WorldWideScience

Sample records for neutrinos spin flavour

  1. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  2. A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-10-01

    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which are induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev–Smirnov–Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13. Flavour conversions are solved numerically for various neutrino parameter sets, with the presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced νe→bar nue transition occurs if the following conditions are all satisfied: the value of μνB (μν is the neutrino magnetic moment and B is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13 is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to the original νe emitted from the neutronization burst would exist in the time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, the characteristics of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.

  3. Neutrino-Flavoured Sneutrino Dark Matter

    CERN Document Server

    March-Russell, John; McCullough, Matthew

    2010-01-01

    A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique `smoking gun' signature--sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of nu_mu and nu_tau (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of...

  4. Lepton flavour symmetry and the neutrino magnetic moment

    International Nuclear Information System (INIS)

    Ecker, G.; Grimus, W.

    1990-01-01

    With the standard model gauge group and the three standard left-handed Weyl neutrinos, two minimal scenarios are investigated where an arbitrary non-abelian lepton flavour symmetry group G H is responsible for a light neutrino with a large magnetic moment. In the first case, with scalar fields carrying lepton flavour, some finetuning is necessary to get a small enough neutrino mass for μ ν = O(10 -11 μ B ). In the second scenario, the introduction of heavy charged gauge singlet fermions with lepton flavour allows for a strictly massless neutrino to one-loop order. In both cases, the interference mechanisms for small m ν and large μ ν is unique, independently of G H . In explicit realizations of the two scenarios, the horizontal groups are found to be non-abelian extensions of a Zeldovich-Konopinski-Mahmoud lepton number symmetry. Only a discrete part of G H is spontaneously broken leading to a light Dirac neutrino with a large magnetic moment. (Authors) 22 refs., 3 figs

  5. On the origin of neutrino flavour symmetry

    International Nuclear Information System (INIS)

    King, Stephen F.; Luhn, Christoph

    2009-01-01

    We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such 'indirect' models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the Δ(3n 2 ) and Δ(6n 2 ) groups, together with other examples such as Z 7 x Z 3 . In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.

  6. Three-flavoured neutrino oscillations and the Leggett-Garg inequality

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, Debashis; Roy, Animesh Sinha [Ramakrishna Mission Vivekananda University, Department of Physics, Howrah, West Bengal (India)

    2017-04-15

    Three-flavoured neutrino oscillations are investigated in the light of the Leggett-Garg inequality (LGI). The results obtained are: (a) The maximum violation of the LGI is 2.17036 for neutrino path length L{sub 1} = 140.15 km and ΔL = 1255.7 km. (b) The presence of the mixing angle θ{sub 13} enhances the maximum violation of LGI by 4.6%. (c) The currently known mass hierarchy parameter α = 0.0305 increases the maximum violation of LGI by 3.7%. (d) The presence of a CP-violating phase parameter enhances the maximum violation of LGI by 0.24%, thus providing an alternative indicator of CP violation in three-flavoured neutrino oscillations. The outline of an experimental proposal is suggested whereby the findings of this investigation may be verified. (orig.)

  7. Complex scaling and residual flavour symmetry in the neutrino mass ...

    Indian Academy of Sciences (India)

    Probir Roy

    2017-10-09

    Oct 9, 2017 ... Leptonic Dirac CP violation must be maximal while atmospheric neutrino mixing need not be exactly maximal. Each of the two Majorana phases, to be probed by the search for 0νββ decay, has to be zero or π and a normal neutrino mass hierarchy is allowed. Keywords. Neutrinos; residual flavour symmetry; ...

  8. Massive Neutrinos and Flavour Violation

    CERN Document Server

    Masiero, A; Vives, O; Masiero, Antonio; Vempati, Sudhir K.; Vives, Oscar

    2004-01-01

    In spite of the large lepton flavour violation (LFV) observed in neutrino oscillations, within the Standard Model, we do \\textit{not} expect any visible LFV in the charged lepton sector ($\\mu \\to e, \\gamma$, $\\tau \\to \\mu, \\gamma$, etc.). On the contrary, the presence of new physics close to the electroweak scale can enhance the amplitudes of these processes. We discuss this in general and focus on a particularly interesting case: the marriage of low-energy supersymmetry (SUSY) and seesaw mechanism for neutrino masses (SUSY seesaw). Several ideas presented in this context are reviewed both in the bottom-up and top-down approaches. We show that there exist attractive models where the rate for LFV processes can attain values to be probed in pre-LHC experiments.

  9. Massive neutrinos and flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, Antonio [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, and INFN, Sezione di Padova, via F Marzolo 8, I-35131, Padova (Italy); Vempati, Sudhir K [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, and INFN, Sezione di Padova, via F Marzolo 8, I-35131, Padova (Italy); Vives, Oscar [Theory Group, Physics Department, CERN, Geneva (Switzerland)

    2004-12-01

    In spite of the large lepton flavour violation (LFV) observed in neutrino oscillations, within the Standard Model, we do not expect any visible LFV in the charged lepton sector ({mu} {yields} e, {gamma}, {tau} {yields} {mu}, {gamma}, etc). On the contrary, the presence of new physics close to the electroweak scale can enhance the amplitudes of these processes. We discuss this in general and focus on a particularly interesting case: the marriage of low-energy supersymmetry (SUSY) and seesaw mechanism for neutrino masses (SUSY seesaw). Several ideas presented in this context are reviewed both in the bottom-up and top-down approaches. We show that there exist attractive models where the rate for LFV processes can attain values to be probed in pre-LHC experiments.

  10. Neutrino Mass and Flavour Models

    International Nuclear Information System (INIS)

    King, Stephen F.

    2010-01-01

    We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

  11. The Liouville equation for flavour evolution of neutrinos and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-12-01

    We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.

  12. Minimal flavour violation and neutrino masses without R-parity

    DEFF Research Database (Denmark)

    Arcadi, G.; Di Luzio, L.; Nardecchia, M.

    2012-01-01

    symmetry breaking all the couplings of the superpotential including the R-parity violating ones. If R-parity violation is responsible for neutrino masses, our setup can be seen as an extension of MFV to the lepton sector. We analyze two patterns based on the non-abelian flavour symmetries SU(3)(4) circle...... times SU(4) and SU(3)(5). In the former case the total lepton number and the lepton flavour number are broken together, while in the latter the lepton number can be broken independently by an abelian spurion, so that visible effects and peculiar correlations can be envisaged in flavour changing charged...

  13. Resonant spin-flavor precession of neutrino and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Bychuk, O.V.; AN SSSR, Moscow

    1989-01-01

    Resonant amplification of spin-flavor precession of neutrinos in solar matter is considered. Some possible consequences of the process are discussed. It is shown that resonant spin-flavor neutrino precession may account for the deficit of solar neutrinos in Davis' experiment and the anticorrelation between the rate of neutrino counting and solar activity. Experiments are considered which should make it possible to distinguish between spin-flavor neutrino precession and the Mikheyev-Smirnov-Wolfenstein effect. A new restriction on the usual spin precession of solar neutrinos is derived

  14. Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics

    CERN Document Server

    Jones-Pérez, Joel

    2014-01-01

    In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.

  15. Characterization of beer flavour stability (EPR - spin trapping)

    International Nuclear Information System (INIS)

    Stasko, A.; Liptakova, M.; Malik, F.

    1999-01-01

    The beer flavour stability is coupled with free radical degradation processes. Probably, aldehydes produced during the brewery but also generated by stalling are responsible for beer flavour as well as for its breaking down. The storing beer at the lower temperatures and in the dark place inhibits, and otherwise the rising temperature and illumination accelerate the rate of such radical processes. Beers contain naturally occurring radical scavengers - antioxidants which inhibit such unwanted reactions. Then depleting of scavengers results in the breaking down of the beer stability. EPR spin trapping technique was used as monitor such processes and for characterising so the flavour stability of beer. The probe was temperated at 60 grad C in the cavity of EPR spectrometer in the presence of spin trapping agent, N-tert.-butyl-α-phenyl nitrone (PBN) and EPR spectra were recorded for few hours. After beer antioxidants become depleted, free radicals formed by the beer degradation are scavenged by PBN spin trap and this point is characterised with a dramatically increased concentration of the free radicals trapped

  16. Flavoured neutrino mass models. A taste of leptons at low and high energies

    International Nuclear Information System (INIS)

    Geib, Tanja

    2018-01-01

    The only direct experimental evidence for physics beyond the Standard Model are the oscillations of neutrino species. Explaining this surprising discovery has led to a variety of potential New Physics models. Since neutrino oscillations demonstrate that lepton flavour is not conserved in Nature, New Physics models tend to introduce additional lepton flavour and sometimes even lepton number violating physics. The validity of any New Physics setting is assessed based on the consistency of its predictions with experimental data. In the near future, lepton flavour and/or number violating conversions of bound muons are expected to undergo the most dramatic experimental advances. By improving currents limits by several orders of magnitude, these reactions will become the most sensitive probe for charged lepton flavour/number violation. Therefore, exploring new opportunities such as these is essential to unravel novel physics beyond the Standard Model. The goal of this thesis is to contribute to improving the testability of New Physics models with respect to two different aspects, focusing on neutrino models with additional lepton flavour and/or lepton number violation. First, both the lepton flavour violating μ - -e - conversion and the lepton flavour and lepton number violating μ - -e + conversion require solid theoretical predictions to fully exploit their potential for investigating promising New Physics models. Since both types of bound muon conversions currently lack certain elements in their theoretical treatment, we work towards closing these gaps. To that end, we present our detailed and comprehensive computations which aim at making both processes accessible to the particle physics community. Furthermore, we compare predictions from a selection of New Physics models to current experimental data and future expected sensitivities. We also show how experiments at low energies, indirectly looking for New Physics via charged lepton flavour and lepton number

  17. Spin light of neutrino in matter and electromagnetic fields

    International Nuclear Information System (INIS)

    Lobanov, A.; Studenikin, A.

    2003-01-01

    A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important

  18. Resonant amplification of neutrino spin rotation in matter and the solar-neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.

    1988-01-01

    It is shown that in the presence of matter there can occur resonant amplification of the flavor-changing neutrino spin rotation in transverse magnetic fields, which is roughly analogous to the Mikheyev-Smirnov-Wolfenstein effect in neutrino oscillations. Possible consequences for solar neutrinos are briefly discussed. (orig.)

  19. Definitions of minimal flavour violation for leptons

    International Nuclear Information System (INIS)

    Palorini, F.

    2006-01-01

    Neutrino masses imply the violation of lepton flavour and new physics beyond the Standard Model. However, flavour change has only been observed in oscillations. In analogy with the quark sector, we could deduce the existence of a principle of Minimal Flavour Violation also for Leptons (MFVL). Such an extension is not straightforward, since the mechanisms generating neutrino masses are unknown and many scenarios can be envisaged. Thus, we explore some possible definitions of MFVL and propose a notion that can include many models. We show, furthermore, that flavour violating processes are not necessarily controlled by the PMNS mixing matrix. (author)

  20. Neutrino mixing and big bang nucleosynthesis

    Science.gov (United States)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  1. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 1. Resonant spin-flavor precession constraints on the neutrino parameters and the twisting structure of the solar magnetic fields from the solar neutrino data. S Dev Jyoti Dhar Sharma U C Pandey S P Sud B C Chauhan. Research Articles Volume 61 Issue 1 ...

  2. Successful N2 leptogenesis with flavour coupling effects in realistic unified models

    International Nuclear Information System (INIS)

    Bari, Pasquale Di; King, Stephen F.

    2015-01-01

    In realistic unified models involving so-called SO(10)-inspired patterns of Dirac and heavy right-handed (RH) neutrino masses, the lightest right-handed neutrino N 1 is too light to yield successful thermal leptogenesis, barring highly fine tuned solutions, while the second heaviest right-handed neutrino N 2 is typically in the correct mass range. We show that flavour coupling effects in the Boltzmann equations may be crucial to the success of such N 2 dominated leptogenesis, by helping to ensure that the flavour asymmetries produced at the N 2 scale survive N 1 washout. To illustrate these effects we focus on N 2 dominated leptogenesis in an existing model, the A to Z of flavour with Pati-Salam, where the neutrino Dirac mass matrix may be equal to an up-type quark mass matrix and has a particular constrained structure. The numerical results, supported by analytical insight, show that in order to achieve successful N 2 leptogenesis, consistent with neutrino phenomenology, requires a ''flavour swap scenario'' together with a less hierarchical pattern of RH neutrino masses than naively expected, at the expense of some mild fine-tuning. In the considered A to Z model neutrino masses are predicted to be normal ordered, with an atmospheric neutrino mixing angle well into the second octant and the Dirac phase δ≅ 20 o , a set of predictions that will be tested in the next years in neutrino oscillation experiments. Flavour coupling effects may be relevant for other SO(10)-inspired unified models where N 2 leptogenesis is necessary

  3. Single-flavour and two-flavour pairing in three-flavour quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Cowan, Greig A

    2006-01-01

    We study single-flavour quark pairing ('self-pairing') in colour-superconducting phases of quark matter, paying particular attention to the difference between scenarios where all three flavours undergo single-flavour pairing, and scenarios where two flavours pair with each other ('2SC' pairing) and the remaining flavour self-pairs. We perform our calculations in the mean-field approximation using a pointlike four-fermion interaction based on single gluon exchange. We confirm the result from previous weakly-coupled-QCD calculations that when all three flavours self-pair the favoured channel for each is colour-spin-locked (CSL) pseudoisotropic pairing. However, we find that when the up and down quarks undergo 2SC pairing, they induce a colour chemical potential that disfavours the CSL phase. The strange quarks then self-pair in a 'polar' channel that breaks rotational invariance, although the CSL phase may survive in a narrow range of densities

  4. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    Energy Technology Data Exchange (ETDEWEB)

    Sobkow, W.; Blaut, A. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland)

    2016-05-15

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, V + A weak interactions in addition to the standard vector-axial (V - A) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings. (orig.)

  5. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  6. Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields

    International Nuclear Information System (INIS)

    Miranda, O.G.; Pena-Garay, C.; Valle, J.W.F.; Rashba, T.I.; Semikoz, V.B.

    2001-01-01

    The analysis of the resonant spin-flavour (RSF) solutions to the solar neutrino problem in the framework of the simplest analytical solutions to the solar magnetohydrodynamics (MHD) equations is presented. We performed the global fit of the recent solar neutrino data, including event rates as well as zenith angle distributions and recoil electron spectra induced by solar neutrino interactions in Superkamiokande. We compare quantitatively our simplest MHD-RSF fit with vacuum oscillation (VAC) and MSW-type (SMA, LMA and LOW) solutions to the solar neutrino problem using a common well-calibrated theoretical calculation and fit procedure and find MHD-RSF fit to be somewhat better than those obtained for the favored neutrino oscillation solutions. We made the predictions for future experiments (e.g., SNO) to disentangle the MHD-RSF scenario from other scenarios

  7. Beam and experiments summary [neutrino studies

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will. Answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high- intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only mode...

  8. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  9. Gauged Lepton Flavour

    CERN Document Server

    Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.

  10. Neutrino Oscillations

    Indian Academy of Sciences (India)

    The 2015 Nobel Prize in Physics was awarded to two physicists-Takaaki Kajita and Arthur B McDonald, whose teams discoveredthat neutrinos, which come in three flavours, changefrom one flavour to another. This discovery is a major milestonein particle physics as it gives a clear evidence of physicsbeyond the Standard ...

  11. First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions --charged and neutral current interactions of all flavours-- are considered in a search for point-like

  12. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  13. Relic neutrino asymmetry evolution from first principles

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.

    1998-09-01

    The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)

  14. Majorana mass term, Dirac neutrinos and selective neutrino oscillations

    International Nuclear Information System (INIS)

    Leung, C.N.

    1987-01-01

    In a theory of neutrino mixing via a Majorana mass term involving only the left-handed neutrinos there exist selection rules for neutrino oscillations if true Dirac and/or exactly zero mass eigenstates are present. In the case of three neutrino flavours no oscillation is allowed if the mass spectrum contains one Dirac and one nondegenerate Majorana massive neutrino. The origin of these selection rules and their implications are discussed and the number of possible CP-violating phases in the lepton mixing matrix when Dirac and Majorana mass eigenstates coexist is given. (orig.)

  15. LHCb : Search for Lepton Flavour Violation at LHCb

    CERN Multimedia

    Rives Molina, Vicente

    2014-01-01

    The observation of neutrino oscillations has re-opened the case for searches of lepton-flavour violating decays. We report on recent results on searches for short or long-lived Majorana heavy neutrinos in B&arr;μμπ and τ→μμμ decays

  16. Spin-down of neutron stars by neutrino emission

    International Nuclear Information System (INIS)

    Dvornikov, Maxim; Dib, Claudio

    2010-01-01

    We study the spin-down of a neutron star during its early stages due to the neutrino emission. The mechanism we consider is the subsequent collisions of the produced neutrinos with the outer shells of the star. We find that this mechanism can indeed slow down the star rotation but only in the first tens of seconds of the core formation, which is when the appropriate conditions of flux and collision rate are met. We find that this mechanism can extract less than 1% of the star angular momentum, a result which is much less than previously estimated by other authors.

  17. Possible spin 3/2 quarks in neutrino reactions

    International Nuclear Information System (INIS)

    Aguiar, C.E.M.; Lopes, A.L.B.; Martins Simoes, J.A.; Leite Lopes, J.

    1984-01-01

    In this paper we discuss the hypothesis that quarks are composite objects and that excited states with spin 3/2 can be produced in neutrino reactions. Experimental consequences are analysed. The most relevant ones are scaling violations of a particular type and a consistent rate for same-sign dileptons

  18. All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Physik-department, Garching (Germany); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Cruz Silva, A.H.; Franckowiak, A.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Arguelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berghaus, P. [National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow (Russian Federation); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2016-10-15

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, left angle σ{sub A}v right angle, for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on left angle σ{sub A}v right angle, reaching a level of 10{sup -23} cm{sup 3} s {sup -1}, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube. (orig.)

  19. Exploration of possible quantum gravity effects with neutrinos I: Decoherence in neutrino oscillations experiments

    International Nuclear Information System (INIS)

    Sakharov, Alexander; Mavromatos, Nick; Sarkar, Sarben; Meregaglia, Anselmo; Rubbia, Andre

    2009-01-01

    Quantum gravity may involve models with stochastic fluctuations of the associated metric field, around some fixed background value. Such stochastic models of gravity may induce decoherence for matter propagating in such fluctuating space time. In most cases, this leads to fewer neutrinos of all active flavours being detected in a long baseline experiment as compared to three-flavour standard neutrino oscillations. We discuss the potential of the CNGS and J-PARC beams in constraining models of quantum-gravity induced decoherence using neutrino oscillations as a probe. We use as much as possible model-independent parameterizations, even though they are motivated by specific microscopic models, for fits to the expected experimental data which yield bounds on quantum-gravity decoherence parameters.

  20. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  1. Flavour and spin structure of linear baryons

    International Nuclear Information System (INIS)

    Kawarabayashi, K.; Kitakado, S.; Inami, T.

    1979-01-01

    Based on the string picture, a phenomenological model for baryons is constructed and their flavour symmetry, exchange degeneracy pattern and spin structure are studied. Baryons on leading trajectories are assumed to have the configuration of two quarks being attached to the ends of a linear string and the third sitting in the middle, called linear baryons. For such linear baryons, a unitarization scheme can be constructed in a manner similar to the dual unitarity scheme for mesons but without recourse to the 1/N expansion. It is found that the interchange interaction of the middle quark with one of the other two quarks at the ends of the string can give rise to a larger exchange degeneracy breaking of the baryon spectrum. With this non-planar correction, the model of linear baryons can account for the observed pattern of leading baryon states. (Auth.)

  2. The seesaw with many right-handed neutrinos

    International Nuclear Information System (INIS)

    Ellis, John; Lebedev, Oleg

    2007-01-01

    There are no upper limits on the possible number of massive, singlet (right-handed) neutrinos that may participate in the seesaw mechanism, and some string constructions motivate seesaw models with up to O(100) right-handed neutrinos. In this case, the seesaw mass scale can be significantly higher than that in the traditional scheme with just 3 right-handed neutrinos. We consider the possible phenomenological implications of such models, in particular, for lepton-flavour violation and electric dipole moments. Since the neutrino masses depend on the Majorana mass scale linearly, while supersymmetric loop corrections depend on it logarithmically, the magnitude of lepton-flavour- and CP-violating transitions may increase with the multiplicity of the right-handed neutrinos and may be enhanced by orders of magnitude. We also point out that, in the context of leptogenesis, the bounds on the reheating temperature and the lightest neutrino mass get relaxed compared to those in the case of 3 right-handed neutrinos

  3. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  4. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  5. The neutrino factory beam and experiments

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P M; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour-mixing. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a \

  6. Neutrino Factory Targets and the MICE Beam

    International Nuclear Information System (INIS)

    Walaron, Kenneth A.

    2007-01-01

    The future of particle physics in the next 20 years must include detailed study of neutrinos. The first proof of physics beyond the Standard Model of particle physics is evident in results from recent neutrino experiements which imply that neutrinos have mass and flavour mixing. The Neutrino Factory is the leading contender to measure precisely the neutrino mixing parameters to probe beyond the Standard Model physics.

  7. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  8. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  9. Neutrino magnetic moments and the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  10. Neutrino magnetic moments and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Valencia Univ.

    1994-01-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's

  11. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  12. On t-flavour production by neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1979-06-01

    Realistic upper bounds for t-quark production by neutrinos and antineutrinos are calculated in the standard six-quark model, including threshold suppression factors and the latest limits on mixing angles. For the presently allowed mass range msub(t) >- 14GeV, the production rates in existing neutrino beams are at best marginal, but increase very rapidly with energy. Detection of t-hadrons by semileptonic t-decay is considered; the resulting dimuon signal differs quantitatively from c and anti-c decay backgrounds, but its separation requires good statistics. (author)

  13. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  14. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D.; Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T.; Bruijn, R.; Melis, K.; Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A.; Caramete, L.; Pavalas, G.E.; Popa, V.; Celli, S.; Chiarusi, T.; Circella, M.; Sanchez-Losa, A.; Coleiro, A.; Deschamps, A.; Hello, Y.; Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M.; Donzaud, C.; Eberl, T.; El Bojaddaini, I.; Moussa, A.; Elsaesser, D.; Kadler, M.; Kreter, M.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F.; Gay, P.; Giordano, V.; Glotin, H.; Haren, H. van; Kouchner, A.; Van Elewyck, V.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Lefevre, D.; Leonora, E.; Loucatos, S.; Vallage, B.; Marinelli, A.; Mele, R.; Vivolo, D.; Migliozzi, P.; Organokov, M.; Pradier, T.; Schuessler, F.; Stolarczyk, T.; Tayalati, Y.

    2017-01-01

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 "c"i"r"c"l"e for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E"2 . Φ"9"0"% = 4.9 . 10"-"8 GeV . cm"-"2 . s"-"1 . sr"-"1 is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E"-"2 spectrum and neutrino flavour equipartition at Earth. (orig.)

  15. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Folger, F.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Galata, S.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [LAM, Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Universiteit Leiden, Huygens-Kamerlingh Onnes Laboratorium, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T. [Nikhef, Amsterdam (Netherlands); Bruijn, R.; Melis, K. [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Di Palma, I.; Perrina, C.; Vizzoca, A. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Science, 077125, Bucharest, Magurele (Romania); Celli, S. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Circella, M.; Sanchez-Losa, A. [INFN, Sezione di Bari, Bari (Italy); Coleiro, A. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia) c/Catedratico Jose Beltran, 2, 46980, Paterna, Valencia (Spain); Deschamps, A.; Hello, Y. [CNRS, IRD, Observatoire de la Cote d' Azur, Geoazur, UCA, Sophia Antipolis (France); Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Donzaud, C. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Eberl, T. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); El Bojaddaini, I.; Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (Morocco); Elsaesser, D.; Kadler, M.; Kreter, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia dell' Universita, Bologna (Italy); Gay, P. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (France); Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Clermont Universite, BP 10448, Clermont-Ferrand (France); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Glotin, H. [LSIS, Aix Marseille Universite CNRS ENSAM LSIS UMR 7296, Marseille (France); Universite de Toulon CNRS LSIS UMR 7296, La Garde (France); Institut Universitaire de France, Paris (France); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kouchner, A.; Van Elewyck, V. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (RU); Lefevre, D. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (FR); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (FR); Leonora, E. [INFN, Sezione di Catania, Catania (IT); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Vallage, B. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, Paris (FR); Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Marinelli, A. [INFN, Sezione di Pisa, Pisa (IT); Dipartimento di Fisica dell' Universita, Pisa (IT); Mele, R.; Vivolo, D. [INFN, Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT); Migliozzi, P. [INFN, Sezione di Napoli, Naples (IT); Organokov, M.; Pradier, T. [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (FR); Schuessler, F.; Stolarczyk, T. [Direction des Sciences de la Matiere, Institut de Recherche sur les Lois Fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Tayalati, Y. [University Mohammed V in Rabat, Faculty of Sciences, Rabat (MA)

    2017-06-15

    A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6 {sup circle} for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E{sup 2} . Φ{sup 90%} = 4.9 . 10{sup -8} GeV . cm{sup -2} . s{sup -1} . sr{sup -1} is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken E{sup -2} spectrum and neutrino flavour equipartition at Earth. (orig.)

  16. Golden Jubilee photos: Elusive Neutrinos

    CERN Multimedia

    2004-01-01

    Catching neutrinos isn't easy. They interact only rarely with matter, so they have a good chance of passing straight through the Earth without stopping. However, when they do interact it is possible to see what effect they have on other particles. CERN had been doing this type of research for more than a decade by the time the detector in the picture was finished in 1977. The picture shows Klaus Winter, who worked on the 100 tonne CHARM experiment. CHARM is seen here in the West Area where it was set up with the 1250 tonne CDHS experiment. Researchers used these machines to help develop the Standard Model of particle physics and further our understanding of the structure of the atomic nucleus. The research also helped expand physics into a new field aimed at understanding the peculiar behaviour of neutrinos. There are three 'flavours' of neutrino - the electron, muon, and the tau neutrino. Over a long enough distance, they oscillate from one flavour to another. In 2006, CERN will try to make more progress on...

  17. Three-neutrino oscillations in matter: Analytical results in the adiabatic approximaton

    International Nuclear Information System (INIS)

    Petcov, S.T.; Toshev, S.

    1987-01-01

    Analytical expressions for the probabilities of the transitions between different neutrino flavours in matter in the case of three lepton families and small vacuum mixing angles are obtained in the adiabatic approximation. A brief discussion of the characteristic features of the Mikheyev-Smirnov-Wolfenstein effect in the system of the three neutrino flavours ν e , ν μ and ν τ is also given. (orig.)

  18. Treatment of solar neutrino-oscillations in solar matter. The MSW effect

    International Nuclear Information System (INIS)

    Messiah, A.

    1986-01-01

    Mikheyev and Smirnov, following Wolfenstein's theory of neutrino oscillations in the presence of matter, have found that the change of flavour of solar neutrinos may be spectacularly enhanced in the presence of solar matter, when the parameters of the neutrino mass operator fall in a suitable range (MSW effect). It is shown that this effect can be readily deduced from the adiatic solution of the equation of flavour evolution. A complete study of the two-flavour case is given, permitting to calculate, for any set of values of the mass operator parameters, the ν e suppression factor at the site of detection on earth. The adiabatic approximation holds over a wide range of the parameters, leading to especially simple expressions. Our calculations cover the whole range, including domains where the adiabatic approximation is no longer valid. Some of the results, presented in a form most suited for an analysis of solar neutrino experiments, are displayed for illustration and discussed. 7 refs

  19. Three-Flavoured Non-Resonant Leptogenesis at Intermediate Scales

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, K. [Durham U., IPPP; Pascoli, S. [Durham U., IPPP; Petcov, S. T. [Tokyo U., IPMU; Schulz, H. [Cincinnati U.; Turner, J. [Fermilab

    2018-04-13

    Leptogenesis can successfully explain the matter-antimatter asymmetry via out-of-equilibrium decays of heavy Majorana neutrinos in the early Universe. In this article we focus on non-resonant thermal leptogenesis and we study the possibility of lowering its scale through flavour effects in an exhaustive exploration of the model parameter space. We numerically solve the density matrix equations for one and two decaying heavy Majorana neutrinos and present the level of fine-tuning of the light neutrino masses within these scenarios. We demonstrate that the scale of thermal leptogenesis may be as low as $10^6$ GeV.

  20. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  1. Conservation of lepton charges, massive majorana and massless neutrinos

    International Nuclear Information System (INIS)

    Petcov, S.T.; Toshev, S.T.

    1984-01-01

    It is shown that the necessary and sufficient condition for the presence of k massless and (n-k) massive nondegenerate Majorana neutrinos in a theory with n neutrino flavours and a neutrino mass term of Majorana type is the existence of k standard and no other conserved lepton charges. Two-loop Majorana mass corrections for neutrinos, massless at tree level, are also briefly discussed. (orig.)

  2. Quantum correlations in terms of neutrino oscillation probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Alok, Ashutosh Kumar, E-mail: akalok@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Uma Sankar, S., E-mail: uma@phy.iitb.ac.in [Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-08-15

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscillation probabilities and other quantum correlations. In this work, we show that all the well-known quantum correlations, such as the Bell's inequality, are directly related to the neutrino oscillation probabilities. The results of the neutrino oscillation experiments, which measure the neutrino survival probability to be less than unity, imply Bell's inequality violation.

  3. Neutrinos: ghosts of matter

    CERN Multimedia

    Wark, Dave

    2005-01-01

    The discovery that neutrinos have masse and can oscillate between different flavours was one of the major breakthroughts in particle physics in the past decade, but there is much about these mysterious particles that we still do not understand

  4. Precision neutrino experiments vs the Littlest Seesaw

    Energy Technology Data Exchange (ETDEWEB)

    Ballett, Peter [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Pascoli, Silvia [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Prouse, Nick W. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Particle Physics Research Centre, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Wang, TseChun [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2017-03-21

    We study to what extent upcoming precision neutrino oscillation experiments will be able to exclude one of the most predictive models of neutrino mass and mixing: the Littlest Seesaw. We show that this model provides a good fit to current data, predicting eight observables from two input parameters, and provide new assessments of its predictions and their correlations. We then assess the ability to exclude this model using simulations of upcoming neutrino oscillation experiments including the medium-distance reactor experiments JUNO and RENO-50 and the long-baseline accelerator experiments DUNE and T2HK. We find that an accurate determination of the currently least well measured parameters, namely the atmospheric and solar angles and the CP phase δ, provide crucial independent tests of the model. For θ{sub 13} and the two mass-squared differences, however, the model’s exclusion requires a combination of measurements coming from a varied experimental programme. Our results show that the synergy and complementarity of future experiments will play a vital role in efficiently discriminating between predictive models of neutrino flavour, and hence, towards advancing our understanding of neutrino oscillations in the context of the flavour puzzle of the Standard Model.

  5. Analytic formulation of neutrino oscillation probability in constant matter

    International Nuclear Information System (INIS)

    Kimura, Keiichi; Takamura, Akira; Yokomakura, Hidekazu

    2003-01-01

    In this paper, based on the work (Kimura K et al 2002 Phys. Lett. B 537 86) we present the simple derivation of an exact and analytic formula for neutrino oscillation probability. We consider three flavour neutrino oscillations in matter with constant density

  6. The oscillation probability of GeV solar neutrinos of all active species

    International Nuclear Information System (INIS)

    Gouvea, Andre de

    2001-01-01

    I discuss the oscillation probability of O(GeV) neutrinos of all active flavours produced inside the Sun and detected at the Earth. In the GeV energy regime, matter effects are potentially important both for the ''1-3'' system and the ''1-2'' system. A numerical scan of the multidimensional three-flavour parameter space is presented. One curiosity is that in the three-flavour oscillation case P αβ ≠ P βα for a large portion of the parameter space, even if the MNS matrix is real. Oscillation effects computed here may play a large role in interpreting solar WIMP search data from large neutrino telescopes

  7. All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore

    CERN Document Server

    INSPIRE-00266703

    2016-01-01

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, , for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on , reaching a level of 10^{-23} cm^3 s^-1, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-f...

  8. Implication of the solar neutrino experiments

    International Nuclear Information System (INIS)

    Dar, A.; Nussinov, S.

    1992-01-01

    The recent results from the KAMIOKANDE II and BAKSAN solar neutrino experiments, if correct, imply that lepton flavour is not conserved. The Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem, which was first exposed by the HOMESTAKE Cl experiment, fully explains also these results if the electron neutrino is mixed with the muon neutrino or the tau neutrino with mixing parameters Δm 2 ≅ 10 -6 eV 2 2 and sin 2 Θ ≅ 4 x 10 -2 . This MSW solution can be tested with the new generation of solar neutrino experiments which will be able to detect both the predicted distortion of the spectrum of 8 B solar νe's and the 'missing' ν e 's that appear as ν μ 's or ν τ 's. Further evidence may be obtained from the day-night effect and from the flavour content of the neutronization burst from the birth of a neutron star in a nearby supernova. Moreover, the MSW solution combined with the seesaw mechanism for generating neutrino masses further suggests m νe ≅ 10 -8 eV, m νμ ≅ 10 -3 cV, m ντ ≅ 10eV, and sin 2 2Θ ≅ 4x10 -2 for ν μ ν τ mixing. These predictions can be tested by previously proposed neutrino oscillation experiments at accelerators and by detecting neutrinos from a nearby supernova explosion. A tau neutrino with m ντ ≅ 10 eV can account for most of the dark matter in the Universe and is a viable candidate for the hot dark matter scenario of the formation of large scale structure in the Universe. (orig.)

  9. 50 years of neutrinos

    CERN Document Server

    Goldhaber, M

    1980-01-01

    On December 4 1930, Wolfgang Pauli addressed an "open letter" to Lise Meitner and others attending a physics meeting, suggesting the neutrino as a way out of the difficulties confronted in beta rays research, especially by the existence of a continuous beta spectrum. He proposed a new particle later called the neutrino. The prehistory leading up to Pauli's letter will be reviewed, as well as the later discovery of the electron-neutrino followed by the muon-neutrino. There are now believed to be three different types of neutrino and their anti-particles. Neutrinos have a spin 1/2; but only one spin component has been found in nature: neutrinos go forward as "left-handed" screws and anti-neutrinos as "right-handed" ones. A question still not convincingly resolved today is wether neutrinos have a mass different from zero and, if they do, what consequences this would have for the behaviour of neutrinos and for cosmology.

  10. Monochromatic neutrino beams

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Burguet-Castell, Jordi; Espinoza, Catalina; Lindroos, Mats

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [U e3 ] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [U e3 ] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

  11. Minimal rates for lepton flavour violation from supersymmetric leptogenesis

    International Nuclear Information System (INIS)

    Ibarra, A; Simonetto, C

    2010-01-01

    The see-saw is a very attractive model for neutrino mass generation in particular in association with supersymmetry as a solution to the hierarchy problem. Under the plausible assumptions of hierarchical neutrino Yukawa eigenvalues and the absence of cancellations, we derive an upper bound on the lightest right-handed neutrino mass from the non-observation of μ → eγ and μ-e conversion in nuclei. The ongoing experiment MEG as well as the planned experiments Mu2e, COMET and PRISM/PRIME will improve this bound if no evidence of lepton flavour violation is found. We lastly comment on the possibility of ruling out minimal leptogenesis if these experiments find no signal.

  12. Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux

    CERN Document Server

    2002-01-01

    The HARP experiment carries out, at the CERN PS, a programme of measurements of secondary hadron production, over the full solid angle, produced on thin and thick nuclear targets by beams of protons and pions with momenta in the range 2 to 15~\\GeVc. The first aim of this experiment is to acquire adequate knowledge of pion yields for an optimal design of the proton driver of the Neutrino Factory. The second aim is to reduce substantially the existing $\\sim 30$\\% uncertainty in the calculation of absolute atmospheric neutrino fluxes and the $\\sim 7$\\% uncertainty in the ratio of neutrino flavours, required for a refined interpretation of the evidence for neutrino oscillation from the study of atmospheric neutrinos in present and forthcoming experiments. The HARP experiment comprises a large-acceptance charged-particle magnetic spectrometer of conventional design, located in the East Hall of the CERN PS and using the T9 tagged charged-particle beam. The main detector is a cylindrical TPC inside a solenoid magnet...

  13. First real–time detection of solar pp neutrinos by Borexino

    Directory of Open Access Journals (Sweden)

    Pallavicini M.

    2016-01-01

    Full Text Available Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra–pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.

  14. Predicting {theta}{sub 13} and the neutrino mass scale from quark lepton mass hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Schmitz, K.

    2011-11-15

    Flavour symmetries of Froggatt-Nielsen type can naturally reconcile the large quark and charged lepton mass hierarchies and the small quark mixing angles with the observed small neutrino mass hierarchies and their large mixing angles. We point out that such a flavour structure, together with the measured neutrino mass squared differences and mixing angles, strongly constrains yet undetermined parameters of the neutrino sector. Treating unknown O(1) parameters as random variables, we obtain surprisingly accurate predictions for the smallest mixing angle, sin{sup 2}2{theta}{sub 13}=0.07{sup +0.11}{sub -0.05}, the smallest neutrino mass, m{sub 1}=2.5{sup +1.7}{sub -1.6} x 10{sup -3} eV, and one Majorana phase, {alpha}{sub 21}/{pi}=1.0{sup +0.2}{sub -0.2}. (orig.)

  15. Common origin of neutrino mass, dark matter and Dirac leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar 751005 (India)

    2016-12-01

    We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.

  16. European Strategy for Accelerator-Based Neutrino Physics

    CERN Document Server

    Bertolucci, Sergio; Cervera, Anselmo; Donini, Andrea; Dracos, Marcos; Duchesneau, Dominique; Dufour, Fanny; Edgecock, Rob; Efthymiopoulos, Ilias; Gschwendtner, Edda; Kudenko, Yury; Long, Ken; Maalampi, Jukka; Mezzetto, Mauro; Pascoli, Silvia; Palladino, Vittorio; Rondio, Ewa; Rubbia, Andre; Rubbia, Carlo; Stahl, Achim; Stanco, Luca; Thomas, Jenny; Wark, David; Wildner, Elena; Zito, Marco

    2012-01-01

    Massive neutrinos reveal physics beyond the Standard Model, which could have deep consequences for our understanding of the Universe. Their study should therefore receive the highest level of priority in the European Strategy. The discovery and study of leptonic CP violation and precision studies of the transitions between neutrino flavours require high intensity, high precision, long baseline accelerator neutrino experiments. The community of European neutrino physicists involved in oscillation experiments is strong enough to support a major neutrino long baseline project in Europe, and has an ambitious, competitive and coherent vision to propose. Following the 2006 European Strategy for Particle Physics (ESPP) recommendations, two complementary design studies have been carried out: LAGUNA/LBNO, focused on deep underground detector sites, and EUROnu, focused on high intensity neutrino facilities. LAGUNA LBNO recommends, as first step, a conventional neutrino beam CN2PY from a CERN SPS North Area Neutrino Fac...

  17. Neutrino 90: Shop window for LEP/Underground sunshine

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    Sixty years after its prediction and 35 years after its discovery, the neutrino, the otherwise invisible particle carrying off 'missing' energy in radioactive beta decay, still provides compelling physics. The Neutrino 90 meeting held at CERN in June, the 14th in a series which began at the Meyrin Laboratory in 1963, reflected the continued enigma of this puzzling particle. Despite heroic efforts, some basic neutrino properties - mass, flavour oscillation - are so subtle as to elude measurement, and can only be sketched in as experimental limits.

  18. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  19. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  20. On the Sensitivity of Neutrino Telescopes to a Modified Dispersion Relation

    International Nuclear Information System (INIS)

    Bustamante, M.; Gago, A. M.; Bazo, J. L.; Miranda, O. G.

    2008-01-01

    We consider a modified dispersion relation and its effect on the flavour ratios of high-energy neutrinos originated at distant astrophysical sources such as active galactic nuclei. This dispersion relation arise naturally in different new physics (NP) effects such as violation of CPT invariance, of the equivalence principle and of Lorentz invariance. It is a common notion in the literature that by using the flux of high-energy neutrinos expected from distant astrophysical sources, the sensitivity to possible NP effects may be improved beyond the current bounds. However, performing a realistic analysis that takes into account the expected number of events in future neutrino telescopes, we find that the average detected flavour ratios with and without the inclusion of new physics have essentially the same value, making difficult to obtain an improved bound for this type of new physics

  1. Neutrino 90: Shop window for LEP/Underground sunshine

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Sixty years after its prediction and 35 years after its discovery, the neutrino, the otherwise invisible particle carrying off 'missing' energy in radioactive beta decay, still provides compelling physics. The Neutrino 90 meeting held at CERN in June, the 14th in a series which began at the Meyrin Laboratory in 1963, reflected the continued enigma of this puzzling particle. Despite heroic efforts, some basic neutrino properties - mass, flavour oscillation - are so subtle as to elude measurement, and can only be sketched in as experimental limits

  2. A supersymmetric grand unified theory of flavour with PSL2(7)xSO(10)

    International Nuclear Information System (INIS)

    King, Stephen F.; Luhn, Christoph

    2010-01-01

    We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL 2 (7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL 2 (7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL 2 (7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL 2 (7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.

  3. Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry

    International Nuclear Information System (INIS)

    Dhar, Jyoti; Dev, S.

    1992-01-01

    A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig

  4. Global Analysis of Neutrino Data

    CERN Document Server

    González-Garciá, M C

    2005-01-01

    In this talk I review the present status of neutrino masses and mixing and some of their implications for particle physics phenomenology. I first discuss the minimum extension of the Standard Model of particle physics required to accommodate neutrino masses and introduce the new parameters present in the model and in particular the possibility of leptonic mixing. I then describe the phenomenology of neutrino masses and mixing leading to flavour oscillations and present the existing evidence from solar, reactor, atmospheric and long-baseline neutrinos as well as the results from laboratory searches at short distances. I derive the allowed ranges for the mass and mixing parameters when the bulk of data is consistently analyzed in the framework of mixing between the three active neutrinos and obtain as a result the most up-to-date determination of the leptonic mixing matrix. Then I briefly summarize the status of some proposed phenomenological explanations to accommodate the LSND results: the role of sterile neu...

  5. Flavour democracy calls for the fourth generation

    International Nuclear Information System (INIS)

    Datta, A.

    1992-07-01

    It is argued with the help of an illustrative mode, that the inter species hierarchy among the fermion masses and the quark mixing angles can be accommodated naturally in the standard model with (approximate) flavour democracy provided there are four families of sequential quark-leptons with all members of the fourth family having roughly equal masses. The special problem of light neutrino masses (if any) and possible solutions are also discussed. (author). 15 refs

  6. Discrete Symmetry Approach to Lepton Flavour, Neutrino Mixing and Leptonic CP Violation, and Neutrino Related Physics Beyond the Standard Theory

    OpenAIRE

    Girardi, Ivan

    2016-01-01

    The experimental evidences of neutrino oscillation, caused by non-zero neutrino masses and neutrino mixing, which were obtained in the experiments with solar, atmospheric, accelerator and reactor neutrinos, opened new field of research in elementary particle physics. The principal goal is to understand at fundamental level the mechanism giving rise to non-zero neutrino masses and neutrino mixing. The open fundamental questions include those of the nature — Dirac or Majorana — of massive neutr...

  7. The Symmetry behind Extended Flavour Democracy and Large Leptonic Mixing

    CERN Document Server

    Silva-Marcos, Joaquim I

    2002-01-01

    We show that there is a minimal discrete symmetry which leads to the extended flavour democracy scenario constraining the Dirac neutrino, the charged lepton and the Majorana neutrino mass term ($M_R$) to be all proportional to the democratic matrix, with all elements equal. In particular, this discrete symmetry forbids other large contributions to $M_R$, such as a term proportional to the unit matrix, which would normally be allowed by a $S_{3L}\\times S_{3R}$ permutation symmetry. This feature is crucial in order to obtain large leptonic mixing, without violating 't Hooft's, naturalness principle.

  8. A see-saw mechanism with light sterile neutrinos

    International Nuclear Information System (INIS)

    McKellar, B.H.J.; Garbutt, M.; Stephenson, G.J.; Goldman, T.

    2001-01-01

    The usual see-saw mechanism for the generation of light neutrino masses is based on the assumption that all of the flavours of right-handed (more properly, sterile) neutrinos are heavy. If the sterile Majorana mass matrix is singular, one or more of the sterile neutrinos will have zero mass before mixing with the active (left-handed) neutrinos and be light after that mixing is introduced In particular, a rank 1 sterile mass matrix leads naturally to two pseudo-Dirac pairs, one very light active Majorana neutrino and one heavy sterile Majorana neutrino. For any pattern of Dirac masses, there exists a region of parameter space in which the two pseudo-Dirac pairs are nearly degenerate in mass. This, in turn, leads to large amplitude mixing of active states as well as mixing into sterile states

  9. Neutrino-Less Double Beta Decay - Experimentum Crucis of Neutrino Physics

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    2003-01-01

    The presently most wanted information on neutrino properties concerns their mass values and their transformation properties under charge conjugation. The recent oscillation experiments prove that at least one of the three neutrino species has a non-vanishing rest mass and that the lepton flavour is not conserved. These findings have to be supplemented by data from phenomena of different kind in order to deduce the information needed. The most promising method proposed thus far to determine Majorana neutrino mass and thus to answer the two leading questions is to observe the neutrino-less double beta decay and to measure its rate. The physics of this process is discussed and the on-going and planned experimental search is reviewed. This search concentrates on the 0 + →0 + ground-to-ground state decay of β - β - emitters using calorimetric or β - -β - coincidence tracking techniques. The β + β + or β + EC decays are usually considered as less favourable because of longer half-lives, even though they offer some advantages in combating the background. The recent proposition of measuring the monoenergetic photon spectra accompanying the radiative neutrino-less double electron capture decay is discussed. The experimental advantages of this technique may off-set the generally longer life-times expected. (author)

  10. Neutrino mass and physics beyond the Standard Model; Masse des Neutrinos et Physique au-dela du Modele Standard

    Energy Technology Data Exchange (ETDEWEB)

    Hosteins, P

    2007-09-15

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.

  11. Concluding talk: fundamental lessons and challenges from neutrinos

    CERN Document Server

    Altarelli, G

    2014-01-01

    We present a concise review of the experimental developments on neutrino mixing and their theoretical implications as presented and discussed at this Conference. The recent data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the neutrino sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups which can be improved following the indications from the recent data.

  12. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    It is shown that the MeV-range neutrinos with a magnetic moment of ≅ 10 -11 Bohr magnetons would excite nuclei, like 12 C, with cross sections comparable to those obtained in the Standard Model. This implies the possibility of improving the present experimental bounds on the magnetic moment of any flavour of neutrinos by one order of magnitude. Such a magnetic moment would also enhance the coherent neutrino-nuclear scattering in low-temperature detectors, enabling them to set comparable limits. (author)

  13. Heavy quark spin symmetry and SU(3)-flavour partners of the X(3872)

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo-Duque, C., E-mail: carloshd@ific.uv.es [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Pavón Valderrama, M. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex (France)

    2013-09-20

    In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson–antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a D{sup ¯⁎} mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D{sup ⁎}D{sup ¯⁎} and D{sub s}{sup ⁎}D{sup ¯}{sub s}{sup ⁎} molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I=0, 1/2 and 1.

  14. Faraday effect and solar neutrino problem

    International Nuclear Information System (INIS)

    Nawaz, S.

    2001-01-01

    We have studied the Faraday effect and solar neutrino problem. Our main emphasis was on the Faraday rotation of neutrino de Broglie wave of electron-neutrino producing in the nuclear reactions in the sun and converting into any other flavor of neutrino while passing through matter and/or magnetic field of the sun. We have shown that specific Faraday angle can minimize the number of free parameters occurring in the neutrino oscillation. We have also shown that the resonant Faraday angle corresponding to the resonance of MSW effect can be obtained the knowledge of the oscillation parameter delta m/sup 2/ and the neutrino energy. Using neutrino-Faraday angle approach, we have shown that the matter enhanced neutrino oscillations is dominating over the resonant spin flavor precession (RSFP) even in the favorable region of the spin flavor procession. Using the latest solar neutrino data, we have shown that Faraday angle is almost 10/sup -3/ times smaller. This can be interpreted as the interaction of magnetic moment of neutrino with the solar magnetic field is negligibly small as compare to the effect of matter field on the neutrino oscillation. (author)

  15. Influence of the spin and the Weinberg-angle on the bulk viscosity of a neutrino-electron mixture

    International Nuclear Information System (INIS)

    Siskens, Th.J.; Weerb, Ch.G. van; Boer, W.P.H. de

    1977-01-01

    Results are presented for the first approximation to the bulk viscosity of a non-degenerate electron-neutrino system interacting in accordance with the Weinberg-Salam model. The influence of the electron spin and the Weinberg-angle are taken into account separately. (Auth.)

  16. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  17. Discrete Symmetries and Models of Flavour Mixing

    International Nuclear Information System (INIS)

    King, Stephen F

    2015-01-01

    In this talk we shall give an overview of the role of discrete symmetries, including both CP and family symmetry, in constructing unified models of quark and lepton (including especially neutrino) masses and mixing. Various different approaches to model building will be described, denoted as direct, semi-direct and indirect, and the pros and cons of each approach discussed. Particular examples based on Δ(6n 2 ) will be discussed and an A to Z of Flavour with Pati-Salam will be presented. (paper)

  18. Effects of fermionic singlet neutrinos on high- and low-energy observables

    International Nuclear Information System (INIS)

    Weiland, C.

    2013-01-01

    In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the standard model cannot account for these observations, which calls for the introduction of new physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the standard model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new physics scale at energies within the reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R K and R π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z 0 bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the super-symmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson. (author)

  19. Neutrino mass and physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hosteins, P.

    2007-09-01

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states

  20. Quantum treatment of neutrino in background matter

    International Nuclear Information System (INIS)

    Studenikin, A I

    2006-01-01

    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLν), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ('spin light of electron in matter' (SLe)) that can be emitted by the electron in this case

  1. Resonant spin-flavor conversion of supernova neutrinos: Dependence on electron mole fraction

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Takamura, Akira; Kimura, Keiichi; Yokomakura, Hidekazu; Kawagoe, Shio; Kajino, Toshitaka

    2009-01-01

    Detailed dependence of resonant spin-flavor (RSF) conversion of supernova neutrinos on electron mole fraction Y e is investigated. Supernova explosion forms a hot-bubble and neutrino-driven wind region of which electron mole fraction exceeds 0.5 in several seconds after the core collapse. When a higher resonance of the RSF conversion is located in the innermost region, flavor change of the neutrinos strongly depends on the sign of 1-2Y e . At an adiabatic high RSF resonance the flavor conversion of ν e ↔ν μ,τ occurs in Y e e >0.5 and inverted mass hierarchy. In other cases of Y e values and mass hierarchies, the conversion of ν e ↔ν μ,τ occurs. The final ν e spectrum is evaluated in the cases of Y e e >0.5 taking account of the RSF conversion. Based on the obtained result, time variation of the event number ratios of low ν e energy to high ν e energy is discussed. In normal mass hierarchy, an enhancement of the event ratio should be seen in the period when the electron fraction in the innermost region exceeds 0.5. In inverted mass hierarchy, on the other hand, a dip of the event ratio should be observed. Therefore, the time variation of the event number ratio is useful to investigate the effect of the RSF conversion.

  2. Precision Measurement of the Be7 Solar Neutrino Interaction Rate in Borexino

    Science.gov (United States)

    Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Peña-Garay, C.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2011-09-01

    The rate of neutrino-electron elastic scattering interactions from 862 keV Be7 solar neutrinos in Borexino is determined to be 46.0±1.5(stat)-1.6+1.5(syst)counts/(day·100ton). This corresponds to a νe-equivalent Be7 solar neutrino flux of (3.10±0.15)×109cm-2s-1 and, under the assumption of νe transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0σ. A global solar neutrino analysis with free fluxes determines Φpp=6.06-0.06+0.02×1010cm-2s-1 and ΦCNOMikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

  3. Dark Matter and observable lepton flavour violation

    International Nuclear Information System (INIS)

    Heurtier, Lucien; Univ. Libre de Bruxelles; Teresi, Daniele

    2016-07-01

    Seesaw models with leptonic symmetries allow right-handed (RH) neutrino masses at the electroweak scale, or even lower, at the same time having large Yukawa couplings with the Standard Model leptons, thus yielding observable effects at current or near-future lepton-flavour-violation (LFV) experiments. These models have been previously considered also in connection to low-scale leptogenesis, but the combination of observable LFV and successful leptogenesis has appeared to be difficult to achieve unless the leptonic symmetry is embedded into a larger one. In this paper, instead, we follow a different route and consider a possible connection between large LFV rates and Dark Matter (DM). We present a model in which the same leptonic symmetry responsible for the large Yukawa couplings guarantees the stability of the DM candidate, identified as the lightest of the RH neutrinos. The spontaneous breaking of this symmetry, caused by a Majoron-like field, also provides a mechanism to produce the observed relic density via the decays of the latter. The phenomenological implications of the model are discussed, finding that large LFV rates, observable in the near-future μ→e conversion experiments, require the DM mass to be in the keV range. Moreover, the active-neutrino coupling to the Majoron-like scalar field could be probed in future detections of supernova neutrino bursts.

  4. Physics Reach with a Monochromatic Neutrino Beam from Electron Capture

    CERN Document Server

    Bernabeu, J.; Espinoza, C.; Lindroos, M.

    2005-01-01

    Neutrino oscillation experiments from different sources have demonstrated non-vanishing neutrino masses and flavour mixings. The next experiments have to address the determination of the connecting mixing U(e3) and the existence of the CP violating phase. Whereas U(e3) measures the strength of the oscillation probability in appearance experiments, the CP phase acts as a phase-shift in the interference pattern. Here we propose to separate these two parameters by energy dependence, using the novel idea of a monochromatic neutrino beam facility based on the acceleration of ions that decay fast through electron capture. Fine tuning of the boosted neutrino energy allows precision measurements able to open a window for the discovery of CP violation, even for a mixing as small as 1 degree

  5. Neutrinos in the Electron

    International Nuclear Information System (INIS)

    Koschmieder, E. L.

    2007-01-01

    I will show that one half of the rest mass of the electron consists of electron neutrinos and that the other half of the rest mass of the electron consists of the mass in the energy of electric oscillations. With this composition we can explain the rest mass of the electron, its charge, its spin and its magnetic moment We have also determined the rest masses of the muon neutrino and the electron neutrino

  6. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  7. First Anti-neutrino Oscillation Results from the T2K Experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Neutrinos are some of the most abundant but yet most elusive particles in the universe. They have almost no mass, only interact weakly and relatively little is known about their properties. Furthermore it has been firmly established over the last decade that neutrinos can undergo flavour transitions as mass and flavor eigenstates are not identical. These neutrino oscillations have been studied using natural sources as well as nuclear reactors or with neutrinos produced at accelerators. T2K is a long baseline neutrino oscillation beam that uses a beam of muon (anti-)neutrinos that is directed form J-PARC at the east cost of Japan over a distance of almost 300 km to the SuperKamiokande water Cherenkov detector in the west. The facility is complemented by a near detector complex 280 m downstream of the neutrino production target to characterise the beam and the neutrino interaction dynamics. T2K has taken data with a muon neutrino beam since early 2010 and is studying the disappearance of muon neutrinos as well...

  8. Study of the sensitivity of CMS to the lepton flavour violating neutrinoless $\\tau$ decay $\\tau \\to \\mu\\mu\\mu$

    CERN Document Server

    AUTHOR|(CDS)2069565

    2009-01-01

    The world largest proton-proton collider, the Large Hadron Collider (LHC), which was built up at CERN in the near of Geneva, will start its operation in summer 2009. The total τ lepton production cross-section for the CMS experiment, at a center-of-mass energy of 14 TeV, is about 140 μb. Assuming an integrated luminosity of 10 fb−1 per year, which is expected to be reached in the low luminosity phase of L = 2 × 1033 cm−2 s−1 , about 1012 τ leptons are produced in total. This copious τ production at the LHC provides an excellent potential for the search of neutrinoless and therefore lepton flavour violating τ decays. It is already known since the experimental discovery of neutrino oscillations, that the conservation law of the lepton family number is not strict. The neutrino oscillations have dramatic consequences for the picture of leptons in the Standard Model. The neutrinos become massive particles, the mass eigenstates differ from the flavour eigenstates and a mixing matrix similar to the CKM m...

  9. Neutrino induced events in the MINOS detectors

    International Nuclear Information System (INIS)

    Litchfield, Reuben Phillip

    2008-01-01

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f s , the fraction of unseen neutrinos that are sterile. The measured value is f s = 0.07 +0.32 at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino

  10. Highlights from e-EPS: Neutrino Oscillation / DPG President / Outreach Database

    CERN Multimedia

    2012-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   Asian experiments unlock neutrino oscillation mystery Two reactor experiments, China’s Daya Bay and Korea’s RENO, have made the best measurement of the neutrino mixing angle, θ13, an essential property for neutrino research. The discovery of a non-zero θ13 at approximately 9˚ – which was published in March and April this year – completes our picture of neutrino mixing. This quite large value for the mixing angle will make it easier to conduct future long baseline neutrino experiments. This, in turn, may lead to a better understanding of the matter-antimatter asymmetry seen in the Universe. Neutrino oscillations – the change in flavour&a...

  11. Improved determination of sterile neutrino dark matter spectrum

    International Nuclear Information System (INIS)

    Ghiglieri, J.; Laine, M.

    2015-01-01

    The putative recent indication of an unidentified 3.55 keV X-ray line in certain astrophysical sources is taken as a motivation for an improved theoretical computation of the cosmological abundance of 7.1 keV sterile neutrinos. If the line is interpreted as resulting from the decay of Warm Dark Matter, the mass and mixing angle of the sterile neutrino are known. Our computation then permits for a determination of the lepton asymmetry that is needed for producing the correct abundance via the Shi-Fuller mechanism, as well as for an estimate of the non-equilibrium spectrum of the sterile neutrinos. The latter plays a role in structure formation simulations. Results are presented for different flavour structures of the neutrino Yukawa couplings and for different types of pre-existing lepton asymmetries, accounting properly for the charge neutrality of the plasma and incorporating approximately hadronic contributions.

  12. The role of flavon cross couplings in leptonic flavour mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pascoli, Silvia [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Zhou, Ye-Ling [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Center for High Energy Physics, Peking University,No. 5 Yiheyuan Road, Beijing 100080 (China)

    2016-06-13

    In models with discrete flavour symmetries, flavons are critical to realise specific flavour structures. Leptonic flavour mixing originates from the misalignment of flavon vacuum expectation values which respect different residual symmetries in the charged lepton and neutrino sectors. Flavon cross couplings are usually forbidden, in order to protect these symmetries. Contrary to this approach, we show that cross couplings can play a key role and give raise to necessary corrections to flavour-mixing patterns, including a non-zero value for the reactor angle and CP violation. For definiteness, we present two models based on A{sub 4}. In the first model, all flavons are assumed to be real or pseudo-real, with 7 real degrees of freedom in the flavon sector in total. A sizable reactor angle associated with nearly maximal CP violation is achieved, and, as both originate from the same cross coupling, a sum rule results with a precise prediction for the value of the Dirac CP-violating phase. In the second model, the flavons are taken to be complex scalars, which can be connected with supersymmetric models and multi-Higgs models. The complexity properties of flavons provide new sources for generating the reactor angle. Models in this new approach introduce very few degrees of freedom beyond the Standard Model and can be more economical than those in the framework of extra dimension or supersymmetry.

  13. Precision measurement of the (7)Be solar neutrino interaction rate in Borexino.

    Science.gov (United States)

    Bellini, G; Benziger, J; Bick, D; Bonetti, S; Bonfini, G; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Peña-Garay, C; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2011-09-30

    The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100  ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9)  cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10)  cm(-2) s(-1) and Φ(CNO)Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

  14. Prediction of Neutrino Fluxes in the NOMAD Experiment

    CERN Document Server

    Astier, P.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, Barry J.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Collazuol, G.; Conforto, G.; Conta, C.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, Malcolm; Feldman, G.J.; Ferrari, A.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.J.; Gosset, J.; Gossling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hong, T.M.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.P.; Meyer, J.P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Shih, D.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, T.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.M.; Tovey, S.N.; Tran, M.T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, Bruce D.; Zaccone, H.; Zuber, K.

    2003-01-01

    The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for antinu(mu), and 12% for antinu(e). The energy-dependent uncertainty achieved on the R(e, mu) prediction needed for a nu(mu)->nu(e) oscillation search ranges from 4% to 7%, whereas the overall normalization uncertainty on this ratio is 4.2%.

  15. An accurate analytic description of neutrino oscillations in matter

    Science.gov (United States)

    Akhmedov, E. Kh.; Niro, Viviana

    2008-12-01

    A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.

  16. Neutrino induced events in the MINOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, Reuben Phillip [Univ. of Oxford (United Kingdom). Keble College

    2008-01-01

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f{sub s}, the fraction of unseen neutrinos that are sterile. The measured value is fs = 0.07+0.32 at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino.

  17. Theoretical aspects of neutrino mass and lepton flavour violation

    Indian Academy of Sciences (India)

    We consider lepton flavour violation (LFV) in the charged lepton sector both from the bottom-up effective Lagrangian approach and from the top-down approach via various case studies that have been analysed. The implications for LFV studies at the LHC is briefly discussed. Finally the nature of LFV in the neutrino sector is ...

  18. Calculation of the local density of relic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    De Salas, P.F.; Gariazzo, S.; Pastor, S. [Instituto de Física Corpuscular (CSIC-Universitat de València), Parc Científic UV, C/ Catedrático José Beltrán, 2, E-46980 Paterna (Valencia) (Spain); Lesgourgues, J., E-mail: pabferde@ific.uv.es, E-mail: gariazzo@ific.uv.es, E-mail: Julien.Lesgourgues@physik.rwth-aachen.de, E-mail: pastor@ific.uv.es [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-09-01

    Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV . We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N -one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.

  19. A Sterile-Neutrino Search with the MINOS Experiment

    International Nuclear Information System (INIS)

    Rodrigues, Philip

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction f s of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, f s < 0.41 at 90% C.L.

  20. A multi-signature approach to low-scale sterile neutrino phenomenology

    CERN Document Server

    Ross-Lonergan, Mark

    2017-01-01

    Since the discovery of non-zero neutrino masses, through the observation of neutrino flavour oscillations, we had a plethora of successful experiments which have made increasingly precise measurements of the mixing angles and mass-differences that drive the phenomena. In this thesis we highlight the fact that there is still significant room for new physics, however, when one removes the assumption of unitarity of the 3x3 neutrino mixing matrix, an assumption inherent in the 3ν paradigm. We refit all global data to show just how much non-unitarity is currently allowed. The canonical way that such a non-unitarity is introduced to the 3x3 neutrino mixing matrix is by the addition of additional neutral fermions, singlets under the Standard Model gauge group. These “Sterile Neutrinos” have a wide range of the- oretical and phenomenological implications. Alongside the sensitivity non-unitarity measurements have to sterile neutrinos, in this thesis we will study in detail two additional signatures of low-scale ...

  1. Identification of flavour additives in tobacco products to develop a flavour library

    Science.gov (United States)

    Krüsemann, Erna JZ; Visser, Wouter F; Cremers, Johannes WJM; Pennings, Jeroen LA; Talhout, Reinskje

    2018-01-01

    Objectives This study combines chemical analysis and flavour descriptions of flavour additives used in tobacco products, and provides a starting point to build an extensive library of flavour components, useful for product surveillance. Methods Headspace gas chromatography-mass spectrometry (GC-MS) was used to compare 22 commercially available tobacco products (cigarettes and roll-your-own) expected to have a characterising flavour and 6 commercially available products not expected to have a characterising flavour with 5 reference products (natural tobacco leaves and research cigarettes containing no flavour additives). The flavour components naturally present in the reference products were excluded from components present in commercially available products containing flavour additives. A description of the remaining flavour additives was used for categorisation. Results GC-MS measurements of the 33 tobacco products resulted in an overview of 186 chemical compounds. Of these, 144 were solely present in commercially available products. These 144 flavour additives were described using 62 different flavour descriptors extracted from flavour databases, which were categorised into eight groups largely based on the definition of characterising flavours from the European Tobacco Product Directive: fruit, spice, herb, alcohol, menthol, sweet, floral and miscellaneous. Conclusions We developed a method to identify and describe flavour additives in tobacco products. Flavour additives consist of single flavour compounds or mixtures of multiple flavour compounds, and different combinations of flavour compounds can cause a certain flavour. A flavour library helps to detect flavour additives that are characteristic for a certain flavour, and thus can be useful for regulation of flavours in tobacco and related products. PMID:28190004

  2. Identification of flavour additives in tobacco products to develop a flavour library.

    Science.gov (United States)

    Krüsemann, Erna Jz; Visser, Wouter F; Cremers, Johannes Wjm; Pennings, Jeroen LA; Talhout, Reinskje

    2018-01-01

    This study combines chemical analysis and flavour descriptions of flavour additives used in tobacco products, and provides a starting point to build an extensive library of flavour components, useful for product surveillance. Headspace gas chromatography-mass spectrometry (GC-MS) was used to compare 22 commercially available tobacco products (cigarettes and roll-your-own) expected to have a characterising flavour and 6 commercially available products not expected to have a characterising flavour with 5 reference products (natural tobacco leaves and research cigarettes containing no flavour additives). The flavour components naturally present in the reference products were excluded from components present in commercially available products containing flavour additives. A description of the remaining flavour additives was used for categorisation. GC-MS measurements of the 33 tobacco products resulted in an overview of 186 chemical compounds. Of these, 144 were solely present in commercially available products. These 144 flavour additives were described using 62 different flavour descriptors extracted from flavour databases, which were categorised into eight groups largely based on the definition of characterising flavours from the European Tobacco Product Directive: fruit, spice, herb, alcohol, menthol, sweet, floral and miscellaneous. We developed a method to identify and describe flavour additives in tobacco products. Flavour additives consist of single flavour compounds or mixtures of multiple flavour compounds, and different combinations of flavour compounds can cause a certain flavour. A flavour library helps to detect flavour additives that are characteristic for a certain flavour, and thus can be useful for regulation of flavours in tobacco and related products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Spin alignment of ρ0 mesons produced in antineutrino and neutrino neon charged-current interactions

    International Nuclear Information System (INIS)

    Wittek, W.; Aderholz, M.; Schmitz, N.; Guy, J.; Cooper-Sarkar, A.M.; Venus, W.; Brisson, V.; Petiau, P.; Vallee, C.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M.T.; Jones, G.T.; Middleton, R.P.; O'Neale, S.W.; Varvell, K.; Klein, H.; Morrison, D.R.O.; Parker, M.A.; Wachsmuth, H.; Vayaki, A.

    1987-01-01

    In a bubble chamber experiment with BEBC the spin alignment parameter η=1/2(2ρ 00 -ρ 11 -ρ -1-1 ) is measured for ρ 0 mesons produced in deep inelastic charged-current antineutrino and neutrino interactions on neon. In the current fragmentation region η is found to be η ν =0.48±0.27(stat.)±0.15(syst.) for anti νNe and η ν =0.12±0.20(stat.)±0.10(syst.) for νNe interactions. (orig.)

  4. A Sterile-Neutrino Search with the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Philip [Univ. of Oxford (United Kingdom)

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction fs of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, fs < 0.41 at 90% C.L.

  5. John Adams Lecture | Accelerator-Based Neutrino Physics: Past, Present and Future by Kenneth Long | 8 December

    CERN Multimedia

    2014-01-01

    John Adams Lecture: Accelerator-Based Neutrino Physics: Past, Present and Future by Dr. Kenneth Long (Imperial College London & STFC).   Monday, 8 December 2014 from 2 p.m. to 4 p.m. at CERN ( 503-1-001 - Council Chamber ) Abstract: The study of the neutrino is the study of physics beyond the Standard Model. We now know that the neutrinos have mass and that neutrino mixing occurs causing neutrino flavour to oscillate as neutrinos propagate through space and time. Further, some measurements can be interpreted as hints for new particles known as sterile neutrinos. The measured values of the mixing parameters make it possible that the matter-antimatter (CP) symmetry may be violated through the mixing process. The consequences of observing CP-invariance violation in neutrinos would be profound. To discover CP-invariance violation will require measurements of exquisite precision. Accelerator-based neutrino sources are central to the future programme and advances in technique are required ...

  6. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Sierra, Diego Aristizabal; Hirsch, Martin

    2006-01-01

    The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ→eγ. Non-observation of Br(μ→eγ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses

  7. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Aristizabal, D.

    2006-01-01

    Abstract: The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ → e γ. Non-observation of Br(μ → e γ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses. (author)

  8. Neutrino mass models and the implications of a non-zero reactor angle

    International Nuclear Information System (INIS)

    King, S.F.

    2009-01-01

    In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models decision tree according to which the answers to experimental questions provide sign posts to guide through the maze of theoretical models eventually towards a complete theory of flavour and unification. It is also discussed the theoretical implications of the measurement of non-zero reactor angle, as hinted at by recent experimental measurements.

  9. The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    CERN Document Server

    de Adelhart Toorop, Reinier; Merlo, Luca

    2010-01-01

    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry $S_4$ that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can r...

  10. Flipped neutrino emissivity from strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India))

    1994-04-15

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [[ital q]+[nu][sub [minus

  11. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  12. Neutrino oscillations in curved spacetime: A heuristic treatment

    International Nuclear Information System (INIS)

    Cardall, C.Y.; Fuller, G.M.

    1997-01-01

    We discuss neutrino oscillations in curved spacetime. Our heuristic approach can accommodate matter effects and gravitational contributions to neutrino spin precession in the presence of a magnetic field. By way of illustration, we perform explicit calculations in the Schwarzschild geometry. In this case, gravitational effects on neutrino oscillations are intimately related to the redshift. We discuss how spacetime curvature could affect the resonance position and adiabaticity of matter-enhanced neutrino flavor conversion. copyright 1997 The American Physical Society

  13. Heavy neutrino signals at large hadron colliders

    International Nuclear Information System (INIS)

    Aguila, Francisco del; Aguilar-Saavedra, Juan Antonio; Pittau, Roberto

    2007-01-01

    We study the LHC discovery potential for heavy Majorana neutrino singlets in the process pp → W + → l + N → l + l + jj (l = e, μ) plus its charge conjugate. With a fast detector simulation we show that backgrounds involving two like-sign charged leptons are not negligible and, moreover, they cannot be eliminated with simple sequential kinematical cuts. Using a likelihood analysis it is shown that, for heavy neutrinos coupling only to the muon, LHC has 5σ sensitivity for masses up to 200 GeV in the final state μ ± μ ± jj. This reduction in sensitivity, compared to previous parton-level estimates, is driven by the ∼ 10 2 -10 3 times larger background. Limits are also provided for e ± e ± jj and e ± μ ± jj final states, as well as for Tevatron. For heavy Dirac neutrinos the prospects are worse because backgrounds involving two opposite charge leptons are much larger. For this case, we study the observability of the lepton flavour violating signal e ± μ -+ jj. As a by-product of our analysis, heavy neutrino production has been implemented within the ALPGEN framework

  14. Connected and disconnected quark contributions to hadron spin

    International Nuclear Information System (INIS)

    Chambers, A.J.

    2014-12-01

    By introducing an external spin operator to the fermion action, the quark spin fractions of hadrons are determined from the linear response of the hadron energies using the Feynman-Hellmann (FH) theorem. At our SU(3)-flavour symmetric point, we find that the connected quark spin fractions are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking. We also present first preliminary results applying the FH technique to calculations of quark-line disconnected contributions to hadronic matrix elements of axial and tensor operators. At the SU(3)-flavour symmetric point we find a small negative contribution to the nucleon spin from disconnected quark diagrams, while the corresponding tensor matrix elements are consistent with zero.

  15. Neutrino mass and mixing: from theory to experiment

    International Nuclear Information System (INIS)

    King, Stephen F; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu

    2014-01-01

    The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas

  16. Higgs lepton flavour violation: UV completions and connection to neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-García, Juan [Department of Theoretical Physics, School of Engineering Sciences,KTH Royal Institute of Technology, AlbaNova University Center,106 91 Stockholm (Sweden); Departamento de Física Teórica, Universidad de Valencia and IFIC,Universidad de Valencia-CSIC,C/ Catedrático José Beltrán, 2 | E-46980 Paterna (Spain); Rius, Nuria; Santamaria, Arcadi [Departamento de Física Teórica, Universidad de Valencia and IFIC,Universidad de Valencia-CSIC,C/ Catedrático José Beltrán, 2 | E-46980 Paterna (Spain)

    2016-11-14

    We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR(h→τμ)∼0.01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR(h→τμ)<10{sup −4} and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters.

  17. Neutrino oscillations: The rise of the PMNS paradigm

    Science.gov (United States)

    Giganti, C.; Lavignac, S.; Zito, M.

    2018-01-01

    Since the discovery of neutrino oscillations, the experimental progress in the last two decades has been very fast, with the precision measurements of the neutrino squared-mass differences and of the mixing angles, including the last unknown mixing angle θ13. Today a very large set of oscillation results obtained with a variety of experimental configurations and techniques can be interpreted in the framework of three active massive neutrinos, whose mass and flavour eigenstates are related by a 3 × 3 unitary mixing matrix, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, parametrized by three mixing angles θ12, θ23, θ13 and a CP-violating phase δCP. The additional parameters governing neutrino oscillations are the squared-mass differences Δ mji2 = mj2 - mi2, where mi is the mass of the ith neutrino mass eigenstate. This review covers the rise of the PMNS three-neutrino mixing paradigm and the current status of the experimental determination of its parameters. The next years will continue to see a rich program of experimental endeavour coming to fruition and addressing the three missing pieces of the puzzle, namely the determination of the octant and precise value of the mixing angle θ23, the unveiling of the neutrino mass ordering (whether m1

  18. Flipped neutrino emissivity from strange matter

    International Nuclear Information System (INIS)

    Goyal, A.; Dutta, S.

    1994-01-01

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos

  19. SOLAR NEUTRINO PHYSICS: SENSITIVITY TO LIGHT DARK MATTER PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)

    2012-06-20

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radii of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV) in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely {sup 8}B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 Multiplication-Sign 10{sup -37} cm{sup -2} produce a variation in the {sup 8}B neutrino fluxes that would be in conflict with current measurements.

  20. Flavour-flavour learning occurs automatically and only in hungry participants.

    Science.gov (United States)

    Brunstrom, Jeffrey M; Fletcher, Hollie Z

    2008-01-28

    A novel flavour may become liked if it is presented repeatedly and in combination with a second flavour that is already liked. Conceptually, this 'flavour-flavour learning' is important, because it can account for many of our everyday food and flavour preferences. However, relatively little is known about the underlying process because learning paradigms have lacked reliability. Based on previous research we explored whether learning is determined by three variables; i) hunger state, ii) demand and contingency awareness, and iii) dietary restraint. Participants (male n=15/female n=15) consumed three different and novel-tasting fruit teas. One of the teas had a non-caloric sweetener added (CS+) and two were unsweetened (CS-). Before and after this training the participants ranked their preference for unsweetened versions of the three teas. We found that the training increased preference for the CS+ relative to the CS- teas. However, this effect was only found in hungry participants. We also found little evidence that learning was related to whether the participants could identify (recognition test) the specific tea that had been sweetened during training, suggesting that the underlying process is automatic and it operates outside conscious awareness. Learning was not predicted by dietary restraint (measured using the DEBQ-R scale). Together, these findings provide further evidence for a linkage between flavour-flavour learning and flavour-nutrient learning.

  1. Search for Sterile Neutrinos with the MINOS Long-Baseline Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Ashley Michael [Univ. of Manchester (United Kingdom)

    2016-01-01

    This thesis will present a search for sterile neutrinos using data taken with the MINOS experiment between 2005 and 2012. MINOS is a two-detector on-axis experiment based at Fermilab. The NuMI neutrino beam encounters the MINOS Near Detector 1km downstream of the neutrino-production target before traveling a further 734km through the Earth's crust, to reach the Far Detector located at the Soudan Underground Laboratory in Northern Minnesota. By searching for oscillations driven by a large mass splitting, MINOS is sensitive to the existence of sterile neutrinos through looking for any energy-dependent perturbations using a charged-current sample, as well as looking at any relative deficit in neutral current events between the Far and Near Detectors. This thesis will discuss the novel analysis that enabled a search for sterile neutrinos covering five orders of magnitude in the mass splitting and setting a limit in previously unexplored regions of the parameter space $\\left\\{\\Delta m^{2}_{41},\\sin^2\\theta_{24}\\right\\}$, where a 3+1-flavour phenomenological model was used to extract parameter limits. The results presented in this thesis are sensitive to the sterile neutrino parameter space suggested by the LSND and MiniBooNE experiments.

  2. Alcohol-flavoured tobacco products.

    Science.gov (United States)

    Jackler, Robert K; VanWinkle, Callie K; Bumanlag, Isabela M; Ramamurthi, Divya

    2018-05-01

    In 2009, the Food and Drug Administration (FDA) banned characterising flavours in cigarettes (except for menthol) due to their appeal to teen starter smokers. In August 2016, the agency deemed all tobacco products to be under its authority and a more comprehensive flavour ban is under consideration. To determine the scope and scale of alcohol-flavoured tobacco products among cigars & cigarillos, hookahs and electronic cigarettes (e-cigarettes). Alcohol-flavoured tobacco products were identified by online search of tobacco purveyors' product lines and via Google search cross-referencing the various tobacco product types versus a list of alcoholic beverage flavours (eg, wine, beer, appletini, margarita). 48 types of alcohol-flavoured tobacco products marketed by 409 tobacco brands were identified. Alcohol flavours included mixed drinks (n=25), spirits (11), liqueurs (7) and wine/beer (5). Sweet and fruity tropical mixed drink flavours were marketed by the most brands: piña colada (96), mojito (66) and margarita (50). Wine flavours were common with 104 brands. Among the tobacco product categories, brands offering alcohol-flavoured e-cigarettes (280) were most numerous, but alcohol-flavoured products were also marketed by cigars & cigarillos (88) and hookah brands (41). Brands by major tobacco companies (eg, Philip Morris, Imperial Tobacco) were well represented among alcohol-flavoured cigars & cigarillos with five companies offering a total of 17 brands. The widespread availability of alcohol-flavoured tobacco products illustrates the need to regulate characterising flavours on all tobacco products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.; Reddy, S.; Pons, J.A.

    1999-01-01

    An extensive study of the effects of correlations on both charged and neutral current weak interaction rates in dense matter is performed. Both strong and electromagnetic correlations are considered. The propagation of particle-hole interactions in the medium plays an important role in determining the neutrino mean free paths. The effects due to Pauli blocking and density, spin, and isospin correlations in the medium significantly reduce the neutrino cross sections. As a result of the lack of experimental information at high density, these correlations are necessarily model dependent. For example, spin correlations in nonrelativistic models are found to lead to larger suppressions of neutrino cross sections compared to those of relativistic models. This is due to the tendency of the nonrelativistic models to develop spin instabilities. Notwithstanding the above caveats, and the differences between nonrelativistic and relativistic approaches such as the spin- and isospin-dependent interactions and the nucleon effective masses, suppressions of order 2 - 3, relative to the case in which correlations are ignored, are obtained. Neutrino interactions in dense matter are especially important for supernova and early neutron star evolution calculations. The effects of correlations for protoneutron star evolution are calculated. Large effects on the internal thermodynamic properties of protoneutron stars, such as the temperature, are found. These translate into significant early enhancements in the emitted neutrino energies and fluxes, especially after a few seconds. At late times, beyond about 10 s, the emitted neutrino fluxes decrease more rapidly compared to simulations without the effects of correlations, due to the more rapid onset of neutrino transparency in the protoneutron star. copyright 1999 The American Physical Society

  4. Observable lepton number violation with predominantly Dirac nature of active neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati,Assam-781039 (India); Dasgupta, Arnab [Institute of Physics, HBNI,Sachivalaya Marg, Bhubaneshwar-751005 (India)

    2017-01-17

    We study a specific version of SU(2){sub R}×SU(2){sub L}×U(1){sub B−L} models extended by discrete symmetries where the new physics sector responsible for tiny neutrino masses at leading order remains decoupled from the new physics sector that can give rise to observable signatures of lepton number violation such as neutrinoless double beta decay. More specifically, the dominant contribution to light neutrino masses comes from a one-loop Dirac mass. At higher loop level, a tiny Majorana mass also appears which remains suppressed by many order of magnitudes in comparison to the Dirac mass. Such a model where the active neutrinos are predominantly of Dirac type, also predicts observable charged lepton flavour violation like μ→3e,μ→eγ and multi-component dark matter.

  5. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    CERN Document Server

    Di Bari, Pasquale

    2011-01-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N_2 dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ~ 10^10 GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m_1 \\simeq (1-5)\\times 10^-3 eV and m_1\\simeq (0.03-0.1) eV. For m_1\\lesssim 0.01 eV the allowed region in the plane theta_13-thet...

  6. Spin and electroweak effects in the neutrino-electron interaction

    International Nuclear Information System (INIS)

    Kerimov, B.K.; Safin, M.Yu.; Haidar, N.; Tikhomirov, A.M.

    1987-01-01

    The experimental data on elastic ν-bar e e - scattering with reactor antineutrinos are also analysed. νe - and ν-bare - scattering are highly sensitive to values of the EM moments of neutrinos. The results obtained give following bounds on the values of neutrino EM moments: f 2ν (0), g 2ν (0) -11

  7. Search for eV sterile neutrinos at a nuclear reactor — the Stereo project

    Science.gov (United States)

    Haser, J.; Stereo Collaboration

    2016-05-01

    The re-analyses of the reference spectra of reactor antineutrinos together with a revised neutrino interaction cross section enlarged the absolute normalization of the predicted neutrino flux. The tension between previous reactor measurements and the new prediction is significant at 2.7 σ and is known as “reactor antineutrino anomaly”. In combination with other anomalies encountered in neutrino oscillation measurements, this observation revived speculations about the existence of a sterile neutrino in the eV mass range. Mixing of this light sterile neutrino with the active flavours would lead to a modification of the detected antineutrino flux. An oscillation pattern in energy and space could be resolved by a detector at a distance of few meters from a reactor core: the neutrino detector of the Stereo project will be located at about 10 m distance from the ILL research reactor in Grenoble, France. Lengthwise separated in six target cells filled with 2 m3 Gd-loaded liquid scintillator in total, the experiment will search for a position-dependent distortion in the energy spectrum.

  8. Two-loop neutrino model with exotic leptons

    Science.gov (United States)

    Okada, Hiroshi; Orikasa, Yuta

    2016-01-01

    We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.

  9. Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments

    Directory of Open Access Journals (Sweden)

    D. K. Papoulias

    2015-01-01

    Full Text Available In this work, we explore ν-nucleus processes from a nuclear theory point of view and obtain results with high confidence level based on accurate nuclear structure cross sections calculations. Besides cross sections, the present study includes simulated signals expected to be recorded by nuclear detectors and differential event rates as well as total number of events predicted to be measured. Our original cross sections calculations are focused on measurable rates for the standard model process, but we also perform calculations for various channels of the nonstandard neutrino-nucleus reactions and come out with promising results within the current upper limits of the corresponding exotic parameters. We concentrate on the possibility of detecting (i supernova neutrinos by using massive detectors like those of the GERDA and SuperCDMS dark matter experiments and (ii laboratory neutrinos produced near the spallation neutron source facilities (at Oak Ridge National Lab by the COHERENT experiment. Our nuclear calculations take advantage of the relevant experimental sensitivity and employ the severe bounds extracted for the exotic parameters entering the Lagrangians of various particle physics models and specifically those resulting from the charged lepton flavour violating μ-→e- experiments (Mu2e and COMET experiments.

  10. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-08-01

    Full Text Available A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ−.

  11. On the possibilities of distinguishing Dirac from Majorana neutrinos

    International Nuclear Information System (INIS)

    Zralek, M.

    1997-01-01

    The problem if existing neutrinos are Dirac or Majorana particles is considered in a very pedagogical way. After a few historical remarks we recall the theoretical description of neutral spin 1/2 particles, emphasizing the difference between chirality and helicity which is important in our discussion. Next we describe the properties of neutrinos in the cases when their interactions are given by the standard model and by its extensions (massive neutrinos, right-handed currents, electromagnetic neutrino interaction, interaction with scalar particles). Various processes where the different nature of neutrinos could in principle be visible are reviewed. We clear up misunderstandings which have appeared in last suggestions how to distinguish both types of neutrinos. (author)

  12. A search for sterile neutrinos at the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pittam, Robert Neil [Univ. of Oxford (United Kingdom)

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The vμ beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without ve appearance. The oscillation parameters measured by this model are Δm322 = (2.39-0.15+0.23) x 10-3 eV2 and θ23 = 0.727-0.11+0.22 for the no ve appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of ve appearance and no ve appearance

  13. Lepton mixing predictions including Majorana phases from Δ(6n2 flavour symmetry and generalised CP

    Directory of Open Access Journals (Sweden)

    Stephen F. King

    2014-09-01

    Full Text Available Generalised CP transformations are the only known framework which allows to predict Majorana phases in a flavour model purely from symmetry. For the first time generalised CP transformations are investigated for an infinite series of finite groups, Δ(6n2=(Zn×Zn⋊S3. In direct models the mixing angles and Dirac CP phase are solely predicted from symmetry. The Δ(6n2 flavour symmetry provides many examples of viable predictions for mixing angles. For all groups the mixing matrix has a trimaximal middle column and the Dirac CP phase is 0 or π. The Majorana phases are predicted from residual flavour and CP symmetries where α21 can take several discrete values for each n and the Majorana phase α31 is a multiple of π. We discuss constraints on the groups and CP transformations from measurements of the neutrino mixing angles and from neutrinoless double-beta decay and find that predictions for mixing angles and all phases are accessible to experiments in the near future.

  14. Lepton mixing predictions including Majorana phases from Δ(6n2) flavour symmetry and generalised CP

    International Nuclear Information System (INIS)

    King, Stephen F.; Neder, Thomas

    2014-01-01

    Generalised CP transformations are the only known framework which allows to predict Majorana phases in a flavour model purely from symmetry. For the first time generalised CP transformations are investigated for an infinite series of finite groups, Δ(6n 2 )=(Z n ×Z n )⋊S 3 . In direct models the mixing angles and Dirac CP phase are solely predicted from symmetry. The Δ(6n 2 ) flavour symmetry provides many examples of viable predictions for mixing angles. For all groups the mixing matrix has a trimaximal middle column and the Dirac CP phase is 0 or π. The Majorana phases are predicted from residual flavour and CP symmetries where α 21 can take several discrete values for each n and the Majorana phase α 31 is a multiple of π. We discuss constraints on the groups and CP transformations from measurements of the neutrino mixing angles and from neutrinoless double-beta decay and find that predictions for mixing angles and all phases are accessible to experiments in the near future

  15. Time-Shift in the OPERA set-up: proof against superluminal neutrinos without the need of knowing the CERN-LNGS distance and Reminiscences on the origin of the Gran Sasso Lab, of the 3rd neutrino and of the "Teramo Anomaly"

    CERN Document Server

    Zichichi, Antonino

    2012-01-01

    The LVD time stability allows to establish a time-shift in the OPERA experiment, thus providing the first proof against Superluminal neutrinos, using the horizontal muons of the "Teramo Anomaly". This proof is particularly interesting since does not need the knowledge of the distance between the place where the neutrinos are produced (CERN) and the place where they are detected (LNGS). Since the Superluminal neutrinos generated in the physics community a vivid interest in good and bad behaviour in physics research, the author thought it was appropriate to recall the origin of the Gran Sasso Lab, of the 3rd neutrino, of the horizontal muons due to the "Teramo Anomaly" and of the oscillation between leptonic flavours, when the CERN-Gran Sasso neutrino beam was included in the project for the most powerful underground Laboratory in the world.

  16. A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Buccella, F. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Chianese, M. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Mangano, G. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S.; Santorelli, P. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy)

    2017-04-03

    Minimal SO(10) grand unified models provide phenomenological predictions for neutrino mass patterns and mixing. These are the outcome of the interplay of several features, namely: i) the seesaw mechanism; ii) the presence of an intermediate scale where B-L gauge symmetry is broken and the right-handed neutrinos acquire a Majorana mass; iii) a symmetric Dirac neutrino mass matrix whose pattern is close to the up-type quark one. In this framework two natural characteristics emerge. Normal neutrino mass hierarchy is the only allowed, and there is an approximate relation involving both light-neutrino masses and mixing parameters. This differs from what occurring when horizontal flavour symmetries are invoked. In this case, in fact, neutrino mixing or mass relations have been separately obtained in literature. In this paper we discuss an example of such comprehensive mixing-mass relation in a specific realization of SO(10) and, in particular, analyse its impact on the expected neutrinoless double beta decay effective mass parameter 〈m{sub ee}〉, and on the neutrino mass scale. Remarkably a lower limit for the lightest neutrino mass is obtained (m{sub lightest}≳7.5×10{sup −4} eV, at 3 σ level).

  17. Extracting limits for the difuse non-electron neutrino flux from SNO data

    Energy Technology Data Exchange (ETDEWEB)

    Miguez, B.S.R.; Kemp, E.; Peres, O.L.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin

    2009-07-01

    Full text. There is a prediction of a diffuse neutrino flux yield from the time integration of all supernova already exploded in the past governed by stellar formation and supernovae occurrence rates. The spectral characteristics of these neutrinos differ from those from recent supernovae mainly in two features: the reduction in their fluxes and their energy 'redshift' due the expansion of the universe. Thus, despite the fact that one single supernova is a transient state, their cumulative effect produces a steady flux of diffuse neutrinos everywhere in universe. These neutrinos have never been observed before. Only upper limits on their fluxes have been reported by the collaborations operating neutrino telescopes. Recently the SNO experiment have made an analysis where the total flux of diffuse electron neutrinos has an upper limit of phi{sub e} <= 61-93 cm{sup -2} s{sup -1}, depending on a specific supernova model. At the present, the best limit for the diffuse flux of non-electron neutrinos is phi{sub x} <= 10{sub 4} cm{sup -2} s{sup -1}, resulted from an analysis of the Super-Kamiokande data. In this work we have extended the SNO analysis including the elastic scattering on electrons via neutral current interactions to extract information on diffuse flux of the non-electron neutrino flavours (i.e. muon and tauon neutrinos). We make a comparison among our results and others from different experiments (LVD, SK, LSD). (author)

  18. Neutrino oscillations in discrete-time quantum walk framework

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Mandal, Sanjoy; Chandrashekar, C.M. [C. I. T. Campus, The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India)

    2017-02-15

    Here we present neutrino oscillation in the framework of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters which is required to reproduce the oscillation probability profile obtained in both, long range and short range neutrino experiment is explicitly presented. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental set-up with access to control a single six-level system, a multiparticle three-qubit or a qubit-qutrit system. We also present the entanglement between spins and position space, during neutrino propagation that will quantify the wave function delocalization around instantaneous average position of the neutrino. This work will contribute towards understanding neutrino oscillation in the framework of the quantum information perspective. (orig.)

  19. Leptoquarks and neutrino masses at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fileviez Perez, Pavel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: fileviez@physics.wisc.edu; Han Tao [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tong [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Department of Physics, Nankai University, Tianjin 300071 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-09-21

    The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of {mu}+E/{sub T}+jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.

  20. Leptoquarks and neutrino masses at the LHC

    International Nuclear Information System (INIS)

    Fileviez Perez, Pavel; Han Tao; Li Tong; Ramsey-Musolf, Michael J.

    2009-01-01

    The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of μ+E/ T +jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.

  1. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    International Nuclear Information System (INIS)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D.

    2013-01-01

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M ☉ neutron star, 5.6 M ☉ black hole), high-spin (black hole J/M 2 = 0.9) system with the K 0 = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M ☉ of nuclear matter is ejected from the system, while another 0.3 M ☉ forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y e of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L ν ∼ 10 54 erg s –1 ), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution

  2. Flavour separation of helicity distributions from deep inelastic muon-deuteron scattering

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Dinkelbach, A.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grajek, O.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; Hagemann, R.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Käfer, W.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kiefer, J.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Venugopal, G.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Wenzl, K.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2009-01-01

    Roč. 680, č. 5 (2009), s. 217-224 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : COMPASS * double-spin asymmetry * helicity density * Parton distribution function * flavour separation analysis * polarised DIS and SIDIS reactions * charged kaon asymmetry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.083, year: 2009

  3. Meat flavour

    International Nuclear Information System (INIS)

    Rosset, R.; Liger, P.; Roussel-Ciquard, N.

    1978-01-01

    For the consumer, meat is characterized by a certain number of organoleptic qualities; among them, flavour -that is to say the association of both odour and taste- plays a leading part. This property is based upon a great number of chemical components: some volatile components are responsible for the aroma and some non-volatile ones for the taste. These substances are either made or released during the heating of the meat on account of components called precursors which are produced during the aging of the meat. The two main reactions which preside over the elaboration of flavour are: the Maillard's reaction and the autooxidation reactions. Meat flavour is associated with the animal characteristics; it is influenced by the ante- and post mortem treatments as well as by the technological treatments for storing it. The use of synthetical flavours is to be considered as possible in the future [fr

  4. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-09-01

    Full Text Available A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices Γ are set. For Γ=2.4 the 90% confidence level flux upper limit at 100 TeV for one neutrino flavour corresponds to Φ01f(100 TeV=2.0⋅10−17 GeV−1cm−2s−1sr−1. Under this assumption, at most two events of the IceCube cosmic candidates can originate from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to account for IceCube High Energy Starting Events is excluded at 90% confidence level.

  5. Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Thorsten; Luhn, Christoph; Moch, Paul [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen (Germany)

    2016-11-11

    Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as μ→eγ, μ→3e and muon conversion in nuclei.

  6. Comparison of Flavour and Volatile Flavour Compounds of Mixed Elderberry Juices

    Directory of Open Access Journals (Sweden)

    Eva Vítová

    2015-01-01

    Full Text Available The aim of this work was to find the best composition for fruit drink based on elderberries with optimal flavour characteristics. For this purpose elderberry juice was mixed with various fruit juices (grape, black currant, apple, orange, carrot in various ratios, flavour was evaluated sensorially and instrumentally as the content of aroma compounds. Five flavour characteristics (sweet, acid/sour, bitter, astringent, characteristic elderberry, off-flavour, odour, texture (mouth-feel, colour and overall acceptability were evaluated sensorially using scale. Aroma compounds were extracted by solid phase microextraction and assessed by gas chromatography with flame ionization detection and gas chromatography-mass spectrometry. The significant differences (P < 0.05 in flavour were found between samples, which could be explained by differences in their volatile profiles. In total 57 compounds were identified in fruit juices and included 20 alcohols, 10 aldehydes, 8 ketones, 7 acids, 7 esters and 5 other compounds. Alcohols were quantitatively the most important group of all juices. The grape-elderberry juice, in optimum ratio 7:3 (70% v/v of elderberry, was proposed for practical use owing to the pleasant sweetish, elderberry flavour, and excellent other sensory characteristics.

  7. Understanding flavour at the LHC

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Huge progress in flavour physics has been achieved by the two B-factories and the Tevatron experiments. This progress has, however, deepened the new physics flavour puzzle: If there is new physics at the TeV scale, why aren't flavour changing neutral current processes enhanced by orders of magnitude compared to the standard model predictions? The forthcoming ATLAS and CMS experiments can potentially solve this puzzle. Perhaps even more surprisingly, these experiments can potentially lead to progress in understanding the standard model flavour puzzle: Why is there smallness and hierarchy in the flavour parameters? Thus, a rich and informative flavour program is awaiting us not only in the flavour-dedicated LHCb experiment, but also in the high-pT ATLAS and CMS experiments.

  8. Neutrino`s helicity in a gravitational field; Helicite des neutrinos dans un champ gravitationnel

    Energy Technology Data Exchange (ETDEWEB)

    Pansart, J.P.

    1996-12-31

    By using approximated solutions of Dirac`s equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m{sup 2}{sub p} / E{sup 2}, where m{sub p} is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.). 10 refs.

  9. Establishing a relation between the mass and the spin of stellar-mass black holes.

    Science.gov (United States)

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-08-09

    Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given M. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M at their formation stage was higher compared to faster spinning BHs.

  10. Heavy Sterile Neutrino in Dark Matter Searches

    Directory of Open Access Journals (Sweden)

    Paraskevi C. Divari

    2018-01-01

    Full Text Available Sterile neutrinos are possible dark matter candidates. We examine here possible detection mechanisms, assuming that the neutrino has a mass of about 50 keV and couples to the ordinary neutrino. Even though this neutrino is quite heavy, it is nonrelativistic with a maximum kinetic energy of 0.1 eV. Thus new experimental techniques are required for its detection. We estimate the expected event rate in the following cases: (i measuring electron recoil in the case of materials with very low electron binding; (ii low temperature crystal bolometers; (iii spin induced atomic excitations at very low temperatures, leading to a characteristic photon spectrum; (iv observation of resonances in antineutrino absorption by a nucleus undergoing electron capture; (v neutrino induced electron events beyond the end point energy of beta decaying systems, for example, in the tritium decay studied by KATRIN.

  11. Gamow-Teller strength functions and neutrino problems

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1982-01-01

    A quantitative understanding of spin strengths in nuclei is of vital importance in studies of nuclear double beta decay and in solar neutrino spectroscopy. The current status of these problems is outlined

  12. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, M. Brett; Duez, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164 (United States); Foucart, Francois; O' Connor, Evan [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada); Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Kidder, Lawrence E.; Muhlberger, Curran D., E-mail: mbdeaton@wsu.edu, E-mail: m.duez@wsu.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  13. Constraints on TeV scale Majorana neutrino phenomenology from the vacuum stability of the Higgs

    International Nuclear Information System (INIS)

    Chakraborthy, Jaydeep; Das, Moumita; Mohanty, Subhendra

    2013-01-01

    The vacuum stability condition of the Standard Model Higgs potential with mass in the range of 124-127 GeV puts an upper bound on the Dirac mass of the neutrinos. We study this constraint with the right-handed neutrino masses upto TeV scale. The heavy neutrinos contribute to ΔL = 2 processes like neutrinoless double beta decay and same-sign-dilepton production in the colliders. The vacuum stability criterion also restricts the light-heavy neutrino mixing and constrains the branching ratio of lepton flavour violating process, like μ → eγ mediated by the heavy neutrinos. We show that neutrinoless double beta decay with a lifetime ∼ 10 25 years can be observed if the the lightest heavy neutrino mass is R > 3.3 TeV. Finally we show that the observation of same-sign-dileptons (SSD) associated with jets at the LHC needs much larger luminosity than available at present. We have estimated the possible maximum cross-section for this process at the LHC and show that with an integrated luminosity 100 fb 1 it may be possible to observe the SSD signals as long as M R < 400 GeV. (author)

  14. On the High-Energy Neutrino Emission from Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Emma Kun

    2018-02-01

    Full Text Available We review observational aspects of the active galactic nuclei and their jets in connection with the detection of high-energy neutrinos by the Antarctic IceCube Neutrino Observatory. We propose that a reoriented jet generated by the spin-flipping supermassive black hole in a binary merger is likely the source of such high-energy neutrinos. Hence they encode important information on the afterlife of coalescing supermassive black hole binaries. As the gravitational radiation emanating from them will be monitored by the future LISA space mission, high-energy neutrino detections could be considered a contributor to multi-messenger astronomy.

  15. Anomalous dimensions of spin-zero four-quark operators without derivatives

    International Nuclear Information System (INIS)

    Jamin, M.; Kremer, M.

    1986-01-01

    The anomalous dimensions of local spin-zero four-quark operators without derivatives are calculated for the case of three flavours. We also give the result in the approximation that no flavour mixing occurs, because this may be relevant for lattice calculations of four-quark condensates in the quenched approximation. We demonstrate the influence of the operator mixing in a specific example. (orig.)

  16. Beyond the standard seesaw neutrino masses from Kahler operators and broken supersymmetry

    CERN Document Server

    Brignole, Andrea; Rossi, Anna

    2010-01-01

    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, thi...

  17. Mere exposure and flavour-flavour learning increase 2-3 year-old children's acceptance of a novel vegetable.

    Science.gov (United States)

    Hausner, Helene; Olsen, Annemarie; Møller, Per

    2012-06-01

    Vegetable consumption is low among many children. This study compared the efficacy of the exposure learning strategies mere exposure, flavour-flavour and flavour-nutrient learning in changing children's intake of a novel vegetable. An unmodified artichoke purée was served at pre-testing. Hereafter children were exposed 10 times to unmodified purée (mere exposure, n=32), a sweetened purée (flavour-flavour learning, n=33) or an energy dense purée with added fat (flavour-nutrient learning, n=39). Unmodified and sweet purée contained approximately 200 kJ/100g; the energy dense purée 580 kJ/100g. The unmodified purée was served again at post-testing, 3 and 6 months after last exposure to monitor long-term effects of learning. Intake of purée increased in the mere exposure and flavour-flavour condition, and was unchanged in the flavour-nutrient condition. Mere exposure changed children's intake by the 5th exposure, flavour-flavour learning by the 10th. Mere exposure led to the largest increase in intake of unmodified purée at post-test and over 6 months. Children following flavour-flavour learning consumed more of the sweet purée than of unmodified purée. About 30-40% of the children were resistant to acceptance changes. The results of this study imply that mere exposure and flavour-flavour learning are powerful strategies for changing children's acceptance of a novel vegetable, even though a substantial number of children are resistant to these types of exposure learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule.

    Science.gov (United States)

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Feng, Nienie

    2015-07-01

    Flavour plays an important role and has been widely used in many products. Usually, the components of flavour are volatile and the sensory perception can be changed as a result of volatilization, heating, oxidation and chemical interactions. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the core materials. This work concentrated on production of a transparent lavender flavour nanocapsule aqueous solution. The results showed that a transparent lavender flavour microcapsule aqueous solution can be produced using hydroxypropyl-β-cyclodextrin (HP-β-CD) as wall material. The combination and interaction of flavour and wall materials were investigated by pyrolysis. Pyrolysis characteristics and kinetic parameters of the flavour nanocapsule were determined. During thermal degradation of blank HP-β-CD and flavour-HP-β-CD inclusion complex, three main stages can be distinguished. Due to the vaporization of lavender flavour encapsulated in HP-β-CD, the thermogravimetric (TG) curve of blank HP-β-CD shows a leveling-off from room temperature to 269 °C, while the TG curve of flavour-HP-β-CD inclusion complex is downward sloping in this temperature range. The kinetic parameters are helpful in understanding the mechanism of molecular recognition between hosts and guests.

  19. Flavour physics and flavour symmetries after the first LHC phase

    International Nuclear Information System (INIS)

    Barbieri, R.; Buttazzo, D.; Sala, F.; Straub, D.M.

    2014-01-01

    Based on flavour symmetries only, there are two ways to give rise to an effective description of flavour physics in the quark sector close to the CKM picture: one is based on U(3)_q×U(3)_u×U(3)_d (or equivalent) and the other on U(2)_q×U(2)_u×U(2)_d (or equivalent). In this context we analyze the current status of flavour physics measurements and we compare their impact, in the specific case of supersymmetry, with the direct searches of new particles at the LHC, present or foreseen

  20. Neutrino fields in Einstein-Cartan theory

    International Nuclear Information System (INIS)

    Griffiths, J.B.

    1981-01-01

    The spin-coefficient formalism presented elsewhere is here applied to classical neutrino fields in Einstein-Cartan theory. It is shown that the neutrino current vector is tangent to an expansion-free null geodesic congruence with constant and equal twist and shear, which vanish if and only if the congruence is a repeated principal null congruence of the gravitational field. The geodesics are both extremals and autoparallels. All exact solutions for the case of pure radiation fields are obtained, and it is shown that the only possible ghost solutions have a plane wave metric. (author)

  1. High PT electronuclear reactions and spin observables

    International Nuclear Information System (INIS)

    Laget, J.M.

    1990-01-01

    The main arguments of the following topics are reviewed: the high transverse momentum exclusive reactions, the determination of various spin observables and the production of different flavours in reactions induced by real and virtual photons

  2. Pulsar Kicks via Spin-1 Color Superconductivity

    International Nuclear Information System (INIS)

    Schmitt, Andreas; Shovkovy, Igor A.; Wang Qun

    2005-01-01

    We propose a new neutrino propulsion mechanism for neutron stars which can lead to strong velocity kicks, needed to explain the observed bimodal velocity distribution of pulsars. The spatial asymmetry in the neutrino emission is naturally provided by a stellar core containing spin-1 color-superconducting quark matter in the A phase. The neutrino propulsion mechanism switches on when the stellar core temperature drops below the transition temperature of this phase

  3. Spin puzzle in nucleon

    International Nuclear Information System (INIS)

    Ramachandran, R.

    1994-09-01

    The object of this brief review is to reconcile different points of view on how the spin of proton is made up from its constituents. On the basis of naive quark model with flavour symmetry such as isospin or SU(3) one finds a static description. On the contrary the local SU(3) colour symmetry gives a dynamical view. Both these views are contrasted and the role of U(1) axial anomaly and the ambiguity for the measurable spin content is discussed. (author). 16 refs, 1 fig

  4. Publisher's Note: Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory [Phys. Rev. D 84, 122005

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M., Jr.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Smialkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-01-01

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavours above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence,

  5. Quark model calculation of charmed baryon production by neutrinos

    International Nuclear Information System (INIS)

    Avilez, C.; Kobayashi, T.; Koerner, J.G.

    1976-11-01

    We study the neutrino production of 25 low-lying charmed baryon resonances in the four flavour quark model. The mass difference of ordinary and charmed quarks is explicitly taken into account. The quark model is used to determine the spectrum of the charmed baryon resonances and the q 2 = 0 values of the weak current transition matrix elements. These transition matrix elements are then continued to space-like q 2 -values by a generalized meson dominance ansatz for a set of suitably chosen invariant form factors. We find that the production of the L = 0 states C 0 , C 1 and C 1 * is dominant, with the C 0 produced most copiously. For L = 1, 2 the Jsup(P) = 3/2 - 5/2 + charm states are dominant. We give differential cross sections, total cross sections and energy integrated total cross sections using experimental neutrino fluxes. (orig./BJ) [de

  6. What Would It Take for an Atmospheric Neutrino Detector to Constrain the Hydrogen Content of the Earth's Core ?

    Science.gov (United States)

    Bourret, S.; Coelho, J. A. B.; Kaminski, E. C.; Van Elewyck, V.

    2017-12-01

    The difference between PREM density and seismic profiles in the Earth's core and the values for pure iron and iron-nickel alloys inferred from high pressure/high temperature experiments and ab initio calculations requires the presence of a few wt% of light elements. The nature and amount of these light elements (O, Si, S, H, C...) remains controversial. Recent studies have renewed the interest in H. It is the most abundant element in the nebula and can be easily dissolved in iron in the early stages of Earth's evolution. 1 to 2 wt% of H could explain the difference between PREM and pure iron. However, current geophysical methods alone cannot settle the debate between H and the other candidate elements. Neutrino oscillation tomography using atmospheric neutrinos opens an avenue to collect independent data on Earth's core composition. This method exploits the quantum phenomenon of neutrino flavour oscillations, which depends on the electron density along the path of the neutrino through the Earth. The combination of a neutrino-based measurement of the electron density with the PREM mass density profile constrains the average proton-to-nucleon ratio of the medium (Z/A). Since this parameter varies among chemical elements, e.g. 0.466 for Fe and 1 for H, this technique has the potential to provide unprecedented insights into the chemical composition of the core, and in particular its hydrogen content. Performing such a measurement requires large-size detectors with good efficiency in the relevant energy range and precise determination of the neutrino energy, arrival direction, and flavour. Considering a generic but realistic model of detector response, we quantify the influence of various detector performance indicators on the sensitivity to the average Z/A in the core. We further evaluate the impact of systematic uncertainties, such as those related to the physical model for neutrino oscillations and the incoming flux of atmospheric neutrinos. We consider specific

  7. A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction

    International Nuclear Information System (INIS)

    Frixione, Stefano; Ridolfi, Giovanni; Nason, Paolo

    2007-01-01

    We present a next-to-leading order calculation of heavy flavour production in hadronic collisions that can be interfaced to shower Monte Carlo programs. The calculation is performed in the context of the POWHEG method. It is suitable for the computation of charm, bottom and top hadroproduction. In the case of top production, spin correlations in the decay products are taken into account

  8. Top-flavoured dark matter in Dark Minimal Flavour Violation

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Monika; Kast, Simon [Institut für Kernphysik, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-05-31

    We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to right-handed up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral D meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consider all of these constraints in turn, studying their implications for the allowed parameter space. Imposing the mass limits and coupling benchmarks from collider searches, we then conduct a combined analysis of all the other constraints, revealing their non-trivial interplay. Especially interesting is the combination of direct detection and relic abundance constraints, having a severe impact on the structure of the dark matter coupling matrix. We point out that future bounds from upcoming direct detection experiments, such as XENON1T, XENONnT, LUX-ZEPLIN, and DARWIN, will exclude a large part of the parameter space and push the DM mass to higher values.

  9. Is neutrino produced in standard weak interactions a Dirac or Majorana particle?

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2010-01-01

    This work considers the following problem: what type (Dirac or Majorana) of neutrinos is produced in standard weak interactions? It is concluded that only Dirac neutrinos but not Majorana neutrinos can be produced in these interactions. Then neutrino interacts with W ± and Z bosons but neutrinoless double beta decay is absent. It means that this neutrino will be produced in another type of interaction. Namely, Majorana neutrino will be produced in the interaction which differentiates spin projections but cannot differentiate neutrino (particle) from antineutrino (antiparticle). Then neutrino will interact with W ± bosons and neutrinoless double beta decay will arise. But interaction with Z boson will be absent. Such an interaction has not been discovered yet. Therefore, experiments with very high precision are important to detect the neutrinoless double decays if they are realized in the Nature

  10. Probing lepton-flavour universality with K → πν anti ν decays

    Energy Technology Data Exchange (ETDEWEB)

    Bordone, Marzia; Buttazzo, Dario; Isidori, Gino; Monnard, Joachim [Universitaet Zuerich, Physik-Institut, Zurich (Germany)

    2017-09-15

    We analyse the rare processes K → πν anti ν in view of the recent hints of violations of lepton-flavour universality (LFU) observed in B meson decays. If, as suggested by present data, the new interactions responsible for LFU violations couple mainly to the third generation of left-handed fermions, K → πν anti ν decays turn out to be particularly interesting: these are the only kaon decays with third-generation leptons (the τ neutrinos) in the final state. In order to relate B-physics anomalies and K decays we adopt an effective field theory approach, assuming that the new interactions satisfy an approximate U(2){sub q} x U(2){sub l} flavour symmetry. In this framework we show that O(1) deviations from the Standard Model predictions in K → πν anti ν branching ratios, closely correlated to similar effects in B → K{sup (*)}ν anti ν, are naturally expected. The correlation of B(K → πν anti ν), B(B → K{sup (*)}ν anti ν), and the LFU violations in B decays would provide a very valuable tool to shed more light on this interesting phenomenon. (orig.)

  11. Neutrino Masses with Inverse Hierarchy from Broken $L_{e}-L_{\\mu}-L_{\\tau}$: a Reappraisal

    CERN Document Server

    Altarelli, Guido; Altarelli, Guido; Franceschini, Roberto

    2006-01-01

    We discuss a class of models of neutrino masses and mixings with inverse hierarchy based on a broken U(1)_F flavour symmetry with charge L_e-L_\\mu-L_\\tau. The symmetry breaking sector receives separate contributions from flavon vev breaking terms and from soft mass breaking in the right handed Majorana sector. The model is able to reproduce in a natural way all observed features of the charged lepton mass spectrum and of neutrino masses and mixings (even with arbitrarily small \\theta_{13}), with the exception of a moderate fine tuning which is needed to accomodate the observed small value of r = Delta m^2_{sol} / Delta m^2_{atm}.

  12. The Flavour Portal to Dark Matter

    CERN Document Server

    Calibbi, Lorenzo; Zaldivar, Bryan

    2015-01-01

    We present a class of models in which dark matter (DM) is a fermionic singlet under the Standard Model (SM) gauge group but is charged under a symmetry of flavour that acts as well on the SM fermions. Interactions between DM and SM particles are mediated by the scalar fields that spontaneously break the flavour symmetry, the so-called flavons. In the case of gauged flavour symmetries, the interactions are also mediated by the flavour gauge bosons. We first discuss the construction and the generic features of this class of models. Then a concrete example with an abelian flavour symmetry is considered. We compute the complementary constraints from the relic abundance, direct detection experiments and flavour observables, showing that wide portions of the parameter space are still viable. Other possibilities like non-abelian flavour symmetries can be analysed within the same framework.

  13. Oscillation sensitivity with up-going muons in lCAL at India based Neutrino Observatory (INO)

    International Nuclear Information System (INIS)

    Rawat, Kanishka; Bhatnagar, Vipin; Indumathi, D.

    2013-01-01

    The proposed magnetised Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) lab is mostly sensitive to the muon neutrinos. We present preliminary results for oscillation studies with up-going muons. We have used charge-current events with Honda flux for the analysis. Honda flux is calculated for INO-Theni site where the INO-ICAl detector will be placed. For up-going muon with 2-flavour oscillation, the parameters taken are: θ 12 = 34, θ 13 = 0, θ 23 = 45, Δm 2 31 = 7.92 x 10 -5 eV 2 , Δm 2 21 = 2.4 x 10 -3 eV 2 , δ cp = 0. We generate events using the ICAL geometry in the Nuance neutrino generator and pass the produced events through the ICAl-GEANT4 simulated detector. The muon tracks are reconstructed according to this package through a Kalman filter algorithm that returns both the magnitude and direction of the muon momentum. The sensitivity of these events to oscillations in the parent neutrino flux will be studied next

  14. Adolescents' interest in trying flavoured e-cigarettes.

    Science.gov (United States)

    Pepper, J K; Ribisl, K M; Brewer, N T

    2016-11-01

    More US adolescents use e-cigarettes than smoke cigarettes. Research suggests flavoured e-cigarettes appeal to youth, but little is known about perceptions of and reasons for attraction to specific flavours. A national sample of adolescents (n=1125) ages 13-17 participated in a phone survey from November 2014 to June 2015. We randomly assigned adolescents to respond to survey items about 1 of 5 e-cigarette flavours (tobacco, alcohol, menthol, candy or fruit) and used regression analysis to examine the impact of flavour on interest in trying e-cigarettes and harm beliefs. Adolescents were more likely to report interest in trying an e-cigarette offered by a friend if it were flavoured like menthol (OR=4.00, 95% CI 1.46 to 10.97), candy (OR=4.53, 95% CI 1.67 to 12.31) or fruit (OR=6.49, 95% CI 2.48 to 17.01) compared with tobacco. Adolescents believed that fruit-flavoured e-cigarettes were less harmful to health than tobacco-flavoured e-cigarettes (p<0.05). Perceived harm mediated the relationship between some flavours and interest in trying e-cigarettes. A minority of adolescents believed that e-cigarettes did not have nicotine (14.6%) or did not know whether they had nicotine (3.6%); these beliefs did not vary by flavour. Candy-flavoured, fruit-flavoured and menthol-flavoured e-cigarettes appeal to adolescents more than tobacco-flavoured or alcohol-flavoured e-cigarettes. This appeal is only partially explained by beliefs about reduced harm. Given adolescents' interest in trying e-cigarettes with certain flavours, policymakers should consider restricting advertisements promoting flavoured products in media that reach large numbers of young people. Future research should examine other reasons for the appeal of individual flavours, such as novelty and perceived luxury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  16. Inclusive Flavour Tagging Algorithm

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex

    2016-01-01

    Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment. (paper)

  17. Flavour tagging performance in LHCb

    International Nuclear Information System (INIS)

    Grabalosa Gandara, Marc

    2009-01-01

    To do precise CP violation measurements, the best possible determination of the flavour of the B-meson is necessary. This report summarizes the flavour tagging performances for the LHCb experiment. The flavour tagging is obtained through a combination of several methods, based on different signatures. The use of control channels, which are decays to flavour-specific final states, will allow to determine the wrong tag fraction ω (the probability of a tag to be wrong), which can be used as an input for the determination of CKM unitarity triangle angles.

  18. Flavour Tagging with the LHCb experiment

    CERN Multimedia

    Birnkraut, Alex

    2015-01-01

    Measurements of flavour oscillations and time-dependent CP asymmetries in neutral B meson systems require knowledge of the b quark production flavour. This identification is performed by the Flavour Tagging.

  19. Strange, charmed and b-flavoured mesons in an effective power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1981-01-01

    We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons. (orig.)

  20. Strange, charmed and b-flavoured mesons in an effective power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1981-05-14

    We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons.

  1. Flavour chemicals in a sample of non-cigarette tobacco products without explicit flavour names sold in New York City in 2015.

    Science.gov (United States)

    Farley, Shannon M; Schroth, Kevin Rj; Grimshaw, Victoria; Luo, Wentai; DeGagne, Julia L; Tierney, Peyton A; Kim, Kilsun; Pankow, James F

    2018-03-01

    Youth who experiment with tobacco often start with flavoured products. In New York City (NYC), local law restricts sales of all tobacco products with 'characterising flavours' except for 'tobacco, menthol, mint and wintergreen'. Enforcement is based on packaging: explicit use of a flavour name (eg, 'strawberry') or image depicting a flavour (eg, a fruit) is presumptive evidence that a product is flavoured and therefore prohibited. However, a tobacco product may contain significant levels of added flavour chemicals even when the label does not explicitly use a flavour name. Sixteen tobacco products were purchased within NYC in 2015 that did not have explicit flavour names, along with three with flavour names. These were analysed for 92 known flavour chemicals plus triacetin by gas chromatography/mass spectrometry. 14 of the 16 products had total determined flavour chemical levels that were higher (>0.3 mg/g) than in previously studied flavour-labelled products and of a chemical profile indicating added flavour chemicals. The results suggest that the tobacco industry has responded to sales restrictions by renaming flavoured products to avoid explicitly identifying them as flavoured. While chemical analysis is the most precise means of identifying flavours in tobacco products, federal tobacco laws pre-empt localities from basing regulations on that approach, limiting enforcement options. If the Food and Drug Administration would mandate that all tobacco products must indicate when flavourings are present above a specific level, local jurisdictions could enforce their sales restrictions. A level of 0.1 mg/g for total added flavour chemicals is suggested here as a relevant reference value for regulating added flavour chemicals in tobacco products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Heavy flavours: theory summary

    OpenAIRE

    Corcella, Gennaro

    2005-01-01

    I summarize the theory talks given in the Heavy Flavours Working Group. In particular, I discuss heavy-flavour parton distribution functions, threshold resummation for heavy-quark production, progress in fragmentation functions, quarkonium production, heavy-meson hadroproduction.

  3. Physics at the AD/PS/SPS (3/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 3: Flavour and Neutrinos The CERN SPS provides kaon and neutrino beams which are unique in the world. The lecture will describe the flavour and neutrino research conducted with these beams. The flavour programme is centered around the study of kaons. It includes a broad spectrum of topics such as CP-Violation, the precise determination of quark-mixing parameters, lepton universality and very rare decays. The CNGS neutrino beam enables to perform long baseline neutrino oscillation experiments with unique features such as the tau lepton appearance.

  4. The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment

    CERN Document Server

    Agarwalla, S.K.; Aittola, M.; Alekou, A.; Andrieu, B.; Angus, D.; Antoniou, F.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Autiero, D.; Ballett, P.; Bandac, I.; Banerjee, D.; Barker, G.J.; Barr, G.; Bartmann, W.; Bay, F.; Berardi, V.; Bertram, I.; Bésida, O.; Blebea-Apostu, A.M.; Blondel, A.; Bogomilov, M.; Borriello, E.; Boyd, S.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Cafagna, F.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Caretta, O.; Cata-Danil, G.; Catanesi, M.G.; Cervera, A.; Chakraborty, S.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Christodoulou, G.; Coleman, J.; Crivelli, P.; Davenne, T.; Dawson, J.; De Bonis, I.; De Jong, J.; Déclais, Y.; del Amo Sanchez, P.; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, K.; Enqvist, T.; Epprecht, L.; Ereditato, A.; Erykalov, A.N.; Esanu, T.; Finch, A.J.; Fitton, M.D.; Franco, D.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Goddard, B.; Gomez, J.J.; Gomoiu, C.M.; Gornushkin, Y.A.; Gorodetzky, P.; Grant, N.; Haesler, A.; Haigh, M.D.; Hasegawa, T.; Haug, S.; Hierholzer, M.; Hissa, J.; Horikawa, S.; Huitu, K.; Ilic, J.; Ioannisian, A.N.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Kalliokoski, T.; Karadzhov, Y.; Kawada, J.; Khabibullin, M.; Khotjantsev, A.; Kokko, E.; Kopylov, A.N.; Kormos, L.L.; Korzenev, A.; Kosyanenko, S.; Kreslo, I.; Kryn, D.; Kudryavtsev, V.A.; Kudenko, Y.; Kumpulainen, J.; Kuusiniemi, P.; Lagoda, J.; Lazanu, I.; Levy, J. -M.; Litchfield, R.P.; Loo, K.; Loveridge, P.; Maalampi, J.; Magaletti, L.; Margineanu, R.M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; Mercadante, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Morgan, B.; Murdoch, M.; Murphy, S.; Narita, S.; Nesterenko, D.A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; O'Keeffe, H.; Odell, J.; Oprima, A.; Palladino, V.; Pascoli, S.; Patzak, T.; Payne, D.; Pectu, M.; Pennacchio, E.; Papaphilippou, Y.; Periale, L.; Pessard, H.; Pistillo, C.; Popov, B.; Przewlocki, P.; Quinto, M.; Radicioni, E.; Ramachers, Y.; Ratoff, P.N.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rondio, E.; Rubbia, A.; Rummukainen, K.; Sacco, R.; Saftoiu, A.; Sakashita, K.; Sarkamo, J.; Sato, F.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Sorel, M.; Spooner, N.J.C.; Stahl, A.; Stanca, D.; Steerenberg, R.; Sterian, A.R.; Sterian, P.; Still, B.; Stoica, S.; Strauss, T.; Suhonen, J.; Suvorov, V.; Szeptycka, M.; Terri, R.; Thompson, L.F.; Toma, G.; Tonazzo, A.; Touramanis, C.; Trzaska, W.H.; Tsenov, R.; Tuominen, K.; Vacheret, A.; Valram, M.; Vankova-Kirilova, G.; Vanucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Viant, T.; Vincke, H.; Virtanen, A.; Vorobyev, A.; Wark, D.; Weber, A.; Weber, M.; Wiebusch, C.; Wilson, J.R.; Wu, S.; Yershov, N.; Zalipska, J.; Zito, M.

    2014-01-01

    The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrat...

  5. Measurement of Muon Neutrino Disappearance with the NOvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vinton, Luke [Sussex U.

    2018-01-01

    The NOvA experiment consists of two functionally identical tracking calorimeter detectors which measure the neutrino energy and flavour composition of the NuMI beam at baselines of 1~km and 810~km. Measurements of neutrino oscillation parameters are extracted by comparing the neutrino energy spectrum in the far detector with predictions of the oscillated neutrino energy spectra that are made using information extracted from the near detector. Observation of muon neutrino disappearance allows NOvA to make measurements of the mass squared splitting $\\Delta m^2_{32}$ and the mixing angle $\\theta_{23}$. The measurement of $\\theta_{23}$ will provide insight into the make-up of the third mass eigenstate and probe the muon-tau symmetry hypothesis that requires $\\theta_{23} = \\pi/4$. This thesis introduces three methods to improve the sensitivity of NOvA's muon neutrino disappearance analysis. First, neutrino events are separated according to an estimate of their energy resolution to distinguish well resolved events from events that are not so well resolved. Second, an optimised neutrino energy binning is implemented that uses finer binning in the region of maximum muon neutrino disappearance. Third, a hybrid selection is introduced that selects muon neutrino events with greater efficiency and purity. The combination of these improvements produces an increase in the sensitivity of the analysis equivalent to collecting 40-100\\% more data across the range of possible values of $\\Delta m^2_{32}$ and $\\sin^2\\theta_{23}$. This thesis presents new results using a 14~ktonne detector equivalent exposure of $6.05\\times 10^{20}$~protons~on~target. A fit to the far detector data, assuming normal hierarchy, produces $\\Delta m^2_{32}=2.45^{+0.087}_{-0.079}\\times10^{-3}~\\text{eV}^2$ and $\\sin^2\\theta_{23}$ in the range 0.429~-~0.593 with two statistically degenerate best fit points at 0.481 and 0.547. This measurement is consistent with maximal mixing where $\\theta

  6. Heavy Flavour Production as Probe of Gluon Sivers Function

    International Nuclear Information System (INIS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav; Sonawane, Bipin

    2017-01-01

    Heavy flavour production like J/ψ and D-meson production in scattering of electrons/unpolarized protons off polarized proton target offer promising probes to investigate gluon Sivers function. In this talk, I will summarize our recent work on transverse single spin asymmetry in J/ψ-production and D-meson production in pp↑ scattering using a generalized parton model approach. We compare predictions obtained using different models of gluon Sivers function within this approach and then, taking into account the transverse momentum dependent evolution of the unpolarized parton distribution functions and gluon Sivers function, we study the effect of evolution on asymmetry. (author)

  7. Flavour chemistry of chicken meat: a review.

    Science.gov (United States)

    Jayasena, Dinesh D; Ahn, Dong Uk; Nam, Ki Chang; Jo, Cheorun

    2013-05-01

    Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration

  8. Hidden spin-3/2 field in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Demir, Durmus; Karahan, Canan; Sargin, Ozan [Izmir Institute of Technology, Department of Physics, Urla (Turkey); Korutlu, Beste [TUeBITAK National Metrology Institute, Gebze, Kocaeli (Turkey)

    2017-09-15

    Here we show that a massive spin-3/2 field can hide in the SM spectrum in a way revealing itself only virtually. We study collider signatures and loop effects of this field, and determine its role in Higgs inflation and its potential as dark matter. We show that this spin-3/2 field has a rich linear collider phenomenology and motivates consideration of a neutrino-Higgs collider. We also show that the study of Higgs inflation, dark matter and dark energy can reveal more about the neutrino and dark sector. (orig.)

  9. Heavy flavours

    CERN Document Server

    Buras, Andrzej J

    1998-01-01

    This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics and confronts the Standard Model and some of its extensions with existing experimental data.This new edition covers new trends and ideas and includes the latest experimental information. Compared to the previous edition interesting new activities are included and some of the key contributions are updated. Particular attention is paid to the discover

  10. Flavour Behavior

    Institute of Scientific and Technical Information of China (English)

    奎斯特国际有限公司

    2004-01-01

    @@ A good flavour must taste realistic and natural as well as performing under tough conditions, says Mairi Coia. In conjunction with texture or mouthfeel, flavour is the most important aspect of food. It is the one thing can bring consumers back to a product again and again - or not, as the case may be. In short, taste is the number one attribute in food and that is why the global fiavour business is worth A5 billion every year as manufacturers strive to make food taste better and fresher for longer.

  11. Fully constrained Majorana neutrino mass matrices using Σ(72 x 3)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.; Harrison, P.F. [Warwick Univ., Coventry (United Kingdom); Scott, W.G. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    2018-01-15

    In 2002, two neutrino mixing ansatze having trimaximally mixed middle (ν{sub 2}) columns, namely tri-chi-maximal mixing (TχM) and tri-phi-maximal mixing (TφM), were proposed. In 2012, it was shown that TχM with χ = ± (π)/(16) as well as TφM with φ = ± (π)/(16) leads to the solution, sin{sup 2} θ{sub 13} = (2)/(3) sin{sup 2} (π)/(16), consistent with the latest measurements of the reactor mixing angle, θ{sub 13}. To obtain TχM{sub (χ=±(π)/(16))} and TφM{sub (φ=±(π)/(16))}, the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m{sub 1}: m{sub 2}: m{sub 3} = ((2+√2))/(1+√(2(2+√2))): 1: ((2+√2))/(-1+√(2(2+√2))). In this paper we construct a flavour model based on the discrete group Σ(72 x 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3 x 3 matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of Σ(72 x 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices. (orig.)

  12. Pseudoscalar form factors in tau-neutrino nucleon scattering

    International Nuclear Information System (INIS)

    Hagiwara, K.; Mawatari, K.; Yokoya, H.

    2004-01-01

    We investigate the pseudoscalar transition form factors of nucleon for quasi-elastic scattering and Δ resonance production in tau-neutrino nucleon scattering via the charged current interactions. Although the pseudoscalar form factors play an important role for the τ production in neutrino-nucleon scattering, these are not known well. In this Letter, we examine their effects in quasi-elastic scattering and Δ resonance production and find that the cross section, Q 2 distribution, and spin polarization of the produced τ ± leptons are quite sensitive to the pseudoscalar form factors

  13. Two approaches towards the flavour puzzle. Dynamical minimal flavour violation and warped extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Michaela E.

    2010-08-16

    The minimal-flavour-violating (MFV) hypothesis considers the Standard Model (SM) Yukawa matrices as the only source of flavour violation. In this work, we promote their entries to dynamical scalar spurion fields, using an effective field theory approach, such that the maximal flavour symmetry (FS) of the SM gauge sector is formally restored at high energy scales. The non-vanishing vacuum expectation values of the spurions induce a sequence of FS breaking and generate the observed hierarchy in the SM quark masses and mixings. The fact that there exists no explanation for it in the SM is known as the flavour puzzle. Gauging the non-abelian subgroup of the spontaneously broken FS, we interpret the associated Goldstone bosons as the longitudinal degrees of freedom of the corresponding massive gauge bosons. Integrating out the heavy Higgs modes in the Yukawa spurions leads directly to flavour-changing neutral currents (FCNCs) at tree level. The coefficients of the effective four-quark operators, resulting from the exchange of heavy flavoured gauge bosons, strictly follow the MFV principle. On the other hand, the Goldstone bosons associated with the global abelian symmetry group behave as weakly coupled axions which can be used to solve the strong CP problem within a modified Peccei-Quinn formalism. Models with a warped fifth dimension contain five-dimensional (5D) fermion bulk mass matrices in addition to their 5D Yukawa matrices, which thus represent an additional source of flavour violation beyond MFV. They can address the flavour puzzle since their eigenvalues allow for a different localisation of the fermion zero mode profiles along the extra dimension which leads to a hierarchy in the effective four-dimensional (4D) Yukawa matrices. At the same time, the fermion splitting introduces non-universal fermion couplings to Kaluza-Klein (KK) gauge boson modes, inducing tree-level FCNCs. Within a Randall-Sundrum model with custodial protection (RSc model) we carefully work

  14. Two approaches towards the flavour puzzle. Dynamical minimal flavour violation and warped extra dimensions

    International Nuclear Information System (INIS)

    Albrecht, Michaela E.

    2010-01-01

    The minimal-flavour-violating (MFV) hypothesis considers the Standard Model (SM) Yukawa matrices as the only source of flavour violation. In this work, we promote their entries to dynamical scalar spurion fields, using an effective field theory approach, such that the maximal flavour symmetry (FS) of the SM gauge sector is formally restored at high energy scales. The non-vanishing vacuum expectation values of the spurions induce a sequence of FS breaking and generate the observed hierarchy in the SM quark masses and mixings. The fact that there exists no explanation for it in the SM is known as the flavour puzzle. Gauging the non-abelian subgroup of the spontaneously broken FS, we interpret the associated Goldstone bosons as the longitudinal degrees of freedom of the corresponding massive gauge bosons. Integrating out the heavy Higgs modes in the Yukawa spurions leads directly to flavour-changing neutral currents (FCNCs) at tree level. The coefficients of the effective four-quark operators, resulting from the exchange of heavy flavoured gauge bosons, strictly follow the MFV principle. On the other hand, the Goldstone bosons associated with the global abelian symmetry group behave as weakly coupled axions which can be used to solve the strong CP problem within a modified Peccei-Quinn formalism. Models with a warped fifth dimension contain five-dimensional (5D) fermion bulk mass matrices in addition to their 5D Yukawa matrices, which thus represent an additional source of flavour violation beyond MFV. They can address the flavour puzzle since their eigenvalues allow for a different localisation of the fermion zero mode profiles along the extra dimension which leads to a hierarchy in the effective four-dimensional (4D) Yukawa matrices. At the same time, the fermion splitting introduces non-universal fermion couplings to Kaluza-Klein (KK) gauge boson modes, inducing tree-level FCNCs. Within a Randall-Sundrum model with custodial protection (RSc model) we carefully work

  15. Neutrino Probes of the Nature of Light Dark Matter

    CERN Document Server

    Agarwalla, Sanjib K; Fernandez Martinez, Enrique; Mena, Olga

    2011-01-01

    Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-\\kton{} neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 \\kton{} liquid argon detector and a 100 \\kton{} magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 5-50 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter - nucleon spin dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.

  16. Neutrino mass sum rules and symmetries of the mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gehrlein, Julia [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Spinrath, Martin [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); National Center for Theoretical Sciences, Physics Division, Hsinchu (China)

    2017-05-15

    Neutrino mass sum rules have recently gained again more attention as a powerful tool to discriminate and test various flavour models in the near future. A related question which has not yet been discussed fully satisfactorily was the origin of these sum rules and if they are related to any residual or accidental symmetry. We will address this open issue here systematically and find previous statements confirmed. Namely, the sum rules are not related to any enhanced symmetry of the Lagrangian after family symmetry breaking but they are simply the result of a reduction of free parameters due to skillful model building. (orig.)

  17. Neutrino mass and mixing with discrete symmetry

    International Nuclear Information System (INIS)

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  18. Detecting electron neutrinos from solar dark matter annihilation by JUNO

    International Nuclear Information System (INIS)

    Guo, Wan-Lei

    2016-01-01

    We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ → νν-bar , τ + τ − , b b-bar , we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νν-bar and τ + τ − channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νν-bar channel with the DM mass lighter than 6.5 GeV . If the νν-bar or τ + τ − channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions

  19. Flavour tagging at the future linear collider

    International Nuclear Information System (INIS)

    Hansen, S.X.

    2003-01-01

    High performance flavour tagging of jets containing heavy flavours is crucial for the studies planned for the future high energy e + e - Linear Collider (LC). Pixel detectors have proven to provide very powerful flavour identification, for this reason the Linear Collider Flavour Identification collaboration has decided to concentrate its R and D work for the future LC on a Charged Coupled Device pixel vertex detector, and study the flavour tagging performance of the design to optimize it. In this work we first evaluate the basic tracking performance. We then estimate the flavour tagging performance of the present detector layout, using a neural network approach. We conclude by studying the energy dependence of the performance

  20. Flavour Chemistry of Chicken Meat: A Review

    Science.gov (United States)

    Jayasena, Dinesh D.; Ahn, Dong Uk; Nam, Ki Chang; Jo, Cheorun

    2013-01-01

    Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration

  1. Flavour Chemistry of Chicken Meat: A Review

    Directory of Open Access Journals (Sweden)

    Dinesh D. Jayasena

    2013-05-01

    Full Text Available Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for

  2. Dynamical generation of flavour

    Indian Academy of Sciences (India)

    Introduction of family symmetry and generation of flavour structure by Yukawa couplings arising as vacuum expectation values (VEVs) of 'spurion' fields offers an attractive alternative prospect for understanding flavour structure [1]. Model builders have considered various. Pramana – J. Phys., Vol. 86, No. 2, February 2016.

  3. Study of charmed particle production in interactions with neutrinos detected in the experiment NOMAD at CERN; Etude de la production de particules charmees via les interactions de neutrinos dans l'experience nomad au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Mechain, X.A

    1999-06-25

    NOMAD (Neutrino Oscillation Magnetic Detector), devoted to the observation of tau neutrino interactions in case of neutrino flavour oscillations, was optimised in order to get an excellent identification of electrons coming from tau decays. Amongst the real events, identified as muon neutrino interactions, we select events including one muon and one positron candidate. We then reduce the number of events for which a hadron simulates the positron, and a method based on a likelihood rate allows us to select events for which the positron, lost in the hadronic jet, comes from the decay of a quark charm, and eliminates those for which the positron comes from photon conversions or Dalitz decays. From the extracted signal, we are able to estimate the mass of the charm quark and the strange sea content of the nucleon, by comparison with a Monte Carlo simulation based on the latest CCFR results. We also carried out a technical study on a possible identification of electrons using the specific behaviour of their tracks left in the drift chambers. We showed that we can get some discrimination power using variables given by the Kalman filter used for track fitting. (author)

  4. Effect of the environment microbiota on the flavour of light-flavour Baijiu during spontaneous fermentation.

    Science.gov (United States)

    Pang, Xiao-Na; Han, Bei-Zhong; Huang, Xiao-Ning; Zhang, Xin; Hou, Lin-Feng; Cao, Ming; Gao, Li-Juan; Hu, Guang-Hui; Chen, Jing-Yu

    2018-02-21

    Light-flavour Baijiu is a type of Chinese liquor with a pure and mild flavour produced by traditional spontaneous solid-state fermentation. The flavour of this liquor has been found to vary in the different periods of annual production. To explore the factors affecting flavour, the microbiota of the surrounding environment, starter and fermentation process in different periods were investigated. Results showed that the ester content and acidity of light-flavour Baijiu were significantly lower when annual production was resumed after a summer break. HCA plot of volatile flavour profile and bacterial PCoA results indicated that the differences occurred at later stages, mainly due to different structures of Lactobacillus. Correlation analysis by O2PLS indicated that Lactobacillus positively correlated with esters. Species-level analysis showed that the lack of L. acetotolerans on the surface of the jar might cause a lag in fermentation and lower ester content. Thereafter, L. acetotolerans was revived during fermentation and enriched on the surface of the jar, which promoted ester formation. As important sources of L. acetotolerans, the air and fermentation jars played a critical role during fermentation. Therefore, this systematic study on environmental microbial ecology is valuable for quality control and to explore environmental microbiota functions during spontaneous fermentation.

  5. Progress On Neutrino-Proton Neutral-Current Scattering In MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Pate, Stephen [New Mexico State U.

    2017-01-16

    The MicroBooNE Experiment at the Fermi National Accelerator Laboratory, an 89-ton active mass liquid argon time projection chamber, affords a unique opportunity to observe low-$Q^2$ neutral-current neutrino-proton scattering events. Neutral-current neutrino-proton scattering at $Q^2 < 1$ GeV$^2$ is dominated by the proton's axial form factor, which can be written as a combination of contributions from the up, down, and strange quarks: $G_A(Q^2) = \\frac{1}{2}[-G_A^u(Q^2)+G_A^d(Q^2)+G_A^s(Q^2)]$. The contribution from up and down quarks has been established in past charged-current measurements. The contribution from strange quarks at low $Q^2$ remains unmeasured; this is of great interest since the strange quark contribution to the proton spin can be determined from the low-$Q^2$ behavior: $\\Delta S = G_A^s(Q^2=0)$. MicroBooNE began operating in the Booster Neutrino Beam in October 2015. I will present the status in observing isolated proton tracks in the MicroBooNE detector as a signature for neutral-current neutrino-proton events. The sensitivity of the MicroBooNE experiment for measuring the strange quark contribution to the proton spin will be discussed.

  6. Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule

    OpenAIRE

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Feng, Nienie

    2014-01-01

    Flavour plays an important role and has been widely used in many products. Usually, the components of flavour are volatile and the sensory perception can be changed as a result of volatilization, heating, oxidation and chemical interactions. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the core materials. This work concentrated on production of a transparent lavender flavour nanocapsule aqueous solution. The results showe...

  7. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe

    2008-01-01

    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  8. Flavour Tagging at LHCb

    CERN Multimedia

    Grabalosa Gandara, M

    2009-01-01

    To do precise CP violation measurements, the most possible accurate knowledge of the flavour at production of the reconstructed B meson is required. This poster summarizes the flavour tagging performances for the LHCb experiment. We use same side an opposite side algorithms to establish wheter the meson contained a b or a b\\bar quark. The final decision is obtained through a combination of several methods. The use of control channels, decays to a flavour specific final state, will allow to determine the wrong tag fraction \\omega (the probability of a tag to be wrong), which can be used as input for the determination of CKM unitary triangle angles.

  9. Two-Higgs-doublet models with Minimal Flavour Violation

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2010-01-01

    The tree-level flavour-changing neutral currents in the two-Higgs-doublet models can be suppressed by protecting the breaking of either flavour or flavour-blind symmetries, but only the first choice, implemented by the application of the Minimal Flavour Violation hypothesis, is stable under quantum corrections. Moreover, a two-Higgs-doublet model with Minimal Flavour Violation enriched with flavour-blind phases can explain the anomalies recently found in the ΔF = 2 transitions, namely the large CP-violating phase in B s mixing and the tension between ε K and S ψKS .

  10. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  11. Single heavy flavour baryons using Coulomb plus a power law interquark potential

    International Nuclear Information System (INIS)

    Majethiya, A.; Patel, B.; Vinodkumar, P.C.

    2008-01-01

    Properties of single heavy flavor baryons in a non-relativistic potential model with colour Coulomb plus a power law confinement potential have been studied using a simple variational method. The ground-state masses of single heavy baryons and the mass difference between the J P =3/2 + and J P =1/2 + states are computed using a spin-dependent two-body potential. Using the spin-flavour structure of the constituting quarks and by defining an effective confined mass of the constituent quarks within the baryons, the magnetic moments are computed. The masses and magnetic moments of the single heavy baryons are found to be in accordance with the existing experimental values and with other theoretical predictions. It is found that an additional attractive interaction of the order of -200 MeV is required for the antisymmetric states of Λ Q (Q element of c,b). It is also found that the spin-hyperfine interaction parameters play a decisive role in hadron spectroscopy. (orig.)

  12. Study of charmed particle production in interactions with neutrinos detected in the experiment NOMAD at CERN

    International Nuclear Information System (INIS)

    Mechain, X.A.

    1999-01-01

    NOMAD (Neutrino Oscillation Magnetic Detector), devoted to the observation of tau neutrino interactions in case of neutrino flavour oscillations, was optimised in order to get an excellent identification of electrons coming from tau decays. Amongst the real events, identified as muon neutrino interactions, we select events including one muon and one positron candidate. We then reduce the number of events for which a hadron simulates the positron, and a method based on a likelihood rate allows us to select events for which the positron, lost in the hadronic jet, comes from the decay of a quark charm, and eliminates those for which the positron comes from photon conversions or Dalitz decays. From the extracted signal, we are able to estimate the mass of the charm quark and the strange sea content of the nucleon, by comparison with a Monte Carlo simulation based on the latest CCFR results. We also carried out a technical study on a possible identification of electrons using the specific behaviour of their tracks left in the drift chambers. We showed that we can get some discrimination power using variables given by the Kalman filter used for track fitting. (author)

  13. Minimal Flavour Violation and Beyond

    CERN Document Server

    Isidori, Gino

    2012-01-01

    We review the formulation of the Minimal Flavour Violation (MFV) hypothesis in the quark sector, as well as some "variations on a theme" based on smaller flavour symmetry groups and/or less minimal breaking terms. We also review how these hypotheses can be tested in B decays and by means of other flavour-physics observables. The phenomenological consequences of MFV are discussed both in general terms, employing a general effective theory approach, and in the specific context of the Minimal Supersymmetric extension of the SM.

  14. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  15. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  16. A simplified model of top-flavoured dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kast, Simon; Blanke, Monika [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    We present the phenomenology of a new physics simplified model of top-flavoured dark matter. The dark matter particle is the lightest Dirac fermion of a new flavour-triplet coupling to the SM up-triplet via a new scalar mediator. The coupling is left general, following Dark Minimal Flavour Violation introduced in arXiv:1405.6709, and therefore is a new source of flavour violation. We study the impact of constraints from both flavour experiments, relic abundance and direct detection constraints, as well as collider bounds.

  17. Sensory analysis of characterising flavours

    NARCIS (Netherlands)

    Krüsemann, Erna J.Z.; Lasschuijt, Marlou P.; Graaf, de C.; Wijk, de René A.; Punter, Pieter H.; Tiel, van Loes; Cremers, Johannes W.J.M.; Nobelen, van de Suzanne; Boesveldt, Sanne; Talhout, Reinskje

    2018-01-01

    Objectives: Tobacco flavours are an important regulatory concept in several jurisdictions, for example in the USA, Canada and Europe. The European Tobacco Products Directive 2014/40/EU prohibits cigarettes and roll-your-own tobacco having a characterising flavour. This directive defines

  18. Biotechnology of flavours and fragrances

    Energy Technology Data Exchange (ETDEWEB)

    Gocho, Shinobu

    1987-10-20

    This paper presents the research and development of fragrant materials using the technologies of microorganism, enzyme and tissue culture. Flavour of dairy products by diacetyl, flavour and tests of blue cheese by methyl ketones, formation of small of fruit such as banana, grapefruit, lemon and peach, flavour of dairy products by reacting butterfat with lipase, patchoulenol as cosmetic perfume, production of musk perfume from carboxylic acid biologically produced from n-paraffin, cool taste of l-menthol and production of lactones for food flavour are being investigated using microorganisms and enzymes. The production of essential oil is being studied by the tissue culture of fragrant plants. Some of these studies have been commercialized and some of them are being developed. The characteristic biochemical processes such as stereospecific reaction, stereoselective reaction and asymmetric reaction will be applied to the conversion of material using biocatalyst. (5 figs, 43 refs)

  19. Flavoured Dark Matter moving left

    Science.gov (United States)

    Blanke, Monika; Das, Satrajit; Kast, Simon

    2018-02-01

    We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed SU(2) L quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the K, D, and B d,s meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the SU(2) L structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.

  20. Studies on mushroom flavours 2. Flavour compounds in coprinus comatus.

    Science.gov (United States)

    Dijkstra, F Y; Wikén, T O

    1976-01-01

    In an aqueous extract of fruit bodies of Coprinus comatus 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, 2-methyl-2-penten-4-olide, 1-dodecanol and caprylic acid were identified conclusively and n-butyric and isobutyric acids preliminarily. Amino-acids, nucleotides and sugars were also determined. A mixture of 37 compounds found in the extract had a stronger flavour than the natural extract. 3-Octanol, 1-octen-3-ol, 1-octanol and 2-methyl-2-penten-4-olide were the volatiles with the strongest flavour. Mass and IR spectra of 2-methyl-2-penten-4-olide are presented.

  1. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches

    Energy Technology Data Exchange (ETDEWEB)

    Argüelles, C.A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA (United States); De Wasseige, G. [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Fedynitch, A. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Jones, B.J.P., E-mail: caad@mit.edu, E-mail: gdewasse@vub.ac.be, E-mail: anatoli.fedynitch@desy.de, E-mail: ben.jones@uta.edu [University of Texas at Arlington, 108 Science Hall, 502 Yates St, Arlington TX (United States)

    2017-07-01

    Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.

  2. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  3. Heavy flavour production at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Innocenti Gian Michele

    2018-01-01

    Full Text Available In this proceedings, I present selected experimental results on heavy-flavour production at RHIC and at the LHC, which were presented at the Strangeness in Quark Matter 2017 conference. I will present a brief introduction to the heavy-flavour physics in heavy ion collisions and I will focus on recents measurements of in-medium energy loss and and collective properties of heavy-flavour particles, which provided important information on the mechanisms of heavy flavour interaction with the hot and dense medium created in ultra-relativistic heavy-ion collisions.

  4. Flavour blindness and patterns of flavour symmetry breaking in lattice simulations of up, down and strange quarks

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Univ. Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Inst. for High Energy Physics, Protovino (Russian Federation); Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2011-02-15

    QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, first for the general 1+1+1 flavour case and then for the 2+1 flavour case (when two quark flavours are mass degenerate). These enable highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results for the 2+1 flavour case confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. Singlet quantities remain constant which allows the lattice spacing to be determined from hadron masses (without necessarily being at the physical point). Furthermore an extension of this programme to include partially quenched results is also given. (orig.)

  5. Flavour physics: status and prospects

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The flavour physics sector provides accurate measurements of Standard Model (SM) parameters and probes the existence of new particles at energy scales well beyond the reach of direct detection. In the light of the Tevatron and B-factories legacy, as well as the LHC run I data, I will review what flavour physics tells us today about the SM and about possible physics beyond the Standard Model (BSM). I will then present the progress anticipated from the LHC run II, as well as from NA62 and Belle II, before discussing the experimental challenges that we need to overcome in order to produce precise flavour measurements in high luminosity environments, such as those to be faced at the LHC Run III and at the HL-LHC. I will conclude by discussing how future flavour measurements will guide direct searches for BSM physics, whether deviations from the SM picture are observed or not.

  6. Electromagnetic properties of neutrinos

    International Nuclear Information System (INIS)

    Ould-Saada, F.

    1996-01-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, μ ν , of the order of 10 -11 μ B would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of ≅10 eV would give μ ν ≅10 -18 μ B , much smaller than the present experimental upper limit of 2x10 -10 μ B . Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of μ ν , larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, νe - scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the ν e , extending down to 2x10 -11 μ B . (author) 15 figs., 5 tabs., 96 refs

  7. Heavy flavour production in perturbative QCD

    International Nuclear Information System (INIS)

    Nason, P.; Ridolfi, G.; Frixione, S.; Mangano, M.L.

    1994-01-01

    The status of heavy flavour production in QCD is reviewed. Recent results on the doubly-differential cross section are discussed for the photoproduction of heavy flavours. Comparison of experimental results with theoretical calculation is discussed both for b production at hadron colliders and c production in fixed-target hadroproduction and photoproduction. The possibility of using photoproduction of heavy flavour in order to determine the gluon density in the proton is also discussed. (author). 38 refs., 8 figs

  8. The Challenges of Flavour Physics

    Energy Technology Data Exchange (ETDEWEB)

    Isidori, Gino [Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Pisa, 56127 Pisa (Italy); Technische Universitaet Muenchen, Institute for Advanced Study - IAS-TUM, Lichtenbergstrasse 2a, 85748 Garching (Germany)

    2010-07-01

    This presentation deals with the 'big' challenges of flavour physics. To a large extent, the origin of 'flavour' is still a mystery... Our 'ignorance' can be summarized by the following two open questions: What determines the observed pattern of masses and mixing angles of quarks and leptons? Which are the sources of flavour symmetry breaking accessible at low energies? Some 'popular' answers to the first question are obtained by means of Abelian or non-Abelian continuous flavour symmetries, Discrete flavour symmetries, Fermion profiles in extra dimensions, but other options are also possible. In all cases it is quite easy to reproduce the observed mass matrices in terms of a reduced number of free parameters, while it is difficult to avoid problems with FCNCs (without some amount of fine-tuning). Hard to make progress without knowing the ultraviolet completion of the SM. Answering the second question is more easy: It can be formulated independently of the UV completion of the theory. It is mainly a question of precision (both on the theory and on the experimental side). The good overall consistency of the experimental constraints appearing in the so-called CKM fits seems to indicate there is not much room for new sources of flavour symmetry breaking. Despite the overall success of the 'standard picture' looking more closely there a few 'anomalies' that is worth to investigate in more detail. Three particularly interesting cases are: The sin(2{beta}) tension in the CKM fit, the CP violation in B{sub s} mixing and B(B {yields} {tau}{nu}). Several attempts to explain these effects have appeared in the recent literature. In particular there is three classes of models where there has been considerable activity in the last few months, and which are quite interesting because of clear correlations among various observables: Two Higgs Doublet Model (2HDM) with MFV, large tan{beta} and flavour-blind phases, Right

  9. Right-handed neutrino dark matter in a U(1) extension of the Standard Model

    Science.gov (United States)

    Cox, Peter; Han, Chengcheng; Yanagida, Tsutomu T.

    2018-01-01

    We consider minimal U(1) extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a U(1)(B‑L)3 flavoured B‑L symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of mχlesssim2 TeV, significantly stronger than that obtained in simplified models. Furthermore, if the U(1)(B‑L)3 breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC Z' searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of U(1) symmetries.

  10. Flavour physics from extra dimensions

    CERN Document Server

    Martinelli, G; Scrucca, C A; Silvestrini, L

    2004-01-01

    We discuss the possibility of introducing an SU(2) global flavour symmetry in the context of flat extra dimensions. In particular we concentrate on the 5-dimensional case and we study how to obtain the flavour structure of the Standard Model quark sector compacti(ying the fifth dimension on the orbifold St/Z2 a la Scberk-Scbwarz (SS). We show that in this case it is possible to justify the five orders of magnitude among the values of the quark masses with only one parameter: the SS flavour parameter. The non-local nature of the SS symmetry breaking mechanism allows to realize this without introducing new instabilities in the theory.

  11. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  12. arXiv Flavour Physics and CP Violation

    CERN Document Server

    Kamenik, J.F.

    2016-01-01

    These notes represent a summary of three lectures on flavour and CP violation, given at the CERNs European School of High Energy Physics in 2014. They cover flavour physics within the standard model, phenomenology of CP violation in meson mixing and decays, as well as constraints of flavour observableson physics beyond the standard model. In preparing the lectures (and consequently this summary) I drew heavily from several existing excellent and exhaustive sets of lecture notes and reviews on flavour physics and CP violation [1]. The reader is encouraged to consult those as well as the original literature for a more detailed study.

  13. Naturally light Dirac neutrino in Left-Right Symmetric Model

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam-781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar-751005 (India)

    2017-06-01

    We study the possibility of generating tiny Dirac masses of neutrinos in Left-Right Symmetric Model (LRSM) without requiring the existence of any additional symmetries. The charged fermions acquire masses through a universal seesaw mechanism due to the presence of additional vector like fermions. The neutrinos acquire a one-loop Dirac mass from the same additional vector like charged leptons without requiring any additional discrete symmetries. The model can also be extended by an additional Z {sub 2} symmetry in order to have a scotogenic version of this scenario predicting a stable dark matter candidate. We show that the latest Planck upper bound on the effective number of relativistic degrees of freedom N {sub eff}=3.15 ± 0.23 tightly constrains the right sector gauge boson masses to be heavier than 3.548 TeV . This bound on gauge boson mass also affects the allowed values of right scalar doublet dark matter mass from the requirement of satisfying the Planck bound on dark matter relic abundance. We also discuss the possible implications of such a scenario in charged lepton flavour violation and generating observable electric dipole moment of leptons.

  14. Search for single top-quark production via flavour changing neutral currents at 8 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-01-29

    A search for single top-quark production via flavour changing neutral current processes from gluon plus up- or charm--quark initial states in proton--proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of $8\\;\\mbox{TeV}$ and corresponding to an integrated luminosity of $20.3\\;\\mbox{fb}^{-1}$ are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the $t \\rightarrow Wb$ branching fraction is set. The observed $95\\,\\%$ CL limit is $\\sigma_{qg \\rightarrow t} \\times B(t \\rightarrow Wb)< 3.4\\;\\mbox{pb}$ and the expected $95\\,\\%$ CL limit is $\\sigma_{qg \\rightarrow t} \\times B(t \\rightarrow Wb)< 2.9\\;\\mbox{pb}$. The observed limit can be interpreted as upper limits on the coupling constants of the flavour changing neutral current inte...

  15. Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector

    CERN Document Server

    Hirschbuehl, Dominic; The ATLAS collaboration

    2015-01-01

    This poster presents a search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC. Data collected with the ATLAS detector at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb$^{-1}$ are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the $t \\rightarrow Wb$ branching fraction is set. The observed 95 \\% C.L. limit is $\\sigma_{qg \\rightarrow t} \\times B(t \\rightarrow Wb)< 3.4$ pb The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics $\\kappa_{ugt}/\\Lambda < 5.8\\cdot 10^{-3}$ TeV$^{-1}$ and $\\kappa_{cgt}/\\Lambda < 13\\cdot 10...

  16. General squark flavour mixing: constraints, phenomenology and benchmarks

    CERN Document Server

    De Causmaecker, Karen; Herrmann, Bjoern; Mahmoudi, Farvah; O'Leary, Ben; Porod, Werner; Sekmen, Sezen; Strobbe, Nadja

    2015-11-19

    We present an extensive study of non-minimal flavour violation in the squark sector in the framework of the Minimal Supersymmetric Standard Model. We investigate the effects of multiple non-vanishing flavour-violating elements in the squark mass matrices by means of a Markov Chain Monte Carlo scanning technique and identify parameter combinations that are favoured by both current data and theoretical constraints. We then detail the resulting distributions of the flavour-conserving and flavour-violating model parameters. Based on this analysis, we propose a set of benchmark scenarios relevant for future studies of non-minimal flavour violation in the Minimal Supersymmetric Standard Model.

  17. Neutrino's helicity in a gravitational field

    International Nuclear Information System (INIS)

    Pansart, J.P.

    1996-01-01

    By using approximated solutions of Dirac's equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m 2 p / E 2 , where m p is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.)

  18. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... the recent results on spin-independent couplings of light WIMPs from the ... the studies of low-energy neutrino and dark matter physics. .... vs. SAT. 12 (shaping time is 12 μs with partial integration) signals, for both calibration.

  19. Spin alignment in heavy and light flavour systems at OPAL

    CERN Document Server

    Robins, Simon

    1999-01-01

    Spin alignment of inclusive vector mesons and longitudinal polarization of Lambda hyperons have been measured in a sample of 4.3 million hadronic Z/sup 0/ decays from the OPAL detector at LEP. Leading, light vector mesons have been $9 found to populate preferentially the helicity-zero state, a result which has no firm theoretical explanation. The values of off-diagonal elements of the helicity density matrix are in agreement with a theory based on the Standard $9 Model with coherent fragmentation. The longitudinal polarization of the Lambda is well described by a model in which the constituent strange quark carries all of the hyperon spin.

  20. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  1. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  2. Evidence for the MSW effect

    International Nuclear Information System (INIS)

    Fogli, Gianluigi; Lisi, Eligio

    2004-01-01

    Recent solar and reactor neutrino data have convincingly established that electron neutrinos and antineutrinos are subject to flavour transitions driven by neutrino masses and mixing. In addition, such data can be used to prove that the interaction of neutrinos in matter modifies the flavour transition pattern with respect to the case of propagation in vacuum, as predicted long ago by Mikheyev, Smirnov and Wolfenstein (MSW). We present a brief review of how the current evidence for MSW solar neutrino transitions has developed in recent years, and how it has been strengthened by the latest reactor neutrino data presented at the Neutrino 2004 Conference

  3. Evidence for the MSW effect

    Science.gov (United States)

    Fogli, Gianluigi; Lisi, Eligio

    2004-10-01

    Recent solar and reactor neutrino data have convincingly established that electron neutrinos and antineutrinos are subject to flavour transitions driven by neutrino masses and mixing. In addition, such data can be used to prove that the interaction of neutrinos in matter modifies the flavour transition pattern with respect to the case of propagation in vacuum, as predicted long ago by Mikheyev, Smirnov and Wolfenstein (MSW). We present a brief review of how the current evidence for MSW solar neutrino transitions has developed in recent years, and how it has been strengthened by the latest reactor neutrino data presented at the Neutrino 2004 Conference.

  4. Search for neutrino oscillation anti νμ→ anti νe with the KARMEN experiment

    International Nuclear Information System (INIS)

    Rapp, J.M.

    1996-04-01

    The neutrino experiment KARMEN at the neutron spallation source ISIS at the Rutherford Appleton Laboratory in England makes use of neutrinos generated by the decay chain of π + produced in the spallation process. The π + and the subsequent μ + decay at rest generates ν μ , ν e and anti ν μ which are emitted isotropically with equal intensity and well defined energies (E ν e from the π - decay chain is less than 0.1%. The unique time structure of the ISIS proton synchrotron allows a separation of ν μ from anti ν μ and ν e by time measurement. The KARMEN-detector is a large volume calorimeter of 67 m 3 liquid organic scintillator, situated about 17 m from the ν-source, investigating neutrino-nucleus interactions at low energies. Cross sections of nuclear excitations through the charged and neutral weak currents spectroscopic quality and the μ-e-universality is tested at energies less than 53 MeV. Further objectives of KARMEN are the search for neutrino flavour oscillations and lepton number violating decays of pions and muons. This work presents the limits for anti ν μ → anti ν e oscillations in the appearance channel obtained after five years of measuring time (July 90-July 95). The data are predominantly evaluated on the basis of a multi-parameter maximum likelihood analysis. (orig.)

  5. Dirac equation for massive neutrinos in a Schwarzschild-de Sitter spacetime from a 5D vacuum

    International Nuclear Information System (INIS)

    Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio

    2011-01-01

    Starting from a Dirac equation for massless neutrino in a 5D Ricci-flat background metric, we obtain the effective 4D equation for massive neutrino in a Schwarzschild-de Sitter (SdS) background metric from an extended SdS 5D Ricci-flat metric. We use the fact that the spin connection is defined to an accuracy of a vector, so that the covariant derivative of the spinor field is strongly dependent of the background geometry. We show that the mass of the neutrino can be induced from the extra space-like dimension.

  6. Tobacco industry use of flavourings to promote smokeless tobacco products.

    Science.gov (United States)

    Kostygina, Ganna; Ling, Pamela M

    2016-11-01

    While fruit, candy and alcohol characterising flavours are not allowed in cigarettes in the USA, other flavoured tobacco products such as smokeless tobacco (ST) continue to be sold. We investigated tobacco manufacturers' use of flavoured additives in ST products, the target audience(s) for flavoured products, and marketing strategies promoting products by emphasising their flavour. Qualitative analysis of internal tobacco industry documents triangulated with data from national newspaper articles, trade press and internet. Internally, flavoured products have been consistently associated with young and inexperienced tobacco users. Internal studies confirmed that candy-like sweeter milder flavours (eg, mint, fruit) could increase appeal to starters by evoking a perception of mildness, blinding the strong tobacco taste and unpleasant mouth feel; or by modifying nicotine delivery by affecting product pH. Similar to cigarettes, flavoured ST is likely to encourage novices to start using tobacco, and regulations limiting or eliminating flavours in cigarettes should be extended to include flavoured ST products. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Potential of fluorescence spectroscopy for the characterisation of maple syrup flavours.

    Science.gov (United States)

    Panneton, Bernard; Clément, Alain; Lagacé, Luc

    2013-10-01

    Maple syrup has high maket value. It is produced in North East America from the heat-evaporated sap of Acer saccharum Marshall. For marketing purposes, there is interest in defining its flavour profile in a consistent and repeatable manner. An experiment was undertaken to explore the potential of autofluorescence of maple syrup induced at 275 and 360 nm to characterise flavours. A mixed data factor analysis revealed two independent groups of variables. One represents early season woody and late season empyreumatic flavours. The other is related to off-flavour, confectionery and maple flavours. Maple and confectionery flavours are subtle, difficult to distinguish and opposed to off-flavour. There were clear relationships among the two groups and fluorescence profiles. For each of the five basic flavours, discriminant models based on partial least squares regressions were developed. For each sample of syrup, flavours combined to form flavour profiles, and the results from the five discriminant models were aggregated to reproduce these profiles. For excitation at 275 nm, the woody/off-flavour and confectionery/empyreumatic/maple flavour profiles were classified correctly 86 and 78% of the time (cross-validation) respectively. Induced autofluorescence spectra were shown to contain information related to maple syrup flavours. This fluorescence-flavour relationship is not considered quantitative yet, and further research avenues are proposed. © 2013 Society of Chemical Industry.

  8. An expert system for automated flavour matching - Prioritizer

    DEFF Research Database (Denmark)

    Silva, Bárbara Santos; Tøstesen, Marie; Petersen, Mikael Agerlin

    2017-01-01

    Flavour matching can be viewed as trying to reproduce a specific flavour. This is a time consuming task and may lead to flavour mixtures that are too complex or too expensive to be commercialized. In order to facilitate the matching, we have developed a new mathematical model, called Prioritizer....

  9. Heavy Higgs searches. Flavour matters

    International Nuclear Information System (INIS)

    Gori, Stefania; Paul, Ayan

    2017-10-01

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  10. Heavy Higgs searches. Flavour matters

    Energy Technology Data Exchange (ETDEWEB)

    Gori, Stefania [Cincinnati Univ., OH (United States). Dept. of Physics; Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Juste, Aurelio [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); Institucio Catalanade Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Paul, Ayan [INFN, Sezione di Roma (Italy)

    2017-10-15

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  11. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  12. The effects of flavour symmetry breaking on hadron matrix elements

    International Nuclear Information System (INIS)

    Cooke, A.N.; Horsley, R.; Pleiter, D.; Zanotti, J.M.

    2012-12-01

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  13. The effects of flavour symmetry breaking on hadron matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Pleiter, D. [Juelich Research Centre (Germany); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). School of Chemistry and Physics

    2012-12-15

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  14. Internal spin structure of the nucleon

    International Nuclear Information System (INIS)

    Hughes, V.W.; Kuti, J.

    1983-01-01

    The study of the structure of the proton and neutron through deep inelastic scattering, initially with electrons but subsequently with muons and neutrinos as well, has played a central role in establishing the quark-parton theory of the composition of hadrons and of quantum chromodynamics (QCD). One important aspect of these theoretical and experimental developments is the two spin-dependent structure functions, which are independent of the two spin-averaged structure functions and define the internal spin structure of the nucleon. Since both quarks and gluons possess spin and the forces between them are spin dependent, we can expect important information on these forces and on nucleon structure to be obtained through the study of the spindependent aspects of the nucleon wave function, as has been the case before in atomic and nuclear physics

  15. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    ν2. Hence, as flavour states propagate, they mix because of overlapping of the mass states. After a time t, a νe is no longer a pure flavour state but contains other flavours. Can define the probability of finding a different flavour β starting from a flavour α after a time t: Pαβ. Contains information on both mixing angle θ as well as ...

  16. Flavour Compounds in Fungi

    DEFF Research Database (Denmark)

    Ravasio, Davide Antonio

    . This selection of strains was used in fermentations with the aim of identifying new interesting flavour producers. Fermentation profiles, volatile analyses, off-flavour identification and resistance to osmotic/oxidative stress have been addressed to highlight new candidates to use for industrial applications....... This resulted in the identification of Wickerhamomyces anomalus and Pichia kluyveri as high producers of esters fruity compounds, which contribute to enhance the complexity of wine and beer product. In addition the strain Debaromyces subglobosus showed high yields of aldehydes and fruity ketones, which...

  17. Neutrino problems proliferate (Neutrino 94 conference report)

    International Nuclear Information System (INIS)

    Gordon, Fraser

    1994-01-01

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992

  18. Neutrino problems proliferate (Neutrino 94 conference report)

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Fraser

    1994-09-15

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992.

  19. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    Science.gov (United States)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  20. New aspects of flavour model building in supersymmetric grand unification

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2010-01-01

    the aforementioned considerations, we give two explicit flavour models in a SU(5) context, one for large and one for small tan β which implement the Yukawa coupling relations mentioned before. The models have interesting phenomenological consequences like, for example, quasi-degenerate neutrino masses in the case of small tan β. (orig.)

  1. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  2. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  3. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  4. Flavour Chemistry of Chicken Meat: A Review

    OpenAIRE

    Jayasena, Dinesh D.; Ahn, Dong Uk; Nam, Ki Chang; Jo, Cheorun

    2013-01-01

    Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds res...

  5. Flavour in the era of the LHC

    CERN Multimedia

    2006-01-01

    The 4th meeting of the 'Flavour in the era of the LHC' workshop will take place at CERN on 9-11 October, 2006. The goal of this workshop is to outline and document a programme for flavour physics for the next decade, addressing in particular the complementarity and synergy between the discoveries we expect to emerge from the LHC and the potential for accurate measurements of future flavour factories. Over 150 physicists will join in the discussions of the three working groups dedicated to 'Flavour physics at high Q', 'B/D/K decays' and 'Flavour in the lepton sector, EDM's, g-2, etc'. The previous meetings took place in November 2005, and in February and May this year. In addition to the working group sessions, a special miniworkshop dedicated to future prospects for electric dipole moment (EDM) searches and g-2 measurements will be held on 9-10 October. Sensitive EDM and g-2 experiments probe physics in an integral way, and in many cases their physics reach is much higher than the spectrometer searches at th...

  6. Flavour in the era of the LHC

    CERN Multimedia

    2006-01-01

    The 4th meeting of the 'Flavour in the era of the LHC'workshop will take place at CERN on 9-11 October, 2006. The goal of this workshop is to outline and document a programme for flavour physics for the next decade, addressing in particular the complementarity and synergy between the discoveries we expect to emerge from the LHC and the potential for accurate measurements of future flavour factories. Over 150 physicists will join in the discussions of the three working groups dedicated to 'Flavour physics at high Q', 'B/D/K decays'and 'Flavour in the lepton sector, EDM's, g-2, etc'. The previous meetings took place in November 2005, and in February and May this year. In addition to the working group sessions, a special miniworkshop dedicated to future prospects for electric dipole moment (EDM) searches and g-2 measurements will be held on 9-10 October. Sensitive EDM and g-2 experiments probe physics in an integral way, and in many cases their physics reach is much higher than the spectrometer searches at th...

  7. Flavour symmetries and SUSY soft breaking in the LHC era

    International Nuclear Information System (INIS)

    Vives, O

    2008-01-01

    The so-called supersymmetric flavour problem does not exist in isolation to the Standard Model flavour problem. We show that a realistic flavour symmetry can simultaneously solve both problems without ad hoc modifications of the SUSY model. Furthermore, departures from the SM expectations in these models can be used to discriminate among different possibilities. In particular we present the expected values for the electron EDM in a flavour model solving the supersymmetric flavour and CP problems

  8. Neutrino mass and the origin of galactic magnetic fields

    International Nuclear Information System (INIS)

    Enqvist, K.; Semikoz, V.; Shukurov, A.; Sokoloff, D.

    1993-01-01

    We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting 4 He production at primordial nucleosynthesis, we can obtain a guaranteed upper limit on the strength of the relic magnetic field in the protogalaxy, B c approx-lt 4x10 -9 --3x10 -13 G, depending on the neutrino magnetic moment, if we adopt the MSW explanation of the GALLEX results. On the other hand, models of the dynamo in the Milky Way indicate that the seed magnetic field should be at least 10 -11 --10 -13 G at the protogalaxy scale L=100 kpc. These upper and lower limiting ranges are marginally consistent provided the electron neutrino mass is below 0.3 eV. The results apply to a relic magnetic field produced in the early Universe by any causal mechanism before the nucleosynthesis

  9. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  10. Precision physics with heavy-flavoured hadrons

    CERN Document Server

    Koppenburg, Patrick

    2015-01-01

    The understanding of flavour dynamics is one of the key aims of elementary particle physics. The last 15 years have witnessed the triumph of the Kobayashi-Maskawa mechanism, which describes all flavour changing transitions of quarks in the Standard Model. This important milestone has been reached owing to a series of experiments, in particular to those operating at the so-called $B$ factories, at the Tevatron, and now at the LHC. We briefly review status and perspectives of flavour physics, highlighting the results where the LHC has given the most significant contributions, notably including the recent observation of the $B_s^0\\to\\mu^+\\mu^-$ decay.

  11. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  12. Flavour mixings in flux compactifications

    International Nuclear Information System (INIS)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-01-01

    A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  13. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  14. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  15. Heavy Flavour Production

    CERN Document Server

    Nason, Paolo; Ridolfi, Giovanni

    1995-01-01

    We review the status of heavy flavour production in QCD. Comparison of experimental and theoretical results for top and bottom production are given. Selected topics in charm production are also discussed.

  16. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  17. The B-L phase transition. Implications for cosmology and neutrinos

    International Nuclear Information System (INIS)

    Schmitz, Kai

    2012-07-01

    very heavy gravitinos, which are motivated by hints for the Higgs boson at the LHC. We find that the nonthermal production of pure wino or higgsino LSPs, i.e. weakly interacting massive particles (WIMPs), in heavy gravitino decays can account for the observed amount of dark matter, while simultaneously fulfilling the constraints imposed by primordial nucleosynthesis and leptogenesis, within a range of LSP, gravitino and neutrino masses. Besides its cosmological implications, the spontaneous breaking of B-L also naturally explains the small observed neutrino masses via the seesaw mechanism. Upon the seesaw model we impose a flavour structure of the Froggatt-Nielson type which, together with the known neutrino data, allows us to strongly contrain yet undetermined neutrino observables.

  18. The B-L phase transition. Implications for cosmology and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Kai

    2012-07-15

    very heavy gravitinos, which are motivated by hints for the Higgs boson at the LHC. We find that the nonthermal production of pure wino or higgsino LSPs, i.e. weakly interacting massive particles (WIMPs), in heavy gravitino decays can account for the observed amount of dark matter, while simultaneously fulfilling the constraints imposed by primordial nucleosynthesis and leptogenesis, within a range of LSP, gravitino and neutrino masses. Besides its cosmological implications, the spontaneous breaking of B-L also naturally explains the small observed neutrino masses via the seesaw mechanism. Upon the seesaw model we impose a flavour structure of the Froggatt-Nielson type which, together with the known neutrino data, allows us to strongly contrain yet undetermined neutrino observables.

  19. Cern Academic Training programme 2011 - Flavour Physics and CP Violation

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES   4, 5, 6 and 7 April 2011 Flavour Physics and CP Violation Dr. Yosef Nir (Weizmann Institute of Science, Rehovot, Israel 11:00-12:00 - 4, 6 and 7 April - Bldg. 222-R-001 - Filtration Plant 5 April - Bldg. 80-1-001 - Globe 1st Floor   The B-factories have led to significant progress in our understanding of CP violation and of flavour physics. Yet, two flavour puzzles remain. The standard model flavour puzzle is the question of why there is smallness and hierarchy in the flavour parameters. The new physics flavour puzzle is the question of why TeV-scale new physics was not signalled in flavour changing neutral current processes. The high pT experiments, ATLAS and CMS, are likely to shed light on these puzzles. As concerns CP violation, the LHC will lead to progress on the puzzle of the baryon asymmetry as well.  

  20. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  1. Physics of neutrino flavor transformation through matter–neutrino resonances

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru, E-mail: mwu@theorie.ikp.physik.tu-darmstadt.de [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany); Duan, Huaiyu, E-mail: duan@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Qian, Yong-Zhong, E-mail: qian@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-01-10

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  2. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  3. Development of "same side" flavour tagging algorithms for measurements of flavour oscillations and $CP$ violation in the $B^0$ mesons system

    CERN Document Server

    Fazzini, Davide; Khanji, Basem

    In this thesis new developments of $\\textit{Flavour Tagging}$ algorithms for the $LHCb$ experiment are presented. The $\\textit{Flavour Tagging}$ is a very usefull tool which allows to determine the flavour of the reconstructed particles, such as the $B^0$ mesons. A correctly identification of the flavour is fundamental in certain measurements such as time-dependent $CP$ violation asymmetries or the $B^0 \\leftrightarrow \\overline{B}^0$ oscillations. Both these type of measurements are exploited by LHCb experiment in the research of new physics beyond the Standard Model. The new developments achieved in this work concern an optimization of the $\\textit{Same Side Tagger}$ algorithms, using protons and pions correlated in charge with the signal $B^0$ to infer its initial flavour. Then two combinations are implemented: the first is a combination of the $\\textit{SS Pion Tagger}$ ($SS\\pi$) and the $\\textit{SS Proton Tagger}$ ($SSp$) in a unique $\\textit{Same Side}$ ($SS$) tagging algorithm; the second one is the fi...

  4. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  5. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (?_?) and the appearance of electron neutrinos (?_e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ?_e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ?_? disappearance and ?_e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  6. Physics of neutrino flavor transformation through matter–neutrino resonances

    Directory of Open Access Journals (Sweden)

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  7. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  8. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  9. Flavoured non-cigarette tobacco product use among US adults: 2013-2014.

    Science.gov (United States)

    Bonhomme, Michèle G; Holder-Hayes, Enver; Ambrose, Bridget K; Tworek, Cindy; Feirman, Shari P; King, Brian A; Apelberg, Benjamin J

    2016-11-01

    Limited data exist on flavoured non-cigarette tobacco product (NCTP) use among US adults. Data from the 2013 to 2014 National Adult Tobacco Survey (N=75 233), a landline and cellular telephone survey of US adults aged ≥18, were assessed to estimate past 30-day NCTP use, flavoured NCTP use and flavour types using bivariate analyses. During 2013-2014, 14.4% of US adults were past 30-day NCTP users. Nationally, an estimated 10.2 million e-cigarette users (68.2%), 6.1 million hookah users (82.3%), 4.1 million cigar smokers (36.2%) and 4.0 million smokeless tobacco users (50.6%) used flavoured products in the past 30 days. The most prevalent flavours reported were menthol/mint (76.9%) for smokeless tobacco; fruit (74.0%) for hookah; fruit (52.4%), candy/chocolate/other sweet flavours (22.0%) and alcohol (14.5%) for cigars/cigarillos/filtered little cigars; fruit (44.9%), menthol/mint (43.9%) and candy/chocolate/other sweet flavours (25.7%) for e-cigarettes and fruit (56.6%), candy/chocolate/other sweet flavours (26.5%) and menthol/mint (24.8%) for pipes. Except for hookah and pipes, past 30-day flavoured product use was highest among 18-24-year olds. By cigarette smoking, never smoking e-cigarette users (84.8%) were more likely to report flavoured e-cigarette use, followed by recent former smokers (78.1%), long-term former smokers (70.4%) and current smokers (63.2%). Flavoured NCTP use is prominent among US adult tobacco users, particularly among e-cigarette, hookah and cigar users. Flavoured product use, especially fruit and sweet-flavoured products, was higher among younger adults. It is important for tobacco prevention and control strategies to address all forms of tobacco use, including flavoured tobacco products. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  11. Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb[Formula: see text] are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the [Formula: see text] branching fraction is set. The observed 95 % CL limit is [Formula: see text] and the expected 95 % CL limit is [Formula: see text]. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics [Formula: see text] and [Formula: see text] and on the branching fractions [Formula: see text] and [Formula: see text].

  12. Sterile neutrino oscillations in MINOS and hadron production in pC collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tinti, Gemma Maria [Univ. of Oxford (United Kingdom)

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment, starting with a muon-neutrino beam, for the precise measurement of the atmospheric neutrino oscillation parameters |Δm2| and θ23. The Near Detector measures the neutrino flux and spectra before oscillations. The beam propagates for 735 km to the Far Detector, which measures the depleted spectrum after oscillations. The depletion can be interpreted as vμ → vτ oscillations. Subdominant vμ → ve oscillations may be allowed if the mixing angle θ13 ≠ 0. The two detectors are functionally identical in order to cancel systematic errors when using the Near Detector data to constrain the Far Detector prediction. A crucial part of the analysis is the relative calibration between the two detectors, which is known at the 2% level. A calibration procedure to remove the time and temperature dependence of the detector response using through-going cosmic muons is presented here. Although the two-detector approach reduces the systematic uncertainties related to the neutrino flux, a cross check on the neutrino parent meson ratios is performed in this thesis. The cross sections of mesons produced in proton-carbon interactions from the NA49 experiment have been measured and the results have been compared to the MINOS expectations. A neutrino oscillation analysis allowing mixing to a sterile neutrino is performed, under the assumption that the additional mass splitting is Ο(1 eV2). The analysis uses the energy spectrum of the neutral current interaction products, as neutral current interactions are sensitive to sterile neutrino mixing but not to the active flavour neutrino mixing. The neutrino oscillation parameters have been found to be: |Δm2| = 2.43-0.18+0.21 x 10-3 eV2, θ23 = 40.27°-5.17+14.64, θ24 = 0.00°+5.99 and

  13. Neutrino propagation in neutron matter and the nuclear equation of state

    CERN Document Server

    Margueron, J; Nguyen Van Giai; Jiang, W

    2001-01-01

    We study the propagation of neutrinos inside dense matter under the conditions prevailing in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme type and Gogny type) are first discussed. It is found that for many interactions, spin and/or isospin instabilities occur at densities larger than the saturation density of nuclear matter. From this study we select two representative interactions, SLy230b and D1P. We calculate the response functions in pure neutron matter where nuclear correlations are described at the Hartree-Fock plus RPA level. These response functions allow us to evaluate neutrino mean free paths corresponding to neutral current processes.

  14. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-06-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavour multi-energy neutrino transport. Utilizing a 70 solar mass zero-metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modelling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 M⊙ star.

  15. Flavour alignment in physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, Carolin Barbara

    2012-11-21

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple

  16. Flavour alignment in physics beyond the standard model

    International Nuclear Information System (INIS)

    Braeuninger, Carolin Barbara

    2012-01-01

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple extension of the Standard

  17. Electric dipole moments from spontaneous CP violation in SU(3)-flavoured SUSY

    International Nuclear Information System (INIS)

    Jones Perez, J

    2009-01-01

    The SUSY flavour problem is deeply related to the origin of flavour and hence to the origin of the SM Yukawa couplings themselves. Since all CP-violation in the SM is restricted to the flavour sector, it is possible that the SUSY CP problem is related to the origin of flavour as well. In this work, we present three variations of an SU(3) flavour model with spontaneous CP violation. Such models explain the hierarchy in the fermion masses and mixings, and predict the structure of the flavoured soft SUSY breaking terms. In such a situation, both SUSY flavour and CP problems do not exist. We use electric dipole moments and lepton flavour violation processes to distinguish between these models, and place constraints on the SUSY parameter space.

  18. A combined treatment of neutrino decay and neutrino oscillations

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2001-01-01

    Neutrino decay in vacuum has often been considered as an alternative to neutrino oscillations. Because nonzero neutrino masses imply the possibility of both neutrino decay and neutrino oscillations, we present a model-independent formal treatment of these combined scenarios. For that, we show for the example of Majoron decay that in many cases decay products are observable and may even oscillate. Furthermore, we construct a minimal scenario in which we study the physical implications of neutrino oscillations with intermediate decays

  19. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  20. Evidence for sterile neutrinos which could be part of dark matter

    International Nuclear Information System (INIS)

    Caldwell, David O.

    2007-01-01

    Limitations on neutrino contribution to dark matter do not apply to the type of sterile neutrino needed to understand solar neutrino flux modulation. These neutrinos couple to active neutrinos via a transition magnetic moment, and if there is any mixing, it is extremely small, avoiding all constraints. The sterile neutrinos result from a Resonant-Spin-Flavor Precession in the convection zone of the Sun, subdominant to the LMA MSW effect, which is at a smaller solar radius. Solar neutrino fluxes measured by the Cl, Ga and Super-Kamiokande (SK) experiments reveal modulations at frequencies related to solar rotation rates. Since the solar magnetic field in the convection zone changes with solar cycle, a rotation frequency seen in GALLEX data would not appear in GNO data. An analysis lumping these data together shows the same frequency not significantly, whereas GALLEX data shows it at the 99.9% CL, using more of the experimental information. Use of insufficient information is a problem in the SK analysis, which sees at low significance the same 3 frequencies (one of rotation and two of related r-modes) we find even at the 99.9% CL when more experimental information is used. SNO looked unsuccessfully for one of these r-mode peaks, but SK data shows this very episodic process had died out before SNO turned on. The statistically significant flux modulation frequencies we observe are all associated with known solar frequencies, attesting to the existence of a sterile neutrino which could aid in understanding small-scale structure, and which might have heavier siblings playing an even larger role in dark matter

  1. Improvements in the Flavour of Soy Cheese

    Directory of Open Access Journals (Sweden)

    Naveed Ahmad

    2008-01-01

    Full Text Available A review of biochemical and technological similarities and dissimilarities between soy cheese and Cheddar cheese is presented to provide guidelines for the improvements in the flavour of soy cheese. Processing technology as well as the final product of soy cheese have many similarities with Cheddar in terms of appearance, texture, mouth feel, chemical nature, biochemical processes, etc. Soy protein has many useful amino acids like Asp, Ile, Leu, Met, Phe, Trp, Tyr, Val, etc., which are precursors of flavouring compounds and the right choice of microbial cultures is necessary to benefit from them. Using low levels of sodium chloride, without the use of ethanol, and introducing new milk cheese starter and non-starter cultures like Lactococcus lactis ssp. lactis (formerly L. lactis ssp. lactis biovar. diacetylactis, Lactobacillus helveticus, Lactobacillus casei, Streptococcus lactis var. maltigenes and Lactococcus lactis ssp. cremoris that enhance flavour will be helpful to improve the flavour of soy cheese.

  2. Factors influencing the flavour of game meat: A review.

    Science.gov (United States)

    Neethling, J; Hoffman, L C; Muller, M

    2016-03-01

    Flavour is a very important attribute contributing to the sensory quality of meat and meat products. Although the sensory quality of meat includes orthonasal and retronasal aroma, taste, as well as appearance, juiciness and other textural attributes, the focus of this review is primarily on flavour. The influence of species, age, gender, muscle anatomical location, diet, harvesting conditions, ageing of meat, packaging and storage, as well as cooking method on the flavour of game meat are discussed. Very little research is available on the factors influencing the flavour of the meat derived from wild and free-living game species. The aim of this literature review is thus to discuss the key ante- and post-mortem factors that influence the flavour of game meat, with specific focus on wild and free-living South African game species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. LHCb New algorithms for Flavour Tagging at the LHCb experiment

    CERN Multimedia

    Fazzini, Davide

    2016-01-01

    The Flavour Tagging technique allows to identify the B initial flavour, required in the measurements of flavour oscillations and time-dependent CP asymmetries in neutral B meson systems. The identification performances at LHCb are further enhanced thanks to the contribution of new algorithms.

  4. Effets du milieu sur la propagation des neutrinos dans la matiere nucleaire

    CERN Document Server

    Margueron, J

    2001-01-01

    We study the elementary interactions between neutrinos and dense matter in a proroneutron star. Equations of state obtained with different nuclear effective interactions (skyrme, Gogny, relativistic Lagrangians) are first discussed.Then we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G^{tau tau'}_0 (where tau, tau' = proton or neutron)We calculate nthe pure neutron matter response functions with and withoutcharge exchange, describing nuclear correlations in both approaches : non-relativistic and relativistic. At the end we calculate neutrino mean free paths for neutral current and charged current reactions.Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density.RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas.

  5. Propagation of neutrinos in nuclear matter; Effets du milieu sur la propagation des neutrinos dans la matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, J

    2001-07-01

    We study the elementary interactions between neutrinos and dense matter in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme, Gogny, Relativistic Lagrangians) are first discussed. Then, we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G{sup {pi}}{sup {pi}}{sup '}{sub 0} (where {pi}, {pi}' = proton or neutron). From this work, we select a parametrization for each of the 3 effective forces: Sly230b,D1P,NL3. We calculate the pure neutron matter and asymmetric nuclear matter response functions with and without charge exchange, describing nuclear correlations in both approaches: non-relativistic (Hartree-Fock with Skyrme forces, then complete RPA) and relativistic (in the Hartree approximation). At the end, we calculate neutrino mean free paths neutral current and charged current reactions. Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density. RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas. The importance of the effective mass in mean free path calculations is also shown. (author)

  6. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  7. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  8. New aspects of flavour model building in supersymmetric grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Spinrath, Martin

    2010-05-19

    one matrix element is purely imaginary and the remaining ones are purely real. To complement the aforementioned considerations, we give two explicit flavour models in a SU(5) context, one for large and one for small tan {beta} which implement the Yukawa coupling relations mentioned before. The models have interesting phenomenological consequences like, for example, quasi-degenerate neutrino masses in the case of small tan {beta}. (orig.)

  9. Flavour physics in the LHC era

    CERN Document Server

    Gershon, Tim

    2014-01-01

    These lectures give a topical review of heavy flavour physics, in particular \\CP violation and rare decays, from an experimental point of view. They describe the ongoing motivation to study heavy flavour physics in the LHC era, the current status of the field emphasising key results from previous experiments, some selected topics in which new results are expected in the near future, and a brief look at future projects.

  10. b-flavour tagging in pp collisions

    CERN Multimedia

    Birnkraut, Alex

    2015-01-01

    An essential ingredient of all time-dependent CP violation studies of B mesons is the ability to tag the initial flavour of the B meson. The harsh environment of 7 and 8 TeV pp collisions makes this a particularly difficult enterprise. We report progresses in the flavour tagging of B0 and Bs mesons, including developments of novel techniques like the use of an opposite side charm tagger.

  11. Neutrino oscillation study in the muon neutrino → electron neutrino channel at the Brookhaven accelerator

    International Nuclear Information System (INIS)

    Astier, P.

    1987-09-01

    The E816 experiment described in this thesis is devoted to a neutrino oscillation search at the Brookhaven AGS. The method used here is to look with a fine grained calorimeter for the appearence of electron neutrino in a muon neutrino beam. After recalling the theoretical treatment of the neutrino mass problem, the experimental phenomenology of massive neutrinos and more specifically neutrino oscillations is reviewed. The experiment itself is then extensively described, both on the technical side (detector, beam, simulation) and on the analysis side. In particular the statistical separation of the electromagnetic showers from electrons - our signal - and from photons - our background - treated in detail. The present analysis is based on 2/3 of the final statistics and it leads to the - preliminary - observation of an electron excess in the neutrino interactions yielding 19 ± 15.6 (stat) ± 7 (syst) [fr

  12. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  13. Flavour physics and extra-dimensions

    Science.gov (United States)

    Iyer, Abhishek M.

    2018-05-01

    Randall-Sundrum (RS) model of warped extra-dimensions were originally proposed to explain the Planck-weak scale hierarchy. It was soon realised that modifications of the original setup, by introducing the fields in the bulk, has several interesting features. In particular it imbues a rich flavour structure to the fermionic sector thereby offering an understanding of the Yukawa hierarchy problem. This construction is also useful in explaining the recently observed deviations in the decay of the B mesons. We consider two scenarios to this effect : A) Right handed muon fields coupled more to NP that the corresponding muon doublets (unorthodox case). Non-universality exists in the right handed sector. B) Standard scenario with anomalies explained primarily by non-universal couplings to the lepton doublets. Further, we establish correlation with the parameter space consistent with the flavour anomalies in the neutral current sector and obtain predictions for rare K- decay which are likely to be another candle for NP with increased precision. The prediction for rare K- decays are different according to the scenario, thereby serving as a useful discriminatory tool. We also discussthe large flavour violation in the lepton sector and present an example with the implementation of bulk leptonic MFV which is essential to realize the model with low KK scales. Further we consider a radical solution, called GUT RS models, where the RS geometry can work as theory of flavour in the absence of flavour symmetries. In this case the low energy brane corresponds to the GUT scale as a result of which RS is no longer solution to the gauge hierarchy problem. The Kaluza Klein (KK) modes in this setup are naturally heavy due to which the low energy constraints can be easily avoided. We use this framework to discuss the supersymmetric version of the RS model and provide means to test this scenario by considering rare lepton decays like τ → μγ.

  14. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  15. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 303 (FGE.303): Spilanthol from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Scientific Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) was asked to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs in the Member States. In particular...... of the flavouring substances in Europe. However, when the Panel examined the information provided by the European Flavouring Industry on the use levels in various foods, it appeared obvious that the MSDI approach in a number of cases would grossly underestimate the intake by regular consumers of products flavoured...... whether the conclusion for the candidate substance can be applied to the material of commerce, it is necessary to consider the available specifications. Adequate specifications including complete purity criteria and identity for the material of commerce have been provided for the flavouring substance...

  16. Association between menthol-flavoured cigarette smoking and flavoured little cigar and cigarillo use among African-American, Hispanic, and white young and middle-aged adult smokers.

    Science.gov (United States)

    Sterling, K; Fryer, C; Pagano, I; Jones, D; Fagan, P

    2016-11-01

    Flavour additives in cigarettes and little cigars and cigarillos (LCCs), which influence smokers' risk perceptions, may reinforce dual flavoured tobacco use. We examined the association among mentholated cigarette use, risk perceptions for flavour additives in LCCs and flavoured LCC smoking behaviour. Data from a national probability sample of 964 young and middle-aged adult current cigarette smokers were analysed. Multinomial logistic regression models examined the relationship among mentholated cigarette smoking, risk perceptions and current flavoured LCC use for the analytic sample and gender and race/ethnicity. Daily menthol cigarette smokers, compared to occasional, non-menthol smokers, had increased odds of flavoured LCC smoking (OR=1.75, 95% CI 1.02 to 2.98). This relationship was found for males, blacks/African-Americans and Hispanics/Latinos (psmokers, specifically those from vulnerable populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. The root of the problem: increasing root vegetable intake in preschool children by repeated exposure and flavour flavour learning.

    Science.gov (United States)

    Ahern, Sara M; Caton, Samantha J; Blundell, Pam; Hetherington, Marion M

    2014-09-01

    Children's vegetable consumption falls below current recommendations, highlighting the need to identify strategies that can successfully promote intake. The current study aimed to investigate the effectiveness of flavour-flavour learning as one such strategy for increasing vegetable intake in preschool children. Children (N = 29) aged 15 to 56 months were recruited through participating nurseries. Each received a minimum of six and maximium eight exposures to a root vegetable puree with added apple puree (flavour-flavour learning) alternating with six to eight exposures to another with nothing added (repeated exposure). A third puree acted as a control. Pre- and post-intervention intake measures of the three purees with nothing added were taken to assess change in intake. Follow-up measures took place 1 month (n = 28) and 6 months (n = 10) post-intervention. Intake increased significantly from pre- to post-intervention for all purees (~36 g), with no effect of condition. Magnitude of change was smaller in the control condition. Analysis of follow-up data showed that intake remained significantly higher than baseline 1 month (p exposure increases intake of a novel vegetable in young children. Results also suggest that mere exposure (to the food, the experimenters, the procedure) can generalise to other, similar vegetables but the addition of a familiar flavour confers no added advantage above mere exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The solar neutrinos epopee; L'epopee des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique des Particules, 91- Gif sur Yvette (France)

    2003-06-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos {nu}{sub e} emitted by the sun are converted into muon neutrinos ({nu}{sub {mu}}) and tau neutrinos ({nu}{sub {tau}}), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the surrounding Japanese nuclear reactors. This digest article describes step by step the epopee of solar neutrinos and shows how several generations of physicists have resolved one of the mystery of modern physics. (J.S.)

  19. Risk assessment of flavouring substances used in foods

    DEFF Research Database (Denmark)

    Norby, Karin; Beltoft, Vibe Meister; Greve, Krestine

    2006-01-01

    not to present a safety concern, have been specified. In the project a very comprehensive database (the FLAVIS database) has been developed for the evaluation. It compiles information on the about 2800 flavouring substances used in Europe: specifications, structural class, food categories used in, intake data......The aim of the present project, the FLAVIS project, is to perform risk assessment of chemically defined flavouring substances. The evaluations are then presented to the European Food Safety Authority (EFSA) for final adoption in its Scientific Panel on food additives, flavourings, processing aids...... and materials in contact with food. The regulatory background for the work is found in the European Parliament and Council Regulation No. 2232/96 laying down a procedure for the establishment of a list of flavouring substances the use of which will be authorised to the exclusion of all others in the EU...

  20. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  1. Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-07-03

    This letter reports on a search for hypothetical heavy neutrinos, N, and right-handed gauge bosons, $W_R$, in events with two high transverse momentum leptons and at least one high transverse momentum hadronic jet. The results were obtained from data corresponding to an integrated luminosity of 2.1 fb$^{-1}$ collected in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. No excess above the Standard Model background expectation is observed. Excluded mass regions for Majorana and Dirac neutrinos are presented using two approaches for interactions that violate lepton and lepton-flavour numbers. One approach uses an effective operator framework, the other approach is guided by the Left-Right Symmetric Model. The results described in this letter represent the most stringent limits to date on the masses of heavy neutrinos and $W_R$ bosons obtained in direct searches.

  2. Leptogenesis in a Δ(27)×SO(10) SUSY GUT

    Energy Technology Data Exchange (ETDEWEB)

    Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom)

    2017-01-17

    Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N{sub 1} due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N{sub 1} leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y{sub B} from flavoured N{sub 1} leptogenesis in a recently proposed Δ(27)×SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y{sub B} places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.

  3. Flavour democracy and the lepton-quark hierarchy

    International Nuclear Information System (INIS)

    Fritzsch, H.; Muenchen Univ.; Plankl, J.

    1990-01-01

    The mass hierarchy of the leptons and quarks is interpreted as a consequence of a coherent state phenomenon ('flavour democracy'). It is emphasized that particular forms of the mass matrices can arise from the coherent state basis. The violations of the 'flavour democracy' turn out to be relatively large. Numerical examples are presented. (orig.)

  4. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  5. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  6. Flavour tagging of $b$-mesons in $pp$ collisions at LHCb

    CERN Document Server

    Müller, Vanessa

    2016-01-01

    Flavour tagging, i.e. the inference of the production flavour of reconstructed B hadrons, is essen- tial for precision measurements of decay-time-dependent CP violation and of mixing parameters in the neutral B meson systems. At the LHC hadronic events create a challenging environment for flavour tagging and demand for new and improved strategies. We present recent progress and new developments in terms of the flavour tagging at the LHCb experiment, which will allow for a further improvement of CP violation measurements in neutral B meson decays.

  7. Flavour tagging of $b$ mesons in $pp$ collisions at LHCb

    CERN Multimedia

    Mueller, Vanessa

    2016-01-01

    Flavour tagging, i.e. the inference of the production flavour of reconstructed $b$ hadrons, is essential for precision measurements of decay time-dependent $CP$ violation and of mixing parameters in the the neutral $B$ meson systems. LHC's $pp$ collisions with their high track multiplicities constitute a challenging environment for flavour tagging and demand for new and improved strategies. We present recent progress and new developments in flavour tagging at the LHCb experiment, which will allow for a further improvement of $CP$ violation measurements in decays of $B^0$ and $B_s^0$ mesons.

  8. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  9. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  10. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  11. A Feynman-Hellmann approach to the spin structure of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.J. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Collaboration: CSSM and QCDSF/UKQCD Collaborations; and others

    2014-05-15

    We perform a N{sub f}=2+1 lattice QCD simulation to determine the quark spin fractions of hadrons using the Feynman-Hellmann theorem. By introducing an external spin operator to the fermion action, the matrix elements relevant for quark spin fractions are extracted from the linear response of the hadron energies. Simulations indicate that the Feynman-Hellmann method offers statistical precision that is comparable to the standard three-point function approach, with the added benefit that it is less susceptible to excited state contamination. This suggests that the Feynman-Hellmann technique offers a promising alternative for calculations of quark line disconnected contributions to hadronic matrix elements. At the SU(3)-flavour symmetry point, we find that the connected quark spin fractions are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking.

  12. GENIUS Project, Neutrino Oscillations and Cosmology: Neutrinos Reveal Their Nature ?

    International Nuclear Information System (INIS)

    Czakon, M.; Studnik, J.; Zralek, M.; Gluza, J.

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and (ββ) 0ν are considered simultaneously. In this case phenomenologically interesting neutrino mass schemes can lead to non-vanishing and large values of (m ν ). As a consequence, some schemes with Majorana neutrinos can be ruled out even now. If we assume that in addition neutrinos contribute to Hot Dark Matter then the window for Majorana neutrinos is even more restricted, e.g. GENIUS experiment will be sensitive to scenarios with three Majorana neutrinos. (author)

  13. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    Science.gov (United States)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  14. Sterile neutrino

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Paper deals with the information on the occurrence of the fields of the sterile neutrinos (the righthanded ones) mixed with the normal neutrinos (the lefthanded ones). Both the Max Plank Radioastronomy Institute and the Los Angeles University assumes that the occurrence of the keV mass sterile neutrinos may explain the dark matter nature, the fast rotation of the observed pulsars and the reionization processes. The issues associated with the possibility to record the sterile neutrinos were analyzed in the course of the Sterile Neutrinos in Astrophysics and Cosmology Workshop (Crans Montana, March 2006 [ru

  15. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  16. DeepFlavour in CMS

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Flavour-tagging of jets is an important task in collider based high energy physics and a field where machine learning tools are applied by all major experiments. A new tagger (DeepFlavour) was developed and commissioned in CMS that is based on an advanced machine learning procedure. A deep neural network is used to do multi-classification of jets that origin from a b-quark, two b-quarks, a c-quark, two c-quarks or light colored particles (u, d, s-quark or gluon). The performance was measured in both, data and simulation. The talk will also include the measured performance of all taggers in CMS. The different taggers and results will be discussed and compared with some focus on details of the newest tagger.

  17. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  18. Matter-neutrino resonance in a multiangle neutrino bulb model

    Science.gov (United States)

    Vlasenko, Alexey; McLaughlin, G. C.

    2018-04-01

    Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.

  19. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  20. Spin Physics at COMPASS

    International Nuclear Information System (INIS)

    Schill, Christian

    2012-01-01

    The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off longitudinally or transversely polarized deuteron ( 6 LiD) or proton (NH 3 ) targets. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavours. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH 3 target to study transverse momentum dependent distributions.

  1. A see-saw scenario of an $A_4$ flavour symmetric standard model

    CERN Document Server

    Dinh, Dinh Nguyen; Văn, Phi Quang; Vân, Nguyen Thi Hông

    2016-01-01

    A see-saw scenario for an $A_4$ flavour symmetric standard model is presented. As before, the see-saw mechanism can be realized in several models of different types depending on different ways of neutrino mass generation corresponding to the introduction of new fields with different symmetry structures. In the present paper, a general desription of all these see-saw types is made with a more detailed investigation on type-I models. As within the original see-saw mechanism, the symmetry structure of the standard model fields decides the number and the symmetry structure of the new fields. In a model considered here, the scalar sector consists of three standard-model-Higgs-like iso-doublets ($SU_L(2)$-doublets) forming an $A_4$ triplet. The latter is a superposition of three mass-eigen states, one of which could be identified with the recently discovered Higgs boson. A possible relation to the still-deliberated 750 GeV diphoton resonance at the 13 TeV LHC collisions is also discussed. In the lepton sector, the ...

  2. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  3. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  4. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  5. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91 Stockholm (Sweden); Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Lopez-Pavon, Jacobo [INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  6. New neutrino physics and the altered shapes of solar neutrino spectra

    Science.gov (United States)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  7. Minimal flavour violation in the quark and lepton sector and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, S.L.

    2008-01-07

    We address to explain the matter-antimatter asymmetry of the universe in a framework that generalizes the quark minimal flavour violation hypothesis to the lepton sector. We study the impact of CP violation present at low and high energies and investigate the existence of correlations among leptogenesis and lepton flavour violation. Further we present an approach alternative to minimal flavour violation where the suppression of flavour changing transitions involving quarks and leptons is governed by hierarchical fermion wave functions. (orig.)

  8. Analysis of Food Taints and off-flavours - A review

    OpenAIRE

    Ridgway , Kathy; Lalljie , Samuel P.D.; Smith , Roger M

    2009-01-01

    Abstract Taints and off-flavours in foods are a major concern to the food industry. Identification of the compound(s) causing a taint or off-flavour in food and accurate quantitation is critical in assessing the potential safety risks of a product or ingredient. Even when the tainting compound(s) are not at a level that would cause a safety concern, taints and off-flavours can have a significant impact on the quality and consumers' acceptability of products. The analysis of tai...

  9. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    Kuo, T.K.; Pantaleone, J.

    1990-01-01

    The results of recent Kamiokande-II and 37 Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  10. Neutrino GDR meeting

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.; Camilleri, L.; Mention, G.; VanElewyck, V.; Verderi, M.; Blondel, A.; Augier, C.; Bellefon, A. de; Coc, A.; Duchesneau, D.; Favier, J.; Lesgourgues, J.; Payet, J.

    2006-01-01

    The purpose of the neutrino GDR (research program coordination) is to federate the activities of French research teams devoted to studying the neutrino. The presentations have been organized on 2 days. A review of the present status of the theoretical and experimental knowledge on neutrinos on a worldwide basis has been made on the first day while the second day has been dedicated to reporting the activities of the 5 following working groups: 1) determination of neutrino parameters, 2) physics beyond the standard model, 3) neutrinos in the universe, 4) neutrino detection, and 5) common tools. During the first day the American neutrino research program has been presented through the description of the 2 neutrino detection systems: Nova and Minor. The following neutrino experiments involving nuclear reactors: Chooz (France), Daya-bay (China), Reno (Korea) and Angra (Brazil) have also been reviewed. This document is made up of the slides of the presentations

  11. Adolescents' responses to the promotion and flavouring of e-cigarettes.

    Science.gov (United States)

    Ford, Allison; MacKintosh, Anne Marie; Bauld, Linda; Moodie, Crawford; Hastings, Gerard

    2016-03-01

    The purpose of the study is to examine adolescents' awareness of e-cigarette marketing and investigate the impact of e-cigarette flavour descriptors on perceptions of product harm and user image. Data come from the 2014 Youth Tobacco Policy Survey, a cross-sectional in-home survey conducted with 11-16 year olds across the UK (n = 1205). Adolescents' awareness of e-cigarette promotion, brands, and flavours was assessed. Perceptions of product harm, and likely user of four examples of e-cigarette flavours was also examined. Some participants had tried e-cigarettes (12 %) but regular use was low (2 %) and confined to adolescents who had also smoked tobacco. Most were aware of at least one promotional channel (82 %) and that e-cigarettes came in different flavours (69 %). Brand awareness was low. E-cigarettes were perceived as harmful (M = 3.54, SD = 1.19) but this was moderated by product flavours. Fruit and sweet flavours were perceived as more likely to be tried by young never smokers than adult smokers trying to quit (p < 0.001). There is a need to monitor the impact of future market and regulatory change on youth uptake and perceptions of e-cigarettes.

  12. Formation of flavour compounds in the Maillard reaction

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2006-01-01

    This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of

  13. Probing the nature of the neutrino: The boron solar-neutrino experiment

    International Nuclear Information System (INIS)

    Raghavan, R.S.; Pakvasa, S.

    1988-01-01

    With a welter of neutrino scenarios and uncertain solar models to be unraveled, can solar-neutrino experiments really break new ground in neutrino physics? A new solar-neutrino detector BOREX, based on the nuclide /sup 11/B, promises the tools for a definitive exploration of the nature of the neutrino and the structure of the Sun. Using double-mode detection by neutrino excitation of /sup 11/B via the neutral-weak-current- and the charged-current-mediated inverse β decay in the same target, independent measurements of the total neutrino flux regardless of flavor and the survival of electron neutrinos in solar matter and a vacuum can be made. Standard models of the Sun, and almost every proposed nonstandard model of the neutrino, can be subjected to sharp and direct tests. The development of BOREX, based on B-loaded liquid-scintillation techniques, is currently in progress

  14. Impact of sterile neutrinos on nuclear-assisted cLFV processes

    Energy Technology Data Exchange (ETDEWEB)

    Abada, A. [Laboratoire de Physique Théorique, CNRS,University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Romeri, V. De; Teixeira, A.M. [Laboratoire de Physique Corpusculaire, CNRS/IN2P3 - UMR 6533,Campus des Cézeaux, 24 Av. des Landais, F-63177 Aubière Cedex (France)

    2016-02-12

    We discuss charged lepton flavour violating processes occurring in the presence of muonic atoms, such as muon-electron conversion in nuclei CR(μ−e, N), the (Coulomb enhanced) decay of muonic atoms into a pair of electrons BR(μ{sup −}e{sup −}→e{sup −}e{sup −}, N), as well as Muonium conversion and decay, Mu− (Mu)-bar and Mu→e{sup +}e{sup −}. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model. In this work, we consider minimal extensions of the Standard Model via the addition of sterile fermions, providing the corresponding complete analytical expressions for all the considered observables. We first consider an “ad hoc” extension with a single sterile fermion state, and investigate its impact on the above observables. Two well motivated mechanisms of neutrino mass generation are then considered: the Inverse Seesaw embedded into the Standard Model, and the νMSM. Our study reveals that, depending on their mass range and on the active-sterile mixing angles, sterile neutrinos can give significant contributions to the above mentioned observables, some of them even lying within present and future sensitivity of dedicated cLFV experiments. We complete the analysis by confronting our results to other (direct and indirect) searches for sterile fermions.

  15. Energetic neutrinos from heavy-neutralino annihilation in the Sun. Ph.D. Thesis

    Science.gov (United States)

    Kamionkowski, Marc

    1991-01-01

    Neutralinos may be captured in the sun and annihilated therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. Neutralinos that are either nearly pure Higgsino or a Higgsino/gaugino combination are generally captured in the sun by coherent scattering off nuclei via exchange of the lightest Higgs boson. If the squark mass is not much greater than the neutralino mass, then capture of neutralinos that are primarily gaugino occurs predominantly by spin-dependent scattering off hydrogen in the sun. The neutrino signal from annihilation of WIMPs with masses in the range of 80 to 1000 GeV in the sun should generally be stronger than that from weakly interacting massive particle (WIMP) annihilation in the earth, and detection rates for mixed-state neutralinos are generally higher than those for Higgsinos or gauginos.

  16. Meson exchange second class currents and the neutrino mass in the muon capture by light nuclei

    International Nuclear Information System (INIS)

    Katkhat, Ch.L.

    1988-01-01

    Influence of the Kubodera-Delorme-Rho model parameters (ζ and ξ), the scalar form factor (F s ) and the muonic neutrino rest mass (m νμ ) on the asymmetry coefficient (α μν ) of neutrino emission with respect to the muon spin orientation in the muon capture by light nuclei is analyzed. It is shown, that the mass m νμ , the parameters of ζ and ξ, and the form factor F s may be estimated by studying the coefficient α μν in O -> O, Gamov-Teller, and mixed transitions, respectively

  17. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  18. Signatures of top flavour-changing dark matter

    International Nuclear Information System (INIS)

    Hondt, Jorgen d'; Mariotti, Alberto; Moortgat, Seth; Tziveloglou, Pantelis

    2015-12-01

    We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

  19. Maximal sfermion flavour violation in super-GUTs

    CERN Document Server

    AUTHOR|(CDS)2108556; Velasco-Sevilla, Liliana

    2016-01-01

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses $m_0$ specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses $m_{1/2}$, as is expected in no-scale models, the dominant effects of renormalization between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to $m_{1/2}$ and generation-independent. In this case, the input scalar masses $m_0$ may violate flavour maximally, a scenario we call MaxFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity.

  20. Signatures of top flavour-changing dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Hondt, Jorgen d' ; Mariotti, Alberto; Moortgat, Seth; Tziveloglou, Pantelis [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Mawatari, Kentarou [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Grenoble-Alpes Univ., CNRS/IN2P3 (France). Lab. de Physique Subatomique et de Cosmologie; Onsem, Gerrit van [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

  1. MUON POLARIZATION EFFECTS IN THE FRONT END OF THE NEUTRINO FACTORY

    International Nuclear Information System (INIS)

    FERNOW, R.C.; GALLARDO, J.C.; FUKUI, Y.

    2000-01-01

    The authors summarize the methods used for simulation of polarization effects in the front end of a possible neutrino factory. They first discuss the helicity of muons in the pion decay process. They find that, neglecting acceptance considerations, the average helicity asymptotically approaches a magnitude of 0.185 at large pion momenta. Next they describe the methods used for tracking the spin through the complicated electromagnetic field configurations in the front end of the neutrino factory, including rf phase rotation and ionization cooling channels. Various depolarizing effects in matter are then considered, including multiple Coulomb scattering and elastic scattering from atomic electrons. Finally, they include all these effects in a simulation of a 480 m long, double phase rotation front end scenario

  2. Phenomenology of neutrino oscillations at the neutrino factory

    International Nuclear Information System (INIS)

    Tang, Jian

    2011-01-01

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain μ + → ν e → ν μ → μ - and the right-charge muons coming from the chain μ + → anti ν μ → anti ν μ → μ - (similar to μ - chains), where ν e → ν μ and anti ν μ → anti ν μ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of τ decays, generated by appearance channels ν μ → ν τ and ν e → ν τ , on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero θ 13 , which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the

  3. About the lepton number non conservation

    International Nuclear Information System (INIS)

    Bernabeu, J

    1989-01-01

    The possibility of lepton number non conservation through the mixing of lepton flavours, as well as the IΔLI=2 lepton antilepton conversion, is discussed. The paper follows the scheme: i) Experimental Situation; ii) Relation with the Neutrino Mass problem; iii) Majorana Neutrinos?; iv) Extensions of the Standard Model; v) Lepton Flavour Violating Decays of μ and τ; vi) Z∞ Boson Decays. (Author)

  4. Three neutrino flavors: Oscillations, mixing, and the solar-neutrino problem

    International Nuclear Information System (INIS)

    Pantaleone, J.

    1991-01-01

    An analytical, quantitative description of solar-neutrino propagation is presented which includes three flavors, matter dependence, and long-wavelength effects. Using the derived expression for the electron-neutrino survival probability, it is demonstrated that mixing is possible between the two-flavor Mikheyev-Smirnov-Wolfenstein and two-flavor long-wavelength solutions to the solar-neutrino problem. However, adiabatic conversion of a neutrino mass eigenstate tends to suppress all subsequent long-wavelength effects such as ''seasonal'' variations in the solar-neutrino flux

  5. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  6. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  7. Massive neutrinos flavor mixing of leptons and neutrino oscillations

    CERN Document Server

    2015-01-01

    Since the discovery of neutrino oscillations neutrino physics has become an interesting field of research in physics. They imply that neutrino must have a small mass and that the neutrinos, coupled to the charged leptons, are mixtures of the mass eigenstates, analogous to the flavor mixing of the quarks. The mixing angles for the quarks are small, but for the leptons two of the mixing angles are large. The masses of the three neutrinos must be very small, less than 1 eV, but from the oscillation experiments we only know the mass differences — the absolute masses are still unknown. Also we do not know, if the masses of the neutrinos are Dirac masses, as the masses of the charged leptons and of the quarks, or whether they are Majorana masses. In this volume, an overview of the present state of research in neutrino physics is given by well-known experimentalists and theorists. The contents — originated from talks and discussions at a recent conference addressing some of the most pressing open questions in n...

  8. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  9. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  10. LHCb: Optimization and Calibration of Flavour Tagging Algorithms for the LHCb experiment

    CERN Multimedia

    Falabella, A

    2013-01-01

    The LHCb purposes are to make precise measurements in $B$ and $D$ meson decays. In particular in time-dependent CP violation studies the determination of $B$ flavour at production ("Flavour Tagging") is fundamental. The performances and calibration of the flavour tagging algorithms with 2011 data collected by LHCb are reported. The performances of the flavour tagging algorithms on the relevant CP violation and asymmetry studies are also reported.

  11. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  12. New mechanism for Type-II seesaw dominance in SO(10) with low-mass Z', RH neutrinos, and verifiable LFV, LNV and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Bidyut Prava; Parida, Mina Ketan [Siksha ' ' O' ' Anusandhan University, Centre of Excellence in Theoretical and Mathematical Sciences, Bhubaneswar, Odisha (India)

    2015-05-15

    The dominance of Type-II seesaw mechanism for the neutrino masses has attracted considerable attention because of a number of advantages. We show a novel approach to achieve Type-II seesaw dominance in nonsupersymmetric SO(10) grand unification where a low-mass Z' boson and specific patterns of right-handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, M{sub Δ{sub L}} ≅ 10{sup 8}-10{sup 9} GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the W{sub L}-W{sub L} channel close to the current experimental limits via exchanges of heavier singlet fermions used as essential ingredients of this model even when the light active neutrino masses are normally hierarchical or invertedly hierarchical. We obtain upper bounds on the lightest sterile neutrino mass m{sub s} neutrino masses, respectively. The underlying nonunitarity effects lead to lepton flavour violating decay branching ratios within the reach of ongoing or planned experiments and the leptonic CP-violation parameter nearly two order larger than the quark sector. Some of the predicted values on the proton lifetime for p → e{sup +}π{sup 0} are found to be within the currently accessible search limits. Other aspects of model applications including leptogenesis etc. are briefly indicated. (orig.)

  13. Flavour breaking effects in the pseudoscalar meson decay constants

    Energy Technology Data Exchange (ETDEWEB)

    Bornyakov, V.G. [Institute for High Energy Physics, Protvino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation). School of Biomedicine; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputing Centre; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [DESY Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics; Collaboration: QCDSF-UKQCD Collaborations

    2016-12-14

    The SU(3) flavour symmetry breaking expansion in up, down and strange quark masses is extended from hadron masses to meson decay constants. This allows a determination of the ratio of kaon to pion decay constants in QCD. Furthermore when using partially quenched valence quarks the expansion is such that SU(2) isospin breaking effects can also be determined. It is found that the lowest order SU(3) flavour symmetry breaking expansion (or Gell-Mann-Okubo expansion) works very well. Simulations are performed for 2+1 flavours of clover fermions at four lattice spacings.

  14. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  15. Dirac equation in a de Sitter expansion for massive neutrinos from modern Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio

    2012-01-01

    Using the modern Kaluza-Klein theory of gravity (or the Induced Matter theory), we study the Dirac equation for massive neutrinos on a de Sitter background metric from a 5D Riemann-flat (and hence Ricci-flat) extended de Sitter metric, on which is defined the vacuum for test massless 1/2-spin neutral fields minimally coupled to gravity and free of any other interactions. We obtain that the effective 4D masses of the neutrinos can only take three possible values, which are related to the (static) foliation of the fifth and noncompact extra dimension.

  16. Search for sterile neutrinos at a new short-baseline CERN neutrino beam

    International Nuclear Information System (INIS)

    Mauri, N.

    2014-01-01

    In the last few years the experimental results on neutrino/anti-neutrino oscillations at Short-Baseline (SBL) showed a tension with several phenomenological models. The recent and carefully recomputed anti-neutrino fluxes from nuclear reactors have further increased this tension drawing a picture not fully compatible with the 3 neutrino oscillation scenario. A sterile neutrino is a neutral lepton which does not couple with W/Z bosons. it is not an exotic particle, its existence being a natural consequence of neutrinos having a non-zero mass. Sterile neutrinos can mix with the active ones through additional mass eigenstates, with no necessary mass scale. We will present an experimental search for sterile neutrinos with a new CERN-SPS neutrino beam using muon spectrometers and large LAr detectors. To definitely clarify the physics issue, the proposed experiment will study oscillations in a muon neutrino / antineutrino beam both in appearance and disappearance modes, exploring the Δm 2 ∼ 1 eV 2 range

  17. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  18. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  19. EFSA ; Scientific Opinion on Flavouring Group Evaluation 66, Revision 1 (FGE.66Rev1): Consideration of Furfuryl Alcohol and Related Flavouring Substances Evaluated by JECFA (55th meeting)

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 14 flavouring substances in the Revision 1 of Flavouring Group Evaluation 66, using the Procedure in Commission Regulation (EC) No 1565/2000. None...

  20. New perspectives for heavy flavour physics from the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2009-06-15

    Heavy flavours represent a challenge for lattice QCD. We discuss it in very general terms. We give an idea of the significant recent progress which opens up good perspectives for high precision first principles QCD computations for flavour physics. (orig.)

  1. New perspectives for heavy flavour physics from the lattice

    International Nuclear Information System (INIS)

    Sommer, R.

    2009-06-01

    Heavy flavours represent a challenge for lattice QCD. We discuss it in very general terms. We give an idea of the significant recent progress which opens up good perspectives for high precision first principles QCD computations for flavour physics. (orig.)

  2. Final results of the search for $\

    CERN Document Server

    Agafonova, N.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Chernyavskiy, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Favier, J.; Fini, R.A.; Fornari, F.; Fukuda, T.; Galati, G.; Garfagnini, A.; Gentile, V.; Goldberg, J.; Gornushkin, Y.; Gorbunov, S.; Grella, G.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hara, T.; Hayakawa, T.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Iuliano, A.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, S.H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laudisio, F.; Lauria, A.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Mikado, S.; Miyanishi, M.; Mizutani, F.; Monacelli, P.; Montesi, M.C.; Morishima, K.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Niwa, K.; Okateva, N.; Ogawa, S.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B.D.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Shibuya, H.; Shibayama, E.; Shiraishi, T.; Simone, S.; Sirignano, C.; Sirri, G.; Sotnikov, A.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Vasina, S.; Vilain, P.; Voevodina, E.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Yoon, C.S.

    The OPERA experiment has discovered the tau neutrino appearance in the CNGS muon neutrino beam, in agreement with the 3 neutrino flavour oscillation hypothesis. The OPERA neutrino interaction target, made of Emulsion Cloud Chamber, was particularly efficient in the reconstruction of electromagnetic showers. Moreover, thanks to the very high granularity of the emulsion films, showers induced by electrons can be distinguished from those induced by $\\pi^0$s, thus allowing the detection of charged current interactions of electron neutrinos. In this paper the results of the search for electron neutrino events using the full dataset are reported. An improved method for the electron neutrino energy estimation is exploited. Data are compatible with the 3 neutrino flavour mixing model expectations and are used to set limits on the oscillation parameters of the 3+1 neutrino mixing model, in which an additional mass eigenstate $m_{4}$ is introduced. At high $\\Delta m^{2}_{41}$ $( \\gtrsim 0.1~\\textrm{eV}^{2})$, an upper ...

  3. Geometric phase of neutrinos: Differences between Dirac and Majorana neutrinos

    Science.gov (United States)

    Capolupo, A.; Giampaolo, S. M.; Hiesmayr, B. C.; Vitiello, G.

    2018-05-01

    We analyze the non-cyclic geometric phase for neutrinos. We find that the geometric phase and the total phase associated to the mixing phenomenon provide a theoretical tool to distinguish between Dirac and Majorana neutrinos. Our results hold for neutrinos propagating in vacuum and through the matter. We feed the values of the experimental parameters in our formulas in order to make contact with experiments. Although it remains an open question how the geometric phase of neutrinos could be detected, our theoretical results may open new scenarios in the investigation of the neutrino nature.

  4. On flavour and naturalness of composite Higgs models

    International Nuclear Information System (INIS)

    Matsedonskyi, Oleksii

    2015-01-01

    We analyse the interplay of the constraints imposed on flavour-symmetric Composite Higgs models by Naturalness considerations and the constraints derived from Flavour Physics and Electroweak Precision Tests. Our analysis is based on the Effective Field Theory which describes the Higgs as a pseudo-Nambu-Goldstone boson and also includes the composite fermionic resonances. Within this approach one is able to identify the directions in the parameter space where the U(3)-symmetric flavour models can pass the current experimental constraints, without conflicting with the light Higgs mass. We also derive the general features of the U(2)-symmetric models required by the experimental bounds, in case of elementary and totally composite t R . An effect in the Zb-barb coupling, which can potentially allow for sizable deviations in Z→b-barb decay parameters without modifying flavour physics observables, is identified. We also present the analysis of the mixed scenario, where the top quark mass is generated due to Partial Compositeness while the light quark masses are Technicolor-like.

  5. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  6. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  7. Maximal sfermion flavour violation in super-GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Olive, Keith A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Velasco-Sevilla, L. [University of Bergen, Department of Physics and Technology, PO Box 7803, Bergen (Norway)

    2016-10-15

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m{sub 0} specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m{sub 1/2}, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m{sub 1/2} and generation independent. In this case, the input scalar masses m{sub 0} may violate flavour maximally, a scenario we call MaxSFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity. (orig.)

  8. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 21, Revision 4 (FGE.21Rev4)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 59 flavouring substances in the Flavouring Group Evaluation 21, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 41 candidate substances...

  9. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 24, Revision 2 (FGE.24Rev2)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 24 flavouring substances in the Flavouring Group Evaluation 24, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision...... the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the materials of commerce have been provided for all 24 candidate substances....

  10. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 300 (FGE.300): One cyclo-aliphatic amide from chemical group 33

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance in the Flavouring Group Evaluation 300 using the Procedure in Commission Regulation (EC) No 1565/2000. The substance was not conside......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate a flavouring substance in the Flavouring Group Evaluation 300 using the Procedure in Commission Regulation (EC) No 1565/2000. The substance...... was not considered to have genotoxic potential. The substance was evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The Panel concluded...... that for the substance [FL-no: 16.115] evaluated through the Procedure, no appropriate NOAEL was available and additional data are required. Besides the safety assessment of this flavouring substance, the specifications for the materials of commerce have also been considered. The composition of the stereoisomeric...

  11. The flavour of natural SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Felix [SISSA/ISAS, Trieste (Italy); Kraml, Sabine; Kulkarni, Suchita; Smith, Christopher [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France)

    2014-09-15

    An inverted mass hierarchy in the squark sector, as in so-called ''natural supersymmetry'', requires non-universal boundary conditions at the mediation scale of supersymmetry breaking. We propose a formalism to define such boundary conditions in a basis-independent manner and apply it to generic scenarios where the third-generation squarks are light, while the first two-generation squarks are heavy and near-degenerate. We show that not only is our formalism particularly well suited to study such hierarchical squark mass patterns, but in addition the resulting soft terms at the TeV scale are manifestly compatible with the principle of minimal flavour violation, and thus automatically obey constraints from flavour physics. (orig.)

  12. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  13. The neutrino mirror

    International Nuclear Information System (INIS)

    Vannucci, F.

    2003-09-01

    The neutrino is not an elementary particle like others, it is the most stunning of all: the neutrino is undetectable by itself, we have only indirect evidences of its existence, but the neutrino is essential to explain the weak interaction, to understand why matter triumphed over anti-matter just after the Big-bang, or to solve the riddle of the hidden mass of the universe. This book is a popular work dedicated to the neutrino from its discovery in beta decays to the most recent theories such as neutrino oscillations, and via the worldwide experiments dedicated to the study of the neutrinos. (A.C.)

  14. The solar neutrino problem after the GALLEX artificial neutrino source experiment

    International Nuclear Information System (INIS)

    Vignaud, D.

    1995-01-01

    Using an intense 51 Cr artificial neutrino source (more than 60 PBq), the GALLEX solar neutrino collaboration has recently checked that its radiochemical detector was fully efficient for the detection of solar neutrinos. After this crucial result, the status of the solar neutrino problem is reviewed, with emphasis on how neutrino oscillations may explain (through the MSW effect) the different deficits observed in the four existing experiments. (author). 25 refs., 5 figs., 1 tab

  15. Flavour Geometry and Effective Yukawa Couplings in the MSSM

    CERN Document Server

    Ellis, John; Lee, Jae Sik; Pilaftsis, Apostolos

    2010-01-01

    We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) x U(1)]^5 flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan(beta) for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.

  16. Minimal flavour violation in the quark and lepton sector and the impact of extra dimensions on flavour changing neutral currents and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Weiler, A.

    2007-01-01

    We study flavor-changing decays of hadrons and leptons and an extra-dimensional approach to electroweak symmetry breaking. Specifically we study the framework of Minimal Flavour Violation (MFV) as an explanation of the flavour problem. We discuss the impact of a specific extra-dimensional model of the MFV class on flavour changing neutral currents. We derive model-independent upper bounds on rare decays. -We discuss the extension of the MFV framework from the quark to the lepton sector and show how baryogenesis through leptogenesis can be achieved and examine if possible correlations with charged lepton flavour violation exist. We discuss the dynamical breaking of the electroweak symmetry in extra dimensions by unifying gauge and Higgs fields and we show that realistic models are possible once the extra dimension is strongly curved. (orig.)

  17. Minimal flavour violation in the quark and lepton sector and the impact of extra dimensions on flavour changing neutral currents and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, A.

    2007-01-16

    We study flavor-changing decays of hadrons and leptons and an extra-dimensional approach to electroweak symmetry breaking. Specifically we study the framework of Minimal Flavour Violation (MFV) as an explanation of the flavour problem. We discuss the impact of a specific extra-dimensional model of the MFV class on flavour changing neutral currents. We derive model-independent upper bounds on rare decays. -We discuss the extension of the MFV framework from the quark to the lepton sector and show how baryogenesis through leptogenesis can be achieved and examine if possible correlations with charged lepton flavour violation exist. We discuss the dynamical breaking of the electroweak symmetry in extra dimensions by unifying gauge and Higgs fields and we show that realistic models are possible once the extra dimension is strongly curved. (orig.)

  18. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  19. EFSA EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 304 (FGE.304): Five carboxamides from chemical group 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate five flavouring substances in the Flavouring Group Evaluation 304, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the substances...... data are required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered. Specifications including complete purity criteria and identity for the materials of commerce have been provided for all five candidate substances....

  20. Neutrino oscillations and neutrino-electron scattering

    International Nuclear Information System (INIS)

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments

  1. Nuclear Structure Calculations for Two-Neutrino Double-β Decay

    Directory of Open Access Journals (Sweden)

    P. Sarriguren

    2016-01-01

    Full Text Available We study the two-neutrino double-β decay in 76Ge, 116Cd, 128Te, 130Te, and 150Nd, as well as the two Gamow-Teller branches that connect the double-β decay partners with the states in the intermediate nuclei. We use a theoretical microscopic approach based on a deformed self-consistent mean field with Skyrme interactions including pairing and spin-isospin residual forces, which are treated in a proton-neutron quasiparticle random-phase approximation. We compare our results for Gamow-Teller strength distributions with experimental information obtained from charge-exchange reactions. We also compare our results for the two-neutrino double-β decay nuclear matrix elements with those extracted from the measured half-lives. Both single-state and low-lying-state dominance hypotheses are analyzed theoretically and experimentally making use of recent data from charge-exchange reactions and β decay of the intermediate nuclei.

  2. Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Academia Sinica, Taipei (China). Inst. of Physics; Collaboration: ATLAS Collaboration; and others

    2016-02-15

    A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb{sup -1} are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the t → Wb branching fraction is set. The observed 95% CL limit is σ{sub qg→t} x B(t → Wb) < 3.4 pb and the expected 95% CL limit is σ{sub qg→t} x B(t → Wb) < 2.9 pb. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics Κ{sub ugt}/Λ < 5.8 x 10{sup -3} TeV.1 and Κ{sub cgt}/Λ < 13 x 10{sup -3} TeV and on the branching fractions B(t → ug) < 4.0 x 10{sup -5} and B(t → cg) < 20 x 10{sup -5}. (orig.)

  3. Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.

    2016-01-01

    A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb -1 are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the t → Wb branching fraction is set. The observed 95% CL limit is σ qg→t x B(t → Wb) < 3.4 pb and the expected 95% CL limit is σ qg→t x B(t → Wb) < 2.9 pb. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics Κ ugt /Λ < 5.8 x 10 -3 TeV.1 and Κ cgt /Λ < 13 x 10 -3 TeV and on the branching fractions B(t → ug) < 4.0 x 10 -5 and B(t → cg) < 20 x 10 -5 . (orig.)

  4. Testing violation of the Leggett-Garg-type inequality in neutrino oscillations of the Daya Bay experiment

    Science.gov (United States)

    Fu, Qiang; Chen, Xurong

    2017-11-01

    The Leggett-Garg inequality (LGI), derived under the assumption of realism, acts as the temporal Bell inequality. It is studied in electromagnetic and strong interaction like photonics, superconducting qubits and nuclear spin. The weak interaction two-state oscillations of neutrinos affirmed the violation of Leggett-Garg-type inequalities (LGtI). We make an empirical test for the deviation of experimental results with the classical limits by analyzing the survival probability data of reactor neutrinos at a distinct range of baseline dividing energies, as an analog to a single neutrino detected at different times. A study of the updated data of the Daya Bay experiment unambiguously depicts an obvious cluster of data over the classical bound of LGtI and shows a 6.1σ significance of the violation of them.

  5. Testing violation of the Leggett-Garg-type inequality in neutrino oscillations of the Daya Bay experiment

    International Nuclear Information System (INIS)

    Fu, Qiang; Chen, Xurong

    2017-01-01

    The Leggett-Garg inequality (LGI), derived under the assumption of realism, acts as the temporal Bell inequality. It is studied in electromagnetic and strong interaction like photonics, superconducting qubits and nuclear spin. The weak interaction two-state oscillations of neutrinos affirmed the violation of Leggett-Garg-type inequalities (LGtI). We make an empirical test for the deviation of experimental results with the classical limits by analyzing the survival probability data of reactor neutrinos at a distinct range of baseline dividing energies, as an analog to a single neutrino detected at different times. A study of the updated data of the Daya Bay experiment unambiguously depicts an obvious cluster of data over the classical bound of LGtI and shows a 6.1σ significance of the violation of them. (orig.)

  6. Testing violation of the Leggett-Garg-type inequality in neutrino oscillations of the Daya Bay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qiang [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Xurong [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-11-15

    The Leggett-Garg inequality (LGI), derived under the assumption of realism, acts as the temporal Bell inequality. It is studied in electromagnetic and strong interaction like photonics, superconducting qubits and nuclear spin. The weak interaction two-state oscillations of neutrinos affirmed the violation of Leggett-Garg-type inequalities (LGtI). We make an empirical test for the deviation of experimental results with the classical limits by analyzing the survival probability data of reactor neutrinos at a distinct range of baseline dividing energies, as an analog to a single neutrino detected at different times. A study of the updated data of the Daya Bay experiment unambiguously depicts an obvious cluster of data over the classical bound of LGtI and shows a 6.1σ significance of the violation of them. (orig.)

  7. Sterile neutrinos beyond LSND at the neutrino factory

    International Nuclear Information System (INIS)

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-01-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated Δm 41 2 -range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |Δm 41 2 |>>|Δm 31 2 |, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional ν τ detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  8. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  9. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  10. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  11. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 305 (FGE.305): L - Methionylglycine of chemical group 34

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    use in foods that are not heated or intended to be heated. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered. Adequate specifications including complete purity criteria and identity for the material of commerce have......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate one flavouring substance, the dipeptide L-methionylglycine [FL-no: 17.037], in the Flavouring Group Evaluation 305, using the Procedure in Commission...... been provided for the candidate substance. © European Food Safety Authority, 2013...

  12. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  13. Collective three-flavor oscillations of supernova neutrinos

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol

    2008-06-01

    Neutrinos and antineutrinos emitted from a core collapse supernova interact among themselves, giving rise to collective flavor conversion effects that are significant near the neutrinosphere. We develop a formalism to analyze these collective effects in the complete three-flavor framework. It naturally generalizes the spin-precession analogy to three flavors and is capable of analytically describing phenomena like vacuum/Mikheyev-Smirnov-Wolfenstein (MSW) oscillations, synchronized oscillations, bipolar oscillations, and spectral split. Using the formalism, we demonstrate that the flavor conversions may be “factorized” into two-flavor oscillations with hierarchical frequencies. We explicitly show how the three-flavor solution may be constructed by combining two-flavor solutions. For a typical supernova density profile, we identify an approximate separation of regions where distinctly different flavor conversion mechanisms operate, and demonstrate the interplay between collective and MSW effects. We pictorialize our results in terms of the “e3-e8 triangle” diagram, which is a tool that can be used to visualize three-neutrino flavor conversions in general, and offers insights into the analysis of the collective effects in particular.

  14. LHCb: Optimization and Calibration of Flavour Tagging Algorithms for the LHCb experiment

    CERN Multimedia

    Falabella, A

    2013-01-01

    The LHCb purposes are to make precise measurements of $B$ and $D$ meson decays. In particular in time-dependent CP violation studies the determination of $B$ flavour at production is fundamental. This is known as "flavour tagging" and at LHCb it is performed with several algorithms. The performances and calibration of the flavour tagging algorithms with 2011 data collected by LHCb are reported. Also the performances of the flavour tagging algorithms in the relevant CP violation and asymmetry studies are also reported.

  15. Neutrino stress tensor regularization in two-dimensional space-time

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Unruh, W.G.

    1977-01-01

    The method of covariant point-splitting is used to regularize the stress tensor for a massless spin 1/2 (neutrino) quantum field in an arbitrary two-dimensional space-time. A thermodynamic argument is used as a consistency check. The result shows that the physical part of the stress tensor is identical with that of the massless scalar field (in the absence of Casimir-type terms) even though the formally divergent expression is equal to the negative of the scalar case. (author)

  16. Study and conception of the decay ring of a neutrino facility using the {beta} decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets; Etude et conception de l'anneau de desintegration d'une usine a neutrinos utilisant les decroissances {beta} des noyaux helium 6 et neon 18 produits par un faisceau intense de protons frappant diverses cibles

    Energy Technology Data Exchange (ETDEWEB)

    Chance, A

    2007-09-15

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  17. Leading Particle Production in Light Flavour Jets

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, Gideon; Allison, J; Anderson, K J; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Bailey, I; Ball, A H; Barberio, E; Barlow, R J; Batley, J Richard; Baumann, S; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bloodworth, Ian J; Bock, P; Böhme, J; Boeriu, O; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couchman, J; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; Davis, R; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Ferrari, P; Fiedler, F; Fierro, M; Fleck, I; Frey, A; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J I; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kobayashi, T; Kobel, M; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lawson, I; Layter, J G; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; Lillich, J; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Lü, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Merritt, F S; Mes, H; Meyer, I; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Okpara, A N; Oreglia, M J; Orito, S; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Przybycien, M B; Quadt, A; Rembser, C; Rick, Hartmut; Robins, S A; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Trefzger, T M; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D

    2000-01-01

    The energy distribution and type of the particle with the highest momentum in quark jets are determined for each of the five quark flavours making only minimal model assumptions. The analysis is based on a large statistics sample of hadronic Z0 decays collected with the OPAL detector at the LEP e+e- collider. These results provide a basis for future studies of light flavour production at other centre-of-mass energies. We use our results to study the hadronisation mechanism in light flavour jets and compare the data to the QCD models JETSET and HERWIG. Within the JETSET model we also directly determine the suppression of strange quarks to be gamma_s=0.422+-0.049 (stat.)+-0.059 (syst.) by comparing the production of charged and neutral kaons in strange and non-strange light quark events. Finally we study the features of baryon production.

  18. Neutrino transition magnetic moments and the solar magnetic field on the light of the Kamland evidence

    CERN Document Server

    Antonelli, V; Picariello, M; Pulido, J; Torrente-Lujan, E

    2003-01-01

    We present here a recopilation of recent results about the possibility of detecting solar electron antineutrinos produced by solar core and convective magnetic fields. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. Using the recent Kamland results and assuming a concrete model for antineutrino production by spin-flavor precession in the convective zone based on chaotic magnetic fields,we obtain bounds on the flux of solar antineutrinos, on the average conversion neutrino-antineutrino probability and on intrinsic neutrino magnetic moment. In the most conservative case, $\\mu\\lsim 2.5\\times 10^{-11} \\mu_B$ (95% CL). When studying the effects of a core magnetic field, we find in the weak limit a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar ele...

  19. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  20. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  1. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  2. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  3. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 309 (FGE.309): Sodium Diacetate

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate sodium diacetate [FL-no: 16.073] in the Flavouring Group Evaluation 309, using the Procedure in Commission Regulation (EC) No 1565/2000. However, although...

  4. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  5. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjö, Joakim; Ohlsson, Tommy

    2011-01-01

    The prospects to detect neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes.

  6. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjoe, Joakim; Ohlsson, Tommy

    2006-01-01

    The prospects for detecting neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes

  7. FlavBit. A GAMBIT module for computing flavour observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Bernlochner, Florian U. [Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universitaet Bonn (Germany); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Farmer, Ben [Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Jackson, Paul; White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Kvellestad, Anders [NORDITA, Stockholm (Sweden); Mahmoudi, Farvah [Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Flavour Workgroup

    2017-11-15

    Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as SuperIso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT. (orig.)

  8. Flavour and collider interplay for SUSY at LHC7

    International Nuclear Information System (INIS)

    Calibbi, L.; Hodgkinson, R.N.; Vives, O.; Jones Perez, J.; Masiero, A.

    2012-01-01

    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb -1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s →μμ and μ→e γ. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models. (orig.)

  9. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2013. Scientific Opinion on Flavouring Group Evaluation 76, Revision 1 (FGE.76Rev1)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and to decide whether further...... by Industry for use as a flavouring substance in Europe and will therefore not be considered any further. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data...... as flavouring substances, as these substances could not be evaluated because of concern with respect to genotoxicity. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been considered and for all 26 substances, the information is adequate....

  10. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  11. Impact of Flavour Variability on Electronic Cigarette Use Experience: An Internet Survey

    Directory of Open Access Journals (Sweden)

    Konstantinos E. Farsalinos

    2013-12-01

    Full Text Available Background: A major characteristic of the electronic cigarette (EC market is the availability of a large number of different flavours. This has been criticised by the public health authorities, some of whom believe that diverse flavours will attract young users and that ECs are a gateway to smoking. At the same time, several reports in the news media mention that the main purpose of flavour marketing is to attract youngsters. The importance of flavourings and their patterns of use by EC consumers have not been adequately evaluated, therefore, the purpose of this survey was to examine and understand the impact of flavourings in the EC experience of dedicated users. Methods: A questionnaire was prepared and uploaded in an online survey tool. EC users were asked to participate irrespective of their current smoking status. Participants were divided according to their smoking status at the time of participation in two subgroups: former smokers and current smokers. Results: In total, 4,618 participants were included in the analysis, with 4,515 reporting current smoking status. The vast majority (91.1% were former smokers, while current smokers had reduced smoking consumption from 20 to 4 cigarettes per day. Both subgroups had a median smoking history of 22 years and had been using ECs for 12 months. On average they were using three different types of liquid flavours on a regular basis, with former smokers switching between flavours more frequently compared to current smokers; 69.2% of the former subgroup reported doing so on a daily basis or within the day. Fruit flavours were more popular at the time of participation, while tobacco flavours were more popular at initiation of EC use. On a scale from 1 (not at all important to 5 (extremely important participants answered that variability of flavours was “very important” (score = 4 in their effort to reduce or quit smoking. The majority reported that restricting variability will make ECs less

  12. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  13. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Concepcion; Maltoni, Michele; Rojo, Joan

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  14. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  15. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  16. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaewon [Univ. of Rochester, NY (United States)

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  17. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  18. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  19. Future neutrino experiments

    CERN Document Server

    Di Lella, L

    2001-01-01

    Future experiments to search for neutrino oscillations using neutrinos from the Sun, from reactors and accelerators are reviewed. Possible long-term developments based on neutrino factories are also described. (29 refs).

  20. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    International Nuclear Information System (INIS)

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-01-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10 -8 . We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix

  1. Flavour preferences in youth versus adults: a review

    Science.gov (United States)

    Hoffman, Allison C; Salgado, Raydel Valdes; Dresler, Carolyn; Faller, Rachel Williams; Bartlett, Christopher

    2016-01-01

    Objective To understand the available evidence of how children and adults differ in their preferences for flavours that may be used in tobacco products. Data sources A total of 474 articles published between 1931 and August 2015 were retrieved through searches conducted in PubMed, EMBASE, Web of Science and PsycINFO. Study selection and extraction A 2-phase relevancy review process resulted in the identification of 59 articles and information was extracted by 2 independent reviewers. Data synthesis Findings were grouped by taste and smell preferences, which are important components of overall flavour. For taste, evidence is summarised in the following categories: sweet, salty, sour, bitter, umami and fat; within each of them, findings are organised by age categories. For smell, evidence is summarised as follows: fruit/herbal/spices, tobacco and coffee and other odours. Major findings from this search indicated that sweet preference in children and adolescents was higher than in adults. Examples of preferred food-related tastes and odours for young people included cherry, candy, strawberry, orange, apple and cinnamon. Currently, all these are used to flavour cigars, cartridges for electronic cigarettes, hookah (waterpipe) and smokeless tobacco products. Conclusions Infants and children exhibited elevated sweet and salty preference relative to adults. Age-related changes in bitter, sour, umami and fat taste were not clear and more research would be useful. ‘Sweet’ food odours were highly preferred by children. Tobacco products in flavours preferred by young people may impact tobacco use and initiation, while flavours preferred by adults may impact product switching or dual use. PMID:27633764

  2. Constraining neutrino magnetic moment with solar and reactor neutrino data

    OpenAIRE

    Tortola, M. A.

    2004-01-01

    We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...

  3. Enhanced lepton flavour violation in the supersymmetric inverse seesaw

    International Nuclear Information System (INIS)

    Weiland, C

    2013-01-01

    In minimal supersymmetric seesaw models, the contribution to lepton flavour violation from Z-penguins is usually negligible. In this study, we consider the supersymmetric inverse seesaw and show that, in this case, the Z-penguin contribution dominates in several lepton flavour violating observables due to the low scale of the inverse seesaw mechanism. Among the observables considered, we find that the most constraining one is the μ-e conversion rate which is already restricting the otherwise allowed parameter space of the model. Moreover, in this framework, the Z-penguins exhibit a non-decoupling behaviour, which has previously been noticed in lepton flavour violating Higgs decays

  4. Study and conception of the decay ring of a neutrino facility using the β decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets

    International Nuclear Information System (INIS)

    Chance, A.

    2007-09-01

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  5. When neutrinos attack - the impact of agressive neutrinos in astrophysics.

    Science.gov (United States)

    Kneller, James

    2004-11-01

    Of all the constituents within the standard model of particle physics our understanding of the neutrino has benefited the most from the interaction of astrophysics and `terraphysics'. Much has been learned about the properties of the neutrino from each: experiments here on Earth temper our appreciation of the role that neutrinos play in the cosmos while astrophysics can provide the densities and temperatures in which the neutrinos do more than simply flee. But their reluctance to interact means that it is not until we venture into the most extreme environments of astrophysics that we observe neutrinos pushing back' as hard as they are being pushed'. We review two sites where this occurs: the early Universe and the accretion disk, engines' of gamma ray bursts. Neutrinos play an important role in the evolution of the early Universe with a particular focus upon the electron neutrino in determining the primordial elemental composition via its participation in the most important reaction at that time. Within gamma ray burst accretion disks we again see the electron neutrinos at work in the nuclear reactions and through their function as the coolant' for the disk. Removal of the disk energy, and its deposition into the remnants of the massive star surrounding the disk, may lead to the formation of highly relativistic jets that will later be observed as the burst. We show what has been learned so far about the neutrino and its properties from the study of such environments and discuss where future research is heading.

  6. Effects of neutrino oscillation on supernova neutrino. Inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrinos in the case of the inverted mass hierarchy (m 3 1 2 ) as well as the normal mass hierarchy (m 1 2 3 ). Numerical analysis using realistic supernova and presupernova models allows us to investigate quantitatively the possibility to probe neutrino oscillation parameters. We show that information about the mass hierarchy can be obtained if θ 13 is rather large (sin 2 2θ 13 > 10 -3 ) and that θ 13 can be probed effectively by SuperKamiokande if the neutrino mass hierarchy is inverted. Errors due to the uncertainty in the original neutrino spectra and the Earth effect are also discussed. (author)

  7. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  8. Homestake result, sterile neutrinos, and low energy solar neutrino experiments

    Science.gov (United States)

    de Holanda, P. C.; Smirnov, A. Yu.

    2004-06-01

    The Homestake result is about ˜2σ lower than the Ar-production rate, QAr, predicted by the large mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem. Also there is no apparent upturn of the energy spectrum (R≡Nobs/NSSM) at low energies in SNO and Super-Kamiokande. Both these facts can be explained if a light, Δm201˜(0.2 2)×10-5 eV2, sterile neutrino exists which mixes very weakly with active neutrinos: sin2 2α˜(10-5 10-3). We perform both the analytical and numerical study of the conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E=(0.5 5) MeV thus suppressing the Be, or/and pep, CNO, as well as B electron neutrino fluxes. Apart from diminishing QAr it leads to decrease of the Ge-production rate and may lead to the decrease of the BOREXINO signal as well as the CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO, and KamLAND as well as by the new low energy experiments will allow us to check this possibility.

  9. Introduction to massive neutrinos

    International Nuclear Information System (INIS)

    Kayser, B.

    1984-01-01

    We discuss the theoretical ideas which make it natural to expect that neutrinos do indeed have mass. Then we focus on the physical consequences of neutrino mass, including neutrino oscillation and other phenomena whose observation would be very interesting, and would serve to demonstrate that neutrinos are indeed massive. We comment on the legitimacy of comparing results from different types of experiments. Finally, we consider the question of whether neutrinos are their own antiparticles. We explain what this question means, discuss the nature of a neutrino which is its own antiparticles, and consider how one might determine experimentally whether neutrinos are their own antiparticles or not

  10. Solar neutrino detection

    International Nuclear Information System (INIS)

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  11. Inclusive tagging of B-flavour at LHCb [Vidyo

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    One of the most important procedure needed for the study of CP violation in Beauty sector is the tagging of the flavour of neutral B-mesons at production. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present a proposal to upgrade current flavour tagging strategy in LHCb experiment. This strategy consists of inclusive tagging ensemble methods (i.e: the use inclusive information about the event without a firm selection rule), which are combined using a probabilistic model for each event. The probabilistic model uses all reconstructed tracks and secondary vertices to obtain well-determined probability of B flavour at production. Such approach reduces the dependence on the performance of lower level identification capacities and thus has the potential to increase the overall performance.

  12. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  13. The physics of neutrinos

    CERN Document Server

    Barger, Vernon D; Whisnant, Kerry

    2012-01-01

    The physics of neutrinos- uncharged elementary particles that are key to helping us better understand the nature of our universe - is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model ...

  14. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  15. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  16. Meat flavour in pork and beef - From animal to meal.

    Science.gov (United States)

    Aaslyng, Margit D; Meinert, Lene

    2017-10-01

    An intense meat flavour is greatly appreciated by consumers. Meat flavour is generated during the cooking process through a complex series of chemical reactions between precursors, intermediate reaction products and degradation products. The content and nature of the precursors present in the meat are affected by several factors including genetics, feed, handling of the live animals and subsequent handling of the meat. The fatty acid composition can easily be altered though feeding, especially in monogastric animals, while the carbohydrate content is more closely related to genetics (pigs), feeding in the last days before slaughter and handling at slaughter (both ante and post mortem). Ageing of the meat is not particularly important for the flavour, unless the meat is dry-aged. In comparison, cooking is crucial for the development of flavour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A search for oscillations of muon-neutrinos to electron-neutrinos

    CERN Document Server

    Procario, Michael

    1986-01-01

    The author has searched in the heavy liquid bubble chamber BEBC for electron neutrino charge current events which could arise from oscillation of the muon neutrinos (average energy ∼1.5 GeV) obtained with a low energy proton beam at the CERN PS targeted 825 m upstream from BEBC. The appearance of electron neutrino CC interactions provides a sensitive indication of nu/sub μ/ → nu/sub e/ oscillation. The author observed 460 muon neutrino CC events and 4 electron neutrino CC events with an estimated background of 3.5 electron neutrino CC events. Using the likelihood ratio method to test the oscillation hypothesis, the author finds no evidence for nu/sub μ/ → nu/sub e/ oscillation and set the limits δm2 ≤ 0.13 eV2 (maximal mixing) and sin22theta ≤ 0.018 for δm2 = 3 eV2 at 90% confidence level

  18. Heavy Flavour Production and Decay at ATLAS

    CERN Document Server

    Jones, RWL; The ATLAS collaboration

    2013-01-01

    ATLAS is taking advantage of its large integrated luminosity band sophisticated muon and dimuon triggers to make competitive measurements of heavy flavour production and decay. Inclusive production and heavy flavour jet production is discussed before turning to charm and onium production. The production and decay of individual B hadron species is then addressed, including the current best measurement of the Λb lifetime. A much improved analysis of CP related quantities in Bs decays is presented, before turning to recent results and prospects for rare B decays.

  19. Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Institute for High Energy Physics, Protovino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-12-15

    QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the updown quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. (orig.)

  20. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  1. Neutrino mass spectrum with υμ → υs oscillations of atmospheric neutrinos

    International Nuclear Information System (INIS)

    Liu, Q.Y.; Smirnov, A.Yu.

    1998-02-01

    We consider the ''standard'' spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile, υ s . The sterile neutrino mixes strongly with the muon neutrino, so that υ μ ↔ υ s oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the υ μ ↔ υ s oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to υ μ and υ s . The heaviest neutrino (approx. υ τ ) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. (author)

  2. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  3. Heavy flavour production at LHCb

    CERN Document Server

    Barsuk, Sergey

    2016-01-01

    The present write-up reports recent LHCb results on production of quarkonium and open flavour states, as well as selected results on associated production, central exclusive production and pro- duction in heavy ion collisions.

  4. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  5. THE PROPAGATION OF NEUTRINO-DRIVEN JETS IN WOLF-RAYET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nagakura, Hiroki, E-mail: hiroki@heap.phys.waseda.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, JapanAND (Japan); Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2013-02-20

    We numerically investigate the jet propagation through a rotating collapsing Wolf-Rayet star with detailed central engine physics constructed based on the neutrino-driven collapsar model. The collapsing star determines the evolution of the mass accretion rate, black hole mass, and spin, all of which are important ingredients for determining the jet luminosity. We reveal that neutrino-driven jets in rapidly spinning Wolf-Rayet stars are capable of breaking out from the stellar envelope, while those propagating in slower rotating progenitors fail to break out due to insufficient kinetic power. For progenitor models with successful jet breakouts, the kinetic energy accumulated in the cocoon could be as large as {approx}10{sup 51} erg and might significantly contribute to the luminosity of the afterglow emission or to the kinetic energy of the accompanying supernova if nickel production takes place. We further analyze the post-breakout phase using a simple analytical prescription and conclude that the relativistic jet component could produce events with an isotropic luminosity L {sub p(iso)} {approx} 10{sup 52} erg s{sup -1} and isotropic energy E {sub j(iso)} {approx} 10{sup 54} erg. Our findings support the idea of rapidly rotating Wolf-Rayet stars as plausible progenitors of GRBs, while slowly rotational ones could be responsible for low-luminosity or failed GRBs.

  6. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ∼2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)± 0.068 0.065 (sys.)±0.02(theor.)] x 10 6 cm -2 s -1 , via the elastic-scattering interaction is [2.21±0.22(stat.)± 0.12 0.11 (sys.)±0.01(theor.)] x 10 6 cm -2 s -1 , and via the neutral-current interaction is [5.05±0.23(stat.)± 0.37 0.31 (sys.)±0.06(theor.)] x 10 6 cm -2 s -1 . The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation

  7. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  8. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  9. Symplectic symmetry of the neutrino mass for many neutrino flavors

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Ankara Univ.

    2001-01-01

    The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)

  10. Three Dirac neutrinos

    International Nuclear Information System (INIS)

    Joshipura, A.S.; Rindani, S.D.

    1991-01-01

    The consequences of imposing an exact L e +L τ -L μ symmetry on a 6x6 matrix describing neutrino masses are discussed. The presence of right-handed neutrinos avoids the need of introducing any SU(2) Higgs triplet. Hence the conflict with the CERN LEP data on the Z width found in earlier models with L e +L τ -L μ symmetry is avoided. The L e +L τ -L μ symmetry provides an interesting realization of a recent proposal of Glashow to accommodate the 17-keV Dirac neutrino in the SU(2)xU(1) theory. All the neutrinos in this model are Dirac particles. The solar-neutrino problem can be solved in an extension of the model which generates a large (∼10 -11 μ B ) magnetic moment for the electron neutrino

  11. Behavioural and brain responses to flavoured-meals paired with visceral stimulations in pigs

    OpenAIRE

    Clouard, Caroline; Jouhanneau, Mélanie; Meunier-Salaün, Marie-Christine; Malbert, Charles-Henri; Val-Laillet, David

    2011-01-01

    Behavioural and brain responses towards conditioned flavours with different hedonic values were studied in twelve 30-kg pigs. During four 30-min conditioning sessions per flavour, the animals received a flavoured-meal paired with intraduodenal infusions of 15% glucose (FG), lithium chloride (FL), or saline (FS). Two-choice feeding tests were performed 1 and 5 weeks later, and in between, anaesthetised pigs were subjected to three PET brain imaging with exposure to the flavours. During conditi...

  12. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  13. Flavoured co-annihilation

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... (2) one can see that increasing δRR will decrease the stau mass or in other words the co-annihilation will occur at a lower neutralino mass for the fixed universal scalar mass parameter (m0). But having large flavour violating entry in the ˜μR–˜τR sectors of the sleptonic mass matrix will also give rise to rare ...

  14. Geo-neutrino Observation

    International Nuclear Information System (INIS)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-01-01

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  15. Modelling the effect of oil/fat content in food systems on flavour absorption by LLDPE.

    NARCIS (Netherlands)

    Dekker, M.; Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2003-01-01

    One of the phenomena in food packaging interactions is flavour absorption. Absorption of flavour compounds from food products into food-packaging materials can result in loss of flavour compounds or an unbalance in the flavour profile changing a product's quality. The food matrix influences the

  16. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  17. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  18. Effects of neutrino degeneracy and of downscatter on neutrino radiation from dense stellar cores

    International Nuclear Information System (INIS)

    Lichtenstadt, I.; Ron, A.; Sack, N.; Wagschal, J.J.; Bludman, S.A.

    1978-01-01

    A simplified model is presneted for several stages in the development of a neutronization shell in the inner core of a collapsing star. Neutrino degeneracy severely reduces neutrino emission and downscatter in energy, so that for all but the thinest shell sources, surface emission of an approximately Fermi-Dirac neutrino spectrum obtains. The Neutrino spectrum departs from exact Fermi-Dirac neutrino form only because of the outstreaming of low-energy neutrinos.Downscatter by electrons is helped by neutron scatterers present, but except for reducing the peak neutrino energy by about 30%, electrons play no dramatic part. The neutrino degeneracy inhibits downscatter so that the low-energy window in the Fermi-Dirac distribution leads to little neutrino loss.A simple equilibrium radiation picture emerges in which neutrinos are LTE thermally emitted in the neutronization shell and isotropically coherently scattered by neutrons and by nuclei on the way out of the overlying mantle. The Fermi statistics limit on neutrino flux is probably reached in practice, but is, in most cases, still insufficient for mantle blow-off

  19. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  20. Supersymmetry, the flavour puzzle and rare B decays

    International Nuclear Information System (INIS)

    Straub, David Michael

    2010-01-01

    The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B → K * l + l - decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b→sνanti ν decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)