WorldWideScience

Sample records for neutron calibration field

  1. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  2. Neutron dosemeter responses in workplace fields and the implications of using realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Thomas, D.J.; Horwood, N.; Taylor, G.C.

    1999-01-01

    The use of realistic neutron calibration fields to overcome some of the problems associated with the response functions of presently available dosemeters, both area survey instruments and personal dosemeters, has been investigated. Realistic calibration fields have spectra which, compared to conventional radionuclide source based calibration fields, more closely match those of the workplace fields in which dosemeters are used. Monte Carlo simulations were performed to identify laboratory systems which would produce appropriate workplace-like calibration fields. A detailed analysis was then undertaken of the predicted under- and over-responses of dosemeters in a wide selection of measured workplace field spectra assuming calibration in a selection of calibration fields. These included both conventional radionuclide source calibration fields, and also several proposed realistic calibration fields. The present state of the art for dosemeter performance, and the possibilities of improving accuracy by using realistic calibration fields are both presented. (author)

  3. Development of moderated neutron calibration fields simulating workplaces of MOX fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Takada, Chie

    2005-01-01

    It is important for the MOX fuel facilities to control neutrons produced by the spontaneous fission of plutonium isotopes and those from (α,n) reactions between 18 O and α particles emitted by 238 Pu. Neutron dose meters should be calibrated for measuring these neutrons. We have developed moderated-neutron calibration fields employing a 252 Cf neutron source and moderators mainly for the characteristics evaluation and the calibration of neutron detectors used in MOX fuel facilities. Neutron energy spectrum can be adjusted by changing the position of the 252 Cf neutron source and combining different moderators to simulate the neutron field of the MOX fuel facility. This performance is realized owing to using an existing neutron irradiation room. (K. Yoshida)

  4. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    Science.gov (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  5. Recent developments in the specification and achievement of realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Chartier, J.L.; Kluges, H.; Wiegel, B.; Schraube, H.

    1997-01-01

    In order to calibrate more accurately the neutron dosemeters involved in radiation protection, the concept of 'Realistic Neutron Calibration Fields' is considered as an appropriate alternative solution, making necessary new irradiation facilities which generate well-characterised neutron fields with energy and angular distribution replicating more closely practical workplace conditions. Several experienced laboratories have collaborated on a European project and proposed various approaches which are reviewed in this paper. A short description of the facilities currently in operation is given as well as a few characteristics of the available radiation fields. This description of the state of art is followed by a discussion of the problems to be solved for using such facilities for calibration purposes according to well-specified calibration procedures. (author)

  6. Field calibration of a TLD albedo dosemeter in the high-energy neutron field of CERF

    International Nuclear Information System (INIS)

    Haninger, T.; Kleinau, P.; Haninger, S.

    2017-01-01

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (CERN-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum Muenchen (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor N n for workplaces at high-energy particle accelerators. N n is a dimensionless factor relative to a basic detector calibration with 137 Cs and is used to calculate the personal neutron dose in terms of H p (10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252 Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. (authors)

  7. Characteristics of thermal neutron calibration fields using a graphite pile

    International Nuclear Information System (INIS)

    Uchita, Yoshiaki; Saegusa, Jun; Kajimoto, Yoichi; Tanimura, Yoshihiko; Shimizu, Shigeru; Yoshizawa, Michio

    2005-03-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute is equipped with thermal neutron fields for calibrating area and personal neutron dosemeters. The fields use moderated neutrons leaked from a graphite pile in which radionuclide sources are placed. In January 2003, we have renewed the pile with some modifications in its size. In accordance with the renewal, we measured and calculated thermal neutron fluence rates, neutron energy distributions and angular distributions of the fields. The thermal neutron fluence rates of the ''inside-pile fields'' and the outside-pile fields'' were determined by the gold foil activation method. The neutron energy distributions of the outside-pile fields were also measured with the Bonner multi-sphere spectrometer system. The contributions of epithermal and fast neutrons to the total dose-equivalents were 9% in the southern outside-pile field and 12% in the western outside-pile field. The personal dose-equivalents, H p,slab (10, α), in the outside-pile fields are evaluated by considering the calculated angular distributions of incoming neutrons. The H p,slab (10, α) was found to be about 40% higher than the value in assuming the unidirectional neutron between the pile and the test point. (author)

  8. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  9. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  10. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  11. Monoenergetic neutron fields for the calibration of neutron dosemeters at the accelerator facility of the PTB

    International Nuclear Information System (INIS)

    Lesiecki, H.; Cosack, M.; Schoelermann, H.

    1987-01-01

    The present state in the realization of monoenergetic standard neutron fields and the possibility of calibrating neutron dose- and doserate meters at the accelerator facility of the PTB are described. There are excellent conditions for the performance of irradiations in the neutron energy range of 1 keV to 14.8 MeV. (orig.) [de

  12. The calibration method for personal dosimetry system in photon and neutron radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Prague (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The type testing of dosimetry system was performed with standard photon radiation fields within the energy range 15 keV to 1.25 MeV and electron radiation fields within the range 0.2 MeV to 3 MeV. For type testing of neutron dosimeters {sup 252}Cf and {sup 241}Am-Be radionuclide neutron sources was used, as well as a 14 MeV neutron generator. The neutron sources moderated by various moderating and absorbing materials was also used. The routine calibration of individual photon dosemeters was carried out using a {sup 137}Cs calibration source in the air kerma quality in the dose range 0.2 mGy to 6 Gy. The type testing of neutron dosemeters was performed in collaboration with Nueherberg laboratory on neutron generator with neutron energies -.57; 1.0;; 5.3 and 15.1 MeV. The fading and angular dependence testing was also included in the tests of both dosemeter systems. (J.K.).

  13. Calibration of PADC-based neutron area dosemeters in the neutron field produced in the treatment room of a medical LINAC

    International Nuclear Information System (INIS)

    Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; García-Fusté, M.J.; San-Pedro, M. de; Tana, L.; D’Errico, F.; Ciolini, R.; Di Fulvio, A.

    2013-01-01

    PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H ∗ (10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H ∗ (10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields. - Highlights: ► The neutron field of a medical LINAC was used to calibrate PADC neutron dosemeters. ► The neutron spectra were derived with a Dy-foil based Bonner Sphere Spectrometer. ► Workplace specific calibration factor were derived for the PADC dosemeters. ► These factors were compared with those obtained in reference neutron fields

  14. Simulated workplace neutron fields

    International Nuclear Information System (INIS)

    Lacoste, V.; Taylor, G.; Rottger, S.

    2011-01-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields. (authors)

  15. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    Science.gov (United States)

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  16. Neutron calibration field of bare {sup 252}Cf source in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Le, Ngoc Thiem; Tran, Hoai Nam; Nguyen, Khai Tuan [Institute for Nuclear Science and Technology, Hanoi (Viet Nam); Trinh, Glap Van [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2017-02-15

    This paper presents the establishment and characterization of a neutron calibration field using a bare {sup 252}Cf source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

  17. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.

    Science.gov (United States)

    Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M

    2007-01-01

    The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.

  18. Alternative technique to neutron probe calibration in situ

    International Nuclear Information System (INIS)

    Encarnacao, F.; Carneiro, C.; Dall'Olio, A.

    1990-01-01

    An alternative technique of neutron probe calibration in situ was applied for Podzolic soil. Under field condition, the neutron probe calibration was performed using a special arrangement that prevented the lateral movement of water around the access tube of the neutron probe. During the experiments, successive amounts of water were uniformly infiltrated through the soil profile. Two plots were set to study the effect of the plot dimension on the slope of the calibration curve. The results obtained shown that the amounts of water transferred to the soil profile were significantly correlated to the integrals of count ratio along the soil profile on both plots. In consequence, the slope of calibration curve in field condition was determined. (author)

  19. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  20. Development of the neutron reference calibration field using a 252Cf standard source surrounded with PMMA moderators

    International Nuclear Information System (INIS)

    Yoshida, T.; Kanai, K.; Tsujimura, N.

    2002-01-01

    The authors developed the neutron reference calibration fields using a 252 Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the 252 Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments

  1. A neutron calibration technique for detectors with low neutron/high photon sensitivity

    International Nuclear Information System (INIS)

    Jahr, R.; Guldbakke, S.; Cosack, M.; Dietze, G.; Klein, H.

    1978-03-01

    The neutron response of a detector with low neutron-/high photon sensitivity is given by the difference of two terms: the response to the mixed neutron-photon field, measured directly, and the response to the photons, deduced from additional measurements with a photon spectrometer. The technique is particularly suited for use in connection with targets which consist of a thick backing and thin layer of neutron producing material such as T, D, Li nuclei. Then the photon component of the mixed field is very nearly the same as the pure photon field from a 'phantom target', being identical with the neutron producing target except for the missing neutron producing material. Using this technique in connection with a T target (Ti-T-layer on silver backing) and the corresponding phantom target (Ti-layer on silver backing), a GM counter was calibrated at a neutron energy of 2.5 MeV. Possibilities are discussed to subsequently calibrate the GM counter at other neutron energies without the use of the photon spectrometer. (orig./HP) [de

  2. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    Burger, G.

    1988-01-01

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  3. Design of calibration method in neutron and individual dosimeter

    International Nuclear Information System (INIS)

    Belkhodia, M.

    1984-12-01

    Usually albedo dosemeters are calibrated with beam of monoenergetic neutrons. Since neutron energy around neutron sources varies greatly, we applied the calibration method to a mixed field whose energy spectrum lies between 0.025 ev and 10 Mev. The method is based on a mathematical model that deals with the dosimeter response as a function at the neutron energy. The measurements carried out with solid state nuclear track detectors show the dosimeter practical aspect. The albedo dosimeter calibration gave results on good agreement with the international institution recommendations

  4. Neutron spectrum survey around the cyclotron of IEN/Brazilian CNEN: calibration of neutron personnel dosemeter

    International Nuclear Information System (INIS)

    Fajardo, P.W.

    1991-01-01

    The albedo neutron dosimeter is calibrated directly at the work place due to its high energy dependence. This thesis deals with the study, analysis and application of neutron measurement techniques in order to obtain information about the neutron spectrum and neutron dose equivalent at several representative working places of the cyclotron laboratory of the Nuclear Engineering Institute (IEN). These data are employed mainly in the calibration of the brazilian albedo neutron dosimeter. Bonner spheres and foil activation were used in neutron spectra measurements and the neutron dose equivalents were measured with the single sphere albedo technique. BF 3 and 3 He proportional detectors and 6 LiI scintillation detector were also used in these measurements. The single sphere technique turned out to be more appropriate for neutron dosimetry for calibrating the albedo dosimeter in the varying fields of the cyclotron. Calibration the albedo dosimeter in the varying fields of the cyclotron. Calibration factors were found for routine applications, when the workers are protected by shielding and for radiological accident applications, in the case that a worker is exposed inside the cyclotron room. In all situations the performance of the brazilian albedo dosimeter is compared with that of the german albedo dosimeters. (author)

  5. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  6. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il [Health Physics Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a {sup 252}Californium ({sup 252}Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.

  7. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method

    International Nuclear Information System (INIS)

    Kim, Sang In; Kim, Bong Hwan; Kim, Jang Lyul; Lee, Jung Il

    2015-01-01

    The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a 252 Californium ( 252 Cf) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1 - 9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered

  8. Development of the neutron reference calibration field using a {sup 252}Cf standard source surrounded with PMMA moderators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Kanai, K.; Tsujimura, N. [Japan Nuclear Cycle Development Institute, Ibaraki-ken (Japan)

    2002-07-01

    The authors developed the neutron reference calibration fields using a {sup 252} Cf standard source surrounded with PMMA moderators at the Japan Nuclear Cycle Development (JNC), Tokai Works. The moderators are co-axial, hollow cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252} Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments.

  9. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  10. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    Science.gov (United States)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is  ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within  ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in

  11. Calibrating the neutron moisture meter: Precision and economy

    International Nuclear Information System (INIS)

    Akhter, J.; Waheed, R.A.; Hignett, C.T.; Greacen, E.L.

    2000-01-01

    Established laboratory and field calibration procedures for the neutron moisture meter are demonstrated on a uniform soil and alternative, low cost procedures on a duplex, less uniform soil. The effect of field variability on the calibration methodology is discussed with the aim of optimising calibration reliability at minimal cost. The difference between calibration for a soil material, or for a field (a range of soil materials) is considered. In particular, calibration for the estimation of water content change is shown to be a different problem from calibration for the estimation of water content in a variable field. Techniques aimed at detecting field variability problems during calibration are suggested, and methods for optimising the results for the intended use of the instrument are outlined. Pairing of calibration tubes, alternative methods of analysis of calibration data, and use of other information from the field to measure its variability, can improve the precision of calibration procedures to the point where minimal calibration effort, with careful analysis, can provide reliable results. (author)

  12. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    Science.gov (United States)

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  13. Calibration of a TLD system to estimate personal doses in fields of gamma-neutrons radiation

    International Nuclear Information System (INIS)

    Villegas, E.N.; Somarriba, S.I.

    2016-01-01

    Currently Nicaragua has no personal neutron dosimetry system. The calibration of a batch of albedo neutron dosimeters consisting of two pairs of "6LiF and "7LiF (Mg, Ti) detectors was done. The dosimeter and reader sensitivities were obtained using a "1"3"7Cs source, and a neutron calibration factor was found with a "2"4"1AmBe source. Reproducibility and homogeneity tests were performed, and the detection limit of the system was determined. This calibration will allow the beginning of neutron personal monitoring in the country. (author)

  14. Calibration procedure and wavelength correction for neutron depolarization experiments

    International Nuclear Information System (INIS)

    Roest, W.; Rekveldt, M.T.

    1992-01-01

    The neutron polarimeter, for which an extended calibration procedure is described here, enables one to investigate magnetic properties of materials. Such an investigation is carried out by offering a polarized neutron beam in the x-, y- and z-direction successively and, after transmission through the sample, by analysing the polarization in all three directions. The result is a 3x3 depolarization matrix. After the polarizer, the neutron beam has a polarization along the z-direction. Two coil systems creating a magnetic field in the yz-plane perpendicular to the beam direction provide the possibility to direct the polarization in the x-, y- and z-direction by means of Larmor precession of the polarization in these fields. New research areas, where small depolarization effects together with considerable polarization rotation are measured, have caused a need for more accuracy in, and better knowledge of the calibration of the polarimeter. The calibration procedure use up to now and the improvements made on it are described. (orig.)

  15. Comparison of methods of calibration of a neutron probe by gravimetry or neutron-capture model

    International Nuclear Information System (INIS)

    Vachaud, G.; Royer, J.M.; Cooper, J.D.

    1977-01-01

    This paper presents a systematic analysis of two methods used for determining calibration curves of neutron probes. The uncertainties resulting from the use of the gravimetric method, with a linear correlation between count rates and water content of soil samples, are considered first. Particular care is given to the determination of errors in the values of water content and count rates, and to the difficulties arising from the choice of the correlation technique. The neutron-calibration curve of the soil was also obtained with a technique based on the determination of neutron thermal adsorption and diffusion constants. The importance of errors associated with this method is also analyzed. Different field examples are then presented. It appears that the neutron-capture technique should be particularly well suited for determining the calibration curve of clay soils or heterogeneous materials for which the gravimetric calibration technique cannot be applied with confidence. On the other hand, it is also shown that for a soil with a very well-defined gravimetric calibration curve, the neutron-capture technique gives results still at least as good as with the former method

  16. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadayoshi; Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Oyanagi, Katsumi [Japan Radiation Engineering Co., Ltd., Hitachi, Ibaraki (Japan)

    2002-09-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, {sup 241}Am-Be and {sup 252}Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  17. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    International Nuclear Information System (INIS)

    Yoshida, Tadayoshi; Tsujimura, Norio

    2002-01-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, 241 Am-Be and 252 Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  18. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia

    Science.gov (United States)

    Hawdon, Aaron; McJannet, David; Wallace, Jim

    2014-06-01

    The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.

  19. Characterization of the neutron field of the 241AmBe in a calibration room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2003-01-01

    The field of neutrons produced by an isotopic source of neutrons of 241 Am Be had been characterized. The characterization was carried out modeling those relevant details of the calibration room and simulating the neutron transport at different distances of the source. The calculated spectra were used to determine the equivalent environmental dose rate. A series of experiments were carried out with the Bonner sphere spectrometric system to measure the spectra in the same points where the calculations were carried out and with these spectra the rates of environmental dose were calculated. By means of a one sphere dosemeter type Berthold the rates of environmental dose were measured. To the one to compare the calculated spectra and measured its were found small differences in the group of the thermal neutrons due to the elementary composition used during the simulation. When comparing the derived rates starting from the calculated spectra with those measured it was found a maxim difference smaller to 13%. (Author)

  20. Calibration of a neutron log in partially saturated media. Part II. Error analysis

    International Nuclear Information System (INIS)

    Hearst, J.R.; Kasameyer, P.W.; Dreiling, L.A.

    1981-01-01

    Four sources or error (uncertainty) are studied in water content obtained from neutron logs calibrated in partially saturated media for holes up to 3 m. For this calibration a special facility was built and an algorithm for a commercial epithermal neutron log was developed that obtains water content from count rate, bulk density, and gap between the neutron sonde and the borehole wall. The algorithm contained errors due to the calibration and lack of fit, while the field measurements included uncertainties in the count rate (caused by statistics and a short time constant), gap, and density. There can be inhomogeneity in the material surrounding the borehole. Under normal field conditions the hole-size-corrected water content obtained from such neutron logs can have an uncertainty as large as 15% of its value

  1. Calibration of a spectrometry multisphere system for neutron fields

    International Nuclear Information System (INIS)

    Carelli, Jorge L.; Cruzate, Juan A.; Papadopulos, Susana B.; Gregori, Beatriz N.; Ciocci Brazzano, Ligia

    2005-01-01

    In this work it is presented the calibration of the neutrons spectrometric system of the Nuclear Regulatory Authority (ARN) in the Institut de Protection et Sure te Nucleaires (Ipn), Labourite dadaist et de Recherche s en Dosimetric Extern e, Cadarache, France. The multisphere system is composed of 9 polyethylene spheres of high density, with a gaseous detector of 3 He and associate electronics. The matrix of energy response to the system neutrons was obtained applying the MCNPX code for the range of energies between thermal and 100 MeV with cross sections taken from library ENDF/B-VI. The neutron spectra of the multisphere system were obtained applying the deconvolution code LOUHI82. The relationship between the theoretical responses and the experiences obtained with the AmBe and 252 Cf sources are also presented in this work [es

  2. 1987 calibration of the TFTR neutron spectrometers

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ

    1989-12-01

    The 3 He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs

  3. Calibration and evaluation of neutron moisturemeter

    International Nuclear Information System (INIS)

    Tang Zhangxiong; Hu Jiangchao; Sun Laiyan; Wang Huaihui; Wu Weixue

    1992-02-01

    Factors influencing the calibration curve of neutron moisture meter, such as soil type, texture, volume weight and depth, were studied. When the soil bulk density water content is between 15% to 45%, the calibration curve is approximately a straight line, and the intercept and slope are only influenced by the above factors. The growing plants also influence the calibration curve slightly. The measuring error for top soil (< 20 cm) is larger. The relative error between neutron method and weighing method is about 8%. The neutron method has many advantages such as non-interfering, simple, fast and non-time-delay

  4. Calibration and evaluation of neutron survey meters used at linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, A.P. [Instituto de Radioprotecao e Dosimetria - IRD, Av. Salvador Allende s/n, Recreio dos Bandeirantes, CEP 22780-160 Rio de Janeiro (Brazil); Pereira, W.W., E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria - IRD, Av. Salvador Allende s/n, Recreio dos Bandeirantes, CEP 22780-160 Rio de Janeiro (Brazil); Fonseca, E.S. da; Patrao, K.C.S. [Instituto de Radioprotecao e Dosimetria - IRD, Av. Salvador Allende s/n, Recreio dos Bandeirantes, CEP 22780-160 Rio de Janeiro (Brazil); Batista, D.V.S. [Instituto Nacional do Cancer - INCa, Praca Cruz Vermelha, 23 - centro, CEP 20230-130 Rio de Janeiro (Brazil)

    2010-12-15

    Calibrated survey meters from the Neutron Laboratory of the Instituto de Radioprotecao e Dosimetria (IRD) were used to determine the ambient dose-equivalent rate in a 15 MV linear accelerator treatment room at the Instituto Nacional do Cancer (INCa). Three different models of neutron survey meters were calibrated using four neutron radionuclide neutron sources: {sup 241}AmBe({alpha},n), {sup 252}Cf(f,n), heavy-water moderated {sup 252}Cf(f,n), and {sup 238}PuBe({alpha},n). All neutron sources were standardized in a Manganese Sulphate Bath (MSB) absolute primary system. The response of each of these instruments was compared with reference values of ambient dose-equivalent rate. The results demonstrate the complexity of making measurements in the mixed neutron/photon field produced in electron linear accelerator radiotherapy treatment rooms.

  5. The calibration of the MAST neutron yield monitors

    International Nuclear Information System (INIS)

    Stammers, Keith; Loughlin, M.J.

    2006-01-01

    Several neutron detectors have been installed on MAST to monitor the temporal production of neutrons during neutral beam injection. This paper describes the detectors, their calibration and applications of the data. The main neutron diagnostic is a guarded fission chamber, with processing electronics that allow data collection in three modes of operation, and covers the whole range of neutron production rate to be expected from current operations and future upgrades. The scalar mode of operation is calibrated with a 252 Cf source inside the vacuum vessel and then MCNP modelling is used to relate this calibration to an extended plasma source. Plasma neutron data are used to extend the calibration to the Campbell and ion-current modes, with final uncertainties of approximately 8% in each case. Corroborative evidence for the accuracy of the calibration, obtained from neutron activation, indicates that the method is satisfactory. The neutron data are used routinely to keep track of the radio-activation of key components of the MAST tokamak

  6. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Science.gov (United States)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  7. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, Sean [Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ghani, Zamir [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, Igor [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Milocco, Alberto; Packer, Lee [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, Mario [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium–tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle–energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  8. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  9. Neutron field features in a calibration hall

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2004-01-01

    A new source facility ( 241 Am-Be) has been installed in a large size bunker-type room. To characterize the neutron fields in the facility, detailed calculations have been made with MCNP-4C, showing the different components of the neutron radiation reaching the reference points (direct, in scattered, backscattered). The contribution from neutrons scattered in the walls to the total ambient dose equivalent remains reasonably low ( 6 LiI(Eu) scintillator (0.4 cm 0 x 0.4 cm), UTA4 response matrix and BUNKIUT unfolding code. The calculated and experimentally obtained spectra are compared, with small differences found in the epithermal and thermal region, attributable to the concrete composition used in the calculations. The H*(10) rate has been determined from the spectra, and then compared to the reading of an active dosemeter (LB 6411), with differences found lower than 8%. (Author)

  10. Soil texture and depth influence on the neutron probe calibration

    International Nuclear Information System (INIS)

    Santos, Reginaldo Ferreira; Carlesso, Reimar

    1998-01-01

    The neutron probe is an equipment used on determination of the soil water content, based on the fast neutron attenuation. Therefore, there is a calibration need in the field and, consequently, to verify the soil texture and depth influence for to determining the calibration curves in relation to the water content. The study was developed at Santa Maria's Federal University in a lisimeter group, protected from the rains with transparent plastic. There different soil textures, three depths (10, 30 and 50 cm from the soil surface) and four replicates were used. Linear regression equations between neutron counts and soil water contents were made. The results showed that there was interference of the texture and depth of the soil, analyzed jointly, on the calibration curves, and the observed and estimated values varied form o,02 to 0,06 cm3/cm3 of the soil water content and the correlation coefficients were 0,86 0,95 and 0,89 for clayray, franc-silt-clayey and franc-sandy, respectively. For soil texture and depth, analyzed separately, the differences among the values observed in the field and the estimated ones, varied from 0,0 to 0,02 cm3/cm3 soil water content and presented correlation coefficients between 0,97 and 1,0. (author)

  11. Calibration of a Neutron Hydroprobe for Moisture Measurements in Small-Diameter Steel-Cased Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Wittman, Richard S.

    2009-08-01

    Computation of soil moisture content from thermalized neutron counts for the T-Farm Interim cover requires a calibration relationship but none exists for 2-in tubes. A number of calibration options are available for the neutron probe, including vendor calibration, field calibration, but none of these methods were deemed appropriate for the configuration of interest. The objective of this work was to develop a calibration relation for converting neutron counts measured in 2-in access tubes to soil water content. The calibration method chosen for this study was a computational approach using the Monte Carlo N-Particle Transport Code (MCNP). Model calibration was performed using field measurements in the Hanford calibration models with 6-in access tubes, in air and in the probe shield. The bet-fit model relating known water content to measured neutron counts was an exponential model that was essentially equivalent to that currently being used for 6-in steel cased wells. The MCNP simulations successfully predicted the neutron count rate for the neutron shield and the three calibration models for which data were collected in the field. However, predictions for air were about 65% lower than the measured counts . This discrepancy can be attributed to uncertainties in the configuration used for the air measurements. MCNP-simulated counts for the physical models were essentially equal to the measured counts with values. Accurate prediction of the response in 6-in casings in the three calibration models was motivation to predict the response in 2-in access tubes. Simulations were performed for six of the seven calibration models as well as 4 virtual models with the entire set covering a moisture range of 0 to 40%. Predicted counts for the calibration models with 2-in access tubes were 40 to 50% higher than in the 6-inch tubes. Predicted counts for water were about 60% higher in the 2-in tube than in the 6-in tube. The discrepancy between the 2-in and 6-in tube can be

  12. Calibration of neutron detectors on the Joint European Torus.

    Science.gov (United States)

    Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L

    2017-10-01

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  13. Measurements for the energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Hoek, M.; Aronsson, D.

    1990-05-01

    The report describes measurements performed for the energy calibration of the TANSY neutron detectors (two arrays of 16 detectors each one). The calibration procedure determines four calibration parameters for each detector. Results of the calibration measurements are given and test measurements are presented. A relation of the neutron detector calibration parameters to producer's data for the photomulipliers is analysed. Also the tests necessary during normal operation of the TANSY neutron spectrometer are elaborated (passive and active tests). A method how to quickly get the calibration parameters for a spare detector in an array of the neutron detectors is included

  14. Calibration issues of the TFTR multichannel neutron collimator

    International Nuclear Information System (INIS)

    Goeler, S. von; Johnson, L.C.; Bitter, M.; Efthimion, P.C.; Roquemore, A.L.

    1996-01-01

    The calibration procedures for the detectors in the Neutron Collimator are reviewed. The absolute calibration was performed for the NE451 detectors, in situ, by moving a DT neutron generator in the TFTR vacuum vessel across each sight line. This calibration was transferred to other detectors in the same channel. Four new sight lines have been installed at a different toroidal location, which view the plasma through the vacuum vessel port cover rather than through thinned windows. The new detectors are cross-calibrated to the NE451 detectors with a jog shot procedure, where the plasma is quickly shifted in major radius over a distance of 30 cm. The jog shot procedure shows that scattered neutrons account approximately for 30% of the signal of the new central channels. The neutron source strength from the collimator agrees within 10% with the source strength from global neutron monitors in the TFTR test cell. Detector non-linearity is discussed. Another special issue is the behavior of the detectors during T-puffs, where the DD/DT neutron ratio changes rapidly

  15. Calibration of a neutron probe for determining the humidity in deep alluvial soils

    International Nuclear Information System (INIS)

    Ferrer, A.; Rivero, H.; Lopez, F.; Cantillo, O.

    1993-01-01

    Preliminary data for the calibration of a neutron probe in deep alluvial soils for determining the humidity are reported. Comparisons of Neutron flow behaviour with the depth of the land are established. A characteristic curve of amount of detected neutrons according to the humidity percentage (from 50 to 100 % of the field humidity) is obtained

  16. Calibration of a compact magnetic proton recoil neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhang_jianfu@163.com [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ruan, Jinlu [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Xiaodong [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-21

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium–tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  17. Fusion neutron detector calibration using a table-top laser generated plasma neutron source

    International Nuclear Information System (INIS)

    Hartke, R.; Symes, D.R.; Buersgens, F.; Ruggles, L.E.; Porter, J.L.; Ditmire, T.

    2005-01-01

    Using a high intensity, femtosecond laser driven neutron source, a high-sensitivity neutron detector was calibrated. This detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion from laser driven deuterium cluster explosions was used to generate a clean source of nearly monoenergetic 2.45 MeV neutrons at a well-defined time. This source can run at 10 Hz and was used to build up a clean pulse-height spectrum on scintillating neutron detectors giving a very accurate calibration for neutron yields at 2.45 MeV

  18. A new technique for the calibration of neutron probes by volumetric method

    International Nuclear Information System (INIS)

    Encarnacao, F.A.F. da.

    1988-01-01

    Laboratory and field studies were performed for the determination of a calibration curve of a neutron probe in three different kinds of soils: Red Yellow PODZOLIC, LITOLIC and ALLUVIAL, in the last one laboratory studies were done to determine local humidity on the calibration curve parameters. (A.C.A.S.) [pt

  19. Semi-empirical neutron tool calibration (one and two-group approximation)

    International Nuclear Information System (INIS)

    Czubek, J.A.

    1988-01-01

    The physical principles of the new method of calibration of neutron tools for the rock porosity determination are given. A short description of the physics of neutron transport in the matter is presented together with some remarks on the elementary interactions of neutrons with nuclei (cross sections, group cross sections etc.). The definitions of the main integral parameters characterizing the neutron transport in the rock media are given. The three main approaches to the calibration problem: empirical, theoretical and semi-empirical are presented with some more detailed description of the latter one. The new semi-empirical approach is described. The method is based on the definition of the apparent slowing down or migration length for neutrons sensed by the neutron tool situated in the real borehole-rock conditions. To calculate this apparent slowing down or migration lengths the ratio of the proper space moments of the neutron distribution along the borehole axis is used. Theoretical results are given for one- and two-group diffusion approximations in the rock-borehole geometrical conditions when the tool is in the sidewall position. The physical and chemical parameters are given for the calibration blocks of the Logging Company in Zielona Gora. Using these data the neutron parameters of the calibration blocks have been calculated. An example, how to determine the calibration curve for the dual detector tool applying this new method and using the neutron parameters mentioned above together with the measurements performed in the calibration blocks, is given. The most important advantage of the new semi-empirical method of calibration is the possibility of setting on the unique calibration curve all experimental calibration data obtained for a given neutron tool for different porosities, lithologies and borehole diameters. 52 refs., 21 figs., 21 tabs. (author)

  20. Thermal neutron calibration channel at LNMRI/IRD

    International Nuclear Information System (INIS)

    Astuto, A.; Salgado, A.P.; Lopes, R.T.; Leite, S.P.; Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W.

    2014-01-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four 241 Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. The pile construction form using blocks allows distinct arrangements for new studies and possibilities of other LNMRI reference fields. The results can be predicted by the simulation used in this work. Different number of each type of blocks and sources can be used. The main difference observed between the final measurement and simulation results might be due to the difference in composition of paraffin blocks used in assembling the pile. In order to confirm the thermal neutron field and fluence rate in the central chamber (inside the channel) that will be used to irradiate small neutron detectors, it is necessary to use another quantification method such as the gold foils activation with measurement traceability. It will be performed in a future stage. (authors)

  1. Calibration of an electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J.; Adams, M.A.

    2011-01-01

    The procedure for calibrating the VESUVIO eV neutron spectrometer at the ISIS neutron source is described. VESUVIO is used primarily to measure the momentum distribution n(p) of atoms, by inelastic scattering of very high energy (5-150 eV) neutrons. The results of the calibrations show that measurements of n(p) in atoms with masses lower than 16 amu can be measured with a resolution width ∼25% of the intrinsic peak widths in the current instrument configuration. Some suggestions as to how the instrument resolution could be significantly improved are made.

  2. In situ calibration of TFTR neutron detectors

    International Nuclear Information System (INIS)

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.M.

    1990-01-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled 252 Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two 235 U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of ±13%

  3. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  4. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  5. Effects of gypsum and bulk density on neutron probe calibration curves

    International Nuclear Information System (INIS)

    Arslan, Awadis; Razzouk, A.K.

    1993-10-01

    The effects of gypsum and bulk density on the neutron probe calibration curve were studied in the laboratory and in the field. The effect of bulk density was negligible for the soil studied in the laboratory, while it was significant for the field calibration. An increase in the slope of moisture content on a volume basis vs. count ratio with increasing gypsum content at the soil was observed in the laboratory calibration. A simple method for correction of the calibration curve for gypsum content was adopted to obtain a specific curve for each layer. The adapted method requires the gypsum fraction to be estimated for each layer and then incorporated in the calibration curve to improve the coefficient of determination. A field calibration showed an improvement of the determination coefficient by introducing bulk density and gypsum fraction, in addition to count ratio using moisture content on a volume basis as a dependent variable in multi linear regression analysis. The same procedure was successful with variable gravel fractions. (author). 18 refs., 3 figs., 2 tabs

  6. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  7. Dose Calibration of the ISS-RAD Fast Neutron Detector

    Science.gov (United States)

    Zeitlin, C.

    2015-01-01

    The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.

  8. Calibration of neutron moisture gauges and their ability to spatially determine soil water content in environmental studies

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Martinez, J.L.; Langhorst, G.J.

    1994-10-01

    Several neutron moisture gauges were calibrated, and their ability to spatially determine soil water content was evaluated. In 1982, the midpoint of sensitivity of each neutron probe to the detection of hydrogen was determined, as well as the radius of investigation of each probe in crushed Bandelier Tuff with varying water contents. After determining the response of one of the moisture gauges to changes in soil water at the soil-air interface, a neutron transport model was successfully calibrated to predict spatial variations in soil water content. The model was then used to predict various shapes and volumes of crushed Bandelier Tuff interrogated by the neutron moisture gauge. From 1991 through 1994, six neutron moisture gauges were calibrated for soil water determinations in a local topsoil and crushed Bandelier Tuff, as well as for a sample of fine sand and soils from a field experiment at Hill Air Force Base. Statistical analysis of the calibration results is presented and summarized, and a final summary of practical implications for future neutron moisture gauge studies at Los Alamos is included

  9. Study for correction of neutron scattering in the calibration of the albedo individual monitor from the Neutron Laboratory (LN), IRD/CNEN-RJ, Brazil

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2014-01-01

    The Instituto de Radioprotecao e Dosimetria (IRD) runs a neutron individual monitoring service with albedo type monitor and thermoluminescent detectors (TLD). Moreover the largest number of workers exposed to neutrons in Brazil is exposed to 241 Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from 241 Am-Be source is important for a proper calibration. In this work, it has been evaluated the influence of the scattering correction in two distances at the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Laboratory (Lab. Nacional de Metrologia Brasileira de Radiacoes Ionizantes) in the calibration of that albedo dosemeter for a 241 Am-Be source. (author)

  10. Calibration, checking and physical corrections for a new dual-spaced neutron porosity tool

    International Nuclear Information System (INIS)

    Smith, M.P.

    1986-01-01

    A new dual-spaced neutron tool has been developed that features high count rates and improved statistical precision and log repeatability. Environmental corrections including borehole diameter, standoff, and lithology are at acceptable levels for DSN-II. The effects of varying source-to-detector spacings and shielding are summarized. Porosity measurement resolution and statistical precision are discussed and it is indicated how tradeoffs between higher count rates and increased environmental corrections must be considered. The absolute calibration of a standard tool is based on its response to limestone test pits, field data, and theoretical calculations. Test data for actual manufactured tools are presented. Shop calibration and wellsite check procedures are discussed. The advantages of multiposition check operations are explained, including reduced sensitivity to check block positioning and external environment. An analysis is presented of errors from tool manufacturing, calibration, and check procedures. A generalized theory of neutron scattering and absorption has been developed to correct dual-spaced neutron logs for unusual minerals and fluids

  11. On the calibration methods for neutron moisture gauges

    International Nuclear Information System (INIS)

    Apostol, I.

    1975-01-01

    Theoretical and experimental calibration methods for devices using neutron sources to measure the water content in subsurface soil and other samples are investigated. Neutron flux density is evaluated by means of the two and three group diffusion and Fermi age theories. The correction criteria for the calibration curves are presented. The agreement of the theoretical curves with the determined experimental data may be considered as excellent. (author)

  12. Field test and calibration of neutron coincidence counters for high-mass plutonium samples

    International Nuclear Information System (INIS)

    Menlove, H.O.; Dickinson, R.J.; Douglas, I.

    1987-02-01

    Five different neutron coincidence systems were evaluated and calibrated for high-mass PuO 2 samples. The samples were from 2 to 7.2 kg of PuO 2 in mass, with a large range of burnup. This report compares the equipment and the results, with an evaluation of deadtime and multiplication corrections

  13. Calibration and intercomparison of neutron moderation spectrometers

    International Nuclear Information System (INIS)

    Rimpler, A.; Hermanska, J.; Prouza, Z.

    1989-01-01

    Results have been reported of comparative measurements of neutron fields from bare PuBe and Cf sources using multisphere (Bonner) spectrometers. The experiments were carried out by the Institute of Biophysics and Nuclear Medicine at Charles University in Prague and the National Board for Atomic Safety and Radiation Protection in Berlin. Both sides agreed upon uniform measuring conditions and calibration factors thus rendering possible the comparability of the dosimetric parameters which have been determined and verified, respectively, to an accuracy of ± 10%. 20 refs., 10 tabs., 2 figs. (author)

  14. Calibration of the delayed-gamma neutron activation facility

    International Nuclear Information System (INIS)

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-01-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99% of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1%. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. copyright 1996 American Association of Physicists in Medicine

  15. Discussions in symposium 'neutron dosimetry in neutron fields - from detection techniques to medical applications'

    International Nuclear Information System (INIS)

    Tanimura, Y.; Sato, T.; Kumada, H.; Terunuma, T.; Sakae, T.; Harano, H.; Matsumoto, T.; Suzuki, T.; Matsufuji, N.

    2008-01-01

    Recently the traceability system (JCSS) of neutron standard based on the Japanese law 'Measurement Act' has been instituted. In addition, importance of the neutron dose evaluation has been increasing in not only the neutron capture medical treatment but also the proton or heavy particle therapy. Against such a background, a symposium 'Neutron dosimetry in neutron fields - From detection techniques to medical applications-' was held on March 29, 2008 and recent topics on the measuring instruments and their calibration, the traceability system, the simulation technique and the medical applications were introduced. This article summarizes the key points in the discussion at the symposium. (author)

  16. Calibration experiments of neutron source identification and detection in soil

    International Nuclear Information System (INIS)

    Gorin, N. V.; Lipilina, E. N.; Rukavishnikov, G. V.; Shmakov, D. V.; Ulyanov, A. I.

    2007-01-01

    In the course of detection of fissile materials in soil, series of calibration experiments were carried out on in laboratory conditions on an experimental installation, presenting a mock-up of an endless soil with various heterogeneous bodies in it, fissile material, measuring boreholes. A design of detecting device, methods of neutrons detection are described. Conditions of neutron background measuring are given. Soil density, humidity, chemical composition of soil was measured. Sensitivity of methods of fissile materials detection and identification in soil was estimated in the calibration experiments. Minimal detectable activity and the distance at which it can be detected were defined. Characteristics of neutron radiation in a borehole mock-up were measured; dependences of method sensitivities from water content in soil, source-detector distance and presence of heterogeneous bodies were examined. Possibility of direction detection to a fissile material as neutron source from a borehole using a collimator is shown. Identification of fissile material was carried out by measuring the gamma-spectrum. Mathematical modeling was carried out using the PRIZMA code (Developed in RFNC-VNIITF) and MCNP code (Developed in LANL). Good correlation of calculational and experimental values was shown. The methodic were shown to be applicable in the field conditions

  17. Design, construction, and calibration of a nonfocusing neutron spectrometer

    International Nuclear Information System (INIS)

    Storey, W.

    1974-12-01

    A fourteen-channel time-resolved neutron spectrometer with associated Faraday cup has been designed and constructed for use in the field. A neutron energy range of 9.5 to 15 MeV is covered. Both instruments detect protons elastically scattered from a thin hydrogenous foil in interaction with the neutron beam, with magnetic analysis of the protons by the spectrometer. The design requirements of small size and weight and 0.6 to 0.7 MeV resolution have been met. Following a description of the instrument and of its geometry, there is a detailed presentation of the design and construction of the instrument. The section on instrument performance is concerned with the comparison between predicted performance based upon computation, in which the magnet is of primary interest, and upon measured performance based upon a calibration experiment, which is given a general description in Appendix A. Software used mainly for signal prediction and unfolding, for both the neutron spectrometer and Faraday cup, is described

  18. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-01-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) utilized at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For some time, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and redrilled and then logged. The cements have a known water content and can be used as an in-situ calibration check. The author found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  19. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-09-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) that we utilize at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For sometime, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and re drilled and then logged. The cements have a known water content and can be used as an in situ calibration check. I found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  20. Technical preparations for the in-vessel 14 MeV neutron calibration at JET

    International Nuclear Information System (INIS)

    Batistoni, P.; Popovichev, S.; Crowe, R.; Cufar, A.; Ghani, Z.; Keogh, K.; Peacock, A.; Price, R.; Baranov, A.; Korotkov, S.; Lykin, P.; Samoshin, A.

    2017-01-01

    Highlights: • The JET 14 MeV neutron calibration requires a neutron generator to be deployed inside the vacuum vessel by means of the remote handling system. • A neutron generator of suitable intensity and compliant with physics, remote handling and safety requirements has been identified and procured.The scientific programme of the preparatory phase devoted to fully characterizing the selected 14 MeV neutron generator is discussed. • The aim is to measure the absolute neutron emission rate within (± 5%) and the energy spectrum of emitted neutron as a function of angles. • The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are discussed. - Abstract: The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is ±10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the

  1. Technical preparations for the in-vessel 14 MeV neutron calibration at JET

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P., E-mail: paola.batistoni@enea.it [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044, Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Popovichev, S. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Crowe, R. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Cufar, A. [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Ghani, Z. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Keogh, K. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Peacock, A. [JET Exploitation Unit, Abingdon, Oxon, OX14 3DB (United Kingdom); Price, R. [Remote Applications in Challenging Environments (RACE), Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Baranov, A.; Korotkov, S.; Lykin, P.; Samoshin, A. [All-Russia Research Institute of Automatics (VNIIA), 22, Sushchevskaya str., 127055, Moscow (Russian Federation)

    2017-04-15

    Highlights: • The JET 14 MeV neutron calibration requires a neutron generator to be deployed inside the vacuum vessel by means of the remote handling system. • A neutron generator of suitable intensity and compliant with physics, remote handling and safety requirements has been identified and procured.The scientific programme of the preparatory phase devoted to fully characterizing the selected 14 MeV neutron generator is discussed. • The aim is to measure the absolute neutron emission rate within (± 5%) and the energy spectrum of emitted neutron as a function of angles. • The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are discussed. - Abstract: The power output of fusion devices is measured from their neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods that have been prepared to perform a new in situ 14 MeV neutron calibration at JET in view of the new DT campaign planned at JET in the next years. The target accuracy of this calibration is ±10% as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. In this paper, the constraints and early decisions which defined the main calibration approach are discussed, e.g., the choice of 14 MeV neutron source and the deployment method. The physics preparations, source issues, safety and engineering aspects required to calibrate directly the JET neutron detectors are also discussed. The existing JET remote-handling system will be used to deploy the neutron source inside the JET vessel. For this purpose, compatible tooling and systems necessary to ensure safe and efficient deployment have been developed. The scientific programme of the preparatory phase is devoted to fully characterizing the selected 14 MeV neutron generator to be used as the calibrating source, obtain a better understanding of the limitations of the

  2. Absolute calibration of the neutron yield measurement on JT-60 Upgrade

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Takeuchi, Hiroshi; Barnes, C.W.

    1991-10-01

    Absolutely calibrated measurements of the neutron yield are important for the evaluation of the plasma performance such as the fusion gain Q in DD operating tokamaks. Total neutron yield is measured with 235 U and 238 U fission chambers and 3 He proportional counters in JT-60 Upgrade. The in situ calibration was performed by moving the 252 Cf neutron source toroidally through the JT-60 vacuum vessel. Detection efficiencies of three 235 U and two 3 He detectors were measured for 92 locations of the neutron point source in toroidal scans at two different major radii. The total detection efficiency for the torus neutron source was obtained by averaging the point efficiencies over the whole toroidal angle. The uncertainty of the resulting absolute plasma neutron source calibration is estimated to be ± 10%. (author)

  3. Preliminary calibration of the ACP safeguards neutron counter

    Science.gov (United States)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  4. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    International Nuclear Information System (INIS)

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M.

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator (∼5 x 10 7 n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output (±9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about ±13%. The NE-451 (ZnS) scintillators and 4 He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of ±14% for the scintillators and ±15% for the 4 He counters

  5. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  6. Quality of the neutron probe calibration curve

    International Nuclear Information System (INIS)

    Libardi, Paulo Leonel; Moraes, Sergio Oliveira

    1997-01-01

    An experiment of neutron probe calibration has been performed, involving various volume size samples and collected at various distances from the access tubes. The experiment aimed to give some answers to questions such as suitable sample physical volume, always use of the same volume and sample distance from the neutron probe access tube

  7. Calibration of time of flight detectors using laser-driven neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Green, A.; Alejo, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [LULI, Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau Cedex (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt,Germany (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institut Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  8. Calibration of time of flight detectors using laser-driven neutron source

    Science.gov (United States)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  9. Calibration of time of flight detectors using laser-driven neutron source

    International Nuclear Information System (INIS)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Green, A.; Alejo, A.; Jung, D.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.

    2015-01-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil

  10. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  11. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  12. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  13. Precision of neutron scattering and capacitance type soil water content gauges from field calibration

    International Nuclear Information System (INIS)

    Evett, S.R.; Steiner, J.L.

    1995-01-01

    Soil water content gauges based on neutron scattering (NS) have been a valuable tool for soil water investigations for some 40 yr. However, licensing, training, and safety regulations pertaining to the radioactive source in these gauges makes their use expensive and prevents use in some situations such as unattended monitoring. A capacitance probe (CP) gauge has characteristics that would seem to make it an ideal replacement for NS gauges. We determined the relative precision of two brands of NS gauges (three gauges of each) and a brand of CP gauge (four gauges) in a field calibration exercise. Both brands of NS gauges were calibrated vs. volumetric soil water content with coefficients of determination (r2) ranging from 0.97 to 0.99 and root mean squared errors (RMSE) 0.012 m3 m-3 water content. Calibrations for the CP gauges resulted in r2 ranging from 0.68 to 0.71 and RMSE of 0.036 m3 m-3 water content. Average 95% confidence intervals on predictions were three to five times higher for the CP gauges than for the NS gauges, ranging from 0.153 to 0.161 and 0.032 to 0.052 m3 m-3, respectively. Although poorly correlated with soil water content, readings were reproducible among the four CP gauges. The poor correlation for CP gauges may be due to small-scale soil water content variations within the measurement volume of the gauge. The NS gauges provide acceptable precision but the CP gauge has poor precision and is unacceptable for routine soil water content measurements

  14. Photon contributions from the 252Cf and 241Am–Be neutron sources at the PSI Calibration Laboratory

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Boschung, M.; Meier, K.; Stadtmann, H.; Hranitzky, C.; Figel, M.; Mayer, S.

    2012-01-01

    At the accredited PSI Calibration Laboratory neutron reference fields traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to the ambient dose equivalent in the neutron fields of the 252 Cf and 241 Am–Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source usually involves considerable uncertainties due to the presence of neutron induced photons in the room, due to a non-zero neutron sensitivity of the photon detector, and last but not least due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution of the two sources as an average of the individual methods. For the 241 Am–Be source a photon contribution of approximately 4.9% was determined and for the 252 Cf source a contribution of 3.6%.

  15. Comparison of neutron scattering, gravimetric and tensiometric methods for measuring soil water content in the field

    International Nuclear Information System (INIS)

    Jat, R.L.; Das, D.K.; Naskar, G.C.

    1975-01-01

    Water content of a sandy clay loam soil was measured by neutron scattering, gravimetric and tensiometric methods. Tensiometric measurement based on laboratory moisture retention curve gave comparatively higher moisture content than those obtained by other methods. No significant differences were observed among neutron meter, gravimetric and tensiometric measurement based on field calibration curve. Though for irrigation purposes all the methods can be used equally, use of tensiometric method with field calibration curve is suggested for easy and more accurate soil water content measurement where neutron meter is not available. (author)

  16. Experimental evaluation of scattered thermal neutrons from various jig materials for use in fixing detectors for the calibration

    International Nuclear Information System (INIS)

    Shimizu, Shigeru; Yoshizawa, Michio

    2000-05-01

    Some jigs to fix detectors are used when radiation measuring instruments are calibrated or reference fluence rates are measured in thermal neutron irradiation fields. In this case, scattered thermal neutrons from the jigs, in particular, which contain hydrogenous materials, may affect the results of the calibration and measurements. In this study, scattered thermal neutrons were measured and calculated to clarify the characteristics of the thermal neutron scattered from various materials which are frequently used for the jigs. A spherical BF 3 -counter of 2-inches in diameter was used in the experiment. Ratios of the fluence of scattered neutrons to primaries (hereinafter, scattering ratio) were evaluated as a function of thickness and size of the materials, as well as the distance from the surface of the materials. The scattering ratios of the jigs that were actually-used in the calibration were also measured in order to select appropriate materials and thickness for the jigs. It was found that the scattering ratios were saturated with increase of thickness and size of the materials. The higher values were observed in the case of PMMA (polymethylmethacrylates) and paraffin since these materials contain more number of hydrogen atoms than the others. The saturated value was obtained 130% for PMMA and paraffin with the thickness of more than 5 cm and the size of 40 cm x 40 cm. The results for the actually-used jigs show that the thinner plate of styrofoam and aluminum reduces the scattering ratio to the value of less than 1%. The obtained data will be useful to improve the accuracy of the calibration of thermal neutron detectors and the measurement of reference fluence rates in thermal neutron irradiation fields. (author)

  17. Experimental evaluation of scattered thermal neutrons from various jig materials for use in fixing detectors for the calibration

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Shigeru; Yoshizawa, Michio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nemoto, Hisashi; Kurosawa, Koji [Institute of Radiation Measurement, Tokai, Ibaraki (Japan)

    2000-05-01

    Some jigs to fix detectors are used when radiation measuring instruments are calibrated or reference fluence rates are measured in thermal neutron irradiation fields. In this case, scattered thermal neutrons from the jigs, in particular, which contain hydrogenous materials, may affect the results of the calibration and measurements. In this study, scattered thermal neutrons were measured and calculated to clarify the characteristics of the thermal neutron scattered from various materials which are frequently used for the jigs. A spherical BF{sub 3}-counter of 2-inches in diameter was used in the experiment. Ratios of the fluence of scattered neutrons to primaries (hereinafter, scattering ratio) were evaluated as a function of thickness and size of the materials, as well as the distance from the surface of the materials. The scattering ratios of the jigs that were actually-used in the calibration were also measured in order to select appropriate materials and thickness for the jigs. It was found that the scattering ratios were saturated with increase of thickness and size of the materials. The higher values were observed in the case of PMMA (polymethylmethacrylates) and paraffin since these materials contain more number of hydrogen atoms than the others. The saturated value was obtained 130% for PMMA and paraffin with the thickness of more than 5 cm and the size of 40 cm x 40 cm. The results for the actually-used jigs show that the thinner plate of styrofoam and aluminum reduces the scattering ratio to the value of less than 1%. The obtained data will be useful to improve the accuracy of the calibration of thermal neutron detectors and the measurement of reference fluence rates in thermal neutron irradiation fields. (author)

  18. Calibration of quantitative neutron radiography method for moisture measurement

    International Nuclear Information System (INIS)

    Nemec, T.; Jeraj, R.

    1999-01-01

    Quantitative measurements of moisture and hydrogenous matter in building materials by neutron radiography (NR) are regularly performed at TRIGA Mark II research of 'Jozef Stefan' Institute in Ljubljana. Calibration of quantitative method is performed using standard brick samples with known moisture content and also with a secondary standard, plexiglas step wedge. In general, the contribution of scattered neutrons to the neutron image is not determined explicitly what introduces an error to the measured signal. Influence of scattered neutrons is significant in regions with high gradients of moisture concentrations, where the build up of scattered neutrons causes distortion of the moisture concentration profile. In this paper detailed analysis of validity of our calibration method for different geometrical parameters is presented. The error in the measured hydrogen concentration is evaluated by an experiment and compared with results obtained by Monte Carlo calculation with computer code MCNP 4B. Optimal conditions are determined for quantitative moisture measurements in order to minimize the error due to scattered neutrons. The method is tested on concrete samples with high moisture content.(author)

  19. Calibration Of A 14 MeV Neutron Generator With Reference To NBS-1

    International Nuclear Information System (INIS)

    Heimbach, Craig R.

    2011-01-01

    NBS-1 is the US national neutron reference source. It has a neutron emission rate (June 1961) of 1.257x10 6 n/s 1,2,3 with an uncertainty of 0.85%(k = 1). Neutron emission-rate calibrations performed at the National Institute of Standards and Technology (NIST) are made in comparison to this source, either directly or indirectly. To calibrate a commercial 14 MeV neutron generator, NIST performed a set of comparison measurements to evaluate the neutron output relative to NBS-1. The neutron output of the generator was determined with an uncertainty of about 7%(k = 1). The 15-hour half-life of one of the reactions used also makes possible off-site measurements. Consideration is given to similar calibrations for a 2.5 MeV neutron generator.

  20. The PTB thermal neutron reference field at GeNF

    International Nuclear Information System (INIS)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-01-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10 6 s -1 , can easily be reduced to less than 10 4 s -1 by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a 6 Li glass detector was employed to determine the absolute beam current and to calibrate the 3 He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within ±2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  1. The PTB thermal neutron reference field at GeNF

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, R.; Friedrich, H.; Janssen, H.

    2004-07-01

    The experimental setup and procedure for the characterization of the thermal neutron reference field established at the Geesthacht neutron facility (GeNF) of the GKSS is described. The neutron beam, free in air, with a maximum flux of 10{sup 6} s{sup -1}, can easily be reduced to less than 10{sup 4} s{sup -1} by using a diaphragm variable in size and without changing the beam divergence. Also, the spectral distribution with a mean energy of 45 meV, measured by time-of-flight over a 6.6 m long flight path, is independent of the beam current chosen. In the 2002/2003 experiments reported here, a {sup 6}Li glass detector was employed to determine the absolute beam current and to calibrate the {sup 3}He transmission beam monitor. In addition, activation measurements of gold foils were carried out at a reduced beam divergence. The results agree within {+-}2%. Furthermore, the beam is characterized by a low gamma background intensity and a negligible fraction of epithermal neutrons. Irradiations in combination with a scanner device to achieve a homogeneously illuminated scan field have shown that the thermal beam is well suited for dosemeter development and for the calibration of radiation protection instruments. (orig.)

  2. Characterization of the neutron field of the {sup 241}AmBe in a calibration room; Caracterizacion del campo de neutrones del {sup 241} AmBe en una sala para calibracion

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)] e-mail: rvega@cantera.reduaz.mx

    2003-07-01

    The field of neutrons produced by an isotopic source of neutrons of {sup 241} Am Be had been characterized. The characterization was carried out modeling those relevant details of the calibration room and simulating the neutron transport at different distances of the source. The calculated spectra were used to determine the equivalent environmental dose rate. A series of experiments were carried out with the Bonner sphere spectrometric system to measure the spectra in the same points where the calculations were carried out and with these spectra the rates of environmental dose were calculated. By means of a one sphere dosemeter type Berthold the rates of environmental dose were measured. To the one to compare the calculated spectra and measured its were found small differences in the group of the thermal neutrons due to the elementary composition used during the simulation. When comparing the derived rates starting from the calculated spectra with those measured it was found a maxim difference smaller to 13%. (Author)

  3. Tests and Calibration of the NIF Neutron Time of Flight Detectors

    International Nuclear Information System (INIS)

    Ali, Z.A.; Glebov, V.Yu.; Cruz, M.; Duffy, T.; Stoeckl, C.; Roberts, S.; Sangster, T.C.; Tommasini, R.; Throop, A; Moran, M.; Dauffy, L.; Horsefield, C.

    2008-01-01

    The National Ignition Facility (NIF) Neutron Time of Flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD (D = deuterium, T = tritium, H = hydrogen) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 10 9 to 2 x 10 19 . The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 m and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory (LLNL). Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detectors tests and calibration will be presented

  4. Biological dosimetry for mixed gamma-neutron field

    International Nuclear Information System (INIS)

    Brandao, J.O.C.; Santos, J.A.L.; Souza, P.L.G.; Lima, F.F.; Vilela, E.C.; Calixto, M.S.; Santos, N.

    2011-01-01

    There is increasing concern about airline crew members (about one million worldwide) exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mitogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to mixed gamma-neutron field. Blood was obtained from one healthy donor and exposed to two mixed gamma-neutron field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemide accumulation and 1000 well-spread metaphases were analyzed for the presence of dicentrics by two experts after painted by giemsa 5%. The preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  5. Simulation of a room for neutron instrument calibration at LCR/UERJ

    International Nuclear Information System (INIS)

    Medeiros, M.P.C.; Estrada, J.J.S.; Gomes, R.G.; Santos, R.F.G.; Leite, S.P.; Alves, C.F.E.; Rebello, W.F.; Almeida, C.E. de

    2013-01-01

    In this work the MCNPX code was used to design a calibrating room for neutron detectors to be implemented in the Laboratorio de Ciencias Radiologicas of UERJ. The calibration room containing a neutron irradiator with a 241 Am-Be source, a linear positioning system, radiation detectors and a shadow cone was modeled. The ambient dose equivalent rate, ııı ∗ ı10ı, in adjacent to the calibration room areas, as well as neutron scattering caused by the room itself were calculated. Using an occupancy factor of 1/16 for all adjacent areas, 3.8 cm of 5% borated polyethylene or 5.5 cm of concrete for shielding is enough to satisfy radiation safety requirements. (author)

  6. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  7. Neutron calibration sources in the Daya Bay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: jianglai.liu@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Carr, R. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gu, W.Q. [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Li, G.S., E-mail: lgs1029@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); McKeown, R.D. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics, College of William and Mary, Williamsburg, VA (United States); Qian, X. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States); Tsang, R.H.M. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Wu, F.F. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Zhang, C. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States)

    2015-10-11

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.

  8. Neutron calibration sources in the Daya Bay experiment

    International Nuclear Information System (INIS)

    Liu, J.; Carr, R.; Dwyer, D.A.; Gu, W.Q.; Li, G.S.; McKeown, R.D.; Qian, X.; Tsang, R.H.M.; Wu, F.F.; Zhang, C.

    2015-01-01

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector

  9. Calibration of neutrons monitors with moderators and application in the calibration factors of albedo dosemeters

    International Nuclear Information System (INIS)

    Schuch, L.A.

    1978-11-01

    The calibration factors and the reproducibility of an Albedo Dosimeter designed for personal neutron monitoring were determined. These factor were obtained simulating the dosimeter reading and the equivalent dose in the locality by a convenient combination of responses of the Bonner Sphere Spectrometer. The results obtained in the simulation were verified experimentally for different spectra employing the Am-Be, bare 252 Cf source and 253 Cf source with graphite sields of varying thickness. Different standards were used in the procedures necessary for the determination of the calibration factors. An Am-Be neutron source, standardized by the activation of a manganese sulphate bath was used as a primary standard. As a secondary standard, for the measurement of the neutron fluence, a De Pangher Long Counter was used and the scattering effects were determined using the shadow cone method. The other monitors such as the Rem-Counter and the Bonner Sphere Spectrometer were also calibrated with reference to the secondary standard with a view to comparing the results obtained with those furnished by the Albedo Dosimeter. (Author) [pt

  10. The influence of the energy distribution of workplace fields on neutron personal dosemeter reading

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Hager, L.G.; Horwood, N.A.

    2002-01-01

    Variations in the energy dependence of response of neutron personal dosemeters cause systematic errors in the readings obtained in workplace fields. The magnitude of these errors has been determined theoretically by folding measured and calculated workplace energy distributions with dosemeter response functions, to determine the response of a given personal dosemeter in that field. These results have been analysed with consideration of the dosemeter response to various calibration spectra, and with reference to different workplaces. The dosemeters in the study are discussed in terms of the workplaces for which they can be suitably calibrated. Deficiencies in the published neutron energy distributions are identified

  11. μ-TPC: a future standard instrument for low energy neutron field characterization

    International Nuclear Information System (INIS)

    Maire, D.; Lebreton, L.; Petit, M.; Billard, J.; Bourrion, O.; Bosson, G.; Guillaudin, O.; Lamblin, J.; Mayet, F.; Medard, J.; Muraz, J.F.; Richer, J.P.; Riffard, Q.; Santos, D.

    2013-06-01

    In order to measure energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, μ-TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nucleus recoil detector principle. The instrument will be presented with the associated method to measure the neutron energy. This article will emphasize the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV on the IRSN facility AMANDE. Finally the COMIMAC device, dedicated to the calibration, will be described. This original device, developed at the LPSC, is able to produce proton and electron beams with an accurate energy ranging from 1 keV to 50 keV. (authors)

  12. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  13. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  14. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  15. Evaluation of influence by room-scattered neutrons and source-to-phantom geometrical effect for calibration of personal neutron dosemeters

    International Nuclear Information System (INIS)

    Yoshida, Tadayoshi; Tsujimura, Norio

    2005-01-01

    Correction for the influence of room-scattered neutrons in irradiation rooms is essential in the case of calibrating neutron dosemeters. The ISO8529-2 recommends some correction method such as the shadow-cone method and the generalized-fit method for the calibration of neutron ambient dose equivalent (rate) meters. However, the ISO standard does not describe the correction methods for personal neutron dosemeters in detail. The authors investigated the variation of responses of neutron detectors mounted on phantom as a function of source-to-phantom distance, and discussed the applicability of the shadow-cone method and generalized-fit method for calibrating personal neutron dosemeters. The measurements were carried out using 3 He and hydrogen-filled proportional counters as surrogates of albedo and recoil-proton type dosemeters, respectively, at different distances ranging from 30 cm to 400 cm. As a result, it was clarified that both correction methods are applicable for recoil-proton type detectors over any distance. Contrarily, for albedo-type detectors, the variation of response does not follow the curve predicted from the generalized fit method at distances smaller than 70 cm. This result strongly suggests that the correction for source-to-phantom geometry effect should be made for calibrating albedo-type detectors at smaller distances. (author)

  16. International key comparison of neutron fluence measurements in mono-energetic neutron fields: C.C.R.I.(3)-K10

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Wang, Z.; Rong, C. [China Institute of Atomic Energy (CIAE), Beijing, People' s Republic of China (China); Lovestam, G.; Plompen, A.; Puglisi, N. [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Geel (Belgium); Gilliam, D.M.; Eisenhauer, C.M.; Nico, J.S.; Dewey, M.S. [National Institute of Standards and Technology (NIST), Gaithersburg (United States); Kudo, K.; Uritani, A.; Harano, H.; Takeda, N. [National Metrology Institute of Japan (NMIJ), Tsukuba (Japan); Thomas, D.J.; Roberts, N.J.; Bennett, A.; Kolkowski, P. [National Physical Laboratory (NPL), Teddington (United Kingdom); Moisseev, N.N.; Kharitonov, I.A. [Mendeleyev Institute for Metrology (VNIIM), St Petersburg (Russian Federation); Guldbakke, S.; Klein, H.; Nolte, R.; Schlegel, D. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-12-15

    C.C.R.I. Section III (neutron measurements) conducted a unique key comparison of neutron fluence measurements in mono-energetic neutron fields. In contrast to former comparisons, here the fluence measurements were performed with the participants' instruments in the same neutron fields at the P.T.B. accelerator facility. Seven laboratories- the C.I.A.E. (China), I.R.M.M. (E.C.), N.M.I.J. (Japan), N.I.S.T. (USA), N.P.L. (UK), P.T.B. (Germany) and the V.N.I.I.M. (Russia)-employed their primary standard reference methods or transfer instruments carefully calibrated against their primary standards, to determine the fluence of 0.144 MeV, 1.2 MeV, 5.0 MeV and 14.8 MeV neutrons and reported calibration coefficients for a selected neutron monitor and each neutron energy with a detailed uncertainty budget for the measurements. The key comparison reference values (K.C.R.V.) were finally evaluated as the weighted mean values of the neutron fluence at 1 m distance from the target in vacuum per neutron monitor count. The uncertainties of each K.C.R.V. amounted to about 1%. The degree of equivalence (D.o.E.), defined as the deviation of the result reported by the laboratories for each energy from the corresponding K.C.R.V., and the associated expanded uncertainty are also reported. The deviations between the results of two laboratories each with the corresponding expanded uncertainties complete the documentation of the degrees of equivalence. (authors)

  17. Design of a graphite-moderated {sup 241}Am-Li neutron field to simulate reactor spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N., E-mail: tsujimura.norio@jaea.go.j [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Yoshida, T. [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Tokai-mura, Ibaraki-ken, 319-1194 (Japan)

    2010-12-15

    A neutron calibration field using {sup 241}Am-Li sources and a moderator was designed to simulate the neutron fields found outside a reactor. The moderating assembly selected for the design calculation consists of a cube of graphite blocks with dimensions of 50 cm by 50 cm by 50 cm, in which the {sup 241}Am-Li sources are placed. Monte Carlo calculations revealed the optimal depth of the source to be 15 cm. This moderated neutron source can be used to provide a test field that has a large number of intermediate energy neutrons with a small portion of MeV component.

  18. Calibration Curve of Neutron Moisture Meter for Sandy Soil under Drip Irrigation System

    International Nuclear Information System (INIS)

    Mohammad, Abd El- Moniem M.; Gendy, R. W.; Bedaiwy, M. N.

    2004-01-01

    The aim of this work is to construct a neutron calibration curve in order to be able to use the neutron probe in sandy soils under drip irrigation systems. The experimental work was conducted at the Soil and Water Department of the Nuclear Research Center, Atomic Energy Authority. Three replicates were used along the lateral lines of the drip irrigation system. For each dripper, ten neutron access tubes were installed to 100-cm depth at distances of 5, 15 and 25 cm from the dripper location around the drippers on the lateral line, as well as between lateral lines. The neutron calibrations were determined at 30, 45, and 60-cm depths. Determining coefficients as well as t-test in pairs were employed to detect the accuracy of the calibrations. Results indicated that in order for the neutron calibration curve to express the whole wet area around the emitter; three-access tubes must be installed at distances of 5, 15, and 25 cm from the emitter. This calibration curve will be correlating the average count ratio (CR) at the studied soil depth of the three locations (5, 15, and 25-cm distances from the emitter) to the average moisture content (θ) for this soil depth of the entire wetted area. This procedure should be repeated at different times in order to obtain different θ and C.R values, so that the regression equation of calibration curve at this soil depth can be obtained. To determine the soil moisture content, the average CR of the three locations must be taken and substituted into the regression equation representing the neutron calibration curve. Results taken from access tubes placed at distances of 15 cm from the emitter, showed good agreement with the average calibration curve both for the 45- and the 60-cm depths, suggesting that the 15-cm distance may provide a suitable substitute for the simultaneous use of the three different distances of 5, 15 and 25 cm. However, the obtained results show also that the neutron calibration curves of the 30-cm depth for

  19. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  20. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M., E-mail: kangm@ornl.gov [Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN (United States); Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bilheux, H.Z., E-mail: bilheuxhn@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Voisin, S. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Cheng, C.L.; Perfect, E. [Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN (United States); Horita, J. [Department of Geosciences, Texas Tech University, Lubbock, TX (United States); Warren, J.M. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2013-04-21

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  1. In-situ calibration of TFTR [Tokamak Fusion Test Reactor] neutron detectors

    International Nuclear Information System (INIS)

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled 252 Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two 235 U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of ± 13%. 21 refs., 23 figs., 4 tabs

  2. High voltage calibration of the TANSY-KM5 neutron detectors

    International Nuclear Information System (INIS)

    Grosshoeg, G.; Belle, P. van; Wilson, D.

    1996-11-01

    We have developed a procedure for the high voltage calibration of the TANSY neutron detectors. The procedure is based on the work done during the construction of the spectrometer. A program is written for the measurement of the sensitivity of the neutron detectors as a function of the high voltage. The data are transferred to a PC for evaluation. We use a Cobalt source for the calibration. With the PC the voltage corresponding to the effective Compton edge is found. The voltage settings for the neutron detectors are calculated and stored in a file suitable for input to a program that is used to control the instrument. A measurement is reported that shows that the reproducibility of the measurement is good. 4 refs

  3. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  4. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  5. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  6. Calibration of area monitors for neutrons used in clinical linear accelerators; Calibracao de monitores de area para neutrons usados em aceleradores lineares clinicos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da, E-mail: asalgado@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This work demonstrates the complexity and the necessary cares for the realization of measurements of neutron fields in rooms for radiotherapy treatment containing clinical accelerators. The acquaintance of the technical characteristics of the monitors and the periodic calibration are actions and fundamental procedures to guarantee traceability and the reliability of measurements

  7. Calibration of a detector for pulsed neutron sources

    International Nuclear Information System (INIS)

    Veeser, L.R.; Hemmendinger, A.; Shunk, E.R.

    1978-02-01

    A plastic scintillator detector for measuring the strength of a pulsed neutron source is described and the problems of calibration and discrimination against x-ray background for both pulsed and steady-state detectors are discussed

  8. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)], e-mail: psouza@cnen.gov.br, e-mail: jodinilson@cnen.gov.br; Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  9. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  10. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    Science.gov (United States)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor

  11. LUPIN, a new instrument for pulsed neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); Ferrarini, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Manessi, G.P., E-mail: giacomo.paolo.manessi@cern.ch [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Varoli, V. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy)

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a {sup 3}He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current–voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H⁎(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability. -- Highlights: ► LUPIN is a new detector specifically conceived to work in neutron pulsed fields. ► The detector is a rem counter type instrument working in current mode. ► The performances of the detectors were studied under various experimental conditions. ► The detector

  12. Rock models at Zielona Gora, Poland applied to the semi-empirical neutron tool calibration

    International Nuclear Information System (INIS)

    Czubek, J.A.; Ossowski, A.; Zorski, T.; Massalski, T.

    1995-01-01

    The semi-empirical calibration method applied to the neutron porosity tool is presented in this paper. It was used with the ODSN-102 tool of 70 mm diameter and equipped with an Am-Be neutron source at the calibration facility of Zielona Gora, Poland, inside natural and artificial rocks: four sandstone, four limestone and one dolomite block with borehole diameters of 143 and 216 mm, and three artificial ceramic blocks with borehole diameters of 90 and 180 mm. All blocks were saturated with fresh water, and fresh water was also inside all boreholes. In five blocks mineralized water (200,000 ppm NaCl) was introduced inside the boreholes. All neutron characteristics of the calibration blocks are given in this paper. The semi-empirical method of calibration correlates the tool readings observed experimentally with the general neutron parameter (GNP). This results in a general calibration curve, where the tool readings (TR) vs GNP are situated at one curve irrespective of their origin, i.e. of the formation lithology, borehole diameter, tool stand-off, brine salinity, etc. The n and m power coefficients are obtained experimentally during the calibration procedure. The apparent neutron parameters are defined as those sensed by a neutron tool situated inside the borehole and in real environmental conditions. When they are known, the GNP parameter can be computed analytically for the whole range of porosity at any kind of borehole diameter, formation lithology (including variable rock matrix absorption cross-section and density), borehole and formation salinity, tool stand-off and drilling fluid physical parameters. By this approach all porosity corrections with respect to the standard (e.g. limestone) calibration curve can be generated. (author)

  13. Experiences in troubleshooting of neutron rem monitor electronics and its subsequent calibration

    International Nuclear Information System (INIS)

    Maithani, Atul; Dash, Amit Kumar; Vijayasekaran, P.; Mathews, Geo; Ajoy, K.C.; Dhanasekaran, A.

    2014-01-01

    This paper deals with the troubleshooting of the signal processing and counting electronics of two no's of Neutron Rem monitors and its subsequent calibration. Electronics servicing with respect to detection of fault in the circuit board, replacement of faulty ICs, circuits (Analog and Digital) tracing and installation of new rechargeable battery pack was done. Electronic calibration using Test pulse generator was carried out for dose rate measurements, amplitude measurements and discriminator level setting. Serial communication settings were checked with both HyperTerminal and software for the monitors. Neutron Source calibration was also carried out for both the monitors. (author)

  14. Optimization of shadow cone length and mass for determination the amount of scattered radiation dose in the calibration laboratory of Am/Be neutron source

    International Nuclear Information System (INIS)

    Raisali, G.; Hamidi, S.; Hallajfard, E.; Shahvar, A.; Hajiloo, N.

    2007-01-01

    The shadow cone technique is one of the methods which is used for determining the contribution of scattered particles on the response of neutron detectors. This technique is used for neutron field calibration in Agriculture, Medicine and Industry Research School. In this investigation, we have designed and constructed an optimized shadow cone. According to the calculated neutron dose equivalent attenuation factors, a cone with 20 cm of iron and 30 cm of polyethylene has been found as optimum. For this cone, the neutron dose equivalent attenuation factor for 241 Am/Be neutron source, is 0.00035 for which the contribution of scattered neutrons in Agriculture, Medicine and Industry Research School neutron calibration laboratory according to the calculation and measurement results, can be evaluated with less than 0.5% of error

  15. Shielding calculations for neutron calibration bunker using Monte Carlo code MCNP-4C

    International Nuclear Information System (INIS)

    Suman, H.; Kharita, M. H.; Yousef, S.

    2008-02-01

    In this work, the dose arising from an Am-Be source of 10 8 neutron/sec strength located inside the newly constructed neutron calibration bunker in the National Radiation Metrology Laboratories, was calculated using MCNP-4C code. It was found that the shielding of the neutron calibration bunker is sufficient. As the calculated dose is not expected to exceed in inhabited areas 0.183 μSv/hr, which is 10 times smaller than the regulatory dose constraints. Hence, it can be concluded that the calibration bunker can house - from the external exposure point of view - an Am-Be neutron source of 10 9 neutron/sec strength. It turned out that the neutron dose from the source is few times greater than the photon dose. The sky shine was found to contribute significantly to the total dose. This contribution was estimated to be 60% of the neutron dose and 10% of the photon dose. The systematic uncertainties due to various factors have been assessed and was found to be between 4 and 10% due to concrete density variations; 15% due to the dose estimation method; 4 -10% due to weather variations (temperature and moisture). The calculated dose was highly sensitive to the changes in source spectra. The uncertainty due to the use of two different neutron spectra is about 70%.(author)

  16. The characteristic calibration of the plastic scintillation detector for neutron diagnostic

    CERN Document Server

    Chen Hong Su

    2002-01-01

    The author presents the characteristic of the plastic scintillation detector used for pulse neutron diagnostic. The detection efficiency and sensitivity of the detector to DT neutron have been calibrated by the K-400 accelerator and by the pulse neutron tube, separately. The detection efficiency from the experiment is in agreement with that from calculation in the range of experimental errors

  17. Thermal neutron standard fields with the KUR heavy water facility

    International Nuclear Information System (INIS)

    Kanda, K.; Kobayashi, K.; Shibata, T.

    1978-01-01

    A heavy water facility attached to the KUR (Kyoto University Reactor, swimming pool type, 5 MW) yields pure thermal neutrons in the Maxwellian distribution. The facility is faced to the core of KUR and it contains about 2 tons of heavy water. The thickness of the layer is about 140 cm. The neutron spectrum was measured with the time of flight technique using a fast chopper. The measured spectrum was in good agreement with the Maxwellian distribution in all energy region for thermal neutrons. The neutron temperature was slightly higher than the heavy water temperature. The contamination of epithermal and fast neutrons caused by photo-neutrons of the γ-n reaction of heavy water was very small. The maximum intensity of thermal neutrons is 3x10 11 n/cm 2 sec. When the bismuth scatterer is attached, the gamma rays contamination is eliminated by the ratio of 0.05 of gamma rays to neutrons in rem. This standard neutron field has been used for such experiments as thermal neutron cross section measurement, detector calibration, activation analysis, biomedical purposes etc. (author)

  18. Characterisation of the IRSN CANEL/T400 facility producing realistic neutron fields for calibration and test purposes

    International Nuclear Information System (INIS)

    Gressier, V.; Lacoste, V.; Lebreton, L.; Muller, H.; Pelcot, G.; Bakali, M.; Fernandez, F.; Tomas, M.; Roberts, N. J.; Thomas, D. J.; Reginatto, M.; Wiegel, B.; Wittstock, J.

    2004-01-01

    The new CANEL/T400 facility has been set-up at the Inst. for Radiological Protection and Nuclear Safety (IRSN) to produce a realistic neutron field. The accurate characterisation of this neutron field is mandatory since this facility will be used as a reference neutron source. For this reason an international measuring campaign, involving four laboratories with extensive expertise in neutron metrology and spectrometry, was organised through a concerted EUROMET project. Measurements were performed with Bonner sphere (BS) systems to determine the energy distribution of the emitted neutrons over the whole energy range (from thermal energy up to a few MeV). Additional measurements were performed with proton recoil detectors to provide detailed information in the energy region above 90 keV. The results obtained by the four laboratories are in agreement with each other and are compared with a calculation performed with the MCNP4C Monte-Carlo code. As a conclusion of this exercise, a reliable characterisation of the CANEL/T400 neutron field is obtained. (authors)

  19. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tallyson S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Freitas, Bruno M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Fonseca, Evaldo S.; Pereira, Walsan W., E-mail: talvarenga@ipen.br, E-mail: lcaldas@ipen.br, E-mail: bfreitas@con.ufrj.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  20. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson S.; Caldas, Linda V.E.; Freitas, Bruno M.

    2017-01-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  1. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E

    2015-01-01

    This work introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from detection of the burst of neutrons. An improvement of more than one order of magnitude in the accuracy of a paraffin wax moderated 3 He-filled tube is obtained by using this methodology with respect to previous calibration methods. (paper)

  2. Calibration of a detector by activation with a continuous neutron source used as a transfer standard for measuring pulsed neutron beams

    International Nuclear Information System (INIS)

    Moreno, Jose; Silva, Patricio; Birstein, Lipo; Soto, Leopoldo

    2002-01-01

    This paper presents a method for calibrating activation detectors. These detectors will be used as transfer standard in measuring neutron fluxes produced by pulsed plasma sources. A standard neutron source is used as a secondary standard. The activation detector is being shielded in order to substantially reduce detection of gamma emission coming from the source. The detector's calibration factor is obtained by considering also the standard neutron source as a free source of gamma radiation so that the measurements can be done without quickly withdrawing the neutron source as it is usually done. This will substantially simplify the traditionally established method (JM)

  3. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  4. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    Science.gov (United States)

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  5. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Waugh, C. J.; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-01-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  6. Characteristics and calibration of the transmission-type fast neutron moisture meter

    International Nuclear Information System (INIS)

    Banzai, K.

    1984-01-01

    With the Transmission-type Fast Neutron Moisture Meter, we did some experiments for calibration and the effective range of fast neutron scattering, and observed soil moisture process before and after making artificial rainfall at a lysimeter filled by decomposed granite. A fast neutron source of this meter is 252 Cf and capacity of 100 μ Ci. The neutron detector is NE-213 liquid scintilator which recovers a little flux of neutron source. For the customary thermal neutron meter, the effective range of neutron scattering is variable by soil moisture values surrounding the observation point, but this fast neutron, insert and transmission-type meter shows soil moisture in small capacity between a source and a detector. Experimental Results; 1) The calibration curve, calculated statistically from the relation of soil moisture and the count ratio in a 200 l drum packed with beads, gravel, sand and Kanto loam, became only one line. The correlation coefficient of this curve was 0.996 and the standard error was 1.94% with volumetric water content. 2) Count ratio started to decrease as observation point approached soil surface from the boundary of 6 cm depth in soil. Volumetric water content increased more than fact with the previous calibration curve. 3) We limited the detectable range to fast neutron, but a little scattering was seen surrounding the soil of a observation point. The effective range of horizontal scattering was a width of 20 cm with the center line connected between a source and a detector, with a circle of 5 cm diameter surrounding the source, and a circle of 10-15 cm diameter surrounding the detector. 4) Soil moisture before and after artificial rainfall was observed with this meter and by the measurement of a 100 cm 3 oven dried sampling vessel. Volumetric water content by the latter measurement, was more variable because sampling points were at a distance from the center of observation site and sampling technique was bad. Otherwise soil moisture values

  7. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  8. Safety analyses in support of neutron detector calibration operations at JET

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, G., E-mail: gediminas@mail.lei.lt [EURATOM-LEI Association, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Syme, D.B.; Popovichev, S. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, S. [EURATOM-VR Association, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Batistoni, P. [JET-EFDA Culham Science Centre, OX14 3DB Abingdon (United Kingdom); EURATOM-ENEA Association, Via E. Fermi, 40, 00044 Frascati (Italy)

    2014-10-15

    Highlights: •Neutron calculations to evaluate the dose rate leakage from the shields which contain the neutron source. •The differences on calculated dose rates using different flux-to-dose conversion factors have been investigated. •The experimental values were compared to the MCNPX calculations. -- Abstract: Neutron detectors in fusion devices need to be calibrated to provide the absolute neutron yield and the fusion power produced in fusion reactions. A new in situ calibration of the JET neutron detectors was recently performed using a {sup 252}Cf neutron source with intensity of about 2.7 × 10{sup 8} n/s. The source was delivered to the JET facility within a transport flask and the surface radiation levels must fall within transport regulations. Some contingency scenarios required transfer of the source into special shields: the operational shield and the auxiliary shield. In this paper we describe the neutron calculations that have been carried out to evaluate the dose rate leakage from the shields which may contain the neutron source. The calculations have been performed using accurate modelling of the neutron and gamma ray emission from the {sup 252}Cf source, and from the three shields. The differences on calculated dose rates deriving from the use of different flux-to-dose conversion factors have also been investigated. A comparison of dose rates calculated and measured is presented from the bare source (in cell) and with the source within its transport flask.

  9. Personnel neutron dose assessment upgrade: Volume 1, Personnel neutron dosimetry assessment: [Final report

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Brackenbush, L.W.; Griffith, R.V.; Hankins, D.E.; Parkhurst, M.A.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    This report provides guidance on the characteristics, use, and calibration criteria for personnel neutron dosimeters. The report is applicable for neutrons with energies ranging from thermal to less than 20 MeV. Background for general neutron dosimetry requirements is provided, as is relevant federal regulations and other standards. The characteristics of personnel neutron dosimeters are discussed, with particular attention paid to passive neutron dosimetry systems. Two of the systems discussed are used at DOE and DOE-contractor facilities (nuclear track emulsion and thermoluminescent-albedo) and another (the combination TLD/TED) was recently developed. Topics discussed in the field applications of these dosimeters include their theory of operation, their processing, readout, and interpretation, and their advantages and disadvantages for field use. The procedures required for occupational neutron dosimetry are discussed, including radiation monitoring and the wearing of dosimeters, their exchange periods, dose equivalent evaluations, and the documenting of neutron exposures. The coverage of dosimeter testing, maintenance, and calibration includes guidance on the selection of calibration sources, the effects of irradiation geometries, lower limits of detectability, fading, frequency of calibration, spectrometry, and quality control. 49 refs., 6 figs., 8 tabs

  10. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Science.gov (United States)

    Chatzidimitriou-Dreismann, C. A.; Gray, E. MacA.; Blach, T. P.

    2012-06-01

    The "standard" procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the "standard" calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D2 in the backscattering angular range (θ>90°) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the "standard" calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present "standard" calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H2 molecules. For Case (B), some suggestions as to how the "standard" calibration could be considerably improved are made.

  11. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  12. Assessment of Radiographic Image Quality by Visual Examination of Neutron Radiographs of the Calibration Fuel Pin

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Up till now no reliable radiographic image quality standards exist for neutron radiography of nuclear reactor fuel. Under the Euratoro Neutron Radiography Working Group (NRWG) Test Program neutron radiographs were produced at different neutron radiography facilities within the European Community...... of a calibration fuel pin. The radiographs were made by the direct, transfer and tracketch methods using different film recording materials. These neutron radiographs of the calibration fuel pin were used for the assessement of radiographic image quality. This was done by visual examination of the radiographs...

  13. Calibration technique for the neutron surface moisture measurement system

    International Nuclear Information System (INIS)

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  14. PFN tool test and calibration system

    International Nuclear Information System (INIS)

    Stephenson, W.A.

    1981-12-01

    A system has been developed for the functional testing and neutron output calibration of the PFN (Prompt Fission Neutron) Uranium Logging Tool. The system was designed primarily for field work and consists of a special vehicle as well as test apparatus. Only the pertinent instrumentation is described. This document will serve as an Instruction and Test Equipment service manual for those involved with calibration of the neutron output of the PFN tool

  15. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  16. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidimitriou-Dreismann, C.A., E-mail: dreismann@chem.tu-berlin.de [Institute of Chemistry (Sekr. C2), Technical University of Berlin, D-10623 Berlin (Germany); Gray, E. MacA., E-mail: e.gray@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia); Blach, T.P., E-mail: t.blach@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia)

    2012-06-01

    The 'standard' procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the 'standard' calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D{sub 2} in the backscattering angular range ({theta}>90 Degree-Sign ) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the 'standard' calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present 'standard' calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H{sub 2} molecules. For Case (B), some suggestions as to how the 'standard' calibration could be considerably improved are made.

  17. New thermal neutron calibration channel at LNMRI/IRD

    International Nuclear Information System (INIS)

    Astuto, A.; Lopes, R.T.; Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W.

    2015-01-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241 Am-Be sources with 596 GBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence (less than 1%) in the central chamber. (author)

  18. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    Full Text Available Cet article rend compte des travaux effectués sur la porosité du granite de Beauvoir (Sondage GPF 1 d'Echassières, Massif Central français. L'objectif de notre étude est de pouvoir obtenir des valeurs représentatives de la saturation en eau (porosité totale à l'eau n du granite de Beauvoir à partir des mesures de porosité neutron PorositéN (diagraphie neutron BRGM sans avoir recours aux mesures sur carottes. Notre démarche est expérimentale et nous avons tenté d'approfondir certains problèmes liés à l'utilisation de la diagraphie neutron dans une roche granitique. Deux facteurs principaux conditionnent la réponse neutron : la concentration en hydrogène de la formation (eau libre et eau de constitution de certains minéraux et la présence d'éléments absorbeurs à forte section de capture comme le gadolinium, le cadmium, le bore, . . . et dans le cas du granite de Beauvoir, le lithium. A partir des mesures de porosité totale à l'eau n sur carottes, des essais de pertes au feu sur poudre qui nous permettent de déterminer la porosité neutron liée à l'eau de constitution PorositéN(OH- et des analyses chimiques avec lesquelles nous évaluons la porosité neutron thermique PorositéN(ox (Programme SNUPAR, Schlumberger liée à la capture neutronique, nous reconstituons la porosité neutron totale PorositéNR du granite de Beauvoir. Pour 7 échantillons caractéristiques du granite de Beauvoir, nous réalisons grâce à ces résultats une nouvelle calibration du taux de comptage neutron initial corrigé du gradient thermique et de l'effet de trou. Grâce à cette opération, il est possible de déterminer, pour les échantillons traités, la porosité neutron du granite avec une calibration granite (PorositéNg et non calcaire (PorositéNc. La connaissance de l'effet neutron de la matrice nous permet enfin d'évaluer la teneur en eau du granite (porosité totale à l'eau et de comparer celle-ci avec la porosité mesurée sur

  19. Characterization of a diamond detector to be used as neutron yield monitor during the in-vessel calibration of JET neutron detectors in preparation of the DT experiment

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Batistoni, Paola; Loreti, Stefano; Milocco, Alberto

    2016-01-01

    Highlights: • A diamond detector has been characterized for use as neutron yield monitor of a portable 14 MeV neutron generator. • The system will be used for the 14 MeV calibration of JET neutron detector. • The results and the performances of the monitor are very satisfactory in term of accuracy and reliability. - Abstract: A new Deuterium-Tritium (DT) campaign is planned at JET. An accurate calibration for the 14 MeV neutron yield monitors is necessary. In order to perform the calibration a 14 MeV Neutron Generator with suitable intensity (∼10 8 n/s) will be used. Due to the intensity change during the Neutron Generator lifetime it would be necessary to monitor continuously the neutron emission intensity during the calibration using a compact detector attached to it. A high quality diamond detector has been chosen as one of the monitors. This detector has been fully characterized at the 14 MeV Frascati Neutron Generator facility. The characterization procedure and the resulting 14 MeV neutron response of the detector are described in this paper together with the obtained uncertainties.

  20. Study on calibration of neutron efficiency and relative photo-yield of plastic scintillator

    International Nuclear Information System (INIS)

    Peng Taiping; Zhang Chuanfei; Li Rurong; Zhang Jianhua; Luo Xiaobing; Xia Yijun; Yang Zhihua

    2002-01-01

    A method used for the calibration of neutron efficiency and the relative photo yield of plastic scintillator is studied. T(p, n) and D(d, n) reactions are used as neutron resources. The neutron efficiencies and the relative photo yields of plastic scintillators 1421 (40 mm in diameter and 5 mm in thickness) and determined in the neutron energy range of 0.655-5 MeV

  1. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated 252 Cf, D 2 O-moderated 252 Cf, polyethylene-moderated 252 Cf, and WEP neutron howitzer with 252 Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 to 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated

  2. In situ neutron moisture meter calibration in lateritic soils

    International Nuclear Information System (INIS)

    Ruprecht, J.K.; Schofield, N.J.

    1990-01-01

    An in situ calibration procedure for complex lateritic soils of the jarrah forest of Western Australia is described. The calibration is based on non-destructive sampling of each access tube and on a regression of change in water content on change in neutron count ratio at 'wet' and 'dry' times of the year. Calibration equations with adequate precision were produced. However, there were high residual errors in the calibration equations which were due to a number of factors including soil water variability, the presence of a duricrust layer, soil sampling of gravelly soils and the variability of the cement slurry annulus surrounding each access tube. The calibration equations derived did not compare well with those from other studies in south-west Western Australia, but there was reasonable agreement with the general equations obtained by the Institute of Hydrology, U.K. 15 refs., 6 figs., 2 tabs

  3. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    Energy Technology Data Exchange (ETDEWEB)

    Tarifeño-Saldivia, Ariel, E-mail: atarifeno@cchen.cl, E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago (Chile); Departamento de Ciencias Fisicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 220, Santiago (Chile); Mayer, Roberto E. [Instituto Balseiro and Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, San Carlos de Bariloche R8402AGP (Argentina)

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  4. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E.

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods

  5. Monte Carlo efficiency calibration of a neutron generator-based total-body irradiator

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2009-01-01

    Many body composition measurement systems are calibrated against a single-sized reference phantom. Prompt-gamma neutron activation (PGNA) provides the only direct measure of total body nitrogen (TBN), an index of the body's lean tissue mass. In PGNA systems, body size influences neutron flux attenuation, induced gamma signal distribution, and counting efficiency. Thus, calibration based on a single-sized phantom could result in inaccurate TBN values. We used Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) in order to map a system's response to the range of body weights (65-160 kg) and body fat distributions (25-60%) in obese humans. Calibration curves were constructed to derive body-size correction factors relative to a standard reference phantom, providing customized adjustments to account for differences in body habitus of obese adults. The use of MCNP-generated calibration curves should allow for a better estimate of the true changes in lean tissue mass that many occur during intervention programs focused only on weight loss. (author)

  6. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10); Caracterização de campos de nêutrons térmicos para a calibração de monitores de nêutrons em termos da grandeza equivalente de dose ambiente H⁎(10)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W. [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratório Nacional de Metrologia das Radiações Ionizantes; Astuto, Achilles, E-mail: larissapaizante@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources {sup 241}AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m{sup 3}. The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons.

  7. Definition and production of calibration standard neutron sources for radiation protection device calibration

    International Nuclear Information System (INIS)

    De Matos, E.

    1987-01-01

    To improve the characterization of radioprotection devices performances, it would be advisable to calibrate these devices in neutron spectra which are nearly like those met in practice (nuclear reactors, plutonium technology laboratories...). The purpose of this work is, in a first time, to choose the nature and the dimensions of the different shields used to achieve broad typical neutron spectra extending to lower energies from a 14.8 MeV neutron beam. The second step is the evaluation of spectral distribution and calculation of associated dosimetric quantities. For that, several spectrometric techniques are employed: on one hand, activation detectors and Bonner spheres method named rough spectrometry; on the other hand, an accurate spectrometry which uses recoil proton counters. The dosimetric quantities, especially the value of kerma deduced from these spectra must be in good agreement with those measured with a tissue equivalent ionization chamber [fr

  8. New thermal neutron calibration channel at LNMRI/IRD

    Energy Technology Data Exchange (ETDEWEB)

    Astuto, A.; Lopes, R.T., E-mail: achillesbr@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Patrao, K.C.S.; Fonseca, E.S.; Pereira, W.W. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes

    2015-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four {sup 241}Am-Be sources with 596 GBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence (less than 1%) in the central chamber. (author)

  9. Initial absolute calibration factors for some neutron sensitive self-powered detectors

    International Nuclear Information System (INIS)

    Kroon, J.

    1975-01-01

    Self-powered flux detectors have found extensive use as monitoring devices in PWR (Pressurized Water Reactor) cores and CANDU (Canada Deuterium Uranium) type power reactors. The detectors measure fuel power distributions and indicate trip parameters for reactor control and safety requirements. Both applications demand accurate absolute initial calibration factors. Experimental results obtained in calibrating some neutron sensitive self-powered detectors is presented. (author)

  10. A new philosophy for calibrating oil well logging tools based on neutron transport codes

    International Nuclear Information System (INIS)

    Butler, J.; Clayton, C.G.

    1984-01-01

    The current practice of calibrating neutron borehole logging probes is limited by an inability to match calibration conditions to those which pertain in an operational situation. In addition, test boreholes are expensive to construct and, when natural materials are used, rely on an exact correspondence in composition and in structure between the materials of the test facility and representative samples which may not be valid. Now that neutron tansport codes have been developed to a point at which they are able to cope with realistic, complex situations an alternative approach to calibration can be considered. The basis of this philosophy is the construction of a limited number of calibration facilities which are composed of artificial rocks of controlled but variable porosity and accurately known nuclear characteristics

  11. Neutron optics using transverse field neutron spin echo method

    International Nuclear Information System (INIS)

    Achiwa, Norio; Hino, Masahiro; Yamauchi, Yoshihiro; Takakura, Hiroyuki; Tasaki, Seiji; Akiyoshi, Tsunekazu; Ebisawa, Toru.

    1993-01-01

    A neutron spin echo (NSE) spectrometer with perpendicular magnetic field to the neutron scattering plane, using an iron yoke type electro-magnet has been developed. A combination of cold neutron guider, supermirror neutron polarizer of double reflection type and supermirror neutron analyser was adopted for the spectrometer. The first application of the NSE spectrometer to neutron optics by passing Larmor precessing neutrons through gas, solid and liquid materials of several different lengths which are inserted in one of the precession field have been examined. Preliminary NSE spectra of this sample geometry are discussed. (author)

  12. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    Science.gov (United States)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  13. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  14. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Directory of Open Access Journals (Sweden)

    Kim Myong-Seop

    2018-01-01

    Full Text Available A calibration technology of the self-powered neutron detectors (SPNDs using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  15. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    Science.gov (United States)

    Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  16. Neutron activation procedures used for the calibration of a nitrogen-16 reactor power monitor

    International Nuclear Information System (INIS)

    Jester, W.A.; Daubenspeck, T.

    2000-01-01

    Personnel from the Pennsylvania State University's Breazeale Nuclear Reactor assisted NRC (Nuclear Research Corporation) personnel in calibrating a new MSL/ 16 N Nitrogen-16 Monitor. Neutron flux calibration procedures utilized and the results obtained for the production of a nitrogen-16 source of known activity for a BGO detector calibration are described. (author)

  17. Estimation of scattering contribution in the calibration of neutron devices with radionuclide sources in rooms of different sizes

    Directory of Open Access Journals (Sweden)

    Khabaz Rahim

    2015-01-01

    Full Text Available Calibrations of neutron devices used in area monitoring are often performed by radionuclide neutron sources. Device readings increase due to neutrons scattered by the surroundings and the air. The influence of said scattering effects have been investigated in this paper by performing Monte Carlo simulations for ten different radionuclide neutron sources inside several sizes of concrete wall spherical rooms (Rsp = 200 to 1500 cm. In order to obtain the parameters that relate the additional contribution from scattered neutrons, calculations using a polynomial fit model were evaluated. Obtained results show that the contribution of scattering is roughly independent of the geometric shape of the calibration room. The parameter that relates the room-return scattering has been fitted in terms of the spherical room radius, so as to reasonably accurately estimate the scattering value for each radionuclide neutron source in any geometry of the calibration room.

  18. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    Science.gov (United States)

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  19. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2009-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  20. Simulation of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation

    International Nuclear Information System (INIS)

    Kluson, J.; Jansky, B.

    2008-01-01

    Reference mixed neutron-gamma fields are used for test and calibration of dosimetric and spectrometric systems, intercomparison measurements, and benchmark tests and represent experimental base for reactor studies. Set of the spherical experimental assemblies for the mixed neutron-gamma reference fields implementation was build in the NRI Rez. Extended sets of measurements and simulation calculations were done to describe the reference mixed field dosimetry and spectral characteristics with best achievable precision. The Monte Carlo technique was used for different experimental setups models description, comparison and verification and field characteristics simulation. Effects (hardly distinguishable experimentally) were also studied ( contributions from individual parts of experimental setup, field individual components and next effects as shadow shield cones transparency, etc.). Some results and main conclusions of these studies and calculations are presented and discussed. (authors)

  1. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  2. The sensitivity calibration of the ultra-fast quench plastic scintillation detector for D-T neutrons

    International Nuclear Information System (INIS)

    Tang Changhuan; Yan Meiqiong; Xie Chaomei

    1998-01-01

    The authors introduce some characteristics of ultra-fast quench plastic scintillation detectors. When the detectors are composed of different scintillators, light guides and microchannel plate photomultiplier tube (MCP-PMT), their sensitivities to D-T neutrons are calibrated by a pulse neutron tube with a neutron pulse width about 10 ns

  3. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    International Nuclear Information System (INIS)

    Massoutie, Martine.

    1981-05-01

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer [fr

  4. Characterization of the neutron sources storage pool of the Neutron Standards Laboratory, using Montecarlo Techniques

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The development of irradiation damage resistant materials is one of the most important open fields in the design of experimental facilities and conceptual nucleoelectric fusion plants. The Neutron Standards Laboratory aims to contribute to this development by allowing the neutron irradiation of materials in its calibration neutron sources storage pool. For this purposes, it is essential to characterize the pool itself in terms of neutron fluence and spectra due to the calibration neutron sources. In this work, the main features of this facility are presented and the characterization of the storage pool is carried out. Finally, an application is shown of the obtained results to the neutron irradiation of material.

  5. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  6. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  7. Dose Evaluation of Neutron within Containment Building of a CE type Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Wook; Han, Jae Mun; Kim, Kyung Doek; Yun, Cheol Whan; Suh, Jang Soo; Kim, Young Jae [Nuclear Environment Technology Institute, Daejeon (Korea, Republic of)

    2005-03-15

    From measured results of the neutron fields at some principal places within the containment building in a CE type nuclear power plant in operation, the radiation exposure of a worker to the neutron at there was evaluated and the equivalent dose reflecting new recommendation (ICRP 60) was compared with that doing the old one (ICRP 26). The measured neutron field was also compared with calibration neutron field. From the analysis, the following conclusion was obtained: the average neutron radiation weighting factor according to new recommendation is 2.41 to 2.71 times higher than the old one. The average neutron radiation weighting factor at the measured place was similar to that at calibration neutron field. The average neutron energy at measured place was between 42 and 158 keV and higher than that of calibration field of 500 keV. So, the measured equivalent dose in nuclear power plant could be overestimated compared to the real equivalent dose.

  8. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Calibration and automatic counting in a neutrons dosimeter

    International Nuclear Information System (INIS)

    Tavera-Davila, M.L.

    1991-01-01

    Over the past decade, the majority of improvements in spectrometry have not come from improved detectors but from better computing facilities, in Folding codes, and nuclear data. However several types of passive neutron detectors have the potential for development into crude, low resolution spectrometers, to be worn by individuals, making them attractive to be subject of more time of investigation. This thesis contributes to the understanding of the properties of solid state nuclear tracks (SSNTD) in order to use them in neutron dosimetry and spectrometry. In the first chapter the basic principles on neutron interaction with matter and some relevant considerations about detection and dosimetry are presented. The third chapter deals with detection properties of solid state nuclear track detectors (SSNTD). Calibration methods are presented for three different applications, detection of heavy ions, radon and neutrons. In chapter 4, some equations are derived which predict the whole efficiency formation of thin plastic detectors as a function of range, angle, and type of inciding particle as well as residual thickness. Using experimental data on proton registration properties in thin plastic detectors and the former derived equations, mathematical expressions are developed to predict the sparking counting efficiency for recoll protons and trions produced by neutrons in SSNTD. Chapter five deals with the comparison between experimental results and theoretical results of chapter 4. In chapter 6 experimental optimum parameters for electrochemical etching of thin plastic detectors are presented. The electrochemical etching efficiency is compared with the spark countering efficiency obtained in chapter 5. In chapter 7, general comments on applications to neutron dosimetry are presented. (Author)

  10. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1982-01-01

    The measurement of neutron exposures to personnel is an issue that has received increased attention in the last few years. It is important to consider key aspects of the whole dosimetry system when developing dose estimates. This begins with selection of proper dosimeters and survey instruments, and extends through the calibration methods. One must match the spectral response and sensitivity of the dosimeter to the spectral characteristics of the neutron fields. Threshold detectors that are insensitive to large fractions of neutrons in the lower energy portion of reactor spectra should be avoided. Use of two or more detectors with responses that complement each other will improve measurement quality. It is important to understand the spectral response of survey instruments, so that spectra which result in significant overresponse do not lead to overestimation of dose. Calibration sources that do not match operational field spectra can contribute to highly erroneous results. In those situations, in-field calibration techniques should be employed. Although some detection developments have been made in recent years, a lot can be done with existing technology until fully satisfactory, long term solutions are obtained

  11. Development of a TPC for energy and fluence references in low energies neutronic fields (from 8 keV to 5 MeV)

    International Nuclear Information System (INIS)

    Maire, Donovan

    2015-01-01

    In order to judge the measurement reliability, metrology requires to measure quantities with their uncertainties, in relation to a reference through a documented and unbroken chain of calibrations. In neutron radiation field, instrument response has to be known as a function of the neutron energy. Then detector calibrations are required using reference neutron fields. In France, primary reference neutron fields are held by the LNE-IRSN, at the Laboratory for Neutron Metrology and Dosimetry (LMDN). In order to improve reference neutron field characterization, the LNE-IRSN MIMAC μTPC has been developed. This detector is a Time Projection Chamber (TPC), using a gas at low pressure (30 mbar abs. to 1 bar abs.). Nuclear recoils are generated by neutron elastic scattering onto gas atoms. By measuring the nuclear recoil energy and scattering angle, the μTPC detector is able to measure the energy distribution of the neutron fluence between 8 keV and 5 MeV. The main challenge was to perform accurate spectrometry of neutron fields in the keV range, following a primary procedure. First of all, a metrological approach was followed in order to master every physical process taking part in the neutron detection. This approach led to develop the direct and inverse models, representing the detector response function and its inverse function respectively. Using this detailed characterization, the energy distribution of the neutron fluence has been measured for a continuous neutron field of 27 keV. The reconstructed energy is 28,2 ± 4,5 keV, the difference between μTPC integral fluence measurement and other measurement methods is less than 6%. The LNE-IRSN MIMAC μTPC system becomes the only one system able to measure simultaneously energy and fluence at energies lower than 100 keV, following a primary procedure. The project goal is then reached. These measurements at energies lower than 100 keV shows also a non-linearity between the ionization charge and the ion kinetic energy

  12. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    International Nuclear Information System (INIS)

    Chatzidimitriou-Dreismann, C.A.; Gray, E. MacA.; Blach, T.P.

    2012-01-01

    The “standard” procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron–proton scattering results that together called into question the validity of the “standard” calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron–deuteron scattering from D 2 in the backscattering angular range (θ>90°) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the “standard” calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present “standard” calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H 2 molecules. For Case (B), some suggestions as to how the “standard” calibration could be considerably improved are made.

  13. Importance of the metrological network for calibration of neutron logging methods

    International Nuclear Information System (INIS)

    Rysavy, F.

    1995-01-01

    The calibration characteristics of neutron logging instrumentation are discussed. The principles of the rock, plastics, and water models are briefly outlined. Indian limestone of 9% porosity is the primary standard in the neutron logging metrology network, from which secondary standards employed during certification measurements are derived. It is recommended that rock blocks should be used as national standards, and each secondary institution should possess a set of polyethylene cylinders, one of which would serve as the main standard for the institution in question. (J.B.)

  14. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  15. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed-field

  16. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  17. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  18. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  19. Calibration of LiBaF sub 3 Ce scintillator for fission spectrum neutrons

    CERN Document Server

    Reeder, P L

    2002-01-01

    The scintillator LiBaF sub 3 doped with small amounts of Ce sup + sup 3 has the ability to distinguish heavy charged particles (p, d, t, or alpha) from beta and/or gamma radiation based on the presence or absence of nanosecond components in the scintillation light output. Since the neutron capture reaction on sup 6 Li produces recoil alphas and tritons, this scintillator also discriminates between neutron induced events and beta or gamma interactions. An experimental technique using a time-tagged sup 2 sup 5 sup 2 Cf source has been used to measure the efficiency of this scintillator for neutron capture, the calibration of neutron capture pulse height, and the pulse height resolution--all as a function of incident neutron energy.

  20. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  1. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  2. Applications of Bonner sphere detectors in neutron field dosimetry

    International Nuclear Information System (INIS)

    Awschalom, M.; Sanna, R.S.

    1983-09-01

    The theory of neutron moderation and spectroscopy are briefly reviewed, and moderators that are useful for Bonner sphere spectrometers are discussed. The choice of the neutron detector for a Bonner sphere spectrometer is examined. Spectral deconvolution methods are briefly reviewed, including derivative, parametric, quadrature, and Monte Carlo methods. Calibration is then discussed

  3. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  4. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  5. Evaluation of neutron dosimetry techniques for well-logging operations

    International Nuclear Information System (INIS)

    Cummings, F.M.; Haggard, D.L.; Endres, G.W.R.

    1985-07-01

    Neutron dose and energy spectral measurements from 241 AmBe and a 14 MeV neutron generator were performed at a well-logging laboratory. The measurement technique included the tissue equivalent proportional counter, multisphere, two types of remmeters and five types of personnel neutron dosimeters. Several source configurations were used to attempt to relate data to field situations. The results of the measurements indicated that the thermoluminescent albedo dosimeter was the most appropriate personnel neutron dosimeter, and that the most appropriate calibration source would be the source normally employed in the field with the calibration source being used in the unmoderated configuration. 7 refs., 35 figs., 14 tabs

  6. Neutron Arm Study and Calibration for the GEn Experiment at Thomas Jefferson National Laboratory

    International Nuclear Information System (INIS)

    Timothy Ngo

    2007-01-01

    The measurement of the neutron electric form factor, GEn, will allow us to solve indirectly for the quark charge distribution inside of the neutron. With the equipment at Jefferson Lab we have measured GEn at four momentum transfer values of Q**2 at 1.3, 2.4 and 3.4 (GeV/c)**2 using a polarized electron beam and polarized Helium target. The scattered electrons off of the Helium target are detected in the BigBite spectrometer and the recoiling neutrons from the Helium are detected in the Neutron Arm, which is composed of an array of scintillators. The main focus of this thesis will be devoted to the geometry, timing and energy calibrations of the Neutron Arm

  7. Borehole-calibration methods used in cased and uncased test holes to determine moisture profiles in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Kneiblher, C.R.; Klenke, J.

    1985-01-01

    The use of drilling and coring methods that minimize the disturbance of formation rock and core has permitted field calibration of neutron-moisture tools in relatively large diameter cased and uncased boreholes at Yucca Mountain, Nevada. For 5.5-inch diameter cased holes, there was reasonable agreement between a field calibration in alluvium-colluvium and a laboratory calibration in a chamber containing silica sand. There was little difference between moisture-content profiles obtained in a neutron-access hole with a hand-held neutron-moisture meter and an automated borehole-logging tool using laboratory-generated calibration curves. Field calibrations utilizing linear regression analyses and as many as 119 data pairs show a good correlation between neutron-moisture counts and volumetric water content for sections of uncased 6-inch diameter boreholes in nonwelded and bedded tuff. Regression coefficients ranged from 0.80 to 0.94. There were only small differences between calibration curves in 4.25- and 6-inch uncased sections of boreholes. Results of analyzing field calibration data to determine the effects of formation density on calibration curves were inconclusive. Further experimental and theoretical work is outlined

  8. Calibration of a NE213 detector for neutron spectroscopy

    International Nuclear Information System (INIS)

    Blazquez Martinez, J.; Butragueno Casado, J. L.

    1974-01-01

    This work describes the experimental way followed for getting the calibration of a NE213 detector with a beam of neutrons from the J.E.N. 2 MeV Van de Graaff and using at once pulse shape discrimination. Detector has been used for measuring the spectrum of the fast reactor CORAL-1. There is also included an experimental method in order to get with precision where the Compton edge is placed on the electron spectrum. (Author) 9 refs

  9. Calibration of the proton detector used for the neutron life time experiment τSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Kim; Haack, Jan; Heil, Werner; Karch, Jan [Johannes Gutenberg-Universitaet Mainz (Germany); Beck, Marcus [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany)

    2016-07-01

    In order to measure the lifetime of free neutrons, a decay curve will be measured by detecting the decay products proton and electron. Their energies range up to 750 eV (protons) respectively 780 keV (electrons). The protons are accelerated onto 15 keV, in order to pass the dead layer of the detector and to be distinguishable from electronic noise. For the measurement a silicon drift detector is used which needs to be calibrated. This is achieved with a {sup 133}Ba source mounted on three source holders of different materials in a vacuum chamber. Thus not only four of the characteristic lines of the {sup 133}Ba source were measured but also the characteristic lines of the three source holders which yield four more calibration lines in the area of the proton energy in the spectrum. We report the implementation and results of the calibration of the silicon drift detector used for the neutron lifetime measurement τSPECT.

  10. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  11. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    International Nuclear Information System (INIS)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  12. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F., E-mail: jodinilson@cnen.gov.b, E-mail: fflima@cnen.gov.b, E-mail: jasantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide, E-mail: santos_neide@yahoo.com.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  13. Nanotubes based neutron generator for calibration of neutrino and dark matter detectors

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Kirsanov, M. A.; Kitsyuk, E. P.; Klenin, A. A.; Kubankin, A. S.; Oleinik, A. N.; Pavlov, A. A.; Shchagin, A. V.

    2017-12-01

    The compact 2.45 MeV fast neutron generator with a reduced supply voltage for calibration of low-background neutrino and dark matter detectors was tested. The generator is based on an array of carbon nanotubes. Neutron generation is carried out by applying a high voltage in the range of +10 to + 25 kV to a nanotube array, which cause an ionization of deuterium molecules with the following acceleration of ions in the direction of the grounded target covered by a deuterated polyethylene film. The d(d,n)3He nuclear reaction happens as the result of ions collisions with the target. The dependences of the neutron yield as functions of the applied voltage were obtained for two different types of carbon nanotubes array. It is shown that the type of nanotubes array does not influence significantly on the neutron yield.

  14. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Lee, H.S.; Bhang, H.; Choi, J.H.; Choi, S.; Joo, H.W.; Kim, G.B.; Kim, K.W.; Kim, S.C.; Kim, S.K.; Lee, J.H.; Lee, J.K.; Myung, S.S.; Hahn, I.S.; Jeon, E.J.; Kang, W.G.; Kim, Y.D.; Kim, Y.H.; Li, J.; Kim, H.J.; Leonard, D.S.

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137 Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  15. A new expression for determination of fluences from a spherical moderator neutron source for the calibration of spherical neutron measuring devices

    International Nuclear Information System (INIS)

    Khoshnoodi, M.; Sohrabi, M.

    1997-01-01

    A new expression modifying the inverse square law for determination of neutron fluences from spherical moderator neutron sources is reported. The formalism is based on the neutron fluence at a point outside the moderator as the summation of fluxes of two groups of neutrons: direct neutrons from the central region of the moderator, and moderated neutrons which, to a first approximation, are scattered from the outermost layers of the spherical moderator. The expression has been further developed for spherical neutron measuring devices with an appropriate geometry factor which corrects the reading of the device for non-uniform irradiation of the detector. The combination of the new fluence function and those of the air and room scattered components introduce a calibration model. The fluence relationship obtained for moderated sources may conveniently be used for calculating the more rapid change of neutron dose at close distances than that which is based on the inverse square dependence. (author)

  16. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Carneiro Junior, Valdeci

    2008-01-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10 8 ± 0,12.10 8 n/cm 2 s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  17. Development, improvement and calibration of neutronic reaction rate measurements: elaboration of a base of standard techniques

    International Nuclear Information System (INIS)

    Hudelot, J.P.

    1998-01-01

    In order to improve and to validate the neutronic calculation schemes, perfecting integral measurements of neutronic parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronic reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO 2 ) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238 U (defined as the ratio of 238 U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242 Pu (on MOX rods) and 232 Th (on Thorium

  18. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN, SP, Brazil

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson; Valeriano, Caio C.S.; Caldas, Linda V.E.; Federico, Claudio A.

    2016-01-01

    With the increased use of techniques using neutron radiation, there has been a considerable growth in the number of detectors for this kind of radiation. A neutron calibration laboratory with neutron radiation ("2"4"1AmBe) was designed. In practical situations of this type of laboratory, one of the main problems is related to the knowledge of scattered radiation. In order to evaluate this scattered radiation, simulations were carried out without the presence of structural elements and with the complete room. Fourteen measuring points were evaluated in different directions at various distances. (author)

  19. Development, improvement and calibration of neutronic reaction rates measurements: elaboration of a standard techniques basis

    International Nuclear Information System (INIS)

    Hudelot, J.P.

    1998-06-01

    In order to improve and to validate the neutronics calculation schemes, perfecting integral measurements of neutronics parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronics reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO 2 ) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238 U (defined as the ratio of 238 U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242 Pu (on MOX rods) and 232 Th (on

  20. Method of energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Hoek, M.; Drozdowicz, K.; Aronsson, D.

    1990-03-01

    A method to calibrate an array of scintillation neutron detectors, using a γ source, is presented. The count rate is measured as a function of high voltage at a given discrimination level. The obtained distribution is differentiated and a maximum value is determined which corresponds to the voltage at which the gamma peak passes through the discrimination level. By repeating the measurement at different discrimination levels the experimental dependence between the discrimination level and the high voltage is found as a straight line in a log-log diagram. Two calibration parameter for each detector are determined from a fit of these straight lines. A recalculation from the energy of the used γ source to any other energy is then possible and the obtained relation can be used to calculate discrimination levels and high voltages for each detector. Verification procedures are described. (authors)

  1. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  2. A solenoidal electron spectrometer for a precision measurement of the neutron β-asymmetry with ultracold neutrons

    International Nuclear Information System (INIS)

    Plaster, B.; Carr, R.; Filippone, B.W.; Harrison, D.; Hsiao, J.; Ito, T.M.; Liu, J.; Martin, J.W.; Tipton, B.; Yuan, J.

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron β-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported

  3. A solenoidal electron spectrometer for a precision measurement of the neutron {beta}-asymmetry with ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, B. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: plaster@pa.uky.edu; Carr, R.; Filippone, B.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Harrison, D. [Physics Department, University of Winnipeg, Manitoba, Canada R3B 2E9 (Canada); Hsiao, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Ito, T.M. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Martin, J.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Physics Department, University of Winnipeg, Manitoba, R3B 2E9 (Canada); Tipton, B.; Yuan, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-10-11

    We describe an electron spectrometer designed for a precision measurement of the neutron {beta}-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  4. A Study on Relative Radiometric Calibration without Calibration Field for YG-25

    Directory of Open Access Journals (Sweden)

    ZHANG Guo

    2017-08-01

    Full Text Available YG-25 is the first agility optical remote sensing satellite of China to acquire the sub-meter imagery of the earth. The side slither calibration technique is an on-orbit maneuver that has been used to flat-field image data acquired over the uniform calibration field. However, imaging to the single uniform calibration field cannot afford to calibrate the full dynamic response range of the sensor and reduces the efficiency. The paper proposes a new relative radiometric calibration method that a 90-degree yaw maneuver is performed over any non-uniform features of the Earth for YG-25. Meanwhile, we use an enhanced side slither image horizontal correction method based on line segment detector(LSDalgorithm to solve the side slither image over-shifted problem.The shifted results are compared with other horizontal correction method. The histogram match algorithm is used to calculate the relative gains of all detectors. The correctness and validity of the proposed method are validated by using the YG-25 on-board side slither data. The results prove that the mean streaking metrics of relative correction images of YG-25 is better 0.07%, the noticeable striping artifact and residual noise are removed, the calibration accuracy of side slither technique based on non-uniform features is superior to life image statistics of sensor's life span.

  5. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments

    International Nuclear Information System (INIS)

    Lee, K.W.; Sheu, R.J.

    2015-01-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)

  6. Establishment of calibration curve for water measurement in a bulky paper recycling by neutron device

    International Nuclear Information System (INIS)

    Norpaiza Mohamad Hasan; Glam Hadzir Patai Mohamad; Rasif Mohd Zain; Ismail Mustapha

    2010-01-01

    A bulk used paper supplied to recycling industry may contain water in their internal voids. This is because the price of the used paper is currently based on their weight and has a huge potential of suppliers to add with water in order to increase the price. Currently used methods for moisture content in a paper are restricted to sheet of paper only. This paper presents a non-intrusive method for quick and in-situ measurement of water content in a bulky used paper. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector are used for water measurement. The experiment is carried out by measuring a series of wet paper that added with known amount of water. As consequent, a neutron calibration curve for water measurement in a bulky used paper is obtained. Six categories of calibration curve have been proposed for correction of weight measurement during purchasing of used paper. (author)

  7. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    OpenAIRE

    Kim Myong-Seop; Park Byung-Gun; Kang Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affe...

  8. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  9. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    Science.gov (United States)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  10. Estimation of photon energy distribution in gamma calibration field

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shimizu, Shigeru; Yamaguchi, Yasuhiro

    1997-03-01

    Photon survey instruments used for radiation protection are usually calibrated at gamma radiation fields, which are traceable to the national standard with regard to exposure. Whereas scattered radiations as well as primary gamma-rays exit in the calibration field, no consideration for the effect of the scattered radiations on energy distribution is given in routine calibration works. The scattered radiations can change photon energy spectra in the field, and this can result in misinterpretations of energy-dependent instrument responses. Construction materials in the field affect the energy distribution and magnitude of the scattered radiations. The geometric relationship between a gamma source and an instrument can determine the energy distribution at the calibration point. Therefore, it is essential for the assurance of quality calibration to estimate the energy spectra at the gamma calibration fields. Then, photon energy distributions at some fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (JAERI) were estimated by measurements using a NaI(Tl) detector and Monte Carlo calculations. It was found that the use of collimator gives a different feature in photon energy distribution. The origin of scattered radiations and the ratio of the scattered radiations to the primary gamma-rays were obtained. The results can help to improve the calibration of photon survey instruments in the JAERI. (author)

  11. SEE cross section calibration and application to quasi-monoenergetic and spallation facilities

    Directory of Open Access Journals (Sweden)

    Alía Rubén García

    2017-01-01

    Full Text Available We describe an approach to calibrate SEE-based detectors in monoenergetic fields and apply the resulting semi-empiric responses to more general mixed-field cases in which a broad variety of particle species and energy spectra are involved. The calibration of the response functions is based both on experimental proton and neutron data and considerations derived from Monte Carlo simulations using the FLUKA code. The application environments include the quasi-monoenergetic neutrons at RCNP, the atmospheric-like VESUVIO spallation spectrum and the CHARM high-energy accelerator test facility.

  12. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  13. Mathematical model and computer programme for theoretical calculation of calibration curves of neutron soil moisture probes with highly effective counters

    International Nuclear Information System (INIS)

    Kolev, N.A.

    1981-07-01

    A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)

  14. The impact of ICRP 60 recommendations on the dose equivalent in low- and high energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Jakes, J; Schraube, H [GSF-Forschungszentrum Neuberg, D-85758 Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1996-12-31

    The objectives of this study was to determine the impact of the increased risk factors for neutrons after ICRP 60 on the operational dose equivalent quantities at a few neutron fields selected with the respect to cover the broad variety of neutron spectra: (1) Cadarache calibration assembly, with average neutron energy around 0.6 MeV, designed to simulate realistic neutron spectra at workplaces. This assembly is basically composed of an almost spherical {sup 238}U converter irradiated by 14.6 MeV neutrons from an accelerator target, placed at its center, and a scattering chamber consisting of a cylindrical polyethylene duct and a series of additional shieldings; (2) Neutron spectra at exposed workplaces in nuclear power plants; (3) Moderated spectra of {sup 252}Cf fission source; (4) Neutron spectra behind a shielding made of the iron (the average energy 5.,89 MeV) and concrete (the average energy 46.51 MeV), respectively; (5) Cosmic rays induced neutron spectra measured on the top of the Zugspitze (2968 m) where there is the average neutron energy around 40 MeV. From the derived neutron spectra, the mean quality factors and conversion factors h after ICRP 21 and ICRP 60, respectively, were calculated. The dose equivalent conversion factors were taken for the region below 20 MeV, and the energy region above 20 MeV. The results show that the operational quantities were affected predominately in the low energy fields, where the changes are given by a factor of 1,3 for the neutron fields given above. As has been expected, the impact of the new recommendations depends on the shape of the neutron spectra. Therefore, this factor can be much higher in the fields where the intermediate energy region is dominant, which is the case of moderated and scattered spectra at some places in the nuclear power plant and around containers with the spent fuel elements. (J.K.) 9 refs.

  15. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  16. Absolute calibration system of neutron sources by the manganese sulphate bath

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Sachett, I.A.

    1990-01-01

    The calibration system consists of deep the neutron source, protected by plastic container, at the center of spherical polietilene tank, in a concentrated solution of manganese sulphate. The neutrons emitted by the source are moderated and when reach the termal energy are catched by manganese atoms activating the solution. After the saturation activity has been reached the source is removed and one scintilation detector (NaI(Tl) 3' x 3') is put in the same place to follow the decay activity. The gama couting rate (845 KeV 54 Mn photopeak), after the corrections is used to estimate the saturation activity, and calculate the neutron source emission rate. These calculations are executed by one computer program. The uncertainties in the final value of emission rate are about 2.5 - 3.0 % to AmBe sources in the 1.11 x 10 10 Bq (0,3 Ci) - 3.7 x 10 11 Bq (10 Ci) range. (author) [pt

  17. A Neutron Radiography System for Field Use

    Science.gov (United States)

    1989-06-01

    provoked a major renewal of interest in neutron radiography because it promises to bring neutron radiography to the workplace , a convenience provided...II I~F I C II i IiH i ii MTL TR 89-52 I-AD A NEUTRON RADIOGRAPHY SYSTEM N FOR FIELD USE e~m JOHN J. ANTAL and ALFRED S. MAROTTA, and LOUIS J. FARESE...COVERED A NEUTRON RADIOGRAPHY SYSTEM FOR FIELD USE Final Report 6. PERFORMING OR1. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s) John J

  18. Study on neutron dosimetry in JNC Tokai Works

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2003-03-01

    The author developed the neutron reference calibration fields using a {sup 252}Cf standard source surrounded with PMMA (polymethylmethacrylates) moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are concentric, annular cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252}Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments. (author)

  19. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  20. A systematic approach to personnel neutron monitoring

    International Nuclear Information System (INIS)

    Griffith, R.V.; Hankins, D.E.

    1980-01-01

    In selection, calibration and interpretation of personnel neutron dosimeters used in radiation protection, adequate attention is often not given to matching the characteristics of the dosimeter with the quality of the neutron field. A particular concern is the use of albedo detectors which have little energy response similarity to the neutron dose equivalent conversion curve. At the Lawrence Livermore Laboratory we have developed a system for dosimeter calibration and neutron field characterization using Bonner spheres and remmeters. Rapid surveys of the work area with detectors in 3-in and 9-in polyethylene spheres establish a qualitative estimate of spectral variation found in the facility. We also use this data to determine the appropriate albedo dosimeter calibration factors. At several locations representing the spectral range, multisphere spectra measure-ments are made and the spectrum weighted dose equivalent rates calculated. These rates are compared with survey instrument results to establish correction factors for the relative over- or under-response expected from these instruments, particularly in highly moderated neutron fields where remmeters overrespond. We also use the spectral information to determine the appropriateness of dosimeters considered for future use. This technique has been applied at power reactors to provide information valuable to selection of proper personnel dosimeters. We find that the spectral range is sufficiently narrow that albedo detectors can be used with confidence. On the other hand, most of the dose occurs at energies below the effective threshold NTA film. (author)

  1. Compilation of neutron flux density spectra and reaction rates in different neutron fields

    International Nuclear Information System (INIS)

    Ertek, C.

    1979-07-01

    Upon the recommendation of International Working Group of Reactor Radiation Measurements (IWGRRM), the compilation of neutron flux density spectra and the reaction rates obtained by activation and fission foils in different neutron fields is presented. The neutron fields considered are as follows: 1/E; iron block; LWR core and pressure vessel; LMFBR core and blanket; CTR first wall and blanket; fission spectrum

  2. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  3. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  4. Neutron and photon spectrometry with liquid scintillation detectors in mixed fields

    CERN Document Server

    Klein, H

    2002-01-01

    Liquid scintillation detectors of type NE213 or BC501A are well suited and routinely used for spectrometry in mixed n-gamma-fields. Neutron- and photon-induced pulse height spectra may be simultaneously recorded making use of the n/gamma-discrimination capability based on pulse shape analysis. The light output functions for the detected secondary charged particles, i.e. electrons, positrons, protons and other charged reaction products, and the pulse height resolution function must carefully be determined. This can be done experimentally, in part via an iterative procedure by comparison with calculations. The response functions can then be reliably calculated by Monte Carlo simulations. Photon response functions calculated with the PHRESP code, which was developed on the basis of the EGS4+PRESTA program package, are in very good agreement with calibrations up to 17 MeV, both in shape and absolute scale. Similarly, neutron response functions calculated with the NRESP7 code well describe the pulse height spectra...

  5. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 5. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    In recent years, Georgia Institute of Technology (Georgia Tech) has been involved in a number of neutron dosimetry research projects. Several reference neutron fields are now available for such projects. They are all based on the use of a 252 Cf source. The source can be used by itself to create a reference un-moderated 252 Cf neutron field, or it can be placed inside several different moderating assemblies. The spectra created by placing the source inside these assemblies and the un-moderated source are employed to investigate detector and dosimeter responses. Currently, the set of moderators available includes a 30-cm diam cadmium-covered D 2 O spherical shell, a 30-cm-thick iron spherical shell, a 30-cm-diam polyethylene spherical shell, an 18.3-cm-thick tungsten spherical shell, a 16-cm-thick lead spherical shell, and a 9-cm-thick tantalum spherical shell. In addition, the 252 Cf source can be placed inside a neutron howitzer recently constructed at Georgia Tech. The howitzer is a WEP cylinder loaded with boron that has a 10.16-cm-diam cylindrical opening. When the source is placed in the cylindrical penetration of the howitzer, a neutron field ∼30 cm in diameter is created at a distance of 50 cm from the californium source. Over the last few years, Bonner sphere spectrometers using LiI(Eu) scintillators and LiF thermoluminescence dosimeters have been calibrated using this facility at Georgia Tech. Recently, the Neely Nuclear Research Center (NNRC) acquired an LB 6411 neutron probe (product of EG and G Berthold). This probe is designed to measure ambient dose equivalent in accordance with International Commission on Radiological Protection Publication 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diam spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV (Ref. 5). As a test of the instrument's ability to measure ambient

  6. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  7. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  8. Monte Carlo analysis of the Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    Vega C, H. R.; Mendez V, R.; Guzman G, K. A.

    2014-10-01

    By means of Monte Carlo methods was characterized the neutrons field produced by calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources: 241 AmBe and 252 Cf which are stored in a water pool and are placed on the calibration bench using controlled systems at distance. To characterize the neutrons field was built a three-dimensional model of the room where it was included the stainless steel bench, the irradiation table and the storage pool. The sources model included double encapsulated of steel, as cladding. With the purpose of determining the effect that produces the presence of the different components of the room, during the characterization the neutrons spectra, the total flow and the rapidity of environmental equivalent dose to 100 cm of the source were considered. The presence of the walls, floor and ceiling of the room is causing the most modification in the spectra and the integral values of the flow and the rapidity of environmental equivalent dose. (Author)

  9. Field and laboratory calibration of neutron probes for soil moisture measurements on a deep loess chernozem soil

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1979-01-01

    In the case of a varying profile structure it is necessary to use different calibration curves and adequate correction factors, respectively. The bulk density of the soil had the greatest influence on the calibration. An increase in bulk density by 0.2 g/cm 3 at a clay content of 18% resulted in an apparent increase in the values of moisture measurements by 1.5 to 2.0% of the volume of water. In naturally stratified soil the humus content of the chernozem horizon, being 3% higher than that of the underlying loess horizon, was found to influence the measuring results obtained by the probe. The calibration curves determined for chernozem and loess horizons in the laboratory agreed well with those obtained in the field. The measured values read from the probe and the gravimetrically determined values of the soil moisture were of great significance in all measured depths of the profile. (author)

  10. Evaluation of the neutron dose received by personnel at the LLNL

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1982-01-01

    This report was prepared to document the techniques being used to evaluate the neutron exposures received by personnel at the LLNL. Two types of evaluations are discussed covering the use of the routine personnel dosimeter and of the albedo neutron dosimeter. Included in the report are field survey results which were used to determine the calibration factors being applied to the dosimeter readings. Calibration procedures are discussed and recommendations are made on calibration and evaluation procedures

  11. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  12. Individual neutron monitoring in workplaces with mixed neutron/proton radiation

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Bartlett, D.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Giusti, V.; Gressier, V.; Kylloenen, J.; Lacoste, V.; Lindborg, L.; Luszik-Bhadra, M.; Molinos, C.; Pelcot, G.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.; Derdau, D.

    2004-01-01

    EVIDOS ('evaluation of individual dosimetry in mixed neutron and photon radiation fields') is an European Commission (EC)-sponsored project that aims at a significant improvement of radiation protection dosimetry in mixed neutron/photon fields via spectrometric and dosimetric investigations in representative workplaces of the nuclear industry. In particular, new spectrometry methods are developed that provide the energy and direction distribution of the neutron fluence from which the reference dosimetric quantities are derived and compared to the readings of dosemeters. The final results of the project will be a comprehensive set of spectrometric and dosimetric data for the workplaces and an analysis of the performance of dosemeters, including novel electronic dosemeters. This paper gives an overview of the project and focuses on the results from measurements performed in calibration fields with broad energy distributions (simulated workplace fields) and on the first results from workplaces in the nuclear industry, inside a boiling water reactor and around a spent fuel transport cask. (authors)

  13. Neutron dosimetry program at Mound - problems and solutions

    International Nuclear Information System (INIS)

    Winegardner, M.K.

    1991-01-01

    The Mound personnel neutron dosimetry program utilizes TLD albedo technology. The neutron dosimeter design incorporates a two-element spectrometer for site-specific neutron quality determination and empirical application of field neutron calibration factors. Design elements feature two Li(6)F (TLD- 600) chips for neutron detection and one Li(7)F (TLD-700) chip for gamma compensation of the TLD- 600 chips. One TLD-600 chip is Cadmium shielded on the front side of the dosimeter, the other is Cadmium shielded from the back side. Tin filters are placed opposite of the Cadmium shield on each of the TLD-600 chips and on both sides of the TLD-700 chip for symmetrically equivalent gamma absorption characteristics. Neutron quality determination is accomplished by the albedo neutron-to- incident thermal neutron response ratio above the Cadmium cutoff. This front Cadmium shielded-to-back Cadmium shielded response ratio, compensated for the presence of gamma radiation, provides the basis for neutron energy calibration via the albedo response curve

  14. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    International Nuclear Information System (INIS)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-01-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  15. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  16. Neutron stars. [quantum mechanical processes associated with magnetic fields

    Science.gov (United States)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  17. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    International Nuclear Information System (INIS)

    Zhang, Guoqing

    2011-01-01

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  18. Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqing

    2011-12-22

    Monte Carlo methods based on random sampling are widely used in different fields for the capability of solving problems with a large number of coupled degrees of freedom. In this work, Monte Carlos methods are successfully applied for the simulation of the mixed neutron-gamma field in an interim storage facility and neutron dosimeters of different types. Details are discussed in two parts: In the first part, the method of simulating an interim storage facility loaded with CASTORs is presented. The size of a CASTOR is rather large (several meters) and the CASTOR wall is very thick (tens of centimeters). Obtaining the results of dose rates outside a CASTOR with reasonable errors costs usually hours or even days. For the simulation of a large amount of CASTORs in an interim storage facility, it needs weeks or even months to finish a calculation. Variance reduction techniques were used to reduce the calculation time and to achieve reasonable relative errors. Source clones were applied to avoid unnecessary repeated calculations. In addition, the simulations were performed on a cluster system. With the calculation techniques discussed above, the efficiencies of calculations can be improved evidently. In the second part, the methods of simulating the response of neutron dosimeters are presented. An Alnor albedo dosimeter was modelled in MCNP, and it has been simulated in the facility to calculate the calibration factor to get the evaluated response to a Cf-252 source. The angular response of Makrofol detectors to fast neutrons has also been investigated. As a kind of SSNTD, Makrofol can detect fast neutrons by recording the neutron induced heavy charged recoils. To obtain the information of charged recoils, general-purpose Monte Carlo codes were used for transporting incident neutrons. The response of Makrofol to fast neutrons is dependent on several factors. Based on the parameters which affect the track revealing, the formation of visible tracks was determined. For

  19. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  20. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...

  1. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  2. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  3. Calibration of A Prompt Gamma Neutron Activation Analysis (PGNAA) Facility: Experience at the Oregon State University TRIGA Reactor

    International Nuclear Information System (INIS)

    Norlida Yussup

    2011-01-01

    A prompt gamma neutron activation analysis (PGNAA) facility at Oregon State University (OSU) TRIGA reactor has been built in year 2008 and been operated since then. PGNAA is a technique used to determine the presence and quantity of trace elements such as boron, hydrogen and carbon which are more difficult to detect with other neutron analysis method. A calibration is essential to ensure the system works as required and the output is valid and reliable. The calibration was carried out by using Standard Reference Material (SRM). Besides, background data was also acquired for comparisons and analysis. The results are analyzed and discussed in this paper. (author)

  4. 5th symposium on neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F

    1985-03-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of /sup 252/Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.).

  5. 5th symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    Spurny, F.

    1985-01-01

    The symposium was held in Neuherberg near Munich on September 17-20, 1984 and was attended by 200 specialists from 20 coutries. The participants discussed the following areas of neutron dosimetry: basic concept and analysis of irradiation, basic data, proportional counters in radiation protection, detector response and spectrometry, enviromental monitoring, radiobiology and biophysical models, analysis of neutron fields, thermoluminescent detectors, personnel monitoring, calibration, measurement in the environment of 252 Cf sources, analysis of fields and detector response, standardization dosimetry, ionization chambers, planning of therapeutical irradiation study of depth dose distribution, facilities for neutron therapy and international comparison. (E.S.)

  6. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    in nuclei. The neutrons are expected to form a 3P superfluid and the protons a 1S ... crust are expected to form a lattice; the electrons are free and highly degenerate, .... the reduced magnetic fields in neutron stars processed in binaries,.

  7. Applications of a lead pile coupled with fast reactor core of Yayoi as an intermediate energy neutron standard field

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nakazawa, Masaharu; Sekiguchi, Akira; Wakabayashi, Hiroaki.

    1976-10-01

    Intermediate neutron column of YAYOI reactor is here evaluated as an intermediate energy neutron standard field which provides a base of the measurements of various reaction rates in that energy region, including detector calibration and Doppler coefficient determination. The experiments were performed using YAYOI's core as a fast neutron source by coupling with the large lead pile, which is a 160 ton's octagon of 2.5 m high and with a thickness of about 2.5 m face to face distance. Spatial variation of the neutron flux in the lead pile was estimated by gold activation foils, and the neutron spectrum by sandwich foils, a helium-3 proportional counter and a proton recoil counter. The calculated results were obtained using one and two- dimensional discrete ordinate code, ANISN and TWOTRAN II. Through comparison of experiment with calculation, it became clear that the neutron field at the central block has simple energy spectrum and stable spatial distribution of the neutron flux, the absolute of which was 5.0 x 10 4 (n/cm 2 /sec/Watt) at the representative energy of 1 KeV. The energy spectrum of the position and the spatial dependent neutron flux in the lead pile are both represented by the semiempirical formula, which must be useful both for evaluation of experimental data and for future applications. (auth.)

  8. CR-39 nuclear track detector used for neutron dosimetry: system calibration

    International Nuclear Information System (INIS)

    Saint Martin, G.; Lopez, F.; Bernaola, Omar A.

    2009-01-01

    Stacks composed by 1 mm thickness CR-39 foils and polyethylene and PVC films were evaluated to be used as neutron dosemeters. Irradiations were made with a calibrated 241 Am-Be source in a dose range from 0 to 3.1 mSv and the etching conditions were optimized. The measurements of number of tracks per surface unit in the CR-39 detectors showed a good linear behaviour as a function of the dose. The minimum detectable dose equivalent (MDDE) was calculated. (author)

  9. A zero-to-few-hundred eV proton beam for calibrations of neutron beta decay experiments

    CERN Document Server

    Naab, F; Zech, W; García, A; Mumm, P

    2002-01-01

    We have constructed a system using a duoplasmatron source to produce a beam of low-energy (0 - few hundred eV) protons with the principal goal of testing and calibrating detectors used to detect protons from neutron beta decay. The system is stable and produces beams by simply turning on the associated power supplies without the need of careful tuning. As an example we show data from calibration of a surface barrier detector in the emiT apparatus. Protons from the system were scattered from an Al target and used to calibrate detectors in the emiT apparatus.

  10. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Directory of Open Access Journals (Sweden)

    M. Schrön

    2017-10-01

    Full Text Available In the last few years the method of cosmic-ray neutron sensing (CRNS has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  11. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Scheiffele, Lena; Iwema, Joost; Bogena, Heye R.; Lv, Ling; Martini, Edoardo; Baroni, Gabriele; Rosolem, Rafael; Weimar, Jannis; Mai, Juliane; Cuntz, Matthias; Rebmann, Corinna; Oswald, Sascha E.; Dietrich, Peter; Schmidt, Ulrich; Zacharias, Steffen

    2017-10-01

    In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  12. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, L [UniversityWashington, Seattle, WA (United States); Yang, F; Sandison, G [University of Washington, Seattle, WA (United States); Woodworth, D [University of California, Santa Barbara, Santa Barbara, CA (United States); McCormick, Z [University of Nevada - Reno, Reno, Nevada (United States)

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  13. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  14. Research on calibration field designing for airborne position and orientation system

    Science.gov (United States)

    Fu, Jianhong

    2009-10-01

    To analyze the size and location of the calibration field and the stabilization of systematic error parameters, calibration field designing for airborne Position and Orientation System (POS) using actual photogrammetric data is discussed in this paper. The empirical results have verified that a region of 4 strips with 7 images in each strip is appropriate for use as a calibration field, whose location should be within 1° in longitude from the center of the project. If the equipment is changed, the POS must be recalibrated. Otherwise, the flight interval of the calibration field should not exceed 30 days.

  15. Response characteristics of selected personnel neutron dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Fix, J.J.; Hadley, R.T.; Holbrook, K.L.; Yoder, R.C.; Roberson, P.L.; Endres, G.W.R.; Nichols, L.L.; Schwartz, R.B.

    1983-09-01

    Performance characteristics of selected personnel neutron dosimeters in current use at Department of Energy (DOE) facilities were determined from their evaluation of neutron dose equivalent received after irradiations with specific neutron sources at either the National Bureau of Standards (NBS) or the Pacific Northwest Laboratory (PNL). The characteristics assessed included: lower detection level, energy response, precision and accuracy. It was found that when all of the laboratories employed a common set of calibrations, the overall accuracy was approximately +-20%, which is within uncertainty expected for these dosimeters. For doses above 80 mrem, the accuracy improved to better than 10% when a common calibration was used. Individual differences found in this study may reflect differences in calibration technique rather than differences in the dose rates of actual calibration standards. Second, at dose rates above 100 mrem, the precision for the best participants was generally below +-10% which is also within expected limits for these types of dosimeters. The poorest results had a standard deviation of about +-25%. At the lowest doses, which were sometimes below the lower detection limit, the precision often approached or exceeded +-100%. Third, the lower level of detection for free field 252 Cf neutrons generally ranged between 20 and 50 mrem. Fourth, the energy dependence study provided a characterization of the response of the dosimeters to neutron energies far from the calibration energy. 11 references, 22 figures, 26 tables

  16. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Transmutation of Minor Actinide in well thermalized neutron field and application of advanced neutron source (ANS)

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hirakawa, Naohiro

    1995-01-01

    Transmutation of Minor Actinide (MA) in a well thermalized neutron field was studied. Since MA nuclides have large effective cross sections in the well thermalized neutron field, the transmutation in the well thermalized neutron field has an advantage of high transmutation rate. However, the transmutation rate largely decreases by accumulation of 246 Cm when MA is transmuted only in the well thermalized neutron field for a long period. An acceleration method of burn-up of 246 Cm was studied. High transmutation rate can be obtained by providing a neutron field with high flux in the energy region between 1 and 100 eV. Two stage transmutation using the well thermalized neutron field and this field can transmute MA rapidly. The applicability of the Advanced Neutron Source (ANS) to the transmutation of MA was examined for a typical MA with the composition in the high-level waste generated in the conventional PWR. If the ANS is applied without changing the fuel inventory, the amount of MA which corresponds to that produced by a conventional 1,175 MWe PWR in one year can be transmuted by the ANS in one year. Furthermore, the amount of the residual can be reduced to about 1g (10 -5 of the initial MA weight) by continuing the transmutation for 5 years owing to the two stage transmutation. (author)

  18. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor; Caracterizacao do campo de neutrons na instalacao para estudo em BNCT no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro Junior, Valdeci

    2008-07-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10{sup 8} {+-} 0,12.10{sup 8} n/cm{sup 2}s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  19. Local-field refinement of neutron scattering lengths

    International Nuclear Information System (INIS)

    Sears, V.F.

    1985-01-01

    We examine the way in which local field effects in the neutron refractive index affect the values of coherent scattering lengths determined by various kinds of neutron optical measurements. We find that under typical experimental conditions these effects are negligible for interferometry measurements but that they are significant for gravity refractometry measurements, producing changes in the effective scattering length of as much as two or three standard deviations in some cases. Refined values of the scattering length are obtained for the thirteen elements for which data are presently available. The special role of local field effects in neutron transmission is also discussed. (orig.)

  20. Local-field refinement of neutron scattering lengths

    Energy Technology Data Exchange (ETDEWEB)

    Sears, V F

    1985-06-01

    We examine the way in which local field effects in the neutron refractive index affect the values of coherent scattering lengths determined by various kinds of neutron optical measurements. We find that under typical experimental conditions these effects are negligible for interferometry measurements but that they are significant for gravity refractometry measurements, producing changes in the effective scattering length of as much as two or three standard deviations in some cases. Refined values of the scattering length are obtained for the thirteen elements for which data are presently available. The special role of local field effects in neutron transmission is also discussed.

  1. Integral test on activation cross section of tag gas nuclides using fast neutron spectrum fields

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Takafumi; Suzuki, Soju [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    Activation cross sections of tag gas nuclides, which will be used for the failed fuel detection and location in FBR plants, were evaluated by the irradiation tests in the fast neutron spectrum fields in JOYO and YAYOI. The comparison of their measured radioactivities and the calculated values using the JENDL-3.2 cross section set showed that the C/E values ranged from 0.8 to 2.8 for the calibration tests in YAYOI and that the present accuracies of these cross sections were confirmed. (author)

  2. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  3. Establishment of 137Cs radiation fields for instrument calibration

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.V.E.; Xavier, M.

    1988-09-01

    In order to study the energy dependence of clinical dosemeters, systems constituted of ionization chambers connected to special electrometers, many times their calibration with the gamma radiation of 137 Cs is necessary. In this case, the radiation field characterization is fundamental. The source used presents and activity of 38,8 Tbq and belongs to the Calibration Laboratory of IPEN. Dosimetric films, gammagraphy films, ionization chambers and Lucite phantons were used. At the calibration distance, 80 cm (detector-source detection), the homogeneity of a 10 X 10 cm 2 radiation field was equal 68%. (author) [pt

  4. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    International Nuclear Information System (INIS)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2011-01-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources 241 AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to 137 Cs gamma rays at 137 Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after 137 Cs and 241 AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  5. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  6. Bubble detector's evaluation for neutron field measurement in a very known source

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Eduardo; Silva, Ademir X. da, E-mail: ademir@nuclear.ufrj.b, E-mail: jdantas@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Reina, Luiz, E-mail: reina@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Facure, Alessandro, E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Measurements on neutron fields, mainly for dosimetric purposes, have been a major concern for ionizing radiation workers, because of the radiation protection issues. The present work aims to study the using of bubble detectors in neutron dosimetry and the Bubble Detector Spectrometer (BDS) was chosen for this task. Several experiments were performed in order to obtain spectra from such devices and their respective analysis and then they were compared to those which were obtained by other ways. An Am-Be calibration neutron source from Instituto de Radioprotecao e Dosimetria/Comissao Nacional de Energia Nuclear (IRD/CNEN) was used and its spectrum was compared to the one obtained by BDS. The possibility of the use of such devices as ambient dosimeters was also evaluated. Despite the uncertainties, especially in the lowest energy thresholds, the spectrum from BDS is in good agreement with the known ones and the use of BDS as a dosimeter demands a more detailed study due to some characteristics of the Am-Be source that produce high uncertainties in low energy thresholds. (author)

  7. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  8. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    International Nuclear Information System (INIS)

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  9. Calibration of thermal neutron detection compound BN-1 and CR-39 in the exposure room of Triga Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Kristof, E.; Ilic, R.; Skvarc, J.; Dijanosic, R.

    1994-01-01

    Description of determination of thermal neutron fluences in the range from 1.E+02 to 1.E+12 cm -2 for calibration of the neutron sensitive compound consisting of the neutron converter BN-1 and charged particle detector CR-39 is given. The method employs two proportional BF3 detectors supplemented by a Ge(Li) gamma spectometer utilizing gold foils. The results of the measurements are also presented. (author)

  10. Neutron Dark-Field Imaging

    Science.gov (United States)

    Mullins, David

    2017-09-01

    Neutron imaging is typically used to image and reconstruct objects that are difficult to image using X-Ray imaging techniques. X-Ray absorption is primarily determined by the electron density of the material. This makes it difficult to image objects within materials that have high densities such as metal. However, the neutron scattering cross section primarily depends on the strong nuclear force, which varies somewhat randomly across the periodic table. In this project, an imaging technique known as dark field imaging using a far-field interferometer has been used to study a sample of granite. With this technique, interferometric phase images are generated. The dispersion of the microstructure of the sample dephases the beam, reducing the visibility. Collecting tomographic projections at different autocorrelation lengths (from 100 nanometers to 1.74 micrometers) essentially creates a 3D small angle scattering pattern, enabling mapping of how the microstructure is distributed throughout the sample.

  11. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  12. Reference neutron radiations. Part 1: Characteristics and methods of production

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 1. of ISO 8529 specifies the reference neutron radiations, in the energy range from thermal up to 20 MeV, for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy. Reference radiations are given for neutron fluence rates of up to 1x10 9 m 2 s-1 , corresponding, at a neutron energy of 1 MeV, to dose-equivalent rates of up to 100 mSv h -1 . This part of ISO 8529 is concerned only with the methods of producing and characterizing the neutron reference radiations. The procedures for applying these radiations for calibrations are described in ISO 8529-2 and ISO 8529-3. The reference radiations specified are the following: neutrons from radionuclide sources, including neutrons from sources in a moderator; neutrons produced by nuclear reactions with charged particles from accelerators; neutrons from reactors. In view of the methods of production and use of them, these reference radiations are divided, for the purposes of this part of ISO 8529, into the following two separate sections. In clause 4, radionuclide neutron sources with wide spectra are specified for the calibration of neutron measuring devices. These sources should be used by laboratories engaged in the routine calibration of neutron-measuring devices, the particular design of which has already been type tested. In clause 5, accelerator-produced monoenergetic neutrons and reactor-produced neutrons with wide or quasi monoenergetic spectra are specified for determining the response of neutron-measuring devices

  13. Design, calibration and tests of an extended-range Bonner sphere spectrometer

    CERN Document Server

    Mitaroff, Angela; Silari, Marco

    2001-01-01

    Stray radiation fields outside the shielding of hadron accelerators are of complex nature. They consist of a multiplicity of radiation components (neutrons, photons, electrons, pions, muons, ...) which extend over a wide range of energies. Since the dose equivalent in these mixed fields is mainly due to neutrons, neutron dosimetry is a particularly important task. The neutron energy in these fields ranges from thermal up to several hundreds of MeV, thus making dosimetry difficult. A well known instrument for measuring neutron energy distributions from thermal energies up to about E=10 MeV is the Bonner sphere spectrometer (BSS). It consists of a set of moderating spheres of different radii made of polyethylene, with a thermal neutron counter in the centre. Each detector (sphere plus counter) has a maximum response at a certain energy value depending on its size, but the overall response of the conventional BSS drops sharply between E=10-20 MeV. This thesis focuses on the development, the calibration and tests...

  14. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  15. Do neutrons feel electric fields?

    International Nuclear Information System (INIS)

    Klein, Tony; Werner, Sam

    1991-01-01

    An accounts is given of the results of a co-operative research carried out at the University of Melbourne in Australia and the University of Missouri, Columbia in the United States on the physics of neutrons and their interactions as a test of fundamental principles in quantum mechanics and electrodynamics. In particular it comments on the verification of the Aharonov-Casher effect in electric as well as magnetic fields in the case of neutral particles. It was demonstrated that neutrons have a magnetic moment which precess and acquire phase shifts when exposed to magnetic fields. The sign of the measured phase shift agreed with the theoretical prediction and the magnitude was within one and a half standard deviations of it. 12 refs., 4 figs

  16. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Young, Lori A., E-mail: layoung@uw.edu; Sandison, George [Department of Radiation Oncology, University of Washington, Seattle, Washington 98115 (United States); Yang, Fei [Sylvester comprehensive Cancer Center, University of Miami, Miami, Florida 33124 (United States); Woodworth, Davis [Department of Physics, University of Reno, Reno, Nevada 89557 (United States); McCormick, Zephyr [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2016-01-15

    Purpose: Clinical in vivo dosimeters intended for use with photon and electron therapies have not been utilized for fast neutron therapy because they are highly susceptible to neutron damage. The objective of this work was to determine if a commercial optically stimulated luminescence (OSL) in vivo dosimetry system could be adapted for use in fast neutron therapy. Methods: A 50.5 MeV fast neutron beam generated by a clinical neutron therapy cyclotron was used to irradiate carbon doped aluminum oxide (Al{sub 2}O{sub 3}:C) optically simulated luminescence dosimeters (OSLDs) in a solid water phantom under standard calibration conditions, 150 cm SAD, 1.7 cm depth, and 10.3 × 10.0 cm field size. OSLD fading and electron trap depletion studies were performed with the OSLDs irradiated with 20 and 50 cGy and monitored over a 24-h period to determine the optimal time for reading the dosimeters during calibration. Four OSLDs per group were calibrated over a clinical dose range of 0–150 cGy. Results: OSLD measurement uncertainties were lowered to within ±2%–3% of the expected dose by minimizing the effect of transient fading that occurs with neutron irradiation and maintaining individual calibration factors for each dosimeter. Dose dependent luminescence fading extended beyond the manufacturer’s recommended 10 min period for irradiation with photon or electron beams. To minimize OSL variances caused by inconsistent fading among dosimeters, the observed optimal time for reading the OSLDs postirradiation was between 30 and 90 min. No field size, wedge factor, or gantry angle dependencies were observed in the OSLDs irradiated by the studied fast neutron beam. Conclusions: Measurements demonstrated that uncertainties less than ±3% were attainable in OSLDs irradiated with fast neutrons under clinical conditions. Accuracy and precision comparable to clinical OSL measurements observed with photons can be achieved by maintaining individual OSLD calibration factors and

  17. Spectral correction factors for conventional neutron dose meters used in high-energy neutron environments improved and extended results based on a complete survey of all neutron spectra in IAEA-TRS-403

    International Nuclear Information System (INIS)

    Oparaji, U.; Tsai, Y. H.; Liu, Y. C.; Lee, K. W.; Patelli, E.; Sheu, R. J.

    2017-01-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (E n > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252 Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252 Cf, 241 Am-Be and 239 Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6''-9'') are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. (authors)

  18. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement

    International Nuclear Information System (INIS)

    Evett, S.R.

    2000-01-01

    Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)

  19. The measurement of thermal neutron constants of the soil; application to the calibration of neutron moisture gauges and to the pedological study of soil

    International Nuclear Information System (INIS)

    Couchat, P.; Marcesse, J.; Carre, C.; Le Ho, J.

    1975-01-01

    The neutronic method for measuring the water content of soils is more and more used by agronomists, hydrogeologists and pedologists. On the other hand the studies on the phenomena of slowing down and diffusion process have shown a narrow relation between the thermal absorption (Σ(a)) and diffusion (Σ(d)) constants and the thermal flux developed in the soil around a fast neutron source like Am-Be. Two original applications of the direct measurement of Σ(a) and Σ(d) are then presented. The method described consists in the measurement, in a cube of graphite with Am-Be source in the middle, on one side of the perturbation of the thermal flux, obtained by the introduction of 300g of soil, and on the other side of the transmitted thermal flux measured through the same sample of soil, on a side of the cube. After calibrating the device, these two parameters give Σ(a) and Σ(d) which are easily introduced in the calibration equation of neutron moisture gauge. Also these two values are useful for the pedologists because Σ(d) is connected to clay content in the soil and Σ(a) is connected to the type of clay by the way of rare earth contents [fr

  20. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-10-01

    In order for ITER to meet its operational and programmatic goals, it will be necessary to measure a wide range of plasma parameters. Some of the required parameters e.g., neutron yield, fusion power and power density, ion temperature profile in the core plasma, and characteristics of confined and escaping alpha particle populations are best measured by fusion product diagnostic techniques. To make these measurements, ITER will have dedicated diagnostic systems, including radial and vertical neutron cameras, neutron and gamma ray spectrometers, internal and external fission chambers, a neutron activation system, and diagnostics for confined and escaping alpha particles. Engineering integration of many of these systems is in progress, and other systems are under investigation. This paper summarizes the present state of design of fusion product diagnostic systems for ITER and discusses expected measurement capability

  1. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    Science.gov (United States)

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  2. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.; Sajo-Bohus, L. [Universidad Simón Bolívar, Nuclear Physics Laboratory, Sartenejas, Caracas (Venezuela, Bolivarian Republic of); Dávila, J. [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  3. Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Mendez V, R.; Vega C, H. R.

    2014-08-01

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of 241 AmBe and other 252 Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  4. Standardization activities of the Euratom Neutron Radiography Working Group

    International Nuclear Information System (INIS)

    Domanus, J.

    1982-06-01

    In 1979 a working group on neutron radiography was formed at Euratom. The purpose of this group is the standardization of neutron radiographic methods in the field of nuclear fuel. Activities of this Neutron Radiography Working Group are revised. Classification of defects revealed by neutron radiography is illustrated in a special atlas. Beam purity and sensitivity indicators are tested together with a special calibration fuel pin. All the Euratom neutron radiography centers will perform comparative neutron radiography with those items. The measuring results obtained, using various measuring aparatus will form the basis to formulate conclusions about the best measuring methods and instruments to be used in that field. Besides the atlas of neutron radiographic findings in light water reactor fuel, the Euratom Neutron Radiogrphy Working Group has published a neutron radiography handbook in which the neutron radiography installations in the European Community are also described. (author)

  5. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Richard Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, Patrick J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vehar, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  6. Results of neutron dose measurements at the Rossendorf research reactors taking the actual neutron spectra into account

    International Nuclear Information System (INIS)

    Rimpler, A.; Kneschke, H.

    1985-01-01

    Based on a systematic evaluation of area dose studies at the beginning of the seventies, no individual routine neutron monitoring has been performed at the Rossendorf research reactors. To check this decision, a limited number of persons has been monitored with solid-state nuclear track detectors for several years. The dosemeters were calibrated on the basis of neutron spectra determined at the working places by means of the Bonner sphere method. Intermediate neutrons with a 1/E/sup α/ Fermi distribution were dominating. The fraction of fast neutrons was practically negligible. The obtained spectra, radiation, field quantities and results of individual dose measurements are presented. The dosemeter most appropriate for such neutron fields would be a 12-inch Bonner sphere rem counter. As the mean annual neutron exposure of research workers at the reactor amounted to only 2% of the maximum permissible dose, individual routine monitoring will, also in the future, not be neccessary. (author)

  7. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communication lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated

  8. High-level neutron coincidence counter maintenance manual

    International Nuclear Information System (INIS)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included

  9. High-level neutron coincidence counter maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  10. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  11. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  12. A study of the cosmic-ray neutron field near interfaces

    CERN Document Server

    Sheu, R J; Jiang, S H

    2002-01-01

    This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with an emphasis on the angular distribution. Two sets of high-efficiency neutron detecting systems were used. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the eight-channel neutron detector (8CND), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons below 20 MeV in the air/ground and air/water media. Annual sea level cosmic-ray neutron doses were then determined based on the obtained characteristics of low-energy cosmic-ray neutrons near interfaces and estimated contribution from high-energy neutrons.

  13. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  14. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  15. Test research of consistency for amplitude calibration coefficients of pulsed electric field sensor

    International Nuclear Information System (INIS)

    Meng Cui; Guo Xiaoqiang; Chen Xiangyue; Nie Xin; Mao Congguang; Xiang Hui; Cheng Jianping

    2007-01-01

    The amplitude calibration of an electric field sensor is important in the measurement of electromagnetic pulse. In this paper, an arbitrary waveform generator (AWG) is used to generate multi-waveform electric field in the TEM cell and the dipole antenna pulsed electric field sensor is calibrated. In the frequency band of the sensor, the calibrated amplitude coefficients with different waveforms are identical. The coefficient derived from the TEM cell calibration system suits to the measurement of unknown electric field pulse within the frequency band. (authors)

  16. Selective data analysis for diamond detectors in neutron fields

    Directory of Open Access Journals (Sweden)

    Weiss Christina

    2017-01-01

    Full Text Available Detectors based on synthetic chemical vapor deposition diamond gain importance in various neutron applications. The superior thermal robustness and the excellent radiation hardness of diamond as well as its excellent electronic properties make this material uniquely suited for rough environments, such as nuclear fission and fusion reactors. The intrinsic electronic properties of single-crystal diamond sensors allow distinguishing various interactions in the detector. This can be used to successfully suppress background of γ-rays and charged particles in different neutron experiments, such as neutron flux measurements in thermal nuclear reactors or cross-section measurements in fast neutron fields. A novel technique of distinguishing background reactions in neutron experiments with diamond detectors will be presented. A proof of principle will be given on the basis of experimental results in thermal and fast neutron fields.

  17. A CR-39 track dosemeter for routine individual neutron monitoring

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Alberts, W.G.; Dietz, E.; Guldbakke, S.; Matzke, M.; d'Errico, F.

    1994-01-01

    A personal neutron dosemeter for routine individual monitoring is proposed. It is based on a CR-39 track detector covered on three separate areas by converters with different boron contents and inserted into a commercial TLD albedo dosemeter capsule. The dose readings from three areas of the electrochemically etched CR-39 detector are combined to yield a dose equivalent response which is almost independent of the incident neutron energy in the range from thermal neutrons up to 20 MeV. In addition, the dose contributions of thermal, intermediate and fast neutrons can be determined separately. Unlike the TLD albedo dosemeter, which in general requires prior in-field calibration and whose use is then restricted to that field, this dosemeter can be used in neutron fields without any knowledge of the spectral distribution with the same calibration factor. The angular dependence of the dosemeter's response has been measured and compared with that of the directional dose equivalent H'(10). The lower limit of detection is 0.15 mSv. It is possible to obtain an independent, second dose reading from the same Cr-39 detector for neutron energies above 100 keV. The dosemeter has also been successfully tested for use in accident dosimetry applying chemical etching and an optical density reading of the CR-39 detector. (author)

  18. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  19. The Covariance and Bicovariance of the Stochastic Neutron Field

    International Nuclear Information System (INIS)

    Perez, R.B.; Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    2000-01-01

    On the basis of the general stochastic neutron field theory developed by Munoz-Cobo et al, results on the covariance and bicovariance of the neutron field have been presented. These two statistical quantities are obtained from the counts observed in detectors operating during a period of time (gate length), Δ qc . A classical example is the so called Feynmann Y-function that is defined as the variance to mean ratio of the neutron field. Upon taking the limit of the covariance and bicovariance function for Δ qc r a rrow O , one obtains the two and three detector cross correlation functions respectively. The mathematical structure of the results so obtained have a transparent physical interpretation in terms of the space and delay time overlap between the field-of-view of the detectors. For the first time, an expression has been obtained for the bispectrum function of the stochastic neutron field and for the appropriate weight functions to be used as space-energy-angle correction factors for the one-point kinetics approximation

  20. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  1. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  2. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  3. Neutron detection technique

    International Nuclear Information System (INIS)

    Oblath, N.S.; Poon, A.W.P.

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has the ability to measure the total flux of all active flavors of neutrinos using the neutral current reaction, whose signature is a neutron. By comparing the rates of the neutral current reaction to the charged current reaction, which only detects electron neutrinos, one can test the neutrino oscillation hypothesis independent of solar models. It is necessary to understand the neutron detection efficiency of the detector to make use of the neutral current reaction. This report demonstrates a coincidence technique to identify neutrons emitted from the 252 Cf neutron calibration source. The source releases on average four neutrons when a 252 Cf nucleus spontaneously fissions. Each neutron is detected as a separate event when the neutron is captured by a deuteron, releasing a gamma ray of approximately 6.25 MeV. This gamma ray is in turn detected by the photomultiplier tube (PMT) array. By investigating the time and spatial separation between neutron-like events, it is possible to obtain a pure sample of neutrons for calibration study. Preliminary results of the technique applied to two calibration runs are presented

  4. Calibration of a NE213 detector for neutron spectroscopy; Calibracion de un detector de NE213 para espectroscopia de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez Martinez, J; Butragueno Casado, J L

    1974-07-01

    This work describes the experimental way followed for getting the calibration of a NE213 detector with a beam of neutrons from the J.E.N. 2 MeV Van de Graaff and using at once pulse shape discrimination. Detector has been used for measuring the spectrum of the fast reactor CORAL-1. There is also included an experimental method in order to get with precision where the Compton edge is placed on the electron spectrum. (Author) 9 refs.

  5. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  6. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    Science.gov (United States)

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. SCALA: In situ calibration for integral field spectrographs

    Science.gov (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  8. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  9. Node-to-node field calibration of wireless distributed air pollution sensor network.

    Science.gov (United States)

    Kizel, Fadi; Etzion, Yael; Shafran-Nathan, Rakefet; Levy, Ilan; Fishbain, Barak; Bartonova, Alena; Broday, David M

    2018-02-01

    Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air resources management and exposure estimation. Yet, such sensors require frequent calibration to provide reliable data, since even after a laboratory calibration they might not report correct values when they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a means for overcoming these limitations, with the common strategy involving periodical collocations of the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is directly calibrated against the reference measurements and the rest of the sensors are calibrated sequentially one against the other while they are deployed and collocated in pairs. The calibration can be performed multiple times as a routine procedure. This procedure minimizes the total number of sensor relocations, and enables calibration while simultaneously collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes, each calibrated for a week, propagate calibration errors that are similar to those found in direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks. Copyright © 2017 Elsevier Ltd. All

  10. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  11. Characteristic Investigation of Unfolded Neutron Spectra with Different Priori Information and Gamma Radiation Interference

    International Nuclear Information System (INIS)

    Kim, Bong Hwan

    2006-01-01

    Neutron field spectrometry using multi spheres such as Bonner Spheres (BS) has been almost essential in radiation protection dosimetry for a long time at workplace in spite of poor energy resolution because it is not asking the fine energy resolution but requiring easy operation and measurement performance over a wide range of energy interested. KAERI has developed and used extended BS system based on a LiI(Eu) scintillator as the representative neutron spectrometry system for workplace monitoring as well as for the quantification of neutron calibration fields such as those recommended by ISO 8529. Major topics in using BS are how close the unfolded spectra is the real one and to minimize the interference of gamma radiation in neutron/gamma mixed fields in case of active instrument such as a BS with a LiI(Eu) scintillator. The former is related with choosing a priori information when unfolding the measured data and the latter is depend on how to discriminate it in intense gamma radiation fields. Influence of a priori information in unfolding and effect of counting loss due to pile-up of signals for the KAERI BS system were investigated analyzing the spectral measurement results of Scattered Neutron Calibration Fields (SNCF)

  12. Characterization of Monoenergetic Low Energy Neutron Fields with the {mu}TPC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C.; Lebreton, L.; Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J.; Grignon, C.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Mayet, F.; Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph (France)

    2011-12-13

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 2 keV up to 1 MeV. We present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of such low energy neutron fields.

  13. A {mu}TPC detector for the characterization of low energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C., E-mail: cedric.golabek@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Allaoua, A. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Grignon, C.; Guillaudin, O. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Lebreton, L., E-mail: lena.lebreton@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Mayet, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France)

    2012-06-21

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.

  14. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  15. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    Momose, T.; Tsujimura, N.; Shinohara, K.; Ishiguro, H.; Nakamura, T.

    1996-01-01

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252 Cf neutron source. (author)

  16. Neutron field inside a PET Cyclotron vault room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Mendez, R.; Iniguez, M.P.; Climent, J.M.; Penuelas, I.; Barquero, R.

    2006-01-01

    The neutron field around a Positron Emission Tomography cyclotron was investigated during 18 F radioisotope production with an 18 MeV proton beam. In this study the Ion Beam Application cyclotron, model Cyclone 18/9, was utilized. Measurements were carried out with a Bonner sphere neutron spectrometer with pairs of thermoluminescent dosemeters (TLD600 and TLD700) as thermal neutron detector. The TLDs readouts were utilized to unfold the neutron spectra at three different positions inside the cyclotron's vault room. With the spectra the Ambient dose equivalent was calculated. Neutron spectra unfolding were performed with the BUNKIUT code and the UTA4 response matrix. Neutron spectra were also determined by Monte Carlo calculations using a detailed model of cyclotron and vault room. (Author)

  17. Neutron spectrum measurement using rise-time discrimination method

    International Nuclear Information System (INIS)

    Luo Zhiping; Suzuki, C.; Kosako, T.; Ma Jizeng

    2009-01-01

    PSD method can be used to measure the fast neutron spectrum in n/γ mixed field. A set of assemblies for measuring the pulse height distribution of neutrons is built up,based on a large volume NE213 liquid scintillator and standard NIM circuits,through the rise-time discrimination method. After that,the response matrix is calculated using Monte Carlo method. The energy calibration of the pulse height distribution is accomplished using 60 Co radioisotope. The neutron spectrum of the mono-energetic accelerator neutron source is achieved by unfolding process. Suggestions for further improvement of the system are presented at last. (authors)

  18. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  19. Development, improvement and calibration of neutronic reaction rate measurements: elaboration of a base of standard techniques; Developpement, amelioration et calibration des mesures de taux de reaction neutroniques: elaboration d`une base de techniques standards

    Energy Technology Data Exchange (ETDEWEB)

    Hudelot, J.P

    1998-06-19

    In order to improve and to validate the neutronic calculation schemes, perfecting integral measurements of neutronic parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronic reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO{sub 2}) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of {sup 238}U (defined as the ratio of {sup 238}U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for {sup 242}Pu (on MOX rods) and

  20. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  1. Production and characterization of 228Th calibration sources with low neutron emission for GERDA

    Science.gov (United States)

    Baudis, L.; Benato, G.; Carconi, P.; Cattadori, C.; De Felice, P.; Eberhardt, K.; Eichler, R.; Petrucci, A.; Tarka, M.; Walter, M.

    2015-12-01

    The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76Ge. In view of the GERDA Phase II data collection, four new 228Th radioactive sources for the calibration of the germanium detectors enriched in 76Ge have been produced with a new technique, leading to a reduced neutron emission rate from (α, n) reactions. The gamma activities of the sources were determined with a total uncertainty of ~4% using an ultra-low background HPGe detector operated underground at LNGS. The neutron emission rate was determined using a low background LiI(Eu) detector and a 3He counter at LNGS. In both cases, the measured neutron activity is ~10-6 n/(sṡBq), with a reduction of about one order of magnitude with respect to commercially available 228Th sources. Additionally, a specific leak test with a sensitivity to leaks down to ~10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.

  2. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  3. Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing

    Science.gov (United States)

    Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.

    2015-04-01

    In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a

  4. Calibration facilities at Hanford for gamma-ray and fission-neutron well logging

    International Nuclear Information System (INIS)

    Stromswold, D.C.

    1994-07-01

    Well-logging tools that detect gamma rays emitted from earth formations need to be calibrated in appropriate facilities to provide quantitative assessments of concentrations o radionuclides based on detected gamma rays. These facilities are typically special models having a hole to insert tools and having sufficient physical size to simulate actual earth formations containing known amounts of radionuclides. The size, generally 3 to 5 feet in diameter and 4 to 6 feet tall, is such that the source of radiation appears infinite in extent to a tool detecting the radiation inside the model. Such models exist at Hanford as concrete cylinders having a central borehole and containing known, enhanced amounts of K, U, and Th. Data collected in these models allow calibration of the logging system to measure radionuclide concentrations in formations around boreholes in the field. The accuracy of the calculated field concentrations depends on the correctness of the original calibration, the statistical precision of the data, and the similarity of the logging conditions to the calibration conditions. Possible methods for analyzing the data collected in the calibration facilities are presented for both spectral and total-count gamma-ray systems. Corrections are typically needed for the effects of steel casing in boreholes and the presence of water rather than air in the holes. Data collected in the calibration models with various steel casings and borehole fluids allow such correction factors to be determined

  5. Calibration of the TVO spent BWR reference fuel assembly

    International Nuclear Information System (INIS)

    Tarvainen, M.; Baecklin, A.; Haakanson, A.

    1992-02-01

    In 1989 the Support Programmes of Finland (FSP) and Sweden (SSP) initiated a joint task to cross calibrate the burnup of the IAEA spent BWR reference fuel assembly at the TVO AFR storage facility (TVO KPA-STORE) in Finland. The reference assembly, kept separately under the IAEA seal, is used for verification measurements of spent fuel by GBUV method (SG-NDA-38). The cross calibration was performed by establishing a calibration curve, 244 Cm neutron rate versus burnup, using passive neutron assay (PNA) measurements. The declared burnup of the reference assembly was compared with the burnup value deduced from the calibration curve. A calibration line was also established by using the GBUV method with the aid of high resolution gamma ray spectrometry (HRGS). Normalization between the two different facilities was performed using sealed neutron and gamma calibration sources. The results of the passive neutron assay show consistency, better than 1 %, between the declared mean burnup of the reference assembly and the burnup deduced from the calibration curve. The corresponding consistency is within +-2 % for the HRGS measurements

  6. Verification of the ISO calibration method for field pyranometers under tropical sky conditions

    Science.gov (United States)

    Janjai, Serm; Tohsing, Korntip; Pattarapanitchai, Somjet; Detkhon, Pasakorn

    2017-02-01

    Field pyranomters need to be annually calibrated and the International Organization for Standardization (ISO) has defined a standard method (ISO 9847) for calibrating these pyranometers. According to this standard method for outdoor calibration, the field pyranometers have to be compared to a reference pyranometer for the period of 2 to 14 days, depending on sky conditions. In this work, the ISO 9847 standard method was verified under tropical sky conditions. To verify the standard method, calibration of field pyranometers was conducted at a tropical site located in Nakhon Pathom (13.82o N, 100.04o E), Thailand under various sky conditions. The conditions of the sky were monitored by using a sky camera. The calibration results for different time periods used for the calibration under various sky conditions were analyzed. It was found that the calibration periods given by this standard method could be reduced without significant change in the final calibration result. In addition, recommendation and discussion on the use of this standard method in the tropics were also presented.

  7. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-01-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E o and 90 o with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  8. Experimental possibilities and fast neutron dose map of the fast neutron fields at the RB reactor facility

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1993-01-01

    The RB is an unshielded, zero power nuclear facility with natural and enriched uranium fuel (2% and 80%) and D 2 O as moderator. It is possible to create different configurations of non-reflected and partially reflected critical systems and to make experiments in the fields of thermal neutrons. The fields of fast neutrons with 'softened' fission spectrum are made by modifying the system: modified experimental fuel channel EFC, coupled fast-thermal system in two configurations CFTS-1 and CFTS-2, coupled fast-thermal core HERBE. The intermediate and fast neutron absorbed doses in fast neutron fields are given. In first configuration of RB reactor it was almost impossible to perform dosimetric and other experiments. By creating these fields, with in our circumstances available fuel elements, the possibilities for different experiments are greatly improved. Now we can irradiate food samples, soil samples, electronic devices, study material properties, perform various dosimetry experiments, etc. (1 tab.)

  9. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  10. Calibration method for a carbon nanotube field-effect transistor biosensor

    International Nuclear Information System (INIS)

    Abe, Masuhiro; Murata, Katsuyuki; Ataka, Tatsuaki; Matsumoto, Kazuhiko

    2008-01-01

    An easy calibration method based on the Langmuir adsorption theory is proposed for a carbon nanotube field-effect transistor (NTFET) biosensor. This method was applied to three NTFET biosensors that had approximately the same structure but exhibited different characteristics. After calibration, their experimentally determined characteristics exhibited a good agreement with the calibration curve. The reason why the observed characteristics of these NTFET biosensors differed among the devices was that the carbon nanotube (CNT) that formed the channel was not uniform. Although the controlled growth of a CNT is difficult, it is shown that an NTFET biosensor can be easy calibrated using the proposed calibration method, regardless of the CNT channel structures

  11. Compilation of neutron flux density spectra and reaction rates in different neutron fields. V.3

    International Nuclear Information System (INIS)

    Ertek, C.

    1980-04-01

    Upon the recommendation of the International Working Group of Reactor Radiation Measurements (IWGRRM) a compilation of documents containing neutron flux density spectra and the reaction rates obtained by activiation and fission foils in different neutron fields is presented

  12. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  13. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  14. Development of real time personal neutron dosimeter with two silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Tsujimura, N. [Tohoku Univ., Cyclotron and Radioisotope Center, Aoba, Aramaki, Aoba-ku (Japan); Yamano, T. [Tokyo Factory, Fuji Electric Co. Ltd., Tokyo (Japan)

    1992-07-01

    We developed a real time personal neutron dosimeter by using two types of silicon p-n junction detectors, thermal neutron sensor and fast neutron sensor. The thermal neutron sensor which is {sup 10}B doped n-type silicon with a polyethylene radiator mainly counts neutrons of energy front thermal to I MeV, and the fast neutron sensor which is p-type silicon with a polyethylene radiator is sensitive to neutrons above I MeV. The neutron sensitivity measurements revealed that the dosimeter has a rather flat response for dose equivalent from thermal to 15 MeV, excluding a drop from 50 keV to I MeV. In order to get conversion factor from counts to dose equivalent as accurately as possible, we performed the field test of the dosimeter calibration in several neutron-generating fields. By introducing the two-group dose estimation method, this dosimeter can give the neutron dose equivalent within about 50% errors. (author)

  15. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors; Desenvolvimento e caracterizacao de um sistema de monitoracao individual de neutrons tipo albedo de duas componentes usando detectores termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcelo Marques

    2008-07-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in {sup 252C}f(D{sub 2}O), {sup 252}Cf, {sup 241}Am-B, {sup 241}Am-Be and {sup 238}Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  16. Characteristics of X ray calibration fields for performance test of radiation measuring instruments

    International Nuclear Information System (INIS)

    Shimizu, Shigeru; Takahashi, Fumiaki; Sawahata, Tadahiro; Tohnami, Kohichi; Kikuchi, Hiroshi; Murayama, Takashi

    1999-02-01

    Performance test and calibration of the radiation measuring instruments for low energy photons are made using the X ray calibration fields which are monochromatically characterized by filtration of continuous X ray spectrum. The X ray calibration field needs to be characterized by some quality conditions such as quality index and homogeneity coefficient. The present report describes quality conditions, spectrum and some characteristics of X ray irradiation fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (FRS-JAERI). Fifty nine X ray qualities with the quality index of 0.6, 0.7, 0.8 and 0.9 were set for the tube voltages between 10 kV and 350 kV. Estimation of X ray spectrum measured with a Ge detector was made in terms of exposure, ambient dose equivalent and fluence for all the obtained qualities. Practical irradiation field was determined as the dose distribution uniformity is within ±3%. The obtained results improve the quality of X ray calibration fields and calibration accuracy. (author)

  17. Procedures for measurement of anisotropy factor of neutron sources

    International Nuclear Information System (INIS)

    Creazolla, P.G.; Camargo, A.; Astuto, A.; Silva, F.; Pereira, W.W.

    2017-01-01

    Radioisotope sources of neutrons allow the production of reference fields for calibration of neutron measurement devices for radioprotection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in the source capsule material and variations in the concentration of the emitting material may produce differences in its neutron emission rate relative to the source axis, this effect is called anisotropy. A proposed procedure for measuring the anisotropy factor of the sources belonging to the IRD/LNMRI/LN Neutron Metrology Laboratory using a Precision Long Counter (PLC) detector will be presented

  18. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    International Nuclear Information System (INIS)

    Chen, Y; Lin, Y; Chen, H; Tsai, H

    2015-01-01

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ( 6 LiF: Mg, Ti) and TLD-700 ( 7 LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  19. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Lin, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Chen, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Tsai, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Healthy Aging Research Center, Chang Gung University, Linkou, Taoyuan, Taiwan (China)

    2015-06-15

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  20. The neutron field perturbation effect in the Dalat Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The perturbation effect of the thermal neutron field of the Dalat reactor is investigated when a fuel element is replaced by a water column or a plexiglass rod. In consequence, it is possible to replace the measurement of the relative distribution of the thermal neutron field on the surface of fuel element by that in the water column or in the plexiglass rod. (author). 5 refs. 4 figs. 4 tabs.

  1. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Martins, Marcelo Marques

    2008-01-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in 252C f(D 2 O), 252 Cf, 241 Am-B, 241 Am-Be and 238 Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  2. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  3. Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions

    Science.gov (United States)

    Pétri, J.

    2017-12-01

    Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.

  4. Calibration and characterization of Bayard-Alpert gauges operating in high magnetic fields

    International Nuclear Information System (INIS)

    Pickles, W.L.; Hunt, A.L.

    1985-11-01

    Standard Bayard-Alpert gauges have been successfully operated for several months in the 0.3 to 0.7 T magnetic fields near the plasma edge of the Tandem Mirror Experiment-Upgrade (TMX-U). The gauges clearly measure gas pressure and maintain calibration within 10% during operation. The gauge filaments are tungsten and are heated with DC. The gauge housing allows operation in the low density plasma outside the limiter radius by thermalizing the neutral gas that enters the gauge and by preventing plasma from entering the gauge. Changing the orientation of the gauge with respect to the magnetic field changes the gauge calibration, or effective sensitivity, by as much as a factor of 100. Only some orientations of the filament collector plane with respect to the magnetic field direction allow calibrated operation as a pressure gauge. This range of angles is approximately from 20 to 50 degrees. The gauge is oriented to produce the desired sensitivity, then calibrated for the magnetic field effects for that position. The correction to sensitivity for magnet field is not strongly species dependent. The gauge species sensitivities for CH 4 , Xe,and Kr measured in the high magnetic fields were found to be close to the published values measured in no magnetic field

  5. The Pelindaba facility for calibrating radiometric field instruments

    International Nuclear Information System (INIS)

    Corner, B.; Toens, P.D.; Van As, D.; Vleggaar, C.M.; Richards, D.J.

    1979-04-01

    The tremendous upsurge in uranium exploration activity, experienced in recent years, has made the need for the standardisation and calibration of radiometric field instruments apparent. In order to fulfill this need, construction of a calibration facility at the National Nuclear Research Centre, Pelindaba, was commenced in 1972 and has since been extended according the the requirements of the mining industry. The facility currently comprises 11 surface standard sources suitable for the calibration, in terms of radio-element concentration, of portable scintillometers and spectrometers, and single uranium and thorium model-borehole sources which make possible the accurate calibration of borehole logging instruments both for gross-count and spectrometric surveys. Portable potassium, uranium and thorium sources are also available for the purposes of establishing airborne-spectrometer stripping ratios. The relevant physico-chemical properties of the standards are presented in this report and calibration procedures and data reduction techniques recommended. Examples are given of in situ measurements, both on surface and down-the-hole, which show that the derived calibration constants yield radiometric grades which are, on average, accurate to within 5% of the true radio-element concentrations. A secondary facility comprising single borehole- and surface-uranium sources has also been constructed in Beaufort West in the southern Karoo [af

  6. Monte Carlo analysis of the Neutron Standards Laboratory of the CIEMAT; Analisis Monte Carlo del Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Guzman G, K. A., E-mail: fermineutron@yahoo.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-10-15

    By means of Monte Carlo methods was characterized the neutrons field produced by calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources: {sup 241}AmBe and {sup 252}Cf which are stored in a water pool and are placed on the calibration bench using controlled systems at distance. To characterize the neutrons field was built a three-dimensional model of the room where it was included the stainless steel bench, the irradiation table and the storage pool. The sources model included double encapsulated of steel, as cladding. With the purpose of determining the effect that produces the presence of the different components of the room, during the characterization the neutrons spectra, the total flow and the rapidity of environmental equivalent dose to 100 cm of the source were considered. The presence of the walls, floor and ceiling of the room is causing the most modification in the spectra and the integral values of the flow and the rapidity of environmental equivalent dose. (Author)

  7. The effect of the scalar-isovector meson field on hyperon-rich neutron star matter

    International Nuclear Information System (INIS)

    Mi, Aijun; Zuo, Wei; Li, Ang

    2008-01-01

    We investigate the effect of the scalar-isovector δ-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the framework of the relativistic mean field theory. The influence of the δ-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npeμ neutron star matter. We find that inclusion of the δ-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the δ-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the δ-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, whereas inclusion of the δ-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the δ-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Σ hyperons. (author)

  8. Portable instrument for measuring neutron energy spectra and neutron dose in a mixed n-γ field

    International Nuclear Information System (INIS)

    Daniels, C. J.; Silberberg, J. L.

    1980-01-01

    A portable high-speed neutron spectrometer consists of an organic scintillator, a true zero-crossing pulse shape discriminator, a 1 MHZ conversion-rate multichannel analyzer, an 8-bit microcomputer, and appropriate displays. The device can be used to measure neutron energy spectra and kerma rate in intense n- gamma radiation fields in which the neutron energy is from 5 to 15 MEV

  9. The influence of hyperons and strong magnetic field in neutron star properties

    International Nuclear Information System (INIS)

    Lopes, L.L.; Menezes, D.P.

    2012-01-01

    Neutron stars are among the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the massradius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic fields to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in ,B equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M0, a natural explanation of why we do not know pulsars with masses above 2.0 Mo arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field. (author)

  10. Thermalization of monoenergetic neutrons in a concrete room

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Iniguez, M.P.; Martin M, A. [Universidad de Valladolid, (Spain)

    2006-07-01

    The thermalization of neutrons from monoenergetic neutron sources in a concrete room has been studied. During calibration of neutron detectors it is mandatory to make corrections due to neutron scattering produced by the room walls, therefore this factor must be known in advance. The scattered neutrons are thermalized and produce a neutron field that is directly proportional to source strength and inversely proportional to room total wall-surfaces, the proportional coefficient has been calculated for neutrons whose energy goes from 1 eV to 20 MeV. This coefficient was calculated using Monte Carlo methods for 150, 200 and 300 cm-radius spherical cavity, where monoenergetic neutrons were located at the center, along the spherical cavity radius neutron spectra were calculated at several source-to-detector distances inside the cavity. The obtained coefficient is almost three times larger than the factor normally utilized. (Author)

  11. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  12. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  13. Development of a portable system to test area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de Rezende

    2011-02-01

    The objective is to develop a portable system to test the reliability in terms of calibration of area monitors for neutrons. For the production of this system, thickness and location of the source within the system were simulated using the code of radiation transport MCNP5. The thicknesses were set for a 241 Am-Be source with an activity of 395 mCi, which will be in a polyethylene cylinder which will provide a ambient dose equivalent rate chosen through the points of calibration settings' used by the Laboratory of Neutrons (IRD / CNEN). The results obtained in this study show the feasibility of mounting the portable system as a tool to test the area monitors for neutrons, which will provide the user of neutron area monitors to check the instrument's response in the same field of operation, thus avoiding the use of an inadequate equipment. (author)

  14. Calibration and experiment of an extended range Bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mitaroff, A.; Mayer, S. [CERN, Geneva (Switzerland)]|[Atominstitut der TU-Wien, Vienna (Austria); Dimovasili, E.; Silari, M. [CERN, Geneva (Switzerland); Birattari, C. [Univ. of Milan, LASA, Segrate (Italy); Wiegel, B. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Aiginger, H. [Atominstitut der TU-Wien, Vienna (Austria)

    2001-07-01

    High-energy neutrons dominate the dose equivalent outside the shielding of hadron accelerators (protons, heavy ions). Nowadays these accelerators are not only used or foreseen in high- and intermediate energy physics but in other fields like medicine or waste transmutation, too. In addition it was shown that at commercial flight altitudes a large fraction of the exposure of aircraft personnel is due to neutrons with a comparable energy spectrum to that along hadron accelerators. For this reason in radiation protection the exact knowledge of the neutron spectrum and the relevant dose quantities is very important. The neutrons of these radiation fields extend over more than 14 orders of magnitude up to 1 GeV, thus making the measurement of the spectrum difficult. A newly developed Bonner sphere spectrometer with extended range shall evaluate spectra with a high-energy neutron component. This contribution shows the FLUKA simulated response functions of the two new spheres - Stanlio and Ollio - dedicated for high energies. These simulations should be verified by calibration with quasi monoenergetic neutrons. These took place at PTB with neutron beams of 144 keV, 1.2 MeV, 5 MeV and 14.8 MeV. Additionally experiments at the CERF (CERN-EU Reference Field) facility, which provides a broad neutron spectrum with two pronounced maxima at around 1 MeV and 70 MeV, are shown and compared to the Monte Carlo simulations. (orig.)

  15. Calibration and experiment of an extended range Bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Mitaroff, A.; Mayer, S.; Dimovasili, E.; Silari, M.; Birattari, C.; Wiegel, B.; Aiginger, H.

    2001-01-01

    High-energy neutrons dominate the dose equivalent outside the shielding of hadron accelerators (protons, heavy ions). Nowadays these accelerators are not only used or foreseen in high- and intermediate energy physics but in other fields like medicine or waste transmutation, too. In addition it was shown that at commercial flight altitudes a large fraction of the exposure of aircraft personnel is due to neutrons with a comparable energy spectrum to that along hadron accelerators. For this reason in radiation protection the exact knowledge of the neutron spectrum and the relevant dose quantities is very important. The neutrons of these radiation fields extend over more than 14 orders of magnitude up to 1 GeV, thus making the measurement of the spectrum difficult. A newly developed Bonner sphere spectrometer with extended range shall evaluate spectra with a high-energy neutron component. This contribution shows the FLUKA simulated response functions of the two new spheres - Stanlio and Ollio - dedicated for high energies. These simulations should be verified by calibration with quasi monoenergetic neutrons. These took place at PTB with neutron beams of 144 keV, 1.2 MeV, 5 MeV and 14.8 MeV. Additionally experiments at the CERF (CERN-EU Reference Field) facility, which provides a broad neutron spectrum with two pronounced maxima at around 1 MeV and 70 MeV, are shown and compared to the Monte Carlo simulations. (orig.)

  16. Calibrating the SNfactory Integral Field Spectrograph (SNIFS) with SCALA

    Science.gov (United States)

    Küsters, Daniel; Lombardo, Simona; Kowalski, Marek; Aldering, Greg; Nordin, Jakob; Rigault, Mickael

    2016-08-01

    The SNIFS CALibration Apparatus (SCALA), a device to calibrate the Supernova Integral Field Spectrograph on the University Hawaii 2.2m telescope, was developed and installed in Spring 2014. SCALA produces an artificial planet with a diameter of 1° and a constant surface brightness. The wavelength of the beam can be tuned between 3200 Å and 10000 Å and has a bandwidth of 35 Å. The amount of light injected into the telescope is monitored with NIST calibrated photodiodes. SCALA was upgraded in 2015 with a mask installed at the entrance pupil of the UH88 telescope, ensuring that the illumination of the telescope by stars is similar to that of SCALA. With this setup, a first calibration run was performed in conjunction with the spectrophotometric observations of standard stars. We present first estimates for the expected systematic uncertainties of the in-situ calibration and discuss the results of tests that examine the influence of stray light produced in the optics.

  17. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  18. Least squares analysis of fission neutron standard fields

    International Nuclear Information System (INIS)

    Griffin, P.J.; Williams, J.G.

    1997-01-01

    A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented

  19. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  20. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  1. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  2. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-12

    Sep 12, 2017 ... the material properties of the region where currents supporting the .... 1The evolution of magnetic field in neutron stars, in particular, the question of .... −10, 10. −9, 10. −8. M⊙/yr respec- tively. See Konar & Bhattacharya (1997) for details. Peq ≃ 1.9 ms ..... ported by a grant (SR/WOS-A/PM-1038/2014) from.

  3. In-core neutron flux measurements at PARR using self powered neutron detector

    International Nuclear Information System (INIS)

    Hussain, A.; Ansari, S.A.

    1989-10-01

    This report describes experimental reactor physics measure ments at PARR using the in-core neutron detectors. Rhodium self powered neutron detectors (SPND) were used in the PARR core and several measurements were made aimed at detector calibration, response time determination and neutron flux measurements. The detectors were calibrated at low power using gold foils and full power by the thermal channel. Based on this calibration it was observed that the detector response remains almost linear throughout the power range. The self powered detectors were used for on-line determination of absolute neutron flux in the core as well as the spatial distribution of neutron flux or reactor power. The experimental, axial and horizontal flux mapping results at certain locations in the core are presented. The total response time of rhodium detector was experimentally determined to be about 5 minutes, which agree well with the theoretical results. Because of longer response time of SPND of the detectors it is not possible to use them in the reactor protection system. (author). 10 figs

  4. Personal fast neutrons dosimetry using radiophotoluminescent glass

    International Nuclear Information System (INIS)

    Salem, Y. O.; Nachab, A.; Nourreddine, A.; Roy, C.

    2013-06-01

    In a previous paper we described a new ambient RPL dosimeter that detects fast neutrons in a mixed n-γ field via (n, p) reactions in a polyethylene converter. In the present study, a personal dosimeter is introduced to enable evaluating the individual dose equivalent H p (10) taking into account the albedo. A calibration factor for estimating H p (10) has been determined from the diminishing angular response as the angle of neutron incidence increases to 60 deg from the normal. MCNPX simulations for 241 Am-Be and 252 Cf neutrons, together with a series of monoenergetic neutron beams from 0.144 to 5 MeV, have been used to characterize the dosimeter response, which agrees well with the experimental 241 Am-Be response. (authors)

  5. Calibration and Monte Carlo modelling of neutron long counters

    CERN Document Server

    Tagziria, H

    2000-01-01

    The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...

  6. Set-up and calibration of a method to measure {sup 10}B concentration in biological samples by neutron autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Gadan, M.A. [National Commission for Atomic Energy (CNEA), Buenos Aires (Argentina); Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bortolussi, S., E-mail: silva.bortolussi@pv.infn.it [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Postuma, I. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Protti, N.; Santoro, D.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy); Cansolino, L.; Clerici, A.; Ferrari, C.; Zonta, A.; Zonta, C. [Department of Experimental Surgery, University of Pavia, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia, Pavia (Italy)

    2012-03-01

    A selective uptake of boron in the tumor is the base of Boron Neutron Capture Therapy, which can destroy the tumor substantially sparing the normal tissue. In order to deliver a lethal dose to the tumor, keeping the dose absorbed by normal tissues below the tolerance level, it is mandatory to know the {sup 10}B concentration present in each kind of tissue at the moment of irradiation. This work presents the calibration procedure adopted for a boron concentration measurement method based on neutron autoradiography, where biological samples are deposited on sensitive films and irradiated in the thermal column of the TRIGA reactor (University of Pavia). The latent tracks produced in the film by the charged particles coming from the neutron capture in {sup 10}B are made visible by a proper etching, allowing the measurement of the track density. A calibration procedure with standard samples provides curves of track density as a function of boron concentration, to be used in the measurement of biological samples. In this paper, the bulk etch rate parameter and the calibration curves obtained for both liquid samples and biological tissues with known boron concentration are presented. A bulk etch rate value of (1.64 {+-} 0.02) {mu}m/h and a linear dependence with etching time were found. The plots representing the track density versus the boron concentration in a range between 5 and 50 {mu}g/g (ppm) are linear, with an angular coefficient of (1.614 {+-} 0.169){center_dot}10{sup -3} tracks/({mu}m{sup 2} ppm) for liquids and (1.598 {+-} 0.097){center_dot}10{sup -2} tracks/({mu}m{sup 2} ppm) for tissues.

  7. Development of Portable Pulsed Neutron Generators Utilizing a D-T or D-D Fusion Reaction

    International Nuclear Information System (INIS)

    Nishimura, Kazuya; Miake, Yoshinobu; Kato, Michio; Rintsu, Yukou

    2001-01-01

    Prototypes of sealed neutron tubes in a D-T or D-D fusion reaction for logging while drilling (LWD) were developed; then operational tests were performed to check their functional properties. One of the prototypes passed most of the specified conditions for using LWD. Further studies were needed to put a sealed neutron tube into practical use. For applications to other fields, such as an in situ calibration source for neutron detector efficiencies and an in situ calibration source for fusion systems, a sealed neutron tube is needed to have higher-intensity neutron output and a long life. Thus, the performance of the ion source used in the neutron tube is improved to obtain high gas utilization efficiencies or low-pressure operation with high ionization efficiencies. The characteristics of the new ion sources used in the foregoing sealed neutron tube are discussed in terms of preliminary tests. The aforementioned performances are obtained

  8. Method and apparatus for neutron radiation monitoring

    International Nuclear Information System (INIS)

    Schwarzmann, A.

    1985-01-01

    A self-calibrated neutron radiation monitor includes a flux responsive element comprised of intrinsic silicon neutron detectors and self-calibration resistors in a single structure. As the resistance of the flux responsive element increases to the value of successive calibration resistors, known increments of flux have been encountered

  9. Application of microwave cell system in calibration of electromagnetic field meters

    International Nuclear Information System (INIS)

    Abu-Kassem, I.

    2012-11-01

    The aim of this work is to improve radiation measurements of electromagnetic field (EMF) through realizing tests and calibrations of measurement devices by intercomparison within the microwaves (MW) range according to EMF wave cell properties. Actually, the calibration facility in electromagnetic field is not available in Syria; therefore, realizing an experimental system for electromagnetic field radiometer calibration is very important at national level. This study showed the possibility of using EMF wave cell in intercomparison of electromagnetic field radiometers in order to achieve a direct calibration via standard radiometer. The EMF wave cell properties were studied and the homogeneity of its EMF was tested using the EF Cube probe. Results showed that the field homogeneity inside the cell is good and the variation of electric field strength, within the comparison position, is less than 10% of measured values. It was recognized that the probe form and dimensions influence the comparison results; and measurement results showed that it's possible to achieve comparison in the working domain of EMF wave cell (10 - 3000 MHz) with a relative deviation of result values between 10% and 30% according to the measurement device and frequency range. Development of comparison process in order to obtain accurate results needs to improve mechanical supports of tested probes and to introduce a correction factor related to studied probe form and dimensions. From another side, it is better to carry out measurements at frequencies around the central frequency, and not close to frequency range borders, of the EMF wave cell working frequency domain. (author)

  10. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  11. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to ECATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.

  12. Neutron spectrometry and dosimetry measurement at workplaces for calibration of individual PGP-DIN dosemeters

    International Nuclear Information System (INIS)

    Itie, C.; Muller, H.; Asselineau, B.; Medioni, R.; Crovisier, P.; Valier-Bradier, P.; Groetz, J.E.; Piot, J.

    2003-01-01

    Measurements to determine new coefficients for individual neutron dosimeters PGP-DIN complying with the ICRP 60 recommendations were performed at two workplaces at the CEA of Valduc: a storage room and a plutonium reprocessing plant. Two spectrometry campaigns were performed allowing a better assessment of doses received by operators working at these workplaces. Neutron energy fluence and ambient dose equivalent rate H * (10) distributions were measured as function of neutron energy by using the ROSPEC device and BONNER spheres spectrometer. The radiation field being mixed neutron and gamma, the gamma component was also evaluated: neutron and photon dose-rate meters were used to evaluate the ambient dose rate equivalent. Individual dosemeters were positioned on an ISO water slab phantom. In addition, calculations were performed using the MCNP simulation code for different configurations. (authors)

  13. Pulsed neutron activation calibration technique

    International Nuclear Information System (INIS)

    Kehler, P.

    1979-01-01

    A pulsed neutron activation (PNA) for measurement of two-phase flow consists of a pulsed source of fast neutron to activate the oxygen in a steam-water mixture. Flow is measured downstream by an NaI detector. Measured counts are sorted by a multiscaler into different time channels. A counts vs. time distribution typical for two-phase flow with slip between the two phases is obtained. Proper evaluation for the counts/time distribution leads to flow-regime independent equations for the average of the inverse transil time and the average density. After calculation of the average mass flow velocity, the true mass flow is derived

  14. Calibration and validation of full-field techniques

    Directory of Open Access Journals (Sweden)

    Thalmann R.

    2010-06-01

    Full Text Available We review basic metrological terms related to the use of measurement equipment for verification of numerical model calculations. We address three challenges that are faced when performing measurements in experimental mechanics with optical techniques: the calibration of a measuring instrument that (i measures strain values, (ii provides full-field data, and (iii is dynamic.

  15. Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

    2012-01-26

    Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

  16. Intercomparison measurements with albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Alberts, W.G.; Kluge, H.

    1994-01-01

    Since the introduction of the albedo dosimeter as the official personal neutron dosimeter the dosimetry services concerned have participated in intercomparison measurements at the PTB. Their albedo dosimeters were irradiated in reference fields produced by unmoderated and D 2 O-moderated 252 Cf neutron sources in the standard irradiation facility of the PTB. Six fields with fluences different in energy and angle distribution could be realised in order to determine the response of the albedo dosimeter. The dose equivalent values evaluated by the services were compared with the reference values of the PTB for the directional dose equivalent H'(10). The results turned out to be essentially dependent on the evaluation method and the choice of the calibration factors. (orig.) [de

  17. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  18. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  19. SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. III. ABSOLUTE FLUX CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal; Psaltis, Dimitrios [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Marshall, Herman [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Guainazzi, Matteo [European Space Astronomy Centre of ESA, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Díaz-Trigo, Maria [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-09-20

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826–238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE /PCA as well as by XMM-Newton EPIC-pn and RXTE /PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE /PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE /PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  20. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  1. Calibration of the JET neutron yield monitors using the delayed neutron counting technique

    International Nuclear Information System (INIS)

    van Belle, P.; Jarvis, O.N.; Sadler, G.; de Leeuw, S.; D'Hondt, P.; Pillon, M.

    1990-01-01

    The time-resolved neutron yield is routinely measured on the JET tokamak using a set of fission chambers. At present, the preferred technique is to employ activation reactions to determine the neutron fluence at a well-chosen position and to relate the measured fluence to the total neutron emission by means of neutron transport calculations. The delayed neutron counting method is a particularly convenient method of performing the activation measurement and the fission cross sections are accurately known. This paper outlines the measurement technique as used on JET

  2. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  3. Fallback accretion onto magnetized neutron stars and the hidden magnetic field model

    International Nuclear Information System (INIS)

    Torres, A; Cerdá-Durán, P; Font, J A

    2015-01-01

    The observation of several neutron stars with relatively low values of the surface magnetic field found in supernova remnants has led in recent years to controversial interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, seems to be favoured over the previous one due to the observation of three low magnetic field magnetars. This scenario considers the accretion of the fallback of the supernova debris onto the neutron star as the responsible for the observed low magnetic field. In this work, we have studied under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting fluid. We have considered a simplified toy model in general relativity to estimate the balance between the incoming accretion flow an the magnetosphere. We conclude that the burial is possible for values of the surface magnetic field below 10 13 G. The preliminary results reported in this paper for simplified polytropic models should be confirmed using a more realistic thermodynamical setup. (paper)

  4. Total body neutron activation analysis of calcium: calibration and normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, N S.J.; Eastell, R; Ferrington, C M; Simpson, J D; Strong, J A [Western General Hospital, Edinburgh (UK); Smith, M A; Tothill, P [Royal Infirmary, Edinburgh (UK)

    1982-05-01

    An irradiation system has been designed, using a neutron beam from a cyclotron, which optimises the uniformity of activation of calcium. Induced activity is measured in a scanning, shadow-shield whole-body counter. Calibration has been effected and reproducibility assessed with three different types of phantom. Corrections were derived for variations in body height, depth and fat thickness. The coefficient of variation for repeated measurements of an anthropomorphic phantom was 1.8% for an absorbed dose equivalent of 13 mSv (1.3 rem). Measurements of total body calcium in 40 normal adults were used to derive normalisation factors which predict the normal calcium in a subject of given size and age. The coefficient of variation of normalised calcium was 6.2% in men and 6.6% in women, with the demonstration of an annual loss of 1.5% after the menopause. The narrow range should make single measurements useful for diagnostic purposes.

  5. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  6. Procedure for measurement of anisotropy factor for neutron sources

    International Nuclear Information System (INIS)

    Creazolla, Prycylla Gomes

    2017-01-01

    Radioisotope neutron sources allow the production of reference fields for calibration of neutron detectors for radiation protection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in source encapsulation and in the radioactive material concentration produce differences in its neutron emission rate, relative to the source axis, this effect is called anisotropy. In this study, is describe a procedure for measuring the anisotropy factor of neutron sources performed in the Laboratório de Metrologia de Neutrons (LN) using a Precision Long Counter (PLC) detector. A measurement procedure that takes into account the anisotropy factor of neutron sources contributes to solve some issues, particularly with respect to the high uncertainties associated with neutron dosimetry. Thus, a bibliographical review was carried out based on international standards and technical regulations specific to the area of neutron fields, and were later reproduced in practice by means of the procedure for measuring the anisotropy factor in neutron sources of the LN. The anisotropy factor is determined as a function of the angle of 90° in relation to the cylindrical axis of the source. This angle is more important due to its high use in measurements and also of its higher neutron emission rate if compared with other angles. (author)

  7. Ray calibration and phase mapping for structured-light-field 3D reconstruction.

    Science.gov (United States)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Gao, Bruce Z

    2018-03-19

    In previous work, we presented a structured light field (SLF) method combining light field imaging with structured illumination to perform multi-view depth measurement. However, the previous work just accomplishes depth rather than 3D reconstruction. In this paper, we propose a novel active method involving ray calibration and phase mapping, to achieve SLF 3D reconstruction. We performed the ray calibration for the first time to determine each light field ray with metric spatio-angular parameters, making the SLF realize multi-view 3D reconstruction. Based on the ray parametric equation, we further derived the phase mapping in the SLF that spatial coordinates can be directly mapped from phase. A flexible calibration strategy was correspondently designed to determine mapping coefficients for each light field ray, achieving high-efficiency SLF 3D reconstruction. Experimental results demonstrated that the proposed method was suitable for high-efficiency multi-view 3D reconstruction in the SLF.

  8. Interaction of neutrons with the matter in the laser field

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.

    1980-01-01

    The interactions of neutrons with the molecules, atoms and nuclei in the presence of the coherent electromagnetic radiation are considered. There are two effects which are discussed in detail: 1) the ''acceleration'' of thermal neutrons passed through the excited by the resonance laser wave molecular gas; 2) the induced by the laser field the slow neutron capture accompanied by the compound nucleus level excitation. The given effects, if they are experimentally detected, give the possibility to control the neutron flux (spectrum change, polarization, spatial modulation and etc.) and change the interaction cross sections of thermal and resonance neutrons with nuclei due to excitation of p levels of the compound nucleus [ru

  9. Neutron and photon spectrometry in mixed radiation fields

    International Nuclear Information System (INIS)

    Jancar, A.; Kopecky, Z.; Veskrna, M.

    2014-01-01

    Spectrometric measurements of the mixed fields of neutron and photon radiation in the workplaces with the L-R-0 research reactor located in the UJV Rez and with the Van de Graaff accelerator, located in the UTEF laboratories Prague, are presented in this paper. The experimental spectrometric measurements were performed using a newly developed digital measuring system, based on the technology of analog-digital converters with a very high sampling frequency (up to 2 GHz), in connection with organic scintillation detector, type BC-501A, and stilbene detector. The results of experimental measurements show high quality of spectrometry mixed fields of neutron and photon radiation across the wide dynamic range of measured energy. (authors)

  10. Evaluate existing radiation fields

    International Nuclear Information System (INIS)

    Aldrich, J.M.; Haggard, D.L.; Endres, G.W.R.; Fix, J.J.

    1981-01-01

    Knowledge of the spectrum of energies for beta, gamma, and neutron radiation experienced in the field is crucial to the proper interpretation of personnel dose. Calibration sources and techniques are determined on the basis of their relationship to field exposure. Selected techniques were used to obtain neutron, photon, and beta energy spectra data at several Hanford locations. Four neutron energy spectra and dose measurement methods were used: (1) multisphere spectrometer system; (2) tissue equivalent proportional counter (TEPC); (3) RASCAL (9'' to 3'' sphere ratios); and (4) helium-3 neutron spectrometer. Gamma spectroscopy was done using standard techniques. A specially designed TLD dosimeter was used to obtain beta spectrum measurements. The design and use of each of these instruments is described in the body of this report. Data collected and analyzed for each of the Hanford locations are included

  11. An investigation of methods for free-field comparison calibration of measurement microphones

    DEFF Research Database (Denmark)

    Barrera-Figueroa, Salvador; Moreno Pescador, Guillermo; Jacobsen, Finn

    2010-01-01

    Free-field comparison calibration of measurement microphones requires that a calibrated reference microphone and a test microphone are exposed to the same sound pressure in a free field. The output voltages of the microphones can be measured either sequentially or simultaneously. The sequential...... method requires the sound field to have good temporal stability. The simultaneous method requires instead that the sound pressure is the same in the positions where the microphones are placed. In this paper the results of the application of the two methods are compared. A third combined method...

  12. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  13. On the neutron diffraction in a crystal in the field of a standing laser wave

    International Nuclear Information System (INIS)

    Grigoryan, K.K.; Hayrapetyan, A.G.; Petrosyan, R.G.

    2010-01-01

    The possibility of high-energy neutron diffraction in a crystal is shown by applying the solution of time-dependent Schroedinger equation for a neutron in the field of a standing laser wave. The scattering picture is examined within the framework of non-stationary S-matrix theory, where the neutron-laser field interaction is considered exactly and the neutron-crystal interaction is considered as a perturbation described by Fermi pseudopotential (Farri representation). The neutron-crystal interaction is elastic, and the neutron-laser field interaction has both inelastic and elastic behaviors which results in the observation of an analogous to the Kapitza-Dirac effect for neutrons. The neutron scattering probability is calculated and the analysis of the results are adduced. Both inelastic and elastic diffraction conditions are obtained and the formation of a 'sublattice' is illustrated in the process of neutron-photon-phonon elastic interaction.

  14. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  15. Air Kerma above environmental radiometric calibration facility for field equipment

    International Nuclear Information System (INIS)

    Conti, C.C.; Sachett, I.A.; Bertelli, L.; Lopes, R.T.

    2000-01-01

    The use of gamma ray spectrometers broadened the aims of gamma ray surveys, stead of measuring only the gross radiation, as was done with the GM tubes, it is now possible to be used for uranium exploration, geological mapping as an aid to the exploration of non radioactive ores like gold and tin, radiation background measurements to identify hot spots for radiation hazard evaluation and environmental monitoring of fallout from radiological and nuclear accidents. It became necessary to carefully and precisely calibrate the field equipment to be used to get all the information from such uses. There is an environmental radiometric calibration facility for field equipment, consisting of eight radioactive concrete sources, at the Institute of Radioprotection and Dosimetry - IRD (CNEN/Brazil). These sources are cylindrical with 3 m diameter, 0.5 m thick and weigh about 7.5 tons each. The amount and type of the radioactive material, 238 U and 232 Th and 40 K ores in secular radioactive equilibrium, added to the concrete to simulate rock outcrops, varies in order to obtain different gamma fields, varying in both energy and intensity. These different radiation fields were measured with a HPGe portable detector, specifically calibrated for spectrum stripping, and the air kerma energy distribution was determined for each concrete source and compared with the total air kerma calculated from the nuclide concentration and by others radiometric methods. (author)

  16. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  17. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  18. Energy calibration of the EGP-10M accelerator

    International Nuclear Information System (INIS)

    Simakov, S.P.; Spirin, V.I.; Trufanov, A.M.; Lovchikova, G.N.

    1979-01-01

    Energy calibration of an electrostatic charge exchange proton accelerator in the energy range from 3 to 9 MeV is described. The calibration has been measuring the (p, n) reaction thresholds on 13 C, 63 Cu, 27 Al, 60 Ni and 50 Cr nuclei. The neutron yield is measured by a long counter located at a distance of 10-15 cm from a target. Given also are the reaction thresholds and the values of the calibration factor determined according to the yield of neutrons from (p, n) reactions for the mentioned nuclei. The analysis of the resultant calibration curve of the EGP-10 M accelerator showed that errors are practically equal to the energy instability of the beam extracted from the accelerator and constitute approximately 0.06%. Variations of the calibration factor in the 3-9 MeV range are equal to 0.38%. The success in using this method is guaranteed due to the absence of isolated resonances in the (p, n) reaction cross-section above the threshold and emission of mainly S-neutrons in the exit channel

  19. EURATOM work on standard defects and dimensional measurements in neutron radiography of nuclear fuel elements

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1981-10-01

    In 1979 a working group on neutron radiography was formed at Euratom. The purpose of this group is the standardization of neutron radiographic methods in the field of nuclear fuel. First priority was given to the development of image quality indicators and standard objects for the determination of accuracy of dimensional measurements from neutron radiographs. For that purpose beam purity and sensitivity indicators as well as a calibration fuel pin were designed and fabricated at Risoe. All the Euratom neutron radiography centers have recieved the above items for comparative neutron radiography. The measuring results obtained, using various measuring apparatus, will form the basis to formulate conclusions about the best measuring methods and instruments to be used in that field. (author)

  20. NIF total neutron yield diagnostic

    International Nuclear Information System (INIS)

    Cooper, Gary W.; Ruiz, Carlos L.

    2001-01-01

    We have designed a total neutron yield diagnostic for the National Ignition Facility (NIF) which is based on the activation of In and Cu samples. The particular approach that we have chosen is one in which we calibrate the entire counting system and which we call the ''F factor'' method. In this method, In and/or Cu samples are exposed to known sources of DD and DT neutrons. The activated samples are then counted with an appropriate system: a high purity Ge detector for In and a NaI coincidence system for Cu. We can then calculate a calibration factor, which relates measured activity to total neutron yield. The advantage of this approach is that specific knowledge of such quantities as cross sections and detector efficiencies is not needed. Unless the actual scattering environment of the NIF can be mocked up in the calibration experiment, the F factor will have to be modified using the results of a numerical simulation of the NIF scattering environment. In this article, the calibration factor methodology will be discussed and experimental results for the calibration factors will be presented. Total NIF neutron yields of 10 9 --10 19 can be measured with this method assuming a 50 cm stand-off distance can be employed for the lower yields

  1. Calibration and Distortion Field Compensation of Gradiometer and the Improvement in Object Remote Sensing

    Directory of Open Access Journals (Sweden)

    Hu Xiangchao

    2016-01-01

    Full Text Available Magnetometer, misalignment error and distortion field can reduce the accuracy of gradiometers. So, it is important to calibrate and compensate gradiometers error. Scale factor, bias, nonorthogonality, misalignment and distortion field should be considered. A gradiometer is connected by an aluminium frame, which contains two fluxgate magnetometers. A nonmagnetic rotation equipment is used to change gradiometer attitude, and the compensation parameters are estimated. Experiment results show that, after calibration and compensation, error of each axis is reduced from 888.4 nT, 1292.6 nT and 168.9 nT to 15.3 nT, 22.1 nT and 9.9 nT, respectively. It shows that the proposed method can calibrate gradiometer and compensate distortion field. After calibration and compensation, the object remote sensing performance is improved.

  2. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  3. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  4. Calibration Technique of the Irradiated Thermocouple using Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Tae; Joung, Chang Young; Ahn, Sung Ho; Yang, Tae Ho; Heo, Sung Ho; Jang, Seo Yoon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To correct the signals, the degradation rate of sensors needs to be analyzed, and re-calibration of sensors should be followed periodically. In particular, because thermocouples instrumented in the nuclear fuel rod are degraded owing to the high neutron fluence generated from the nuclear fuel, the periodic re-calibration process is necessary. However, despite the re-calibration of the thermocouple, the measurement error will be increased until next re-calibration. In this study, based on the periodically calibrated temperature - voltage data, an interpolation technique using the artificial neural network will be introduced to minimize the calibration error of the C-type thermocouple under the irradiation test. The test result shows that the calculated voltages derived from the interpolation function have good agreement with the experimental sampling data, and they also accurately interpolate the voltages at arbitrary temperature and neutron fluence. That is, once the reference data is obtained by experiments, it is possible to accurately calibrate the voltage signal at a certain neutron fluence and temperature using an artificial neural network.

  5. The ENEA calibration service for ionising radiations. Part 1: Photons

    International Nuclear Information System (INIS)

    Monteventi, F.; Sermenghi, I.

    1999-01-01

    The ENEA (National Agency for New Technology, Energy and the Environment) calibration service for ionizing radiations has been active for 40 years in the secondary standard dosimetry laboratory web. It has been the first center, in 1985, to be acknowledges by the Italian calibration service (SIT) for the two quantities for photons: exposure and air kerma. Since the Institute for the Radiation Protection of ENEA has moved to the new site in Montecuccolino (Bologna, Italy) in 1995, the whole laboratory has been renovated and all irradiation rooms together with radiation source and equipment have been reorganized according to the Χ, γ, β and neutron fields metrology requirements. The aim of this report, as the first part of a report describing all facilities available at the service, is to give a detailed description of all equipment s qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters [it

  6. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  7. Measurements with the new PHE neutron survey instrument

    International Nuclear Information System (INIS)

    Eakins, J.S.; Tanner, R.J.; Hager, L.G.

    2014-01-01

    A novel design of survey instrument has been developed to accurately estimate ambient dose equivalent from neutrons with energies in the range from thermal to 20 MeV. The device features moderating and attenuating layers to ease measurement of fast and intermediate energy neutrons, combined with guides that channel low-energy neutrons to the single, central detector. A prototype of this device has been constructed and exposed to a set of calibration fields: the resulting measured responses are presented and discussed here, and compared against Monte Carlo data. A simple simulated workplace neutron field has also been developed to test the device. Measured response data have been determined for a prototype design of neutron survey instrument, using facilities at PHE and NPL. In general, the results demonstrated good directional invariance and agreed well with data obtained by Monte Carlo modelling, raising confidence in the accuracy of the response characteristics expected for the device. A simple simulated workplace field has also been developed and characterised, and the performance of the device assessed in it: agreement between measured and modelled results suggests that the device would behave as anticipated in real workplace fields. These performances will be investigated further in the future, as the design makes the transition from a research prototype to a commercially available instrument. (authors)

  8. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    Science.gov (United States)

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Experimental study and Monte Carlo modeling of operational quantities in metrology of ionizing radiation: application to neutrons dosimetry by radio-photoluminescence

    International Nuclear Information System (INIS)

    Salem, Youbba-Ould

    2014-01-01

    We characterize a passive dosimeter capable of measuring both fast and thermal neutrons for ambient and personal dosimetry. These neutrons can be detected in a mixed neutron-gamma field with appropriate converters (polyethylene for fast neutrons, cadmium for thermal neutrons). Monte Carlo simulations with MCNPX helped with the geometrical conception of the dosimeter and the choice of materials. The responses of the RPL dosimeter to these neutrons are linear in H * (10) and H p (10) with detection limits of 2 mSv for fast neutrons and 0.19 mSv for thermal neutrons. The angular dependencies are satisfactory according to the ISO 21909 norm. A calibration factor of (9.5 ± 0.5)*10 -2 mSv.cm 2 /RPL signal is obtained to the fast neutrons of the IPHC's 241 Am-Be calibrator. This factor is (9.7 ± 0.3)*10 -3 mSv.cm 2 /RPL signal for the thermalized neutrons. (author)

  10. HENC performance evaluation and plutonium calibration

    International Nuclear Information System (INIS)

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996

  11. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  12. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  13. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  14. Neutron Standards Laboratory of the CIEMAT; Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R., E-mail: karen.guzman.garcia@alumnos.upm.es [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of {sup 241}AmBe and other {sup 252}Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  15. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO 2 calibration algorithms to yield the mass of 235 U present via differences between the expected count rate for the PuO 2 and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 (uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) and CRM 146 (uranium Isotopic Standard for Gamma Spectrometry Measurements) and a selected set of LLNL PuO 2 -bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO 2 calibration algorithm that includes the effect of PuO 2 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of 235 U present in an unknown of mixed U-Pu oxide.

  16. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  17. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  18. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  19. Cosmic Ray Neutron Sensing: Use, Calibration and Validation for Soil Moisture Estimation

    International Nuclear Information System (INIS)

    2017-03-01

    Nuclear and related techniques can help develop climate-smart agricultural practices by optimizing water use efficiency. The measurement of soil water content is essential to improve the use of this resource in agriculture. However, most sensors monitor small areas (less than 1m in radius), hence a large number of sensors are needed to obtain soil water content across a large area. This can be both costly and labour intensive and so larger scale measuring devices are needed as an alternative to traditional point-based soil moisture sensing techniques. The cosmic ray neutron sensor (CRNS) is such a device that monitors soil water content in a non-invasive and continuous way. This publication provides background information about this novel technique, and explains in detail the calibration and validation process.

  20. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  1. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Domingo, C. [Grup de Recerca en Radiacions Ionitzants, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Esposito, A.; Gentile, A.; Carinci, G. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Russo, S. [INFN-Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 44, 95123 Catania (Italy)

    2011-10-21

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0{sup o} and 90{sup o} with respect to the beam-line. Here the ERBSS of UAB (Universidad Autonoma de Barcelona-Grup de Fisica de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were exposed to characterize the 'forward' and 'sideward' proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and

  2. Measurements of neutron radiation in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  3. Measurements of neutron radiation in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  4. Measurement of Neutron Field Characteristics at Nuclear-Physics Instalations for Personal Radiation Monitoring

    CERN Document Server

    Alekseev, A G; Britvich, G I; Kosyanenko, E V; Pikalov, V A; Gomonov, I P

    2003-01-01

    n this work the observed data of neutron spectra on Rostov NEP, Kursk NEP and Smolensk NEP and on the reactor IRT MIPHI are submitted. For measurement of neutron spectra two types of spectrometer were used: SHANS (IHEP design ) and SDN-MS01 (FEI design). The comparison of the data measurements per-formed by those spectrometers above one-type cells on the reactor RBMK is submitted. On the basis of the 1-st horizontal experimental channel HEC-1 of the IRT reactor 4 reference fields of neutrons are investigated. It is shown, that spectra of neutrons of reference fields can be used for imitation of neutron spectra for conditions of NEP with VVER and RBMK type reactors.

  5. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  6. A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)

    Science.gov (United States)

    Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael

    2014-07-01

    Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.

  7. Advisory Committee for the Calibration Standards of Ionizing Radiation Measurement: Section 3. Neutron measurements

    International Nuclear Information System (INIS)

    1982-01-01

    Section III (Mesures neutroniques) of the Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants held its fifth meeting in May 1981. Recent work carried out at BIPM in the field of neutron measurements was reported. The status of a full-scale 252 Cf neutron source intercomparison (10 7 s - 1 ) and of several restricted comparisons was discussed. Intercomparisons of fast neutron fluence rates are in progress ( 115 In(n,n') 115 Insup(m); NB/Zr) or will take place in the near future ( 115 n(n,#betta#) 116 Insup(m); 235 U and 238 U fission chambers). An intercomparison of neutron dosimetry standards by circulating tissue-equivalent ion chambers will be prepared and organized by BIPM. Finally, there was a broad exchange of information on work in progress at the various laboratories represented at the meeting [fr

  8. Characterisation of neutron fields: challenges in assessing the directional distribution

    International Nuclear Information System (INIS)

    Cauwels, Vanessa; Vanhavere, Filip; Reginatto, Marcel

    2014-01-01

    The SCK.CEN has carried out neutron field characterisation campaigns at several nuclear reactors. The main goal of these measurement campaigns was to evaluate the performance of different neutron personal dosemeters. To be able to evaluate the performance of neutron personal dosemeters in terms of H p (10), knowledge of the directional distribution is indispensable. This distribution was estimated by placing several personal dosemeters on all six sides of a slab phantom. The interpretation and conversion of this information into a reliable value for H p (10) requires great care. The data were analysed using three methods. In the first approach, a linear interpolation was performed on three perpendicular axes. In the other two approaches, an icosahedron was used to model the angle of incidence of the neutrons and a linear interpolation or a Bayesian analysis was performed. This study describes the limitations and advantages of each of these methods and provides recommendations for their use to estimate the personal dose equivalent H p (10) for neutron dosimetry. Neutron personal dosimetry is complicated by the fact that the neutron dose quantity H p (10) is strongly energy and angular dependent. Instead of simply assuming that the fluence is unidirectional or that the fluence is isotropic, an attempt was made to estimate the directional distribution of the neutron field using a relatively simple measurement procedure. A number of active and passive personal dosemeters were placed on the six faces of a slab phantom and the results were analysed via different algorithms to obtain partial fluences in several directions of incidence. The results from all calculations in this study show the importance of introducing information about the directional distribution of the neutron fluence for the estimation of the personal dose equivalent H p (10). The difference between H p (10) dose estimates carried out using a unidirectional or an isotropic distribution can be of up

  9. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    International Nuclear Information System (INIS)

    Pokotilovski, Yu.N.

    2013-01-01

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated

  10. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1998-03-01

    We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs

  11. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.

    2011-01-01

    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  12. Neutron Spectrometry for Radiation Protection Purposes

    International Nuclear Information System (INIS)

    McDonald, Joseph C.

    2001-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is necessary to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here

  13. Neutron spectrometry for radiation protection purposes

    CERN Document Server

    McDonald, J C; Alberts, W G

    2002-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.

  14. Personal neutron dosimetry at a research reactor facility

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Carinou, E.; Stamatelatos, I.E.

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. (author)

  15. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  16. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  17. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  18. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    Science.gov (United States)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  19. Neutron scattering study of magnetic and crystalline electirc field interactions in RCrO3

    International Nuclear Information System (INIS)

    Shamir, N.

    1978-05-01

    Magnetic and crystalline electric field interactions in the compounds RCrO 3 (R-rare earth) , were studied by neutron scattering. Elastic neutron scattering was utilized in the study of the temperature dependence of the Cr 3+ and Ho 3+ magnetic reflections in Lu CrO 3 and HoCrO 3 , respectively. Analysis of this temperature dependence yielde constant canting angles for the Cr 3+ and Ho 3+ magnetic moments. Molecular magnetic field constants and crystalline electric field splitting were also calculated from the temperature dependence of the Ho 3+ magnetic reflection. These parameters were obtained directly by inelastic neutron scattering measurement. Inelastic neutron scattering measurements of crystlline electric field transitions of R 3+ (R=Pr, Nd, Tb, Ho, Er, Tm, Yb) in RCrO 3 , formed the basis for the calculation of the common crystalline electirc field parameters of the heavy R 3+ ions. (author)

  20. Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 (Uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g 235 U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 4lSt Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 (Uranium Isotopic Standard for Gamma Spectrometry Measurements) in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U 3 O 8 to (1) extend the low range of the reported mass calibration curve to 10 g 235 U, (2) evaluate the effect of U 3 O 8 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U 3 O 8 enriched to 20.1 wt% 235 U and 52.5 wt% 235 U.

  1. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  2. Calibration of the GNU and HSREM neutron survey instruments

    International Nuclear Information System (INIS)

    Eakins, J.S.; Hager, L.G.; Leake, J.W.; Mason, R.S.; Tanner, R.J.

    2017-01-01

    Two innovative designs of neutron survey instrument have recently been developed to estimate ambient dose equivalent in the workplace: the GNU has an improved energy-independence of response in the meV to TeV range; the HSREM is a comparatively lightweight device covering the meV to 10 MeV range. Both designs offer good detection sensitivity, allowing measurements to be made efficiently and thereby minimizing the exposure to their users. Prototypes of both devices have been constructed and exposed to sets of well-characterized reference fields: the resulting measured responses are presented and discussed here, compared against comprehensive Monte Carlo data.

  3. Calibration of the GNU and HSREM neutron survey instruments

    Energy Technology Data Exchange (ETDEWEB)

    Eakins, J.S., E-mail: jonathan.eakins@phe.gov.uk [Public Health England, CRCE, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Hager, L.G. [Public Health England, CRCE, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Leake, J.W.; Mason, R.S. [Sherwood Nutec Scientific Ltd., Kent (United Kingdom); Tanner, R.J. [Public Health England, CRCE, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2017-04-21

    Two innovative designs of neutron survey instrument have recently been developed to estimate ambient dose equivalent in the workplace: the GNU has an improved energy-independence of response in the meV to TeV range; the HSREM is a comparatively lightweight device covering the meV to 10 MeV range. Both designs offer good detection sensitivity, allowing measurements to be made efficiently and thereby minimizing the exposure to their users. Prototypes of both devices have been constructed and exposed to sets of well-characterized reference fields: the resulting measured responses are presented and discussed here, compared against comprehensive Monte Carlo data.

  4. Achievements in workplace neutron dosimetry in the last decade: Lessons learned from the EVIDOS project

    International Nuclear Information System (INIS)

    Tanner, R. J.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lillhoek, J. E.; Lacoste, V.; Lindborg, L.; Luszik-Bhadra, M.; Reginatto, M.; Schuhmacher, H.; Vanhavere, F.

    2007-01-01

    The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace. Consequently, it is necessary to assess their performance in the workplace, which requires the field in the workplace to be fully characterised in terms of the energy and direction dependence of the fluence. This paper presents an overview of developments in workplace neutron dosimetry but concentrates on the outcomes of the EVIDOS project, which has made significant advances in the characterisation of workplace fields and the analysis of dosemeter responses in those fields. (authors)

  5. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  6. Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G

    International Nuclear Information System (INIS)

    Vold, E.

    1997-01-01

    Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples. Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available

  7. A 'hybrid' neutron area survey instrument for the determination of neutron dose quantities in the workplace

    International Nuclear Information System (INIS)

    Tanner, R.J.; Jenkins, R.; Lowe, T.; Silvie, J.; Joyce, M.J.; Winsby, A.; Molinos, C.

    2005-01-01

    Full text: Neutron survey instruments are used routinely to determine the dose rates in areas where persons may be occupationally exposed. With a few exceptions, these instruments generally use a proportional counter with a high thermal neutron response located in a moderating sphere of CH 2 . The moderating sphere in such designs contains a thermal neutron absorber to reduce the over-response to thermal and intermediate energy neutrons. However, the commercially available examples of such instruments tend to have strongly energy dependent ambient dose equivalent response characteristics. In particular, they often over-respond in the energy range between 1 eV and 10 keV. A prototype of a novel design has been produced that uses seven detectors located in a moderating sphere of CH 2 , six near the surface to detect thermal and epithermal neutrons, and one in the centre to detect fast neutrons. This has been characterized using a combination of MCNP modelling and measurements to produce an instrument that has improved energy dependence of response characteristics. Additionally, the use of seven detectors offers direction and field hardness information. The design and calibration of the instrument are described and its response in workplaces calculated. (author)

  8. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    Science.gov (United States)

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  10. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  11. On the interference between the two microphones in free-field reciprocity calibration

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2004-01-01

    One of the fundamental assumptions in free-field reciprocity calibration of microphones is that the microphones can be substituted by point sources at the positions where the acoustic centers are located. However, in practice the microphones have finite dimensions and, at the distance and in the ......One of the fundamental assumptions in free-field reciprocity calibration of microphones is that the microphones can be substituted by point sources at the positions where the acoustic centers are located. However, in practice the microphones have finite dimensions and, at the distance...

  12. Responses of commercially available neutron electronic personal dosemeters in neutron fields simulating workplaces at MOX fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.

    2011-01-01

    The authors investigated the performance of three commercially available electronic personal dosemeters (EPDs) in evaluating neutron dose equivalents and discussed their suitability to work environments in MOX fuel fabrication facilities. The EPDs selected for this study were NRY21 (Fuji Electric Systems), PDM-313 (Aloka) and DMC 2000 GN (MGP Instruments). All tests were conducted in moderated 252 Cf neutron fields with neutron spectral and dosimetric characteristics similar to those found in MOX fuel facilities. The test results revealed trends and the magnitude of response variations in relation to neutron spectral changes expected in work environments.

  13. Neutron dosimetry at nuclear power plants with light water reactors (LWR)

    International Nuclear Information System (INIS)

    Hofmann, B.; Schwarz, W.; Burgkhardt, B.; Piesch, E.

    1989-02-01

    During nuclear start-up of the Muelheim-Kaerlich nuclear power plant in 1986 the neutron radiation fields in the primary and auxiliary component rooms of the containment were investigated using the Single Sphere Albedo Technique and additional measurement techniques. For personnel monitoring albedo neutron dosemeters were used consisting of thermoluminescent detectors and track etch detectors combined with boron converters. Results: (1) The neutron radiation fields reach dose rate values up to 1000 mSv/h at the sleeves of the reactor coolant pipes, in the refuelling pool and the reactor cavity sump. The neutron component varies between 10% in the steam generator rooms up to 92% in the refuelling pool. (2) The mean value of the effective neutron energy at the different locations was found to be about 100 keV. Thermal neutrons contribute with about 10% to the area dose. (3) By direct intercomparisons and different evaluation methods of the Single Sphere Albedo Dosemeter it was shown, that rem-counters used within routine monitoring in the mixed radiation fields of the LWR overestimate the neutron dose rate only insignificantly (+20%) and are therefore usable for practical radiation protection work. (4) The sensitivity of albedo neutron dosemeters allows the detection of neutrons above 10 μSv. The contribution of neutrons to the total personnel dose was 25% in maximum. For the evaluation of albedo detectors a constant calibration factor can be applied. (orig./HP) [de

  14. A new calibration method for tri-axial field sensors in strap-down navigation systems

    International Nuclear Information System (INIS)

    Li, Xiang; Li, Zhi

    2012-01-01

    This paper presents a novel calibration method for tri-axial field sensors, such as magnetometers and accelerometers, in strap-down navigation systems. Strap-down tri-axial sensors have been widely used as they have the advantages of small size and low cost, but they need to be calibrated in order to ensure their accuracy. The most commonly used calibration method for a tri-axial field sensor is based on ellipsoid fitting, which has no requirement for external references. However, the self-calibration based on ellipsoid fitting is unable to determine and compensate the mutual misalignment between different sensors in a multi-sensor system. Therefore, a novel calibration method that employs the invariance of the dot product of two constant vectors is introduced in this paper. The proposed method, which is named dot product invariance method, brings a complete solution for the error model of tri-axial field sensors, and can solve the problem of alignment in a multi-sensor system. Its effectiveness and superiority over the ellipsoid fitting method are illustrated by numerical simulations, and its application on a digital magnetic compass shows significant enhancement of the heading accuracy. (paper)

  15. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  16. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  17. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  18. Performance of neutron and gamma personnel dosimetry in mixed radiation fields

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1981-01-01

    From 1974 to 1980, six personnel dosimetry intercomparison studies (PDIS) were conducted at the Oak Ridge National Laboratory (ORNL) to evaluate the performance of personnel dosimeters in a variety of neutron and gamma fields produced by operating the Health Physics Research Reactor (HPRR) in the steady state mode with and without spectral modifying shields. A total of 58 different organizations participated in these studies which produced approximately 2000 measurements of neutron and gamma dose equivalents on anthropomorphic phantoms for five different reactor spectra. Based on these data, the relative performance of three basic types of neutron dosimeters [nuclear emulsion film, thermoluminescent (TLD), and track-etch] and two basic types of gamma dosimeters (film and TLD) in mixed radiation fields was assessed

  19. Neutron Field Characterization of Irradiation Locations Applied to the Slovenian TRIGA Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Breaud, Stephane; Destouches, Christophe; Villard, Jean-Francois; Snoj, Luka; Stancar, Ziga; Radulovic, Vladimir; Trkov, Andrej

    2013-06-01

    This work deals with several neutron flux measurement instruments and particle transport calculations combined in a method to assess the neutron field in experimental locations in nuclear reactor core or reflector. First test of this method in the TRIGA Mark II of Slovenia led to the assessment of three energy groups neutron fluxes in central irradiation locations within reactor core. (authors)

  20. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  1. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  2. Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator

    International Nuclear Information System (INIS)

    Kim, Sang In; Jang, In Su; Kim, Jang Lyul; Lee, Jung IL; Kim, Bong Hwan

    2012-01-01

    Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

  3. The extended range neutron rem counter LINUS: overview and latest developments

    International Nuclear Information System (INIS)

    Birattari, C.; Rancati, T.; Esposito, A.; Pelliccioni, M.; Ferrari, A.; Silari, M.

    1997-01-01

    The 'history' of the extended range neutron rem counter LINUS, since its first conception in 1990 is reviewed, along with the latest developments. These include the calibration of the initially cylindrical version with nearly monoenergetic neutrons in the energy range 34-66 MeV, a detailed evaluation of the anisotropy of its response function, the construction and calibration of an improved spherical version, and recent measurements in reference high energy stray radiation fields. The instrument can now be considered as being fully characterized. Similar monitors built by other laboratories following the present design have confirmed its performances. The instrument is now in semi-routine use at a number of particle accelerator facilities and is one of several devices used on-board of aircrafts for assessing the exposure to cosmic rays at commercial flight altitudes. (author)

  4. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saion, E.B.; Watt, D.E. (Saint Andrews Univ. (UK). Dept. of Physics); East, B.W. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Colautti, P. (Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against {gamma} ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author).

  5. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.; Colautti, P.

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against γ ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author)

  6. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    International Nuclear Information System (INIS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-01-01

    The radioactive isotope Californium-252 ( 252 Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D 2 O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252 Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D–T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252 Cf. To be viable, the 14 MeV D–T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2–5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered. - Highlights: • D–T generator neutron calibration field replacement for D 2 O-moderated 252 Cf. • Determination of representative nuclear power plant workplace neutron spectrum. • Simulations to assess moderating materials to soften 14

  7. Neutron Spectra, Fluence and Dose Rates from Bare and Moderated Cf-252 Sources

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-01

    A new, stronger 252Cf source (serial number SR-CF-3050-OR) was obtained from Oak Ridge National Laboratory (ORNL) in 2014 to supplement the existing 252Cf sources which had significantly decayed. A new instrument positioning track system was designed and installed by Hopewell Designs, Inc. in 2011. The neutron field from the new, stronger 252Cf source in the modified calibration environment needed to be characterized as well as the modified neutron fields produced by the new source and seven different neutron moderators. Comprehensive information about our 252Cf source, its origin, production, and isotopic content and decay characteristics needed to be compiled as well. This technical report is intended to address these issues.

  8. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry

    International Nuclear Information System (INIS)

    Fiechtner, A.; Boschung, M.; Wernli, C.

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed. (authors)

  9. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  10. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Najzer, M.; Pauko, M.; Glumac, B.; Acquah, I.N.; Moskon, F.

    1977-01-01

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  11. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Eduardo Lenho, E-mail: eduardo.coelho@uva.br [Universidade Veiga de Almeida, 108 Ibituruna St., 20271-020, Rio de Janeiro (Brazil); Chiapparini, Marcelo [Instituto de Física, Universidade do Estado do Rio de Janeiro, 524 São Francisco Xavier St., 20271-020, Rio de Janeiro (Brazil); Negreiros, Rodrigo Picanço [Instituto de Física, Universidade Federal Fluminense, Gal. Milton Tavares de Souza Ave., 24210-346, Rio de Janeiro (Brazil)

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  12. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  13. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  14. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  15. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  16. Field calibration of cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Jensen, G.; Hansen, A.; Kirkegaard, P.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statistical significance of the calibration expressions. It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometers may take more than one month in order to have wind speeds covering a sufficiently large magnitude range in a wind direction sector where we can be sure that the instruments are exposed to identical, simultaneous wind flows. Another main conclusion is that statistical uncertainty must be carefully evaluated since the individual 10 minute wind-speed averages are not statistically independent. (au)

  17. Calibration of the nuclear power channels for the cylindrical configuration of the IPEN/MB-01 reactor obtained from the measurements of the spatial neutron flux distribution in the reactor core through the irradiation of gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Silva, Alexandre F. Povoa da; Mura, Luiz Ernesto Credidio; Aredes, Vitor Ottoni Garcia; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br, E-mail: alexpovoa@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The activation foil is one of the most used techniques to obtain and compare nuclear parameters from the nuclear data libraries, given by a gamma spectrometry system. Through the measurements of activity induced in the foils, it is possible to determine the neutron flux profile exactly where it has been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. The objective of this work is to obtain, for a cylindrical configuration, the power generation through a spatial thermal neutron flux distribution in the core of IPEN/MB-01 Reactor, by irradiating gold foils positioned symmetrically into the core. They are put in a Lucite plate which will not interfere in the analysis of the neutron flux, because of its low microscopic absorption cross section for the analyzed neutrons. The foils are irradiated with and without cadmium covered small plates, to obtain the thermal and epithermal neutron flux, through specific equations. The correlation between the average power neutron flux, as a result of the foil's irradiation, and the average power digital neutron flux of the nuclear power channels, allows the calibration of the nuclear channels of the reactor. This same correlation was done in 2008 with the reactor in a rectangular configuration, which resulted in a specific calibration of the power level operation. This calibration cannot be used in the cylindrical configuration, because the nuclear parameters could change, which may lead to a different neutron profile. Furthermore, the precise knowledge of the power neutron flux in the core also validates the mathematics used to calculate the power neutron flux. (author)

  18. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...

  19. A compact neutron generator using a field ionization source.

    Science.gov (United States)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  20. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience