B-VII.0 library. Black-Right-Pointing-Pointer C, N, and O counts correctly reproduced and chemical proportions recovered using calculation. Black-Right-Pointing-Pointer Application to the detection of explosives or illicit drugs in cargo containers.

  14. Detection of explosives and other illicit materials by a single nanosecond neutron pulses - Monte-Carlo simulations of the detection process

    International Nuclear Information System (INIS)

    Miklaszewski, R.; Drozdowicz, K.; Wiacek, U.; Dworak, D.; Gribkov, V.

    2011-01-01

    Recent progress in the development of a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects (explosives and other illicit materials) by means of measuring elastically scattered neutrons is presented in this paper. The method is based on the well know fact that nuclide-specific information is present in the scattered neutron field. The method uses very bright neutron pulses having duration of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with a pure deuterium or deuterium-tritium mixture as a working gas. Very short duration of the neutron pulse, its high brightness and mono-chromaticity allow to use the time-of-flight method with bases of about few meters to distinguish signals from neutrons scattered by different elements. Results of the Monte Carlo simulations of the scattered neutron field from several compounds (explosives and everyday use materials) are presented in the paper. The MCNP5 code has been used to get information on the angular and energy distributions of the neutrons scattered by the above mentioned compounds assuming the initial neutron energy equal to 2.45 MeV (D-D). A new input has been elaborated that allows the modelling of not only a spectrum of the neutrons scattered at different angles but also their time history from the moment of generation up to detection. Such an approach allows getting approximate signals as registered by scintillator + photomultiplier probes placed at various distances from the scattering object, demonstrating a principal capability of the method to identify an elemental content of the inspected objects. Preliminary results of the MCNP modelling of the interrogation process of the airport luggage containing several illicit objects are presented as well. (authors)

  15. Development of a Liquid Scintillator-Based Active Interrogation System for LEU Fuel Assemblies

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Plenteda, Romano; Mascahrenas, Nicholas; Cronholm, L. Marie; Aspinall, Michael; Joyce, Malcolm; Tomanin, Alice; Peerani, Paolo

    2013-06-01

    The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (Lancaster, UK), has developed a full scale, liquid scintillator-based active interrogation system to determine uranium (U) mass in fresh fuel assemblies. The system implements an array of moderate volume (∼1000 ml) liquid scintillator detectors, a multichannel pulse shape discrimination (PSD) system, and a high-speed data acquisition and signal processing system to assess the U content of fresh fuel assemblies. Extensive MCNPX-PoliMi modelling has been carried out to refine the system design and optimize the detector performance. These measurements, traditionally performed with 3 He-based assay systems (e.g., Uranium Neutron Coincidence Collar [UNCL], Active Well Coincidence Collar [AWCC]), can now be performed with higher precision in a fraction of the acquisition time. The system uses a high-flash point, non-hazardous scintillating fluid (EJ309) enabling their use in commercial nuclear facilities and achieves significantly enhanced performance and capabilities through the combination of extremely short gate times, adjustable energy detection threshold, real-time PSD electronics, and high-speed, FPGA-based data acquisition. Given the possible applications, this technology is also an excellent candidate for the replacement of select 3 He-based systems. Comparisons to existing 3 He-based active interrogation systems are presented where possible to provide a baseline performance reference. This paper will describe the laboratory experiments and associated modelling activities undertaken to develop and initially test the prototype detection system. (authors)

  16. Conceptual Design of a 14-MeV D-T Neutron Source for Material Inspection

    International Nuclear Information System (INIS)

    Kim, Jin-Choon; Oh, Byung-Hoon

    2007-01-01

    There is a worldwide need for the efficient inspection of cargo containers at airports, seaports and border crossings. And there is also a growing need for nondestructive inspection of metal objects such as airplane parts. The limitations of X-ray systems for the detection of explosives, drugs, and thick metal structures have stimulated interest in neutron radiograph or tomography. The weak link in such applications is the neutron source. The ideal neutron source should provide a high intensity, high-energy for sufficient penetration and activation, a reliable long-term operation, and a monoenergetic neutron beam. In this paper, we describe a conceptual design of a DT fusion neutron source (monoenergetic 14 MeV neutron generator) which satisfies the fore-mentioned requirements. The current design is based upon the actually proven system using the drive-in target principle. The design is versatile enough to accommodate various applications, ranging from material inspection and explosive interrogation to medical probing and cancer treatment

  17. Interrogative suggestibility, confabulation, and acquiescence in people with mild learning disabilities (mental handicap): implications for reliability during police interrogations.

    Science.gov (United States)

    Clare, I C; Gudjonsson, G H

    1993-09-01

    In order to assess a criminal suspect's ability to make a reliable statement, performance on three measures--interrogative suggestibility, confabulation and acquiescence--may be used. This paper presents preliminary data on these measures for people with mild learning disabilities (Full Scale IQ [FSIQ]: 57-75). It was found that they were more suggestible than their average ability counterparts (FSIQ: 83-111) because they were much more susceptible to 'leading questions'. They also confabulated more and were more acquiescent. Overall, the data emphasized their potential vulnerability to giving erroneous testimony during interrogations.

  18. Catching the Cyber Spy: ARL's Interrogator

    National Research Council Canada - National Science Library

    Long, Kerry S

    2004-01-01

    The U.S. Army Research Laboratory has designed a network-based intrusion detection framework, Interrogator, which addresses the constantly changing threat environment that Department of Defense networks...

  19. Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

    Science.gov (United States)

    Alexandrov, A.; Asada, T.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Di Vacri, M. L.; Furuya, S.; Galati, G.; Gentile, V.; Katsuragawa, T.; Laubenstein, M.; Lauria, A.; Loverre, P. F.; Machii, S.; Monacelli, P.; Montesi, M. C.; Naka, T.; Pupilli, F.; Rosa, G.; Sato, O.; Strolin, P.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-07-01

    Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure.

  20. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bentoumi, G. [Canadian Nuclear Labs., Chalk River, ON (Canada); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (United States); Dimayuga, I. [Canadian Nuclear Labs., Chalk River, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (United States); Li, L. [Canadian Nuclear Labs., Chalk River, ON (Canada); Sur, B. [Canadian Nuclear Labs., Chalk River, ON (Canada); Rogge, R. B. [Canadian Nuclear Labs., Chalk River, ON (Canada)

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  1. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  2. Indirect and direct measurement of thermal neutron acceleration by inelastic scattering on the 177Lu isomer

    International Nuclear Information System (INIS)

    Belier, G.; Roig, O.; Meot, V.; Daugas, J.M.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Veyssiere, Ch.

    2008-01-01

    When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, 152m Eu and 180m Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on 177m Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the 177 Lu isomer with different neutron fluxes we obtained a value of (257 ± 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on 177g Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)

  3. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    the collective scattering in well-defined regions in velocity space, here dubbed interrogation regions. Since the CTS instrument measures entire spectra of scattered radiation, many different interrogation regions are probed simultaneously. We here give analytic expressions for weight functions describing...... the interrogation regions, and we show typical interrogation regions of the proposed ITER CTS system. The backscattering system with receivers on the low-field side is sensitive to fast ions with pitch |p| = |v/v| ... scattering system with receivers on the high-field side would be sensitive to co- and counter-passing fast ions in narrow interrogation regions with pitch |p| > 0.6–0.8. Additionally, we use weight functions to reconstruct 2D fast-ion distribution functions, given two projected 1D velocity distribution...

  4. Dual reference point temperature interrogating method for distributed temperature sensor

    International Nuclear Information System (INIS)

    Ma, Xin; Ju, Fang; Chang, Jun; Wang, Weijie; Wang, Zongliang

    2013-01-01

    A novel method based on dual temperature reference points is presented to interrogate the temperature in a distributed temperature sensing (DTS) system. This new method is suitable to overcome deficiencies due to the impact of DC offsets and the gain difference in the two signal channels of the sensing system during temperature interrogation. Moreover, this method can in most cases avoid the need to calibrate the gain and DC offsets in the receiver, data acquisition and conversion. An improved temperature interrogation formula is presented and the experimental results show that this method can efficiently estimate the channel amplification and system DC offset, thus improving the system accuracy. (letter)

  5. Modeling the tagged-neutron UXO identification technique using the Geant4 toolkit

    International Nuclear Information System (INIS)

    Zhou, Y.; Zhu, X.; Wang, Y.; Mitra, S.

    2012-01-01

    It is proposed to use 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to identify the fillers of unexploded ordnances (UXO) by characterizing their carbon, nitrogen and oxygen contents. To facilitate the design and construction of a prototype system, a preliminary simulation model was developed, using the Geant4 toolkit. This work established the toolkit environment for (a) generating tagged neutrons, (b) their transport and interactions within a sample to induce emission and detection of characteristic gamma-rays, and (c) 2D and 3D-image reconstruction of the interrogated object using the neutron and gamma-ray time-of-flight information. Using the modeling, this article demonstrates the novelty of the tagged-neutron approach for extracting useful signals with high signal-to-background discrimination of an object-of-interest from that of its environment. Simulations indicated that an UXO filled with the RDX explosive, hexogen (C 3 H 6 O 6 N 6 ), can be identified to a depth of 20 cm when buried in soil. (author)

  6. Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices.

    Science.gov (United States)

    Díaz, Camilo A R; Leitão, Cátia; Marques, Carlos A; Domingues, M Fátima; Alberto, Nélia; Pontes, Maria José; Frizera, Anselmo; Ribeiro, Moisés R N; André, Paulo S B; Antunes, Paulo F C

    2017-10-23

    Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry-Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively.

  7. Long period grating based refractometer with polarization-sensitive interrogation

    International Nuclear Information System (INIS)

    Eftimov, T; Bock, W; Mikulic, P; Nikolova, K

    2010-01-01

    We propose a new scheme for the interrogation of long-period fiber gratings (LPGs) which makes use of their polarization properties. Polarization-sensitive interrogation was applied to detect changes due to changes of the external refractive index by using three wavelengths on the International Telecommunication Union (ITU) grid. We show that the new approach can allow for a greater sensitivity and can be used in combination with spectral multiplexing schemes

  8. 76 FR 44282 - Defense Federal Acquisition Regulation Supplement; Prohibition on Interrogation of Detainees by...

    Science.gov (United States)

    2011-07-25

    ...-AG88 Defense Federal Acquisition Regulation Supplement; Prohibition on Interrogation of Detainees by... prescribes policies prohibiting interrogation of detainees by contractor personnel, as required by section... ancillary positions, including as trainers of, and advisors to, interrogations, if the contractor personnel...

  9. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling.

    Science.gov (United States)

    Estrada, Javier; Andrew, Natalie; Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-07-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell's environment. This suggests that the external environment may be harnessed to interrogate the cell's internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a "correct" model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology.

  10. Generation of neutron standing waves at total reflection of polarized neutrons

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Kozhevnikov, S.V.; Radu, F.; Kruijs, R.; Rekveldt, M.Th.

    1999-01-01

    The regime of neutron standing waves at reflection of polarized thermal neutrons from the structure glass/Cu (1000 A Angstrom)/Ti (2000 A Angstrom)/Co (60 A Angstrom)/Ti (300 A Angstrom) in a magnetic field directed at an angle to the sample plane is realized. The intensity of neutrons with a particular spin projection on the external magnetic field direction appears to be a periodic function of the neutron wavelength and the glancing angle of the reflected beam. It is shown that the neutron standing wave regime can be a very sensitive method for the determination of changes in the spatial position of magnetic noncollinear layers. (author)

  11. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S. [Department of Physics and Astronomy, Division of Applied Nuclear Physics, Uppsala University, Lägerhyddsgatan 1, 751 20 Uppsala (Sweden)

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  12. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    Science.gov (United States)

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  13. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  15. 75 FR 67632 - Defense Federal Acquisition Regulation Supplement; Prohibition on Interrogation of Detainees by...

    Science.gov (United States)

    2010-11-03

    ...-AG88 Defense Federal Acquisition Regulation Supplement; Prohibition on Interrogation of Detainees by... National Defense Authorization Act for Fiscal Year 2010 (Pub. L. 111-84) prohibits the interrogation of..., to add DFARS 237.173, Prohibition on Interrogation of Detainees by Contractor Personnel, adding a...

  16. Interrogation of an object for dimensional and topographical information

    Science.gov (United States)

    McMakin, Doug L [Richland, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Richland, WA; Sheen, David M [Richland, WA

    2003-01-14

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.

  17. Using Elaborative Interrogation Enhanced Worked Examples to Improve Chemistry Problem Solving

    Science.gov (United States)

    Pease, Rebecca Simpson

    2012-01-01

    Elaborative interrogation, which prompts students to answer why-questions placed strategically within informational text, has been shown to increase learning comprehension through reading. In this study, elaborative interrogation why-questions requested readers to explain why paraphrased statements taken from a reading were "true."…

  18. Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis

    International Nuclear Information System (INIS)

    Wilson, Paul P.H.; Tautges, Timothy J.; Kraftcheck, Jason A.; Smith, Brandon M.; Henderson, Douglass L.

    2010-01-01

    The Direct Accelerated Geometry Monte Carlo (DAGMC) software library offers a unique approach to performing neutronics analysis on CAD-based geometries of fusion systems. By employing a number of acceleration techniques, the ray-tracing operations that are fundamental to Monte Carlo radiation transport are implemented efficiently for direct use on the CAD-based solid model, eliminating the need to translate to the native Monte Carlo input language. By forming hierarchical trees of oriented bounding boxes, one for each facet that results from a high-fidelity tessellation of the model, the ray-tracing performance is adequate to permit detailed analysis of large complex systems. In addition to the reduction in human effort and improvement in quality assurance that is found in the translation approaches, the DAGMC approach also permits the analysis of geometries with higher order surfaces that cannot be represented by many native Monte Carlo radiation transport tools. The paper describes the various acceleration techniques and demonstrates the resulting capability in a real fusion neutronics analysis.

  19. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  20. Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs

    Science.gov (United States)

    González-Vila, Álvaro; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2017-11-01

    Gold-coated tilted fiber Bragg gratings can probe surface Plasmon polaritons with high resolution and sensitivity. In this work, we report two configurations to interrogate such plasmonic biosensors, with the aim of providing more efficient alternatives to the widespread spectrometer-based techniques. To this aim, the interrogation is based on measuring the optical power evolution of the cladding modes with respect to surrounding refractive index changes instead of computing their wavelength shift. Both setups are composed of a broadband source and a photodiode and enable a narrowband interrogation around the cladding mode that excites the surface Plasmon resonance. The first configuration makes use of a uniform fiber Bragg grating to filter the broadband response of the source in a way that the final interrogation is based on an intensity modulation measured in transmission. The second setup uses a uniform fiber grating too, but located beyond the sensor and acting as a selective optical mirror, so the interrogation is carried out in reflection. Both configurations are compared, showing interesting differential features. The first one exhibits a very high sensitivity while the second one has an almost temperature-insensitive behavior. Hence, the choice of the most appropriate method will be driven by the requirements of the target application.

  1. Indirect and direct measurement of thermal neutron acceleration by inelastic scattering on the {sup 177}Lu isomer

    Energy Technology Data Exchange (ETDEWEB)

    Belier, G.; Roig, O.; Meot, V.; Daugas, J.M. [CEA Bruyeres-le-Chatel, Dept. de Physique Theorique et Appliquee, 91 (France); Aupiais, J.; Jutier, Ch.; Le Petit, G. [CEA Bruyeres-le-Chatel, Service de Physique Nucleaire, 91 (France). Dept. de Physique Theorique et Appliquee; Letourneau, A.; Marie, F. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique Nucleaire, 91- Gif sur Yvette (France); Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service d' Ingenierie des Systemes, 91- Gif sur Yvette (France)

    2008-07-01

    When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, {sup 152m}Eu and {sup 180m}Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on {sup 177m}Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the {sup 177}Lu isomer with different neutron fluxes we obtained a value of (257 {+-} 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on {sup 177g}Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)

  2. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  3. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  4. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  5. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    Science.gov (United States)

    Halpern, Abraham L; Halpern, John H; Doherty, Sean B

    2008-09-25

    After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very aggressive techniques determined to be torture by many nations and organizations throughout the world. This paper explains why psychiatrists and psychologists involved in coercive interrogations violate the Geneva Conventions and the laws of the United States. Whether done with ignorance of professional ethical obligations or not, these psychiatrists and psychologists have crossed an ethical barrier that may best be averted from re-occurring by teaching medical students and residents in all medical specialties about the ethics principles stemming from the 1946-1947 Nuremberg trials and the Geneva Conventions, together with the Ethics Codes of the World Medical Association and the American Medical Association; and, with regard to psychiatric residents and psychological trainees, by the teaching about The Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry and the Ethical Principles of Psychologists and Code of Conduct, respectively. In this way, all physicians and psychologists will clearly understand that they have an absolute moral obligation to "First, do no harm" to the human beings they professionally encounter.

  6. Development of an integrated assay facility

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Bailey, M.; Findlay, D.J.S.; Sene, M.R.; Swinhoe, M.T.

    1990-01-01

    Initial results of active neutron and active gamma-ray interrogation of a 500 liter cemented simulated CAGR intermediate level radioactive waste drum are described. The basis of the interrogation systems was the Harwell electron linear accelerator HELIOS, which was used to produce the interrogating neutrons and gamma-rays. Several sets of neutron detectors were located around the drum to count signature neutrons. The responses of the system were measured by placing known samples at many different locations within the drum. In general, measured responses confirmed calculated responses. Good agreement was obtained for the azimuthal angle dependences. The absolute responses agreed well for gamma-ray interrogation, but the calculations were apparently over-estimates for neutron interrogation. Those aspects requiring consideration in the practical application of assay techniques are identified. 8 refs., 6 figs

  7. Determination of spent nuclear fuel assembly multiplication with the differential die-away self-interrogation instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexis C. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Henzl, Vladimir; Menlove, Howard O.; Swinhoe, Martyn T.; Belian, Anthony P. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, Marek; Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-09-01

    We present a novel method for determining the multiplication of a spent nuclear fuel assembly with a Differential Die-Away Self-Interrogation (DDSI) instrument. The signal, which is primarily created by thermal neutrons, is measured with four {sup 3}He detector banks surrounding a spent fuel assembly. The Rossi-alpha distribution (RAD) at early times reflects coincident events from single fissions as well as fission chains. Because of this fact, the early time domain contains information about both the fissile material and spontaneous fission material in the assembly being measured. A single exponential function fit to the early time domain of the RAD has a die-away time proportional to the spent fuel assembly (SFA) multiplication. This correlation was tested by simulating assay of 44 different SFAs with the DDSI instrument. The SFA multiplication was determined with a variance of 0.7%.

  8. Optimization of periodical interrogation of transducers of radioisotope measuring systems

    International Nuclear Information System (INIS)

    Ivashchenko, A.S.; Kaznakov, V.P.; Korolev, V.M.

    1978-01-01

    Certain methods are examined of optimizing periodic interrogation of sensors connected in a definite sequence to device for data processing in a system for controlling production processes. It is shown that in designing multiinput radioisotope measurement systems with a centralized data processing, the choice of the method of organizing periodic interrogation should be made with account for the conditions existing in each specific case

  9. Natural syntax : English interrogative main clauses

    Directory of Open Access Journals (Sweden)

    Janez Oresnik

    2007-12-01

    Full Text Available Natural Syntax is a developing deductive theory, a branch of Naturalness Theory. The naturalnessjudgements are couched in naturalness scales, whichfollow from the basic parameters (or «axioms» listed at the beginning of the paper. The predictions of the theory are calculated in deductions, whose chief components are apair of naturalness scales and the rules governing the alignment of corresponding naturalness values. Parallel and chiastic alignments are distinguished, in complementary distribution. Chiastic alignment is mandatory in deductions limited to unnatural environments. The paper deals with English interrogative main clauses. Within these, only the interrogatives containing wh-words exclusively insitu constitute an extremely unnatural environment and require chiastic alignment. Otherwiseparallel alignment is used. Earlier publications on Natural Syntax: Kavcic 2005a,b, Oresnik 1999, 2000a,b, 200la-f   2002, 2003a-c, 2002/03, 2004. This list cites only works written in English.

  10. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  11. A 252Cf based nondestructive assay system for fissile material

    International Nuclear Information System (INIS)

    Menlove, H.O.; Crane, T.W.

    1978-01-01

    A modulated 252 Cf source assay system 'Shuffler' based on fast-or-thermal-neutron interrogation combined with delayed-neutron counting has been developed for the assay of fissile material. The 252 Cf neutron source is repetitively transferred from the interrogation position to a shielded position while the delayed neutrons are counted in a high efficiency 3 He neutron well-counter. For samples containing plutonium, this well-counter is also used in the passive coincidence mode to assay the effective 240 Pu content. The design of an optimized neutron tailoring assembly for fast-neutron interrogation using a Monte Carlo Neutron Computer Code is described. The Shuffler system has been applied to the assay of fuel pellets, inventory samples, irradiated fuel and plutonium mixed-oxide fuel. The system can assay samples with fissile contents from a few milligrams up to several kilograms using thermal-neutron interrogation for the low mass samples and fast-neutron interrogation for the high mass samples. Samples containing 235 U- 238 U, or 233 U-Th, or UO 2 -PuO 2 fuel mixtures have been assayed with the Shuffler system. (Auth.)

  12. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  13. Diagnostic yield of device interrogation in the evaluation of syncope in an elderly population.

    Science.gov (United States)

    D'Angelo, Robert N; Pickett, Christopher C

    2017-06-01

    Device interrogation has become a standard part of the syncope evaluation for patients admitted with permanent pacemakers (PPM) or implantable cardiac defibrillators (ICD), although few studies have shown interrogation yields clinically useful data. The purpose of this study is to determine the diagnostic yield of device interrogation as well as other commonly performed tests in the workup of unexplained syncope in patients with previously implanted PPMs or ICDs. We retrospectively reviewed records of 88 patients admitted to our medical center for syncope with previously implanted pacemakers between January 1, 2005 and January 1, 2015 using ICD-9 billing data. Pacemaker interrogation demonstrated an arrhythmia as the cause for syncope in 4 patients (4%) and evidence of device failure secondary to perforation in 1 patient (1%). The cause of syncope was unknown in 34 patients (39%). Orthostatic hypotension was the most commonly identified cause of syncope (26%), followed by vasovagal syncope (13%), autonomic dysfunction (5%), ventricular arrhythmia (3%), atrial arrhythmia (2%), congestive heart failure (2%), stroke (2%), and other less common causes (8%). History was the most important determinant of syncope (36%), followed by orthostatic vital signs (14%), device interrogations (4%), head CT (2%), and transthoracic echocardiogram (1%). Device interrogation is rarely useful for elucidating a cause of syncope without concerning physical exam, telemetry, or EKG findings. Interrogation may occasionally yield paroxysmal arrhythmias responsible for syncopal episode, but these rarely alter clinical outcomes. Interrogation appears to be more useful in patients with syncope after recent device placement. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  15. Integrated Si-based nanoplasmonic sensor with phase-sensitive angular interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Patskovsky, Sergiy; Meunier, Michel [Laser Processing and Plasmonics Laboratory, Ecole Polytechnique de Montreal, C. P. 6079, succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada)

    2013-06-15

    This work is related to the development of an integrated Surface Plasmon Resonance (SPR) sensor on silicon platform. The optical properties of metallic nanogratings fabricated on the semiconductor structure allow direct plasmonic detection in transmission mode. Specially designed angular interrogation method provides a periodic signal with phase dependent on the conditions of surface plasmon excitation. Proposed technique leads to sensitivity better than 10{sup -6} RIU for conventional SPR Kretschmann configuration and was tested on the integrated Si-based nanoplasmonic chip. Developed concept is promising for low-cost mono and multi -sensing applications by portable or stationary platforms. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Micro elements for interrogating magnetoelastic sensors

    KAUST Repository

    Liang, Cai; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen; Mathison, Leslie C.; Chin, Bryan

    2011-01-01

    and length. Planar structures of straight-line and rectangular spiral coil are designed, fabricated and tested to interrogate the resonant frequency of a magnetoelastic sensor. A sensor of 4 mm length is measured to have a resonant frequency of 551 kHz in air

  17. Determination of alpha activity and fissile mass content in solid waste by systems using neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Lacruche, G.; Berne, R.; Auge, J.; Martin Deidier, L.; Butez, M.

    1990-01-01

    The Quantitative control (determination of heavy nuclides and alpha activity) of alpha radioactive wastes is necessary, particularly to determine if the waste is in accordance with the surface storage limits. In order to reduce the uncertainty on the alpha activity resulting from unknown isotopic composition, inhomogeneity of heavy nuclides in the matrix, combination of several methods is necessary. In the paper we present the Cadarache development work in the NDA of solid waste using the Californium shuffler, 14 Mev neutron generator, and also passive techniques such as neutron emission measurement and gamma spectrometry. Experimental systems combining active and passive methods are presented (COSAC, BANCO, DANAIDE, PROMETHEE)

  18. Bulk media assay using backscattered Pu-Be neutrons

    CERN Document Server

    Csikai, J

    1999-01-01

    Spectral yields of elastically backscattered Pu-Be neutrons measured for graphite, water, polyethylene, liquid nitrogen, paraffin oil, SiO sub 2 , Al, Fe, and Pb slabs show a definite correlation with the energy dependence of the elastic scattering cross sections, sigma sub E sub L (E sub n). The C, N and O can be identified by the different structures in their sigma sub E sub L (E sub n) functions. The integrated spectral yields versus thickness exhibit saturation for each sample. The interrogated volume is limited by the presence of hydrogen in the sample. (author)

  19. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    Directory of Open Access Journals (Sweden)

    Halpern John H

    2008-09-01

    Full Text Available Abstract After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very aggressive techniques determined to be torture by many nations and organizations throughout the world. This paper explains why psychiatrists and psychologists involved in coercive interrogations violate the Geneva Conventions and the laws of the United States. Whether done with ignorance of professional ethical obligations or not, these psychiatrists and psychologists have crossed an ethical barrier that may best be averted from re-occurring by teaching medical students and residents in all medical specialties about the ethics principles stemming from the 1946–1947 Nuremberg trials and the Geneva Conventions, together with the Ethics Codes of the World Medical Association and the American Medical Association; and, with regard to psychiatric residents and psychological trainees, by the teaching about The Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry and the Ethical Principles of Psychologists and Code of Conduct, respectively. In this way, all physicians and psychologists will clearly understand that they have an absolute moral obligation to "First, do no harm" to the human beings they professionally encounter.

  20. Matrix effects correction on 252Cf shufflers by application of the alternating conditional expectation to neutron flux monitor data

    International Nuclear Information System (INIS)

    Pickrell, M.M.

    1992-01-01

    The 252 Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to diagnose the matrix and position effects on 252 Cf shuffler assays. The matrices incorporated metals, neutron poisons, and hydrogen in densities ranging from 0≤ pH ≤ 0.086 g/cm 3 , a range of cases more extreme than typically found in routine plant use. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay

  1. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Science.gov (United States)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  2. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    Science.gov (United States)

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  3. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations

  4. Energy and direction distribution of neutrons in workplace fields: Implication of the results from the EVIDOS project for the set-up of simulated workplace fields

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Lacoste, V.; Reginatto, M.; Zimbal, A.

    2007-01-01

    Workplace neutron spectra from nuclear facilities obtained within the European project EVIDOS are compared with those of the simulated workplace fields CANEL and SIGMA and fields set-up with radionuclide sources at the PTB. Contributions of neutrons to ambient dose equivalent and personal dose equivalent are given in three energy intervals (for thermal, intermediate and fast neutrons) together with the corresponding direction distribution, characterised by three different types of distributions (isotropic, weakly directed and directed). The comparison shows that none of the simulated workplace fields investigated here can model all the characteristics of the fields observed at power reactors. (authors)

  5. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: mueller@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2014-08-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of {sup 232}Th, {sup 233,235,238}U, {sup 237}Np, and {sup 239,240}Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed.

  6. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    International Nuclear Information System (INIS)

    Mueller, J.M.; Ahmed, M.W.; Weller, H.R.

    2014-01-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of 232 Th, 233,235,238 U, 237 Np, and 239,240 Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed

  7. Determination of the spatial response of neutron based analysers using a Monte Carlo based method

    International Nuclear Information System (INIS)

    Tickner, James

    2000-01-01

    One of the principal advantages of using thermal neutron capture (TNC, also called prompt gamma neutron activation analysis or PGNAA) or neutron inelastic scattering (NIS) techniques for measuring elemental composition is the high penetrating power of both the incident neutrons and the resultant gamma-rays, which means that large sample volumes can be interrogated. Gauges based on these techniques are widely used in the mineral industry for on-line determination of the composition of bulk samples. However, attenuation of both neutrons and gamma-rays in the sample and geometric (source/detector distance) effects typically result in certain parts of the sample contributing more to the measured composition than others. In turn, this introduces errors in the determination of the composition of inhomogeneous samples. This paper discusses a combined Monte Carlo/analytical method for estimating the spatial response of a neutron gauge. Neutron propagation is handled using a Monte Carlo technique which allows an arbitrarily complex neutron source and gauge geometry to be specified. Gamma-ray production and detection is calculated analytically which leads to a dramatic increase in the efficiency of the method. As an example, the method is used to study ways of reducing the spatial sensitivity of on-belt composition measurements of cement raw meal

  8. Sequential interrogation of multiple FBG sensors using LPG modulation and an artificial neural network

    International Nuclear Information System (INIS)

    Basu, Mainak; Ghorai, S K

    2015-01-01

    Interrogating multiple fiber Bragg gratings (FBG) requires highly sensitive spectrum scanning equipment such as optical spectrum analyzers, tunable filters, acousto-optic tunable filters etc, which are expensive, bulky and time consuming. In this paper, we present a new approach for multiple FBG sensor interrogation using long-period gratings and an artificial neural network. The reflection spectra of the multiplexed FBGs are modulated by two long period gratings separately and the modulated optical intensities were detected by two photodetectors. The outputs of the detectors are then used as input in a previously trained artificial neural network to interrogate the FBG sensors. Simulations have been performed to determine the strain and wavelength shift using two and four sensors. The interrogation system has also been demonstrated experimentally for two sensors using simply supported beams in the range of 0–350 μstrain. The proposed interrogation scheme has been found to identify the perturbed FBG, and to determine strain and wavelength shift with reasonable accuracy. (paper)

  9. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  10. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    Science.gov (United States)

    Jallu, F.; Loche, F.

    2008-08-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying

  11. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    International Nuclear Information System (INIS)

    Jallu, F.; Loche, F.

    2008-01-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235 U, 239 Pu, 241 Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (∼50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3 ) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm -3 ). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and

  12. Improvement of non-destructive fissile mass assays in {alpha} low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. [Commissariat a l' Energie Atomique, CEA, DEN, Nuclear Measurement Laboratory, Bat. 224, 13108 Saint Paul lez Durance (France)], E-mail: fanny.jallu@cea.fr; Loche, F. [Commissariat a l' Energie Atomique, CEA, DEN, Nuclear Measurement Laboratory, Bat. 224, 13108 Saint Paul lez Durance (France)

    2008-08-15

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low {alpha}-activity fissile masses (mainly {sup 235}U, {sup 239}Pu, {sup 241}Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating {alpha} low level waste (LLW) criterion of about 50 Bq[{alpha}] per gram of crude waste ({approx}50 {mu}g Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm{sup -3}) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm{sup -3}). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction

  13. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Drake, P.; Kierkegaard, J

    1999-07-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a {sup 252}Cf source and with a Monte Carlo calculation (MCNP) simulating a {sup 252}Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  14. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    International Nuclear Information System (INIS)

    Drake, P.; Kierkegaard, J.

    1999-01-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a 252 Cf source and with a Monte Carlo calculation (MCNP) simulating a 252 Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  15. Interrogative suggestibility and perceptual motor performance.

    Science.gov (United States)

    Gudjonsson, G H

    1984-04-01

    This study investigates the relationship between interrogative suggestibility, as measured by the Gudjonsson Suggestibility Scale, and Arrow-Dot scores. The tendency of subjects (25 men and 25 women, mean age 30.2 yr.) to alter their answers once interpersonal pressure had been applied correlated significantly with poor Arrow-Dot Ego functioning.

  16. Calibration of neutron moisture gauges and their ability to spatially determine soil water content in environmental studies

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Martinez, J.L.; Langhorst, G.J.

    1994-10-01

    Several neutron moisture gauges were calibrated, and their ability to spatially determine soil water content was evaluated. In 1982, the midpoint of sensitivity of each neutron probe to the detection of hydrogen was determined, as well as the radius of investigation of each probe in crushed Bandelier Tuff with varying water contents. After determining the response of one of the moisture gauges to changes in soil water at the soil-air interface, a neutron transport model was successfully calibrated to predict spatial variations in soil water content. The model was then used to predict various shapes and volumes of crushed Bandelier Tuff interrogated by the neutron moisture gauge. From 1991 through 1994, six neutron moisture gauges were calibrated for soil water determinations in a local topsoil and crushed Bandelier Tuff, as well as for a sample of fine sand and soils from a field experiment at Hill Air Force Base. Statistical analysis of the calibration results is presented and summarized, and a final summary of practical implications for future neutron moisture gauge studies at Los Alamos is included

  17. Overcoming Innocents' Naiveté: Pre-interrogation Decision-making Among Innocent Suspects.

    Science.gov (United States)

    Scherr, Kyle C; Alberts, Kimberly M; Franks, Andrew S; Hawkins, Ian

    2016-07-01

    Suspects, especially innocent ones, are highly susceptible to waiving their interrogation rights. This research tested the ability of two strategies to overcome innocent suspects' willingness to waive their rights. One strategy was based on the social influence of scarcity (i.e., not constraining the pre-interrogation time limit). The other strategy focused on disrupting individuals' cognitive fluency during the decision-making process (i.e., violating their induced expectation of offering a waiver). Disrupting innocent individuals' cognitive fluency increased their willingness to invoke their rights and, notably, was not qualified by interactions with any other factors. However, scarcity did not influence individuals' pre-interrogation decision-making. Results also further established the association between innocent individuals' naïve mindset and their willingness to waive their rights - specifically, innocents' willingness to waive their rights increased with the strength of their just world beliefs. The theoretical and applied implications of these findings are discussed. The importance and benefit of reforming pre-interrogation protocols using fair and feasible strategies that would disrupt suspects' cognitive fluency are emphasized. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Rheo: Japanese sound art interrogating digital mediality

    Directory of Open Access Journals (Sweden)

    Vandsø Anette

    2014-12-01

    Full Text Available The article asks in what way the Japanese sound artist, Ryoichi Kurokawa’s audiovisual installation, Rheo: 5 Horisonz (2010, is “digital.” Using professor Lars Elleström’s concept of “mediality,” the main claim in this article is that Rheo not only uses digital technology but also interrogates digital mediality as such. This argument is pursued in an analysis of Rheo that draws in various descriptions of digital media by N. Catherine Hayles, Lev Manovic, Bolter, and Grusin among other. The article will show how the critical potential in Rheo is directed both towards digital media as a language (Meyrowitz (or a place for representation and towards the digital as a milieu (Meyrowitz or as our culture (Gere. The overall goal of the article is not just analyse this singular art work, but also to show how such a sound art work can contribute to our understanding of our own contemporary culture as a digital culture.

  19. Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.

    Science.gov (United States)

    Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G

    2014-10-15

    We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10  pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1  mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.

  20. Scalable interrogation: Eliciting human pheromone responses to deception in a security interview setting.

    Science.gov (United States)

    Stedmon, Alex W; Eachus, Peter; Baillie, Les; Tallis, Huw; Donkor, Richard; Edlin-White, Robert; Bracewell, Robert

    2015-03-01

    Individuals trying to conceal knowledge from interrogators are likely to experience raised levels of stress that can manifest itself across biological, physiological, psychological and behavioural factors, providing an opportunity for detection. Using established research paradigms an innovative scalable interrogation was designed in which participants were given a 'token' that represented information they had to conceal from interviewers. A control group did not receive a token and therefore did not have to deceive the investigators. The aim of this investigation was to examine differences between deceivers and truth-tellers across the four factors by collecting data for cortisol levels, sweat samples, heart-rate, respiration, skin temperature, subjective stress ratings and video and audio recordings. The results provided an integrated understanding of responses to interrogation by those actively concealing information and those acting innocently. Of particular importance, the results also suggest, for the first time in an interrogation setting, that stressed individuals may secrete a volatile steroid based marker that could be used for stand-off detection. The findings are discussed in relation to developing a scalable interrogation protocol for future research in this area. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    DEFF Research Database (Denmark)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-01-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (a...... than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum....

  2. Background determination for the neutron-neutron scattering experiment at the reactor YAGUAR

    Energy Technology Data Exchange (ETDEWEB)

    Muzichka, A.Yu. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Furman, W.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Chernukhin, Yu.I. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Kandiev, Ya.Z. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crawford, B.E. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S.L. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States)]. E-mail: sstephen@gettysburg.edu; Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2007-06-01

    The motivation and design is outlined for the experiment to measure the neutron-neutron singlet scattering length directly with thermal neutrons at the pulsed reactor YAGUAR. A statistical accuracy of 3% can be reached, though achieving the goal of an overall accuracy of 3-5% for the nn-scattering length depends on the background level. Possible sources of background are discussed in depth and the results of extensive modeling of the background are presented. Measurements performed at YAGUAR to test these background calculations are described. The experimental results indicate an anticipated background level up to 30% relative to the expected nn effect at the maximal energy burst of the reactor. The conclusion is made that the nn experiment at YAGUAR is feasible to produce the first directly measured value for the neutron-neutron scattering length.

  3. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  4. A programme for Euratom safeguards inspectors, used in the assay of plutonium bearing materials by passive neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme PECC (Passive Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurements data originating from passive neutron assay of plutonium bearing materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for all types of passive neutron coincidence deployed by the Euratom Safeguards Directorate, Luxembourg

  5. The interrogation decision-making model: A general theoretical framework for confessions.

    Science.gov (United States)

    Yang, Yueran; Guyll, Max; Madon, Stephanie

    2017-02-01

    This article presents a new model of confessions referred to as the interrogation decision-making model . This model provides a theoretical umbrella with which to understand and analyze suspects' decisions to deny or confess guilt in the context of a custodial interrogation. The model draws upon expected utility theory to propose a mathematical account of the psychological mechanisms that not only underlie suspects' decisions to deny or confess guilt at any specific point during an interrogation, but also how confession decisions can change over time. Findings from the extant literature pertaining to confessions are considered to demonstrate how the model offers a comprehensive and integrative framework for organizing a range of effects within a limited set of model parameters. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Experimental verification of a method to create a variable energy neutron beam from a monoenergetic, isotropic source using neutron elastic scatter and time of flight

    Energy Technology Data Exchange (ETDEWEB)

    Whetstone, Zachary D., E-mail: zacwhets@umich.edu; Flaska, Marek, E-mail: mflaska@umich.edu; Kearfott, Kimberlee J., E-mail: kearfott@umich.edu

    2016-08-11

    An experiment was performed to determine the neutron energy of near-monoergetic deuterium–deuterium (D–D) neutrons that elastically scatter in a hydrogenous target. The experiment used two liquid scintillators to perform time of flight (TOF) measurements to determine neutron energy, with the start detector also serving as the scatter target. The stop detector was placed 1.0 m away and at scatter angles of π/6, π/4, and π/3 rad, and 1.5 m at a scatter angle of π/4 rad. When discrete 1 ns increments were implemented, the TOF peaks had estimated errors between −21.2 and 3.6% relative to their expected locations. Full widths at half-maximum (FWHM) ranged between 9.6 and 20.9 ns, or approximately 0.56–0.66 MeV. Monte Carlo simulations were also conducted that approximated the experimental setup and had both D–D and deuterium–tritium (DT) neutrons. The simulated results had errors between −17.2 and 0.0% relative to their expected TOF peaks when 1 ns increments were applied. The largest D–D and D–T FWHMs were 26.7 and 13.7 ns, or approximately 0.85 and 4.98 MeV, respectively. These values, however, can be reduced through manipulation of the dimensions of the system components. The results encourage further study of the neutron elastic scatter TOF system with particular interest in application to active neutron interrogation to search for conventional explosives.

  7. Fast neutron spectrometry by bolometers lithium target for the reduction of background experiences of direct detection of dark matter

    International Nuclear Information System (INIS)

    Gironnet, J.

    2010-01-01

    Fast neutron spectrometry is a common interest for both direct dark matter detection and for nuclear research centres. Fast neutrons are usually detected indirectly. Neutrons are first slowed down by moderating materials for being detected in low energy range. Nevertheless, these detection techniques are and are limited in energy resolution. A new kind of fast neutron spectroscopy has been developed at the Institut d'Astrophysique Spatiale (IAS) in the aim of having a better knowledge of neutron backgrounds by the association of the bolometric technique with neutron sensitive crystals containing Li. Lithium-6 is indeed an element which has one the highest cross section for neutron capture with the 6 Li(n,α) 3 H reaction. This reaction releases 4,78 MeV tagging energetically each neutron capture. In particular for fast neutrons, the total energy measured by the bolometer would be the sum of this energy reaction and of the incoming fast neutron energy. To validate this principle, a spectrometer for fast neutrons, compact and semi-transportable, was built in IAS. This cryogenic detector, operated at 300 - 400 mK, consists of a 0.5 g LiF 95% 6 Li enriched crystal read out by a NTD-Ge sensor. This PhD thesis was on the study of the spectrometer characteristics, from the first measurements at IAS, to the measurements in the nuclear research centre of the Paul Scherrer Institute (PSI) until the final calibration with the Amande instrument of the Institut de Radioprotection et de Surete Nucleaire (IRSN). (author)

  8. Investigation of the reflection of fast neutrons

    International Nuclear Information System (INIS)

    Devillers, Christian; Hasselin, Gilbert

    1964-10-01

    The authors report the study of the reflection of fast neutrons on a plane plate having a finite and varying thickness and an infinite width. Calculations are performed by using a Monte-Carlo method which allows the number, the energy, the direction, the emergence point of neutrons reflected on a plate, to be computed with respect to the energy and direction of incident neutrons. The author present how paths, elastic and inelastic shocks, direction after shock are calculated. Different information are calculated: the numbers of elastic shocks, inelastic shocks and transmitted neutrons, the number, energy and dose albedo, the spectrum and angular distribution, the distribution of neutron in terms of energy and direction

  9. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  10. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    Science.gov (United States)

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.

  11. Police training in interviewing and interrogation methods: A comparison of techniques used with adult and juvenile suspects.

    Science.gov (United States)

    Cleary, Hayley M D; Warner, Todd C

    2016-06-01

    Despite empirical progress in documenting and classifying various interrogation techniques, very little is known about how police are trained in interrogation methods, how frequently they use various techniques, and whether they employ techniques differentially with adult versus juvenile suspects. This study reports the nature and extent of formal (e.g., Reid Technique, PEACE, HUMINT) and informal interrogation training as well as self-reported technique usage in a diverse national sample (N = 340) of experienced American police officers. Officers were trained in a variety of different techniques ranging from comparatively benign pre-interrogation strategies (e.g., building rapport, observing body language or speech patterns) to more psychologically coercive techniques (e.g., blaming the victim, discouraging denials). Over half the sample reported being trained to use psychologically coercive techniques with both adults and juveniles. The majority (91%) receive informal, "on the job" interrogation training. Technique usage patterns indicate a spectrum of psychological intensity where information-gathering approaches were used most frequently and high-pressure tactics less frequently. Reid-trained officers (56%) were significantly more likely than officers without Reid training to use pre-interrogation and manipulation techniques. Across all analyses and techniques, usage patterns were identical for adult and juvenile suspects, suggesting that police interrogate youth in the same manner as adults. Overall, results suggest that training in specific interrogation methods is strongly associated with usage. Findings underscore the need for more law enforcement interrogation training in general, especially with juvenile suspects, and highlight the value of training as an avenue for reducing interrogation-induced miscarriages of justice. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Adjoint P1 equations solution for neutron slowing down; Solucao das equacoes P1 adjuntas para moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. The direct and adjoint neutron fluxes resulting from the solution of P{sub 1} equations were used to three different weighting processes, to obtain the macrogroup macroscopic cross sections. It was found out noticeable differences among them. (author)

  13. Wide range neutron detection system

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.

    1978-01-01

    A neutron detection system for reactor control is described which is operable over a wide range of neutron flux levels. The system includes a fission type ionization chamber neutron detector, means for gamma and alpha signal compensation, and means for operating the neutron detector in the pulse counting mode for low neutron flux levels, and in the direct current mode for high neutron flux levels

  14. A proposal on evaluation method of neutron absorption performance to substitute conventional neutron attenuation test

    International Nuclear Information System (INIS)

    Kim, Je Hyun; Shim, Chang Ho; Kim, Sung Hyun; Choe, Jung Hun; Cho, In Hak; Park, Hwan Seo; Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho

    2016-01-01

    For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers

  15. A proposal on evaluation method of neutron absorption performance to substitute conventional neutron attenuation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Je Hyun; Shim, Chang Ho [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Sung Hyun [Nuclear Fuel Cycle Waste Treatment Research Division, Research Reactor Institute, Kyoto University, Osaka (Japan); Choe, Jung Hun; Cho, In Hak; Park, Hwan Seo [Ionizing Radiation Center, Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho [Ionizing Radiation Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers.

  16. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  17. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  18. A high-temperature fiber sensor using a low cost interrogation scheme.

    Science.gov (United States)

    Barrera, David; Sales, Salvador

    2013-09-04

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.

  19. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.

    Science.gov (United States)

    Sereda, A; Moreau, J; Canva, M; Maillart, E

    2014-04-15

    Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.

  20. A SYSTEMATIC APPROACH TO THE PSYCHOLOGICAL IMPACT OF THE INVESTIGATOR ON A PERSON BEING INTERROGATED

    Directory of Open Access Journals (Sweden)

    Ivan Cherevko

    2017-03-01

    Full Text Available The subject of the research is an interaction with a person being interrogated organized by an investigator with the use of his interests, needs and other individual-mental features, his reinforcement, which must be done through secretive, invisible influence in an organized situation encouraging to do deeds desirable for investigation. The object of the research is interrogation as the most psychologized investigative action. The methodological basis of the research is made by the systematic and logical approach aimed at neutralization of watchfulness of the interrogated, penetration into his inner world influencing both rational and irrational spheres of mental make-up, actualization of the unity of understanding and experience. In this research general scientific and specific scientific methods of cognition are used. General scientific methods of the research are represented by systemic structural, comparative, formal and legal, statistical methods. The approach to the psychological impact on a person being interrogated as a systemic phenomenon has enabled to develop a conceptual model presented in the form of a diagram made up of four blocks reflecting emotional background sources of interrogation procedures, the interrogated case, interaction and basic methods of psychological influence, the leading of which is persuasion. Suggestion is purposeful influence on feelings and volitional pressure acts as pressure maintenance, complementary, used depending on the situational behaviour of the interrogated. Methods of implementation of each of these methods of psychological influence are also considered in this article.

  1. A neutron multiplicity analysis method for uranium samples with liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao_ciae@126.com [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China); Lin, Hongtao [Xi' an Reasearch Institute of High-tech, Xi' an, Shaanxi 710025 (China); Liu, Guorong; Li, Jinghuai; Liang, Qinglei; Zhao, Yonggang [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China)

    2015-10-11

    A new neutron multiplicity analysis method for uranium samples with liquid scintillators is introduced. An active well-type fast neutron multiplicity counter has been built, which consists of four BC501A liquid scintillators, a n/γdiscrimination module MPD-4, a multi-stop time to digital convertor MCS6A, and two Am–Li sources. A mathematical model is built to symbolize the detection processes of fission neutrons. Based on this model, equations in the form of R=F*P*Q*T could be achieved, where F indicates the induced fission rate by interrogation sources, P indicates the transfer matrix determined by multiplication process, Q indicates the transfer matrix determined by detection efficiency, T indicates the transfer matrix determined by signal recording process and crosstalk in the counter. Unknown parameters about the item are determined by the solutions of the equations. A {sup 252}Cf source and some low enriched uranium items have been measured. The feasibility of the method is proven by its application to the data analysis of the experiments.

  2. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-01-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  3. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  4. Comparison of direct alpha spectrometry and neutron activation analysis of aerosol filters for determination of workplace thorium air concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Winkler, R. [Institut fuer Strahlenschutz, Oberschleibheim (Germany); Riedmann, W.; Weinmueller, K. [Strahlenschutz und Isotopentechnik, Muenchen (Germany)

    1996-05-01

    Direct alpha spectrometry with three different filter types was investigated for the determination of thorium air concentrations at workplaces in the manufacturing process of discharge lamps containing thoriated tungsten electrodes. The method was compared with neutron activation analysis over an activity range of five orders of magnitude. Within the experimental limits of error, both methods were found to be comparable with respect to sensitivity and accuracy. The advantage of direct alpha spectrometry, however, is that it is less laborious than neutron activation analysis and that it supplies information on the degree of radioactive equilibrium of the thorium series, which is important with regard to the estimation of dose. 20 refs., 2 figs., 1 tab.

  5. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  6. Neutron Science 21

    International Nuclear Information System (INIS)

    Park, Sung Il; Choi, Yong Nam; Ahn, Geun Young; Lee, Hee Joo; Hong, Ji Sun; Kim, Hyo Sun

    2009-01-01

    The project aims to make the HANARO neutron beam facility a neutron research hub in the Asia-Pacific. This is a part of the effort to make the facility as productive as other neutron beam facilities in America and Europe which already operate as a hub that attracts thousands of users and produces hundreds of publications annually. The projects promotes 1) collaborative research between HANARO personnel and users, 2) internationally collaboration on various fronts of neutron science related activities. To achieve the above in an effective manner, its direction is adjusted by a series of meetings and the activities of the project are advertised to the public media. 3 domestic and 1 international collaborative research was carried out successfully in 2008 by using the HRPD. The 1st Asia-Oceania Neutron Summer School was successfully hosted in Korea. The annual report of the HANARO neutron beam facility was published. 3 advisory meetings and 6 internal meetings to promote the hub were held. Users were surveyed on their needs. The media was contacted twice in an effort to advertise the project activities. All of the above achievements are directly applicable to determining the national policy on neutron science. It is advised that the KAERI management take notice of the results to manage the facility effectively

  7. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    Science.gov (United States)

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  8. Lawfulness of Interrogation Techniques under the Geneva Conventions

    National Research Council Canada - National Science Library

    Elsea, Jennifer K

    2004-01-01

    Allegations of abuse of Iraqi prisoners by U.S. soldiers at the Abu Ghraib prison in Iraq have raised questions about the applicability of the law of war to interrogations for military intelligence purposes...

  9. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Rheo: Japanese Sound Art Interrogating Digital Mediality

    DEFF Research Database (Denmark)

    Vandsø, Anette

    2014-01-01

    THe article asks in what way the Japanese sound artist Ryoichi Kurokawa's audiovisual installation Rheo 5 Horisonz (2010) is 'digital'. Using Professor Lars Elleströms concept of 'mediality, the main claim in this article is that Rheo no only uses digital tehcnology, but also interrogates digital...

  11. Neutron radiography using neutron imaging plate

    International Nuclear Information System (INIS)

    Chankow, Nares; Wonglee, Sarinrat

    2008-01-01

    Full text: The aims of this research are to study properties of neutron imaging plate, to obtain a suitable condition for neutron radiography and to use the neutron imaging plate for testing of materials nondestructively. The experiments were carried out by using a neutron beam from the Thai Research Reactor TRR-1/M1 at a power of 1.2 MW. A BAS-ND 2040 FUJI neutron imaging plate and a MX125 Kodak X-ray film/Gadolinium neutron converter screen combination were tested for comparison. It was found that the photostimulated light (PSL) read out of the imaging plate was directly proportional to the exposure time. It was also found that radiography with neutron using the imaging plate was approximately 40 times faster than the conventional neutron radiography using x-ray film/Gd converter screen combination. The sensitivity of the imaging plate to gamma-rays was investigated by using gamma-rays from an 192 Ir and a 60 Co radiographic sources. The imaging plate was found to be 5-6 times less sensitive to gamma-rays than a FUJI BAS-MS 2040 gamma-ray imaging plate. Finally, some specimens were selected to be radiographed with neutrons using the imaging plate and the x-ray film/Gd converter screen combination in comparison to x-rays. Parts containing light elements could be clearly observed by the two neutron radiographic techniques. It could be concluded that the image quality from the neutron imaging plate was comparable to the conventional x-ray film/Gd converter screen combination but the exposure time could be approximately reduced by a factor of 40

  12. Noncontact power/interrogation system for smart structures

    Science.gov (United States)

    Spillman, William B., Jr.; Durkee, S.

    1994-05-01

    The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.

  13. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    Science.gov (United States)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  14. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    Science.gov (United States)

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  15. The Sociocultural Psychology as a Postformal Theory of Academic Achievement: Interrogating Formal Education

    Science.gov (United States)

    Sinha, Chetan

    2013-01-01

    The present paper interrogates the dominance of formal education. As formal education system relies on ability based academic achievement as a goal, exploring post-formal approaches, such as sociocultural notion of academic achievement is the hallmark of present paper. An attempt is made to interrogate the existing cultural dominance in formal…

  16. Experimental test of a newly developed single-moderator, multi-detector, directional neutron spectrometer in reference monochromatic fields from 144 keV to 16.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Gómez-Ros, J.M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Bortot, D. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Gentile, A. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Introini, M.V. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Mazzitelli, M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Sacco, D. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); INAIL – DPIA, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy)

    2015-05-11

    A new directional neutron spectrometer called CYSP (CYlindrical SPectrometer) was developed within the NESCOFI@BTF (2011–2013) collaboration. The device, composed by seven active thermal neutron detectors located along the axis of a cylindrical moderator, was designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons. The new spectrometer condenses the performance of the Bonner Sphere Spectrometer in a single moderator; thus requiring only one exposure to determine the whole spectrum. The CYSP response matrix, determined with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 144 keV to 16.5 MeV, plus a {sup 252}Cf source, available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±2.5%. The new active spectrometer CYSP offers an innovative option for real-time monitoring of directional neutron fields as those produced in neutron beam-lines.

  17. From third degree to third generation interrogation strategies: putting science into the art of criminal interviewing

    Science.gov (United States)

    2017-03-01

    tacitly suggest that a confession is the fastest and best way to end the interrogation .73 71 Ibid...Kelly, and Miller found approximately 45 percent of civilian interrogators use it as well.292 Because this percentage suggests the technique is...TO THIRD-GENERATION INTERROGATION STRATEGIES: PUTTING SCIENCE INTO THE ART OF CRIMINAL INTERVIEWING by Desmond S. O’Neill March 2017

  18. Thermal neutron flux measurements using neutron-electron converters; Mesure de flux de neutrons thermiques avec des convertisseurs neutrons electrons

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, R; Lecomte, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The operation of neutron-electron converters designed for measuring thermal neutron fluxes is examined. The principle is to produce short lived isotopes emitting beta particles, by activation, and to measure their activity not by extracting them from the reactor, but directly in the reactor using the emitted electrons to deflect the needle of a galvanometer placed outside the flux. After a theoretical study, the results of the measurements are presented; particular attention is paid to a new type of converter characterized by a layer structure. The converters are very useful for obtaining flux distributions with more than 10{sup 7} neutrons cm{sup -2}*sec{sup -1}. They work satisfactorily in pressurized carbon dioxide at 400 Celsius degrees. Some points still have to be cleared up however concerning interfering currents in the detectors and the behaviour of the dielectrics under irradiation. (authors) [French] On examine le fonctionnement de convertisseurs neutrons electrons destines a des mesures de flux de neutrons thermiques. Le principe est de former par activation des isotopes a periodes courtes et a emission beta et de mesurer leur activite non pas en les sortant du reacteur, mais directement en pile, utilisant les electrons emis pour faire devier l'aiguille d'un galvanometre place hors flux. Apres une etude theorique, on indique des resultats de mesures obtenus, en insistant particulierement sur un nouveau type de convertisseur, caracterise par sa structure stratifiee. Les convertisseurs sont tres interessants pour tracer, des cartes de flux a partir de 10{sup 7} neutrons cm{sup -2}*s{sup -1}. Ils sont utilisables pour des flux de 10{sup 14} neutrons cm{sup -2}*s{sup -1}. Ils fonctionnent correctement dans du gaz carbonique sous pression a 400 C. Des points restent cependant a eclaircir concernant les courants parasites dans les detecteurs et le comportement des dielectriques pendant leur irradiation. (auteur)

  19. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    Science.gov (United States)

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  20. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.

    Science.gov (United States)

    Zecchin, Massimo; Morea, Gaetano; Severgnini, Mara; Sergi, Elisabetta; Baratto Roldan, Anna; Bianco, Elisabetta; Magnani, Silvia; De Luca, Antonio; Zorzin Fantasia, Anna; Salvatore, Luca; Milan, Vittorino; Giannini, Gianrossano; Sinagra, Gianfranco

    2016-02-01

    Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Police reports of mock suspect interrogations: A test of accuracy and perception.

    Science.gov (United States)

    Kassin, Saul M; Kukucka, Jeff; Lawson, Victoria Z; DeCarlo, John

    2017-06-01

    A 2-phased experiment assessed the accuracy and completeness of police reports on mock interrogations and their effects on people's perceptions. In Phase 1, 16 experienced officers investigated a mock crime scene, interrogated 2 innocent suspects-1 described by the experimenter as more suspicious than the other-and filed an incident report. All 32 sessions were covertly recorded; the recordings were later used to assess the reports. In Phase 2, 96 lay participants were presented with a brief summary of the case and then either read 1 police report, read 1 verbatim interrogation transcript, or listened to an audiotape of a session. Results showed that (a) Police and suspects diverged in their perceptions of the interrogations; (b) Police committed frequent errors of omission in their reports, understating their use of confrontation, maximization, leniency, and false evidence; and (c) Phase 2 participants who read a police report, compared to those who read a verbatim transcript, perceived the process as less pressure-filled and were more likely to misjudge suspects as guilty. These findings are limited by the brevity and low-stakes nature of the task and by the fact that no significant effects were obtained for our suspicion manipulation, suggesting a need for more research. Limitations notwithstanding, this study adds to a growing empirical literature indicating the need for a requirement that all suspect interrogations be electronically recorded. To provide a more objective and accurate account of what transpired, this study also suggests the benefit of producing verbatim transcripts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Direct observation of crystal texture by neutron diffraction topography

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi

    1982-02-01

    This document reports the development and the applications of the neutron diffraction topography (NDT), which have been carried out at JAERI in these 10 years. This describes how the substructure of Cu-5%Ge single crystal of large-scale (3 cm in diameter and 10 cm in length) was revealed by the NDT-observation. It was discovered that the specimen crystal was made up from the layer-substructures parallel to (001) and to the [110] growth direction, and that each (001) layer-substructure mentioned above was further subdivided into the central thin sublayer parallel to (001) and thick plates of [100] and [010] directions, attached symmetrically to both sides of the central (001) sublayer with regular intervals. The model of the substructure described above was supported by the calculation of the diffraction intensities. The model of the layer-substructure described above, on the other hand, suggested a simple mechanism of crystal growth of the specimen. This document also reports the NDT-observation of the three-dimensional distribution of the lattice strains within a hot-pressed Ge single crystal, and the equal thickness fringes and the coherent boundaries of a twinned Si crystal. The powerfulness and the reliability of the NDT-technique were thus demonstrated. (author)

  3. Performance of a remote interrogation system for the in-hospital evaluation of cardiac implantable electronic devices.

    Science.gov (United States)

    Mittal, Suneet; Younge, Kevin; King-Ellison, Kelly; Hammill, Eric; Stein, Kenneth

    2016-08-01

    Patients with a cardiac implantable electronic device (CIED) often need device interrogation in an in-hospital environment. A diagnosis-only, remote interrogation device and process for CIED interrogation was developed to address this situation. Here, we describe our initial clinical experience with this system. The LATITUDE Consult Communicator is a stand-alone interrogation-only device used to read the patient's implanted CIED. Once retrieved, the data are securely transmitted via an analog phone line to a central server. The clinician can request a review of the transmitted data at any time. Following FDA approval, we determined the usage and performance of the system. Communicators (n = 53) were installed in 42 hospital facilities. The most common location was in the emergency department (n = 32, 60 %). There were 509 discreet transmissions, which were categorized as follows: no arrhythmia episodes in the past 72 h and no out of range measurements (n = 174, 34 %); arrhythmia episodes in past 72 h but no out of range measurements (n = 170, 33 %); and further review recommended (n = 130, 26 %). (In 35 [7 %] instances, interrogation without analysis was requested.) The further review interrogations were then sub-divided into those of a non-urgent and urgent nature. Overall, only 53 (10 %) of the 509 transmissions were classified as urgent. Clinicians had access to full technical consultation in ≤15 min in 89 % of instances. Our data demonstrate the feasibility of a new diagnosis-only, remote interrogation device and remote evaluation process for the interrogation of CIEDs in an in-hospital environment.

  4. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme

    Science.gov (United States)

    Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin

    2015-01-01

    In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively. PMID:26184195

  5. Increasing dynamic range of a fibre Bragg grating edge-filtering interrogator with a proportional control loop

    International Nuclear Information System (INIS)

    Stan, Nikola; Bailey, D C; Chadderdon, S L; Selfridge, R H; Schultz, S M; Webb, S; Zikry, M; Peters, K J

    2014-01-01

    We present a fibre Bragg grating (FBG) interrogator that uses a microcontroller board and a tunable optical filter in a proportional control loop to increase dynamic range and achieve high strain sensitivity. It is an edge-filtering interrogator with added proportional control loop that locks the operating wavelength to the mid-reflection point on the FBG spectrum. The interrogator separates low-frequency (LF) components of strain and measures them with extended dynamic range, while at the same time measuring high-frequency (HF) strain without loss in strain sensitivity. In this paper, we describe the implementation of the interrogator and analyse the characteristics of individual components, such as the speed and voltage resolution of the microcontroller and the tunable optical filter. We measure the performance of the proportional control loop at frequencies up to 1 kHz and characterize the system using control theory. We illustrate the limitation of the conventional interrogator to measure strains greater than 40 μϵ and demonstrate successful application of the proposed interrogator for simultaneous measurement of 450 μϵ LF strain at 50 Hz superimposed with 32 kHz HF strain. (paper)

  6. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  7. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    International Nuclear Information System (INIS)

    Chichester, D.L.; Pozzi, S.A.; Seabury, E.H.; Dolan, J.L.; Flaska, M.; Johnson, J.T.; Watson, S.M.; Wharton, J.

    2009-01-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. (1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. (2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. (3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1-4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  8. Experimental approaches for distribution and behavior of water in PEMFC under flow direction and differential pressure using neutron imaging technique

    International Nuclear Information System (INIS)

    Kim, TaeJoo; Kim, JongRok; Sim, CheulMuu; Lee, SeungWook; Kaviany, Massound; Son, SangYoung; Kim, MooHwan

    2009-01-01

    In this investigation, we prepared a 3-parallel serpentine single PEMFC which has an active area of 25 cm 2 and a flow channel cross section of 1x1 mm. Distribution and transport of water in an operating PEMFC were observed by varying the flow directions (co-current and counter-current) in each channel and the differential pressures (100, 200, 300 kPa) applied between the anode and cathode channels. This investigation was performed at the neutron imaging facility at the NIST of which the collimation ratio and neutron fluence rate are 600, 7.2x10 6 n/s/cm 2 , respectively. Neutron image was continuously recorded by an amorphous silicon flat panel detector every 1 s during the operation of the fuel cell. It has been observed that the differential pressure affects the total amount of water produced while the flow direction affects the spatial distribution of water when the neutron images were analyzed for several different operating conditions. More specifically, the amount of water production in the fuel cell increased as the partial pressure increases at a given current density and the water production was more uniform for the counter current than the co-current case. It is shown that the neutron imaging technique is a powerful tool to visualize the PEMFC. The information on the water distribution and behavior at an operating PEMFC helps improve the efficiency of PEMFC.

  9. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  10. Interrogation in Teacher-Student Interaction in Bahasa Indonesia Learning at Elementary School

    Directory of Open Access Journals (Sweden)

    Akmal Hamsa

    2014-08-01

    Full Text Available Interrogation in Teacher-Student Interaction in Bahasa Indonesia Learning at Elementary School. This study aimed to describe the form, function, and questioning strategies teachers in teacher-student interrogation in Bahasa Indonesia learning in elementary school. Data sourced from four teacher of elementary school, SDN Tamangapa and SD Inpres Tamangapa. Data were obtained by (1 recording, (2 documentation, (3 field notes, (4 interview. The results showed that: (1 the form of questioning the teacher in the teacher-student interaction in Bahasa Indonesia learning in primary schools generally examined the low-level thinking skills, (2 functions of teacher questions are generally intended to check student understanding, and (3 teachers utilize a variety of strategies in addressing student answers correctly and the apparent hesitation. Some disadvantages are indicated teachers in providing interrogation.

  11. High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect

    International Nuclear Information System (INIS)

    Kwiat, P. G.; White, A. G.; Mitchell, J. R.; Nairz, O.; Weihs, G.; Weinfurter, H.; Zeilinger, A.

    1999-01-01

    The phenomenon of quantum interrogation allows one to optically detect the presence of an absorbing object, without the measuring light interacting with it. In an application of the quantum Zeno effect, the object inhibits the otherwise coherent evolution of the light, such that the probability that an interrogating photon is absorbed can in principle be arbitrarily small. We have implemented this technique, achieving efficiencies of up to 73% , and consequently exceeding the 50% theoretical maximum of the original ''interaction-free'' measurement proposal. We have also predicted and experimentally verified a previously unsuspected dependence on loss. (c) 1999 The American Physical Society

  12. Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Attridge, Paul [United Technologies Research Center, East Hartford, CT (United States); Bajekal, Sanjay [United Technologies Research Center, East Hartford, CT (United States); Klecka, Michael [United Technologies Research Center, East Hartford, CT (United States); Wu, Xin [United Technologies Research Center, East Hartford, CT (United States); Savulak, Steve [United Technologies Research Center, East Hartford, CT (United States); Viens, Dan [United Technologies Research Center, East Hartford, CT (United States); Carey, Michael [United Technologies Research Center, East Hartford, CT (United States); Miano, John [United Technologies Research Center, East Hartford, CT (United States); Rioux, William [United Technologies Research Center, East Hartford, CT (United States); Zacchio, Joseph [United Technologies Research Center, East Hartford, CT (United States); Dunst, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Straub, Doug [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Mantese, Joseph [United Technologies Research Center, East Hartford, CT (United States)

    2017-07-14

    A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situ prognostics and diagnostics.

  13. Safeguards and Physics Measurements: Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2000-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations as well as to investigate the charcteristics of bubble detectors in order to be able to use them as direct-readiong neutron dosemeters

  14. Interrogative Suggestibility in an Adolescent Forensic Occupation.

    Science.gov (United States)

    Richardson, G.; And Others

    1995-01-01

    Sixty-five juvenile offenders in residential care completed the Gudjonsson Suggestibility Scale, and their scores were matched for IQ and memory with those of 60 adult offenders. The juveniles gave in significantly more to interrogative pressure through negative feedback but were no more yielding to leading questions than adults. (JPS)

  15. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Sekita, Junichiro

    1988-01-01

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  16. Development of an Improved Direct Neutron Sensor

    National Research Council Canada - National Science Library

    LeVert, Francis

    1997-01-01

    ... of 2.5 MeV and a 14 MeV neutron generator. The conductive polymer film was inserted between two structural elements consisting of quartz plates of polyethylene prisms with electrode structures formed with conductive paints or other conductive...

  17. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. An energy and direction independent fast neutron dosemeter based on electrochemically etched CR-39 nuclear track detectors

    International Nuclear Information System (INIS)

    James, K.; Matiullah; Durrani, S.A.

    1987-01-01

    A computer-based model is presented, which simulates the dose equivalent response of electrochemically etched CR-39 to fast neutrons of various energies and angles of incidence. Most previous calculations of the response of CR-39 have neglected the production of recoiling oxygen and carbon nuclei as well as α particles in the CR-39. We calculate that these 'heavy recoils' and α particles are the major source of electrochemically etchable tracks in bare CR-39 at neutron energies above approx. 2 MeV under typical etching conditions. Our calculations have been extended to predict the response of CR-39 used in conjunction with various combinations of polymeric front radiators and we have determined the radiator stack configuration with produces the most energy independent response. Again, the heavy recoils and α particles cannot be neglected and, for energies above approx. 2 MeV, these produce typically about 20% of the total response of our optimum stack. This type of fast neutron dosemeter is, however, strongly direction dependent. We have integrated the response over all appropriate angles to predict the dose equivalent response for two representative neutron fields, and we suggest a method for minimising the angular dependence. (author)

  19. Neutron spin echo: A new concept in polarized thermal neutron techniques

    International Nuclear Information System (INIS)

    Mezei, F.

    1980-01-01

    A simple method to change and keep track of neutron beam polarization non-parallel to the magnetic field is described. It makes possible the establishment of a new focusing effect we call neutron spin echo. The technique developed and tested experimentally can be applied in several novel ways, e.g. for neutron spin flipper of superior characteristics, for a very high resolution spectrometer for direct determination of the Fourier transform of the scattering function, for generalised polarization analysis and for the measurement of neutron particle properties with significantly improved precision. (orig.)

  20. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  1. The relationship between criminal conviction and interrogative suggestibility among delinquent boys.

    Science.gov (United States)

    Gudjonsson, G H; Singh, K K

    1984-03-01

    This study investigates the relationship between interrogative suggestibility, as measured by the Gudjonsson Suggestibility Scale (GSS), and number of previous convictions among 35 delinquent boys. The GSS measures two independent aspects of suggestibility. First, the extent to which subjects give in to suggestive questions. Second, the extent to which subjects give in to interpersonal pressure given in the form of critical feedback about test performance. The number of convictions were found to correlate negatively with the latter aspect of interrogative suggestibility, but not significantly with the former.

  2. Principles of neutron reflection

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1988-08-01

    Neutron reflection is perhaps the most developed branch of slow neutrons optics, which in itself is a direct consequence of the undulatory nature of the neutron. After reviewing the basic types of interactions (nuclear and magnetic) between neutrons and matter, the formalism is introduced to calculate the reflectivity from a sample composed of stacked flat layers and, inversely, to calculate the stacking from reflectivity measurements. Finally, a brief survey of the applications of neutron reflection is given, both in technology and in fundamental research. 32 refs., 6 figs

  3. Energy–angle correlation of neutrons and gamma-rays emitted from an HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, G., E-mail: gennady@purdue.edu; Hassanein, A.

    2014-06-01

    Special Nuclear Materials (SNM) yield very unique fission signatures, namely correlated neutrons and gamma-rays. A major challenge is not only to detect, but also to rapidly identify and recognize SNM with certainty. Accounting for particle multiplicity and correlations is one of standard ways to detect SNM. However, many parameter data such as joint distributions of energy, angle, lifetime, and multiplicity of neutrons and gamma-rays can lead to better recognition of SNM signatures in the background radiation noise. These joint distributions are not well understood. The Monte Carlo simulations of the transport of neutrons and gamma-rays produced from spontaneous and interrogation-induced fission of SNM are carried out using the developed MONSOL computer code. The energy spectra of neutrons and gamma-rays from a bare Highly Enriched Uranium (HEU) source are investigated. The energy spectrum of gamma-rays shows spectral lines by which HEU isotopes can be identified, while those of neutrons do not show any characteristic lines. The joint probability density function (JPDF) of the energy–angle association of neutrons and gamma-rays is constructed. Marginal probability density functions (MPDFs) of energy and angle are derived from JPDF. A probabilistic model is developed for the analysis of JPDF and MPDFs. This probabilistic model is used to evaluate mean values, standard deviations, covariance and correlation between the energy and angle of neutrons and gamma-rays emitted from the HEU source. For both neutrons and gamma-rays, it is found that the energy–angle variables are only weakly correlated.

  4. Methods of neutron spectrometry

    International Nuclear Information System (INIS)

    Doerschel, B.

    1981-01-01

    The different methods of neutron spectrometry are based on the direct measurement of neutron velocity or on the use of suitable energy-dependent interaction processes. In the latter case the measuring effect of a detector is connected with the searched neutron spectrum by an integral equation. The solution needs suitable unfolding procedures. The most important methods of neutron spectrometry are the time-of-flight method, the crystal spectrometry, the neutron spectrometry by use of elastic collisions with hydrogen nuclei, and neutron spectrometry with the aid of nuclear reactions, especially of the neutron-induced activation. The advantages and disadvantages of these methods are contrasted considering the resolution, the measurable energy range, the sensitivity, and the experimental and computational efforts. (author)

  5. Interrogating "Belonging" in Belonging, Being and Becoming: The Early Years Learning Framework for Australia

    Science.gov (United States)

    Sumsion, Jennifer; Wong, Sandie

    2011-01-01

    In this article, the authors interrogate the use of "belonging" in "Belonging, Being and Becoming: the Early Years Learning Framework for Australia" (EYLF), Australia's first national curriculum for early childhood education and care settings and, from the authors' interrogation, possibilities are offered for thinking about and…

  6. System for nondestructive assay of spent fuel subassemblies: comparison of calculations and measurements

    International Nuclear Information System (INIS)

    Ragan, G.L; Ricker, C.W.; Chiles, M.M.; Ingersoll, D.T.; Slaughter, G.G.; Williams, L.R.

    1979-01-01

    A nondestructive assay system was developed for determining the total fissile content of spent fuel subassemblies at the head end of a reprocessing plant. The system can perform an assay in 20 min with an uncertainty of <5%. Antimony-beryllium neutrons interrogate the subassemblies, and proton recoil counters detect the resulting fission neutrons. Pulse-height discrimination differentiates between the low-energy interrogation neutrons and the higher-energy fission neutrons. Calculated and measured results were compared for (1) interrogation-neutron penetrability, (2) fission-neutron detectability, (3) radial variation of assay sensitivity, (4) axial variation of assay sensitivity, and (5) the variation of detector count rate as a function of the number of fuel rods in a special 61-rod, LMFBR-type subassembly

  7. Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling

    Science.gov (United States)

    Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi

    2018-04-01

    A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH

  8. Adjoint P1 equations solution for neutron slowing down

    International Nuclear Information System (INIS)

    Cardoso, Carlos Eduardo Santos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. The direct and adjoint neutron fluxes resulting from the solution of P 1 equations were used to three different weighting processes, to obtain the macrogroup macroscopic cross sections. It was found out noticeable differences among them. (author)

  9. Design of a fiber-optic interrogator module for telecommunication satellites

    Science.gov (United States)

    Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus

    2017-11-01

    In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.

  10. Long-Range Neutron Detection

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Stromswold, D.C.; Hansen, R.R.; Reeder, P.L.; Barnett, D.S.

    1999-01-01

    A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m 2 ) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the 3 He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10 5 n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10 5 n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph

  11. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  12. Neutron resonance spins of 159Tb from experiments with polarized neutrons and polarized nuclei

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Ivanenko, A.I.; Lason', L.; Mareev, Yu.D.; Ovchinnikov, O.N.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1976-01-01

    Spins of 27 neutron resonances of 159 Tb with energies up to 114 eV have been measured using polarized neutrons and nuclei beams in the modernized time-of-flight spectrometer of the IBR-30 pulse reator. The direct measurements of the terbium resonances spins performed using polarized neutrons reaffirm the conclusion that there are no unstationary effects in the behaviour of 159 Tb neutron resonances in the energy range

  13. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  14. Compact D-D/D-T neutron generators and their applications

    International Nuclear Information System (INIS)

    Lou, Tak Pui

    2003-01-01

    production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications

  15. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  16. FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme.

    Science.gov (United States)

    Cui, Jiwen; Hu, Yang; Feng, Kunpeng; Li, Junying; Tan, Jiubin

    2015-07-08

    In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

  17. Photon interrogation annual report for FY 1979

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Johnson, L.O.; Lawrence, R.S.; Vegors, S.H. Jr.

    1980-03-01

    Summaries of experimental information and information from vendors is presented to show the adequacy of the photon interrogation technique for transuranic waste assay. An instrument system is described which has high immunity to gamma flash and has good high count rate capabilities. Comparison of the progress of the program with a schedule presented at its inception is presented

  18. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  19. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution; Promotion COPERNIC Energie et Societe les interrogations sur l'evolution de la demande mondiale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  20. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, Parrish; Prettyman, Tom; Lestone, John

    1999-01-01

    We have used a Tomographic Gamma Scanner (TGS) to produce tomographic Prompt Gamma-Ray Neutron Activation Imaging of heterogeneous matrices [T.H. Prettyman, R.J. Estep, G.A. Sheppard, Trans. Am. Nucl. Soc. 69 (1993) 183-184]. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. We are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source to sample coupling term. To assist in the determination of the coupling term we have obtained images for a range of samples that are very well characterized; such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. We then compare the measurements to Monte Carlo N-particle calculations. For an accurate quantitative measurement it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  1. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  2. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  3. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  4. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  5. TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers.

    Science.gov (United States)

    Rohollahnejad, Jalal; Xia, Li; Cheng, Rui; Ran, Yanli; Rahubadde, Udaya; Zhou, Jiaao; Zhu, Lin

    2017-01-23

    We report a large-scale multi-channel fiber sensing network, where ultra-short FBGs (USFBGs) instead of conventional narrow-band ultra-weak FBGs are used as the sensors. In the time division multiplexing scheme of the network, each grating response is resolved as three adjacent discrete peaks. The central wavelengths of USFBGs are tracked with the differential detection, which is achieved by calculating the peak-to-peak ratio of two maximum peaks. Compared with previous large-scale hybrid multiplexing sensing networks (e.g., WDM/TDM) which typically have relatively low interrogation speed and very high complexity, the proposed system can achieve interrogation of all channel sensors through very fast and simple intensity measurements with a broad dynamic range. A proof-of-concept experiment with twenty USFBGs, at two wavelength channels, was performed and a fast static strain measurements were demonstrated, with a high average sensitivity of ~0.54dB/µƐ and wide dynamic range of over ~3000µƐ. The channel to channel switching time was 10ms and total network interrogation time was 50ms.

  6. Neutron-based techniques for detection of explosives and drugs

    International Nuclear Information System (INIS)

    Kiraly, B.; Olah, L.; Csikai, G.J.

    2000-01-01

    Neutron reflection, scattering and transmission methods combined with the detection of characteristic gamma rays have an increasing role in the identification of hidden explosives, illicit drugs and other contraband materials. There are about 100 million land mines buried in some 70 countries. Among the abandoned anti-personnel land mines (APL) certain types have low mass (about 100 g) and contain little or no metal. Therefore, these plastic APL cannot be detected by the usual metal detectors. The IAEA Physics Section has organized a CRP in 1999 for the development of novel methods in order to speed up the removing process of APL. The transportation of illicit drugs has shown an increasing trend during the last decade. Developments of fast, non-destructive interrogation methods are required for the inspection of cargo containers, trucks and airline baggage. The major constituents of plastic APL and drugs are H, C, N and O which can be identified by the different neutron interactions. The atom fractions of these elements, in particular the C/O, C/N and C/H ratios, are quite different for drugs and explosives as compared to other materials used to hide them. Recently, we have carried out systematic measurements and calculations on the neutron fields from the 9 Be(d,n), 2 H(d,n), 252 Cf and Pu-Be sources passing through different bulky samples, on the possible use of elastically backscattered Pu-Be neutrons in elemental analysis and on the advantages and limitations of the thermal neutron reflection method in the identification of land mines and illicit drugs. The measured spectral shapes of neutrons were compared with the calculated results using the MCNP-4A and MCNP-4B codes. (author)

  7. Direct utilization of information from nuclear data files in Monte Carlo simulation of neutron and photon transport

    International Nuclear Information System (INIS)

    Androsenko, P.; Joloudov, D.; Kompaniyets, A.

    2001-01-01

    Questions, related to Monte-Carlo method for solution of neutron and photon transport equation, are discussed in the work concerned. Problems dealing with direct utilization of information from evaluated nuclear data files in run-time calculations are considered. ENDF-6 format libraries have been used for calculations. Approaches provided by the rules of ENDF-6 files 2, 3-6, 12-15, 23, 27 and algorithms for reconstruction of resolved and unresolved resonance region cross sections under preset energy are described. The comparison results of calculations made by NJOY and GRUCON programs and computed cross sections data are represented. Test computation data of neutron leakage spectra for spherical benchmark-experiments are also represented. (authors)

  8. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  9. SHREDI, Neutron Flux and Neutron Activation in 2-D Shields by Removal Diffusion

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.

    1976-01-01

    1 - Nature of physical problem solved: SHREDI is a removal - diffusion neutron shielding code. The program computes neutron fluxes and activations in bidimensional sections (x,y or r,z) of the shield. It is also possible to consider shielding points with the same y or z coordinate (mono-dimensional problems). 2 - Method of solution: The integrals which define the removal fluxes are computed in some shield points by means of a particular algorithm based on the Simpson's and trapezoidal rules. For the diffusion calculation the finite difference method is used. The removal sources are interpolated in all diffusion points by Chebyshev polynomials. 3 - Restrictions on the complexity of the problem: Maxima: number of removal energy groups NGR = 40; number of diffusion energy groups NGD = 40; number of the reactor core and shield materials NCMP = 50; number of core mesh points in r (or x) direction for integral calculation = 75; number of core mesh points in z (or y) direction for integral calculation = 75; number of core mesh points in theta (or z) direction for integral calculation = 75; number of shield mesh points for the neutron flux calculation in r (or x) direction NPX = 200; number of shield mesh points for the neutron flux calculation in z (or y) direction NPY = 200; n.b. (NPX * NPY) le 12000

  10. Intrathecal Pump Exposure to Electromagnetic Interference: A Report of Device Interrogation following Multiple ECT Sessions.

    Science.gov (United States)

    Bicket, Mark C; Hanna, George M

    2016-02-01

    Intrathecal drug delivery systems represent an increasingly common treatment modality for patients with a variety of conditions, including chronic pain and spasticity. Pumps rely on electronic programming to properly control and administer highly concentrated medications. Electromagnetic interference (EMI) is a known exposure that may cause a potential patient safety issue stemming from direct patient injury, pump damage, or changes to pump operation or flow rate. The objective of our case report was to describe an approach to evaluating a patient with a pump prior to and following exposure to EMI from electroconvulsive therapy (ECT), as well as to document findings from device interrogations associated with this event. Case report. Academic university-based pain management center. We present the case of a patient with an intrathecal pump who underwent multiple exposures to EMI in the form of 42 ECT sessions. Interrogation of the intrathecal drug delivery system revealed no safety issues following ECT sessions. At no time were error messages, unintentional changes in event logs, unintentional changes in pump settings, or evidence of pump stall or over-infusion noted. Communication with multiple entities (patient, family, consulting physicians, and device manufacturer) and maintaining vigilance through device interrogation both before and after EMI exposure are appropriate safeguards to mitigate the risk and detect potential adverse events of EMI with intrathecal drug delivery systems. Given the infrequent reports of device exposure to ECT, best practices may be derived from experience with EMI exposure from magnetic resonance imaging (MRI). Although routine EMI exposure to intrathecal drug delivery systems should be avoided, we describe one patient with repeated exposure to ECT without apparent complication.

  11. Processing Interrogative Sentence Mood at the Semantic-Syntactic Interface: An Electrophysiological Research in Chinese, German, and Polish

    Science.gov (United States)

    Kao, Chung-Shan; Dietrich, Rainer; Sommer, Werner

    2010-01-01

    Background Languages differ in the marking of the sentence mood of a polar interrogative (yes/no question). For instance, the interrogative mood is marked at the beginning of the surface structure in Polish, whereas the marker appears at the end in Chinese. In order to generate the corresponding sentence frame, the syntactic specification of the interrogative mood is early in Polish and late in Chinese. In this respect, German belongs to an interesting intermediate class. The yes/no question is expressed by a shift of the finite verb from its final position in the underlying structure into the utterance initial position, a move affecting, hence, both the sentence's final and the sentence's initial constituents. The present study aimed to investigate whether during generation of the semantic structure of a polar interrogative, i.e., the processing preceding the grammatical formulation, the interrogative mood is encoded according to its position in the syntactic structure at distinctive time points in Chinese, German, and Polish. Methodology/Principal Findings In a two-choice go/nogo experimental design, native speakers of the three languages responded to pictures by pressing buttons and producing utterances in their native language while their brain potentials were recorded. The emergence and latency of lateralized readiness potentials (LRP) in nogo conditions, in which speakers asked a yes/no question, should indicate the time point of processing the interrogative mood. The results revealed that Chinese, German, and Polish native speakers did not differ from each other in the electrophysiological indicator. Conclusions/Significance The findings suggest that the semantic encoding of the interrogative mood is temporally consistent across languages despite its disparate syntactic specification. The consistent encoding may be ascribed to economic processing of interrogative moods at various sentential positions of the syntactic structures in languages or, more

  12. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  13. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials

    2010-07-01

    Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)

  14. Compact, low-cost, and high-resolution interrogation unit for optical sensors

    International Nuclear Information System (INIS)

    Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan

    2006-01-01

    Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors

  15. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  16. Design Concept for the Microwave Interrogation Structure in PARCS

    National Research Council Canada - National Science Library

    Dick, G. J; Klipstein, W. M; Heavner, T. P; Jefferts, S. R

    2002-01-01

    In this paper we will describe key aspects of the conceptual design of the microwave interrogation structure in the laser-cooled cesium frequency standard that is part of the Primary Atomic Reference Clock in Space (PARCS) experiment...

  17. Muons, neutrons and superconductivity

    International Nuclear Information System (INIS)

    Aeppli, G.; Risoe National Lab., Roskilde

    1988-01-01

    The principles of the neutron scattering and muon spin relaxation (μSR) techniques and their applications to studies of superconductors are described briefly. μSR and neutron scattering work on magnetic correlations in superconductors and materials directly related to superconductors are reviewed. (orig.)

  18. Lubricant distribution determination by neutron radiography

    International Nuclear Information System (INIS)

    Stewart, P.A.E.

    1979-01-01

    Cold neutron radiation of energy less than 0.025 eV having a flux greater than 1 x 10 3 neutrons/square centimeter/second is used to diagnose temporal information about the spatial distribution of hydrocarbon fuel and lubrication oils in internal combustion engines, gas turbine engines and fuel systems. Images of the movement of fuel or oil are recorded by directing a beam of neutrons through an engine and using an image intensifier responsive to low light levels to intensify an image formed by neutrons which have been directed through the engine onto a fluorescent screen. The output image from the intensifier is recorded by a video or cine camera

  19. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution; Promotion COPERNIC Energie et Societe les interrogations sur l'evolution de la demande mondiale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  20. Investigating The Neutron Flux Distribution Of The Miniature Neutron Source Reactor MNSR Type

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Neutron flux distribution is the important characteristic of nuclear reactor. In this article, four energy group neutron flux distributions of the miniature neutron source reactor MNSR type versus radial and axial directions are investigated in case the control rod is fully withdrawn. In addition, the effect of control rod positions on the thermal neutron flux distribution is also studied. The group constants for all reactor components are generated by the WIMSD code, and the neutron flux distributions are calculated by the CITATION code. The results show that the control rod positions only affect in the planning area for distribution in the region around the control rod. (author)

  1. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel [V.G. Khlopin Radium Institute, 194021, 28, 2nd Murinsky pr., Saint-Petersburg (Russian Federation)

    2011-12-13

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  2. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel

    2011-01-01

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  3. Interrogating Public Sphere and Popular Culture as Theoretical ...

    African Journals Online (AJOL)

    Because of its theoretical roots in Western liberal thinking, scholars in African studies such as Comaroffs, Mamdani and Ekeh have vigorously debated the extent to which the concept of civil society is useful in explaining and interrogating developments in Africa. However, the concept of the public sphere has been subjected ...

  4. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  5. Compact D-D/D-T neutron generators and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tak Pui [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.

  6. Analysis for In-situ Fission Rate Measurements using 4He Gas Scintillation Detectors

    International Nuclear Information System (INIS)

    Lewis, Jason M.; Raetz, Dominik; Jordan, Kelly A.; Murer, David

    2013-06-01

    Active neutron interrogation is a powerful NDA technique that relies on detecting and analyzing fission neutrons produced in a fuel sample by an interrogating high neutron flux. 4 He scintillation gas fast neutron detectors are investigated in this paper for use in a novel fission rate measurement technique The He-4 detectors have excellent gamma rejection, a fast response time, and give significant information on incident neutron energy allowing for energy cuts to be applied to the detected signal. These features are shown in this work to allow for the detection of prompt fission neutrons in-situ during active neutron interrogation of a 238 U sample. The energy spectrum from three different neutrons sources ( 252 Cf, AmBe, AmLi) is measured using the 4 He detection system and analyzed. An initial response matrix for the detector is determined using these measurements and the kinematic interaction properties of the elastic scattering with the 4 He. (authors)

  7. In situ diagnostics of the crystal-growth process through neutron imaging

    DEFF Research Database (Denmark)

    Tremsin, Anton S.; Makowska, Malgorzata Grazyna; Perrodin, Didier

    2016-01-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e......, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼ 0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change.......g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole...

  8. Wirelessly Interrogated Wear or Temperature Sensors

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  9. Neutron radiography, techniques and applications

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1987-10-01

    After describing the principles of the ''in pool'' and ''dry'' installations, techniques used in neutron radiography are reviewed. Use of converter foils with silver halide films for the direct and transfer methods is described. Advantages of the use of nitrocellulose film for radiographying radioactive objects are discussed. Dynamic imaging is shortly reviewed. Standardization in the field of neutron radiography (ASTM and Euratom Neutron Radiography Working Group) is described. The paper reviews main fields of use of neutron radiography. Possibilities of use of neutron radiography at research reactors in various scientific, industrial and other fields are mentioned. Examples are given of application of neutron radiography in industry and the nuclear field. (author)

  10. A national epidemiological study investigating risk factors for police interrogation and false confession among juveniles and young persons.

    Science.gov (United States)

    Gudjonsson, Gisli H; Sigurdsson, Jon Fridrik; Sigfusdottir, Inga Dora; Asgeirsdottir, Bryndis Bjork; González, Rafael A; Young, Susan

    2016-03-01

    The principal aims of this study are to identify risk factors associated with police arrest and false confessions and to investigate whether the severity of the ADHD condition/symptoms increases the risk. 22,226 young persons in Iceland anonymously completed self-report questionnaires screening for conduct disorder and ADHD. In addition, they stated whether they had a diagnosis of ADHD and had received ADHD medication, and their history of offending, police interrogation and false confession. Participants were stratified into two age groups, 14-16 and 17-24 years. The older group was significantly more likely to have been interrogated by the police but the younger group were much more vulnerable to false confession during interrogation. Males were more likely to be at risk for both than females. The severity of the ADHD condition increased the risk of both interrogation and false confession. Negative binomial regressions showed that age, gender, conduct disorder, offending, and ADHD symptoms were all significant predictors of both interrogations and number of false confessions. Conduct disorder was the single best predictor of police interrogation, but the findings were more mixed regarding false confessions. Young people presenting with a combination of severe ADHD and comorbid conduct disorder had the worst outcome for both interrogation and false confessions. The findings endorse the need for support of persons with ADHD to be put in place to ensure fair due process and to prevent miscarriages of justice.

  11. Interrogating Infanticide/ Child Euthanasia in the Roman Christian ...

    African Journals Online (AJOL)

    The purpose of this paper is an attempt to examine infanticide practices in the Roman Christian era and interrogate infanticide and child euthanasia in the same era. It also attempts to point out infanticide practices in Abuja and makes a distinction between infanticide and child euthanasia in Abuja. The study employed ...

  12. Outcomes of direct pulp capping: interrogating an insurance database.

    Science.gov (United States)

    Raedel, M; Hartmann, A; Bohm, S; Konstantinidis, I; Priess, H W; Walter, M H

    2016-11-01

    To evaluate the effectiveness of direct pulp capping under general practice conditions. It was hypothesized that direct pulp capping is an effective procedure in the majority of cases and prevents the need for root canal treatment or extraction. Claims data were collected from the digital database of a major German national health insurance company. Only patients who had been insurance members for the entire 3 year period 2010 to 2012 were eligible. Kaplan-Meier survival analyses were conducted for all teeth with direct pulp capping. Success was defined as not undergoing root canal treatment. Survival was defined as not undergoing extraction. Differences between survival functions were tested with the log rank test. A total of 148 312 teeth were included. The overall success rate was 71.6% at 3 years. The overall survival rate was 95.9% at 3 years. The success rates for single-rooted teeth (71.8%) and multirooted teeth (71.5%) were similar although significantly different (P 85 years.). After direct pulp capping, more than two-thirds of the affected teeth did not undergo root canal treatment within 3 years. Although this study has the typical limits of a claims data analysis, it can be concluded that direct pulp capping is an effective intervention to avoid root canal treatment and extraction in a general practice setting. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Applications of the associated-particle neutron-time-of-flight interrogation technique - From sheep to unexploded ordnance

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S. [Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973 and Nuclear Forensics R and D, Sandia National Laboratories, Albuquerque, NM 87185-0968 (United States)

    2013-04-19

    The associated-particle technique (APT) will be presented for some diverse applications that include on the one hand, analyzing the body composition of live sheep and on the other, identifying the fillers of unexploded ordnance (UXO). What began with proof-of-concept studies using a large laboratory based 14 MeV neutron generator of the 'associated-particle' type, soon became possible for the first time to measure total body protein, fat and water simultaneously in live sheep using a compact field deployable associated-particle sealed-tube neutron generator (APSTNG). This non-invasive technique offered the animal physiologist a tool to monitor the growth of an animal in response to new genetic, nutritional and pharmacologic methods for livestock improvement. While measurement of carbon (C), nitrogen (N) and oxygen (O) determined protein, fat and water because of the fixed stoichiometric proportions of these elements in these body components, the unique C/N and C/O ratios of high explosives revealed their identity in UXO. The algorithm that was developed and implemented to extract C, N and O counts from an APT generated gamma-ray spectrum will be presented together with the UXO investigations that involved preliminary proofof-concept studies and modeling with Monte Carlo produced synthetic spectra of 57-155 mm projectiles.

  14. On the aesthetics of mimicry and proliferation: interrogations of ...

    African Journals Online (AJOL)

    This article examines innovative modes of interrogating spectacles of State power in postcolonial dictatorship novels. Authoritarian power in the postcolonial public sphere perpetuates itself through practices that reiterate the prerogatives of State reason, national progress, national unity and the indispensability of the ...

  15. Linear stochastic neutron transport theory

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A new and direct derivation of the Bell-Pal fundamental equation for (low power) neutron stochastic behaviour in the Boltzmann continuum model is given. The development includes correlation of particle emission direction in induced and spontaneous fission. This leads to generalizations of the backward and forward equations for the mean and variance of neutron behaviour. The stochastic importance for neutron transport theory is introduced and related to the conventional deterministic importance. Defining equations and moment equations are derived and shown to be related to the backward fundamental equation with the detector distribution of the operational definition of stochastic importance playing the role of an adjoint source. (author)

  16. A neutron calibration technique for detectors with low neutron/high photon sensitivity

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.; Dietze, G.; Klein, H.

    1978-03-01

    The neutron response of a detector with low neutron-/high photon sensitivity is given by the difference of two terms: the response to the mixed neutron-photon field, measured directly, and the response to the photons, deduced from additional measurements with a photon spectrometer. The technique is particularly suited for use in connection with targets which consist of a thick backing and thin layer of neutron producing material such as T, D, Li nuclei. Then the photon component of the mixed field is very nearly the same as the pure photon field from a 'phantom target', being identical with the neutron producing target except for the missing neutron producing material. Using this technique in connection with a T target (Ti-T-layer on silver backing) and the corresponding phantom target (Ti-layer on silver backing), a GM counter was calibrated at a neutron energy of 2.5 MeV. Possibilities are discussed to subsequently calibrate the GM counter at other neutron energies without the use of the photon spectrometer. (orig./HP) [de

  17. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  18. Innovative three-dimensional neutronics analyses directly coupled with cad models of geometrically complex fusion systems

    International Nuclear Information System (INIS)

    Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.

    2007-01-01

    Fusion systems are, in general, geometrically complex requiring detailed three-dimensional (3-D) nuclear analysis. This analysis is required to address tritium self-sufficiency, nuclear heating, radiation damage, shielding, and radiation streaming issues. To facilitate such calculations, we developed an innovative computational tool that is based on the continuous energy Monte Carlo code MCNP and permits the direct use of CAD-based solid models in the ray-tracing. This allows performing the neutronics calculations in a model that preserves the geometrical details without any simplification, eliminates possible human error in modeling the geometry for MCNP, and allows faster design iterations. In addition to improving the work flow for simulating complex 3- D geometries, it allows a richer representation of the geometry compared to the standard 2nd order polynomial representation. This newly developed tool has been successfully tested for a detailed 40 degree sector benchmark of the International Thermonuclear Experimental Reactor (ITER). The calculations included determining the poloidal variation of the neutron wall loading, flux and nuclear heating in the divertor components, nuclear heating in toroidal field coils, and radiation streaming in the mid-plane port. The tool has been applied to perform 3-D nuclear analysis for several fusion designs including the ARIES Compact Stellarator (ARIES-CS), the High Average Power Laser (HAPL) inertial fusion power plant, and ITER first wall/shield (FWS) modules. The ARIES-CS stellarator has a first wall shape and a plasma profile that varies toroidally within each field period compared to the uniform toroidal shape in tokamaks. Such variation cannot be modeled analytically in the standard MCNP code. The impact of the complex helical geometry and the non-uniform blanket and divertor on the overall tritium breeding ratio and total nuclear heating was determined. In addition, we calculated the neutron wall loading variation in

  19. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    Science.gov (United States)

    Lopez-Garrity, Meng

    An approach referred to as "Direct Optical Interrogation" (DOI) has been developed as an extension of the thin film pitting approach developed and used by Frankel and others. Samples were prepared by depositing Al and Al-Cu alloy metallizations about 800 nm thick on glass substrates. These metallizations were then coated with various coatings and coating systems. Samples were introduced to aggressive environments and the progression of corrosion of the metallization under the coating was monitored in situ using low power videography. Because metallizations were thin, corrosion quickly penetrated through the metal layer to the glass substrate and then spread laterally. Measurement of the lateral spread of corrosion enabled non-electrochemical assessment of the corrosion kinetics. In Al-Cu thin films, both aged and as-deposited, corrosion sites are irregularly shaped because there is not enough cathodic current to propagate the entire corrosion site margin at equal rates. In a number of cases, corrosion propagates with a filamentary morphology resembling filiform corrosion. Cu played a strong role in determining under coating corrosion morphology and growth kinetics in experiments with Al-Cu thin films substrates. As-deposited Al-Cu metallizations were more corrosion resistant than aged metallization and both were more corrosion resistant than pure Al. Cu-rich dendrites were formed on the corrosion front. Corrosion rate (current density) was calculated using Faraday's law by collecting corrosion site perimeter and bottom area. Systematic exploration of the effects of a chromate and chromate-free conversion coatings, chromate and chromate-free primer coatings and the presence or absence of a polyurethane topcoat confirmed the extraordinary corrosion protection by chromates. A commercial praseodymium-pigmented primer coating was not particularly effective in retarding undercoating corrosion site growth unless paired with a chromate conversion coating. The presence of a

  20. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    Science.gov (United States)

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  1. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).

    Energy Technology Data Exchange (ETDEWEB)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-09-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

  2. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD)

    International Nuclear Information System (INIS)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-01-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive (∼100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications

  3. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution

    International Nuclear Information System (INIS)

    2001-12-01

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  4. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    Science.gov (United States)

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  5. Thermal neutrons streaming in straight duct

    International Nuclear Information System (INIS)

    Jehouani, A.; Boulkheir, M.; Ichaoui, R.

    2000-01-01

    The neutron streaming in duct is due to two phenomena: a) direct propagation and b) reflection on duct wall. We have used the Monte Carlo method to evaluate the ratio of the reflected neutrons flux by the duct wall to the total flux at the exit of the duct for iron and aluminium. Ten neutrons energy groups are considered between 10 -5 eV and 10 eV. A Fortran program is developed to evaluate the neutron double differential albedo. It is shown that the two following approximations are largely justified: i) Three collisions in the duct wall are sufficient to attain the asymptotic limit of the multiscattered neutron double differential albedo ii) The points of entry and exit of the neutron in the duct wall may be considered the same for the multiscattered neutrons. For a punctual source at the mouth of the duct, we have determined the direct and the reflected part of the total thermal neutron flux at the exit of the duct for different lengths and different radius of the duct. For a punctual source, we have found that the major contribution to the total flux of neutrons at the exit is due to the neutron reflection by walls and the reflection contribution decreases when the neutron energy decreases. For a constant length of the duct, the reflected part decreases when the duct radius increases while for the disk shaped source we have found the opposite phenomena. The transmitted neutron flux distribution at the exit of the duct are determined for disk shaped source for different neutron energy and for different distance from the exit center. (author)

  6. Interrogating Your Wisdom of Practice to Improve Classroom Practices

    Science.gov (United States)

    Chappell, Philip

    2017-01-01

    This article presents a heuristic for language teachers to articulate and explore their fundamental theories of and philosophical stances towards language, language learning, and language teaching. It includes tools with which teachers can interrogate those theories, weighing them up against their actual classroom practices. Through presenting…

  7. Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors

    Science.gov (United States)

    González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.

    2017-04-01

    Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.

  8. Studies on biological macromolecules by neutron inelastic scattering

    International Nuclear Information System (INIS)

    Fujiwara, Satoru; Nakagawa, Hiroshi

    2013-01-01

    Neutron inelastic scattering techniques, including quasielastic and elastic incoherent neutron scattering, provide unique tools to directly measure the protein dynamics at a picosecond time scale. Since the protein dynamics at this time scale is indispensable to the protein functions, elucidation of the protein dynamics is indispensable for ultimate understanding of the protein functions. There are two complementary directions of the protein dynamics studies: one is to explore the physical basis of the protein dynamics using 'model' proteins, and the other is more biology-oriented. Examples of the studies on the protein dynamics with neutron inelastic scattering are described. The examples of the studies in the former direction include the studies on the dynamical transitions of the proteins, the relationship between the protein dynamics and the hydration water dynamics, and combined analysis of the protein dynamics with molecular dynamics simulation. The examples of the studies in the latter direction include the elastic incoherent and quasielastic neutrons scattering studies of actin. Future prospects of the studies on the protein dynamics with neutron scattering are briefly described. (author)

  9. NPDGamma: A Measurement of the Parity Violating Directional γ-Ray Asymmetry in Polarized Cold Neutron Capture on Hydrogen

    International Nuclear Information System (INIS)

    Fomin, Nadia

    2009-01-01

    The NPDGamma experiment aims to measure the correlation between the neutron spin and the direction of the emitted photon in neutron-proton capture at low momentum transfer. An up-down parity violating asymmetry from this process can be related to the strength of the hadronic weak interaction between nucleons.The first phase of the experiment was completed in 2006 at LANSCE. The methodology will be discussed and preliminary results will be presented. The next run will start in 2009 at the SNS at ORNL with many improvements that will yield a measurement with a projected statistical error of 1x10 -8 , 20% of the predicted value for the asymmetry. This will allow the determination of the long range n contribution in the weak interaction between nucleons.

  10. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  11. Metabolic interrogation as a tool to optimize chemotherapeutic regimens.

    Science.gov (United States)

    Sandulache, Vlad C; Chen, Yunyun; Feng, Lei; William, William N; Skinner, Heath D; Myers, Jeffrey N; Meyn, Raymond E; Li, Jinzhong; Mijiti, Ainiwaer; Bankson, James A; Fuller, Clifton D; Konopleva, Marina Y; Lai, Stephen Y

    2017-03-14

    Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC).We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines.Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies.

  12. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Science.gov (United States)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  13. Achievable Performance and Effective Interrogator Design for SAW RFID Sensor Tags

    Science.gov (United States)

    Barton Richard J.

    2012-01-01

    For many NASA missions, remote sensing is a critical application that supports activities such as environmental monitoring, planetary science, structural shape and health monitoring, non-destructive evaluation, etc. The utility of the remote sensing devices themselves is greatly increased if they are passive V that is, they do not require any on-board power supply such as batteries V and if they can be identified uniquely during the sensor interrogation process. Additional passive sensor characteristics that enable greater utilization in space applications are small size and weight, long read ranges with low interrogator power, ruggedness, and operability in extreme environments (vacuum, extreme high/low temperature, high radiation, etc.) In this paper, we consider one very promising passive sensor technology, called surface acoustic wave (SAW) radio-frequency identification (RFID), that satisfies all of these criteria. In general, RFID is a method of identifying items using radio waves to interrogate tags encoded with a unique identifier that are affixed to the items of interest. In the case of passive tags, only the interrogator, which transmits power to the tags in the form of radio-frequency electromagnetic radiation, requires access to a power supply. Passive RFID technologies are used today in many applications, including asset tracking and management, security and access control, and remote sensing. To date, most of the development and application in RFID technology has focused on either asset/inventory tracking and control or security and access control because these are the largest commercial application areas. Recently however, there has been growing interest in using passive RFID technology for remote sensing applications, and SAW devices are at the forefront of RFID sensing technology development. Although SAW RFID tags have great potential for use in numerous space-based remote sensing applications, the limited collision resolution capability of

  14. Design characteristics of a three-component AEOI Neutriran Albedo Neutron Personnel Dosimeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1991-01-01

    In establishing a national personnel neutron dosimetry service in Iran, different parameters of the AEOI Neutriran Albedo Neutron Personnel Dosimeter (NANPD) have been optimized. A NANPD was designed with three dosimetry components to measure (a) direct thermal neutrons, (b) direct fast neutrons and (C) direct neutrons by the detection of the albedo neutrons reflected from the body. The dosimeter consists of one or more Lexan polycarbonate and/or CR-39 foils and two 10 B (n,α) 7 Li converters in a cadmium cover so arranged as to efficiently measure the three neutron dose components separately. The boron converter thickness, its position relative to the beam direction and its distance from the PC foil were studied and the results were incorporated into the design. The dose response of the dosimeter, its lower detection limit as well as the correction factors related to the field neutrons and albedo neutrons were also determined for a 238 Pu-Be, an 241 Am-Be and a 252 Cf sources. In this paper, the dosimeter design and its dosimetric characteristics are presented and discussed. (author)

  15. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1991-01-01

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  16. Assessment of effectiveness of geologic isolation systems: the feasibility of computer interrogation of experts for WISAP

    Energy Technology Data Exchange (ETDEWEB)

    Wight, L.H.

    1980-05-01

    Simulation of the response of a waste repository to events that could initiate a fault tree to breach and failure is currently a keystone to the Battelle Waste Isolation Safety Assessment Program (WISAP). The repository simulation, which is part of the Disruptive Event Analysis Task, models the repository for its entire design life, one million years. This is clearly a challenging calculation, requiring input unlike any other response analysis by virtue of the long design life of the facility. What technology will provide design criteria for a million year design life. Answers to questions like this can, to some extent, be based on data, but always require some subjective judgments. The subjectivity, which is sometimes driven by inadequate or incomplete data or by a lack of understanding of the physical process, is therefore a crucial ingredient in an analysis of initiating events. Because of the variety of possible initiating events (glaciation, man-caused disruption, volcanism, etc.), many expert opinions will be solicited as input. The complexity of the simulation, the variety of experts involved, and the volume of applicable data all suggest that there may be a more direct, economical method to solicit the expert opinion. This report addresses the feasibility of such a system. Background information is presented that demonstrates the advantages of a computer interrogation system over conventional interrogation and assessment techniques. In the subsequent three sections the three elements - structure and decomposition, scaling, and synthesis - that are basic to any interrogation and assessment technique are reviewed. The interrelationship are schematically illustrated between these three fundamental elements and, therefore, serves as a useful guide to these three sections. Each of these three sections begins with a recommended approach to the particular element and ends with an illustration of representative dialogue.

  17. Assessment of effectiveness of geologic isolation systems: the feasibility of computer interrogation of experts for WISAP

    International Nuclear Information System (INIS)

    Wight, L.H.

    1980-05-01

    Simulation of the response of a waste repository to events that could initiate a fault tree to breach and failure is currently a keystone to the Battelle Waste Isolation Safety Assessment Program (WISAP). The repository simulation, which is part of the Disruptive Event Analysis Task, models the repository for its entire design life, one million years. This is clearly a challenging calculation, requiring input unlike any other response analysis by virtue of the long design life of the facility. What technology will provide design criteria for a million year design life. Answers to questions like this can, to some extent, be based on data, but always require some subjective judgments. The subjectivity, which is sometimes driven by inadequate or incomplete data or by a lack of understanding of the physical process, is therefore a crucial ingredient in an analysis of initiating events. Because of the variety of possible initiating events (glaciation, man-caused disruption, volcanism, etc.), many expert opinions will be solicited as input. The complexity of the simulation, the variety of experts involved, and the volume of applicable data all suggest that there may be a more direct, economical method to solicit the expert opinion. This report addresses the feasibility of such a system. Background information is presented that demonstrates the advantages of a computer interrogation system over conventional interrogation and assessment techniques. In the subsequent three sections the three elements - structure and decomposition, scaling, and synthesis - that are basic to any interrogation and assessment technique are reviewed. The interrelationship are schematically illustrated between these three fundamental elements and, therefore, serves as a useful guide to these three sections. Each of these three sections begins with a recommended approach to the particular element and ends with an illustration of representative dialogue

  18. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    Science.gov (United States)

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  19. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  20. On the actual bandwidth of some dynamic fiber optic strain/temperature interrogators

    Science.gov (United States)

    Preizler, Rotem R.; Davidi, R.; Motil, Avi; Botsev, Yakov; Hahami, Meir; Tur, Moshe

    2017-04-01

    The measurement accuracy of dynamic fiber-optic sensing interrogators, which use frequency scanning to determine the value of the measured, err as either the event bandwidth approaches half the instrument sampling frequency or when the event dynamic range comes close to the instrument designed value. One main source of error is the common practice of assigning sampling at a non-uniform grid to a uniform one. Harmonics higher than -20 dB are observed for signal frequencies exceeding 25% of the sampling rate and/or for signal amplitudes higher than 15% of the instrument dynamic range. These findings have applications to fiber-Bragg-grating and Brillouin interrogators.

  1. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  2. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    Science.gov (United States)

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested.

  3. Prompt neutrons from {sup 236}U fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boldeman, J W; Musgrove, A.R. de L.; Walsch, R L

    1971-03-01

    Measurements were made of prompt neutron emission in the thermal neutron fission of {sup 235}U. The mean neutron emission per fragment was obtained for particular values of the fragment mass and total kinetic energy. A direct neutron counting method was employed and a comparison made with data from previous experiments of this type. (author)

  4. Intelligence, previous convictions and interrogative suggestibility: a path analysis of alleged false-confession cases.

    Science.gov (United States)

    Sharrock, R; Gudjonsson, G H

    1993-05-01

    The main purpose of this study was to investigate the relationship between interrogative suggestibility and previous convictions among 108 defendants in criminal trials, using a path analysis technique. It was hypothesized that previous convictions, which may provide defendants with interrogative experiences, would correlate negatively with 'shift' as measured by the Gudjonsson Suggestibility Scale (Gudjonsson, 1984a), after intelligence and memory had been controlled for. The hypothesis was partially confirmed and the theoretical and practical implications of the findings are discussed.

  5. Neutron measurement in 12,13C+ 27Al system using CR-39 detectors and neutron rem meter

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Shanbhag, A.A.; Sunil, C.; Joshi, D.S.; Sarkar, P.K.

    2011-01-01

    In this work, neutron measurements carried out for the interaction of 60 and 67.5 MeV 12 C, 57.3 and 65 MeV 13 C ions with thick aluminium target by using CR-39 detectors and neutron rem meter is reported. Both the detector systems were irradiated at different angles viz. 0 deg, 30 deg, 60 deg, 90 deg with respect to the beam direction. The normalized track density measurements (tracks/cm 2 /projectile at 1m) in CR-39 detectors were correlated with the normalized dose equivalent values (μSv/projectile at 1m) obtained using the neutron rem meter. The track density was found to be more in case of 13 C than 12 C. However in all the cases, the track density per incident projectile was found to decrease as the angle with respect to beam direction increases, indicating non-isotropic nature of neutron emission. The ratio between measured dose equivalent in rem meter to the measured track densities in CR-39 detectors was found to be 2.8±0.2, which remains constant irrespective of the change in angle from beam direction as well as neutron spectrum, indicating a flat dose response of CR-39 detectors. (author)

  6. Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James W. Sterbentz

    2011-05-01

    Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission

  7. Online monitoring of fast neutron (DT/DD) at Purnima neutron generator

    International Nuclear Information System (INIS)

    Bishnoi, S.; Patel, T.; Shukla, M.; Adhikari, P.S.; Sinha, A.

    2012-01-01

    A neutron generator (NG) at Purnima Labs, BARC has been developed for DT accelerator driven zero power subcritical (ADSS) system. Subcritical core of ADSS will be coupled to the NG for benchmarking experiments. Kinetic parameters of ADSS such as K-source, flux, power etc depends on this external neutron source strength injected to the core. However the neutron emission rate of NG does not remain stable throughout its operation. In view of this a reliable, precise and online monitoring of NG's neutron emission rate is required. An online neutron monitoring system based on associated particle method has been designed, developed and installed at NG. The monitoring unit consists of an ion implanted planar silicon detector, placed inside the drift tube of NG at an angle with respect to D + beam direction. A series of experiments were carried out with increasing neutron yield to optimize the position of detector such that it has sufficient counting statistics and minimum pileup. A complementary calibration procedure for validating these results based on activation technique was also carried out with standard Cu foil. The reaction rate monitored with online monitor and foil activation technique were compared, their variations with the predicted (theoretical) results were within 16%. This paper deals with the development and performance of online neutron monitoring system for DT and DD neutrons

  8. Can You Believe It? 12-Month-Olds Use Word Order to Distinguish between Declaratives and Polar Interrogatives

    Science.gov (United States)

    Geffen, Susan; Mintz, Toben H.

    2015-01-01

    Word order is a core mechanism for conveying syntactic structure, yet interrogatives usually disrupt canonical word orders. For example, in English, polar interrogatives typically invert the subject and auxiliary verb and insert an utterance-initial "do" if no auxiliary is present. These word order patterns result from differences in the…

  9. Direct nn-scattering at the YAGUAR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B.E. [Gettysburg College, Department of Physics, Gettysburg, PA 17325 (United States)]. E-mail: bcrawfor@gettysburg.edu; Furman, W.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Lychagin, E.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Litvin, V.I. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Magda, E.P. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Muzichka, A.Yu. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Stephenson, S.L. [Gettysburg College, Department of Physics, Gettysburg, PA 17325 (United States); Strelkov, A.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2005-12-15

    The Direct Investigation of a {sub nn} Association (DIANNA) is finalizing the design of a direct measurement of the nn-scattering length to be performed at the YAGUAR reactor in Snezhinsk, Russia. Extensive modeling of the neutron field, nn-scattering kinematics, and sources of detector background have verified the plan for a 3% measurement of a {sub nn}. Measurements of the neutron flux support the neutron field modeling. Initial test measurements of the neutron field inside the underground channel have confirmed calculations of the thermal neutron background.

  10. Perioperative Interrogation of St. Jude Cardiovascular Implantable Electronic Devices: A Guide for Anesthesiologists.

    Science.gov (United States)

    Cronin, Brett; Essandoh, Michael K

    2018-04-01

    Feelings of trepidation or uncertainty regarding cardiovascular implantable electronic devices (CIEDs) in the perioperative period can often be mitigated by a thorough knowledge of societal recommendations, recommended management options, and familiarity with CIEDs. Given that effective interpretation of an interrogation report is vital to determining perioperative management options and applying societal recommendations, the creation and interpretation of St. Jude CIED interrogation reports are discussed. In an effort to increase the familiarity with St. Jude transvenous CIEDs amongst anesthesiologists, basic programming of a St. Jude pacemaker and implantable cardioverter defibrillator (ICD) also are described. Published by Elsevier Inc.

  11. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    Science.gov (United States)

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes.

  12. Project of the borehole neutron generator for the direct determination of oxygen and carbon by activation method

    Science.gov (United States)

    Bogdanovich, B. Yu; Vovchenko, E. D.; Iliinskiy, A. V.; Isaev, A. A.; Kozlovskiy, K. I.; Nesterovich, A. V.; Senyukov, V. A.; Shikanov, A. E.

    2016-09-01

    The paper deals with application features of borehole neutron generator (BNG) based on the vacuum accelerating tube (AT) with laser-plasma ion source for determination of oxygen isotope 16O and carbon isotope 12C by direct activation. The project of pulsed BNG for realization of an activation method in the conditions of natural presence of productive hydrocarbons is offered. The diode system with radial acceleration, magnetic electron insulation and laser-plasma source of deuterons at the anode in a sealed-off vacuum accelerating tube is applied. The permanent NdFeB magnet with induction about 0.5 T for produce the insulating magnetic field in the diode gap is proposed. In the experiments on the model of BNG with the accelerating voltage source (≈350 kV), performed by the scheme of Arkadiev-Marx generator, the output of (d, d) neutrons was ∼107 pulse-1.

  13. Ascertaining directionality information from incident nuclear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Purdue University (United States); Lapinskas, Joseph R. [QSA Global, Inc. (United States); Wang Jing; Webster, Jeffrey A. [Purdue University (United States); McDeavitt, Sean [Texas A and M University (United States); Taleyarkhan, Rusi P., E-mail: rusi@purdue.edu [Purdue University (United States)

    2011-10-15

    Highlights: > Use of tensioned metastable fluids for detection of fast neutron radiation. > Monitored neutrons with 100% gamma photon blindness capability. > Monitored direction of incoming neutron radiation from special nuclear material emissions. > Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. > Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. > Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30{sup o} with 80% confidence; this required {approx}2000 detection events which could be collected within {approx}50 s at a detection rate of {approx}30-40 per second. Blind testing was

  14. Ascertaining directionality information from incident nuclear radiation

    International Nuclear Information System (INIS)

    Archambault, Brian C.; Lapinskas, Joseph R.; Wang Jing; Webster, Jeffrey A.; McDeavitt, Sean; Taleyarkhan, Rusi P.

    2011-01-01

    Highlights: → Use of tensioned metastable fluids for detection of fast neutron radiation. → Monitored neutrons with 100% gamma photon blindness capability. → Monitored direction of incoming neutron radiation from special nuclear material emissions. → Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. → Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. → Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30 o with 80% confidence; this required ∼2000 detection events which could be collected within ∼50 s at a detection rate of ∼30-40 per second. Blind testing was successfully

  15. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nievaart, V. A.; Legrady, D.; Moss, R. L.; Kloosterman, J. L.; Hagen, T. H. J. J. van der; Dam, H. van

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point

  16. Pulsed THZ Interrogation of Sofi With Knit Lines in 2D

    National Research Council Canada - National Science Library

    Banks, H. T; Gibson, N. L; Winfree, W. P

    2006-01-01

    This paper examines the scattering effect of knit lines and voids in SOFI through simulations of THz interrogation at normal and non-normal angles of incidence and using focused and non-focused single-cycle plane waves...

  17. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Cates, M.R.; Franks, L.A.; Kunz, W.E.

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for 239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed delayed neutrons

  18. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  19. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    International Nuclear Information System (INIS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-01-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system

  20. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R., E-mail: groganbr@ornl.gov; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.