WorldWideScience

Sample records for neutron activation analysis

  1. Neutron activation analysis in Romania

    International Nuclear Information System (INIS)

    Apostolescu, St.

    1985-01-01

    The following basic nuclear facilities are used for neutron activation analysis: a 2000 KW VVR-S Nuclear Reactor, a U-200 Cyclotron, a 30 MeV Betatron, several 14 MeV neutron generators and a king size High Voltage tandem Van de'Graaff accelerator. The main domains of application of the thermal neutron activation analysis are: geology and mining, processing of materials, environment and biology, achaeology. Epithermal neutron activation analysis has been used for determination of uranium and thorium in ores with high Th/U ratios or high rare earth contents. One low energy accelerator, used as 14.1 Mev neutron source, is provided with special equipmen for oxigen and low mass elements determination. An useful alternating way to support fast neutron activation analysis is an accurate theoretical description of the fast neutron induced reactions based on the statistical model (Hauser-Feubach STAPRE code) and the preequilibrium decay geometry dependent model. A gravitational sample changer has been installed at the end of a beam line of the Cyclotron, which enables to perform charged particles activation analysis for protein determination in grains

  2. Fast neutron activation analysis by means of low voltage neutron generator

    Directory of Open Access Journals (Sweden)

    M.E. Medhat

    Full Text Available A description of D-T neutron generator (NG is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given. Keywords: Neutron generator, Fast neutron activation analysis, Elemental analysis

  3. Forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Kishi, T.

    1987-01-01

    The progress of forensic neutron activation analysis (FNAA) in Japan is described. FNAA began in 1965 and during the past 20 years many cases have been handled; these include determination of toxic materials, comparison examination of physical evidences (e.g., paints, metal fragments, plastics and inks) and drug sample differentiation. Neutron activation analysis is applied routinely to the scientific criminal investigation as one of multielement analytical techniques. This paper also discusses these routine works. (author) 14 refs

  4. Neutron activation spectrometry and neutron activation analysis in analytical geochemistry

    International Nuclear Information System (INIS)

    Dulski, P.; Moeller, P.

    1975-07-01

    The present report is to show the geochemists who are interested in neutron activation spectrometry (NAS) and neutron activation analysis (NAA) which analytical possibilities these methods offer him. As a review of these analytical possibilities, a lieterature compolation is given which is subdivided into two groups: 1) rock (basic, intermediary, acid, sediments, soils and nuds, diverse minerals, tectites, meteorites and lunar material). 2) ore (Al, Au, Be, Cr, Cu, Mn, Mo, Fe, Pb, Pt, Sn, Ti, W, Zn, Zr, U and phosphate ore, polymetallic ores, fluorite, monazite and diverse ores). The applied methods as well as the determinable elements in the given materials can be got from the tables. On the whole, the literature evaluation carried out makes it clear that neutron activation spectrometry is a very useful multi-element method for the analysis of rocks. The analysis of ores, however, is subjected to great limitations. As rock analysis is very frequently of importance in prospecting for ore deposits, the NAS proves to be extremely useful for this very field of application. (orig./LH) [de

  5. Limitations for qualitative and quantitative neutron activation analysis using reactor neutrons

    International Nuclear Information System (INIS)

    El-Abbady, W.H.; El-Tanahy, Z.H.; El-Hagg, A.A.; Hassan, A.M.

    1999-01-01

    In this work, the most important limitations for qualitative and quantitative analysis using reactor neutrons for activation are reviewed. Each limitation is discussed using different examples of activated samples. Photopeak estimation, nuclear reactions interference and neutron flux measurements are taken into consideration. Solutions for high accuracy evaluation in neutron activation analysis applications are given. (author)

  6. Neutron Activation Analysis with k0-standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    2001-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation concentrates on the improvement of the standardisation method and the characterisation of the neutron field as well as on the improvement of the statistical control on neutron activation analysis. Main achievements in 2000 are reported

  7. Proceedings of national seminar neutron activation analysis

    International Nuclear Information System (INIS)

    Agus Taftazani; Muhayatun Santoso; Budi Haryanto; Khatarina Oginawati

    2010-11-01

    Proceedings of national seminar neutron activation analysis in 2010 with the theme of the Role of Nuclear Analytical Techniques in the Field of Environment, Health and Industry. The seminar was organized by Indonesians Neutron Activation Analysis and BATAN Forum. These proceedings contain the result of environmental research in BATAN, universities and institutions associated with the application on neutron activation analysis technique. The purpose of these proceedings was as a useful source of information to spur research and development of activation analysis applications in various fields for the Indonesian welfare. There are 40 articles. (PPIKSN).

  8. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  9. Physical basis for prompt-neutron activation analysis

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    The technique called prompt ν-ray neutron activation analysis has been applied to rapid materials analysis. The radiation following the neutron radiation capture is prompt in the sense that the nuclear decay time is on the order of 10 - 15 second, and thus the technique is not strictly activation, but should be called radiation neutron capture spectroscopy or neutron capture ν-ray spectroscopy. This paper reviews the following: sources and detectors, theory of radiative capture, nonstatistical capture, giant dipole resonance, fast neutron capture, and thermal neutron capture ν-ray spectra. 14 figures

  10. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    Rosenberg, R.; Zilliacus, R.; Kaistila, M.

    1983-06-01

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  11. Neutron activation analysis

    International Nuclear Information System (INIS)

    Taure, I.; Riekstina, D.; Veveris, O.

    2004-01-01

    Neutron activation analysis (NAA) in Latvia began to develop after 1961 when nuclear reactor in Salaspils started to work. It provided a powerful neuron source, which is necessary for this analytical method. In 1963 at Institute of Physics of the Latvian Academy of Sciences the Laboratory of Neutron Activation Analysis was formed. At the first stage of development the main tasks were of theoretical and technical aspects of NAA. Later the NAA was used to solve problems in technology, biology, and medicine. In the beginning of the 80-ties more attention was focussed to the use of NAA in the environmental research. Environmental problems stayed the main task till the closing the nuclear reactor in Salaspils in 1998 that ceased the main the existence of the laboratory and of NAA, this significant and powerful analytical method in Latvia and Baltic in general. (authors)

  12. Prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Goswami, A.

    2003-01-01

    Prompt gamma neutron activation analysis (PGNAA) is a technique for the analysis of elements present in solid, liquid and gaseous samples by measuring the capture gamma rays emitted from the sample during neutron irradiation. The technique is complementary to conventional neutron activation analysis (NAA) as it can be used in number of cases where NAA fails. Though the technique was first used in sixties, the advantage of the technique was first highlighted by Lindstrom and Anderson. PGNAA is increasingly being used as a rapid, instrumental, nondestructive and multielement analysis technique. A monograph and several excellent reviews on this topic have appeared recently. In this review, an attempt has been made to bring out the essential aspects of the technique, experimental arrangement and instrumentation involved, and areas of application. Some of the results will also be presented

  13. Fast neutron activation analysis

    International Nuclear Information System (INIS)

    Pepelnik, R.

    1986-01-01

    Since 1981 numerous 14 MeV neutron activation analyses were performed at Korona. On the basis of that work the advantages of this analysis technique and therewith obtained results are compared with other analytical methods. The procedure of activation analysis, the characteristics of Korona, some analytical investigations in environmental research and material physics, as well as sources of systematic errors in trace analysis are described. (orig.) [de

  14. Analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Burtner, D.R.

    1983-01-01

    The development of a thermal-neutron activation analysis procedure for determining elemental concentrations in whole coal samples, and the goal of combining this technique with other nuclear methods for determining a total mass balance in these and similar complex materials, is described. Problems of applying a fast-neutron activation analysis method for nitrogen are discussed, as well as an efficient procedure for drying and packaging coal samples. A thermal-neutron activation analysis (TNAA) procedure was developed for determining up to 27 elements in coal samples from the US, China, Nigeria, and Brazil. The comparator form of TNAA was applied, using a unique multielement standard, which contained 48 elements. The difference in net photopeak counts between sample and standard, due to γ-ray attenuation, was reduced by preparing this standard in an organic matrix, which simulates the composition and physical structure of the coal material. The simultaneous irradiation of several aliquots of this standard enabled high precision and accuracy to be attained. An accurate value for oxygen, determined by fast-neutron activation analysis, is used to correct for this effect in the nitrogen determination method

  15. Methodological developments and applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    2007-01-01

    The paper reviews the author's experience acquired and achievements made in methodological developments of neutron activation analysis (NAA) of mostly biological materials. These involve epithermal neutron activation analysis, radiochemical neutron activation analysis using both single- and multi-element separation procedures, use of various counting modes, and the development and use of the self-verification principle. The role of NAA in the detection of analytical errors is discussed and examples of applications of the procedures developed are given. (author)

  16. Fast neutron activation analysis in metallurgy

    International Nuclear Information System (INIS)

    Sterlinski, S.

    1981-01-01

    Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys

  17. Development of high flux thermal neutron generator for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko H., E-mail: hannes@adelphitech.com [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K. [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Jones, Glenn [G& J Jones Enterprice, 7486 Brighton Ct, Dublin, CA 94568 (United States); Pantell, Richard H. [Department of Electrical Engineering, Stanford University, Stanford, CA (United States)

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3–5 · 10{sup 7} n/cm{sup 2}/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 10{sup 10} n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  18. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  19. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  20. Neutron activation analysis: principle and methods

    International Nuclear Information System (INIS)

    Reddy, A.V.R.; Acharya, R.

    2006-01-01

    Neutron activation analysis (NAA) is a powerful isotope specific nuclear analytical technique for simultaneous determination of elemental composition of major, minor and trace elements in diverse matrices. The technique is capable of yielding high analytical sensitivity and low detection limits (ppm to ppb). Due to high penetration power of neutrons and gamma rays, NAA experiences negligible matrix effects in the samples of different origins. Depending on the sample matrix and element of interest NAA technique is used non-destructively, known as instrumental neutron activation analysis (INAA), or through chemical NAA methods. The present article describes principle of NAA, different methods and gives a overview some applications in the fields like environment, biology, geology, material sciences, nuclear technology and forensic sciences. (author)

  1. Analysis of some Egyptian cosmetic samples by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Ali, M.A.; Hassan, M.F.

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. The concentrations of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis

  2. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252 Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252 Cf neutron sources. Neutron source intensities of ≤ 10 11 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10 8 cm -2 s -1 at the sample. Total flux of ≥10 9 cm -2 s -1 is feasible for large-volume irradiation rabbits within the 252 Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  3. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  4. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  5. Forensic neutron activation analysis - the Japanese scene

    International Nuclear Information System (INIS)

    Kishi, Tohru.

    1986-01-01

    The progress of forensic neutron activation analysis/FNAA/ in Japan is described. FNAA began in 1965 and during the past 20 years many cases have been handled; these include determination of toxic materials, comparison examination of physical evidences /e.g.,paints, metal fragments, plastics and inks/ and drug sample differenciation. Neutron activation analysis is applied routinely to the scientific criminal investigation as one of multielement analytical techniques. This paper also discusses these routine works. (author)

  6. Applications of neutrons for laboratory and industrial activation analysis problems

    International Nuclear Information System (INIS)

    Szabo, Elek; Bakos, Laszlo

    1986-01-01

    This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)

  7. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  8. Development of educational program for neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis

  9. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  10. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  11. Neutron activation analysis-comparative (NAAC)

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1979-01-01

    A software system for the reduction of comparative neutron activation analysis data is presented. Libraries are constructed to contain the elemental composition and isotopic nuclear data of an unlimited number of standards. Ratios to unknown sample data are performed by standard calibrations. Interfering peak corrections, second-order activation-product corrections, and deconvolution of multiplets are applied automatically. Passive gamma-energy analysis can be performed with the same software. 3 figures

  12. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1979-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other trace elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  13. Neutron activation analysis in minerals prospecting

    International Nuclear Information System (INIS)

    Gomez, H.; Duque O, J.

    1988-01-01

    One method multielemental analysis in geological samples has been developed by neutron activation analysis without using standards and by eliminating many of the error sources of the absolute method. It uses the ratio of the activities induced by mass unit, between the element in the sample and one cobalt monitor. The detection limits are good for more than thirty elements in many prospecting programs, with a standard deviation less than 7%. The neutron flux used is 2x10 11 nxcm -2 .S -1 and the HPGE detector has a relative efficiency of 20% and an energy resolution of 1.9 KeV in 1332 KeV photopeak

  14. Application of neutron activation analysis

    International Nuclear Information System (INIS)

    Dybczynski, R.

    2001-01-01

    The physical basis and analytical possibilities of neutron activation analysis have been performed. The number of applications in material engineering, geology, cosmology, oncology, criminology, biology, agriculture, environment protection, archaeology, history of art and especially in chemical analysis have been presented. The place of the method among other methods of inorganic quantitative chemical analysis for trace elements determination has been discussed

  15. Neutron activation analysis in archaeological chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, G [Brookhaven National Lab., Upton, NY (United States)

    1990-01-01

    There is a long history of the application of chemical analysis to archaeological problems, extending to the last years of the 18th century. The nuclear-age technique of neutron activation analysis, permitting the simultaneous, sensitive, non-destructive estimation of many elements in an archaeological specimen, has found wide application. Important advances have been made, using this technique, in locating the origins of archaeological artifacts such as ceramics, metals, obsidian and semiprecious stones, among other articles of ancient ritual and commerce. In addition, the technique of neutron activation analysis has proved to be almost ideal in studies tracing the development of ancient technologies such as glass-making and smelting. In the future, the development of data banks of analyses of archaeological materials should provide an excellent new tool in studies of prehistory.

  16. Neutron activation analysis in archaeological chemistry

    International Nuclear Information System (INIS)

    Harbottle, G.

    1990-01-01

    There is a long history of the application of chemical analysis to archaeological problems, extending to the last years of the 18th century. The nuclear-age technique of neutron activation analysis, permitting the simultaneous, sensitive, non-destructive estimation of many elements in an archaeological specimen, has found wide application. Important advantages have been made, using this technique, in locating the origins of archaeological artifacts such as ceramics, metals, obsidian and semiprecious stones, among other articles of ancient ritual and commerce. In addition, the technique of neutron activation analysis has proved to be almost ideal in studies tracing the development of ancient technologies such as glass-making and smelting. In the future, the development of data banks of analyses of archaeological materials should provide an excellent new tool in studies of prehistory. (orig.)

  17. Recent applications of neutron activation analysis at Lucas Heights

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1978-01-01

    The use of neutron activation analysis to determine key elemental distribution patterns in samples from both the energy industry and health science field is summarised. Instrumental neutron activation analysis has successfully measured simultaneously more than twenty elements in a sample of brown coal from Victoria, black coal from New South Wales and samples from the product stream of ACIRL's batch autoclave, solvent-refined, coal hydrogenation process. Four gallstones removed from the same gallbladder have been examined instrumentally by neutron activation analysis. A total of sixteen trace elements were detected with concentrations in the range 0.8 ng g -1 for gold to 7,800 μg g -1 for calcium

  18. Fast neutron activation analysis of Kalewa (Myanmar) coal

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Naing, W [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-06-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab.

  19. Fast neutron activation analysis of Kalewa (Myanmar) coal

    International Nuclear Information System (INIS)

    Myint, U.; Naing, W.

    1994-01-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab

  20. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.; Bowman, W.W.; Zeh, C.W.

    1980-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  1. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-08-01

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  2. Safeguards and Physics Measurements: Neutron Activation Analysis with k0-standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    2000-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation concentrates on the improvement of the standardisation method and the characterisation of the neutron field as well as on the improvement of the statistical control on neutron activation analysis. Main achievements in 2000 are reported

  3. A new facility for rapid neutron activation analysis

    International Nuclear Information System (INIS)

    Zeisler, R.; Makarewicz, M.; Grass, F.; Casta, J.

    1996-01-01

    Many research groups have undertaken efforts on the utilization of short-lived nuclides in a broad spectrum of neutron activation analysis (NAA) applications. The advantages of these approaches are obvious because the information on the sample can be extracted more rapidly. In addition to its other advantages, NAA can become extremely competitive in price and analysis time. Nevertheless, NAA with short-lived nuclides has not gained broad popularity, perhaps because of some difficulties in accuracy and the availability of suitable irradiation facilities. This report discusses the ASTRA reactor for neutron activation analysis capabilities

  4. Neutron activation analysis for antimetabolites. [in food samples

    Science.gov (United States)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  5. Practical considerations in instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmad, N.

    2001-01-01

    Activation analysis is a technique of elemental analysis based on the measurement of characteristics radiation from radionuclides formed directly or indirectly by activation. The activation can be induced by bombarding the material with neutrons or charged particles or gamma rays. This is a well-accepted analytical technique for the determination of composition of complex materials. This technique is also sensitive at trace levels and is almost free from analytical interferences of matrix. It is used for multi-elemental determination in rocks, minerals, alloys, biological materials, geological samples, non-destructive analysis of materials and environmental samples such as water, air particulate matter, plants, soil, sediments and diets. This method is also used for production and measurements of radioisotopes in materials of known composition, for example, when radioactivation is used for nuclear reaction studies, for flux and beam intensity measurements for trace experiments and process quality control. In this article the parameters affecting the sensitivity of instrumental neutron activation analysis are briefly discussed. (author)

  6. Neutron activation analysis applied to energy and environment

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1975-01-01

    Neutron activation analysis was applied to a number of problems concerned with energy production and the environment. Burning of fossil fuel, the search for new sources of uranium, possible presence of toxic elements in food and water, and the relationship of trace elements to cardiovascular disease are some of the problems in which neutron activation was used. (auth)

  7. Activation analysis by filtered neutrons. Preliminary investigation

    International Nuclear Information System (INIS)

    Skarnemark, G.; Rodinson, T.; Skaalberg, M.; Tokay, R.K.

    1986-01-01

    In order to investigate if measuring sensibility and precision by epithermal neutron activation analysis may be improved, different types of geological and biologic test samples were radiated. The test samples were enclosed in an extra filter of tungsten or sodium in order to reduce the flux of those neutrons that otherwise would induce interfering activity in the sample. The geological test samples consist of granites containing lanthanides which had been crushed in tung- sten carbide grinder. Normally such test samples show a interferins 1 87W-activity. By use of a tungsten filter the activity was reduced by up to 60%, which resulted in a considerable improvement of sensibility and precision of the measurement. The biologic test samples consisted of evaporated urine from patients treated with the cell poison cis-platinol. A reliable method to measure the platinum content has not existed so far. This method, however, enables platinum contents as low as about 0.1 ppm to be determined which is quite adequate. To sum up this preliminary study has demonstrated that activation analysis using filtered neutrons, correctly applied, is a satisfactory method of reducing interferences without complicated and time-consuming chemical separation procedures. (O.S.)

  8. Neutron activation analysis in Bulgaria

    International Nuclear Information System (INIS)

    Apostolov, D.

    1985-01-01

    The development of instrumental neutron activation analysis (INAA) as a routine method started in 1960 with bringing into use of the experimental nuclear reactor 2 MW -IRT-2000. For the purposes of INAA the vertical channels were used. The neutron flux vary from 1 to 6x10 12 n/cm 2 s, with Cd ratio for gold of about 4,4. In one of the channels the neutron flux is additionally thermalised with grafite, in others - a pneumatic double-tube rabbit system is installed. One of the irradiation positions is equiped with 1 mm Cd shield constantly. With the pressure of the working gas (air) of 2 bar the transport time in one direction is 2,5 sec. Because of lack of special system for uniform irradiation an accuracy of 3% can be reached by use of iron monitors for long irradiations and copper monitors for use in the rabbit system. Two neutron generators are also working but the application of 14 MeV neutrons for INAA is still quite limited. The most developed are the applications of INAA in the fields of geology and paedology, medicine and biology, environment and pollution, archaeology, metallurgy, metrology and hydrology, criminology

  9. Comparison of instrumental neutron activation analysis and instrumental charged-particle activation analysis for determining of Zn-68 abundance

    International Nuclear Information System (INIS)

    Rafii, H.; Mirzaei, M.; Aslani, G.R.; Kamali-Dehghan, M.; Rajamand, A-A.; Rahiminejad, A.; Mirzajani, N.; Sardari, D.; Shahabi, I.; Majidi, F.

    2004-01-01

    Gallium-67 has found important applications in nuclear medicine since last decades. The bombardment of enriched zinc-68 by proton beams in cyclotron is the most suitable method for the carrier-free production of this radionuclide. Any traces and isotopic impurities of the target cause serious radiological hazards because of their associated induced radioactivities. Trace analysis and Zn-68 content determination of the target material before any bombardment and chemical separation provide a valuable assessment of desired product. The elemental abundance evaluation of enriched isotopes is generally carried out by inductively coupled plasma-mass spectrometry method, ICP-Ms Instrumental neutron activation analysis and instrumental charged particle activation analysis. International neutron activation analysis and instrumental charged- particle activation analysis, looks be an alternative nuclear method for determining the abundance evaluation of enriched Zn-68 enrichment in two different samples has been studied by mean of international neutron activation analysis and instrumental charged- particle activation analysis . One sample was purchased from a French company, cortecnet, and the other was separated by an electromagnetic system in the Ions source department of our center, NRCAM. The neutron or proton irradiation was took place respectively in miniature neutron source reactor of Esfahan by flux of (1 to 5) 10 11 n/cm 2 .sec for 30 min and in Cyclon30 by 19 MeV proton beams of 100μA current for 12 min. The produced radioactivity was measured by HpGe detector for determination of trace impurities and evaluation of Zn-68 content in the samples. The result shows a good agreement with the reported ones by their producers and their low derivation of about ± indicates that the international neutron activation analysis and instrumental charged- particle activation analysis are relatively precise and rapid and each one can be used as a supplemental method for analyzing

  10. Neutron activation analysis for environmental sample in Thailand

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Nouchpramool, Sunun; Bunprapob, Supamatthree; Sumitra, Tatchai

    2003-01-01

    Neutron Activation Analysis has been applied for the trace elements analysis in environmental samples. Thirty three samples of airborne particulate were collected every week at Ongkharak Nuclear Research Center (ONRC) during the period of June 1998 to March 1999. The Ti, I, Mg, Na, V, K, Cl, Al, Mn, Ca, As, Sm, Sb, Br, La, Ce, Th, Cr, Cs, Sc, Rb, Fe, Zn and Co were analyzed by Neutron Activation Analysis utilizing 2 MW TRIGA MARK III research reactor. The certified reference materials 1632a and 1633a from National Bureau of Standard were select as standard. (author)

  11. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1

    International Nuclear Information System (INIS)

    Bellido, Luis F.; Bellido, Alfredo V.

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author)

  12. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  13. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1996-01-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs

  14. Neutron Activation Analysis with k0 standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    1998-01-01

    The objectives of the research are: (1) to develop and implement the k0 standardisation method for neutron activation analysis in close collaboration with scientific partners; (2) to exploit fully the inherent qualities of NAA such as accuracy, traceability, and multi-element offer complete services in health-physics measurements according to international quality standards, (2) to improve continuously these measurement techniques and to follow up international recommendations and legislation concerning the surveillance of workers; (3) to support and advise nuclear and non-nuclear industry on problems of radioactive contamination. Achievements in 1997 related to gamma spectrometry, whole-body counting, beta and alpha spectrometry, dosimetry, radon measurements, calibration, instrumentation, and neutron activation analysis are described

  15. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1983-01-01

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  16. Neutron activation analysis: an emerging technique for conservation/preservation

    International Nuclear Information System (INIS)

    Sayre, E.V.

    1976-01-01

    The diverse applications of neutron activation in analysis, preservation, and documentation of art works and artifacts are described with illustrations for each application. The uses of this technique to solve problems of attribution and authentication, to reveal the inner structure and composition of art objects, and, in some instances to recreate details of the objects are described. A brief discussion of the theory and techniques of neutron activation analysis is also included

  17. Neutron activation analysis for certification of standard reference materials

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Perez Zayas, G.; Hernandez Rivero, A.; Ribeiro Guevara, S.

    1996-01-01

    Neutron activation analysis is used extensively as one of the analytical techniques in the certification of standard reference materials. Characteristics of neutron activation analysis which make it valuable in this role are: accuracy multielemental capability to asses homogeneity, high sensitivity for many elements, and essentially non-destructive method. This paper report the concentrations of 30 elements (major, minor and trace elements) in four Cuban samples. The samples were irradiated in a thermal neutron flux of 10 12- 10 13 n.cm 2. s -1. The gamma ray spectra were measured by HPGe detectors and were analyzed using ACTAN program development in Center of Applied Studies for Nuclear Development

  18. Radiochemical and instrumental neutron activation analysis - recent trends

    International Nuclear Information System (INIS)

    Dams, R.

    1990-01-01

    Recent trends of radiochemical and instrumental neutron activation analysis are discussed. Novel developments include the application of cyclic and pulsed activation, better energy resolution with hyperpure germanium detectors, and use of pulse processing systems allowing extremely high count rates of very short-lived isotopes. Further development is anticipated in the field of speciation in biological and environmental studies. Radiochemical methods have led to accurate determinations at the ng/g level. A promising future is expected for neutron activation techniques. (orig.)

  19. General principles of neutron activation analysis

    International Nuclear Information System (INIS)

    Dostal, J.; Elson, C.

    1980-01-01

    Aspects of the principles of atomic and nuclear structure and the processes of radioactivity, nuclear transformation, and the interaction of radiations with matter which are of direct relevance to neutron activation analysis and its application to geologic materials are discussed. (L.L.)

  20. Applications of neutron activation analysis technique

    International Nuclear Information System (INIS)

    Jonah, S. A.

    2000-07-01

    The technique was developed as far back as 1936 by G. Hevesy and H. Levy for the analysis of Dy using an isotopic source. Approximately 40 elements can be analyzed by instrumental neutron activation analysis (INNA) technique with neutrons from a nuclear reactor. By applying radiochemical separation, the number of elements that can be analysed may be increased to almost 70. Compared with other analytical methods used in environmental and industrial research, NAA has some unique features. These are multi-element capability, rapidity, reproducibility of results, complementarity to other methods, freedom from analytical blank and independency of chemical state of elements. There are several types of neutron sources namely: nuclear reactors, accelerator-based and radioisotope-based sources, but nuclear reactors with high fluxes of neutrons from the fission of 235 U give the most intense irradiation, and hence the highest available sensitivities for NAA. In this paper, the applications of NAA of socio-economic importance are discussed. The benefits of using NAA and related nuclear techniques for on-line applications in industrial process control are highlighted. A brief description of the NAA set-ups at CERT is enumerated. Finally, NAA is compared with other leading analytical techniques

  1. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  2. Neutron activation analysis of Etruscan pottery

    International Nuclear Information System (INIS)

    Whitehead, J.; Silverman, A.; Ouellet, C.G.; Clark, D.D.; Hossain, T.Z.

    1992-01-01

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  3. The verification of neutron activation analysis support system (cooperative research)

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sawahata, Hiroyuki; Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Onizawa, Kouji [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k{sub 0} method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k{sub 0} method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  4. Neutron activation analysis of artefacts

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman

    2004-01-01

    The paper discussed the utilization of neutron activation analysis in this field. NAA, an analytical technique which analyzing the elements in the sample without any chemical treatment. It is sensitive and accurate. Archaeological objects i.e. ceramics, historical building materials, metals, etc can be analyze with this technique. The analysis results were presented in form of characterization of the artefacts in chemical profiles, which can present the information of the origin of the artefacts as well as it originality. (Author)

  5. Neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Greef, G.J.

    1977-05-01

    In neutron activation analysis the precision and accuracy of results are often misleading, since only the statistical errors which accompany the measuring of radioactivity are taken into consideration. Several other factors can, however, also influence precision and accuracy. It was found that a geological sample was contaminated with the construction material of the mill in which it had been pulverised. Several geometrical differences which could possibly play a role were also investigated. Impurities in the irradiation containers affect the determination of some elements in the samples; the contamination materials in quarts irradiation tubes were determined. The flux gradients which may effect the relative activities of the samples and standards were measured. Suitable standards are necessary to ensure accurate analyses of geological material. Available natural standards were critically evaluated and several methods were investigated by which synthetic standards may be prepared. In order to accurately determine gallium, lanthanum and samarium by means of neutron activation analysis, sodium first had to be removed. After irradiation the sample was dissolved in a mixture of acids and the soidium absorbed from the solution on a hydrated antimony pentoxide column. Gallium, lanthanum and samarium activities were measured by means of precision gamma-spectrometry

  6. Precision of neutron activation analysis for environmental biological materials

    International Nuclear Information System (INIS)

    Hamaguchi, Hiroshi; Iwata, Shiro; Koyama, Mutsuo; Sasajima, Kazuhisa; Numata, Yuichi.

    1977-01-01

    Between 1973 and 1974 a special committee ''Research on the application of neutron activation analysis to the environmental samples'' had been organized at the Research Reactor Institute, Kyoto University. Eleven research groups composed mainly of the committee members cooperated in the intercomparison programme of the reactor neutron activation analysis of NBS standard reference material, 1571 Orchard Leaves and 1577 Bovine Liver. Five different type of reactors were used for the neutron irradiation; i.e. KUR reactor of the Research Reactor Institute, Kyoto University, TRIGA MARK II reactor of the Institute for Atomic Energy, Rikkyo University, and JRR-2, JRR-3, JRR-4 reactor of Japan Atomic Energy Research Institute. Analyses were performed mainly by instrumental method. Precision of the analysis of 23 elements in Orchard Leaves and 13 elements in Bovine Liver presented by the different research groups was shown in table 4 and 5, respectively. The coefficient of variation for these elements was from several to -- 30 percent. Averages given to these elements agreed well with the NBS certified or reference values. Thus, from the practical point of view for the routine multielement analysis of environmental samples, the validity of the instrumental neutron activation technique for this purpose has been proved. (auth.)

  7. The multielement potential of fast neutron cyclic activation analysis

    International Nuclear Information System (INIS)

    Nonie, S.E.; Randle, K.

    1994-01-01

    Cyclic neutron activation analysis (CNAA) has, in recent years been developed as a useful analytical tool for the assay of short-lived isotopes in single element situations. The work described in this paper investigates the potential of the technique for composite samples having a wide range of elements that produce short-lived and long-lived isotopes on neutron irradiation. Accelerator-derived neutrons with average energies of 3 MeV, 6 MeV and 14 MeV were employed in what has been dubbed 'Fast Neutron Cyclic Neutron Activation Analysis' (FNCAA). The approach to multi-element analysis entailed: determination of cycle parameters in single element samples via the reactions 27 Al(n,p) 27 Mg(9.6 min,E γ =840keV), and 137 Ba(n,n 'γ137m Ba(2.3 min,E γ 137m Ba(2.3 min,E γ =662 keV), a test of the method on a composite rock sample, determination of analytical sensitivities using both powdered kale and rock standards and a comparison of analytical results with other techniques. The results obtained in all these measurements are presented and discussed. (author) 10 refs.; 3 figs.; 5 tabs

  8. Applicability of the activation analysis with prompt neutron in medicine

    International Nuclear Information System (INIS)

    Yaghubian-Malhami, R.

    1975-04-01

    The concentrations of boron and cadmium in the human body are of great importance in medicine. The author determined their concentration by prompt neutron activation analysis in aqueous solutions and in urine. The results show that this technique may be used in medical diagnosis. The author discusses the qualities and the applicability of delayed and prompt neutron activation analysis in biology and medicine. (C.R.)

  9. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  10. Utilization and facility of neutron activation analysis in HANARO research reactor

    International Nuclear Information System (INIS)

    Chung, Y.S.; Chung, Y.J.; Moon, J.H.

    1998-01-01

    The facilities of neutron activation analysis within a multi-purpose research reactor (HANARO) are described and the main applications of Neutron activation analysis (NAA) in Korea are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system, are installed at three irradiation holes. One irradiation hole is lined with a cadmium tube for epithermal-nal NAA. The performance of the NAA facility was examined to identify the characteristics of tube transfer system, irradiation sites and polyethylene irradiation capsule. The available thermal neutron flux with each irradiation site are in the range of 3.9x10 13 -1.6x10 14 n/cm 2 ·s and cadmium ratios are 15-250. Neutron activation analysis has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials and various polymers for research and development. Analytical services and the latest analytical results are summarized. (author)

  11. Vanadium determination in pretoleum by neutron activation analysis

    International Nuclear Information System (INIS)

    Lopez, M.; Espinosa, R.

    1983-01-01

    The vanadium concentration in an Peruvian petroleum sample is determined by neutron activation analysis. The samples were irradiated for 20 minutes with a flux of thermal neutrons of 1.75 x 10 7 n/cm 2 -s in a subcritical assembly. The activity of the created samples decreases to half 15 minutes after the irradiation. The result is 28.3 +- 0.8 p.p.m. with a typical deviation of 2.8%. The detection limit of this method is 4 p.p.m

  12. Use of research reactors for neutron activation analysis. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-04-01

    Neutron activation analysis (NAA) is an analytical technique based on the measurement of characteristic radiation from radionuclides formed directly or indirectly by neutron irradiation of the material of interest. In the last three decades, neutron activation analysis has been found to be extremely useful in the determination of trace and minor elements in many disciplines. These include environmental analysis applications, nutritional and health related studies, geological as well as material sciences. The most suitable source of neutrons for NAA is a research reactor. There are several application fields in which NAA has a superior position compared to other analytical methods, and there are good prospects in developing countries for long term growth. Therefore, the IAEA is making concerted efforts to promote neutron activation analysis and at the same time to assist developing Member States in better utilization of their research reactors. The purpose of the meeting was to discuss the benefits and the role of NAA in applications and research areas that may contribute towards improving utilization of research reactors. The participants focused on five specific topics: (1) Current trends in NAA; (2) The role of NAA compared to other methods of chemical analysis; (3) How to increase the number of NAA users through interaction with industries, research institutes, universities and medical institutions; (4) How to reduce costs and to maintain quality and reliability; (5) NAA using low power research reactors. Neutron activation analysis in its various forms is still active and there are good prospects in developing countries for long-term growth. This can be achieved by a more effective use of existing irradiation and counting facilities, a better end-user focus, and perhaps marginal improvements in equipment and techniques. Therefore, it is recommended that the Member States provide financial and other assistance to enhance the effectiveness of their laboratories

  13. Neutron activation analysis for noble metals in matte leach residues

    International Nuclear Information System (INIS)

    Hart, R.J.

    1978-01-01

    The development of the neutron activation analysis technique as a method for rapid and precise determinations of platinum group metals in matte leach residues depends on obtaining a method for effecting complete and homogeneous sample dilution. A simple method for solid dilution of metal samples is outlined in this study, which provided a basis for the accurate determination of all the noble metals by the Neutron Activation Analysis technique

  14. Storage and pre-neutron-activation-analysis treatment for trace-element analysis in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1985-01-01

    The problems regarding storage and pre-neutron-activation-analysis treatment for the elements aluminum, calcium, vanadium, selenium, copper, iodine, zinc, manganese, and magnesium in a urine matrix are reviewed. The type of collection and storage procedure and pre-neutron activation analysis treatment of urine depend on the specific trace element; that is, its inherent physical and chemical properties. Specifically polyethylene in teflon containers are the most suitable for general determinations. Whether any preservative is added would depend upon the stability of the trace element and its tendency for surface adsorption. Preferably, preservatives should contain no radioactivatable elements for maximum efficacy. Freeze drying or packing urine shipments under dry ice needs to be explored on an individual basis. Each pre- or post-neutron activation analysis treatment is specific and optimized for the trace element analyzed

  15. Monte Carlo calculations and neutron spectrometry in quantitative prompt gamma neutron activation analysis (PGNAA) of bulk samples using an isotopic neutron source

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Awotwi-Pratt, J.B.; Williams, A.M.

    2004-01-01

    An activation analysis facility based on an isotopic neutron source (185 GBq 241 Am/Be) which can perform both prompt and cyclic activation analysis on bulk samples, has been used for more than 20 years in many applications including 'in vivo' activation analysis and the determination of the composition of bio-environmental samples, such as, landfill waste and coal. Although the comparator method is often employed, because of the variety in shape, size and elemental composition of these bulk samples, it is often difficult and time consuming to construct appropriate comparator samples for reference. One of the obvious problems is the distribution and energy of the neutron flux in these bulk and comparator samples. In recent years, it was attempted to adopt the absolute method based on a monostandard and to make calculations using a Monte Carlo code (MCNP4C2) to explore this further. In particular, a model of the irradiation facility has been made using the MCNP4C2 code in order to investigate the factors contributing to the quantitative determination of the elemental concentrations through prompt gamma neutron activation analysis (PGNAA) and most importantly, to estimate how the neutron energy spectrum and neutron dose vary with penetration depth into the sample. This simulation is compared against the scattered and transmitted neutron energy spectra that are experimentally and empirically determined using a portable neutron spectrometry system. (author)

  16. Development and simulation of various methods for neutron activation analysis

    International Nuclear Information System (INIS)

    Otgooloi, B.

    1993-01-01

    Simple methods for neutron activation analysis have been developed. The results on the studies of installation for determination of fluorine in fluorite ores directly on the lorry by fast neutron activation analysis have been shown. Nitrogen in organic materials was shown by N 14 and N 15 activation. The description of the new equipment 'FLUORITE' for fluorate factory have been shortly given. Pu and Be isotope in organic materials, including in wheat, was measured. 25 figs, 19 tabs. (Author, Translated by J.U)

  17. Study on neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Cho, Seung Yeon

    1993-01-01

    Environmental samples were analyzed quantitatively by neutron activation analysis using high resolution γ-ray spectrometry. The accuracy and precision of the method were checked by the analysis of reference materials, Urban Particulate Matter (NBS SRM 1648) and Coalfly ash (NBS SRM 1633a). Airborne particulates collected for 6 months with low volume air sampler at the outer area of Seoul were analyzed as the start of full scale airborne particulates research. We analyzed 19 trace elements from the samples and the NAA method was confirmed to be utilized for environmental pollution research. (Author)

  18. Applications of neutron activation analysis in industry

    International Nuclear Information System (INIS)

    Zaini Hamzah.

    1985-01-01

    Neutron activation analysis technique is discussed in brief. This technique is used for quality control of raw materials, process materials and finished products, as well as activities in research and development for the improvement of the products and new products. The uses of this technique in several experienced industries are mentioned (author)

  19. Utilization and facility of neutron activation analysis in HANARO research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y S; Chung, Y J; Moon, J H [Korea Atomic Energy Research Institute, P.O.Box 105 Yusong, 305-600, Taejon (Korea, Republic of)

    1998-07-01

    The facilities of neutron activation analysis within a multi-purpose research reactor (HANARO) are described and the main applications of Neutron activation analysis (NAA) in Korea are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system, are installed at three irradiation holes. One irradiation hole is lined with a cadmium tube for epithermal-nal NAA. The performance of the NAA facility was examined to identify the characteristics of tube transfer system, irradiation sites and polyethylene irradiation capsule. The available thermal neutron flux with each irradiation site are in the range of 3.9x10{sup 13}-1.6x10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are 15-250. Neutron activation analysis has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials and various polymers for research and development. Analytical services and the latest analytical results are summarized. (author)

  20. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Applications of neutron activation analysis in environmental science, biology and geoscience

    International Nuclear Information System (INIS)

    1992-01-01

    The applications of neutron activation analysis technique with high sensitivity, good accuracy, multielemental analysis and non-destruction of samples in hydrosphere, soil and lithosphere, atmosphere, cosmosphere and biosphere were introduced in this book. A large amount of research activities in this field during the 20 years and more carried out by Neutron Activation Analysis Laboratory, Institute of High Energy Physics, Academia Sinica, was summarized. A number of the data and information with important scientific significance was provided

  2. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    International Nuclear Information System (INIS)

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements

  4. Trace element analysis of common salt using neutron activation analysis

    International Nuclear Information System (INIS)

    Usman, K.

    1993-01-01

    Instrumental Fast Neutron Activation Analysis (IFNAA) technique has been used in the qualitative and quantitative determination of the impurity elements in common salt. Samples of the different types of common salt processed in Nigeria and some of those imported into the country were used. The type A711 KAMAN neutron generator and a high-purity Germanium (HpGe) gamma spectrometer available at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria has been used. The ORTEC ADCAM 100 Emulation Software (Maestro) was used in the qualitative measurement of the detected elements. The G.R.G Activation Analysis System by G. R. Gilmore, 1987, was used in the quantitative determination of the elements detected by relative method. Aluminium and arsenic were detected and measured

  5. SWAN - Detection of explosives by means of fast neutron activation analysis

    International Nuclear Information System (INIS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-01-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project “Accelerators & Detectors” (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  6. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  7. Analysis by neutronic activation of the active principles of MIBI

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Hernandez Rivero, A.T.; Moreno Bermudez, J.; Ribeiro Guevara, S.; Molina Insfran, J.; Perez Zayas, G.

    1997-01-01

    In the present job the obtained results are shown through the application of an analysis by neutronic activation, in their instrumental variant, for the determination of the elementary composition of three Cuban radiopharmaceuticals. (author) [es

  8. Neutron activation analysis of monomineral fractions

    International Nuclear Information System (INIS)

    Drykhin, V.I.; Belen'kij, B.V.; Voinkov, D.M.; Il'yasova, K.I.; Lejpinskaya, D.I.; Nedostyp, T.V.

    1977-01-01

    The results are described of the development of an instrumental neutron activation analysis (INAA) of monomineral sulfides (pyrites, pyrrhotites, chalcopyrites and others), quartzites and other minerals, the technique being intended for geochemical investigations. For a multi-element INAA of monomineral sulfides, the optimum irradiation time in a flux of 10 12 to 1.3x10 13 n/cm 2 (neutron field of a nuclear reactor) is 20 to 40 hours, thus ensuring a reliable determination of a great number of elements not lower than 10 -4 %. The time of the induced activity for determining indium in sulfides is 0.5 to 3 min. The actual sensitivity of the method is 10 -4 %. A sensitivity with respect to gold of 0.01 g/t was attained in monominerals after an irradiation of up to 5 min

  9. Current status of neutron activation analysis in HANARO Research Reactor

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min

    2003-01-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10 13 - 1 x 10 14 n/cm 2 ·s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  10. Current status of neutron activation analysis in HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min [Korea Atomic Energy Research Institute, Daejeon (Korea)

    2003-03-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10{sup 13} - 1 x 10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  11. Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Vincent, D H; Greenberg, R R; Stone, C A; Mackey, E A [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Anderson, D L [Food and Drug Administration, Washington, DC (United States); Clark, D D [Cornell Univ., Ithaca, NY (United States)

    1993-01-01

    An instrument for neutron capture prompt gamma-ray activation analysis (PGAA) has been constructed as part of the Cold Neutron Research Facility at the 20 MW National Institute of Standards and Technology Research Reactor. The neutron fluence rate (thermal equivalent) is 1.5*10[sup 8] n*cm[sup -2]*s[sup -] [sup 1], with negligible fast neutrons and gamma-rays. With compact geometry and hydrogen-free construction, the sensitivity is sevenfold better than an existing thermal instrument. Hydrogen background is thirtyfold lower. (author) 17 refs.; 2 figs.

  12. Determination of iodine 129 in vegetables using neutron activation analysis

    International Nuclear Information System (INIS)

    Quintana, Eduardo E.; Thyssen, Sandra M.; Bruno, Hector A.

    1999-01-01

    The developed methodology allows the determination of iodine 129 in vegetables, using neutron activation analysis. The chemical treatment removes the interferences present in these matrixes, as well as the bromine 82 originated in the activation process. The experimental method for the determination of iodine 129 by neutron activation analysis involves five steps: 1- digestion by alkaline fusion; 2- pre-irradiation purification of iodine 129 by distillation followed by solvent extraction, and adsorption on activated charcoal by distillation; 3- neutron irradiation; 4- post-irradiation purification of iodine 130 by distillation followed by solvent extraction; 5- gamma spectrometry. A chemical recovery of 95 % is obtained in the distillations, measured using iodine 131 as tracer. The whole process recovery is within 70 % and 85 %. The detection limit is 2 mBq/kg of sample, but several factors affect this value, such as type of vegetable, natural iodine concentration, irradiation time and neutron flux. The methodology developed is applied at environmental surveillance with safeguards proposes, in the detection of undeclared reprocessing of irradiated fuel. (authors)

  13. Automatization of the neutron activation analysis method in the nuclear analysis laboratory

    International Nuclear Information System (INIS)

    Gonzalez, N.R.; Rivero, D del C.; Gonzalez, M.A.; Larramendi, F.

    1993-01-01

    In the present paper the work done to automatice the Neutron Activation Analysis technic with a neutron generator is described. An interface between an IBM compatible microcomputer and the equipment in use to make this kind of measurement was developed. including the specialized software for this system

  14. Elemental Study in Soybean and Products by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Vorapot, Permnamtip; Arporn Busamongkol; Sirinart, Laoharojanaphand

    2009-07-01

    Full text: Elements were analyzed in soybean and products by Instrumental Neutron Activation Analysis (INAA), Pseudo-Cyclic Instrumental Neutron Activation Analysis (PCINAA) and Epithermal Instrumental Neutron Activation Analysis (EINAA). Elements detected in sample were include Al, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn Na, Se and Zn. The result showed that the nutritional contents changed after food processing. From experiments (n = 2), it was found that after food processing, the concentration of Cl and Na in soy bean curd increased from 0.0045 and 0.0011% to found 0.91 and 0.39 %, respectively. Other elements did not differ from soybean. Limits of detection for Al, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn Na, Se and Zn were 0.05, 0.2, 50, 6, 10, 15, 0.05, 30, 40, 5, 5, 0.05 and 1 mg.kg - 1, respectively

  15. SWAN - Detection of explosives by means of fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gierlik, M., E-mail: m.gierlik@ncbj.gov.pl; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-21

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project “Accelerators & Detectors” (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  16. Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis

    International Nuclear Information System (INIS)

    Chiesa, Davide; Previtali, Ezio; Sisti, Monica

    2014-01-01

    Highlights: • Bayesian statistics to analyze the neutron flux spectrum from activation data. • Rigorous statistical approach for accurate evaluation of the neutron flux groups. • Cross section and activation data uncertainties included for the problem solution. • Flexible methodology applied to analyze different nuclear reactor flux spectra. • The results are in good agreement with the MCNP simulations of neutron fluxes. - Abstract: In this paper, we present a statistical method, based on Bayesian statistics, to analyze the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation experiment performed at the TRIGA Mark II reactor of Pavia University (Italy) in four irradiation positions characterized by different neutron spectra. In order to evaluate the neutron flux spectrum, subdivided in energy groups, a system of linear equations, containing the group effective cross sections and the activation rate data, has to be solved. However, since the system’s coefficients are experimental data affected by uncertainties, a rigorous statistical approach is fundamental for an accurate evaluation of the neutron flux groups. For this purpose, we applied the Bayesian statistical analysis, that allows to include the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, was used to define the problem statistical model and solve it. The first analysis involved the determination of the thermal, resonance-intermediate and fast flux components and the dependence of the results on the Prior distribution choice was investigated to confirm the reliability of the Bayesian analysis. After that, the main resonances of the activation cross sections were analyzed to implement multi-group models with finer energy subdivisions that would allow to determine the

  17. Multielement analysis of biological standards by neutron activation analysis

    International Nuclear Information System (INIS)

    Nadkarni, R.A.

    1977-01-01

    Up to 28 elements were determined in two IAEA standards: Animal Muscle H4 and Fish Soluble A 6/74, and three NBS standards: Spinach: SRM-1570, Tomato Leaves: SRM-1573 and Pine Needles: SRM-1575 by instrumental neutron-activation analysis. Seven noble metals were determined in two NBS standards: Coal: SRM-1632 and Coal Fly Ash: SRM-1633 by radiochemical procedure while 11 rare earth elements were determined in NBS standard Orchard Leaves: SRM-1571 by instrumental neutron-activation analysis. The results are in good agreement with the certified and/or literature data where available. The irradiations were performed at the Cornell TRIGA Mark II nuclear reactor at a thermal neutron flux of 1-3x10 12 ncm -2 sec -1 . The short-lived species were determined after a 2-minute irradiation in the pneumatic rabbit tube, and the longer-lived species after an 8-hour irradiation in the central thimble facility. The standards and samples were counted on coaxial 56-cm 3 Ge(Li) detector. The system resolution was 1.96 keV (FWHM) with a peak to Compton ratio of 37:1 and counting efficiency of 13%, all compared to the 1.332 MeV photopeak of Co-60. (T.I.)

  18. Applied research and development of neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Ryel; Kim, Young Gi; Jung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun; Lim, Jong Myoung

    2003-05-01

    The aims of this project are to establish the quality control system of Neutron Activation Analysis(NAA) due to increase of industrial needs for standard analytical method and to prepare and identify the standard operation procedure of NAA through practical testing for different analytical items. R and D implementations of analytical quality system using neutron irradiation facility and gamma-ray measurement system and automation of NAA facility in HANARO research reactor are as following ; 1) Establishment of NAA quality control system for the maintenance of best measurement capability and the promotion of utilization of HANARO research reactor 2) Improvement of analytical sensitivity for industrial applied technologies and establishment of certified standard procedures 3) Standardization and development of Prompt Gamma-ray Activation Analysis (PGAA) technology

  19. Data reduction for a high-throughput neutron activation analysis system

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1979-01-01

    To analyze samples collected as part of a geochemical survey for the National Uranium Resource Evaluation program, Savannah River Laboratory has installed a high-throughput neutron activation analysis system. As part of that system, computer programs have been developed to reduce raw data to elemental concentrations in two steps. Program RAGS reduces gamma-ray spectra to lists of photopeak energies, peak areas, and statistical errors. Program RICHES determines the elemental concentrations from photopeak and delayed-neutron data, detector efficiencies, analysis parameters (neutron flux and activation, decay, and counting times), and spectrometric and cross-section data from libraries. Both programs have been streamlined for on-line operation with a minicomputer, each requiring approx. 64 kbytes of core. 3 tables

  20. Neutronic activation analysis of antique ceramics. Groups and differenciation

    International Nuclear Information System (INIS)

    Widemann, F.

    1975-01-01

    Different techniques for clay analysis in view of studying the origin of ceramics are exposed. The element abundance is measured by X-ray fluorescence analysis or by neutron activation analysis. Comparative tables of the results are established [fr

  1. Neutron activation analysis of atmospheric aerosol

    International Nuclear Information System (INIS)

    Obrusnik, I.

    1986-01-01

    Neutron activation analysis (NAA) is a modern analytical method well suited for the analysis of atmospheric aerosols. Particular steps of the NAA procedure and especially different types of aerosol sampling and sample preparation for analysis are discussed in detail. Several possible NAA techniques are described and the advantages of a purely instrumental technique with short and long irradiation are pointed out. Important performance characteristics of the NAA method such as precision, accuracy, sensitivity and detection limits are also discussed. Different applications of NAA in environmental studies are reviewed. (author)

  2. Uncertainty Assessments in Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    W. D. James; R. Zeisler

    2000-01-01

    Fast neutron activation analysis (FNAA) carried out with the use of small accelerator-based neutron generators is routinely used for major/minor element determinations in industry, mineral and petroleum exploration, and to some extent in research. While the method shares many of the operational procedures and therefore errors inherent to conventional thermal neutron activation analysis, its unique implementation gives rise to additional specific concerns that can result in errors or increased uncertainties of measured quantities. The authors were involved in a recent effort to evaluate irreversible incorporation of oxygen into a standard reference material (SRM) by direct measurement of oxygen by FNAA. That project required determination of oxygen in bottles of the SRM stored in varying environmental conditions and a comparison of the results. We recognized the need to accurately describe the total uncertainty of the measurements to accurately characterize any differences in the resulting average concentrations. It is our intent here to discuss the breadth of potential parameters that have the potential to contribute to the random and nonrandom errors of the method and provide estimates of the magnitude of uncertainty introduced. In addition, we will discuss the steps taken in this recent FNAA project to control quality, assess the uncertainty of the measurements, and evaluate results based on the statistical reproducibility

  3. Reactor neutron activation for multielemental analysis

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    1999-01-01

    Neutron Activation Analysis using single comparator (K 0 NAA method) has been used for obtaining multielemental profiles in a variety of matrices related to environment. Gold was used as the comparator. Neutron flux was characterised by determining f, the epithermal to thermal neutron flux ratio and cc, the deviation from ideal shape of the neutron spectrum. The f and a were determined in different irradiation positions in APSARA reactor, PCF position in CIRUS reactor and tray rod position in Dhruva reactor using both cadmium cut off and multi isotope detector methods. High resolution gamma ray spectrometry was used for radioactive assay of the activation products. This technique is being used for multielement analysis in a variety of matrices like lake sediments, sea nodules and crusts, minerals, leaves, cereals, pulses, leaves, water and soil. Elemental profiles of the sediments corresponding to different depths from Nainital lake were determined and used to understand the history of natural absorption/desorption pattern of the previous 160 years. Ferromanganese crusts from different locations of Indian Ocean were analysed with a view to studying the distribution of some trace elements along with Fe and Mn. Variation of Mn/Fe ratio was used to identify the nature of the crusts as hydrogenous or hydrothermal. Fe-rich and Fe-depleted nodules from Indian Ocean were analysed to understand the REE patterns and it is proposed that REE-Th associated minerals could be the potential Th contributors to the sea water and thus reached ferromanganese nodules. Dolomites (unaltered and altered), two types of serpentines and intrusive rock dolerite from the asbestos mines of Cuddapah basin were analysed for major, minor and trace elements. The elemental concentrations are used for distinguishing and characterising these minerals. From our investigations, it was concluded that both dolomite and dolerite contribute elements in the serpentinisation process. Chemical neutron

  4. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  5. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    illustrated how the activated water would propagate along that pipe. C) Combustion products. In order to investigate the oxidation in combustion products (deposits), the total amount of oxygen in the deposits collected from combustion chambers of a modern gasoline engine was measured, using cyclic fast neutron activation analysis (FNAA). As a compartment, the organic compounds containing oxygen were identified using {sup 13}C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of FNAA showed that the amount of oxygen in deposits varies depending on where the deposits have been formed. {sup 13}C NMR has showed that the carbon backbone of the deposits exists as highly oxidized poly aromatics and/or graphitic structure. D) On-line fast neutron activation analysis. On-line neutron activation analysis was used to detect the amount of oxygen in bulk liquids. The method was optimised for on-line detection of oxygen in rapeseed oil. The goal was to develop a non-intrusive method for measurement of the total amount of oxygen in oil during combustion/oxidation.

  6. Some Applications of Fast Neutron Activation Analysis of Oxygen

    International Nuclear Information System (INIS)

    Owrang, Farshid

    2003-01-01

    illustrated how the activated water would propagate along that pipe. C) Combustion products. In order to investigate the oxidation in combustion products (deposits), the total amount of oxygen in the deposits collected from combustion chambers of a modern gasoline engine was measured, using cyclic fast neutron activation analysis (FNAA). As a compartment, the organic compounds containing oxygen were identified using 13 C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of FNAA showed that the amount of oxygen in deposits varies depending on where the deposits have been formed. 13 C NMR has showed that the carbon backbone of the deposits exists as highly oxidized poly aromatics and/or graphitic structure. D) On-line fast neutron activation analysis. On-line neutron activation analysis was used to detect the amount of oxygen in bulk liquids. The method was optimised for on-line detection of oxygen in rapeseed oil. The goal was to develop a non-intrusive method for measurement of the total amount of oxygen in oil during combustion/oxidation

  7. Determination of trace gold in rocks and minerals by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhao Yunlong; Zhou Suqing; Liang Yutang

    1988-05-01

    The determination of trace gold in rocks and minerals by neutron activation analysis is described. Two methods are used for pre-separating and concentrating the trace gold in geological samples. one of the methods is that the samples are dissolved in aqua regia solution; activated carbon paper pulp filter is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the activated carbon containing gold was ashed at 650 ∼ 700 deg c. The other method is that the samples are dissolved in aqua regia solution; the polyurethane foam plastic filled with activated carbon is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the foam plastic containing gold was ashed at 650 deg c. The gold in ashes is determinated by neutron activation analysis. The detection limit is 0.004ng/g. The accuracy of the method is examined by gold in reference standard material. The results of this method are in good agreement with the recommended value. For analysis of the trace gold by the methods of instrumental neutron activation analysis and epithermal neutron activation analysis, the interference of 411.8 keV γ-ray from 153 Sm, 152 Eu and fission products of uranium and the correction methods are discussed

  8. Aspects of precision and accuracy in neutron activation analysis

    International Nuclear Information System (INIS)

    Heydorn, K.

    1980-03-01

    Analytical results without systematic errors and with accurately known random errors are normally distributed around their true values. Such results may be produced by means of neutron activation analysis both with and without radiochemical separation. When all sources of random variation are known a priori, their effect may be combined with the Poisson statistics characteristic of the counting process, and the standard deviation of a single analytical result may be estimated. The various steps of a complete neutron activation analytical procedure are therefore studied in detail with respect to determining their contribution to the overall variability of the final result. Verification of the estimated standard deviation is carried out by demonstrating the absence of significant unknown random errors through analysing, in replicate, samples covering the range of concentrations and matrices anticipated in actual use. Agreement between the estimated and the observed variability of replicate results is then tested by a simple statistic T based on the chi-square distribution. It is found that results from neutron activation analysis on biological samples can be brought into statistical control. In routine application of methods in statistical control the same statistical test may be used for quality control when some of the actual samples are analysed in duplicate. This analysis of precision serves to detect unknown or unexpected sources of variation of the analytical results, and both random and systematic errors have been discovered in practical trace element investigations in different areas of research. Particularly, at the ultratrace level of concentration where there are few or no standard reference materials for ascertaining the accuracy of results, the proposed quality control based on the analysis of precision combined with neutron activation analysis with radiochemical separation, with an a priori precision independent of the level of concentration, becomes a

  9. On neutron activation analysis with γγ coincidence spectrometry

    International Nuclear Information System (INIS)

    Zeisler, Rolf; Danyal Turkoglu; Ibere Souza Ribeiro Junior; Shetty, M.G.

    2017-01-01

    A new γγ coincidence system has been set up at NIST. It is operated with a digital data finder supported by new software developed at NIST. The system is used to explore possible enhancements in instrumental neutron activation analysis (INAA) and study applicability to neutron capture prompt gamma activation analysis (PGAA). The performance of the system is tested with certified reference materials for efficiency calibration and quantitative performance. Comparisons of INAA results based on conventional gamma-ray spectrometry data with INAA results based on coincidence data obtained from the same samples show improvements in the counting uncertainties and demonstrates the quantitative accuracy of the new system. (author)

  10. Determination of silver using cyclic epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Pun, T.H.; Landsberger, S.

    2012-01-01

    A fast pneumatic transfer facility was installed in Nuclear Engineering Teaching Laboratory (NETL) of the University of Texas at Austin for the purpose of cyclic thermal and epithermal neutron activation analysis. In this study efforts were focused on the evaluation of cyclic epithermal neutron activation analysis (CENAA). Various NIST and CANMET certified materials were analyzed by the system. Experiment results showed 110 Ag with its 25 s half-life as one of the isotopes favored by the system. Thus, the system was put into practical application in identifying silver in metallic ores. Comparison of sliver concentrations as determined by CENAA in CANMET certified reference materials gave very good results. (author)

  11. Neutron activation analysis of high purity substances

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.

    1987-01-01

    Peculiarities of neutron-activation analysis (NAA) of high purity substances are considered. Simultaneous determination of a wide series of elements, high sensitivity (the lower bound of determined contents 10 -9 -10 -10 %), high selectivity and accuracy (Sr=0.10-0.15, and may be decreased up to 0.001), possibility of analysis of the samples from several micrograms to hundreds of grams, simplicity of calibration may be thought NAA advantages. Questions of accounting of NAA systematic errors associated with the neutron flux screening by the analysed matrix and with production of radionuclides of determined elements from accompanying elements according to concurrent nuclear reactions, as well as accounting of errors due to self-absorption of recorded radiation by compact samples, are considered

  12. Non-traditional neutron activation analysis by use of a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.

    2003-01-01

    Full text: Traditional reactor neutron activation analysis (NAA) based on (n, γ) - thermal neutron capture nuclear reaction has been developed into a reliable and powerful analytical method, for trace element analysis, allowing the determination of over 60 chemical elements, with good accuracy and low detection limits. Considering all possibilities of activation and a radiochemical separation of the indicator radionuclide, the majority of the elements of this group can be determined at the ppm concentration level and below. However, for solving a number of analytical problems NAA technique is not well suited or it cannot be used at all. An important limitation is that all light elements, some medium and heavy elements cannot be determined even at ppm concentration level by this method, for example, H, Be, Li, B, C, N, O, Ti, Nb, Pb, etc. Accurate determination of lithium, oxygen and other light elements in sub-microgram level is of importance in geochemical and material studies. Such examples are great many. On such instances, several non-traditional reactor activation analysis can be used which have increasingly been developed and applied to several fields of semiconductor industry, biology, geology in recent years. The purpose of this presentation is to review the modern status of non-traditional nuclear reactor activation analysis based on use of nuclear reactions excited by the flow of secondary charged particles which are produced by two methods. In first method the triton flow is produced by thermal neutrons flux which excites the nuclear reaction 6 Li(n, α)T on lithium. The neutron activation analysis associated with two consecutive reactions 6 Li(n, α)T + 16 O(T, n) 18 F is established to determine trace amounts either of lithium or of oxygen in different geological, ecological and technological samples. Besides, the triton flow can be used for the determination of other light elements, for instance, B, N, S, Mg. This nuclear reactor triton activation

  13. Determination of copper in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint-U; Kyi Kyi San

    1994-01-01

    Copper was determined in two Myanmar indigenous medicines by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 511 keV peak of the 64 Cu was measured. (author) 2 refs.; 2 tabs

  14. Advances in 14 MeV neutron activation analysis by means of a new intense neutron source

    International Nuclear Information System (INIS)

    Pepelnik, R.; Fanger, H.-U.; Michaelis, W.; Anders, B.

    1982-01-01

    A new intense 14 MeV neutron generator with cylindrical acceleration structure has been put in operation at the GKSS Research Center Geesthacht. The sealed neutron tube is combined with a fast pneumatic rabbit system with particular capabilities for neutron activation analysis involving short-lived reaction products. The sample transfer time is less than 140 ms. The maximum neutron flux available for activation is 5.2x10 10 n/cm 2 s. Theoretical sensitivity predictions made in a previous study have been verified for some important trace elements. As a first application, samples of freeze-dried suspended matter and fishes of the Elbe river were analyzed. (author)

  15. Elemental analysis of combustion products by neutron activation

    International Nuclear Information System (INIS)

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification

  16. Determination of copper in some Myanmar indigenous medicines by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint-U,; San, Kyi Kyi [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-09-15

    Copper was determined in two Myanmar indigenous medicines by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 511 keV peak of the [sup 64]Cu was measured. (author) 2 refs.; 2 tabs.

  17. Procedures for multielement analysis using high-flux fast-neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.; Hopke, P.K.; Meyer, R.A.

    1981-06-01

    Improvements have been made in the rabbit system used for multi-element fast-neutron activation analysis at the Lawrence Livermore National Laboratory Rotating Target Neutron Source, RTNS-I. Procedures have been developed for the analysis of 20 to 25 elements in samples with an inorganic matrix and 10 to 15 elements in biological samples, without the need for prohibitively expensive, long irradiations. Results are presented for the analysis of fly ash, orchard leaves, and bovine liver

  18. Multi-group transport methods for high-resolution neutron activation analysis

    International Nuclear Information System (INIS)

    Burns, K. A.; Smith, L. E.; Gesh, C. J.; Shaver, M. W.

    2009-01-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of multi-group deterministic methods for the simulation of neutron activation problems. Central to this work is the development of a method for generating multi-group neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so that the key signatures in neutron activation analysis (i.e., the characteristic line energies) are preserved. The mechanics of the cross-section preparation method are described and contrasted with standard neutron-gamma cross-section sets. These custom cross-sections are then applied to several benchmark problems. Multi-group results for neutron and photon flux are compared to MCNP results. Finally, calculated responses of high-resolution spectrometers are compared. Preliminary findings show promising results when compared to MCNP. A detailed discussion of the potential benefits and shortcomings of the multi-group-based approach, in terms of accuracy, and computational efficiency, is provided. (authors)

  19. Development of neutron activation analysis software

    International Nuclear Information System (INIS)

    Wang Liyu

    1987-10-01

    The software for quantitative neutron activation analysis was developed to run under the MS/DOS operating system. The programmes of the IBM/SPAN include: spectra file transfer from and to a Canberra Series 35 multichannel analyzer, spectrum evaluation routines, calibration subprogrammes, and quantitative analysis. The programmes for spectrum analysis include fitting routine for separation of multiple lines by reproducing the peak shape with a combination of Gaussian and exponential terms. The programmes were tested on an IBM/AT-compatible computer. The programmes and the sources are available costfree for the IAEA projects of Technical Cooperation. 7 refs, 3 figs

  20. Opportunities for innovation in neutron activation analysis

    International Nuclear Information System (INIS)

    Peter Bode

    2012-01-01

    Neutron activation laboratories worldwide are at a turning point at which new staff has to be found for the retiring pioneers from the 1960s-1970s. A scientific career in a well-understood technique, often characterized as 'mature' may only be attractive to young scientists if still challenges for further improvement and inspiring new applications can be offered. The strengths and weaknesses of neutron activation analysis (NAA) are revisited to identify opportunities for innovation. Position-sensitive detection of elements in large samples, Monte Carlo calculations replacing the use of standards, use of scintillator detectors and new deconvolution techniques for increasing the sensitivity are examples of challenging new roads in NAA. Material science provides challenges for the application of NAA in both bulk samples, ultrathin layers and ultrapure materials. (author)

  1. Multielement neutron-activation analysis of plants and fertilizers

    International Nuclear Information System (INIS)

    Srapenyants, R.A.; Saveliev, I.B.

    1977-01-01

    The development of an automated technique for simultaneous multielement activation analysis of plants and fertilizers for the macronutrient elements N, P, K, Ca, Mg, Cl, and Si is presented. The developed universal NAA is based on the installation manufactured and supplied by Sames, France. The components of the automatic installation for neutron activation analysis are: neutron generator; a pneumatic transfer system; a scintillation crystal detector; a spectrometer rack including a basic multichannel analyser; a control panel for the neutron generator and pneumatic transfer system; a computer and teletype. On the basis of analytical procedures, algorithms and software, the first automatic (computer based) installation for multielement analyses of plants and fertilizers has been completed and is in routine use in the agrochemical and plant breeding research program in the Soviet Union. The proposed technique together with the full automatic real-time process of measurement and processing of data by computer, provides a throughput of 250-500 samples (1250-2500 elements determinations) per 8-hour shift, with the accuracy of +-3%; for N and +-5%; for P, K, Mg, Cl and +-15% for Ca. (T.G.)

  2. Large Sample Neutron Activation Analysis: A Challenge in Cultural Heritage Studies

    International Nuclear Information System (INIS)

    Stamatelatos, I.E.; Tzika, F.

    2007-01-01

    Large sample neutron activation analysis compliments and significantly extends the analytical tools available for cultural heritage and authentication studies providing unique applications of non-destructive, multi-element analysis of materials that are too precious to damage for sampling purposes, representative sampling of heterogeneous materials or even analysis of whole objects. In this work, correction factors for neutron self-shielding, gamma-ray attenuation and volume distribution of the activity in large volume samples composed of iron and ceramic material were derived. Moreover, the effect of inhomogeneity on the accuracy of the technique was examined

  3. Elemental analysis of brazing alloy samples by neutron activation technique

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Hassan, A.M.; El-Shershaby, A.; Walley El-Dine, N.

    1996-01-01

    Two brazing alloy samples (C P 2 and C P 3 ) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10 1 1 n/cm 2 /s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10 1 2 n/cm 2 /s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  4. Elemental analysis of brazing alloy samples by neutron activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, E A; Rofail, N B; Hassan, A M [Reactor and Neutron physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt); El-Shershaby, A; Walley El-Dine, N [Physics Department, Faculty of Girls, Ain Shams Universty, Cairo (Egypt)

    1997-12-31

    Two brazing alloy samples (C P{sup 2} and C P{sup 3}) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10{sup 1}1 n/cm{sup 2}/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10{sup 1}2 n/cm{sup 2}/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab.

  5. Estimation of 129I by low energy spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Ravi, P.M.; Iyer, M.R.; Sahasrabudhe, S.G.; Somasundaram, S.; Subramanian, M.S.

    1986-01-01

    Methods have been developed for the estimation of 129 I by direct passive counting and by neutron activation analysis. The direct counting method using low energy photon spectrometry has been standardised for liquid samples. Interference from different induced radionuclides in the activation method was studied. Limits of detection of 129 I by direct counting method and neutron activation analysis work out to be 0.4 Bq and 1mBq respectively. (author). 6 refs

  6. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  7. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    1999-01-01

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  8. Large Sample Neutron Activation Analysis of Heterogeneous Samples

    International Nuclear Information System (INIS)

    Stamatelatos, I.E.; Vasilopoulou, T.; Tzika, F.

    2018-01-01

    A Large Sample Neutron Activation Analysis (LSNAA) technique was developed for non-destructive analysis of heterogeneous bulk samples. The technique incorporated collimated scanning and combining experimental measurements and Monte Carlo simulations for the identification of inhomogeneities in large volume samples and the correction of their effect on the interpretation of gamma-spectrometry data. Corrections were applied for the effect of neutron self-shielding, gamma-ray attenuation, geometrical factor and heterogeneous activity distribution within the sample. A benchmark experiment was performed to investigate the effect of heterogeneity on the accuracy of LSNAA. Moreover, a ceramic vase was analyzed as a whole demonstrating the feasibility of the technique. The LSNAA results were compared against results obtained by INAA and a satisfactory agreement between the two methods was observed. This study showed that LSNAA is a technique capable to perform accurate non-destructive, multi-elemental compositional analysis of heterogeneous objects. It also revealed the great potential of the technique for the analysis of precious objects and artefacts that need to be preserved intact and cannot be damaged for sampling purposes. (author)

  9. Neutron Activation Analysis with k0 Standardization

    International Nuclear Information System (INIS)

    Pomme, S.

    1998-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation aims to: (1) develop and implement k 0 -standardisation method for NAA; (2) to exploit the inherent qualities of NAA such as accuracy, traceability, and multi-element capability; (3) to acquire technical spin-off for nuclear measurements services. Main achievements in 1997 are reported

  10. Neutron activation analysis of high purity tellurium

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.; Verevkin, G.V.; Obrazovskij, E.G.; Shatskaya, S.S.

    1980-01-01

    A scheme of neutron activation analysis of high purity tellurium is developed. Weighed amount of Te (0.5 g) is irradiated for 20-40 hr in the flux of 2x10 13 neutron/(cm 2 xs). After decomposition of the sample impurities of gold and palladium are determined by the extraction with organic sulphides. Tellurium separation from the remaining impurities is carried out by the extraction with monothiobenzoic acid from weakly acidic HCl solutions in the presence of iodide-ions, suppressing silver extraction. Remaining impurity elements in the refined product are determined γ-spectrometrically. The method allows to determine 34 impurities with determination limits 10 -6 -10 -11 g

  11. Neutron activation analysis

    International Nuclear Information System (INIS)

    Okada, Yukiko

    2005-01-01

    Trends and progress in neutron activation analysis (NAA) for the period starting in 1999 to 2003 are presented. Numbers of published reports on NAA are decreasing year by year as investigated from the database JST and NUCLEN. Summary reports on the international conferences held on NAA are followed by classifying according to the fields: various measurement techniques and application fields. Specially focused topics are newly developed techniques for measuring trace elements with high sensitivity and high accuracy such as (1) by diminishing the Compton-background gamma-rays using anti-coincidence technique, (2) by using prompt-gamma rays measurement method (PGAA) and (3) by using a gamma-ray detector array (GEMINI), which has succeeded in a simultaneous quantification of 27 elements from a standard rock sample having a weight of only 10 milligrams, and others. These techniques will be applied in the space and earth sciences and medical fields. (S. Ohno)

  12. The determination of some impurities in zirconium metal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Eddy, B.T.; Pearton, D.C.G.; Watterson, J.J.

    1976-01-01

    This report describes the work done on the development of an instrumental neutron-activation method for the analysis of impurities in reactor-grade zirconium. Nine samples were analysed, and the results were compared with those obtained by other techniques. No statistically significant differences were observed for ten of the twelve elements that could possibly be determined by instrumental neutron-activation analysis. Cadmium cannot be determined at the 0,5 p.p.m. level, and there is doubt about the comparative values recorded for aluminium. The precision of the measurement by direct instrumental neutron-activation analysis ranges from 1,4 per cent for tungsten to 17 per cent for chromium [af

  13. Speciation analysis of cobalt in foods by high-performance liquid chromatography and neutron activation analysis

    International Nuclear Information System (INIS)

    Muto, Toshio; Koyama, Motoko

    1994-01-01

    A combined method by coupling high-performance liquid chromatography (HPLC, as a separation method) with neutron activation analysis (as a detection method) have been applied to the speciation analysis of cobalt in daily foods (e.g. egg, fish and milk). Cobalt species including free cobalt, vitamin B 12 and protein-bound cobalt were separated with a preparative HPLC and a centrifuge. Subsequently, the determination of cobalt in the separated species was made by neutron activation analysis. The results showed that the content of the total cobalt in the foods was found to lie in the range 0.4-11ng/g(0.4-11ppb) based on wet weight. The compositions of free cobalt, vitamin B 12 and protein-bound cobalt were ranged 16-43%, 55-73%, 2.3-17%, respectively. These experimental evidences suggest that the combination of HPLC and neutron activation analysis is expected to be a useful tool for speciation analysis of trace elements in biological as well as environmental materials. (author)

  14. Large sample neutron activation analysis of a reference inhomogeneous sample

    International Nuclear Information System (INIS)

    Vasilopoulou, T.; Athens National Technical University, Athens; Tzika, F.; Stamatelatos, I.E.; Koster-Ammerlaan, M.J.J.

    2011-01-01

    A benchmark experiment was performed for Neutron Activation Analysis (NAA) of a large inhomogeneous sample. The reference sample was developed in-house and consisted of SiO 2 matrix and an Al-Zn alloy 'inhomogeneity' body. Monte Carlo simulations were employed to derive appropriate correction factors for neutron self-shielding during irradiation as well as self-attenuation of gamma rays and sample geometry during counting. The large sample neutron activation analysis (LSNAA) results were compared against reference values and the trueness of the technique was evaluated. An agreement within ±10% was observed between LSNAA and reference elemental mass values, for all matrix and inhomogeneity elements except Samarium, provided that the inhomogeneity body was fully simulated. However, in cases that the inhomogeneity was treated as not known, the results showed a reasonable agreement for most matrix elements, while large discrepancies were observed for the inhomogeneity elements. This study provided a quantification of the uncertainties associated with inhomogeneity in large sample analysis and contributed to the identification of the needs for future development of LSNAA facilities for analysis of inhomogeneous samples. (author)

  15. Neutron activation analysis with k0-standardisation : general formalism and procedure

    International Nuclear Information System (INIS)

    Pomme, S.; Hardeman, F.; Robouch, P.; Etxebarria, N.; Arana, G.

    1997-09-01

    Instrumental neutron activation analysis (INAA) with k 0 -standardisation is a powerful tool for multi-element analysis at a broad range of trace element concentrations. An overview is given of the basic principles, fundamental equations, and general procedure of this method. Different aspects of the description of the neutron activation reaction rate are discussed, applying the Hogdahl convention. A general activation-decay formula is derived and its application to INAA is demonstrated. Relevant k 0 -definitions for different activation decay schemes are summarised and upgraded to cases of extremely high fluxes. The main standardisation techniques for INAA are discussed, emphasizing the k 0 -standardisation. Some general aspects of the basic equipment and its calibration are discussed, such as the characterisation of the neutron field and the tuning of the spectrometry part. A method for the prediction and optimisation of the analytical performance of INAA is presented

  16. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Science.gov (United States)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  17. A file of reference data for multiple-element neutron activation analysis

    International Nuclear Information System (INIS)

    Kabina, L.P.; Kondurov, I.A.; Shesterneva, I.M.

    1983-12-01

    Data needed for planning neutron activation analysis experiments and processing their results are given. The decay schemes of radioactive nuclei formed in irradiation with thermal neutrons during the (n,γ) reaction taken from the international ENSDF file are used for calculating the activities of nuclei and for drawing up an optimum table for identifying gamma lines in the spectra measured. (author)

  18. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 μamp proton beam is 4.0 x 10 11 n/cm 2 -s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error

  19. Fast neutron activation analysis at Texas A and M University

    International Nuclear Information System (INIS)

    James, W.D.

    1997-01-01

    Fast neutron generators are used at Texas A and M University to provide a supply of high energy neutrons for nuclear analytical measurements. A series of neutron activation analysis procedures have been developed for determining various major, minor and trace constituents in a variety of materials. These procedures are primarily developed to compliment our reactor based NAA program, thereby expanding the list of determinable elements to include those difficult or impossible to measure using thermal neutrons. A few typical methods are discussed. The unique implementation of the methodologies at Texas A and M are explained. (author)

  20. Neutron activation analysis of certified samples by the absolute method

    Science.gov (United States)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  1. Optimization to the medical facilities for Neutron activation analysis

    International Nuclear Information System (INIS)

    Franklin Mergarerejo, Ricardo; GarcIa Parra, Lazaro; Desdin, Luis Felipe; Lopez Aldama, Daniel

    2001-01-01

    A method of detection of the Fluorine is presented by means of the neutron activation analysis. This method supposes an accuracy in the determination of any very high element (of the ppm order); but having the particularity that with Oxygen and Fluorine after certain nuclear reactions are obtained the same reaction product (son). This implies serious inconveniences since an interference he/she takes place among the activation of the Oxygen and of the Fluorine falsifying the reading. To save this inconvenience and to take advantage of the kindness of this method it is known that the Oxygen is activated for neutrons with superior energy to the 10.5 MeV, while the Fluorine for energy of the superior incident neutrons to the 1.5 MeV. We think about as hypothesis that is possible to reduce the interference of the Oxygen using a moderator in order to affect the statistic of the count the less possible thing. The objective of the present work is to design and to optimize an installation to measure concentrations of Fluorine in presence of Oxygen using neutrons of 14 MeV coming from a generator of neutrons of the type NG-12-1. To fulfill our objective leaving of the hypothesis an experimental simulation it was implemented using mathematical methods of having proven efficiency in the transport of neutrons like the method of Mount Carlo (specifically the code MCNP-)

  2. Determination of gold in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint U.; Sein Sein Yi

    1995-01-01

    Gold has been determined in two Myanmar indigenous medicines TMF 14 (Devaauthada), TMF 15 (Shwe Thwe Say) by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 411 keV of the 198 Au has been measured. (author). 2 refs., 1 fig., 1 tab

  3. Is activation analysis still active?

    International Nuclear Information System (INIS)

    Chai Zhifang

    2001-01-01

    This paper reviews some aspects of neutron activation analysis (NAA), covering instrumental neutron activation analysis (INAA), k 0 method, prompt gamma-ray neutron activation analysis (PGNAA), radiochemical neutron activation analysis (RNAA) and molecular activation analysis (MAA). The comparison of neutron activation analysis with other analytical techniques are also made. (author)

  4. Modern Trends in Neutron Activation Analysis. Applications to some African Environmental Samples

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2009-01-01

    This review covers the results of several published articles which deal with the modern trends in neutron activation analysis techniques using some of African research reactors for some environmental samples. The samples used have been collected from different areas in Egypt, South Africa, Ghana, Morocco, Nigeria, and Algeria. The neutron irradiation facilities and the advanced detection systems in each country are outlined. The prompt and delayed gamma-rays emitted due to neutron capture have been applied for investigation of the elemental constituents of such samples. Covered applications include exploration, mining, industrial environment, pollution of air, foodstuffs, soils and irrigation water samples. Some of the developed software programmes as well as the modern methods of data analysis are presented. The thermal and epithermal neutron activation analysis techniques have been applied for estimation of major, minor and trace elements in each material. Some of these data are presented with several comments.

  5. Investigations on the comparator technique used in epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Bereznai, T.; Bodizs, D.; Keoemley, G.

    1977-01-01

    The possible extension of the comparator technique of reactor neutron activation analysis into the field of epithermal neutron activation has been investigated. Ruthenium was used for multi-isotopic comparator. Experiments show that conversion of the so-called reference k-factors - determined by irradiation with reactor neutrons - into ksup(epi)-factors usable at activation under cadmium filter, can be evaluated with fair accuracy. Sources and extent of errors and their contribution to the final error of analysis are discussed. For equal irradiation and counting times advantage of ENAA for several elements is obvious: the much lower background activity permitted the sample to be measured closer to the detector, under better geometry conditions, consequently, permitting several elements to be determined quantitatively. The number of elements determined and the sensitivity of the method are much dependent on the experimental conditions, especially on the composition of the sample, on the PHIsub(e) value, the irradiation time and the efficiency of the Ge(Li) detector. (T.G.)

  6. Provenience studies using neutron activation analysis: the role of standardization

    International Nuclear Information System (INIS)

    Harbottle, G.

    1980-01-01

    This paper covers the historical background of chemical analysis of archaeological artifacts which dates back to 1790 to the first application of neutron activation analysis to archaeological ceramics and goes on to elaborate on the present day status of neutron activation analysis in provenience studies, and the role of standardization. In principle, the concentrations of elements in a neutron-activated specimen can be calculated from an exact knowledge of neutron flux, its intensity, duration and spectral (energy) distribution, plus an exact gamma ray count calibrated for efficiency, corrected for branching rates, etc. However, in practice it is far easier to compare one's unknown to a standard of known or assumed composition. The practice has been for different laboratories to use different standards. With analyses being run in the thousands throughout the world, a great benefit would be derived if analyses could be exchanged among all users and/or generators of data. The emphasis of this paper is on interlaboratory comparability of ceramic data; how far are we from it, what has been proposed in the past to achieve this goal, and what is being proposed. All of this may be summarized under the general heading of Analytical Quality Control - i.e., how to achieve precise and accurate analysis. The author proposes that anyone wishing to analyze archaeological ceramics should simply use his own standard, but attempt to calibrate that standard as nearly as possible to absolute (i.e., accurate) concentration values. The relationship of Analytical Quality Control to provenience location is also examined

  7. Development of Distinction Method of Production Area of Ginsengs by Using a Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chung, Yong Sam; Sun, Gwang Min; Lee, Yu Na; Yoo, Sang Ho [KAERI, Daejeon (Korea, Republic of)

    2010-05-15

    Distinction of production area of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). A distribution of elements has varied according to the part of plant clue to the difference of enrichment effect and influence from a soil where the plants have been grown. So correlation study between plants and soil has been an Issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis

  8. Neutron activation analysis of trace elements in foodstuffs

    International Nuclear Information System (INIS)

    Schelenz, R.; Fischer, E.

    1976-05-01

    A neutron activation method for multielement determination in biological material was developed. The individual steps of the method include radiochemical processing as well as nondestructive techniques. In order to develop a high resolution gamma spectrometric method the indispensable assumptions were the application of Ge(Li)-semiconductor detectors, multi-channel pulse height analyzers and the use of electronic data evaluation with mini-computers for the automatic evaluation of complex gamma spectra. After radiochemical separation (RNAA) 33 elements can be determined in biological materials and by application of nondestructive, purely instrumental techniques (INAA) 25 elements. The time required for the analysis of 33 elements can be determined in biological materials and by application of nondestructive, purely instrumental techniques (INAA) 25 elements. The time required for the analysis of 33 elements is 4 days. The neutron activation method is used routinely for the determination of trace elements in foodstuffs and in the field of nutrition research. (orig.) [de

  9. Cold neutron prompt gamma activation analysis at NIST; A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R L; Lindstrom, R M [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    An instrument for prompt gamma-ray activation analysis is now in operation at the NIST Cold Neutron Research Facility (CNRF). The cold neutron beam is relatively free of contamination by fast neutrons and reactor gamma rays, and the neutron fluence rate is 1.5 x 10 [sup 8] cm [sup -2] x s [sup -1] (thermal equivalent). As a result of a compact target-detector geometry the sensitivity is better by a factor of as much as seven than that obtained with an existing thermal instrument, and hydrogen background is a factor of 50 lower. This instrument was applied to multielement analysis of the Allende meteorite and other materials. (author) 14 refs.; 2 figs.; 1 tab.

  10. Analysis of medicinal plant extracts by neutron activation method

    International Nuclear Information System (INIS)

    Vaz, Sandra Muntz

    1995-01-01

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed

  11. Preliminary study of elemental analysis of hydroxyapatite used neutron activation analysis method

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Rina Mulyaningsih

    2010-01-01

    Preliminary study has been carried out elemental analysis of hydroxyapatite synthesized using the method of neutron activation analysis. Hydroxyapatite is the main component constituent of bones and teeth which can be synthesized from limestone and phosphoric acid. Hydroxyapatite can be used as a bone substitute material and human and animal teeth. Tests on the metal content is necessary to prevent the risk of damage to bones and teeth due to contamination. Results of analysis using neutron activation analysis method with samples irradiated at the neutron flux 10"3 n.det"-"1cm"-"2 for one minute, the impurities of Al (48.60±6.47 mg/kg), CI (38.00±7.47 mg/kg), Mn (1.05±0.19 mg/kg), and Mg (2095.30±203.66 mg/kg), were detected, whereas with irradiation time for 10 minutes and 40 minutes with a time decay of three days there were K (103.89 ± 26.82 mg/kg), Br (1617.06 ± 193.66 mg/kg), and Na (125.10±9.57 mg/kg). These results indicate that there is impurity Al, CI, Mn, Mg, Br, K and Na, although in very small amounts and do not cause damage to bones and teeth. (author)

  12. Studies on airborne dust particles by neutron activation analysis

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1974-01-01

    Neutron activation analysis was performed on the airborne dust particles collected at six places with different contaminating circumstances in Kyoto city and the suburbs of Okayama city, using an open type low volume air sampler with a membrance filter attached. Radioactivation by neutrons was performed with the reactor in the Research Reactor Institute of Kyoto University. Short half-life nuclides activated by thermal neutrons were measured. The concentration of airborne dust was usually high in November and December, while Na, Mn, K, etc. probably owing to soil origin showed similar seasonal change to the dust particles, as expected. The concentrations Cl and Br were in proportion to traffic volume, and it was considered to be caused by the exhaust gas from cars. Zn, V. et. were thick in factory areas, which seemed to show the relationship with oil fuel consumption. (Kobatake, H.)

  13. Multielement analysis of archaic Chinese bronze and antique coins by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.H. (Academia Sinica, Lanzhou, Gansu (China). Inst. of Modern Physics); Pepelnik, R.; Fanger, H.U. (GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik)

    1990-01-01

    Samples of archaic bronze have been investigated by fast neutron activation analysis using both the absolute and relative method. The components Cu, Zn, Sn and Pb have been determined quantitatively. For the detection of lead via the short-lived isomeric state {sup 207m}Pb, cyclic activation and measurement technique was used with pneumatic sample transfer between detector and central irradiation position of the neutron tube. For non-destructive analysis of antique Chinese coins the samples had to be irradiated outside the neutron generator KORONA. The activation reactions, the evaluation of the elemental concentrations and the accuracy of the results are discussed. The data were corrected for {gamma}-ray self-absorption in the samples and summing of coincident {gamma}-rays in the detector. According to reported typical compositions of Chinese bronze from different dynasties, the age of the samples has been derived from the results obtained. (orig.).

  14. Californium-252 neutron activation analysis of high-level processed nuclear tank waste

    International Nuclear Information System (INIS)

    Troyer, G.L.; Purcell, M.A.

    2000-01-01

    The basis for production assessment of the vitrification of Hanford nuclear fuel reprocessing wastes will be high-precision measurements of the elemental sodium content. However, the chemical analysis of both radioactive and nonradioactive components in nuclear waste can be challenged by high radiation dose rates. The dose rates compromise many analytical techniques as well as pose personnel dosimetry risks. In many cases, reduction of dose rates through dilution compromises the precision and sensitivity for certain key components. The use of neutron activation analysis (NAA) provides a method of analysis that avoids the need for dilutions or extensive sample preparation. These waste materials also contain trace quantities of fissionable isotopes, which, through neutron activation, can be estimated by delayed neutron counting of fissioned fragments

  15. Certification of standard reference materials employing neutron activation analysis

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Hernandez Rivero, A.; Molina Insfran, J.; Ribeiro Guevara, S.; Santana Encinosa, C.; Perez Zayas, G.

    1997-01-01

    Neutron activation analysis (Naa) is used extensively as one of the analytical techniques in the certification of standard reference materials (Srm). Characteristics of Naa which make it valuable in this role are: accuracy; multielemental capability; ability to assess homogeneity; high sensitivity for many elements, and essentially non-destructive method. This paper reports the concentrations of thirty elements (major, minor and trace elements) in four Cuban Srm's. The samples were irradiated in a thermal neutron flux of 10 12 -10 13 neutrons.cm -2 .s -1 . The gamma-ray spectra were measured by HPGe detectors and were analysed using ACTAN program, developed in CEADEN. (author) [es

  16. Determination of manganese in some pyrolusite ores of Myanmar by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint, U.; Swe, M.T.

    1994-01-01

    Manganese in pyrolusite ores from various regions of Myanmar was determined by thermal neutron activation analysis using an Am(Be) neutron source. The induced activities of 56 Mn were monitored by a γ-counting technique. (author) 2 refs.; 1 tab

  17. Determination of manganese in some pyrolusite ores of Myanmar by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Swe, M T [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-05-17

    Manganese in pyrolusite ores from various regions of Myanmar was determined by thermal neutron activation analysis using an Am(Be) neutron source. The induced activities of [sup 56]Mn were monitored by a [gamma]-counting technique. (author) 2 refs.; 1 tab.

  18. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  19. Accounting for the thermal neutron flux depression in voluminous samples for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Overwater, R.M.W.; Hoogenboom, J.E.

    1994-01-01

    At the Delft University of Technology Interfaculty Reactor Institute, a facility has been installed to irradiate cylindrical samples with diameters up to 15 cm and weights up to 50 kg for instrumental neutron activation analysis (INAA) purposes. To be able to do quantitative INAA on voluminous samples, it is necessary to correct for gamma-ray absorption, gamma-ray scattering, neutron absorption, and neutron scattering in the sample. The neutron absorption and the neutron scattering are discussed. An analytical solution is obtained for the diffusion equation in the geometry of the irradiation facility. For samples with known composition, the neutron flux--as a function of position in the sample--can be calculated directly. Those of unknown composition require additional flux measurements on which least-squares fitting must be done to obtain both the thermal neutron diffusion coefficient D s and the diffusion length L s of the sample. Experiments are performed to test the theory

  20. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    Science.gov (United States)

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  1. Neutron activation analysis in reconnaissance geochemical survey of Northwestern Mindoro

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.G.

    1987-01-01

    Instrumental neutron activation analysis (NAA) technique was used to analyze stream sediments collected in Northwestern Mindoro. The concentration levels of 18 elements were determined. It was noted that NAA is suitable for the determination of rare earth, gold, arsenic and cobalt among others because of favorable high neutron cross sections. Samples collected in regional reconnaissance geochemical surveys could be analyzed usng NAA technique to complement other non-nuclear techniques, such as atomic absorption and X-ray fluorescence analysis. (Author). 11 figs.; 2 tabs.; 12 refs

  2. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  3. Records in ultra low radioactivity measurements with neutron activation analysis

    International Nuclear Information System (INIS)

    Hentig, R. von; Goldbrunner, T.; Angloher, G.; Feilitzsch, F. von

    1999-01-01

    Neutron Activation Analysis has emerged to be an analytical method sensitive enough to detect fg/g traces of unstable primordial nuclides in complex matrices. Especially low count rate experiments in the field of solar neutrino physics and dark matter search can profit from the detection capabilities of this method which had been unattained so far. This gain in sensitivity has been achieved by combining neutron activation, radiochemical separation methods, and efficient low level counting systems at the new underground laboratory of the accelerator laboratory in Garching. Recent improvements which have been made in the purification and analysis of the liquid scintillator, as foreseen for the solar neutrino experiment BOREXINO, are being presented as an example in this paper

  4. Analysis of human enamel and dentine by neutron activation analysis

    International Nuclear Information System (INIS)

    Soares, Marco A.B.

    2005-01-01

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x10 12 n cm -2 s -1 were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 10 12 n cm -2 s -1 the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the μg g -1 levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  5. Simulation for sodium-24 production using cyclic neutron activation analysis

    International Nuclear Information System (INIS)

    Ahamed, O. M. H.

    2012-04-01

    The cyclic neutron activation analysis is a method for elemental analysis which is preferred to use short-lived radio-nuclides. In recent years this method became a new application for radioisotope production especially in low power research reactors. In this study instrumental cyclic neutron activation analysis was used for 2 4N a production using 2 3N a (n, γ) 2 4N a reaction. The simplified westcott convention method is used neutron activation analysis in a research reactor. The method takes into account all corrections that can affect that yield created. In this work a model was devolving for calculations through this simplified Westcott convention method by using C++ program and selecting good parameters that can produce the expected activity. The simulation is used for the theoretical yield calculated has been validated by data from the 1 77L u production used for theoretical yield which it gives the approached result had been obtained by FORTRAN 90 from literature (8). The results were achieved for expected activity at full power (1 x 10 1 2n cm -2 s - 1 ) and half power (5 x 10 11 cm -2 s -1 ) for research reactor MNSR. The activity at full power was equal to about twice the activity at half power ( 49±7, 24.9 ± MBq/g), respectively. The irradiation parameters selected were irradiation time 4 min and decay time 12 min. Sample weight was 50 mg at 12 numbers of cycles, when the K-factor was equal to 1.74. This work is considered as first step for production of 2 4N a which can use such parameters experimentally. It is then possible to compare the expected activity with measured activity. (Author)

  6. Instrumental neutron activation analysis as a routine method for rock analysis

    International Nuclear Information System (INIS)

    Rosenberg, R.J.

    1977-06-01

    Instrumental neutron activation methods for the analysis of geological samples have been developed. Special emphasis has been laid on the improvement of sensitivity and accuracy in order to maximize tha quality of the analyses. Furthermore, the procedures have been automated as far as possible in order to minimize the cost of the analysis. A short review of the basic literature is given followed by a description of the principles of the method. All aspects concerning the sensitivity are discussed thoroughly in view of the analyst's possibility of influencing them. Experimentally determined detection limits for Na, Al, K, Ca, Sc, Cr, Ti, V, Mn, Fe, Ni, Co, Rb, Zr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Lu, Hf, Ta, Th and U are given. The errors of the method are discussed followed by actions taken to avoid them. The most significant error was caused by flux deviation, but this was avoided by building a rotating sample holder for rotating the samples during irradiation. A scheme for the INAA of 32 elements is proposed. The method has been automated as far as possible and an automatic γ-spectrometer and a computer program for the automatic calculation of the results are described. Furthermore, a completely automated uranium analyzer based on delayed neutron counting is described. The methods are discussed in view of their applicability to rock analysis. It is stated that the sensitivity varies considerably from element to element and instrumental activation analysis is an excellent method for the analysis of some specific elements like lanthanides, thorium and uranium but less so for many other elements. The accuracy is good varying from 2% to 10% for most elements. Instrumental activation analysis for most elements is rather an expensive method there being, however, a few exceptions. The most important of these is uranium. The analysis of uranium by delayed neutron counting is an inexpensive means for the analysis of large numbers of samples needed for

  7. Determination of cadmium in environmental materials by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Esprit, M.; Vandecasteele, C.; Hoste, J.

    1986-01-01

    Cadmium is determined by activation analysis with fast neutrons, obtained by irradiation of a thick beryllium target with 14.5-MeV deuterons. Cadmium-111m is separated by liquid-liquid extraction with zinc diethyldithiocarbamate in chloroform and measured with a Ge(Li) γ-spectrometer. For low concentrations, cadmium is precipitated as cadmium ammonium phosphate after the extraction. NBS and BCR reference materials were analyzed: for concentrations between 3 and 500 μg g -1 , the relative standard deviation ranges from 5 to 3%. The results obtained for sewage sludge are compared with those obtained by reactor neutron activation analysis. (Auth.)

  8. Toxicological applications of neutron-activation analysis

    International Nuclear Information System (INIS)

    Cross, J.D.; Dale, I.M.; Smith, H.

    1975-01-01

    Thermal neutron-activation analysis is recognised as a useful tool for trace element studies in toxicology. This paper describes some recent applications of the technique to three elements when ingested by people in excess of normal intake Two of the elements (copper and chromium) are essential to life and one (bromine) is as yet unclassified. Three deaths were investiagted and trace element levels compared with normal levels from healthy subjects in the same geographical area who had died as a result of violence. (author)

  9. Application of the neutron activation analysis to environmental study

    International Nuclear Information System (INIS)

    Fu Bozhi.

    1995-01-01

    Neutron activation analysis is a nuclear analysis technology. It has been developed in recent times. By this means, the paper analyzes the element contents of leaves, soil and atmospheric dust-fall from the eastern and the western suburbs of Chengdu, then makes a comparison between the two areas and approaches some problems on environmental pollution

  10. Neutron activation analysis with k{sub 0}-standardisation : general formalism and procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pomme, S.; Hardeman, F. [Centre de l`Etude de l`Energie Nucleaire, Mol (Belgium); Robouch, P.; Etxebarria, N.; Arana, G. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium)

    1997-09-01

    Instrumental neutron activation analysis (INAA) with k{sub 0}-standardisation is a powerful tool for multi-element analysis at a broad range of trace element concentrations. An overview is given of the basic principles, fundamental equations, and general procedure of this method. Different aspects of the description of the neutron activation reaction rate are discussed, applying the Hogdahl convention. A general activation-decay formula is derived and its application to INAA is demonstrated. Relevant k{sub 0}-definitions for different activation decay schemes are summarised and upgraded to cases of extremely high fluxes. The main standardisation techniques for INAA are discussed, emphasizing the k{sub 0}-standardisation. Some general aspects of the basic equipment and its calibration are discussed, such as the characterisation of the neutron field and the tuning of the spectrometry part. A method for the prediction and optimisation of the analytical performance of INAA is presented.

  11. Research reactor operations for neutron activation analysis

    International Nuclear Information System (INIS)

    Tv'ehlov, Yu.

    2002-01-01

    The IAEA Special Manual devoted to quality control during neutron activation analysis (NAA) on research and test reactors is discussed. Three parts of the publication involve presentation of common rules for performance of NAA, quantitative and qualitative analyses, statistic and systematic errors, safety regulations and radioactive waste management. Besides, the publication contains practical manual for the performance of NAA, and examples of different NAA regulating registration forms are presented [ru

  12. Determination of oxygen content in steel using activation analysis with 14 MeV neutron

    International Nuclear Information System (INIS)

    Calado, C.E.

    1978-01-01

    In the quantitative analysis of oxygen in steel by fast neutron activation analysis the oxygen content is evaluated from the measured activity of 16 N produced. Steel s mples are irradiated in 14 MeV neutron flux. After irradiation the samples are pneumatically transfered to the counting terminal where activity is measured. Oxygen concentrations, are obtained by comparison with standards of specified oxygen content [pt

  13. Neutron activation analysis for uranium and associated elements

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1977-01-01

    The samples obtained by the Savannah River Laboratory as part of the National Uranium Resource Evaluation program are activated in the intense neutron flux from a Savannah River Plant production reactor. A pilot-scale facility was installed at the reactor site to provide analyses of samples through the initial phase of the program and to develop design data for a full-scale facility. Sediments are analyzed by direct activation of 0.5-g samples. However, to analyze ground or surface water samples, mineral elements from 1-liter samples are concentrated on ion exchange resin and then approximately 5-g samples of resin are activated. Uranium concentration is determined by counting neutrons emitted from specific short-lived products of fission induced in 235 U by the primary neutron flux. Repetitive short cycles of irradiation and counting permit detection and determination of <0.1 μg of uranium. Elements associated with uranium are determined by spectral analysis of the gamma ray activities induced by the cyclic and subsequent longer irradiations. The pilot facility consists of four irradiation positions (plus 2 spare positions), a sample loader and unloader, and counting stations with neutron and gamma ray detectors, all interconnected with a pneumatic sample transport system. A computer controls both the transport system and the data acquisition devices. Gamma ray counting data are stored on magnetic tape for further processing by a large central computer. Facility hardware and software are described. Repetitive analyses of standards have shown an accuracy within +-10% for uranium values and within +-25% for associated elements. A quality assurance program has been developed to maintain these levels of reliability

  14. Comparison of different methods for activation analysis of geological and pedological samples: Reactor and epithermal neutron activation, relative and monostandard method

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1980-04-01

    Using purely instrumental methods, a comparative study is presented on neutron activation analysis of rock and soil samples by whole reactor neutron spectrum and epithermal neutrons with both relative and monostandard procedures. The latter procedure used with epithermal neutron activation analysis of soil samples necessitated the use of the 'effective resonance integrals' which were determined experimentally. The incorporation of the #betta# factor, representing deviation of reactor epithermal neutron flux from 1/E law, is developed in the present work. The main criteria for the choice of one or more of the procedures studied for a given purpose are also indicated. Analysis of 15 trace elements, Ca and Fe in the standard Japanese granite JG-1 using monostandard epithermal neutron activation gave results in good agreement with the average literature values. (orig./RB) [de

  15. Applicability of neutron activation analysis to geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Ebihara, Mitsuru [Tokyo Metropolitan Univ., Graduate School of Science, Tokyo (Japan)

    2003-03-01

    The applicability of neutron activation analysis (NAA) to geological samples in space is discussed by referring to future space mission programs, by which the extraterrestrial samples are to be delivered to the earth for scientific inspections. It is concluded that both destructive and non-destructive NAA are highly effective in analyzing these samples. (author)

  16. Applicability of neutron activation analysis to geological samples

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2003-01-01

    The applicability of neutron activation analysis (NAA) to geological samples in space is discussed by referring to future space mission programs, by which the extraterrestrial samples are to be delivered to the earth for scientific inspections. It is concluded that both destructive and non-destructive NAA are highly effective in analyzing these samples. (author)

  17. Neutron activation analysis of absolutely-dated tree rings

    International Nuclear Information System (INIS)

    Uenlue, K.; Hauck, D.K.; Kuniholm, P.I.; Chiment, J.J.

    2005-01-01

    Gold concentration was determined for dendrochronologically-dated wood samples using neutron activation analysis (NAA) and correlation sought with known environmental changes, e.g., volcanic activities, during historic periods. Uptake of gold is sensitive to soil pH for many plants. Data presented are from a single, cross-dated tree that grew in Greece. Using NAA, gold was measured with parts-per-billion sensitivity in individual tree rings from 1411 to 1988 AD. (author)

  18. Studies on thermal neutron perturbation factor needed for bulk sample activation analysis

    CERN Document Server

    Csikai, J; Sanami, T; Michikawa, T

    2002-01-01

    The spatial distribution of thermal neutrons produced by an Am-Be source in a graphite pile was measured via the activation foil method. The results obtained agree well with calculated data using the MCNP-4B code. A previous method used for the determination of the average neutron flux within thin absorbing samples has been improved and extended for a graphite moderator. A procedure developed for the determination of the flux perturbation factor renders the thermal neutron activation analysis of bulky samples of unknown composition possible both in hydrogenous and graphite moderators.

  19. Neutron activation analysis of trace elements in foodstuffs

    International Nuclear Information System (INIS)

    Schelenz, R.; Bayat, I.; Fischer, E.

    1976-05-01

    For the determination of trace elements in foodstuffs with the aid of neutron activation analysis the separation of volatile radionuclides after digestion of the sample is of special interest for radiochemical processing. A distillation procedure was developed to give reproducable results, however optimal conditions were not found for all volatile radionuclides studied. The required selective separation of Br-82 from the distillate was best achieved by the application of an ion-exchange column-chromatography technique. The computer programs for the evaluation of complex gamma spectra have been developed further. The automatic peak search and peak area determination is based on a computer program using the correlation technique and carried out with a mini-computer coupled with a multi-channel gamma spectrometer. The results, which are presented in 3 earlier reports relating to this research program, reveal the advantages and disadvantages of the individual steps of the radiochemical separation scheme. Before neutron activation analysis can be introduced on a routine basis, some aspects of the radiochemical process remain to be tested; these studies will be published in a fourth and final report. (orig.) [de

  20. Probing Trace-elements in Bitumen by Neutron Activation Analysis

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, Athanasios

    Trace elements and their concentrations play an important role in both chemical and physical properties of bitumen. Instrumental Neutron Activation Analysis (INAA) has been applied to determine the concentration of trace elements in bitumen. This method requires irradiation of the material with

  1. Phosphorus analysis in milk samples by neutron activation analysis method

    International Nuclear Information System (INIS)

    Oliveira, R.M. de; Cunha, I.I.L.

    1991-01-01

    The determination of phosphorus in milk samples by instrumental thermal neutron activation analysis is described. The procedure involves a short irradiation in a nuclear reactor and measurement of the beta radiation emitted by phosphorus - 32 after a suitable decay period. The sources of error were studied and the established method was applied to standard reference materials of known phosphorus content. (author)

  2. Assessing neutron generator output using neutron activation of silicon

    International Nuclear Information System (INIS)

    Kehayias, Pauli M.; Kehayias, Joseph J.

    2007-01-01

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the 28 Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10 3 n/s/cm 2 ± 5%, which is consistent with the manufacturer's specifications

  3. Assessing neutron generator output using neutron activation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kehayias, Pauli M. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States); Kehayias, Joseph J. [Body Composition Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111 (United States)]. E-mail: joseph.kehayias@tufts.edu

    2007-08-15

    D-T neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when the generator is used for neutron activation analysis, to study radiation damage to materials, to monitor the operation of the generator, and to measure radiation exposure. We describe a method for absolute neutron output and flux measurements of low output D-T neutron generators using delayed activation of silicon. We irradiated a series of silicon oxide samples with 14.1 MeV neutrons and counted the resulting gamma rays of the {sup 28}Al nucleus with an efficiency-calibrated detector. To minimize the photon self-absorption effects within the samples, we used a zero-thickness extrapolation technique by repeating the measurement with samples of different thicknesses. The neutron flux measured 26 cm away from the tritium target of a Thermo Electron A-325 D-T generator (Thermo Electron Corporation, Colorado Springs, CO) was 6.2 x 10{sup 3} n/s/cm{sup 2} {+-} 5%, which is consistent with the manufacturer's specifications.

  4. Neutron activation analysis of atmospheric aerosols

    International Nuclear Information System (INIS)

    Riekstinya, D.V.; Mednis, I.V.; Veveris, O.Eh.

    1987-01-01

    A review of studies by Soviet and foreign authors on radioactivation analysis is presented. Instrumental neutron activation analysis (INAA) techniques have been developed providing the possibility to determine a number of elements in very small portions of aerosols for pollutanless areas of the Earth. Two ways of INAA are presented: with long- and short-living radionuclides. The Antarctic and the Indian Ocean aerosol samples have been analysed for 26 microelements. It has been stated that restrictions of the detection limits attained relate to high proportions of certain elements and their nonhomogeneous distribution in filters. The detection limits can be lowered by the filtered air volume growth per unit of the filter area

  5. Neutron activation analysis at CDTN/CNEN using the IPR-R1 Triga Mark I reactor

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Maretti Junior, Fausto; Kastner, Geraldo Frederico; Amaral, Angela Maria; Souza, Wagner de

    2009-01-01

    This paper describes in summary the activities developed by the Laboratory for Neutron Activation Analysis since the starting up of the IPR-R1 TRIGA Mark I research reactor in 1960. This Laboratory is located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) / Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN. The activities of the Laboratory comprise the delayed fission neutron activation analysis, instrumental (comparative and parametric methods) and radiochemical / chemical methods. These methods are responsible for significant percentage of CDTN's analytical demand, meeting the clients' analytical needs and researches developed by the Laboratory, by CDTN and by other institutions. Over the years the work has been linked to the goals of the country and the institutions. Nowadays the neutron activation analysis is responsible for 70% of the analytical demand and the k 0 - Instrumental method for 80% of this demand answering clients' request and researches. In Brazil, CDTN is the only Institute that fully masters the Instrumental Neutron Activation Analysis k 0 -method using its own nuclear reactor. (author)

  6. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.

    1968-08-01

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined

  7. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1968-08-15

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined.

  8. The instrumental neutron-activation analysis of granites from the Bushveld Complex

    International Nuclear Information System (INIS)

    Watterson, J.I.W.

    1978-01-01

    Three methods of instrumental neutron-activation analysis, 14MeV, reactor thermal, and reactor epithermal, are compared for the analysis of granites form the Bushveld Complex. A total of 34 elements can be determined in the granites by these methods. Samples from the Zaaiplaats area were analysed by thermal neutron activation, and 22 elements were determined in all of them. These elements were used to distinguish between the mineralized Bobbejaankop and Lease granites and the Main granite by the use of multivariate statistics. The Bobbejaankop granite appears as a more-differentaited rock carrying greater amounts of the incompatible elements than does the Main granite [af

  9. Fast neutron activation analysis using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1993-01-01

    Fast neutron activation analysis experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived activation products. A rapid pneumatic transfer system for use with neutron generators has been installed and applied for detecting radionuclides with a half-life from ∼300 ms to 20 s. The transport time for samples of total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. The reproducibility of transport times is less than 2%. The employed method of correcting time-dependent counting losses is based on the virtual pulse generator principle. The measuring equipment consists of CAMAC modules and a special gating circuit. Typical time distributions of counting losses are presented. The same 14 elements were studied by the conventional activation method (single irradiation and single counting) by both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. Furthermore, the influence of the cyclic activation technique on the elemental sensitivities was investigated. (author) 15 refs.; 5 figs.; 3 tabs

  10. Obsidian sources characterized by neutron-activation analysis.

    Science.gov (United States)

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  11. Reactor neutron activation analysis of industrial materials

    International Nuclear Information System (INIS)

    Niese, S.

    1983-01-01

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  12. Quality assurance in biomedical neutron activation analysis

    International Nuclear Information System (INIS)

    1984-01-01

    The summary report represents an attempt to identify some of the possible sources of error in in vitro neutron activation analysis of trace elements applied to specimens of biomedical origin and to advise on practical means to avoid them. The report is intended as guidance for all involved in analysis, including sample collection and preparation for analysis. All these recommendations constitute part of quality assurance which is here taken to encompass the two concepts - quality control and quality assessment. Quality control is the mechanism established to control errors, while quality assessment is the mechanism used to verify that the analytical procedure is operating within acceptable limits

  13. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  14. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Tuan, Nguyen Ngoc

    2003-01-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  15. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Hossain, T.Z.

    2001-01-01

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252 Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  16. First research coordination meeting on reference database for neutron activation analysis. Summary report

    International Nuclear Information System (INIS)

    Firestone, R.B.; Trkov, A.

    2005-10-01

    Potential problems associated with nuclear data for neutron activation analysis were identified, the scope of the work to be undertaken was defined together with its priorities, and tasks were assigned to participants. Data testing and measurements refer to gamma spectrum peak evaluations, detector efficiency calibration, neutron spectrum characteristics and reference materials analysis. (author)

  17. Epithermal neutron activation analysis of food

    International Nuclear Information System (INIS)

    Zikovsky, L.; Soliman, K.

    1999-01-01

    Food samples were irradiated with thermal and epithermal neutrons. The average ratios of thermal to epithermal activity were determined for 80 Br, 49 Ca, 38 Cl, 60m Co, 42 K, 27 Mg, 56 Mn, 24 Na, and 86m Rb. They were equal to 2.1, 26, 24, 6.6, 19, 16, 11, 23 and 1.9, respectively. Then, 57 food samples were analyzed by epithermal neutron activation analysis for Br and Rb. The concentrations (in ppm) of Br and Rb were in asparagus (2) 2.3, 11.5; beets (3) 0.5, 0.8; beef (3) 1.7, 3.6; cabbage (5) 0.5, 10.8; carrot (3) 0.2, 3.7; chicken (3) 0.6, 4.4; chocolate (7) 11.1, 18.7; egg (3) 0.9, 1.9; french bean (3) 0.3, 1.0; goose (2) 1.3, 9.3; lettuce (2) 0.9, 1.7; pork (1) 1.5, 4.4; potato (7) 1.0, 1.2; sausage (3) 4.8, 3.5; spinach (3) 3.6, 4.0; strawberry jam (3) 0.4, 1.4; tomato (1) 13.5, 14.6; turkey (3) 1.2, 4.9. respectively. The number of samples and analyzed is indicated in parentheses. (author)

  18. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    Science.gov (United States)

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ( 241 Am/Be, 252 Cf, 241 Am/B, and DT neutron generator). Among the different systems the 252 Cf neutron based PGNAA system has the best performance.

  19. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  20. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1; Diagnostico da mucoviscidose utilizando analise por ativacao com neutrons. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.; Bellido, Alfredo V

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author) 33 refs., 13 figs.

  1. Practical aspects of operating a neutron activation analysis laboratory

    International Nuclear Information System (INIS)

    1990-07-01

    This book is intended to advise in everyday practical problems related to operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like ''what to use NAA for'', ''how to find relevant research problems'', ''how to find users for the technique'', ''how to estimate the cost of the analysis and how to finance the work'', ''how to organize the work in a rational way'' and ''how to perform the quality control''. It gives advice in choosing staff, equipment, and consumables and how to design facilities and procedures according to need and available resources. Potential applications of economic or environmental importance, reactor facilities, counting and measuring equipment of the lab, cooperation with other analytical groups and competitiveness of NAA are discussed by experienced analysts. The compiled 8 tables of data useful for neutron activation analysts are a valuable asset for research labs as well as industrial quality control units. Refs, figs and tabs

  2. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Science.gov (United States)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  3. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    International Nuclear Information System (INIS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-01-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  4. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Energy Technology Data Exchange (ETDEWEB)

    Glascock, M. D.; Neff, H. [University of Missouri, Research Reactor Center (United States); Vaughn, K. J. [Pacific Lutheran University, Department of Anthropology (United States)

    2004-06-15

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  5. Instrumental Neutron Activation Analysis for Human Hair

    International Nuclear Information System (INIS)

    Ratanatongchai, W.; Dharmvanij, W; Chongkum, S.

    1998-01-01

    Hair samples from students aged between 7 to 22 years old were analysed by neutron activation analysis at nuclear research reactor TRR-1.M1. From qualitative analysis of short-lived isotopes, A1, V, Ca, I, Cl, Mn, and Na were found. The quantity of those elements can be classified into three groups. The first group is A1, Ca, Na and Cl with variance less than 10%. The second group is V and I with variance between 10% to 50% and the third group, Mn, two samples have concentration about 12 times higher than the others

  6. Absolute instrumental neutron activation analysis at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Heft, R.E.

    1977-01-01

    The Environmental Science Division at Lawrence Livermore Laboratory has in use a system of absolute Instrumental Neutron Activation Analysis (INAA). Basically, absolute INAA is dependent upon the absolute measurement of the disintegration rates of the nuclides produced by neutron capture. From such disintegration rate data, the amount of the target element present in the irradiated sample is calculated by dividing the observed disintegration rate for each nuclide by the expected value for the disintegration rate per microgram of the target element that produced the nuclide. In absolute INAA, the expected value for disintegration rate per microgram is calculated from nuclear parameters and from measured values of both thermal and epithermal neutron fluxes which were present during irradiation. Absolute INAA does not depend on the concurrent irradiation of elemental standards but does depend on the values for thermal and epithermal neutron capture cross-sections for the target nuclides. A description of the analytical method is presented

  7. Neutron activation analysis - an aid to forensic science

    International Nuclear Information System (INIS)

    Chattopadhyay, N.; Basu, A.K.; Tripathi, A.B.R.; Bhadkambekar, C.A.; Shukla, S.K.

    2006-01-01

    Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. The importance of neutron activation analysis (NAA) as a specialised technique to aid crime investigation has emerged and has been recognised

  8. Limits of detection in instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Guinn, V.P.

    1990-01-01

    Lower limits of detection (LLODs), frequently referred to simply as limits of detection and abbreviated as LODs, often appear in the literature of analytical chemistry - for numerous different methods of elemental and/or molecular analysis. In this chapter, one particular method of quantitative elemental analysis, that of instrumental neutron activation analysis (INAA), is the subject discussed, with reference to LODs. Particularly in the literature of neutron activation analysis (NAA), many tables of 'interference-free' NAA LODs are available. Not all of these are of much use, because (1) for many the definition used for LOD is not clear, or reasonable, (2) for many, the analysis conditions used are not clearly specified, and (3) for many, the analysis conditions used are specified, but not very practicable for most laboratories. For NAA work, such tables of interference-free LODs are, in any case, only applicable to samples in which, at the time of counting, only one radionuclide is present to any significant extent in the activated sample. It is important to note that tables of INAA LODs, per se, do not exist - since the LOD for a given element, under stated analysis conditions, can vary by orders of magnitude, depending on the elemental composition of the matrix in which it is present. For any given element, its INAA LOD will always be as large as, and usually much larger than, its tabulated 'interference-free' NAA LOD - how much larger depending upon the elemental composition of the matrix in which it is present. As discussed in this chapter, however, an INAA computer program exists that can calculate realistic INAA LODs for any elements of interest, in any kind of specified sample matrix, under any given set of analysis conditions

  9. Monte Carlo method in neutron activation analysis

    International Nuclear Information System (INIS)

    Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.

    2009-01-01

    Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA

  10. Analysis of some egyptian cosmetic samples by using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Hassan, M.F.; Ali, M.A.; Awaad, Z.

    2002-01-01

    A description of our neutron generator (NG) facility for neutron activation analysis is presented. As an example, the concentration of Na, Mg, Al, Si, K, Cl, Ca and Fe elements were determined in two domestic brands of face powder by using a beam of 14 MeV neutrons. An empirical expression for detector efficiency in terms of incident gamma ray energy and the source-detector distance has been obtained for a hyper pure germanium detector (HPGe) using different standard point sources. The comparison of the calculated efficiencies and the measured values in the energy range from 59.5 to 1332.2 keV and for source-to-detector distances of 5-30 cm show the agreement between the calculated values and the measured experimental values

  11. Support system for Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Sasajima, Fumio; Ohtomo, Akitoshi; Sakurai, Fumio; Onizawa, Koji

    1999-01-01

    In the research reactor of JAERI, the Neutron Activation Analysis (NAA) has been utilized as a major part of an irradiation usage. To utilize NAA, research participants are always required to learn necessary technique. Therefore, we started to examine a support system that will enable to carry out INAA easily even by beginners. The system is composed of irradiation device, gamma-ray spectrometer and data analyzing instruments. The element concentration is calculated by using KAYZERO/SOLCOI software with the K 0 standardization method. In this paper, we review on a construction of this INAA support system in JRR-3M of JAERI. (author)

  12. Determination of europium content in Li_2SiO_3(Eu) by neutron activation analysis using Am-Be neutron source

    International Nuclear Information System (INIS)

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-01-01

    Circulardiscs of Li_2SiO_3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the "1"5"1Eu(n,γ)"1"5"2"mEu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined. - Highlights: • Lithium meta-silicate is breeder materials for a fusion reactor. • Europium is used for neutron dose estimation in a breeder blanket. • It is important to determine amount of europium in lithium meta-silicate. • Amount of europium in lithium meta-silicate was determined by neutron activation and off-line gamma spectrometry.

  13. Automatic sample changer for neutron activation analysis at CDTN, Brazil

    International Nuclear Information System (INIS)

    Aimore Dutra Neto; Oliveira Pelaes, Ana Clara; Jacimovic, Radojko

    2018-01-01

    An automatic sample changer was recently developed and installed in the Neutron Activation Analysis (NAA) Laboratory. The certified reference material BCR-320R, Channel Sediment, was analysed in order to verify the reliability of the results obtained by NAA, k 0 -standardisation method, using this automatic system during the gamma-ray measurement step. The results were compared to those manually obtained. The values pointed out that the automatic sample changer is working properly. This changer will increase the productiveness of the neutron activation technique applied at Nuclear Technology Development Centre, CDTN/CNEN expanding its competitiveness as an analytical technique in relation to other techniques. (author)

  14. Analysis of Brazilian snake venoms by neutron activation analysis

    International Nuclear Information System (INIS)

    Saiki, M.; Vasconcellos, M.B.A.; Rogero, J.R.; Cruz, M.C.G.

    1991-01-01

    Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 10 11 to 10 13 n · cm -2 · s -1 . The reference materials NIST Bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms. (author) 9 refs.; 2 tabs

  15. High sensitivity neutron activation analysis of environmental and biological standard reference materials

    International Nuclear Information System (INIS)

    Greenberg, R.R.; Fleming, R.F.; Zeisler, R.

    1984-01-01

    Neutron activation analysis is a sensitive method with unique capabilities for the analysis of environmental and biological samples. Since it is based upon the nuclear properties of the elements, it does not suffer from many of the chemical effects that plague other methods of analysis. Analyses can be performed either with no chemical treatment of the sample (instrumentally), or with separations of the elements of interest after neutron irradiation (radiochemically). Typical examples of both types of analysis are discussed, and data obtained for a number of environmental and biological SRMs are presented. (author)

  16. Neutron activation analysis of the rare earth elements in rocks from the earth's upper mantle and deep crust

    International Nuclear Information System (INIS)

    Stosch, H.-G.; Koetz, J.; Herpers, U.

    1986-01-01

    Three techniques for analyzing rare earth elements (REE) in geological materials are described, i.e. instrumental neutron activation analysis (INAA), neutron activation analysis with pre-irradiation chemical REE separation (PCS-NAA) and radiochemical neutron activation analysis (RNAA). The knowledge of REE concentrationd in eclogites, peridotites and minerals from the earth's lower crust and upper mantle is very useful in constraining their petrogenetic history. (author)

  17. Elemental analysis of bottom ash from municipal incinerator by neutron activation analysis

    International Nuclear Information System (INIS)

    Kim, S. H.; Jang, S. H.; Moon, J. H.; Jung, Y. S.; Kim, Y. J.

    2003-01-01

    Elemental analysis of bottom ash generated from municipal solid waste incinerator was performed by neutron activation analysis. For this study, ash samples monthly collected from incinerator in D city were sieved with 5 mm mesh size, dried, pulverized by agate mortar and finally re-sieved with 200μ mesh size. Prepared samples were irradiated by neutrons using NAA No.1 irradiation hole in Korea Atomic Energy Research Institute. Activated samples were measured by gamma-ray spectrometer according to the relevant nuclear properties of target nuclides and the concentration of 33 elements were determined from the collected ash samples. Quality control was conducted by comparative analysis with two NIST standard reference materials simultaneously. Mean values and standard deviations of hazardous elements such as As, Cr, Cu, Fe, Mn, Sb and Zn among the determined elements were 3.8±6.9mg/kg, 620±0.12 %, 4.76±0.37 %, 0.26±0.10 %, 115±29 mg/kg and 0.71±0.19 %, respectively

  18. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  19. Large sample neutron activation analysis: establishment at CDTN/CNEN, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.s [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences. Group for Radiochemistry and Radioecology

    2011-07-01

    In order to improve the application of the neutron activation technique at CDTN/CNEN, the large sample instrumental neutron activation analysis is being established, IAEA BRA 14798 and FAPEMIG APQ-01259-09 projects. This procedure, LS-INAA, usually requires special facilities for the activation as well as for the detection. However, the TRIGA Mark I IPR R1, CDTN/CNEN has not been adapted for the irradiation and the usual gamma spectrometry has being carried out. To start the establishment of the LS-INAA, a 5g sample - IAEA/Soil 7 reference material was analyzed by k{sub 0}-standardized method. This paper is about the detector efficiency over the volume source using KayWin v2.23 and ANGLE V3.0 software. (author)

  20. Multi-element analysis of crude-oil samples by 14.6 MeV neutron activation

    International Nuclear Information System (INIS)

    Cam, N.F.; Cigeroglu, F.; Erduran, M.N.

    1997-01-01

    The instrumental neutron activation technique, using the SAMEST T-400 neutron generator with 14.6 MeV neutrons produced from 3 H(d,n) 4 He reaction, is demonstrated for multi-element analysis of Saudi-Arabian crude-oil samples. The system parameters for the absolute method (e.g., the counting solid-angle, intrinsic efficiency of the γ-ray detector, effective neutron flux, activation cross sections, etc.)were determined and the results of elemental concentrations were presented with the corrections for all possible interferences having been carefully considered. (author)

  1. Activation analysis with neutron generators using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.

    1993-01-01

    The short half-life involves a number of important differences in production, transportation and measurement of radionuclides, and in counting statistics as compared with those in traditional activation analysis. Experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived radionuclides produced by 14-MeV neutron irradiation. A rapid pneumatic transfer system for use with neutron generators was installed and applied for detecting radionuclides with a half-life from 300 ms to 30 s. The transport time for samples with a total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. 11 elements were studied by the conventional activation method using both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. The effect of the cyclic activation technique on the elemental sensitivities was also investigated. (orig.)

  2. Technical Aspect for Operating Portable Prompt Gamma Neutron Activation Analysis (PGNAA) on Terengganu Inscribed Stone

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Hearie Hassan; Roslan Yahya

    2015-01-01

    Prompt Gamma Neutron Activation analysis (PGNAA) is a type of neutron activation analysis which can determined element with nearly no gamma ray decay after being irradiated by neutron sourced. Thus, element that cannot be determined by the conventional NAA for example H, B, N, Si and Cd, can be determine by PGNAA. This paper focuses on the technical working procedure for operating portable PGNAA in field work. The device is designed as a portable non-destructive investigation tool applying an isotopic neutron source (Cf-252) and a gamma-ray spectroscopy system for in-situ investigation. The studied have been carried out on Terengganu inscribed stone at Terengganu State Museum. (author)

  3. Neutron activation analysis applied to nutritional and foodstuff studies

    International Nuclear Information System (INIS)

    Maihara, Vera A.; Santos, Paola S.; Moura, Patricia L.C.; Castro, Lilian P. de; Avegliano, Roseane P.

    2009-01-01

    Neutron Activation Analysis, NAA, has been successfully used on a regularly basis in several areas of nutrition and foodstuffs. NAA has become an important and useful research tool due to the methodology's advantages. These include high accuracy, small quantities of samples and no chemical treatment. This technique allows the determination of important elements directly related to human health. NAA also provides data concerning essential and toxic concentrations in foodstuffs and specific diets. In this paper some studies in the area of nutrition which have been carried out at the Neutron Activation Laboratory of IPEN/CNEN-SP will be presented: a Brazilian total diet study: nutritional element dietary intakes of Sao Paulo state population; a study of trace element in maternal milk and the determination of essential trace elements in some edible mushrooms. (author)

  4. Instrumental neutron activation analysis in environmental research

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1985-01-01

    The main characteristics of instrumental neutron activation analysis (INAA),relevant for environmental research and monitoring, was reviewed and discussed-sensitivity, suitable for detection of many toxic elements, the low risks of contamination of element loss, lack of matrix effects, lack of light element interference except for 24 Na, capability for multi-element determination, comparatively low costs. A detailed description of the IRI analysis system for routine INAA is given. The system is based on the single comparator method of standartization to take full advantage of multi-element without preparation and use the trace element standards. Zinc was used as mono element standard, the element concentrations are calculated on the basis of 65 Zn and 69m Zn-activities. The irradiations were carried out in a thermal neutron flux of 1.10 13 n/cm 2 .s. The gamma spectra is converted into element concentrations using a set of dedicated software, performing the following functions: spectrum analysis and interpretation, comparison and combination of the intermediate results from different decay times, generation of the final report, bookkeeping of the results obtained. The main applications of the INAA system mentioned are: identification of sources of heavy metal air pollution using air filters or biological indicators such as mosses, lichens, toe-nails, bird feathers, molusks and waterplants; and study of the uptake and translocation of heavy element in plants. Special attention was paid to mathematical techniques for a reliable interpretation of the element concentration patterns observed in sets of lichen samples. Future developments in INAA in environmental science are briefly mentioned

  5. Trace elements in Australian opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Fardy, J.J.

    1994-01-01

    Neutron activation analysis was used to determine the concentration of trace elements in 42 samples of black, grey and white opals taken from a number of recognised Australian field. The results were evaluated to determine if a relationship exited between trace element content and opal colour. (author) 12 refs.; 12 figs.; 3 tabs

  6. Analysis of elements present in beers and brewing waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Krausova, Ivana; Kucera, Jan; Dostalek, Pavel; Potesil, Vaclav

    2011-01-01

    Neutron activation analysis (NAA) was used for determination of Si, Na, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Rb, Cs, and La in Czech beers and brewing waters. The Si concentration in beer determined by the reaction 29 Si(n,p) 29 Al with fast neutrons confirmed that beer is an important Si source in human diet. Determination of other trace elements by NAA with the whole spectrum of reactor neutrons aimed at the feasibility of identification of Gambrinus beers brewed in various breweries. The elements Ca and V appeared to be the best candidates for this purpose. The concentrations of elements determined by NAA were also compared with the recommended daily element intake for humans. The accuracy of the method was proved by analysis of reference materials, specifically NIST SRM 2704 Buffalo River Sediment, NIST SRM 1633b Coal Fly Ash, and NIST SRM 1515 Apple Leaves. (author)

  7. Prompt-gamma neutron activation analysis system design. Effects of D-T versus D-D neutron generator source selection

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2008-01-01

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with 14.2 MeV neutrons. To compare the performance of these two units in our present PGNA system, we performed Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) evaluating the nitrogen reactions produced in tissue-equivalent phantoms and the effects of background interference on the gamma-detectors. Monte Carlo response curves showed increased gamma production per unit dose when using the D-D generator, suggesting that it is the more suitable choice for smaller sized subjects. The increased penetration by higher energy neutrons produced by the D-T generator supports its utility when examining larger, especially obese, subjects. A clinical PGNA analysis design incorporating both neutron generator options may be the best choice for a system required to measure a wide range of subject phenotypes. (author)

  8. Reactor neutron activation analysis for aluminium in the presence of phosphorus and silicon

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Iwata, Shiro; Sasajima, Kazuhisa; Yoshimasu, Fumio; Yase, Yoshiro.

    1984-01-01

    Reactor neutron activation analysis for aluminium in samples containing phosphorus and silicon was studied. The experiments were performed by using neumatic tube of the Kyoto University Reactor (KUR). At first, the ratios of the 28 Al activity produced from 27 Al(n, γ) 28 Al reaction by thermal neutrons to that from 31 P(n, α) 28 Al reaction by fast neutrons, and to that from 28 Si(n, p) 28 Al reaction were measured by γ-ray spectrometry. With a ratio of about 5 for the thermal to fast neutron flux of KUR, the ratio of the 28 Al activity from aluminium to that from phosphorus was to be 812 +- 7, and to that from silicon 282 +- 3. Secondly, the contributions of 28 Al activities from phosphorus and silicon and the determination limit of aluminium were calculated for various parameters, such as fast neutron flux, thermal to fast neutron flux ratio, amounts of phosphorus and silicon, etc. Thirdly, on the basis of these results, aluminium contents in spinal cords and brains of amyotrophic lateral sclerosis, Parkinsonism-dementia complex and control cases were determined. (author)

  9. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  10. Study of some environmental problem in egypt using neutron activation analysis techniques

    International Nuclear Information System (INIS)

    El-Karim, A.H.M.G.

    2003-01-01

    this thesis deals with the investigation of the possibility of using the new (second) egyptian research reactor (ETRR-2) at Inshas (22 MW) for the neutron activation analysis (ANN) of trace elements, particularly in air dust, collected from cairo and some other cities of egypt. in this concern chapter 1 gives an introduction about the activation methods in general, describing the various techniques used and a comparison of the methods with other instrumental methods of analysis . as a main classification, the neutron activation methods involve prompt γ-ray NAA and delayed γ-ray NAA; cyclic NAA (repeated activation) was also outlined. the methodology of NAA involves the absolute method, the relative method and the mono standard (single comparator) method , which is in between the absolute and relative methods

  11. Application of the neutron activation analysis technique in trace elements analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Sarheel, A.; Al-Somel, N.

    2006-12-01

    The main objective in this study is the implementation k 0 -standardization method (single comparator method) using gold comparator as a routine method in neutron activation analysis laboratory in Engineering Nuclear Department. Cadmium ratio Rcd; Cd-ratio = [A s p/(A s p) C d] and the nuclear reactor constants (f=φ t h/φ e pi subcadimum thermal- to- epithermal neutron flux ratio and α with describing the φ e (E)∼ 1/E 1+α neutron flux distribution) were determined in the inner and outer irradiation sites at MNS Reactor. K 0 -IAEA software, which provided by the Agency, has been installed and applied in our laboratory. Trace elements in many kinds of samples (biological, environmental, alloy ...etc) were determined using K 0 -IAEA software. The results of standard reference materials (SRM's) obtained in this work show a good agreement with the certified values, and we got these results with a good accuracy closer to results which we got from relative NAA method. (author)

  12. Neutron activation analysis of biological material

    International Nuclear Information System (INIS)

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  13. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  14. Neutron activation analysis using Excel files and Canberra Genie-2000

    International Nuclear Information System (INIS)

    Landsberger, S.; Jackman, K.; Welch, L.

    2005-01-01

    A method for analyzing neutron activated sample data by using Microsoft Excel as the analysis engine has been developed. A simple technique for inputting data is based on report files generated by Canberra's Genie-2000 spectroscopy system but could be easily modified to support other vendors having report formats with consistent text placement. A batch program handles operating an automatic sample changer, acquiring the data, and analyzing the spectrum to create a report of the peak locations and net area. The entire report is then transferred to within an Excel spreadsheet as the source data for neutron activation analysis. Unique Excel templates have been designed, for example, to accommodate short-lived and long-lived isotopes. This process provides a largely integrated solution to NAA while providing the results in an industry standard spreadsheet format. This software is ideally suited for teaching and training purposes. (author)

  15. Determination of toxic elements in tobacco by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yaprak, G.; Cam, N.F.

    1998-01-01

    The concentration of toxic elements in the tobacco of six different brands of domestic and two brands of imported cigarettes heavily smoked in Turkey were determined using instrumental neutron activation analysis (INAA)

  16. Neutron-activation analysis of trace elements in thyroids

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Petri, H.; Kanash, N.V.; Malenchenko, A.F.

    1999-01-01

    Neutron activation analysis was used for routine measurement of trace elements in thyroids of inhabitants of Belarus as well as in thyroids of people operated for thyroid cancer. The method chosen allowed the analysis of 28 elements, among them essential and toxic ones, with a good accuracy. The results obtained showed significant differences in the elemental composition of thyroid from the different regions. The changes of elemental composition of thyroids of inhabitants of the Gomel region, where goiter is endemic, seem to be identical to those in the tumor tissue. (author)

  17. Determination of sodium in pharmaceuticals by neutron activation analysis

    International Nuclear Information System (INIS)

    Kanias, G.D.

    1985-01-01

    A simple, fast and accurate neutron activation analysis method for determination of Na in drugs concerning either active compound or total content was developed. The examined dosage forms consisted of 10 injectable ampoules and 10 bottles of oral solutions. The irradiation of samples and standards was carried out in the rotation system of the Reactor of Nuclear Research Center Democritos with maximal neutron flux of 2,9.10 13 n.cm -2 .sec -1 . Gamma-ray spectrometry of the irradiated samples and standards was accomplished with a coaxial Ge(Li) detector series Win 15 with an efficiency of 15% connected to an Ino-Tech 1024 channel analyser (Model IT 5200). The accuracy and precision of the method are found to be very high and therefore it could be established as an official one for the determination of sodium in parmaceuticals

  18. Activation analysis with reactor neutrons

    International Nuclear Information System (INIS)

    Gangadharan, S.

    1983-01-01

    The potentialities of neutron as an analytical probe are indicated, pointing out the need for development of other approaches, besides the conventional activation method. Development of instrumental approach to activation and applications, carried out at Analytical Chemistry Division are outlined. The role of, and the need for, the development and application of mathematical methods in enhancing the information content, and in turn the interpretation of the analytical results, is demonstrated. (author)

  19. Errors in instumental neutron activation analysis caused by matrix absorption

    International Nuclear Information System (INIS)

    Croudace, I.W.

    1979-01-01

    Instrumental neutron activation analysis of the geochemically important rare earth elements, together with Ta, Hf and U involves energies below 150 keV where absorption of radiation by the sample becomes inceasingly important. Determinations of the total mass absorption coefficients have been made. (C.F.)

  20. Study of dietary supplements compositions by neutron activation analysis at the VR-1 training reactor

    Science.gov (United States)

    Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir

    2017-11-01

    The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.

  1. Multi-element neutron activation analysis of Brazilian coal samples

    International Nuclear Information System (INIS)

    Atalla, L.T.; Requejo, C.S.

    1982-09-01

    The elements U, Th, La, Ce, Nd, Sm, Eu, Dy, Tb, Yb, Lu, Sc, Ta, Hf, Co, Ni, Cr, Mo, Ti, V, W, In, Ga, Mn, Ba, Sr, Mg, Rb, Cs, K, Cl, Br, As, Sb, Au, Ca, Al and Fe were determined in coal samples by instrumental neutron activation analysis, by using both thermal and epithermal neutron irradiations. The irradiation times were 10 minutes and 8 or 16 hours in a position where the thermal neutron flux was about 10 12 n.cm - 2 .s - 1 and 72 non-consecutive hours for epithermal irradiation at a flux of about 10 11 n.Cm - 2 .s - 1 . After the instrumental analysis of the above mentioned elements, Zn and Se were determined with chemical separation. The relative standard deviation of, at least, 4 determinations was about + - 10% for the majority of the results. The coal samples analysed were supplied by: Cia. Estadual da Tecnologia e Saneamento Basico (CETESB-SP), Cia. de Pesquisas e Lavras Minerais (COPELMI-RS), Cia. Carbonifera Urussunga (SC), Cia. Carbonifera Prospera (SC), Cia. Carbonifera Treviso (SC), Cia. Nacional de Mineracao de Carvao do Barro Branco (SC) and Comissao Nacional de Energia Nuclear (CNEN-RJ). (Author) [pt

  2. Estimation of iodine in soils by neutron activation analysis

    International Nuclear Information System (INIS)

    Krishnamoorthy, K.R.; Iyer, R.K.

    1982-01-01

    This paper reports the determination of the iodine content of soils by neutron activation analysis. The irradiated sample is fused with alkali in presence of 131 I tracer. From the aqueous extract, iodine activity is extracted into carbon tetrachloride and stripped back to aqueous phase with a high selectivity for iodine. 131 I tracer is used to measure chemical yield. Iodine contents in the range 1 to 20 ppm. have been determined by this technique. (author)

  3. Bulk - Samples gamma-rays activation analysis (PGNAA) with Isotopic Neutron Sources

    International Nuclear Information System (INIS)

    HASSAN, A.M.

    2009-01-01

    An overview is given on research towards the Prompt Gamma-ray Neutron Activation Analysis (PGNAA) of bulk-samples. Some aspects in bulk-sample PGNAA are discussed, where irradiation by isotopic neutron sources is used mostly for in-situ or on-line analysis. The research was carried out in a comparative and/or qualitative way or by using a prior knowledge about the sample material. Sometimes we need to use the assumption that the mass fractions of all determined elements add up to 1. The sensitivity curves are also used for some elements in such complex samples, just to estimate the exact percentage concentration values. The uses of 252 Cf, 241 Arn/Be and 239 Pu/Be isotopic neutron sources for elemental investigation of: hematite, ilmenite, coal, petroleum, edible oils, phosphates and pollutant lake water samples have been mentioned.

  4. Determination of phosphorus using derivative neutron activation

    International Nuclear Information System (INIS)

    Scindia, Y.M.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.

    2002-01-01

    For the determination of phosphorus in different matrices, the derivative neutron activation analysis is especially applicable to aqueous samples, since the conventional neutron activation analysis is not useful for the determination of phosphorus. Phosphorus when reacted with ammonium molybdate 4 hydrate and ammonium metavanadate forms molybdo vanado phosphoric acid. This complex is preconcentrated by extracting into methyl isobutyl ketone. The organic phase containing the molybdo vanado phosphoric acid is neutron activated and the phosphorus is determined through the activation product of 52 V. Preparation of this complex, its stoichiometry, application to trace level determination of phosphorus and improved detection limit are discussed. This method was applied for the analysis of industrial effluent samples. (author)

  5. Multielement neutron activation analysis of underground water samples

    International Nuclear Information System (INIS)

    Kusaka, Yuzuru; Tsuji, Haruo; Fujimoto, Yuzo; Ishida, Keiko; Mamuro, Tetsuo.

    1980-01-01

    An instrumental neutron activation analysis by gamma-ray spectrometry with high resolution and large volume Ge (Li) detectors followed by data processing with an electronic computer was applied to the multielemental analysis to elucidate the chemical qualities of the underground water which has been widely used in the sake brewing industries in Mikage, Uozaki and Nishinomiya districts, called as miyamizu. The evaporated residues of the water samples were subjected to the neutron irradiations in reactor for 1 min at a thermal flux of 1.5 x 10 12 n.cm -2 .sec -1 and for 30 hrs at a thermal flux of 9.3 x 10 11 n.cm -2 .sec -1 or for 5 hrs at a thermal flux of 3.9 x 10 12 n.cm -2 .sec -1 . Thus, 11 elements in the former short irradiation and 38 elements in the latter two kinds of long irradiation can be analyzed. Conventional chemical analysis including atomic absorption method and others are also applied on the same samples, and putting the all results together, some considerations concerning the geochemical meaning of the analytical values are made. (author)

  6. A review of conventional explosives detection using active neutron interrogation

    International Nuclear Information System (INIS)

    Whetstone, Z.D.; Kearfott, K.J.

    2014-01-01

    Conventional explosives are relatively easy to obtain and may cause massive harm to people and property. There are several tools employed by law enforcement to detect explosives, but these can be subverted. Active neutron interrogation is a viable alternative to those techniques, and includes: fast neutron analysis, thermal neutron analysis, pulsed fast/thermal neutron analysis, neutron elastic scatter, and fast neutron radiography. These methods vary based on neutron energy and radiation detected. A thorough review of the principles behind, advantages, and disadvantages of the different types of active neutron interrogation is presented. (author)

  7. A PC-program for the calculation of neutron flux and element contents using the ki-method of neutron activation analysis

    International Nuclear Information System (INIS)

    Boulyga, E.G.; Boulyga, S.F.

    2000-01-01

    A computer program is described, which calculates the induced activities of isotopes after irradiation in a known neutron field, thermal and epithermal neutron fluxes from the measured induced activities and from nuclear data of 2-4 monitor nuclides as well as the element concentrations in samples irradiated together with the monitors. The program was developed for operation in Windows 3.1 (or higher). The application of the program for neutron activation analysis allows to simplify the experimental procedure and to reduce the time. The program was tested by measuring different types of standard reference materials at the FRJ-2 (Research Centre, Juelich, Germany) and Triga (University Mainz, Germany) reactors. Comparison of neutron flux parameters calculated by this program with those calculated by a VAX program developed at the Research Centre, Juelich was done. The results of testing seem to be satisfactory. (author)

  8. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-01-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  9. In vivo studies on the nitrogen, chlorine, calcium and phosphorus composition of rats by neutron activation analysis

    International Nuclear Information System (INIS)

    Morel-Jacrot, Micheline.

    1975-01-01

    The role of neutron activation analysis 'in vivo' to determine the elementary composition of the rat organism is demonstrated. In part one the possibilities offered by certain methods which establish the elementary composition of living organisms are analyzed, together with the contribution and scope of neutron activation analysis. In part two the technical details of the neutron activation of rats in vivo are determined and the problems raised by application of the method considered. This is followed by an application of neutron activation analysis to research on changes in the nitrogen, chlorine, calcium and phosphorus composition of rats during growth (from 30 to 440 days) and important biological events such as puberty in both sexes, reproduction and lactation. Finally a study of the fertility rate and the effects of repeated irradiations on Sprague-Dawley rats are described [fr

  10. Neutron activation analysis of urinary calculi

    International Nuclear Information System (INIS)

    Souka, N.; Souka, S.; Sanad, W.; Abdel-Rassoul, A.A.

    1974-01-01

    Urinary calculi resulting from disorders in the urinary system are mostly composed of uric acid, urates, calcium oxalate, alkaline earth phosphates (Ca and Mg), triple phosphate (magnesium ammonium phosphate), calcium carbonate, cystine, xanthine, and traces of proteins. The determination of these macro-constituents has been carried out by different analytical procedures. No attempts however, have been reported regarding the determination of trace elements in urinary stones, apart from that of Herring et al., who investigated the consumption of strontium by urolithiasis patients. The present work is a non-destructive neutron activation analysis of urinary calculi, to search the variation in concentration of certain trace elements with the chemical composition of the calculus

  11. Neutron activation analysis of trace elements in rain water

    International Nuclear Information System (INIS)

    Luten, J.B.

    1977-01-01

    In this thesis the principles and practical aspects of activation analysis which are of direct importance in the analysis of rain water, are presented together with recent literature data on other techniques. Problems due to the storage of rain water samples are discussed. A multi-element method for the determination of trace elements in rain water by instrumental neutron activation analysis is described. Gamma ray spectrometry using Ge(Li) detectors offers the possibility to determine Na, Al, Cl, V, Mn, Co, Cu, Br and I in rain water samples of 2.5 ml after a 4-min irradiation in a thermal neutron flux of 5 x 10 13 n cm -2 s -1 . In residues of rain water samples of 100 ml, irradiated during 2 days in a thermal neutron flux of >5 x 10 13 n cm -2 s -1 Cr, Fe, Co, Zn and Sb can be determined after a cooling period of approximately 21 days. The detection limits are lower than those reported in previous investigations except for Cu. The precision is about 10% or better, except for Co, Cu and I. A routine method for the determination of bromine and iodine in rain water by n.a.a. is presented. The elements are isolated by isotope exchange between the irradiated sample and a solution of Br 2 or I 2 in CCl 4 . The method is not sensitive to the chemical species in which the halogen is present. Irradiation of solutions of iodine compounds in a high thermal neutron flux gives rise to the formation of iodate. Results of a further investigation of this phenomenon are given, as well as the determination of iodate in rain water by n.a.a. Iodate is separated by anion exchange. The combination of n.a.a. and solvent extraction is used for the determination of five trace elements (V, Co, Cu, Zn and In) in 10-ml rain water samples. For V, Co and Cu this method is more sensitive and reproducible than instrumental n.a.a. The results of the analysis of eleven sequential 30-ml samples from the beginning of the shower are presented as an illustration of possible applications of the

  12. Analysis of atmospheric particulate samples via instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Greenberg, R.R.

    1990-01-01

    Instrumental neutron activation analysis (INAA) is a powerful analytical technique for the elemental characterization of atmospheric particulate samples. It is a true multielement technique with adequate sensitivity to determine 30 to 40 elements in a sample of atmospheric particulate material. Its nondestructive nature allows sample reanalysis by the same or a different analytical technique. In this paper as an example of the applicability of INAA to the study of atmospheric particulate material, a study of the emissions from municipal incinerators is described

  13. Ultra-micro determination of arsenic in biomaterials by neutron activation analysis

    International Nuclear Information System (INIS)

    Danbara, Hirosh; Suzuki, Nobuo

    1989-01-01

    10 - 100 ng levels of As in biomaterials (plasma, urine, hair and other animal tissues) were determined by destructive thermal neutron activation analysis. Materials were digested with HNO 3 - HClO 4 , reduced to H As then distilled by Gutzeit procedure. Removed H As by distration was accepted with filter paper contained appropriate reagent. This filter paper was irradiated with thermal neutron flux. The photopeaks of 76 As (559 and 657 Kev), 75 As(n,r) 76 As, were measured and compared with standard As peaks. Some of factors related to the determination such as reagent, condition of ditilation and activation were investigated. Almost satisfactory results were obtained

  14. Minor and trace elements in melanins determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kochanska-Dziurowicz, A.A.; Wilczok, T.; Mosulishvili, L.; Kharabadze, N.

    1986-01-01

    The presence of Au, Br, Sb, Ag, Fe, Zn, Co, Cr, Ni, Hg and Sn determined by neutron activation analysis was demonstrated in melanins isolated from human dark hair, banana peels or prepared synthetically from tyrosine. (author)

  15. Application of active neutronic interrogation method to the line analysis in reprocessing plant

    International Nuclear Information System (INIS)

    Passard, C.

    1993-01-01

    In a reprocessing plant of irradiated spent fuels, the knowledge in real time (line analysis) of uranium and plutonium quantities present in solutions is an extremely important parameter to control the proceeding and for the apparatus safety. The active neutronic analysis give a nondestructive non intrusive and quick measure to know the concentrations. This method consists in inducing fissions in nuclides with a neutron source and then to detect the particles which come from

  16. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    Energy Technology Data Exchange (ETDEWEB)

    Dahing, Lahasen Normanshah [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia); Yahya, Redzuan [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yahya, Roslan; Hassan, Hearie [Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia)

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  17. Neutron activation analysis: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.; Reddy, A.V.R.

    2012-01-01

    Neutron activation analysis (NAA) is a powerful isotope specific nuclear analytical technique for simultaneous determination of major to trace elemental concentrations in diverse matrices. NAA is associated with high analytical sensitivities and low detection limits (ppm to ppb) due to utilization of high neutron flux from research reactors and high efficiency high resolution gamma ray spectrometry. Elemental concentrations are determined either by conventional NAA using relative method or by single comparator method of NAA (k 0 -NAA). Since 1994, Radiochemistry Division is actively engaged in developments and applications of k 0 -based NAA and Prompt Gamma ray NAA (PGNAA) methods for compositional characterization of materials, in addition to conventional instrumental NAA (INAA) and chemical NAA (CNAA) methods for total as well as speciation studies. The article briefly summarizes developments of k 0 based method of NAA using an external single comparator (k 0 -NAA) and an internal monostandard (lM-NAA) and PGNAA and their applications to small as well as large size samples. The article also briefly highlights the application of INAA and chemical NAA (CNAA) for speciation studies of arsenic and iodine in environmental and food samples respectively and bioaccesibility of selenium in food samples and trace elements wheatgrass samples

  18. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF)

    International Nuclear Information System (INIS)

    El-Taher, A.

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10 11 n/cm 2 s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. - Highlights: ► Instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite. ► The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10 11 n/cm 2 s in the TRIGA Mainz research reactor. ► Following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U.

  19. Neutron Activation analysis of waste water; Analisis de aguas residuales mediante activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, V

    1997-12-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10{sup 13} cm{sup -2} s{sup -1} for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author).

  20. Irradiation and gamma-ray spectrometric parameters for 129I neutron-activation analysis

    International Nuclear Information System (INIS)

    Brauer, F.P.; Strebin, R.S. Jr.; Mitzlaff, W.A.; Kaye, J.H.

    1983-09-01

    This paper describes the influence of reactor neutron irradiation facilities on low-level 129 I analysis methodology. Three reactors are compared - the HFIR at ORNL, the N-Reactor at Hanford, and a 1-MW research reactor at Washington State University, Pullman, WA. Parameters compared include sensitivity for 129 I and natural iodine and interference effects due to high levels of 127 I in irradiated samples. Selection of detector systems for off-site use at HFIR is discussed. A comparison of neutron activation analysis with other sensitive detection methods for measurement of 129 I is given

  1. Thermal neutron activation analysis of different varieties of mustard and sunflower seeds

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Bhamare, C.S.

    1991-01-01

    Neutron activation analysis (NAA) technique has been used for the estimation of Mn, Na and K in different varietes of oil seeds of mustard and sunflower in India. The samples were irradiated in a 252 Cf source with neutron flux of ∼10 9 n s -1 and the analysis was done using a multichannel analyzer (MCA) coupled to high purity germanium (HPGe) detector. Different varieties of seeds are found to have different concentrations of tracer elements when compared among themselves. (author) 5 refs.; 1 fig.; 1 tab

  2. Neutron activation analysis

    International Nuclear Information System (INIS)

    Borsaru, M.; Eisler, P.L.

    1981-01-01

    A method of simultaneously analysing the aluminium and silicon content of a sample of material is claimed. The method comprises the following steps: (1) irradiating the sample with fast neutrons; (2) monitoring the thermal neutron flux within the sample; (3) monitoring the gamma radiation from the irradiated sample at energies of 1.78 MeV and 1.015 and/or 0.844 MeV; (4) using the monitored gamma radiation at 1.015 and/or 0.844 MeV to estimate the aluminium content of the sample; and (5) using the monitored gamma radiation at 1.78 MeV, compensated by the gamma radiation at 1.78 MeV due to the thermal neutron reaction with the estimated aluminium in the sample to estimate the silicon content

  3. Fast-neutron activation analysis of manganese nodules

    International Nuclear Information System (INIS)

    Michaelis, W.; Fanger, H.U.; Mueller, A.; Pepelnik, R.

    1976-01-01

    The present paper describes the development of a new nuclear method that allows rapid determinations of the most relevant metals Ni and Cu without sample treatment, thus being particularly suited for quasi-continuous elemental analyses in mining and processing. The measurement is based on fast-neutron activation using Cockcroft-Walton generators, sealed neutron tubes or, possibly, (α,n)-type natural sources. Fast-neutron activation of manganese nodules is dominated by the (n,p)-reactions on Si, Al, Fe; the (n,α)-reaction on Mn and the (n,2n)-reaction on Cu. By choosing appropriate irradiation and cooling periods gamma-ray activities with comparatively simple spectral distributions are induced. From these spectra the Mn/Fe ratio in the nodules can be determined without the elaborate procedures usually required in absolute methods for eliminating systematic errors from fluctuations in sample and/or irradiation parameters. It is connected with the absolute Ni and Cu contents via well-known geochemical correlations which according to a lot of statistical data apply to quite different deposits and nodule types in the Pacific. Using these correlations the determination of the most important metals reduces to the evaluation of a peak area ratio. Measurements of the neutron flux distribution and the apparent sample density are unnecessary. The simple structure of the spectra allows the application of detectors with modest energy resolution, e.g. scintillation counters which can be manufactured as ruggedized crystal assemblies with great resistance to thermal and mechanical shock. The method is described in detail and possible interference, in particular from thermal and epithermal neutrons, are discussed. (orig.) [de

  4. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis and other analytical methods such as neutron-activation analysis with radiochemical separation, emission spectrochemical analysis, atomic absorption spectroscopy, X-ray fluorescence analysis, ion-selective electrode analysis, and American Society for Testing of Materials procedures (ASTM), as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurence of various elements in the coal matrix itself. Efforts have been made to attain the maximal accuracy and precision possible for a wide variety of elements in the inhomogeneous coal matrix. (T.G.)

  5. Neutron activation analysis method to determination vitamine B_1_2 (sianokobalamin) in pharmaceutical product

    International Nuclear Information System (INIS)

    Titiek Martati; June Mellawati

    2010-01-01

    Analysis of vita mine 812 in pharmaceutical preparations can be done by neutron activation method, because one molecule of vita mine 812 contains one atom of Co (4.35 %). The aim of research to know the ability of neutron activation method to analyze pharmaceutical preparations of vitamine 812 by test the precision and accuracy methods. It is expected that the method of neutron activation analysis can be an alternative method in the determination of vitamine 812 in pharmaceutical preparations. Samples were irradiated using thermal neutrons in the reactor during 30 minutes Siwabessy GA, and based on n, gamma reaction, the "6"0CO isotope formed then be identified using Gamma Spectrometer at 1173.5 and 1332.4 keV energy. Vitamine 812 concentration was obtained by calculating the ratio of vitamine 812 molecule to molecule Co. The results showed that the neutron activation method is good for determining 8_1_2 vitamin in low concentration (≥ 200 mg), but not for high concentrations ( ≥ 5000 mg). This method has a 99.11 to 99.52 % accuracy, and 96.52 to 104.95 % precision with a detection limit measures of vita mine 812184.36 mg. Recovery test obtained ranged between 98.19 to 101.07 % of vitamine 812 compared to levels specified in the label, so that still recommend the requirements of British Pharmacopoeia 2009 and the United States Pharmacopoeia 29. (author)

  6. Provenance study of ancient Chinese Yaozhou porcelain by neutron activation analysis

    International Nuclear Information System (INIS)

    Li, R.W.; Zhao, W.J.; Li, G.X.; Xie, J.Z.; Guo, M.; Gao, Z.Y.; Feng, S.L.; Fan, D.Y.; Zhang, Y.; Cai, Z.F.; Zhuo, Z.X.

    2004-01-01

    The glaze samples of ancient Chinese Yaozhou porcelain were analyzed by neutron activation analysis (NAA). The contents of 29 elements for each sample were measured. the scattergram of the coloring elements shows some informations of soueces of raw materials. (authors)

  7. Determination of neodymium and gadolinium in geologic samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Souza, M.A. de; Marques, L.S.

    1982-07-01

    The determination of Nd and Gd present in rocks by neutron activation analysis is aimed at. A separation procedure for the rare earth group of elements is presented. The method is based on the retention of 233 Pa, 182 Ta and 46 Sc by hydrated antimony pentoxide (HAP) in a 6M HClO 4 medium. Those radioisotopes are interferences in the gamma-ray spectrum of 153 Gd and 147 Nd. The reliability of the method was tested by means of the geological standards BCR-1 and G-2 from the U.S. Geological Survey. The limitations of the instrumental neutron activation analysis and the advantages of the chemical separation are discussed for the special case of the Nd and Gd determinations. (Author) [pt

  8. Determination of manganese in blood by neutron activation analysis

    International Nuclear Information System (INIS)

    Kocsis, E.; Kovats, M.; Molnar, M.

    1981-01-01

    A new method has been elaborated: the manganese content of a blood sample was precipitated by H 2 O 2 , and analysed by neutron activation analysis. The mean value was 2.67x10 -8 g/g in men, 3.25x10 -8 g/g in women and 3.57x10 -8 g/g in men working as welders for several years. (L.E.)

  9. Trace elements in coloured opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1995-01-01

    Neutron activation analysis was used to determine the concentration of trace elements in 50 samples of orange, yellow, honey, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were evaluated to determine the relationship between trace elements content and opal colour. (author). 10 refs., 10 figs., 3 tabs

  10. Miniature neutron-alpha activation spectrometer

    International Nuclear Information System (INIS)

    Rhodes, Edgar; Goldsten, John; Holloway, James Paul; He, Zhong

    2002-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband

  11. Instrumental neutron activation analysis of soil sample

    International Nuclear Information System (INIS)

    Abdul Khalik Haji Wood.

    1983-01-01

    This paper describes the analysis of soil samples collected from 5 different location around Sungai Lui, Kajang, Selangor, Malaysia. These sample were taken at 22-24 cm from the top of the ground and were analysed using the techniques of Instrumental Neutron Activation Analysis (INAA). The analysis on soil sample taken above 22-24 cm level were done in order to determine if there is any variation in elemental contents at different sampling levels. The results indicate a wide variation in the contents of the samples. About 30 elements have been analysed. The major ones are Na, I, Cl, Mg, Al, K, Ti, Ca and Fe. Trace elements analysed were Ba, Sc, V, Cr, Mn, Ga, As, Zn, Br, Rb, Co, Hf, Zr, Th, U, Sb, Cs, Ce, Sm, Eu, Tb, Dy, Yb, Lu and La. (author)

  12. The monostandard method in thermal neutron activation analysis of geological, biological and environmental materials

    International Nuclear Information System (INIS)

    Alian, A.; Djingova, R.G.; Kroener, B.; Sansoni, B.

    1984-01-01

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9x10 12 nxcm -2 xs -1 and an epithermal neutron contribution of less than 0.03%. The values obtained were found to agree mostly well with the best literature values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standards and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. (orig.) [de

  13. Aluminium-gold reference material for the k0-standardisation of neutron activation analysis

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Peetermans, F.; Corte, F. de; Wispelaere, A. de; Vandecasteele, C.; Courtijn, E.; Hondt, P. d'

    1991-01-01

    Gold is an excellent comparator material for the k 0 -standardisation of neutron activation analysis because of its convenient and well defined nuclear properties. The most suitable form for a reference material is a dilute aluminium-gold alloy, for which the self-shielding effect for neutrons is small. Castings of composition Al-0.1 wt.% Au were prepared by crucible-less levitation melting, which gives close control of ingot composition with minimal contamination of the melt. The alloy composition was checked using induction-coupled plasma source emission spectrometry. The homogeneity of the alloy was measured by neutron activation analysis and a relative standard deviation of the gold content of 0.30% was found (10 mg samples). Metallography revealed a homogeneous distribution of AuAl 2 particles. The alloy was certified as Reference Materials CBNM-530, with certified gold mass fraction 0.100±0.002 wt.%. (orig.)

  14. Activation product analysis in a mixed sample containing both fission and neutron activation products

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.; Finn, Erin C.; Hines, C. Corey; King, Mathew D.; Metz, Lori A.; Morley, Shannon M.; Snow, Mathew S.; Wall, Donald E.; Seiner, Brienne N.

    2017-11-02

    Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction using hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.

  15. Application of neuro-fuzzy model for neutron activation analysis (NAA)

    International Nuclear Information System (INIS)

    Khalafi, H.; Terman, M.S.; Rahmani, F.

    2011-01-01

    Neutron activation analysis (NAA) is a precise chemical multielemental method of analysis which is satisfactorily used for qualitative and quantitative analyses. Repeated irradiation is needed because of mal-determination of some elements due to peak overlap in qualitative analysis. In this study, NAA procedure has been modified using a neuro-fuzzy model to avoid repeated irradiation based on multilayer perceptrons network trained by the Levenberg Marquardt algorithm. This method increases the precision of spectrum analysis in the case of strong background and peak overlap. (authors)

  16. Trace analysis measurements in high-purity aluminium by means of radiochemical neutron and proton activation analysis

    International Nuclear Information System (INIS)

    Egger, K.P.

    1987-01-01

    The aim of the study consisted in the development of efficient radiochemical composite processes and activation methods for the multi-element determination of traces within the lower ng range in high-purity aluminium. More than 50 elements were determined with the help of activation with reactor neutrons; the selective separation of matrix activity (adsorption with hydrated antimony pentoxide) led to a noticeable improvement of detectability, as compared with instrumental neutron activation analysis. Further improvements were achieved with the help of radiochemical group separations in ion exchangers or with the help of the selective separation of the pure beta-emitting elements. Over 20 elements up to high atomic numbers were determined by means of activating 13 MeV protons and 23 Me protons. In this connection, improvements of the detection limit by as a factor of 10 were achieved with radiochemical separation techniques, as compared with pure instrumental proton activation analysis. (RB) [de

  17. Elemental analysis of fertilizer by fast neutron activation

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.

    1977-01-01

    A simple and accurate technique has been developed to analyse commercial fertilizers for phosphorus, potassium, chlorine, magnesium and silicon. The method is based on fast-neutron activation using a neutron flux of 2x10 11 neutrons/second. The optimum analytical conditions are tabulated. After irradiation, the sample is measured on a conventional counting system including a Ge(Li) detector (10% efficiency and 2 keV resolution for 60 Co) and a multichannel analyser. Monitor foils radioactivity are measured separately at the same time with a 2''x2''NaI detector coupled with a single channel analyser and a scaler. Fast neutron activation has proved to be a fast, simple, reliable and low cost analytical technique for the determination of phosphorus, silicon, potassium, magnesium and chlorine in fertilizers. Not less than five phosphorus determinations are possible in one hour, while two potassium, magnesium and chlorine determinations are made at the same time. (T.G.)

  18. Mercury determination in dentist's hair and nails by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Mazzilli, B.; Munita, C.S.

    1986-01-01

    The mercury in scalp hair and fingernails of a group of dentists who usually handle with this toxic element in their profession is determined. The results were obtained by instrumental neutron activation analysis. The experimental procedure was based on the evaluation of the 197 Hg photopeak area, whose half life is 65h. After at a neutron fluxo of 5x10 12 n.cm -2 .sec -1 , the activity of the samples were measured by using a solid state Ge (Li) detector coupled to a 4.096 channel pulse height analyser. (M.A.C.) [pt

  19. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    Science.gov (United States)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  20. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, Jan; Koleska, M.; Voljanskij, A.

    2015-01-01

    Roč. 116, NOV (2015), s. 56-59 ISSN 0969-806X R&D Projects: GA TA ČR TA01010237; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : fluorescent lamp * mercury measurement * neutron activation analysis * research reactor Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2015

  1. Optimization in Activation Analysis by Means of Epithermal Neutrons. Determination of Molybdenum in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Jirlow, J

    1963-12-15

    Optimization in activation analysis by means of selective activation with epithermal neutrons is discussed. This method was applied to the determination of molybdenum in a steel alloy without recourse to radiochemical separations. The sensitivity for this determination is estimated to be 10 ppm. With the common form of activation by means of thermal neutrons, the sensitivity would be about one-tenth of this. The sensitivity estimations are based on evaluation of the photo peak ratios of Mo-99/Fe-59.

  2. Target preparation and neutron activation analysis: a successful story at IRMM

    International Nuclear Information System (INIS)

    Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.; Pomme, S.; Ingelbrecht, C.

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements

  3. Target preparation and neutron activation analysis a successful story at IRMM

    CERN Document Server

    Robouch, P; Eguskiza, M; Maguregui, M I; Pommé, S; Ingelbrecht, C

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements.

  4. Protein determination in soya bean by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Szegedi, S.; Mosbah, D.S.; Varadi, M.; Szaloki, I.

    1988-01-01

    For a non-destructive determination of the protein content in soya bean samples, 14-MeV neutron activation analysis was applied. To check the method, the results obtained by X-ray fluorescence analysis and the Kjeldahl procedure were compared. For pressed pellet samples of about 1 g with 15 min irradiation and 10 min measuring times the accuracy of the protein determination was found to be 15%. (author) 7 refs.; 4 figs.; 3 tabs

  5. Epithermal neutron activation analysis for studying the environment

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Steinnes, E.

    1997-01-01

    Epithermal neutron activation analysis (ENAA) has certain advantages over the conventional instrumental analysis (INAA) in terms of improvement in precision and lowering of detection limits, reduction of high matrix activity and fission interferences if any. The current status and the applications of ENAA to environmental samples are reviewed. Experience in the use of ENAA in the monitoring of atmospheric depositions by means of moss-biomonitors at pulsed fast reactor IBR-2 in Dubna is summarized. INAA has shown to be useful for a number of sample types of interest in environmental studies, and should find more extensive use in this area. Analysis of airborne particulate matter is a case where ENAA should be particularly useful. A similar case where ENAA has shown strong performance is in the analysis of mosses used as biomonitors of atmospheric deposition, where 45 elements were determined. In this and other cases, however, induction-coupled plasma mass spectrometry is a very strong competitor, offering data for even more elements. A comparison of ENAA and ICP-MS for moss analysis is presented, and cases where ENAA is unique are discussed

  6. Research on activation analysis using short-lived isotopes and a multi-purpose isotopic neutron irradiator. Part of a coordinated programme on on-line X-ray and neutron techniques for industrial process control

    International Nuclear Information System (INIS)

    Ozek, F.

    1981-02-01

    A method of cyclic activation analysis (CA) has been studied and applied. A theoretical comparison between cyclic and conventional neutron activation analysis of gold has been made. The optimum number of cycles in cyclic activation have been investigated and an equation for the rapid calculation of the number of cycles is proposed. The isotopic neutron irradiation system including the 5Ci Pu-Be neutron source was designed and constructed. The system is flexible and transportable and is capable of carrying out prompt and conventional delay gamma-ray analysis and cyclic activation of bulk materials. The advantages as well as the disadvantages of neutron activation analysis with the use of short-lived nuclides were considered, and can be summarized as follows: Advantages: saturation factor approaches unity, speed of analysis, low cost of analysis, increased selectivity, reduced matrix activities. Disadvantages: proximity of neutron source, chemical separation hardly possible or impossible, total number of counts low. Low counting rates can be substantially increased by applying the technique of ''cyclic activation'', which is another reason by the use of short-lived isotopes in neutron activation analysis is steadily becoming more attractive

  7. On-stream analysis of coal by prompt neutron activation analysis

    International Nuclear Information System (INIS)

    Barker, D.

    1981-01-01

    The need for rapid continuous on-stream analysis of coal was recognised in 1975. Analytical systems capable of determining some of the most important compositional properties of coal have been developed. The research programme has produced a series of analysers suitable for on-stream, batch, slurry and laboratory analytical determination of coal. This series of analysers is marketed under the name of 'Nucoalyzer'. The Nucoalyzer - CONAC (Continuous On-line Nuclear Analyzer for Coal) offers real-time, continuous determination of calorific value, percentage ash, percentage moisture, percentage sulphur, boiler fouling and slagging indices. The CONAC model is described in this article. The analytical principle employed in the various Nucoalyzer systems is based on prompt neutron activation analysis

  8. Uncertainty Estimation of Neutron Activation Analysis in Zinc Elemental Determination in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Muhayatun; Diah Dwiana L

    2009-01-01

    Beside to complished the requirements of international standard of ISO/IEC 17025:2005, uncertainty estimation should be done to increase quality and confidence of analysis results and also to establish traceability of the analysis results to SI unit. Neutron activation analysis is a major technique used by Radiometry technique analysis laboratory and is included as scope of accreditation under ISO/IEC 17025:2005, therefore uncertainty estimation of neutron activation analysis is needed to be carried out. Sample and standard preparation as well as, irradiation and measurement using gamma spectrometry were the main activities which could give contribution to uncertainty. The components of uncertainty sources were specifically explained. The result of expanded uncertainty was 4,0 mg/kg with level of confidence 95% (coverage factor=2) and Zn concentration was 25,1 mg/kg. Counting statistic of cuplikan and standard were the major contribution of combined uncertainty. The uncertainty estimation was expected to increase the quality of the analysis results and could be applied further to other kind of samples. (author)

  9. Instrumental neutron activation analysis of wheat bunt spores

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y G; Schmitt, R A [Oregon State Univ., Corvallis (USA). Dept. of Chemistry; Oregon State Univ., Corvallis (USA). Radiation Center); Trione, E J [Oregon State Univ., Corvallis (USA). Dept. of Botany; Laul, J C [Battelle Pacific Northwest Labs., Richland, WA (USA)

    1982-01-01

    The concentrations of seventeen elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Br, Rb, La, Sm) in two species of fungus which cause wheat bunt disease, Tilletia caries (DC.) Tul. and Tilletia controversa Kuehn, were determined by instrumental neutron activation analysis. A standard sequential INAA procedure was used. Differences in the K and Cl concentrations between these two species of spores are large and therefore can be used as a criterion of distinguishing between the two species of fungus.

  10. Neutron activation analysis of automobile exhaust pollutants

    International Nuclear Information System (INIS)

    Oakes, T.W.; Furr, A.K.; Adair, D.J.; Parkinson, T.F.

    1977-01-01

    An approximation of the distribution of lead particulate from vehicular exhausts is given. Soil and grass (Poa trivialis) samples were collected at five-foot intervals from the roadside out to 300 feet, at ten-foot intervals from 300 to 350 feet, and at 25-foot intervals from 350 to 600 feet. All samples were irradiated twice: once for a brief period of from 10 to 120 seconds and later for periods of from 6 to 8 hours. The short irradiations were at a thermal neutron flux of 1.2x10 12 ncm -2 sec -1 (decay time=1 min, counting time=8 min). The long irradiations were at a thermal neutron flux of 1.3x10 12 ncm -2 sec -1 , and the samples counted twice at decay intervals of two days and twelve days. The counting intervals were one hour. The spectra were stored on magnetic tape for processing by an IBM 370/158 computer. This initial neutron-activation analysis study has shown that there is an extremely detailed pattern of the effluent from vehicular highway traffic which is strongly affected by micrometeorological conditions. In order to detect these patterns it is necessary to use a very compact sample grid with every possible precaution taken to ensure sample homogeneity and cleanliness. A possibility of elevated levels of pollution may exist at considerable distances from the highway, perhaps even greater than at the immediate roadside. (T.G.)

  11. Determination of Substances Content of Soil Surface Using Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Elin Nuraini; Elisabeth; Sunardi

    2002-01-01

    Determination of substances content of soil surface using neutron activation analysis has been performed. The aim of this research is to determine whether there are any dangerous, hazardous and toxic substances that released from The Research and Development Center for Advanced Technology (RDCAT) as a government institution has possibility in releasing that substances to the environment by surface water, sewage or rain water that give any dangerous the environmental. The fast neutron activation analysis was used to analyze the type and concentration of substances qualitative and quantitatively. The quantitative analysis was performed using relative method. Samples were counted using NaI(TI) detector. The result showed that there are several substances such as Mn-55, Fe-56, P-31, Al-27. Zn,65 and Mg-24. And there are found any hazardous, dangerous and toxic substances in the samples that causing any danger to human and environment. (author)

  12. Principle of neutron activation analysis and its use for determination of trace elements in sediment

    International Nuclear Information System (INIS)

    Verma, Rakesh

    2012-01-01

    Neutron Activation analysis (NAA) is a multi element analysis technique, often non-destructive in nature where approximately 75 elements can be measured with the detection limits ranging from 10 -6 to 10 -12 g of element in a sample. Typical sample sizes range from 1 mg to 1 g, however in principle much larger samples can be activated and the size is only limited by the capacity of the neutron irradiation facility. In NAA, a sample (solid or liquid or gas) is exposed to neutrons and radiations emitted by the radioactive products, formed during the nuclear reaction, are measured using a suitable detector. The energy of the emitted radiation is a characteristic of a radioisotope whereas the intensity of the emitted radiation is proportional to the mass of the analyte. NAA can be carried out by measurement of (i) prompt gamma rays emitted by compound nucleus, called prompt gamma ray NAA (PGNAA) and (ii) β rays emitted from radioactive product or delayed gamma rays emitted subsequent to β decay, called conventional NAA or simply NAA. PGNAA is an online measurement method. PGNAA is complementary to conventional NAA in terms of analyzing low Z elements. Conventional NAA is an offline method and is easy to perform. Depending upon the nature of matrix and analyte to be determined, three approaches are possible in NAA namely, (i) instrumental neutron activation analysis (INAA), (ii) radiochemical neutron activation analysis (RNAA), and (iii) chemical neutron activation analysis (CNAA). Quantification is accomplished by any of the three standardisation methodologies namely (i) absolute method (ii) relative method and (iii) single comparator method. The relative method is most precise and simple to perform. Natural processes responsible for the formation of bottom sediments can be altered by anthropogenic activities. Bottom sediments are a sink as well as a source of contaminants in the aquatic environment. Analysis of-sediments provides environmentally significant

  13. Application of neutron activation analysis in study of ancient ceramics

    International Nuclear Information System (INIS)

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Huang Zhongxiang; Jia Xiuqin; Han Song

    2000-01-01

    Trace-elements in ancient ceramics and imitative ancient ceramics were determined by neutron activation analysis (NAA). The NAA data are then analyzed by fuzzy cluster method and the trend cluster diagram is obtained. The raw material sources of ancient ceramics and imitative ancient ceramics are determined. The path for improving quality of imitative ancient ceramics is found

  14. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1966-09-15

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min.

  15. Characterisation of South African coals using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hart, R.J.

    1985-01-01

    This report includes the establishment of the major minor and trace element compositions of South African coals with the aim of characterising the different coal seams within a basin, defining regions of similar compositions and obtaining an overall view of the geochemistry of coals in this country. The results of 40 coal samples analysed by neutron activation analysis

  16. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    International Nuclear Information System (INIS)

    Samsahl, K.

    1966-09-01

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min

  17. Improving the effectiveness of geological prospecting with neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1984-01-01

    Two examples of the use of neutron activation analysis to improve the effectiveness of geological prospecting are examined. The first is application to the direct hydrogeochemical prospecting for gold in surface waters. The second shows how multielement data banks produced by NAA for a geological formation provide a powerful method for the classification of ore bodies and sedimentary materials

  18. Bromine and iodine in Chinese medical herbs determined via epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Chien-Yi Chen; Yuan-Yaw Wei; Sheng-Pin ChangLai; Lung-Kwang Pan

    2003-01-01

    Nineteen natural herbs and two prescriptions prepared from mixed herbs were analyzed via epithermal neutron activation analysis (ENAA) to evaluate their bromine and iodine concentration. Traditional medical doctors prescribed the samples presented in this work to most Taiwanese children for strengthening their immune systems. Empirical results indicated a wide diversity of bromine in the samples. Yet, the iodine concentration was only around one to tenth or twentieth of the bromine. The maximum daily intake (MDI) for various medical herbs was also widely diversified from one to tenfold on the basis of various criteria. The minimum detectable concentration (MDC) of bromine and iodine found was 0.42±0.14 ppm and 0.067±0.016 ppm, respectively. Compared to that from conventional thermal neutron activation analysis (NAA) for a similar evaluation, the extremely low MDC obtained here was attributed to the large amount of thermal neutron absorption during sample irradiation. (author)

  19. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  20. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  1. The Comparison Study of Neutron Activation Analysis and Fission Track Technique for Uranium Determination

    International Nuclear Information System (INIS)

    Sirinuntavid, Alice; Rodthongkom, Chouvana

    2007-08-01

    Full text: Comparison between Neutron Activation Analysis (NAA) and fission track technique for uranium determination in solid samples was studied by use of standard reference materials, i.e., ore, coal fly ash, soil. For NAA, the epithermal neutron was applied for activated irradiation. Then, the 74.5 keV gamma from U-239 or 277.7 keV gamma from Np-239 was measured. For high Uranium content samples, NAA method with 74.5 keV gamma measurement, gave higher precision result than the 277.7 keV gamma measurement method. NAA method with 277.7 keV gamma measurement, gave higher sensitivity and precision result for low Uranium content samples and the uranium contained less than 10 ppm samples. Nevertheless, the latter procedure needed longer time for neutron irradiation and analysis procedure. In comparison the results of Uranium analysis between NAA and fission track, it was found that no significant difference within 95 % of confidence level

  2. Neutron activation analysis of high-purity zinc

    International Nuclear Information System (INIS)

    Khodzhamberdyeva, A.A.; Usmanova, M.M.; Gil'bert, Eh.N.; Ivanov, I.M.; Yankovskaya, T.A.; Kholyavko, E.P.

    1987-01-01

    The methods of neutron activation analysis of high-purity zinc with preliminary separation of the zinc base using extraction by trialkylbenzylammonium rhodanide in carbon tetrachloride from 0.5-2.0 M nitric acid solutions is developed. Only rhenium is quantitatively extracted together with zinc. Gold, iridium and molybdenum are extracted to 50-60%, and selenium - to 20%. The Na, K, La, Cr, Sc, Co, Cs, Rb, Fe, Zr, Sn, Te, As, Cd, Hf, W, Sb, Sm impurities remain in the aqueous phase. The methods permits to determine the impurities above with detection limits from 1x10 -6 to 4x10 -11 g

  3. Neutron activation analysis for calibration of phosphorus implantation dose

    International Nuclear Information System (INIS)

    Paul, Rick L.; Simons, David S.

    2001-01-01

    A feasibility study was undertaken to determine if radiochemical neutron activation analysis (RNAA) can be used to certify the retained dose of phosphorus implanted in silicon, with the goal of producing a phosphorus SRM. Six pieces of silicon, implanted with a nominal phosphorus dose of 8.5x10 14 atoms·cm -2 were irradiated at a neutron flux of 1.05x10 14 cm -2 ·s -1 . The samples were mixed with carrier, dissolved in acid, the phosphorus isolated by chemical separation, and 32 P measured using a beta proportional counter. A mean phosphorus concentration of (8.35±0.20)x10 14 atoms·cm -2 (uncertainty=1 standard deviation) was determined for the six samples, in agreement with the nominal implanted dose

  4. Epithermal neutron flux characterization of the TRIGA Mark III reactor, Salazar, Mexico, for use in Internal Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Herrera Peraza, E.

    1996-01-01

    The non ideality of the epithermal neutron flux distribution at a reactor site parameter (made, using Chloramine-T method. Radiochemical purity and stability of the labelled product were determined by radiochromatography. The labelled Melagenine-II showed two radioactive fractions thermal-to-epithermal neutron ratio (f) were determined in the 3 typical irradiations positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using the Cd-ratio for multi monitor and bare bi-isotopic monitor methods respectively. This characterization is of use in the K o - method of neutron activation analysis, recently introduced at the Institute

  5. Trace elements in Turkish tobacco determined by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Guelovali, M.C.; Guenduez, G.

    1983-01-01

    The concentration of 20 trace elements in nine brands of Turkish cigarette tobacco and in a brand of pipe tobacco ash has been determined by instrumental neutron activation analysis. The percent transference of elements into smoke has been estimated from the amounts remaining in the ash. (author)

  6. Principles of the neutron activation analysis and its application on ceramics characterization

    International Nuclear Information System (INIS)

    Cohen, I.

    1991-01-01

    The basic principles of the neutron activation analysis, its utilization in a nuclear reactor, the qualities of the technique, and the processes which appears in an analysis are described. Discussion of the method to characterize shards from the determination of the trace elements is also given. (author). 15 refs., 1 tab

  7. Preconcentration method using an activatable yield tracer for neutron activation analysis

    International Nuclear Information System (INIS)

    Tsukada, Masamichi; Yamamoto, Daijiro; Endo, Kazutoyo; Nakahara, Hiromichi

    1991-01-01

    Previously, the use of an enriched stable isotope as an activatable yield tracer in preconcentration steps has been tested by use of commercially available enriched 116 Cd and 156 Dy for biological standard reference materials. In the present work, this method has been further applied to the determination of lanthanoid contents in various kinds of samples: one coal fly-ash, three Japanese standard rocks, and eight standard soils. Samples were decomposed by alkali fusion in the preconcentration step. Thirteen elements were determined for coal fly-ash and soil samples, and 14 elements for rocks. The data obtained for coal fly-ash and standard rocks are compared with the data reported in literature. The data for soil samples have been newly determined in the present work. The ordinary instrumental neutron activation analysis and radiochemical neutron activation analysis were also performed to confirm the accuracy and usefulness of the present method. (author) 10 refs.; 4 tabs

  8. Multielement analysis of rice flour-unpolished reference material by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shoji

    1990-01-01

    Trace elements in NIES certified reference material No. 10-a∼10-c Rice Flour-Unpolished, prepared by the National Institute for Environmental Studies of Japan (NIES), were determined by instrumental neutron activation analysis (INAA). A set of three samples with different Cd concentration levels was subjected to analyses. Portions of each sample (ca. 200∼1000 mg) were irradiated, either with thermal neutrons without cadmium filter or with epithermal neutrons with cadmium filter, in the Musashi Institute of Technology Research Reactor (MITRR). The activated samples were analyzed by the three methods; conventional γ-ray spectrometry using a coaxial Ge detector, anticoincidence counting spectrometry, and coincidence counting spectrometry using a coaxial Ge detector and a well type NaI(Tl) detector. Concentrations of 26∼28 elements were determined by these methods. The values obtained for many elements, except for Mg and K, were in good agreement with those of the NIES certified and reference. Concentrations of 10 elements (S, Sc, V, Ag, Sb, Cs, Ba, La, Sm, Th), whose certified or reference values are not available from NIES, were also determined in this work. (author)

  9. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  10. Measurement of mercury isotopic ratio in stone meteorites by neutron activation analysis

    International Nuclear Information System (INIS)

    Thakur, A.N.

    1997-01-01

    196 Hg and 202 Hg isotopes have been measured by neutron activation analysis in samples of twelve stone meteorites. Hg is extracted from an irradiated sample by stepwise heating. The mercury concentrations vary from 0.07 to 33 ppm. While most of the samples give 196 Hg/ 202 Hg ratios similar to terrestrial value within error limits, in some cases large anomalies are observed. A number of control experiments have been devised, that show the absence of experimental artifacts, during sample preparation, neutron irradiation, chemical separation and counting stages. Several anomalous and normal Hg distillate have been re-irradiated as Hg-diethyl-dithio-carbamate complex to eliminate the influence of neutron self shielding and interfering reactions from matrix elements. The isotopic ratio patterns persist in the distillates too proving that any artifacts during meteorite irradiation and measurement are essentially absent. Both positive and negative anomalies are observed: however, the negative anomalies are much more frequent and abundant. In an extreme case of fine grained magnetic particles of Ambapur Nagla the 196 Hg is apparently absent in the Hg released at 100 deg C. A 2σ 196 Hg/ 202 Hg value is only 6% relative to the monitor. This experiment shows the robustness of neutron activation analysis and suggest some constrains on the formation history of stone meteorites. (author)

  11. Determination of Total Arsenic in Seaweed Products by Neutron Activation Analysis

    OpenAIRE

    Salim, N; Santoso, M; Damayanti, S; Kartawinata, T.G

    2013-01-01

    Seaweed products are widely consumed as food nowadays. Seaweeds are known to contain arsenic due to their capability to accumulate arsenic from the environment. Arsenic is a known toxic element which naturally occurs in the environment. Ingestion of high levels of arsenic will cause several adverse health effects. Arsenic in food occurs at trace concentrations which require sensitive and selective analysis methods to perform elemental analysis on. Validated neutron activation analysis was use...

  12. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, Parrish; Prettyman, Tom; Lestone, John

    1999-01-01

    We have used a Tomographic Gamma Scanner (TGS) to produce tomographic Prompt Gamma-Ray Neutron Activation Imaging of heterogeneous matrices [T.H. Prettyman, R.J. Estep, G.A. Sheppard, Trans. Am. Nucl. Soc. 69 (1993) 183-184]. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. We are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source to sample coupling term. To assist in the determination of the coupling term we have obtained images for a range of samples that are very well characterized; such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. We then compare the measurements to Monte Carlo N-particle calculations. For an accurate quantitative measurement it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  13. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  14. Workbook on reactor neutron activation analysis (NAA) of airborne particulate matter (APM)

    International Nuclear Information System (INIS)

    Tian Weizhi

    2000-01-01

    This publication presents general aspects of reactor neutron activation analysis (NAA) applied to measurement of elemental composition of airborne particulate matter. It presents an introduction to the NAA, its' basic principles and brief history of the method and discusses its' advantages and disadvantages. This publication also presents experimental procedures of NAA including sampling and sample preparation; preparation of calibration standard samples; reactor neutron irradiation; gamma-spectroscopy of the irradiated samples; quantification and presentation of analytical results. The publication pays attention to the quality assurance and quality control procedures including internal quality control, analysis of certified reference materials, and interlaboratory and multi-method comparison studies, control charts

  15. Activation neutron detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1976-01-01

    An activation neutron detector made as a moulded and cured composition of a material capable of being neutron-activated is described. The material is selected from a group consisting of at least two chemical elements, a compound of at least two chemical elements and their mixture, each of the chemical elements and their mixture, each of the chemical elements being capable of interacting with neutrons to form radioactive isotopes having different radiation energies when disintegrating. The material capable of being neutron-activated is distributed throughout the volume of a polycondensation resin inert with respect to neutrons and capable of curing. 17 Claims, No Drawings

  16. Neutron activation analysis as an element of sculpture provenance establishing

    International Nuclear Information System (INIS)

    Panczyk, E.; Rowinska, L.; Walis, L.; Ligeza, M.; Nalepa, B.

    1998-01-01

    Investigation was carried out on the subject named ''Madonna Jackowa'' (XV cent.). The investigation object was to answer whether ''Madonna Jackowa'' was made of a native alabaster. Alabaster derived from five carious mines situated at the Cracow - Lvov line and ''Madonna Jackowa'' were analysed and the trace elements contents were compared. Instrumental neutron activation method was used for analysis of the trace. (author)

  17. Determination of ancient ceramics reference material by neutron activation analysis

    International Nuclear Information System (INIS)

    Li Huhou; Sun Jingxin; Wang Yuqi; Lu Liangcai

    1986-01-01

    Contents of trace elements in the reference material of ancient ceramics (KPS-1) were determined by means of activation analysis, using thermal neutron irradiation produced in nuclear reactor. KPS-1 favoured the analysis of ancient ceramics because it had not only many kinds of element but also appropriate contents of composition. The values presented here are reliable within the experimental precision, and have shown that the reference material had a good homogeneity. So KPS-1 can be used as a suitable reference material for the ancient ceramics analysis

  18. Neutron activation analysis of rare earths and some other elements in material of geochemical interest

    International Nuclear Information System (INIS)

    Brunfelt, A.O.

    1975-01-01

    ngle-element methods for the determination by neutron activation analysis of antimony, chromium, phosphorus, selenium and silver in international geochemical standard rocks, and the determination of rare earth elements i in standard rocks and apatites are described and discussed in twelve previously published papers, and in an eighteen page summary. Chemical separationtechniques are also discussed and the results are compared with previously obtained results with the same standard rocks. The accuracy of neutron activation analysis is discussed in comparison with isotope dilution mass spectroscopy, atomic absorption, gas chromatography and spark source mass spectrometry. (JIW)

  19. Intercomparison and determination of trace elements in urban dust by neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Park, Kwang Won; Kang, Sang Hun

    2000-01-01

    Trace elements in air samples artificially loaded on filters with urban dust and the bulk material of urban dust as an environmental sample were determined non-destructively using instrumental neutron activation analysis. Standard reference material (Urban Dust, SRM 1648) of the National Institute of Standard and Technology was used for the analytical quality control. The relative error for 37 elements was less than 15% and the standard deviation was less than 10%. 29 elements in the urban dust and 21 elements in the loaded filter sample were determined respectively. To evaluate the proficiency and reliability of the measurement, data intercomparison was performed and 39 analytical laboratories participated in the analysis using different analytical methods; neutron activation analysis, particle induced X-ray emission analysis, X-ray fluorescence analysis and atomic absorption spectrometry. Z-scores were calculated using the standard deviation of the laboratory's mean as target standard deviation, and a good result was obtained that the values fall between-1 and +1 except some elements. (author)

  20. In vivo neutron activation facility at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  1. Uncertainties in measuring trace amounts of cobalt and europium with low-flux neutron activation analysis

    Directory of Open Access Journals (Sweden)

    Burnham Steven

    2017-01-01

    Full Text Available Neutron activation analysis is widely used for identification of elements and their quantities even in trace amounts in the samples of almost any type. The challenges in detecting trace amounts of particular elements are often associated with the neutron flux produced at the research reactors. Low-flux neutron activation analysis usually presents the biggest challenge when analyzing trace quantities of elements with lower magnitude of radiative capture cross-sections. In this paper, we present the methodology and the quantified uncertainties associated with the detection of trace amounts of cobalt and europium, using as an example concrete aggregates. Recent growing interest is in improving structural concrete (increasing its strength but reducing its activation in nuclear power plant environments. Aside from buildings, structural concrete is also used as a biological shield in nuclear power plant that become radioactive after exposure to neutron flux. Due to radiative capture interactions, artificial radionuclides are generated to high enough concentrations that classify concrete as low-level radioactive waste at the time of the plant's decommissioning. Disposal of this concrete adds to the expense of nuclear power plant financing and its construction. Three radionuclides, 60Co, 152Eu, and 154Eu, account for 99 % of total residual radioactivity of nuclear power plant decommissioned concrete. IAEA document RS-G-1.7, Application of the Concepts of Exclusion, Exemption, and Clearance, specifies clearance levels of radionuclides specific activities: a specific activity lower than 0.1 Bqg-1 for 60Co and 152Eu, and 154Eu allows for a concrete to be recycled after decommissioning of the nuclear power plant. Therefore, low-flux neutron activation analysis is used to test the detection limits of trace elements in samples of cement, coarse, and fine concrete aggregates. These samples are irradiated at the University of Utah's 100 kW TRIGA Reactor at

  2. Geochemistry of single diamond crystals by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Damarupurshad, A.

    1995-02-01

    Neutron activation analysis is probably the most powerful technique, available to date, for the analysis of the trace elements in diamond. In this study the technique of neutron activation analysis has been modified and optimized for the analysis of single, small (0.01-0.5 carat), inclusion-bearing and inclusion-free diamonds. Instrumental neutron activation analysis was used to analyze for up to 40 different elements at the ppb and ppt levels in diamonds from Brazil, South Africa, Colorado and China. The data obtained was used to detect and understand the differences between diamonds from the eclogitic and peridotitic para geneses and between diamonds from the different localities. In this regard, two inter element ratios, i.e. Cr/Sc and Au/Ir ratios were found to be useful. It seems that diamonds from a particular locality or mine have a unique range of Cr/Sc ratios. Furthermore, the identity of the dominant silicate inclusion(s) can be deduced from the Cr/Sc ratio of the diamond, since each type of silicate inclusion has a different range of Cr/Sc ratios. Not only is the Cr/Sc ratio distinctive for silicate inclusions in diamonds, it is also distinctive for minerals co genetic with diamond, such as orange garnet, red garnet, chrome diopside and ortho pyroxene (macrocrysts) which were separated from kimberlites. Sulphide inclusions may also contain detectable quantities of Au and Ir and the ratios of these two elements can also be used to differentiate between diamonds of the two para geneses. Carbon isotope ratios of these eclogitic and peridotitic diamonds were also measured. The comparison of this with the Cr/Sc ratios revealed that the carbon isotope ratios of both para geneses overlap in a narrow range and do not show the clear separations seen with Cr/Sc and Au/Ir ratios. It can be suggested, therefore, on the basis of the suite of 61 diamonds analyzed in this study, that the Cr/Sc and Au/Ir ratios are much more useful tools to distinguish between diamonds

  3. Mercury determination in natural waters using neutron activation analysis

    International Nuclear Information System (INIS)

    Cagnone, M.; Marques, R.O.

    1994-01-01

    Available as short communication only. An analytical method for quantitative determination of Mercury traces in river and sea water is proposed. The neutron activation method and radiochemical separation of Mercury by developing of C L 4 Hg -2 complex, and their chromatographic separation using anionic exchange resin Dowex 1 X 8 of 400 mesh is used. The quantitative determination is done by gamma spectrometric analysis. The selection limits reached with this method showed that this is an amenable procedure in routine mercury determination in the ppb level, specially useful in the environmental contamination analysis. (author). 3 refs, 2 figs, 1 tab

  4. Multielemental neutron activation analysis of some egyptian cement samples

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Abdel-Basset, N.; Soroor, A.; Hassan, A.M.

    1996-01-01

    Multielemental analysis of normal, Karnak and sea-water cement samples were performed by neutron activation analysis technique using the (ET-R R-1) reactor for sample irradiation. The Data were collected and analysed by means of the (HPGe) detection system and a Pca computer. A total of 23 elements namely, Na, A1, C 1, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Sr, Ba, La, Sm, Eu, Yb, Lu, Ta, Au, Th and U were identified and analysed with concentrations ranging from 1 ppm upto 62% a comparison between the elemental concentrations of the three cement types is given. 2 tabs

  5. Trace element concentrations in human bone using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    El-Amri, F.A.; El-Kabroun, M.A.R.

    1997-01-01

    Instrumental neutron activation analysis has been applied to analyze 23 bone samples obtained from Libyan patient aged (3-80) years for the study of the concentration levels of trace elements Ba, Br, Ca, Fe, Sr and Zn and their concentration patterns regarding to the age and sex of the patients. (author)

  6. Analytical service by neutron activation analysis for promoting science and technology

    International Nuclear Information System (INIS)

    Rosenberg, R.J.

    1994-01-01

    Neutron activation analysis (NAA) has outstanding qualities as an analytical technique. As it requiers a research reactor it will never be every laboratoies' technique, but rather NAA laboratories should offer service are discussed under the titles, advantages of NAA, applications of NAA, organization of the work, pricing and funding the customers

  7. Multi elementary analysis in medicinal plants through the neutron activation method

    International Nuclear Information System (INIS)

    Vaz, M.S.; Saiki, M.; Vasconcellos, M.B.A.; Sertie, J.A.A.

    1990-01-01

    A instrumental method by neutron activation in multielementary analysis was applied. Samples of Centelha asiatica (Cairucu) and Paulinia cupana (Guarana) were used. The elements Al, Br, Ca, Cl, Fe, K, Mn, Na, Rb, Sc, and Zn were determined. The results like precision and exactitude were analysed. (L.M.J.) [pt

  8. IPR-RI TRIGA MARK I reactor and the neutron activation analysis at CDTN/CNEN

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Kastner, Geraldo F.; Amaral, Angela M.; Souza, Wagner de; Maretti, Fausto Junior; Leal, Alexandre S.

    2008-01-01

    The IPR-R1 TRIGA Mark I research reactor started up in 1960. It is located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) / Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN. Join to the reactor, the Laboratory for Neutron Activation Analysis has been developing its activities since 1960. The activities of the Laboratory comprise the delayed fission neutron activation analysis, instrumental (comparative and parametric methods) and radiochemical / chemical methods. These methods are responsible for relevant percentage of CDTN's analysis demand, meeting the clients' analytical needs and researches developed by the Laboratory, by CDTN and by other institutions. Over the years the work has been linked to the goals of the country and the institutions. Nowadays several elements - Ag, Al, Au, As, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, Hg, Ho, K, La, Mg, Mn, Mo, Na, Nd, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn and Zr - are determined in several matrices and range of concentrations. In Brazil, CDTN is the only Institute that fully masters the instrumental neutron activation analysis k0-method determining short, medium and long half-life radionuclides using its own nuclear reactor. The good performance of the reactor is pointed out in a table with experimental and certified values for Certified Reference Materials. (authors)

  9. Neutron activation analysis in geological samples containing rare earths, uranium and thorium

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Figueiredo, A.M.G.; Berretta, J.R.; Soares, J.C.A.C.R.; Fratin, L.; Goncales, O.L.; Botelho, S.

    1990-01-01

    The neutron activation analysis method was used for determination of rare earths, uranium, thorium and other tracks in geological samples, under the geological standard JB-1 (Geological Survey of Japan) and S-8 and S-13 (IAEA). (L.C.J.A.)

  10. Proceedings of DAE-BRNS discussion meet on current trends and future perspectives of neutron activation analysis

    International Nuclear Information System (INIS)

    Reddy, A.V.R.; Acharya, R.; Nair, A.G.C.; Manchanda, V.K.

    2006-01-01

    The theme of the meet includes: Development of Neutron Activation Analysis (Naca) methods : k o -based NAA, Chemical NAA, Short-lived NAA, Prompt Gamma ray NAA (PGNAA), Fast neutron NAA using reactor and 14 MeV neutrons, Applications of NAA methods in various fields, Gamma ray spectrometry, An in-sight to data analysis in NAA, Position of NAA in comparison to other Nuclear Analytical Techniques (NATs) and Future perspectives in a panel discussion. Papers relevant to INIS are indexed separately

  11. Multielement analysis of Nigerian chewing sticks by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Asubiojo, O.I.; Guinn, V.P.

    1982-01-01

    In Nigeria, various parts of various species of native plants have long been used for dental hygiene, with reportedly considerable effectiveness. These materials are known as 'chewing sticks'. This study was an effort to ascertain whether any unusual trace element concentrations might be present in Nigerian chewing sticks. Results are presented for 17 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Mn, Fe, Co, Zn, Br, Cs, La, Sm, Au) detected and measured in 12 species of such plants, via instrumental thermal-neutron activation analysis. (author)

  12. Neutron activation analysis of alternative waste forms at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Johns, R.A.

    1981-01-01

    A remotely controlled system for neutron activation of candidate high-level waste (HLW) isolation forms was built by the Savannah River Laboratory at a Savannah River Plant reactor. With this system, samples can be irradiated for up to 24 hours and transferred through pneumatic tubing to a shielded repository unitl their activity is low enough for them to be handled in a radiobench. The principal use of the system is to support the Alternative Waste Forms Leach Testing (AWFLT) Program in which the comparative leachability of the various waste forms will be determined. The experimental method used in this work is based on neutron activation analysis techniques. Neutron irradiation of the solid waste form containing simulated HLW sludge activates elements in the sample. After suitable leaching of the solid matrix in standard solutions, the leachate and solid are assayed for gamma-emitting nuclides. From these measurements, the fraction of a specific element leached can be determined al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  13. Neutron activation analysis of medicinal plant extracts

    International Nuclear Information System (INIS)

    Vaz, S.M.; Saiki, M.; Vasconcellos, M.B.A.; Sertie, J.A.A.

    1995-01-01

    Instrumental neutron activation analysis was applied to the determination of the elements Br, Ca, Cl, Cs, Fe, K, La, Mg, Mn, Na, Rb and Zn in medicinal extracts obtained from Centella asiatica, Citrus aurantium L., Achyrolcline satureoides DC, Casearia sylvestris, Solano lycocarpum, Zingiber officinale Roscoe, Solidago microglossa and Stryphnondedron barbatiman plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyldithiocarbamate solution. Precision and accuracy of the results were evaluated by analyzing biological reference materials. The therapeutic action of some elements found in plant extracts analyzed is briefly discussed. (author). 15 refs., 5 tabs

  14. Activities of the neutron activation analysis laboratory of the radiochemistry division of IPEN - CNEN/SP

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1988-10-01

    Neutron activation analysis (NAA) is one of the relevant applications of nuclear research reactors. Due to the high neutron fluxes available in these reactors, an excellent sensitivity of analysis is attained for many elements. NAA is one of the most sensitive, precise and accurate analytical methods for trace element determination. NAA has been one of the main activities of the Radiochemistry Division of IPEN, since the beginning of the operation of the nuclear reactor IEA-R1. Most of the effort was devoted to research work, aimed to improvements in the method as well as to its applications to several kinds of matrixes (geological, biological, metallic, environmental, forensic). Besides, analytical services were also offered, to the CNEN, to industries, universities, mining companies and research institutes. In the present paper, a review is made of the research work being developed presently at the Radiochesmitry Division of IPEN. A discussion is also made of the planned expansion of the analytical services offered [pt

  15. Selenium contents of Japanese foodstuffs by neutron activation analysis

    International Nuclear Information System (INIS)

    Noda, Katsuhiko; Hirai, Shoji; Danbara, Hiroshi.

    1980-01-01

    Selenium (Se) contents of Japanese foodstuffs were measured by neutron activation analyses with the TRIGA-II reactor in Atomic Energy Research Laboratory, Musashi Institute of Technology. Freezedried samples (200 - 500 mg) were irradiated in the pneumatic tube (thermal neutron flux, 1 x 10 12 n.cm -2 . sec -1 ) for 10 sec, and sup(77m)Se produced was counted for 30 sec in a gamma -ray spectrometer system equipped with a Ge(Li) detector. Samples containing less than 0.05 ppm Se and the processed foods of high salt contents were analyzed with radioactivities of 75 Se after irradiation in the central symble (thermal neutron flux, 4 x 10 12 n.cm -2 .sec -1 ) for 5 hours, digestion in the HNO 3 -HClO 4 mixture, and then purification by a precipitation process. Foodstuffs of animal origins contained more Se than those of plant origins. Se contents were as follows in the descending order: fish, meats, cereals, vegetables, and fruit. Daily per capital intaked of Se was in the range of 100 - 200 mu g, as calculated for and as found by analysis of composite diets representing ordinary Japanese meals. (author)

  16. Detection of hidden explosives by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Li Xinnian; Guo Junpeng; Luo Wenyun; Wang Chuanshan; Fang Xiaoming; Yu Tailiu

    2008-01-01

    The paper describes the method and principle for detection of hidden explosive by fast neutron activation analysis (FNAA). The method of detection of explosives by FNAA has the specific properties of simple determination equipments, high reliability, and low detecting cost, and would be beneficial to the applicability and popularization in the field of protecting and securing nation. The contents of nitrogen and oxygen in four explosives, more then ten common materials and TNT samples covered with soil, were measured by FNAA. 14 MeV fast neutrons were generated from (d, t) reaction with a 400 kV Cockcroft Walton type accelerator. The two-dimension distributions for nitro- gen and oxygen counting rates per unit mass of determined matters were obtained, and the characteristic area of explosives and non-explosives can be defined. By computer aided pattern recognition, the samples were identified with low false alarm or omission rates. The Monte-Carlo simulation indicates that there is no any radiation at 15 m apart from neutron source and is safe for irradiation after 1 h. It is suggested that FNAA may be potential in remote controlling for detection hidden explosive system with multi-probe large array. (authors)

  17. Neutron activation analysis of limestone objects

    International Nuclear Information System (INIS)

    Meyers, P.; Van Zelst, L.

    1977-01-01

    The elemental composition of samples from limestone objects were determined by neutron activation analysis to investigate whether this technique can be used to distinguish between objects made of limestone from different sources. Samples weighing between 0.2-2 grams were obtained by drilling from a series of ancient Egyptian and medieval Spanish objects. Analysis was performed on aliquots varying in weight from 40-100 milligrams. The following elements were determined quantitatively: Na, K, Rb, Cs, Ba, Sc, La, Ce, Sm, Eu, Hf, Th, Ta, Cr, Mn, Fe, Co and Zn. The data on Egyptian limestones indicate that, because of the inhomogeneous nature of the stone, 0.2-2 gram samples may not be representative of an entire object. Nevertheless, multivariate statistical methods produced a clear distinction between objects originating from the Luxor area (ancient Thebes) and objects found north of Luxor. The Spanish limestone studied appeared to be more homogeneous. Samples from stylistically related objects have similar elemental compositions while relative large differences were observed between objects having no relationship other than the common provenance of medieval Spain. (orig.) [de

  18. Quality assurance in neutron activation analysis

    International Nuclear Information System (INIS)

    Heydorn, K.

    1984-01-01

    As a potential reference method, neutron activation analysis does not have to rely on other reference materials to ascertain the quality of analytical results. The fundamental characteristics of the method with the clear separation between irradiation, processing, and counting makes possible the estimation of uncertainties of individual results from a priori assumptions. Such estimates of the standard deviation from a series of independent sources of variation are compared with the a posteriori variability of replicate determinations in order to ascertain that the analytical method is in a state of statistical control. This Analysis of Precision tests the absence of unknown errors by means of a statistic T, which is closely approximated by a chi-square distribution. In this manner an evaluation is made of a commercially available computer program for peak evaluation in γ-spectrometry, as well as of other factors affecting the precision and accuracy of the counting process. An attempt is also made to determine sampling constants of one gram or less in a candidate biological reference material

  19. Determination of 2,4-D in aqueous solution by neutron activation analysis

    International Nuclear Information System (INIS)

    Martinez-Miranda, V.; Esteller, M.V.

    1999-01-01

    A method based on neutron activation analysis was developed for the determination of fractions of milligrams of 2,4-D (2,4-dichlorophenoxy acetic acid) in aqueous solution in laboratory tests. The indirect determination of 2,4-D was based on the quantification of chlorine, 38 Cl, produced by neutron activation. The range of application was 0.01 - 100 mg x l -1 . No loss of 38 Cl by chemical effects of the nuclear reaction was found. The advantages of the proposed method include high precision and sensitivity of determination. Results were compared with those obtained by UV-Vis spectrophotometry, where concentrations less than 1 mg x l -1 were not detected. (author)

  20. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  1. Lower detectable limit of sulfur by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1976-07-01

    For the purpose of air pollution research, the possibility of fast neutron activation analysis of sulfur was investigated. The only reaction that can be used for this purpose is S/sup 34/(n, p)P/sup 34/. A rabbit system was installed, synchronized with a 150 kV D-T neutron generator and an electronic analysing system. The whole system was operated so that the sample was irradiated for 10 sec and the 2.13 MeV ..gamma..-ray was counted for 10 sec. 5 samples were prepared containing sulfur from 0.5 to 0.1 g. Each measurement lasted 30 min and the activity was plotted as a function of sulfur weight. The relative error is increased very much when the amount of sulfur is below 0.1 g. This is what sets the lower detectable limit. Collection of more than 0.1 g of sulfur even during a long collection time means a very high SO/sub 2/ concentration in the air.

  2. Analysis by Neutron activation of the Calakmul jadeite mask

    International Nuclear Information System (INIS)

    Alemon A, E.; Herrera V, L.

    1998-01-01

    It is very important to know the elemental composition of archaeological materials with the purpose to find relations that allow to establish their origin standards. the origin and present localization of pre hispanic archaeological pieces can lead to the determination of commercial routes and of technology transfer among different ancient cultures. In the present work it has been realized a systematic analysis using the Instrumental neutron activation analysis technique of three samples obtained from Calakmul jadeite mask, tomb I, that in addition to give a composition of constituent and trace elements detected by this technique it has leaded to establish an applicable methodology to the routine analysis of ceramics of historical interest. (Author)

  3. 'ACTIV' - a package of codes for charged particle and neutron activation analysis

    International Nuclear Information System (INIS)

    Cincu, Em.; Alexandreanu, B.; Manu, V.; Moisa, V.

    1997-01-01

    The 'ACTIV' Program is an advanced software package dedicated to applications of the thermal neutron and charged particle activation (NAA and CPA) induced reactions. The program is designed to run on personal computers compatible IBM PC-Models XT/AT, 286 or more advanced, operating under DOS version 5.0 or later, on systems with minimum 5 MB of hard disk memory. The package consists of 6 software modules and a Nuclear Data Base comprising physical, nuclear reaction and decay data for: thermal neutron, proton, deuteron and α-particle induced reactions on 15 selected metallic elements; the nuclear reaction data corresponds to the energy range (5-100) MeV. In the first version - ACTIV 1.0 - the set of input data concerns: the sample type, irradiation and measurement conditions, the γ-ray spectrum identification code, selected detection efficiency calibration curve, selected radionuclides, selected standardization method for elemental analysis, version of results. At present, the 'ACTIV' package comprises 6 soft modules for processing the experimental data, which ensure computation of the quantities: radionuclide activities, activation yield data (case of CPA) and elemental concentration by relative and absolute standardization methods. Recently, the software designed to processing complex γ-ray spectra was acquired and installed on our PC 486 (8 MB RAM, 100 MHz). The next step in developing the 'ACTIV' program envisages improving the existing computing codes, completing the data libraries, incorporating a new soft for the direct use of the 'Quantum TM MCA' data, developing modules dedicated to uncertainty computation and optimization of the activation experiments

  4. Neutron-activation analysis of routine mineral-processing samples

    International Nuclear Information System (INIS)

    Watterson, J.; Eddy, B.; Pearton, D.

    1974-01-01

    Instrumental neutron-activation analysis was applied to a suite of typical mineral-processing samples to establish which elements can be rapidly determined in them by this technique. A total of 35 elements can be determined with precisions (from the counting statistics) ranging from better than 1 per cent to approximately 20 per cent. The elements that can be determined have been tabulated together with the experimental conditions, the precision from the counting statistics, and the estimated number of analyses possible per day. With an automated system, this number can be as high as 150 in the most favourable cases [af

  5. Multielement analysis of Nigerian chewing sticks by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Asubiojo, O.I.; Guinn, V.P. (California Univ., Irvine (USA). Dept. of Chemistry); Okunuga, A. (California Polytechnic Univ., Pomona, CA (USA))

    1982-01-01

    In Nigeria, various parts of various species of native plants have long been used for dental hygiene, with reportedly considerable effectiveness. These materials are known as 'chewing sticks'. This study was an effort to ascertain whether any unusual trace element concentrations might be present in Nigerian chewing sticks. Results are presented for 17 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Mn, Fe, Co, Zn, Br, Cs, La, Sm, Au) detected and measured in 12 species of such plants, via instrumental thermal-neutron activation analysis.

  6. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1986-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneally treatment with CDDP from day 11 to 13 of gestation. Platinum content in different tissues, namely liver, kidney, placenta and brain, was determined at 18 day of pregnancy. Two analytical techniques were used, i.e. neutron activation analysis and atomic absorption spectroscopy. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide results better correlated with the drug treatment. (author)

  7. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1987-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneal treatment with CDDP from the 11st to 13rd day of gestation. Platinum content in different liver, kidney, placenta and brain tissues, was determined at 18. day of pregnancy. Neutron activation analysis and atomic absorption spectroscopy were used. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide better results correlated with the drug treatment. (author) 10 refs.; 4 tables

  8. Air pollution studies in Tianjing city using neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Ni Bangfa; Tian Weizhi; Nie Nuiling; Wang Pingsheng

    1999-01-01

    Two sites of airborne sampling from industrial and residential areas were made in Tianjing city during February and June using PM-10 sampler and analyzed by NAA techniques; Comparison of air pollution between urban and rural area in Tianjing city was made using neutron activation analysis techniques and some other data analyzing techniques. (author)

  9. Toenail elemental analysis of Korean young adults by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lee, O.

    2016-01-01

    The element contents in toenail clippings of healthy Korean young adults were measured using an instrumental neutron activation analysis. The average contents of elements such as Na, K, Cl, Ca, Fe, Se, and Zn are 449, 474, 1024, 1677, 66, 0.7 and 94 mg/kg in men, whereas those contents in women respectively 332, 476, 836, 1097, 66, 0.8 and 104 mg/kg. The correlation analysis of toenail elements with chronic disease risks showed positive associations between Na and serum HDL-cholesterol, blood pressure, and negative associations between Se and Hs-CRP, between Zn and hemoglobin level. (author)

  10. Application of neutron activation analysis to control P2O5 content in ore and ore concentrates of ''Apatit'' works

    International Nuclear Information System (INIS)

    Belyakov, M.A.; Terent'eV, Eh.P.; Frolov, V.A.

    1982-01-01

    A technique for a neutron activation rapid analysis of fluorine is described. A mean-square error of the analysis makes up 0,g3 per cent F. The investigation has been carried out and a close correlation has been established for the Hibine massif exploited apatite deposits on the basis of the neutron activation analysis of fluorine and chemical analysis of P 2 O 5 . Possibilities are shown of using the neutron activation analysis of P 2 O 5 in ores and certain ore con-- centrates of ''Apatit'' works from the radioactivity induced in fluorine. A mean-square error of the analysis makes up 0,35 per cent P 2 O 5

  11. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    International Nuclear Information System (INIS)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H.

    2012-01-01

    This study shows the application of semi-absolute k 0 instrumental neutron activation analysis (k 0 -INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k 0 -INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  12. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  13. Development of Unified Code for Environmental Research by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Kim, Young Sik; Lee, Sang Mi; Chung, Sang Uk; Lee, Kyu Sung; Kang, Sang Hun; Cheon, Ki Hong [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    Three codes were developed to improve accuracy and precision of neutron activation analysis with the adoption of IAEA`s recommended `GANAAS` program which has the better peak identification and efficiency calibration algorithm than the currently using commercial program. Quantitative analytical ability of trace element was improved with the codes such that the number of detectable elements including environmentally important elements was increased. Small and over lapped peaks can be detected more efficiently with the good peak shape calibration(energy dependence on peak height, peak base width and FWHM). Several efficiency functions were added to determine the detector efficiency more accurately which was the main source of error in neutron activation analysis. Errors caused by nuclear data themselves were reduced with the introduction of ko method. New graphical program called `POWER NAA` was developed for the recent personal computer environment, Window 95, and for the data compatibility. It also reduced the error caused by operator`s mistake with the easy and comfortable operation of the code. 11 refs., 3 tabs., 9 figs. (author)

  14. Determination of boron in borosilicate glasses by neutron capture prompt gamma-ray activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Jr, J E; Lindstrom, R M

    1987-01-01

    Major levels of boron in borosilicate glasses were determined nondestructively by neutron activation analysis. The effects of neutron self-shielding by boron (1 to 8% by weight) are examined. Results of the analysis of a series of glasses with increasing boron composition are 1.150 +- .005% and 7.766 +- .035% for the low and high members of the series. Once analyzed, the glasses are useful as secondary standards for alpha track counting, and also ion and electron microprobe analyses of glasses. 12 refs.; 3 tables.

  15. Factors influencing the determination of fluorite by means of neutron activation analysis

    International Nuclear Information System (INIS)

    Lutze, H.

    1975-01-01

    Proceeding from the necessity of a rapid analysis of fluorite by neutron activation of an unprepared drill core the influence of interfering elements, of inhomogeneous fluorite distribution, of the sample volume and of moisture are examined. Recommendations are given to overcome these interferences. (author)

  16. Neutron activation analysis of trace elements in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Velandia, J A; Perkons, A K

    1974-01-01

    Thermal Neutron Activation Analysis with Instrumental Ge(Li) Gamma Spectrometry was used to determine the amounts of more than 30 trace constituents in heart tissue of rats and kidney tissue of rabbits. The results were confirmed by a rapid ion-exchange group separation method in the initial stages of the experiments. The samples were exposed to thermal neutrons for periods between 3 minutes and 14 hours. Significant differences in the amounts and types of trace elements in the two different tissue types are apparent, however, are probably due to specific diets. Tables of relevant nuclear data, standard concentrations, radiochemical separation recoveries, and quantitative analytical results are presented. The ion-exchange group separation scheme and typical examples of the instrumental gamma ray spectra are shown. The techniques developed in this study are being used for a large scale constituent survey of various diseased and healthy human tissues.

  17. Application of neutron activation analysis to the determination of minor-and trace elements in magnesite ore

    International Nuclear Information System (INIS)

    Sepulveda Munita, C.J.A.; Atalla, L.T.

    1979-01-01

    A method employing analysis with thermal neutrons was developed for analyzing magnesite samples coming from the States do Ceara and Bahia (Brazil). Ten samples were analyzed. Qualitative analysis of the samples indicated the presence of Mn, Fe, Sc, Ca, Cu, Co and some of the lanthanides. Mn was analyzed by non-destructive activation analysis and the other elements were analyzed, individually or in group, after sample dissolution with 8 N HCl solution. A detailed study of the possible interferences in neutron activation analysis of the elements considered was also undertaken. The precision and accuracy of the results obtained and the sensitivity of the method are discussed. (Author) [pt

  18. k_0-neutron activation analysis based method at CDTN: history, development and main achievements

    International Nuclear Information System (INIS)

    Menezes, Maria Ângela de B.C.; Jacimovic, Radojko; Dalmazio, Ilza

    2017-01-01

    Neutron Activation Analysis (NAA) is an analytical technique to assay the elemental chemical composition in samples of several matrices. It has been applied by the Laboratory for Neutron Activation Analysis, located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) /Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN, since the starting up of the TRIGA MARK I IPR-R1 reactor, in 1960. Among the methods of this technique, the k_0-standardization method, which was established at CDTN in 1995, is the most efficient and in 2003 it was re-established and optimized. This paper is about the history and the main achievements since then. (author)

  19. Provenience studies of the Ko-Kutani ware by neutron activation analysis

    International Nuclear Information System (INIS)

    Kawashima, Tatsuro.

    1990-01-01

    The instrumental neutron activation analysis has been applied to the multielemental analysis of eight samples of the Ko-Kutani ware including the Aote's that is one of semi-porcelain body. Each sample was compared with concentration of the useful index element, such as Ta, Sc, Ba, Hf, Th and rare earth, to discriminate the Arita group from the Kutani group. Eight samples were judged as products of the Arita, just as in previous paper. (author)

  20. Determination of selenium in BCR single cell protein via destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Zegers, C.

    1978-10-01

    The amount of selenium in single cell protein (SCP), a product of BP Research Centre at Sunbury-at-Thames, England, was determined by neutron activation analysis. The SCP-samples were irradiated in the reactor of the Interuniversity Reactor Institute at Delft, in a neutron flux of 1.0 x 10 13 n/cm 2 s for 24 hours. After chemical destruction of the samples the amount of selenium was determined by measuring the γ-peaks of selenium-75

  1. Research activities in the fields of radiochemistry and neutron activation analysis using the LENA nuclear plant in Pavia

    International Nuclear Information System (INIS)

    Maggi, L.; Genova, N.; DiCasa, M.; Carmella-Crespi, V.

    1978-01-01

    In the past two years the activity of the Radiochemistry Laboratory and CNR Centre of Radiochemistry and Activation Analysis was mainly devoted to studies of nuclear activation analysis applied to different fields using the LENA reactor. Three NBS vegetable reference standards, Orchard Leaves, Tomato Leaves and Pine Needles, were analyzed for their halogen content. Halogen determination in foodstuff, vegetables and organic tissues gives valuable information on metabolic, nutritional, pollution and epidemiological fields. A detailed study on macro- and micro-elements content in Sardinian coal and its ashes was performed, in order to assess the possibility of using it as a fuel in electric power generating plants. Instrumental neutron activation analysis was used for the determination of Al, Si, Mn, Mg, Na, V, CI, Ce, Yb, Th, Cr, Hf, Cs, Se, Rb, Fe, Co, Ta, Eu, K, La and Sb. A multielement trace analysis of rock samples was developed in cooperation with scientists from other Universities; the determination of R.E., U, Th, Zr, Cs, Ba, Ni, Sc, Ta, Hf, Sr, and Cr by instrumental neutron activation analysis was carried out in connection with orogenetic studies of African Rocks. In the archaeological field ancient artefacts recently discovered during a digging campaign at Monza's Cathedral (Italy) were analyzed with the aim to trace their origin and compare their composition with similar samples whose dating is certain. As a contribute to the international program of certifying NBS reference standard materials, chromium in the Brewer's Yeast, recently proposed as a new SRM, was determined by both instrumental and destructive neutron activation analysis. In the study of the role and behaviour of trace elements in human physiology, vanadium was investigated in human blood, as a trace element of increasing interest in connection with its origin from pollutants. Nuclear activation analysis was also applied to marine organism samples under a contract for oceanographic research

  2. Applications of short-lived activation products in neutron activation analysis of bio-environmental specimens

    International Nuclear Information System (INIS)

    1987-03-01

    This report discusses the advantages and disadvantages, special techniques, and actual and potential applications of neutron activation analysis (NAA) utilizing short-lived neutron-induced products, with special reference to the analysis of samples of biological and environmental origin. Attention is devoted mainly to products having half-lives in roughly the range of 10 milliseconds to 60 seconds, but with some discussion of the usefulness of even shorter-lived species, and ones with half-lives as long as a few minutes. Important aspects of the analytical methodology include sample preparation, irradiation/transfer systems, activity measurements, data processing and analytical quality assurance. It is concluded that several trace elements can be determined in bio-environmental samples (as well as in samples of industrial, geochemical and other origin). In particular, this method provides analytical possibilities for several elements (e.g. B, F, Li and V) that are difficult to determine in some matrices at trace levels by any other technique. These conclusions are illustrated in an annex by results of calculations in which the applicability of the techniques to the analysis of several biological and environmental reference materials is evaluated by means of an advance computer prediction program. The report concludes with an annotated bibliography of relevant publications (including abstracts, where available) taken from the INIS database. (author)

  3. A study on cigarette tobacco by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Md Soot Haji Ahmad; Tey Nsan Yen

    1987-01-01

    The concentration of 25 elements in cigarette tobacco of popular brands locally marketed were determined using instrumental neutron activation analysis. These elements are: Al, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, Th, and Zn. Comparison of the element contents to the reported cigarette tobacco of Egypt, Iran and Turkey was also done. (author)

  4. Measurement of total body chlorine by prompt gamma in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1987-01-01

    A method of measuring total body chlorine (TBCl) by prompt gamma in vivo neutron activation analysis is described depending on the same NaI(Tl) spectra used for determinations of total body nitrogen. Ratios of chlorine to hydrogen are derived and TBCl determined using a model of body composition depending on measured body weight, total body water (by tritium dilution) and protein (6.25 x nitrogen) as well as estimated body minerals and glycogen. The precision of the method based on scanning an anthropomorphic phantom is approximately 9% (SD), for a patient dose equivalent of less than 0.30 mSv. Spectra collected from 67 normal volunteers (32 male, 35 female) yielded mean values of TBCl of 72 +- 19 (SD) g in males and 53.6 +- 15 g in females, in broad agreement with values reported by workers using delayed gamma methods. Results are presented for two human cadavers analysed by neutron activation and conventional chemical analysis; the ratios of TBCl (neutron activation) to TBCl (chemical) were 0.980 +- 0.028 (SEM) and 0.91 +- 0.09. It is suggested that an improvement in precision will be achieved by increasing the scanning time (thereby increasing the radiation dose equivalent) and by adding two more detectors. (author)

  5. Development and use of in vivo neutron activation analysis at Leeds

    International Nuclear Information System (INIS)

    Burkinshaw, L.; Oxby, C.B.; Ellis, R.E.

    1986-01-01

    We have devised a technique for measuring the total amounts of the elements K, N, Na, Cl, P and Ca in the living human body by neutron activation analysis. We have used it to study changes in body composition associated with disease and are now extending it to measure total body C, H and O also. (author)

  6. Determination of trace elements in biological material by neutron activation analysis

    International Nuclear Information System (INIS)

    Tran Van, L.; Teherani, D.K.

    1989-01-01

    Eighteen trace elements in biological materials [grass (Imperata cylindrica), mimosa plant (Mimosa pudica), rice] by neutron activation method were determined. In the comparative analysis the content of the same element was different in each material, although they were collected at the same place and the same sampling method was applied. (author) 4 refs.; 1 fig.; 1 tab

  7. 14 MeV fast neutron activation analysis in the year 2000

    International Nuclear Information System (INIS)

    James, W.D.

    2000-01-01

    In recent years there is a decided upswing in interest in the application of fast neutron activation analysis methodologies to certain problems, i.e., detection of contraband substances, use of steady-state and pulsing instruments of body compositions etc. The value of a method which can characterize major and minor elements in large samples is again recognized. (author)

  8. Characterization of the volcanic eruption emissions using neutron activation analysis

    International Nuclear Information System (INIS)

    Pla, Rita R.; Tafuri, Victoria V.

    1997-01-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs

  9. Neutron activation and statistical analysis of pottery from Thera, Greece

    International Nuclear Information System (INIS)

    Kilikoglou, V.; Grimanis, A.P.; Karayannis, M.I.

    1990-01-01

    Neutron activation analysis, in combination with multivariate analysis of the generated data, was used for the chemical characterization of prehistoric pottery from the Greek islands of Thera, Melos (islands with similar geology) and Crete. The statistical procedure which proved that Theran pottery could be distinguished from Melian is described. This discrimination, attained for the first time, was mainly based on the concentrations of the trace elements Sm, Yb, Lu and Cr. Also, Cretan imports to both Thera and Melos were clearly separable from local products. (author) 22 refs.; 1 fig.; 4 tabs

  10. Errors of absolute methods of reactor neutron activation analysis caused by non-1/E epithermal neutron spectra

    International Nuclear Information System (INIS)

    Erdtmann, G.

    1993-08-01

    A sufficiently accurate characterization of the neutron flux and spectrum, i.e. the determination of the thermal flux, the flux ratio and the epithermal flux spectrum shape factor, α, is a prerequisite for all types of absolute and monostandard methods of reactor neutron activation analysis. A convenient method for these measurements is the bare triple monitor method. However, the results of this method, are very imprecise, because there are high error propagation factors form the counting errors of the monitor activities. Procedures are described to calculate the errors of the flux parameters, the α-dependent cross-section ratios, and of the analytical results from the errors of the activities of the monitor isotopes. They are included in FORTRAN programs which also allow a graphical representation of the results. A great number of examples were calculated for ten different irradiation facilities in four reactors and for 28 elements. Plots of the results are presented and discussed. (orig./HP) [de

  11. Instrumental neutron activation analysis of kidney stones

    International Nuclear Information System (INIS)

    Sarmani, S.; Kuan, L.L.; Bakar, M.A.A.

    1990-01-01

    Kidney stone samples of the types calcium oxalate, uric acid, and xanthine were analyzed for their elemental contents by neutron activation analysis to study both the elemental correlation and influence of element on stone precipitation processes. Elements, such as Al, Au, Br, Ca, Cl, Co, Cr, Fe,H, I, K, Mg, Na, Sb, Se, Sr, and Zn, were determined quantitatively. Calcium oxalate stones contained higher concentration of all the elements analyzed compared to uric acid or xanthine stones. The concentrations of Cl, Fe, K, Na, Sr, and Zn were relatively higher than Au, Co, Cr, and Sb. A positive correlation exists between Ca and Zn, whereas a negative correlation exists between Sr and Ca. Zinc may play an important role in the formation of calcium oxalate stone

  12. Neutron activation analysis methodology of marine sediments of the Cuban shelf

    International Nuclear Information System (INIS)

    Garcia, G.

    1988-01-01

    It is described the methodology followed for the neutron activation analysis of marine sediments of the Cuban shelf. A total of 35 elements were determined by means of the employment of thermal and epithermal fluxes of a nuclear reactor as well as from the flux of a generator of 14 MeV neutrons. It is signaled the particularities of detection and measurement of some elements and their interferences, with and special mention of the correction over 153 Sm, 113m In(Sn), 65 Zn, 160 Th, 169 Yb, 75 Sc and 177 Lu. It is concluded that 82% of elements may be determined with epithermal neutrons and 41%, with thermal neutrons. Only Si is determined with 14 MeV neutrons. Moreover, it is recommended the optimal periods of decaying (''cooling'') by groups of elements. The determined elements were: Ag, As, Au, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Th, U, W, Yb, Zn and Zr. The accuracy varied between 1% and 5% to 19 elements, between 6% and 10% to 5 elements, between 11% and 30% to 6 elements and it was greater than 30% to 5 elements

  13. Analysis of impurities at trace levels in metallic niobium by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Favaro, D.I.T.; Vasconcellos, M.B.A.; Santos, C.

    1989-10-01

    The interest in obtaining niobium of high purity has increased due to the recent applications of this material in both vacuum and high temperature technologies and to its potential uses in the aeronautic and aerospacial industries and in the nuclear energy field. In the present work, a procedure of analysis of impurities in the parts per million level, in eletrolitic and non-eletrolitic niobium samples has been established. The method of neutron activation analysis followed by high resolution gamma ray spectrometry has been used. The elements Al, Na, Mn, Cl and In, in ppm level and Y, in the percentage level, were determined after irradiation from 1 to 20 minutes, under a thermal neutron flux of 10 11 n.cm -2 .s -1 at the IEA-Rl reactor of the IPEN-CNEN/SP. The γ-rays from the radioactive products were measured with a Ge(Li) detector coupled to a 4096 channel analyzer. The elements Ta, Cr and W, in the parts per million level, were determined with irradiation of 8 hours under a thermal neutron flux of 10 12 n.cm -2 .s -1 . (autor) [pt

  14. Multielement analysis of iliac crest bone by neutron activation

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Korkusuz, F.; Olmez, I.; Sepici, B.; Eksioglu, F.; Bode, P.

    2000-01-01

    Bone samples from iliac crest were obtained from apparently healthy female (n = 4) and male (n = 8) subjects with ages between 15-50. Cortical and trabecular parts were separated and soft tissues like fat, muscle and blood were removed. Calcium, Mg, Na, Cl, Fe, Zn, Br, Sr, and Cs were determined by instrumental neutron activation analysis and other techniques, and their relations were discussed. Fairly good agreement was obtained with literature data. These values may serve as reference values for subjects from a Turkish population. (author)

  15. Neutron activation analysis at the 'Instituto de Pesquisas Energeticas e Nucleares' (SP, Brazil)

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1984-01-01

    A review of the work carried out at IPEN using neutron activation analysis is made. The main characteristics of the technique and general experimental procedures applied for different samples and elements are reported. Geological samples were analysed by using activation with thermal, epithermal and delayed neutrons (for U and Th, specifically). Metallic samples were analysed for several elements in trace amounts (Ta in Nb, Hg in steel, Sn, Sb, As, Cu, Cr and Ag in a tin-lead alloy). Biological materials, such as tomatoes, animal and human viscera, food, hair, nails were also analysed for several components (Hg, Na, K, As, Au and others). (Author) [pt

  16. Neutron activation analysis as applied to instrumental analysis of trace elements from seawater

    International Nuclear Information System (INIS)

    Boniforti, R.; Moauro, A.; Madaro, M.

    1983-01-01

    Particulate matter collected from the coastal area delimited by the mouth of the river Volturno and the Sabaudia lake has been analyzed by instrumental neutron activation analysis for its content of twenty-two trace elements. The results for surface water and bottom water are reported separately, thus evidencing the effect of sampling depth on the concentration of many elements. The necessity of accurately 'cleaning' the filters before use is stressed

  17. Trace elements in 11 fruits widely-consumed in the USA as determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Michenaud-Rague, A.; Robinson, S.; Landsberger, S.

    2012-01-01

    While there is a lot of information on the elemental content of food for nutritional and pollution studies, the analysis of fruits has received little attention. We have investigated 11 commonly eaten fruits for their trace and minor element constituents by neutron activations including thermal and epithermal neutron activation analysis. Our results revealed that both blueberries and strawberries had the most of top two highest elemental concentrations followed by raspberries, oranges and mango. Bananas, grapes, plums, apples, pears, and cherries had the fewest or none of the most elevated elemental concentrations. (author)

  18. Neutron activation analysis of airborne inorganic pollutants

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Kalman, L.

    1975-01-01

    The aim of the studies was to determine the radioactive and non-radioactive pollution of the air in the environment of the atomic reactor WWR-S of the Hungarian Academy of Sciences. Accordingly the investigations were carried out by two ways: the samples were analysed partly without previous irradiation and partly by neutron activation analysis. The use of several filter papers was studied and the most suitable filter paper (Whatman No. 41) was chosen for this investigation. The quantitative determination of more than twenty elements has been performed. First the natural activity of the aerosol samples taken periodically was measured and subsequently they have been analysed after irradiation in the atomic reactor for 1 minute, 1 hour, and 50 hours, respectively. A 45 cm 3 Ge/Li detector/ Nuclear Diodes/ was used in connection with a 1024 channel analyzer /type NTA-512B/. The analyses were made nondestructively, and the gamma-spectra were evaluated by computer. (K.A.)

  19. Application of the neutron activation analysis method for determing trace elements in Brazilian food sample

    International Nuclear Information System (INIS)

    Maihara, V.A.; Vasconcellos, M.B.A.

    1988-01-01

    Recently there has been an increase of consciousness about the importance of trace elements in human health and disease as well as rising concern about food contamination. The development of sensitive, accurate and price methods is one of the most important of the knowledge of trace elements contents in foods and in biological samples. Neutron activation analysis is one of the most suitable tecniques because a great number of elements can be determined in concentrations in the range of μg/g to ng/g. The present work is a part of an AIEA Co-ordinated Research Programme on the applications of nuclear techniques for toxic elements in foodstuffs. Neutron activation analysis is applied to analysis of bread, milk powder and rice that are considered essential foods in the Brazilian diet. Some aspects of the activation analysis of biological matrices are discussed. (author) [pt

  20. Neutron activation analysis in archaeological and solar energy research; Neutronenaktivierungsanalyse in Archaeometrie und Solarenergieforschung

    Energy Technology Data Exchange (ETDEWEB)

    Stieghorst, Christian

    2016-06-23

    For 80 years now, neutron activation analysis (NAA) has been providing reliable data of the elemental composition for different materials in various scientific fields. Today, there are still many applications for NAA, and new methods based on neutron activation were developed during the last couple of years. In this work the focus was on the precise elemental analysis of different materials. For the provenance studies of ancient Roman limestone objects the elemental composition of samples and quarries were compared by using geochemical indicators and multivariate statistics of the elemental composition dataset, which was previously produced by using instrumental neutron activation analysis (INAA). The samples of this work originated from different archeological sites and quarries in the French region of Lorraine as well as samples from excavations in the Belgian city of Tongeren. Various objects could successfully assign to one of the Lorraine quarries via principle component analysis (PCA) and support vector machines (SVM).The aim of the co-operation between the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany, and the Institute of Nuclear Chemistry in Mainz, Germany, was to reduce the energy and cost consumption during the production process of multicrystalline solar cells at a constant efficiency level. The test ingots were produced at the ISE and measured with NAA. The colleagues' work on this topic was focused on INAA measurements of the 3d transition metals and a new developed method for phosphorus detection. In this work prompt-gamma neutron activation analysis (PGAA) was used to measure the dopand boron as well as hydrogen. The PGAA facility of the FRM II reactor close to the city of Munich was used for this purposes. For the measurement of boron amounts below the PGAA detection limit in the medium ppb{sub w}-range a new method developed at the FRM II by Lichtinger was tested. A qualitative boron detection was successful.

  1. Determination of arsenic and bromine in hot spring waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Kikawada, Y.; Kawai, S.; Oi, T.

    2004-01-01

    Concentrations of arsenic and bromine dissolved in hot spring waters have been determined by neutron activation analysis using 0.5 cm 3 of sample waters without any chemical pretreatment. The samples prepared for neutron irradiation were simply pieces of filter papers which were infiltrated with samples. With the results of satisfactorily high accuracy and precision, this analytical method was found to be very convenient for the determinations of arsenic and bromine dissolved in water at ppm to sub-ppm levels. (author)

  2. Analytical quality control of neutron activation analysis by interlaboratory comparison and proficiency test

    International Nuclear Information System (INIS)

    Kim, S. H.; Moon, J. H.; Jeong, Y. S.

    2002-01-01

    Two air filters (V-50, P-50) artificially loaded with urban dust were provided from IAEA and trace elements to study inter-laboratory comparison and proficiency test were determined using instrumental neutron activation analysis non-destructively. Standard reference material(Urban Particulate Matter, NIST SRM 1648) of National Institute of Standard and Technology was used for internal analytical quality control. About 20 elements in each loaded filter sample were determined, respectively. Our analytical data were compared with statistical results using neutron activation analysis, particle induced X-ray emission spectrometry, inductively coupled plasma mass spectroscopy, etc., which were collected from 49 laboratories of 40 countries. From the results that were statistically re-treated with reported values, Z-scores of our analytical values are within ±2. In addition, the results of proficiency test are passed and accuracy and precision of the analytical values are reliable. Consequently, it was proved that analytical quality control for the analysis of air dust samples is reasonable

  3. Comparison of results of assaying and neutron activation analysis when determining gold and silver content

    International Nuclear Information System (INIS)

    Vaganov, P.A.; Bulnaev, A.I.; Kulikov, V.D.; Mejer, V.A.; Zakharevich, K.V.

    1977-01-01

    Compared are results of simultaneous determination of gold and silver content in rock samples by the methods of neutron activation analysis and assaying. Rock samples were irradiated by thermal neutron flux of 5x10 13 nxcm -2 xs -1 during 12 hours. The gold content was determined in 8-12 days after irradiation, and silver content in 40-50 days. T he gold content determination was performed by 411.8 keV γ quanta of 198 Au. To establish the silver content two analytical lines of sup(110m)Ag isomer with the energy of 657.7 and 937.4 keV were used. The sensitivity threshold of Au content determination amounts to 3x10 -6 % (or 1x10 -9 g) and that for Ag is 2x10 -40 % (using γ line with the energy of 657.7 keV). The comparison of the results of assaying and neutron-activation analysis has shown for silver a good agreement between the both methods, the coefficient of pair correlation being equal to 0.997. For gold the divergence between the methods is observed. The activation analysis provides on the average lower values of gold content

  4. Microcomputer-based pneumatic controller for neutron activation analysis

    International Nuclear Information System (INIS)

    Byrd, J.S.; Sand, R.J.

    1976-10-01

    A microcomputer-based pneumatic controller for neutron activation analysis was designed and built at the Savannah River Laboratory for analysis of large numbers of geologic samples for locating potential supplies of uranium ore for the National Uranium Resource Evaluation program. In this system, commercially available microcomputer logic modules are used to transport sample capsules through a network of pressurized air lines. The logic modules are interfaced to pneumatic valves, solenoids, and photo-optical detectors. The system operates from programs stored in firmware (permanent software). It also commands a minicomputer and a hard-wired pulse height analyzer for data collection and bookkeeping tasks. The advantage of the system is that major system changes can be implemented in the firmware with no hardware changes. This report describes the hardware, firmware, and software for the electronics system

  5. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source

    International Nuclear Information System (INIS)

    Cardoso, Antonio

    1976-01-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction 55 Mn (n.gamma) 56 Mn, high concentration of manganese in the matrix and short half - life of 56 Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions 56 Fe(n,p) 56 Mn and 59 Co (n, α) 56 were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  6. Neutron-activation analysis of wall soils of ancient architectural monuments

    International Nuclear Information System (INIS)

    Khatamov, Sh.; Zhumamuratov, A.; Ibragimov, T.; Tillyaev, T.; Osinskaya, N.S.; Rakhmanova, T.P.; Pulatov, D.D.

    2001-01-01

    The simplified, relatively inexpensive, and productive multielemental neutron activation techniques for analysis of solid of the architectural monuments of Karakalpakstan have been elaborated. A comparison of the elemental composition of the wall soils of the ancient buildings, constructed at different historical periods, with the composition of the agricultural soils allows us to estimate the present ecological and agrogeochemical states of the agricultural soils and to trace changing the dynamics of about 30 chemical elements. (author)

  7. Neutron activation analysis of core and drill cutting samples from geothermal well drilling

    International Nuclear Information System (INIS)

    Miller, G.E.

    1986-01-01

    Samples of sandstones and shales were analysed by instrumental neutron activation analysis for a total of 30 elements. Three irradiation and five counting periods were employed. Solutions and National Bureau of Standards Reference Materials were used for comparison. The samples were obtained from drill cuttings (with a few core samples) from drillings in the Salton Sea geothermal field of California. These determinations form part of a major study to establish elemental variation as a function of mineral variation as depth and temperature in the well vary. The overall goal is to examine mineral alteration and/or element migration under typical geothermal conditions. The techniques involve typical compromises between maximizing precision for individual element determinations and the amount of time and effort that can be expended, as it is desired to examine large numbers of samples. With the limitations imposed by the reactor flux available at the U.C.Irvine TRIGA reactor, the detectors available, and time factors, most precisions are acceptable for geological comparison purposes. Some additional measurements were made by delayed-neutron counting methods to compare with uranium determinations made by conventional instrumental neutron activation analysis methods. (author)

  8. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Faiz, Y.; Siddique, N.

    2012-01-01

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  9. Feasibility studies on large sample neutron activation analysis using a low power research reactor

    International Nuclear Information System (INIS)

    Gyampo, O.

    2008-06-01

    Instrumental neutron activation analysis (INAA) using Ghana Research Reactor-1 (GHARR-1) can be directly applied to samples with masses in grams. Samples weights were in the range of 0.5g to 5g. Therefore, the representativity of the sample is improved as well as sensitivity. Irradiation of samples was done using a low power research reactor. The correction for the neutron self-shielding within the sample is determined from measurement of the neutron flux depression just outside the sample. Correction for gamma ray self-attenuation in the sample was performed via linear attenuation coefficients derived from transmission measurements. Quantitative and qualitative analysis of data were done using gamma ray spectrometry (HPGe detector). The results of this study on the possibilities of large sample NAA using a miniature neutron source reactor (MNSR) show clearly that the Ghana Research Reactor-1 (GHARR-1) at the National Nuclear Research Institute (NNRI) can be used for sample analyses up to 5 grams (5g) using the pneumatic transfer systems.

  10. Multielement determination in some egyptian vegetables by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Tadros, N.A.; Abdel-Fattah, A.A.; Sanad, W.A.

    1999-01-01

    Nondestructive instrumental neutron activation analysis (INAA) technique, with thermal neutrons, has been applied for multielement determination of major, trace and ultra trace elements in eleven types of the public public egyptian, edible vegetables, namely dill, moulokhyia, okra negro bean, parsley, green pea, grape leaves, spinach, mint, celery and salad chervil, cultivated and collected from El-Maadi, Cairo, E G. Concentrations of Na, K, Ca, Sc, Cr, Fe, Co, Ni, Zn, Rb, Zr, Nb, Mo, Sb, Cs, Ba, La, Ce, Tb, Yb, Hf, Ta, Th and U were determined. The standard reference materials (SRM's) G-2, J G-1 and MAG-1, provided from IAEA, were used, and high accuracy of the work was assured. The results were discussed

  11. Activities of the Laboratory of Neutron Activation Analysis in the Radiochemistry Division - IPEN/CNEN/SP/Brazil

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1988-01-01

    Neutron activation analysis (NAA) is one of the relevant applications of nuclear research reactors. Due to the high neutron fluxes available in these reactors, an excellent sensitivity of analysis is attained for many elements. NAA is one of the most sensitive, precise and accurate analytical methods for trace element determination. NAA has been one of the main activities of the Radiochemistry Division of IPEN, since the befinning of the operation of the nuclear reactor IEA-R1. Most of the effort was devoted to research work, aimed to improvements in the method as well as to its applications to several kinds of matrixes (geological, biological, metallic, environmental, forensic). Besides, analytical services were also offered, to the CNEN, to industries, universities, mining companies and research institutes. In the present paper, a review is made of the research work being developed presently at the Radiochemistry Division of IPEN. A discussion is also made of the planned expansion of the analytical services offered. (author) [pt

  12. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    Mateus Eugenio Boscaro; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Luis Gustavo Cofani dos Santos; Cofani dos Santos, S.N.S.; Sandra Mara Martins-Franchetti

    2015-01-01

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  13. Uses of instrumental neutron activation analysis (INAA) for lichen as bio indicators of environmental contamination

    International Nuclear Information System (INIS)

    Arribere, M.; Guevara, S.R.; Calvelo, S.

    1994-01-01

    Three species of epiphytic lichens were sampled at NW Patagonia, Argentina, from urban and peripherical forest area environments Sixty lichen samples were analysed individually by Instrumental Neutron Activation Analysis (INAA). The elements present in the samples were determined by parametric methods at the Neutron Activation Laboratory at Centro Atomico Bariloche, Argentina. All concentration values were normalized to Al concentration. The average normalized concentrations for each element, discriminated by species and environment, are presented in this work. (author). 11 refs, 6 tabs

  14. Possibilities of using neutron activation analysis to discovery antimony aureoles at near-surface deposits

    International Nuclear Information System (INIS)

    Voin, M.I.; Kuligin, V.M.; Rakovskij, Eh.E.

    1978-01-01

    Described is the technique for determining antimony in rock and ore samples by instrumental neutron activation method with the sensitivity of 0.5 g/t from the 0.3-0.5 g weighed amount. Antimony was determined using the photopeak of antimony-124 isotope with the energy of 1692 keV. For analysis, 0.1 g samples were packed in aluminium foil and irradiated for 22 hours by reactor neutron fluence of 1.2x10 13 neutron/cm 2 xs. After cooling for 7 days induced activity of samples was measured using multichannel analizer with semiconductor detector with sensitive zone volume of 40 cm 3 . Real sensitivity while determining antimony was 1g/t, mean square error in the content range of 1-10 g/t is 14%

  15. Application of instrumental neutron activation analysis and X-ray fluorescence analysis in art pieces investigation

    International Nuclear Information System (INIS)

    Panczyk, E.; Kierzek, J.; Walis, L.; Ligeza, M.

    1996-01-01

    The application of instrumental neutron activation analysis have been shown for the trace element identification in dyes of old painting and other art objects. The recognition of their composition is a important measure for attribution. Also the X-ray fluorescence analysis has been frequently used for examination of art objects. The age determination of the old chinese porcelain is a good example described in the paper. 20 refs, 4 figs

  16. In situ x-ray fluorescence and californium-252 neutron activation analysis for marine and terrestrial mineral exploration

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1976-12-01

    Instrumentation has been designed for in situ analysis of marine and terrestrial minerals using the techniques of x-ray fluorescence and neutron activation analysis. The energy-dispersive x-ray fluorescence analyzer allows more than 20 elements to be quantitatively measured at the 10 ppM level in water depths to 300 m. The analyzer consists of a solid cryogen-cooled Si(Li) detector, a 50 mCi 109 Cd or 57 Co excitation source, and an analyzer-computer system for data storage and manipulation. The neutron activation analysis, which is designed to measure up to 30 elements at parts per hundred to ppM levels, utilizes the man-made element 252 Cf as its neutron activation source. The resulting radioelements which emit characteristic gamma radiation are then analyzed in situ during 2- to 200-s counting intervals with Ge(Li) or NaI(T1) detector systems. An extension of this latter technique, which uses a 252 Cf- 235 U fueled subcritical multiplier, is also being studied. The subcritical facility allows the neutrons from the 252 Cf source to be multiplied, thus providing greater neutron flux. Details of these in situ analysis systems, actual in situ spectra, and recorded data are discussed with respect to the detection of minerals at their varying concentration levels. The system response of each illustrates its usefulness for various rapid environmental mineral exploration studies. These techniques can be utilized on terrestrial surfaces and marine or fresh water sediments. 5 figures, 2 tables

  17. Determination of mercury in dentists through Neutron activation analysis

    International Nuclear Information System (INIS)

    Padilla M, M.A.; Granados C, F.

    1999-01-01

    It was determined the mercury levels in urine through Neutron activation analysis to 25 dentists who have been exposed to mercury by several time periods, because of the routine manipulations of amalgams. The determined concentrations of mercury were less to 10 μ g Hg/l of urine. The results were founded inside the safety limits reported in the literature. The mercury levels in the dentists are associated with a wide variety of factors that contribute to their exposure as: number of years of dental practice, number of amalgams manipulated between others. (Author)

  18. The Prompt Gamma Neutron Activation Analysis Facility at ICN-Pitesti

    International Nuclear Information System (INIS)

    Barbos, D.; Paunoiu, C.; Mladin, M.; Cosma, C.

    2008-01-01

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performance of INAA method. A facility has been developed at Institute for Nuclear Research-Pitesti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA-facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system.Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: φ scd = 1.10 6 n/cm 2 /s with a cadmium ratio of:80.The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90 deg. with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates

  19. Time regimes optimization of the activation-measurement cycle in neutron activation analysis

    International Nuclear Information System (INIS)

    Szopa, Z.

    1986-01-01

    Criteria of the optimum time conditions of the activation-measurement cycle in neutron activation analysis have been formulated. The optimized functions i.e. the relative precision or the factor of ''merit'' of the analytical signal measured as functions of the cycle time parameters have been proposed. The structure and possibilities of the optimizing programme STOPRC have been presented. This programme is completely written in FORTRAN and takes advantage of the library of standard spectra and fast, stochastic algorithms. The time conditions predicted with the aid of the programme have been discussed and compared with the experimental results for the case of the determination of tungsten in industrial dusts. 31 refs., 4 figs. (author)

  20. Self-sustainability of a research reactor facility with neutron activation analysis

    International Nuclear Information System (INIS)

    Chilian, C.; Kennedy, G.

    2010-01-01

    Long-term self-sustainability of a small reactor facility is possible because there is a large demand for non-destructive chemical analysis of bulk materials that can only be achieved with neutron activation analysis (NAA). The Ecole Polytechnique Montreal SLOWPOKE Reactor Facility has achieved self-sustainability for over twenty years, benefiting from the extreme reliability, ease of use and stable neutron flux of the SLOWPOKE reactor. The industrial clientele developed slowly over the years, mainly because of research users of the facility. A reliable NAA service with flexibility, high accuracy and fast turn-around time was achieved by developing an efficient NAA system, using a combination of the relative and k0 standardisation methods. The techniques were optimized to meet the specific needs of the client, such as low detection limit or high accuracy at high concentration. New marketing strategies are presented, which aim at a more rapid expansion. (author)

  1. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  2. Application of neutron activation analysis to trace elements determinations in lung samples

    International Nuclear Information System (INIS)

    Rogero, S.O.

    1991-01-01

    The purpose of this work was to apply the instrumental neutron activation analysis method to determine trace elements in lung samples from smokers and non smokers. Samples of lung tissues and lymph nodes from pulmonary hilum analyzed were collected from autopsies by researchers from Faculdade de Medicina da USP. (author)

  3. Neutron activation analysis detection limits using 252Cf sources

    International Nuclear Information System (INIS)

    DiPrete, D.P.; Sigg, R.A.

    2000-01-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux 252 Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an ∼6-mg 252 Cf NAA facility. The SRTC 252 Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [approximately2 x 10 7 n/cm 2 ·s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes

  4. Radiochemical neutron activation analysis of gold in geochemical samples

    International Nuclear Information System (INIS)

    Zilliacus, R.

    1983-01-01

    A fast method for the radiochemical neutron activation analysis of gold in geochemical samples is described. The method is intended for samples having background concentrations of gold. The method is based on the dissolution of samples with hydrofluoric acid and aqua regia followed by the dissolution of the fluorides with boric acid and hydrochloric acid. Gold is then adsorbed on activated carbon by filtrating the solution through a thin carbon layer. The activity measurements are carried out using a Ge(Li)-detector and a multichannel analyzer. The chemical yields of the separation determined by reirradiation vary between 60 and 90%. The detection limit of the method is 0.2 ng/g gold in rock samples. USGS standard rocks and exploration reference materials are analyzed and the results are presented and compared with literature data. (author)

  5. Methodology for Quantitative Analysis of Large Liquid Samples with Prompt Gamma Neutron Activation Analysis using Am-Be Source

    International Nuclear Information System (INIS)

    Idiri, Z.; Mazrou, H.; Beddek, S.; Amokrane, A.

    2009-01-01

    An optimized set-up for prompt gamma neutron activation analysis (PGNAA) with Am-Be source is described and used for large liquid samples analysis. A methodology for quantitative analysis is proposed: it consists on normalizing the prompt gamma count rates with thermal neutron flux measurements carried out with He-3 detector and gamma attenuation factors calculated using MCNP-5. The relative and absolute methods are considered. This methodology is then applied to the determination of cadmium in industrial phosphoric acid. The same sample is then analyzed by inductively coupled plasma (ICP) method. Our results are in good agreement with those obtained with ICP method.

  6. Trace element analysis at the Livermore pool-type reactor using neutron activation techniques

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Ralston, R.; Garvis, D.

    1975-01-01

    The capabilities of trace element analysis at the Livermore Pool-Type Reactor (LPTR) using instrumental neutron activation analysis (INAA) are discussed. A description is given of the technology and the methods employed, including sample preparation, irradiation, and analysis. Applications of the INAA technique in past and current projects are described. A computer program, GAMANAL, has been used for nuclide identification and quantification. (U.S.)

  7. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  8. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  9. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co; Sierra, O., E-mail: osierra@sgc.gov.co; Porras, A.; Alonso, D.; Herrera, D. C., E-mail: dherrera@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  10. Certification of biological candidates reference materials by neutron activation analysis

    Science.gov (United States)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  11. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  12. Neutron activation analysis of heavy metal binding by fungal cell walls

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Mayer, J.A.

    1994-01-01

    Aqueous effluents are produced during nuclear power and nuclear weapons development activities which frequently contain low levels of dissolved radioactive nuclides. A number of laboratories are now focusing attention to renewable biological materials to provide traps for low concentrations of dissolved radioactive metal ions in wastewater effluents. The term BIOTRAP can be used to describe such materials, and in this laboratory cell wall preparations of the fungus Penicillium ochro-chloron have been employed to demonstrate their capacity and affinity to reversibly bind and remove copper(2). Since neutron activation analysis (NAA) was readily available, that method was one of several applied to this problem as a suitable analytical methodology to study heavy metal-to-BIOTRAP interactions. Copper and mercury provide good examples of metals which are capable of undergoing activation by thermal neutrons. In NAA, 63 Cu (69.1% natural abundance) is converted to 64 Cu which has a half live of 12.7 hr, and 202 Hg (29.7 % natural abundance) is converted to 203 Hg which has a half life of 46.,6 d

  13. Development of Pneumatic Transfer Irradiation Facility (PTS no.2) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  14. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  15. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  16. Neutron activation analysis of bulk samples from Chinese ancient porcelain to provenance research

    International Nuclear Information System (INIS)

    Jian Zhu; Wentao Hao; Jianming Zhen; Tongxiu Zhen; Glascock, M.D.

    2013-01-01

    Neutron activation analysis (NAA) is an important technique to determine the provenance of ancient ceramics. The most common technique used for preparing ancient samples for NAA is to grind them into a powder and then encapsulate them before neutron irradiation. Unfortunately, ceramic materials are typically very hard making it a challenge to grind them into a powder. In this study we utilize bulk porcelain samples cut from ancient shards. The bulk samples are irradiated by neutrons alongside samples that have been conventionally ground into a powder. The NAA for both the bulk samples and powders are compared and shown to provide equivalent information regarding their chemical composition. Also, the multivariate statistical have been employed to the analysis data for check the consistency. The findings suggest that NAA results are less dependent on the state of the porcelain sample, and thus bulk samples cut from shards may be used to effectively determine their provenance. (author)

  17. Neutron activation analysis of medullar and cortical bone tissues from animals

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo; Saiki, Mitiko

    2000-01-01

    In this work, neutron activation analysis was applied in the determination of the elements Ba, Br, Ca, Cl, Cr, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sc, Sr and Zn present in animal bone tissues. The obtained results indicated a significant difference between the elemental concentrations present in medullar and cortical tissues. The results obtained for bone tissues from distinct animal species were also different. (author)

  18. k{sub 0}-neutron activation analysis based method at CDTN: history, development and main achievements

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Ângela de B.C.; Jacimovic, Radojko; Dalmazio, Ilza, E-mail: menezes@cdtn.br, E-mail: id@cdtn.br, E-mail: radojko.jacimovic@ijs.si [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte - MG (Brazil); Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2017-11-01

    Neutron Activation Analysis (NAA) is an analytical technique to assay the elemental chemical composition in samples of several matrices. It has been applied by the Laboratory for Neutron Activation Analysis, located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) /Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN, since the starting up of the TRIGA MARK I IPR-R1 reactor, in 1960. Among the methods of this technique, the k{sub 0}-standardization method, which was established at CDTN in 1995, is the most efficient and in 2003 it was re-established and optimized. This paper is about the history and the main achievements since then. (author)

  19. Analysis of medicinal plant extracts by neutron activation method; Analise de extratos de plantas medicinais pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Sandra Muntz

    1996-12-31

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed 70 refs., 13 figs., 15 tabs

  20. Analysis of medicinal plant extracts by neutron activation method; Analise de extratos de plantas medicinais pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Sandra Muntz

    1995-12-31

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed 70 refs., 13 figs., 15 tabs

  1. Neutron activation of building materials used in the reactor shield

    International Nuclear Information System (INIS)

    Hernandez, A.T.; Perez, G.; D'Alessandro, K.

    1993-01-01

    Cuban concretes and their main components (mineral aggregates and cement) were investigated through long-lived activation products induced by neutrons from a reactor. The multielemental content in the materials studied was obtained by neutron activation analysis in an IBR-2 reactor and gamma activation analysis in an MT-25 microtron from Join Institute of Nuclear Research of Dubna. After irradiation of building materials for 30 years by a neutron flow of unitary density, induced radioactivity was calculated according to experimental data. The comparative evaluation of different concretes aggregates and two types of cement related to the activation properties is discussed

  2. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Sroor, A.; Abdel-Basset, N.; Abdel-Haleem, A.S.; Hassan, A.M.

    2001-01-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4x10 12 n/cm 2 s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The γ-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented

  3. Rare earths analysis of rock samples by instrumental neutron activation analysis, internal standard method

    International Nuclear Information System (INIS)

    Silachyov, I.

    2016-01-01

    The application of instrumental neutron activation analysis for the determination of long-lived rare earth elements (REE) in rock samples is considered in this work. Two different methods are statistically compared: the well established external standard method carried out using standard reference materials, and the internal standard method (ISM), using Fe, determined through X-ray fluorescence analysis, as an element-comparator. The ISM proved to be the more precise method for a wide range of REE contents and can be recommended for routine practice. (author)

  4. Coal stream composition analysis for process control using prompt neutron activation analysis

    International Nuclear Information System (INIS)

    Gozani, T.; Reynolds, G.; Elias, E.; Maung, T.; Bozorgmanesh, H.; Orphan, V.

    1977-01-01

    In this paper we describe early results of a series of laboratory experiments and computer modeling studies designed to provide realistic accuracy limits for the determination of the elemental concentration in coal using prompt neutron activation analysis. The results provide guidance for optimizing the technique for monitoring the quality of coal which is being input to an electric power generating plant. The reported work was performed as the initial phase of an ongoing program to develop a prototype on-line coal analyzer based on the PNAA technique for power plant application

  5. Elemental analysis of soil and hair sample by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Quraishi, Shamshad Begum; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeoil; Kang, Sang Hoon; Lim, Jong Myoung; Cho, Hyun Je; Kim, Young Jin

    2004-03-01

    Myanmar soil sample was analyzed by using the instrumental neutron activation analysis. The elemental concentrations in the sample, altogether 34 elements, Al As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Ga, Gd, Hf, Ir, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Th, Ti, V, Yb, Zn and Zr were determined. The concentration of 17 elements (Al, Au, Br, Ca, Cl, Cr, Cu, Co, Fe, Hg, K, Na, Mn, Mg, Sb, Se, Zn) in human hair samples were determined by INAA For quality control of analytical method, certified reference material was used

  6. Elemental analysis of soil and hair sample by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Quraishi, Shamshad Begum; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeoil; Kang, Sang Hoon; Lim, Jong Myoung; Cho, Hyun Je; Kim, Young Jin

    2004-03-01

    Myanmar soil sample was analyzed by using the instrumental neutron activation analysis. The elemental concentrations in the sample, altogether 34 elements, Al As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Ga, Gd, Hf, Ir, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Th, Ti, V, Yb, Zn and Zr were determined. The concentration of 17 elements (Al, Au, Br, Ca, Cl, Cr, Cu, Co, Fe, Hg, K, Na, Mn, Mg, Sb, Se, Zn) in human hair samples were determined by INAA For quality control of analytical method, certified reference material was used.

  7. Active neutron multiplicity analysis and Monte Carlo calculations

    International Nuclear Information System (INIS)

    Krick, M.S.; Ensslin, N.; Langner, D.G.; Miller, M.C.; Siebelist, R.; Stewart, J.E.; Ceo, R.N.; May, P.K.; Collins, L.L. Jr

    1994-01-01

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined

  8. Recent applications of neutron activation analysis in geoscience at Lucas Heights

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1985-01-01

    In spite of developments in instrumental techniques of analysis over the last decade, neutron activation analysis has maintained its importance as a multielemental technique for analysing a wide range of geological materials. Some of its applications in geoscience at Lucas Heights over the last two years are discussed. These include hydrogeochemical and geological prospecting for gold in geothermal and bore water systems and ores, rare earth characterisation of shoshonitic lavas, altered basalts and dacites, and trace element studies of Australian oil shales and coals

  9. Applications of neutron activation analysis technique in the IPR-R1 research reactor

    International Nuclear Information System (INIS)

    Sabino, C.V.S.; Mansur, N.

    1986-01-01

    A review is made of the neutron activation analysis technique used in the IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear - NUCLEBRAS. Some characteristics of the method are described, types of samples and elements analyzed are also mentioned. (Author) [pt

  10. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  11. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  12. Determination of gold and silver in geological standard samples MGI by instrument neutron activation analysis

    International Nuclear Information System (INIS)

    Lu Huijiuan; Zhou; Yunlu

    1987-01-01

    Gold and silver in geological standard samples MGI were determined by instrument neutron activation analysis. The various interferences of nuclides were considered. Corrected factors of the geometry in different positions have been determined. Using the geological standard sample MGM and radiochemical separation neutron activation method as reference, the reliability of this method is proved. Gold content in samples is 0.4-0.009 g/t, silver content is 9-0.3 g/t. Standard deviation is less than 3.5%, the precision of the measurement is 4.8-11.6%

  13. Determination of technetium-99 in mixed fission products by neutron activation analysis

    International Nuclear Information System (INIS)

    Bate, L.C.

    1980-01-01

    A method has been developed for analysis of 99 Tc in fission product mixtures. The analysis consists of a chemical separation of 99 Tc, neutron irradiation of the isolated 99 Tc, and gamma-ray spectrometric determination of the induced 100 Tc radioactivity. Technetium-99 is chemically separated from most fission products by a cyclohexanone extraction from basic carbonate solution. Technetium-99 is stripped into water by addition of carbon tetrachloride to the cyclohexanone phase. A final step in the separation procedure is adsorption of 99 Tc on an anion exchange column which provides additional decontamination and places the 99 Tc in a concentrated form for neutron activation analysis. Neutron irradiations of the isolated 99 Tc were made in the pneumatic tube facility at the High Flux Isotope Reactor at a flux of 5 x 10 14 n/cm 2 /sec for 11 seconds. Induced 100 Tc radioactivity was determined immediately after irradiation using gamma-ray spectrometry to measure the 540 and 591 keV lines. Sensitivity of the analysis under these conditions is approximately 5 ng, and samples of up to about 100 ml volume can be easily processed. The method has been successfully applied to reactor fuel solutions and off-gas traps containing 6.5 x 10 -4 to 240 μg 99 Tc/ml

  14. Pollution of agricultural crops with lanthanides, thorium and uranium studied by instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.; Mizera, J.; Randa, Z.; Vavrova, M.

    2007-01-01

    The lanthanide elements, Th and U were measured in soils and agricultural crops collected in an area polluted by emissions from a phosphate fertilizer plant. Concentrations of the above elements in the soil and crop samples were determined by instrumental neutron activation analysis (INAA). Selected crop samples were also analyzed using radiochemical neutron activation analysis (RNAA) based on alkaline-oxidative fusion of the irradiated samples followed by precipitation of REE oxalates. Elevated levels of lanthanides, Th and U were found in some samples, especially in wheat chaff and parsley. (author)

  15. Calibration of the delayed-gamma neutron activation facility

    International Nuclear Information System (INIS)

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-01-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99% of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1%. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. copyright 1996 American Association of Physicists in Medicine

  16. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1989-01-01

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  17. The application of radiotracer technique for preconcentration neutron activation analysis

    International Nuclear Information System (INIS)

    Wang Xiaolin; Chen Yinliang; Sun Ying; Fu Yibei

    1995-01-01

    The application of radiotracer technique for preconcentration neutron activation analysis (Pre-NAA) are studied and the method for determination of chemical yield of Pre-NAA is developed. This method has been applied to determination of gold, iridium and rhenium in steel and rock samples and the contents of noble metal are in the range of 1-20 ng·g -1 (sample). In addition, the accuracy difference caused by determination of chemical yield between RNAA and Pre-NAA are also discussed

  18. Comparison of neutron activation analysis with other instrumental methods for elemental analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Regge, P. de; Lievens, F.; Delespaul, I.; Monsecour, M.

    1976-01-01

    A comparison of instrumental methods, including neutron activation analysis, X-ray fluorescence spectrometry, atomic absorption spectrometry and emission spectrometry, for the analysis of heavy metals in airborne particulate matter is described. The merits and drawbacks of each method for the routine analysis of a large number of samples are discussed. The sample preparation technique, calibration and statistical data relevant to each method are given. Concordant results are obtained by the different methods for Co, Cu, Ni, Pb and Zn. Less good agreement is obtained for Fe, Mn and V. The results are not in agreement for the elements Cd and Cr. Using data obtained on the dust sample distributed by Euratom-ISPRA within the framework of an interlaboratory comparison, the accuracy of each method for the various elements is estimated. Neutron activation analysis was found to be the most sensitive and accurate of the non-destructive analysis methods. Only atomic absorption spectrometry has a comparable sensitivity, but requires considerable preparation work. X-ray fluorescence spectrometry is less sensitive and shows biases for Cr and V. Automatic emission spectrometry with simultaneous measurement of the beam intensities by photomultipliers is the fastest and most economical technique, though at the expense of some precision and sensitivity. (author)

  19. Elemental characterization of Brazilian beans using neutron activation analysis

    International Nuclear Information System (INIS)

    Lilian Seiko Kato; Nadai Fernandes, E.A. De; Marcio Arruda Bacchi; Gabriel Adrian Sarries; Andres Enrique Lai Reyes

    2015-01-01

    Beans are important for many developing countries as a source of protein and mineral nutrients. Here, ten commercial types of Brazilian beans, from the species Phaseolus vulgaris (common beans) and Vigna unguiculata (cowpeas), were analyzed by neutron activation analysis for the determination of Br, Ca, Co, Cs, Fe, K, Mo, Na, Rb, Sc and Zn. There were statistical differences (p/0.05) amongst the commercial types, except for Br, Rb and Sc. In general, non-essential elements showed high variability, indicating that the origin of beans had a strong influence on the mass fraction of such elements. (author)

  20. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  1. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  2. Determination of arsenic in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint, U.; Than, W.; Htay, H.; Myint, K.O.

    1994-01-01

    Am(Be) neutron source was used for activation of samples and 76 As radioactivity measured by both β- and γ-counting techniques. The samples analyzed were raw materials traditionally used in formulating Myanmar indigenous medicines. The results were compared with those obtained by volumetric analysis and those reported in the literature. (author) 4 refs.; 5 tabs

  3. Determination of arsenic in some Myanmar indigenous medicines by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Than, W; Htay, H; Myint, K O [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-08-01

    Am(Be) neutron source was used for activation of samples and [sup 76]As radioactivity measured by both [beta]- and [gamma]-counting techniques. The samples analyzed were raw materials traditionally used in formulating Myanmar indigenous medicines. The results were compared with those obtained by volumetric analysis and those reported in the literature. (author) 4 refs.; 5 tabs.

  4. Blood elements concentration in cyclists investigated by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Zamboni, C.B.; Kovacs, L.; Metairon, S.; Azevedo, M.R.A.; Furholz, C.F.; Uchida, M.C.

    2016-01-01

    In this study Br, Ca, Cl, Fe, K, Mg, Na, S and Zn levels in blood samples of cyclists were investigated using neutron activation analysis technique. The results were compared to individuals of the same age and gender, but not involved with physical activities (control group), which showed considerable differences. A decrease mainly in Br (91 %) and Ca (78 %) and an increase in Fe (26 %), S (82 %) and Zn (22 %) levels were evidenced. These results emphasize the importance of blood monitoring for the maintenance of endurance athletes performance, particularly for Br, Ca and S. (author)

  5. Instrumental neutron activation analysis of iron and zinc in compact cosmetic products

    International Nuclear Information System (INIS)

    Kanias, G.D.

    1987-01-01

    An instrumental neutron activation analysis method is described for the determination of iron and zinc in compact eye shadow, compact face powder and compact rouge make-up cosmetic products. The steps of the procedure are: Irradiation of samples with thermal neutrons, counting of gamma-radioactivity of the radioisotopes of iron and zinc produced by this irradiation and calculation of the concentration of these elements from the gamma-ray spectra of samples and standards. Analysis of the I.A.E.A. standard reference material by this procedure give results in close agreement with certified values. The limit of quantitation is 45 μg for iron and 0.35 μg for zinc. The developed procedure could possibly be established as an official method for the simultaneous determination of iron and zinc in compact cosmetic products. (orig.) [de

  6. Determination of trace elements in chewing gum by neutron activation analysis

    International Nuclear Information System (INIS)

    Dietz, M.L.

    1990-01-01

    Six trace elements of nutritional or toxicological interest (Al, Ca, Cl, Mn, Na and Sr) were determined in three different brands of chewing gum by instrumental neutron activation analysis. For the particular brands of gum examined, none of the detected elements was found to be present at a level representing a substantial contribution to the total dietary intake of the element for an American adult. (author) 11 refs.; 3 tabs

  7. Multi-element analysis of emeralds and associated rocks by k0 neutron activation analysis

    International Nuclear Information System (INIS)

    Acharya, R.N.; Mondal, R.K.; Burte, P.P.; Nair, A.G.C.; Reddy, N.B.Y.; Reddy, L.K.; Reddy, A.V.R.; Manohar, S.B.

    2000-01-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k 0 method (k 0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method

  8. Analytical basis for neutron-activation analysis measuring nuclides with a half-life of second order

    International Nuclear Information System (INIS)

    Yonezawa, Chushiro; Ichimura, Shigeju; Matsue, Hideaki; Kurosawa, Tatsuya

    1998-01-01

    An analytical basis for a neutron-activation analysis (NAA) for measuring nuclides of second-order half-lives produced by the (n, γ) reaction has been studied using a neutron-activation analysis facility (PN-3) of JRR-3M. The NAA facility, comprising a fast pneumatic irradiation system and a high count-rate gamma-ray spectrometer, is able to automatically conduct NAA with short-lived nuclides. Basic experimental conditions, such as a high count-rate gamma-ray measurement, the effects of irradiation-capsule material and the stability of the neutron flux, were examined. The analytical sensitivities and detection limits for 20 elements of which activated radionuclide having half-lives from 0.7 to 100 s were obtained. Scandium, In, Dy and Hf were elements having the highest analytical sensitivity, with detection limits down to 4.2 to 14 ng. Fluorine, which is difficult to determine by other methods, can be detected at above 530 ng. Analytical applications of NAA with short-lived nuclides have been carried out for F, Se, Sc, Hf, In and Dy in various materials, including reference materials. The accuracy, precision and detection limits of NAA with short-lived nuclides have been evaluated. (author)

  9. Study of the trace element in organisms by neutron activation analysis, 1. Multielement instrumental neutron activation analysis of cannabis

    Energy Technology Data Exchange (ETDEWEB)

    Shinogi, M; Murai, Y; Mori, I [Kobe Women' s Coll. of Pharmacy (Japan); Takeuchi, T

    1974-12-01

    Examinations were made on optimal experimental conditions for instrumental determination of various elements in cannabis by neutron activation analysis, without any radiochemical separation, and the following conditions were found to be useful. Irradiation samples to be used are about 300 mg of the leaves or stem bark, and about 100 mg of the root. For soil sample, about 50 mg is used for the determination of short half-life nuclides and about 300 mg for long half-life nuclides. For short half-life nuclides, the samples are irradiated for 1 min, activity is measured for 200 sec after a decay of 3 min, and for 400 sec after a decay of 10 min. For long half-life nuclides, the samples are irradiated for 60 min and the activites are measured for 4 K sec after 1 week and for 10 K sec after 1 month. Use of supersonic waves is also convenient for cleansing of the samples. Thirty-five kinds of interesting elements were determined by this method from cannabis cultivated in Maizuru area.

  10. Determination of x mercury trace amounts in selected foodstuffs by neutron activation analysis

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1976-01-01

    Neutron activation analysis was used for the analysis of dehydrated milk, flour, coffee, tea and rice. The results were compared with those obtained by the photometric determination of mercury by dithizone. Four types of sample distribution by wet ashing were evaluated with regard to mercury volatilization in sample destruction. The samples were irradiated with thermal neutrons, a carrier was added and the samples were dissolved in the mixture of H 2 SO 4 +HClO 4 +HNO 3 . After dilution mercury was extracted using a substoichiometric amount of dithizone dissolved in chloroform. In the extract the radioactivity of 197 Hg was measured by NaI(Tl). At the average 15% accuracy of determination the lower limit of determination is 0.003 μg Hg. (M.K.)

  11. Application of high resolution x-ray spectrometry preceded by neutron activation for elemental analysis of soil samples

    International Nuclear Information System (INIS)

    Hernandez Rivero, A.; Capote Rodriguez, G.; Padilla Alvarez, R.; Herrera Peraza, E.

    1997-01-01

    Utilization of High Resolution X-Ray Spectrometry preceded by activation of the samples by irradiation with neutron fluxes (NAA-RX) is a relatively modern trend in application of nuclear techniques. This method may complement advantageously the usual Neutron Activation Analysis by means of Gamma Spectrometry (NAA-G). In this work results obtained by the application of NAA-RX for non-destructive analysis of Cuban soil samples are discussed. The samples were irradiated with reactor neutron fluxes and the induced characteristic X-rays were measured by using Si(Li)-detector. Concentrations of Fe, Zn and Eu as determined by NAA-RX are compared with both NAA-G and XRF data. For the elaboration of X-Ray and Gamma Spectra the computer programs AXIL and ACTAN were used respectively. (author) [es

  12. Application of high resolution x-ray spectrometry preceded by neutron activation for elemental analysis of soil samples

    International Nuclear Information System (INIS)

    Hernandez Rivero, A.; Capote Rodriguez, G.; Herrera Peraza, E.

    1996-01-01

    Utilization of High Resolution X-Ray Spectrometry preceded by activation of the samples by irradiation with neutron fluxes (NAA R X) is a relatively modern trend in application of nuclear techniques. This method may complement advantageously the usual Neutron Activation Analysis by means of Gamma Spectrometry (NAA-G) In this work results obtained by the application of NAA-RX for non-destructive analysis of Cuban soil samples are discussed. The samples were irradiated with reactor neutron fluxes and the induced characteristic X-rays were measured by using Si(li)-detector. Concentrations of Fe, Zn and Eu as determined by NAA-RX are compared with both NAA-G and XRF data. For the elaboration of X-ray and Gamma Spectra the computer programs AXIL and ACTAN were used respectively

  13. Activation analysis of stainless steel flux monitors using 252Cf neutron sources

    International Nuclear Information System (INIS)

    Williams, J.G.; Newton, T.H. Jr.; Cogburn, C.O.

    1984-01-01

    Activation analysis was performed on stainless steel beads from a chain which is used in reactor pressure vessel surveillance experiments at the Arkansas Power and Light Company reactors. The beads allow monitoring of two fast and three thermal neutron induced reactions: 58 Ni(n,p) 58 Co, 54 Fe(n,p) 54 Mn, 58 Fe(n,γ) 59 Fe, 59 Co(n,γ) 60 Co and 50 Cr(n,γ) 51 Cr. The analysis was performed using 12 beads from various positions along 5 different batches of chain and standard materials in an H 2 O moderator tank using two intense californium sources which had a total neutron emission rate of 3.97 x 10 10 /s. Semiconductor gamma spectrometers were used to count the products of the above reactions in the specimens. The percentage by weight of the iron, chromium and cobalt in the beads were found to be 62.1%, 20.2% and 0.120%, respectively. The excellent uniformity found in the bead compositions demonstrates the reproducibility of the experimental techniques and enhances considerably the value of the beads as neutron flux montitors

  14. A feasibility study for measuring fluorine in bone, in-vivo, using neutron activation analysis

    International Nuclear Information System (INIS)

    Chamberlain, M.; McNeill, F.; Aslam; Byun, S.H.

    2008-01-01

    Full text: Skeletal fluorosis is a bone disease which is a result of excessive fluoride ingestion and may cause osteosclerosis, osteoporosis and calcification of tendons and ligaments. Endemic levels of fluorosis are commonly reported in areas of the world with naturally high concentrations of fluoride in the drinking water. However, fluorosis is difficult to medically diagnose, and due to its prevalence, a non-invasive method for measuring the concentration of fluoride in bone is warranted. A feasibility study has been conducted to determine the possibility of measuring fluorine non-invasively in exposed populations using neutron activation analysis. Neutron activation analysis has been used successfully to measure the amount of fluoride in bone biopsy samples. However, measurement of fluorine is challenging, and has not, to our knowledge, previously been attempted in vivo, as the 20 F isotope has the very short half life of 11s. Transfer from activation counting must therefore be fast. For this study, plaster of Paris powder phantoms doped with varying fluoride concentrations were created to simulate a fist. They were irradiated using a low energy neutron beam at McMaster's Tandem Accelerator facility. The 7 Li(p,n) 7 Be reaction was used as the source of neutrons; the Be target was irradiated with an incident proton energy of 2.15MeV. The fluorine was detected via the neutron capture reaction, 19 F(n,γ) 20 F, using two 20 cm x 5 cm NaI detectors. Fluorine emits a gamma ray at 1633 keV upon decay. A calibration curve of peak area versus phantom fluorine content was created and a detection limit of 1.8 mg F/g Ca, with a corresponding dose of approximately 12 mSv to the hand. This data will be presented and the feasibility of measurement discussed in the context of the delivered dose. In addition, results of the investigation of the competing reaction, 23 Na(n,α) 20 F, will be presented. Data illustrating the relative activation and count rates from fluorine

  15. Capture analysis of element content of a substance with other neutron methods

    International Nuclear Information System (INIS)

    Kurbanov, B.I.

    2004-01-01

    Full text: Neutron analysis method of determining element composition have found wide range of applications in industry thanks to different types of interaction of neutron with substances /1/. With the aim of widening the range of problems to be solved, on the basis of the device /2/ for determining the element content of substance, possibilities of combining the method based on the use of neutron capture gamma-ray spectrometry with other neutron methods, in particular neutron activation analysis and neutron absorption analysis were studied. In this radionuclide source ( 252 Cf) with the yield of 1,5 x 10 7 neutron/sec is used. By means of using neutron capture gamma radiation spectrometry the possibilities of determining some elements (H, B, N, S etc. ), which are not determined by very widely used method, activation analysis. These elements can be determined by both the semiconductor and scintillation detectors with parameters fitting the manufacturing requirements. And for a number of elements ( B, Cl, Cd, Sm, Gd) very high limits of determination ( up to 10- 5 %) are possible using semiconductor Ge (Li) -detectors with high resolution. Possibility of determination of some 'well' activated elements ( K, Al, Fe, Mn, Ti, Sc etc.) in samples of ore and products of their processing using the neutron-activation analysis. For 1 hour of irradiation on the experimental device quite accurate analytical peak, of these elements are obtained, allowing to determine them qualitatively. However, with decreasing neutron yield of radionuclide source it becomes more difficult to achieve the necessary parameters both in neutron capture and activation analysis. Experimental works on determination of some elements with large cross-sections of capture ( B, Cd, Sm ) by absorption of neutrons in the investigated substance, i.e. using the neutron absorption analysis method with absence of other large capture cross section elements in the samples being studied

  16. Determination of oxygen in coals by activation analysis with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Arbildo, A.; Espinosa, R; Poma, C.; Eyzaguirre, J.; Hinostroza, H.

    1989-01-01

    A method for non-destructive oxygen determination in coals was developed. It is based on O-16(n,p)N-16 nuclear reaction with 14 MeV neutrons produced in an AID-J 25 neutron generator. This analysis was possible because of the interface development to control the whole irradiation process and subsequent measures of N-16 produced activity from a microcomputer this method was additionally automated by the software development to treat the recorded spectrum in a multiscalimeter analyser. It is described our computer programs and it is shown the results for coal samples from different origins. It is estimated the organic carbon coal in samples from the oxygen analysis. And it is suggested a correlatian between such content and volatile material. Irradiating, decreasing and counting time added up 45 seconds, giving a fast analysis and obtaining accuracy between 1 and 3

  17. A comparative study of 232Th and 238U activity estimation in soil samples by gamma spectrometry and neutron activation analysis technique

    International Nuclear Information System (INIS)

    Anilkumar, Rekha; Anilkumar, S.; Narayani, K.; Babu, D.A.R.; Sharma, D.N.

    2012-01-01

    Neutron activation analysis (NAA) is a well-established analytical technique. It has many advantages as compared to the other commonly used techniques. NAA can be performed in a variety of ways depending on the element, its activity level in the sample, interference from the sample matrix and other elements, etc. This technique is used to get high analytical sensitivity and low detection limits (ppm to ppb). The high sensitivity is due to the irradiation at high neutron flux available from the research reactors and the activity measurement is done using high resolution HPGe detectors. In this paper, the activity estimation of soil samples using neutron activation and direct gamma spectrometry methods are compared. Even though the weights of samples considered and samples preparation methods are different for these two methods, the estimated activity values are comparable. (author)

  18. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  19. Determination of fluoride in human nails via cyclic instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Spate, V.L.; Morris, J.S.; Baskett, C.K.; Mason, M.M.; Reams, C.L.

    1994-01-01

    The role of fluorine in human health has become somewhat controversial. It is widely accepted as protective against dental caries, may be protective against osteoporosis, and has been very conservatively implicated with osteosarcoma in male rats. The develepment of a neutron activation analysis method and its application to the analysis of human nails is reported. It has been found that toenails collected in population-based epidemiology studies apparently reflect fluoride intake. (author) 11 refs.; 2 tabs

  20. Determination of thorium in seawater by neutron activation analysis and mass spectrometry

    International Nuclear Information System (INIS)

    Huh, Chih-An.

    1987-01-01

    The recent development of neutron activation analysis and mass spectrometric methods for the determination of 232 Th in seawater has made possible rapid sampling and analysis of this long-lived, non-radiogenic thorium isotope on small-volume samples. The marine geochemical utility of 232 Th, whose concentration in seawater is extremely low, warrants the development of these sensitive techniques. The analytical methods and some results are presented and discussed in this article. 24 refs., 3 figs

  1. Trace elements in Turkish tobacco determined by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Gulovali, M.C.

    1977-01-01

    This study was undertaken to determine the concentration of trace elements in nine different brands of Turkish cigarette tobacco, pipe tobacco and tobacco ash. Instrumental neutron activation analysis was employed, and a gamma-ray spectrometer consisting of 40 cm 3 Ge(Li) detector coupled to 1024 and 4096-channel analyzers were used. Samples were irradiated at a thermal neutron flux of about 10 13 cm -2 sec -1 . Concentrations of Na, K, Sc, Cr, Fe, Co, Zn, As, Se, Br, Rb, Sb, Cs, Ba, La, Ce, Eu, Hf, Hg and Th were determined in tobacco and ash; percent transference of these elements into ash were calculated. It was found out that trace elements in cigarette tobacco are left in the ash but only a small percentage is transferred into the smoke

  2. Preparation of palladium impregnated alumina adsorbents: Thermal and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Sumanta; Gupta, N.K.; Roy, S.P.; Dash, S.; Kumar, A.; Bamankar, Y.R.; Rao, T.V. Vittal [Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, N. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Naik, Y., E-mail: ynaik@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-02-10

    Highlights: • Pd/Al{sub 2}O{sub 3} composite microspheres particles with high surface area were prepared sol–gel process. • Scanning electron microscopy (SEM) studies on silver coated particle. • Content of the palladium was determined using Neutron Activation Analysis (NAA). • Decomposition study has been done by quadrupole mass analyser. - Abstract: Pd/Al{sub 2}O{sub 3} composite microspheres particles with high surface area were prepared sol–gel process. The decomposition of dried gel-particles was studied by TGA/DTA and FT-IR technique. TGA studies indicated that formation of palladium is marked by a broad exothermic peak with a loss of water and oxidation of trapped HMTA/Urea nitrate mixture. The main decomposition reaction took place in the temperature range of 660–1250 K in helium and relatively lower temperature of 400 K to 1250 K in oxygen. Optical microscopy indicated that the distribution of palladium is uniform. SEM studies on silver coated particle indicated that there was surface erosion of some gel spheres while in few of them micro cracks were seen at high resolution. Content of the palladium was determined using Neutron Activation Analysis (NAA). Decomposition at various temperatures was studied using Residual gas analyser and decomposition species were identified using quadrupole mass analyser.

  3. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  4. Miniature Neutron-Alpha Activation Spectrometer

    Science.gov (United States)

    Rhodes, E.; Goldsten, J.

    2001-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.

  5. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry

    International Nuclear Information System (INIS)

    Moranchel, M.; Garcia B, A.; Longoria G, L. C.

    2012-01-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm 3 dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the investigation of

  6. Neutron activation studies on JET

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Forrest, R.A.; Edwards, J.E.G.

    2001-01-01

    Extensive neutron transport calculations have been performed to determine the neutron spectrum at a number of points throughout the JET torus hall. The model has been bench-marked against a set of foil activation measurements which were activated during an experimental campaign with deuterium/tritium plasmas. The model can predict the neutron activation of the foils on the torus hall walls to within a factor of three for reactions with little sensitivity to thermal neutrons. The use of scandium foils with and without a cadmium thermal neutron absorber was a useful monitor of the thermal neutron flux. Conclusions regarding the usefulness of other foils for benchmarking the calculations are also given

  7. Determination of element composition by means of neutron activation analysis in vitro

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Brovtsyn, V.K.; Spryshkova, R.A.; Porokhov, S.N.; Borisov, G.I.; Leonov, V.F.

    1979-01-01

    A method of neutron activation analysis of bones in vitro for calcium, phosphorus, sodium, chlorine and magnesium with the use of reactor neutrons was proposed. The normal osseous tissue was the object of studies. Samples obtained from diaphyses of the femur, tibia, fibula and also from distal epiphysis of the femur, proximal epiphysis of the tibia and fibula were analysed. Osseous tissue samples were taken from 17 male cadavers aged 20-52. The mean indices of the concentration of the elements in the diaphyses and epiphyses of bones in various age groups, averaged values of concentrations for the entire age range and also the weighted mean content of these elements according to age groups were determined

  8. The importance of using the mixed neutron flux in activation analysis of D-3He fueled reactors

    International Nuclear Information System (INIS)

    Khater, H.Y.; Sawan, M.E.

    1992-01-01

    This paper reports on the D-D and D-T secondary reactions in D- 3 He reactors which provide the neutron source term for most of the radioactivity produced in the structure of the reactor. radionuclides are produced as a result of neutron interactions with their parent nuclides. The amount of activity produced by any radionuclide depends on the number of its parent atoms present at any given time. One approach to account for the activity induced by both neutron sources in any activation analysis is to add their individual contributions. Performing two separate calculations for the D-D and D-T neutron flux components and adding their contributions yields conservative results due to underestimating the destruction of the parent atoms. The overestimation is more pronounced for short and intermediate lived nuclides, long operation time, large neutron flux and large destruction cross section for the parent atoms. In the steel first wall of a typical d- 3 He reactor, adding the individual contributions of the tow neutron sources results in overestimating the activities produced by most of the radioactive isotopes of Ag, Lu, Ta, W and Re. After 30 years of reactor operation, the activity of 187 W, which is a major source of safety concern in case of an accident, is more than an order of magnitude higher than its value if the mixed neutron flux is used. The activity of 188 Re, which is an important source of offsite does in case of accidental release, is overestimated by more than a factor of two

  9. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    Zaghloul, R.; Abd El-Haleam, A.; Mostafa, M.; Gantner, E.; Ache, H.J.

    1993-04-01

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm 3 . Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  10. Determination of trace elements in a cigarette paper by neutron activation analysis

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.; Khalkhali, Zh.; Razeghi, M.; Parsa, B.

    The concentration of 19 trace elements in a cigarette paper (Zig-Zag Paper Company, France) which is used in making different brands of Iranian cigarettes, has been measured by neutron activation analysis, employing a high-resolution Ge(Li) detector. They include Na, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Br, Sr, Sb, Ba, Ce, Eu, Gd, Au, Hg, and Th. (author)

  11. New method in the criminalistics: neutron-activation analysis of the human hair

    International Nuclear Information System (INIS)

    Gabor, I.; Simonits, A.

    1979-01-01

    The application of the neutron activation analysis for the examination of human hair for criminological purposes is discussed. Earlier Nal scintillation detector and 256-channels analyzer were used and only form trace elements could be detected in the hair. Recently using Ge/Li detector and a 1024-channels analyzer 11 trace elements were detected in the human hair. (H.E.)

  12. Low Temperature Irradiation Applied to Neutron Activation Analysis of Mercury In Human Whole Blood

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1966-02-15

    The distribution of mercury in human whole blood has been studied by means of neutron activation analysis. During the irradiation procedure the samples were kept at low temperature by freezing them in a cooling device in order to prevent interferences caused by volatilization and contamination. The mercury activity was separated by means of distillation and ion exchange techniques.

  13. Low Temperature Irradiation Applied to Neutron Activation Analysis of Mercury In Human Whole Blood

    International Nuclear Information System (INIS)

    Brune, D.

    1966-02-01

    The distribution of mercury in human whole blood has been studied by means of neutron activation analysis. During the irradiation procedure the samples were kept at low temperature by freezing them in a cooling device in order to prevent interferences caused by volatilization and contamination. The mercury activity was separated by means of distillation and ion exchange techniques

  14. Salvinia auriculata: Aquatic bioindicator studied by instrumental neutron activation analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Soares, Daniel Cristian; Figueiredo de Oliveira, Ester [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Avenida Antonio Carlos, 6627 Pampulha, CEP 30123-970 Belo Horizonte, Minas Gerais (Brazil); Fatima Silva, Gracia Divina de; Duarte, Lucienir Pains [Departamento de Quimica, ICEx, Nucleo de estudos de Plantas Medicinais (NEPLAM), Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627 Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Pott, Vali Joana [Empresa Brasileira de Agropecuaria (EMBRAPA), BR 262 km 4, Caixa Postal 154, CEP 79002-970 Campo Grande, Mato Grosso do Sul (Brazil); Vieira Filho, Sidney Augusto [Escola de Farmacia, DEFAR, Universidade Federal de Ouro Preto, Rua Costa Sena, 171, CEP 35400-000 Ouro Preto, Minas Gerais (Brazil)], E-mail: bibo@ef.ufop.br

    2008-05-15

    Through instrumental neutron activation analysis (INAA) the elemental chemical composition of Salvinia auriculata and Ouro Preto city public water was determined. Elements Ce, Th, Cr, Hf, Sb, Sc, Rb, Fe, Zn, Co, Au, La and Br were quantified. High chromium concentration was determined in this plant. But, chromium was determined only in low concentrations in the water. The results indicate the great capacity of this plant to absorb and accumulate inorganic elements.

  15. Neutron activation analysis of high pure uranium using preconcentration

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Rakhimov, A.V.; Salimov, M.I.; Zinov'ev, V.G.

    2006-01-01

    Full text: Uranium and its compounds are used as nuclear fuel, and requirements for purity of initial uranium are very high. Therefore highly sensitive and multielemental analysis of uranium is required. One of such methods is neutron activation analysis (NAA). During irradiation of uranium by nuclear reactor neutrons the induced radioactivity of a sample is formed by uranium radionuclide 239 U (T 1/2 = 23,4 min.) and its daughter radionuclide 239 Np (T 1/2 = 2,39 d). Short-lived 239 U almost completely decays in 24 hours after irradiation and the radioactivity of the sample is mainly due to 239 Np and is more than 10 9 Bq for 0.1 g of uranium sample (F = 1*10 14 cm -2 s -1 , t irr . = 5 h). That is why nondestructive determination of the impurities is impossible and they should be separated from 239 Np. When irradiated uranium yields fission products - radionuclides of some elements with mass numbers 91-104 and 131-144. The main problem in NAA of uranium is to take into account correctly the influence of fission products on the analysis results. We have developed a radiochemical separation procedure for RNAA of uranium [1]. Comparing the results of analysis carried out by radiochemical NAA and instrumental NAA with preconcentration of trace elements can be used for evaluating the interference of fission products on uranium analysis results. Preconcentration of trace elements have been carried out by extraction chromatography in 'TBP - 6M HNO 3 ' system [1]. Experiments have shown that if 0.1 g uranium sample is taken for analysis (F = 1*10 14 cm -2 s -1 , t irr . =5 h) the apparent concentration of Y, Zr, Mo, Cs, La, Ce, Pr, Nd exceeds the true concentration by 2500-3000 times and so determination of these elements is not possible by radiochemical NAA. (author)

  16. Determination of mercury in urine through Neutron activation analysis in dentists, as a measure of occupational exposure

    International Nuclear Information System (INIS)

    Padilla M, M.A.

    2000-01-01

    The mercury level was studied in urine to a dentists group belonging at the Universidad Autonoma del Estado de Mexico to determine the grade of contamination to the exposure of this element during their occupational activity. It was used the Neutron activation analysis which is an analytical method based in the irradiation with neutrons toward a stable nuclide. This can suffer a nuclear transformation to produce a radioactive nuclide and so it will be able to realize a quantitative analysis of itself. The TRIGA Mark III Reactor at the Nuclear Center in Mexico was used to realize this type of analysis due to the neutron fluxes which can be obtained as well as to the facilities in the irradiation of the sample.The purpose of this work is to determine the concentrations of mercury in the occupational exposed personnel such as dentists and so giving the recommendations of safety required to their production. (Author)

  17. Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization

    Science.gov (United States)

    Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon

    2017-07-01

    This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.

  18. Application of neutron activation analysis method on biomonitors for assessing environment quality

    International Nuclear Information System (INIS)

    Nitescu, E. A.; Valeca, S.; Bucsa, A. F.

    2016-01-01

    The purpose of this paper is to determine the chemical elements concentrations which affect both the population health and environment, such as toxic agents which are contained in air and are retained by precipitation inside the biomonitors vegetal tissues. The Neutron Activation Analysis is an analytic technique based on measuring the numbers and the energy of gamma radiation emitted by the radioactive isotopes produced in the sample matrix by irradiation with thermal neutrons in a nuclear reactor [1]. Usually, the samples are irradiated together with specific neutron flux monitors, duplicates and interest elements standards for a prior selected period of time inside the core of nuclear reactor. After the irradiation experiment and the specific radioactive decaying, can proceed measuring the gamma energies spectrum by using a high resolution detection system (HPGe - High Purity Germanium crystal) for gamma spectrometry and then assess the impact of the traced elements on population and environment. (authors)

  19. Determination of inorganic component in plastics by neutron activation analysis

    International Nuclear Information System (INIS)

    Mateus, Sandra Fonseca; Saiki, Mitiko

    1995-01-01

    In order to identify possible sources of heavy metals in municipal solid waste incinerator ashes, plastic materials originated mainly from household waste were analyzed by using instrumental neutron activation analysis method. Plastic samples and synthetic standards of elements were irradiated at the IEA-R1 nuclear reactor for 8 h under thermal neutron flux of about 10 13 n cm -2 s -1 . After adequate decay time, counting were carried out using a hyperpure Ge detector and the concentrations of the elements As, Ba, Br, Cd, Co, Cr, Fe, Sb, Sc, Se, Sn, Ti and Zn were determined. For some samples, not all these elements were detected. Besides, the range of concentrations determined in similar type and colored samples varied from a few ppb to percentage. In general, colored and opaque plastic samples presented higher concentrations of the elements than those obtained from transparent and milky plastics. Precision of the results was also evaluated. (author). 3 refs., 2 tabs

  20. Evaluation of new pharmaceuticals using in vivo neutron inelastic scattering and neutron activation analysis

    International Nuclear Information System (INIS)

    Kehayias, J.J.

    2000-01-01

    Nutritional status of patients can be evaluated by monitoring changes in body composition, including depletion of protein and muscle, adipose tissue distribution and changes in hydration status, bone or cell mass. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. The fast neutrons are produced with a sealed deuterium-tritium (D-T) neutron generator. This method provides the most direct assessment of body composition. Non-bone phosphorus for muscle is measured by the 31 P(n,α) 28 Al reaction, and nitrogen for protein via the (n,2n) fast neutron reaction. Inelastic neutron scattering is used for the measurement of total body carbon and oxygen. Carbon is used to derive body fat, after subtracting carbon contributions due to protein, bone and glycogen. Carbon-to-oxygen (C/O) ratio is used to measure distribution of fat and lean tissue in the body and to monitor small changes of lean mass and its quality. In addition to evaluating the efficacy of new treatments, the system is used to study the mechanisms of lean tissue depletion with aging and to investigate methods for preserving function and quality of life in the elderly. (author)

  1. Neutron activation analysis of the MIBI, MAG-3 and sodium fitate active principles

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Perez Sayaz, G.; Moreno Bermudez, J.; Ribeiro Guevara, S.; Molina Insfran, J.

    1996-01-01

    Neutron activation analysis (NAA) both instrumental (INAA) and radiochemical (RNAA) are extensively applied for determination of minor and trace elements in samples of quite different origin and composition. Particularly, the application of INAA is well recognized for analysis of microquantitis of heavy metals as well as toxic elements in biological samples. In this work the possibility of the determination of MIBI, MAG-3 and sodium fitate elemental composition by INAA was investigated Analytical information about the concentration and/or detection limits of some toxic elements (Hg, Cd, As, Se, Sb) and other trace elements of interest (Fe, Cr, Co, Zn, Br) was obtained. The samples were irradiated in the CAb Ra-6 nuclear research reactor

  2. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  3. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal

    2009-01-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10 11 ncm -2 s -1 . The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g -1 . Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  4. Determination of mercury in air by adsorption on Hopcalite and by neutron activation analysis

    International Nuclear Information System (INIS)

    Leyni-Barbaz, D.; Zikovsky, L.; Poissant, L.

    2002-01-01

    A new method for the determination of mercury in air has been developed. It combines the adsorption of mercury on Hopcalite (a material approved for this purpose by the National Institute of Health of the United States) and its quantification by neutron activation. The concentrations of mercury in office air in Montreal, Canada, were determined by instrumental semiabsolute neutron activation analysis. They varied from 39 to 48 ng/m 3 . The results were compared with the concentrations of mercury in office air determined simultaneously at the same place by cold vapour atomic fluorescence spectrophotometry. A close correlation between the results of the 2 methods was obtained. The detection limit of our method is about 14 ng/m 3 . (author)

  5. Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials

    International Nuclear Information System (INIS)

    English, G.A.; Firestone, R.B.; Perry, D.L.; Reijonen, J.P.; Ka-Ngo Leung; Garabedian, G.F.; Molnar, G.L.; Revay, Zs.

    2008-01-01

    Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a 'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity. (author)

  6. Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials

    International Nuclear Information System (INIS)

    Firestone, Richard B; English, G.A.; Firestone, R.B.; Perry, D.L.; Reijonen, J.P.; Leung, Ka-Ngo; Garabedian, G.F.; Molnar, G.L.; Revay, Zs.

    2008-01-01

    Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a 'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents.1-3. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity

  7. Trace elements monitored with neutron activation analysis durig neurodegeneration in brains of mutant mice

    Czech Academy of Sciences Publication Activity Database

    Kranda, Karel; Kučera, Jan; Bäurle, J.

    2006-01-01

    Roč. 269, č. 3 (2006), s. 555-559 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z10480505 Keywords : trace elements * neutron activation analysis * brain neurodegeneration * mutant mice Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  8. Analysis of human enamel and dentine by neutron activation analysis; Analise de esmalte e dentina de humanos pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marco A.B. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica]. E-mail: vankfire@gmail.com; Adachi, Eduardo M.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2005-07-01

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x10{sup 12} n cm{sup -2} s{sup -1} were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 10{sup 12} n cm{sup -2} s{sup -1} the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the {mu}g g{sup -1} levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  9. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Science.gov (United States)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  10. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Directory of Open Access Journals (Sweden)

    Çeçen Yiğit

    2017-01-01

    Full Text Available In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs. If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270° with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s which is compatible with an americium-beryllium (Am-Be neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  11. Principles and methods of neutron activation analysis (NAA) in improved water resources development

    International Nuclear Information System (INIS)

    Dim, L. A.

    2000-01-01

    The methods of neutron activation analysis (NAA) as it applies to water resources exploration, exploitation and management has been reviewed and its capabilities demonstrated. NAA has been found to be superior and offer higher sensitivity to many other analytical techniques in analysis of water. The implications of chemical and element concentrations (water pollution and quality) determined in water on environmental impact assessment to aquatic life and human health are briefly highlighted

  12. Biological and environmental reference materials in neutron activation analysis work

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The great usefulness of reference materials, especially ones of certified elemental composition, is discussed with particular attention devoted to their use in instrumental neutron activation analysis (INAA) work. Their use, including both certified and uncertified values, in calculations made by the INAA Advance Prediction Computer Program (APCP) is discussed. The main features of the APCP are described, and mention is made of the large number of reference materials run on the APCP (including the new personal computer version of the program), with NBS Oyster Tissue SRM-1566 used as the principal examle. (orig.)

  13. In vivo neutron activation analysis: body composition studies in health and disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables

  14. In vivo neutron activation analysis: body composition studies in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.

  15. Nuclear data and the effects of its inconsistency on instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, I.M.

    2006-04-01

    In this study, we examine the role of nuclear data in Instrumental Neutron Activation Analysis (INAA) particularly as it affects determination of reactor flux parameters and application of comparator methods. The work reviewed the available sources of nuclear data, the variations that exist from one source to the other and the effects of such variations on INAA. Measurement of Neutron flux parameters in inner and outer irradiation channel of a miniature neutron source reactor was carried out using two independent nuclear data sources to investigate the effects of inconsistency of nuclear data on the precision of analytical result. The result obtained shows a slight variation of flux parameters with nuclear data source. It was also observed that modification of the earlier compiled basic nuclear data lead to inconsistencies in the secondary data that applies it. (author)

  16. Study of trace impurities in heroin by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Yang, J.H.; Ouyang, H.; Li, Z.J.; Chai, Z.F.; Zhu, J.; Xi'an JiaoTong Univ., Shaanxi; Zhao, J.Z.; Yu, Z.S.; Wang, J.

    2004-01-01

    Sixty-two heroin samples were analyzed for their contents of 15 trace elements (Au, Ba, Br, Ca, Ce, Co, Cr, Fe, La, Na, Sb, Sc, Sm, Th, and Zn) by neutron activation analysis (NAA). Large variations of elemental concentrations between samples were found to possess statistical significance. Of all the elements calcium was the most abundant element, followed by zinc and sodium. The concentrations of Au, Ce, Co, La, Sb, Sc, Sm, and Th in all the samples were below 1 μg x g -1 . Classification of these heroin samples was achieved by the application of hierarchical cluster analysis. The results show that NAA can provide useful information on the origin of the illicit drugs. (author)

  17. Determination of Rare Earth Elements in plants by neutron activation analysis

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Maria, Sheila P.; Ceccantini, Gregorio C.T.

    1996-01-01

    In the present work, instrumental neutron activation analysis was employed to the determination of rare earth elements (La, Ce, Nd, Eu, Tb, Yb e Lu) in plants, aiming biogeochemical studies. The precision and accuracy of the method were verified by the analysis of the reference materials Citrus Leaves (NIST 1572) and Pine Needles (NIST 1575). With exception of terbium, the results obtained agreed with reference values, giving relative errors less than 25%. The method was applied to different species of plants growing in the alkaline-ultramafic complex of Salitre, MG and the obtained data were compared to the average content in plants. (author)

  18. Determination of iodine 129 in environmental samples from Austria by neutron activation analysis

    International Nuclear Information System (INIS)

    Karg, V.; Schoenfeld, T.

    1986-11-01

    For various types of samples (thyroids from humans, from game and cows; ground water, snow and air filters) the 129 I-contents, expressed as 129 I/ 127 I-ratio (R), were determined by neutron activation analysis. The method utilises the neutron induced reactions 129 I(n, γ) 130 I and 127 I(n, 2n) 126 I. Four main steps are involved: 1. Separation of iodine from the sample and conversion to a form suitable for neutron irradiation. 2. Irradiation in a reactor. 3. Chemical processing of the irradiated material, i.e. separation of radio-iodine with addition of carrier. 4. Measurement of activities of 130 I and 126 I with a gammaspectrometer. The 129 I/ 127 I-ratio (R) is then obtained by comparing with the activities produced in a reference sample (usually with R = 1.0 x 10 -8 ) which is irradiated simultaneously. Details of the method are presented in the report. R-values between 0.6 x 10 -8 and 39 x 10 -8 were found. The highest values were those of snow and game thyroids. Ground water contained very little 129 I. The results confirm the expectation that 129 I enters the biosphere mainly via air and precipitation. (Author)

  19. Determination of mercury in biologycal samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Suc, N.V.

    1989-01-01

    The radiochemical neutron activation analysis was applied to determine contents of mercury in biological samples. Samples were digested in mixing of H 2 SO 4 and HNO 3 acid. After extraction of mercury by Ni-Ditiodietylphosphoric acid in carbontetrachloride, mercury was back extracted by 5% KI solution. Contents of mercury from five samples of fish was determined by this method. The accuracy of the method was checked by comparing it with NBS standard samples and results are good agreement

  20. Characterization of 'kayam churan', an ayurvedic medicine using neutron activation analysis

    International Nuclear Information System (INIS)

    Swain, Kallola K.; Kayasth, Satish

    2004-01-01

    'Kayam Churan', a typical ayurvedic medicine, is used with specific compositions in various human body-disorders like, purgative in case of problems associated with constipation, acidity, headache, eye burning, hand and leg burning and other skin diseases. In the present work, this matrix has been characterized for possible inorganic elements using Neutron activation analysis (NAA). The possible effect of the different elements and its correlation for medicinal use of this matrix has been discussed in this paper. (author)