WorldWideScience

Sample records for neutrino du 82se

  1. First direct double-β decay Q-value measurement of 82Se in support of understanding the nature of the neutrino.

    Science.gov (United States)

    Lincoln, David L; Holt, Jason D; Bollen, Georg; Brodeur, Maxime; Bustabad, Scott; Engel, Jonathan; Novario, Samuel J; Redshaw, Matthew; Ringle, Ryan; Schwarz, Stefan

    2013-01-04

    In anticipation of results from current and future double-β decay studies, we report a measurement resulting in a (82)Se double-β decay Q value of 2997.9(3) keV, an order of magnitude more precise than the currently accepted value. We also present preliminary results of a calculation of the (82)Se neutrinoless double-β decay nuclear matrix element that corrects in part for the small size of the shell model single-particle space. The results of this work are important for designing next generation double-β decay experiments and for the theoretical interpretations of their observations.

  2. Neutrinos

    OpenAIRE

    Gouvea, AD; Pitts, K; Scholberg, K; Zeller, GP; Alonso, J; Bernstein, A; Bishai, M; Elliott, S; Heeger, K; Hoffman, K; Huber, P; Kaufman, LJ; Kayser, B; Link, J; Lunardini, C

    2016-01-01

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos. Report of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working Group

  3. Neutrinos

    OpenAIRE

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P.; Alonso, J.; Bernstein, A.; Bishai, M.; Elliott, S.; Heeger, K.; Hoffman, K.; Huber, P.; Kaufman, L. J.; Kayser, B.; Link, J.; Lunardini, C.

    2013-01-01

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  4. Double-beta decay investigation with highly pure enriched {sup 82}Se for the LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, J.W. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bellini, F.; Casali, N.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Sezione di Roma, Rome (Italy); Benetti, P. [Universita di Pavia, Dipartimento di Chimica, Pavia (Italy); INFN, Sezione di Pavia, Pavia (Italy); Cardani, L. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Princeton University, Physics Department, Princeton, NJ (United States); Chiesa, D.; Clemenza, M.; Gironi, L.; Maino, M. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Dafinei, I.; Orio, F.; Tomei, C.; Vignati, M. [INFN, Sezione di Roma, Rome (Italy); Di Domizio, S. [INFN, Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Giuliani, A. [Centre de Spectrometrie de Masse, Orsay (France); Gotti, C.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN, Sezione di Milano Bicocca, Milan (Italy); Laubenstein, M.; Nisi, S.; Pattavina, L.; Pirro, S.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) (Italy); Nagorny, S.; Pagnanini, L. [Gran Sasso Science Institute, L' Aquila (Italy); Nones, C. [SPP Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France)

    2015-12-15

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of {sup 82}Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched {sup 82}Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched {sup 82}Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of {sup 232}Th, {sup 238}U and {sup 235}U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the {sup 82}Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of {sup 82}Se to 0{sub 1}{sup +}, 2{sub 2}{sup +} and 2{sub 1}{sup +} excited states of {sup 82}Kr of 3.4.10{sup 22}, 1.3.10{sup 22} and 1.0.10{sup 22} y, respectively, with a 90 % C.L. (orig.)

  5. Double-beta decay investigation with highly pure enriched {sup 82}Se for the LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, J. W. [Lawrence Berkeley National Laboratory, 94720, Berkeley, CA (United States); Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome (Italy); INFN, Sezione di Roma, 00185, Rome (Italy); Benetti, P. [Dipartimento di Chimica, Università di Pavia, 27100, Pavia (Italy); INFN, Sezione di Pavia, 27100, Pavia (Italy); Cardani, L. [Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome (Italy); Physics Department, Princeton University, 08544, Princeton, NJ (United States); Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome (Italy); INFN, Sezione di Roma, 00185, Rome (Italy)

    2015-12-13

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of {sup 82}Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched {sup 82}Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched {sup 82}Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of {sup 232}Th, {sup 238}U and {sup 235}U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the {sup 82}Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of {sup 82}Se to 0{sub 1}{sup +}, 2{sub 2}{sup +} and 2{sub 1}{sup +} excited states of {sup 82}Kr of 3.4·10{sup 22}, 1.3·10{sup 22} and 1.0·10{sup 22} y, respectively, with a 90 % C.L.

  6. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  7. Neutrinos

    OpenAIRE

    Ferdinando Casolaro; Alberto Trotta

    2014-01-01

    The article made a survey on neutrinos and the role they have for the understanding of nature, both on a microscopic and cosmic scale.   I neutrini Nell'articolo viene fatta una rassegna sui  neutrini e sul ruolo che essi hanno per la comprensione della natura, sia su scala microscopica, che su scala cosmica. Parole Chiave: neutrino, massa, onde gravitazionali

  8. Neutrinos

    Directory of Open Access Journals (Sweden)

    Ferdinando Casolaro

    2014-12-01

    Full Text Available The article made a survey on neutrinos and the role they have for the understanding of nature, both on a microscopic and cosmic scale.   I neutrini Nell'articolo viene fatta una rassegna sui  neutrini e sul ruolo che essi hanno per la comprensione della natura, sia su scala microscopica, che su scala cosmica. Parole Chiave: neutrino, massa, onde gravitazionali

  9. Neutrino mass and physics beyond the Standard Model; Masse des Neutrinos et Physique au-dela du Modele Standard

    Energy Technology Data Exchange (ETDEWEB)

    Hosteins, P

    2007-09-15

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.

  10. Does a massive neutrino imply to go beyond the standard model?; la masse du neutrino ouvre-t-elle une porte au-dela du modele standard?

    Energy Technology Data Exchange (ETDEWEB)

    Le Diberder, F.; Cohen-Tannoudji, G.; Davier, M. [and others

    2002-01-01

    This article gathers the 15 contributions to this seminar. The purpose of this seminar was to define up to which extend the standard model is challenged by massive neutrinos. A non-zero mass for neutrinos, even a few eV, would solve the problem of the missing mass of the universe, and it would mean no more need for supersymmetry and its neutralinos. A massless neutrino theoretically implies a symmetry and an interaction that are not described by the standard model. In some aspects, it appears that a non-zero mass is natural within the framework of the standard model, and for some scientists the smallness of this value could be the hint of the need for a new physics.

  11. Propagation of neutrinos in nuclear matter; Effets du milieu sur la propagation des neutrinos dans la matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, J

    2001-07-01

    We study the elementary interactions between neutrinos and dense matter in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme, Gogny, Relativistic Lagrangians) are first discussed. Then, we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G{sup {pi}}{sup {pi}}{sup '}{sub 0} (where {pi}, {pi}' = proton or neutron). From this work, we select a parametrization for each of the 3 effective forces: Sly230b,D1P,NL3. We calculate the pure neutron matter and asymmetric nuclear matter response functions with and without charge exchange, describing nuclear correlations in both approaches: non-relativistic (Hartree-Fock with Skyrme forces, then complete RPA) and relativistic (in the Hartree approximation). At the end, we calculate neutrino mean free paths neutral current and charged current reactions. Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density. RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas. The importance of the effective mass in mean free path calculations is also shown. (author)

  12. Effets du milieu sur la propagation des neutrinos dans la matiere nucleaire

    CERN Document Server

    Margueron, J

    2001-01-01

    We study the elementary interactions between neutrinos and dense matter in a proroneutron star. Equations of state obtained with different nuclear effective interactions (skyrme, Gogny, relativistic Lagrangians) are first discussed.Then we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G^{tau tau'}_0 (where tau, tau' = proton or neutron)We calculate nthe pure neutron matter response functions with and withoutcharge exchange, describing nuclear correlations in both approaches : non-relativistic and relativistic. At the end we calculate neutrino mean free paths for neutral current and charged current reactions.Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density.RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas.

  13. Constraining the cross section of 82Se(n, γ)83Se to validate the β-Oslo method

    Science.gov (United States)

    Childers, K.; Liddick, S. N.; Crider, B. P.; Dombos, A. C.; Lewis, R.; Spyrou, A.; Couture, A.; Mosby, S.; Prokop, C. J.; Naqvi, F.; Larsen, A. C.; Guttormsen, M.; Campo, L. C.; Renstrom, T.; Siem, S.; Bleuel, D. L.; Perdikakis, G.; Quinn, S.

    2017-09-01

    Neutron capture cross sections of short-lived nuclei are important for a variety of basic and applied nuclear science problems. However, because of the short half-lives of the nuclei involved and the nonexistence of a neutron target, indirect measurement methods are required. One such method is the β-Oslo method. The nuclear level density and γ strength function of a nucleus are extracted after β-decay and used in a statistical reaction model to constrain the neutron capture cross section. This method has been used previously, but must be validated against a directly measured neutron capture cross section. The neutron capture cross section of 82Se has been measured previously, and 83Se can be accessed by the β-decay of 83As. The β-decay of 83As to 83Se was studied using the SuN detector at the NSCL and the β-Oslo method was utilized to constrain the neutron capture cross section of 82Se, which is compared to the directly measured value.

  14. The sensitivity of the Antares detector to the galactic neutrino flux; Sensibilite du telescope Antares au flux diffus de neutrinos galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Jouvenot, F

    2005-06-15

    The Antares european collaboration builds an underwater neutrinos telescope which will be deployed in the Mediterranean by 2500 m depth. This detector consists of a three-dimensional network of 900 photomultipliers which detects the Cherenkov light produced in water by muons created from the interaction of neutrinos in the Earth. Cosmic rays are confined in the Galaxy and interact with the interstellar matter producing charged pions which decay into neutrinos. The observation of the sky with high energy neutrinos (> 100 GeV) could open a new window on the Galaxy, in particular, the detection of these neutrinos may make it possible to directly observe the dense parts of the Galaxy. In this work, corresponding fluxes have been calculated using a simulation program GALPROP, for several models, constrained by various gamma and cosmic rays observations. The expected sensitivity of the Antares detector to these models was reviewed, as well as a first estimation of the performances of what would give a future km{sup 3} scale detector. A shape recognition algorithm was also developed: it would permit to highlight the structures of the Galaxy in the optimistic case which the number of events detected would be sufficient. This work shows that Antares has an insufficient size for observing the galactic plane. It was also demonstrated that a new generation of neutrino telescope having an effective area at least 40 times larger will be needed to detect the hardest spectrum model and put limits on the other models. (author)

  15. Development and validation of HELLAZ1 detector, contribution to the project HELLAZ concerning the detection of solar neutrinos; Developpement et mise au point du detecteur HELLAZ1: elaboration du projet HELLAZ pour la detection des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, N

    2001-09-01

    The HELLAZ project is dedicated to the measurement of low energy solar neutrinos, this neutrino detection is based on the measurement of the characteristics of all the ionization electrons produced by the recoil of the electron with which the solar neutrino has collided. The detector is made of a tank full of gaseous helium whose conditions of temperature and pressure (77 K and 5 bar) are important to assure a sufficient statistic. 11 events a day are expected to be detected. In this work we present the preliminary results obtained on the first prototype (HELLAZ0) that has allowed us to test 2 types of chambers: multiwire proportional chamber (MWPC) and a micro gas chamber combined to a gas electron multiplier (MGC+GEM). A new prototype (HELLAZ1) has been designed, its aim is to measure an elementary track of only 2 ionization electrons and to test 2 new chambers: micro gas wire chamber (MGWC) and Micromegas. The first chapter deals with the sun, solar neutrinos, and the neutrino characteristics that are expected from the sun standard model. The second chapter is dedicated to the various experiments of solar neutrino detection and to their experimental result disagreement. The HELLAZ project is described in the third chapter. The fourth chapter presents the different experimental constraints, particularly the processing of the background noise and the counting of each electron of the ionization cloud. In the last chapter HELLAZ0 and HELLAZ1 projects are described and we show that microstructure-type chambers are the best suitable for this kind of detection. (A.C.)

  16. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  17. Characterization of high-purity 82Se-enriched ZnSe for double-beta decay bolometer/scintillation detectors

    Science.gov (United States)

    Silva, B. C.; de Oliveira, R.; Ribeiro, G. M.; Cury, L. A.; Leal, A. S.; Nagorny, S.; Krambrock, K.

    2018-02-01

    Zinc selenide (ZnSe), when enriched with 82Se isotope, is one of the most promising materials for the construction of a bolometer/scintillation detector to study neutrinoless double beta decay (0νDBD). Because the 0νDBD is a very rare event, a high quantity of high-purity monocrystalline ZnSe is needed, which means high costs. Therefore, the knowledge of the best material parameters, especially the presence of point defects, is essential to make feasible the construction of such a detector. In this work, both the as-grown and thermally annealed ZnSe enriched to 95% with the 82Se isotope grown by the Bridgman technique from high-purity starting materials were characterized by electron paramagnetic resonance (EPR), photo-EPR, neutron activation, photoluminescence, and electrical measurements. It is shown that although thermal annealing increases crystal homogeneity and reduces microcracks, the scintillation efficiency is much better for the as-grown material. The higher scintillation efficiency is due to the presence of donor acceptor pairs in the as-grown material, which are responsible for strong luminescence/scintillation in the red spectral region. By photo-EPR, the donor acceptor pairs are identified as closed VZn - AlZn pairs which are lost during the annealing procedure. Electrical characterization shows that the as-grown material is of good quality as it has high electron mobility at low temperatures. Excellent material parameters for the construction of the bolometer/scintillation detector based on enriched Zn82Se are discussed.

  18. Neutrinos to 1960 Personal Recollections

    Science.gov (United States)

    Reines, F.

    Nous donnons d'abord une description des jalons qui conduisirent ā la dētection du neutrino libre, de l'idēe d'utiliser une explosion nuclēaire comme source de neutrinos jusqu'ā la rēalisation dētaillēe d'une expērience auprēs d'un rēacteur nuclēaire. Sont discutēs ēgalement la logique conduisant ā la recherche de la dētection du neutrino loin de sa source ainsi que des dēveloppements ultērieurs dans la physique expērimental du neutrino. An account is given of the events which led to the detection of the free neutrino starting from the tentative idea to use a nuclear explosion as the neutrino source to the detailed realization of the experiment at a nuclear reactor. The logical requirement for detection of the neutrino at a point remote from its origin is discussed as are some subsequent developments in experimental neutrino physics.

  19. Dirac or Majorana nature and mass effects on the neutrino behaviour; Effets de la nature de Dirac ou de Majorana, ainsi que de la masse, sur le comportement du neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Campagne, J.E.

    1995-04-01

    This work deals with the Dirac or Majorana nature and mass effects on the neutrino behaviour. In the first part of this study are given the Dirac equation properties and the Majorana neutrino definition. As the difference between a Dirac and a Majorana neutrino has only a sense if their masses are not equal to zero, the second part presents a generalization of the Dirac mass term and the different ways to generate a neutrino mass. Several comparisons are made in the third part between quarks and leptons families mixtures which are linked intimately to masses generation. The fourth part gives an example of masses possible values and neutrinos particles mixtures matrix elements predicting. The neutrino electromagnetic and weak interactions are then considered as well as the neutrinos production by the neutral currents. The charged currents are however better to discriminate the Dirac or Majorana nature. The neutrinos propagation in the matter and in the vacuum are analyzed (the case of neutrino oscillations more particularly) under the result of recent experimental observations. At last, are presented the evaluation of neutrino mass (if it exists) through the analysis of double beta decay and the sensibility of future experiments. (O.L.). 164 refs., 73 figs., 20 tabs.

  20. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  1. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line; Etude de la production de neutrinos associes aux Sursauts Gamma dans le modele du Boulet de canon: possibilite d'observation de ces neutrinos par le detecteur ANTARES, et etude du bruit de fond optique enregistre par le prototype d'un secteur de ligne

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, S

    2004-09-15

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 v{sub {mu}}, cm{sup -2} can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 v{sub {mu}} per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  2. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  3. Neutrino Physics

    CERN Document Server

    Gil-Botella, I.

    2013-06-27

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  4. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  5. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  6. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  7. Gamow-Teller strength distributions in 76Ge, 76,82Se, and 90,92Zr by the deformed proton-neutron QRPA

    Science.gov (United States)

    Ha, Eunja; Cheoun, Myung-Ki

    2015-02-01

    The deformed proton-neutron quasiparticle random phase approximation (QRPA) has been developed and applied to evaluate Gamow-Teller (GT) transition strength distributions, including high-lying excited states. The data of high-lying excited states are recently available beyond one or two nucleon threshold by charge exchange reactions using hundreds of MeV projectiles. Our calculations started with single-particle states calculated using a deformed, axially symmetric Woods-Saxon potential. The neutron-neutron and proton-proton pairing correlations are explicitly taken into account at the deformed Bardeen-Cooper-Schriffer theory. Additionally, the ground state correlations and two-particle and two-hole mixing states were included in the deformed QRPA. In this work, we used a realistic two-body interaction, given by the Brueckner G-matrix based on the CD Bonn potential to reduce the ambiguity on the nucleon-nucleon interactions inside nuclei. We applied our formalism to the GT transition strengths for 76Ge, 76,82Se, and 90,92Zr, and compared the results with the available experimental data. The GT strength distributions were sensitive to the deformation parameter as well as its sign, i.e., oblate or prolate. The Ikeda sum rule, which is usually thought to be satisfied under the one-body current approximation, regardless of nucleon models, was used to test our numerical calculations and shown to be satisfied without introducing the quenching factor, if high-lying GT excited states were properly taken into account. Most of the GT strength distributions of the nuclei considered in this work have the high-lying GT excited states beyond one-nucleon threshold, which are shown to be consistent with the available experimental data.

  8. Supernova neutrinos

    OpenAIRE

    Cardall, Christian Y.

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collap...

  9. Neutrino Oscillations

    Indian Academy of Sciences (India)

    Neutrino Oscillations: New Windows to the Particle World. General Article Volume 21 Issue 10 ... Neutrino oscillation is a quantum mechanicalphenomenon whereby a neutrino created witha specific lepton flavour (electron, muon, or tau) can later bemeasured to have a different flavour. Historical developmentof the field in ...

  10. Solar Neutrinos

    Indian Academy of Sciences (India)

    Solar Neutrinos. Revathi Ananthakrishnan. 1. Introduction. The neutrino, which means the little neutral one in Ital- ian, is a very special elementary particle. It is a spin half, chargeless and almost . massless particle and therefore eluded detection for a long time. However, the sun is a rich source of neutrinos and physicists ...

  11. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  12. Study of the ANTARES detector sensitivity to a diffuse high-energy cosmic neutrino flux; Etude de la sensibilite du detecteur ANTARES a un flux diffus de neutrinos cosmiques de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer, A

    2003-04-01

    The ANTARES collaboration aims to built an underwater neutrino telescope, 2 400 m deep, 40 km from Toulon (France). This detector is constituted by 12 strings, each one comprising 90 photomultipliers. Neutrinos are detected through their charged current interaction in the medium surrounding the detector (water or rock) leading to the production of a muon in the final state. Its Cherenkov light emitted all along its travel is detected by a three dimensional array of photomultipliers. The diffuse neutrino flux is constituted by the addition of the neutrino emission of sources. Only astrophysical ones have been discussed. The different theoretical models predicting such a flux have been listed and added to the simulation possibilities. As the muon energy reconstruction was a crucial parameter in this analysis, a new energy estimator has been developed. It gives a resolution of a factor three on the muon energy above 1 TeV. Discriminant variables have been also developed in order to reject the atmospheric muon background. Including all these developments, the ANTARES sensitivity is found to be around 8.10{sup -8} GeV-cm{sup -2}-s{sup -1}-sr{sup -1} after one year of data taking for an E{sup -2} spectrum and a 10 string detector. (author)

  13. Accelerator neutrinos

    International Nuclear Information System (INIS)

    Autiero, D.; Declais, Y.

    2005-01-01

    In the last years neutrino physics was shaken by many important experimental results bringing solid proofs in favor of neutrino oscillations. The goal of the present and future generation of experiments at accelerators is to complete the comprehension of neutrino mixing and of the pattern of neutrino masses, perform precise measurements of all these parameters and investigate CP violation in the neutrino sector. Most of these goals will be achieved with the study of ν μ → ν e oscillations, which are mainly ruled by the still unknown mixing angle Θ 13 . A multi-step experimental strategy has to be attempted, depending on the magnitude of Θ 13 . (authors)

  14. Solar neutrinos and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Maltoni, Michele [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Smirnov, Alexei Yu. [Max-Planck Institute for Nuclear Physics, Heidelberg (Germany); ICTP, Trieste (Italy)

    2016-04-15

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ{sub 12} and Δm{sup 2}{sub 21} have been measured; θ{sub 13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos. (orig.)

  15. Neutrino cosmology

    International Nuclear Information System (INIS)

    Bludman, S.A.

    1976-01-01

    Cosmological data are reviewed, questioning whether the universe may be open and dominated by neutrinos and gravitons rather than by baryons. The thermal history of the Lepton Era is investigated incorporating the effects of neutral currents, additional neutrinos, and a small neutrino mass. In the canonical version of Big Bang cosmology (equal numbers of neutrinos and antineutrinos), and neutrino number and energy density is, like that of photons, gravitationally insignificant unless the neutrino has a small mass (approximately 10 eV). The neutrino sea can be cosmologically significant if it is degenerate (so that the net leptonic or muonic charge is nonzero) with approximately 7 x 10 5 neutrinos (or antineutrinos) per cm 3 . This density homogeneously spread out is still so low that even the most energetic cosmic ray protons will not be stopped, even if neutral currents exist with the usual weak strength. It these degenerate neutrinos have a small mass (approximately 0.5 eV), they will condense into degenerate neutrino superstars of the size and mass of galactic clusters. If neutral currents make the (eν) (eν) coupling five times greater than what it is in V - A theory, nucleosynthesis commences a little earlier than conventionally assumed. This increases the cosmological He 4 abundance predicted only slightly from Y = 0.27 to Y = 0.29. An appendix reviews the effect of neutral currents on neutrino processes in stars. (author)

  16. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  17. Study of the appearance of oscillating electron neutrinos issued from muon neutrino beam in the K2K experiment; Etude de l'apparition de neutrinos electroniques oscillant a partir de neutrinos muoniques du faisceau de l'experience K2K

    Energy Technology Data Exchange (ETDEWEB)

    Argyriades, J

    2006-05-15

    The work presented in this thesis has been done in the K2K experiment. His principle consists in the use of a beam of muon neutrinos, which flux has been measured at short and long distances. Those data enable us to study the effects of neutrino oscillation, particularly by measuring {nu}{sub {mu}} disappearance. Although this is not an appearance experiment, electronic neutrinos oscillation has been searched. In spite of no signal of appearance, this study enables to constrain oscillation parameters ({delta}m{sub 23}{sup 2}, sin{sup 2}2{theta}{sub 13}). With one event for 1,07 expected event from background, the exclusion area edges are close to the best actual limits, provided by Chooz experiment. By setting {delta}m{sub 23}{sup 2}.= 2,8.10{sup -3} eV{sup 2}, a limit at 90% confident level is reached: sin{sup 2}2{theta}{sub 13} < 0,2. (author)

  18. Neutrino optics

    International Nuclear Information System (INIS)

    Carey, D.C.

    1994-10-01

    Neutrinos are produced by the in-flight decay of π and k mesons. Neutrinos are uncharged and cannot be focused directly. However, the transverse momentum of the neutrino due to the decay is typically much smaller than the transverse momentum spread of the parent meson. The focusing of the meson beam will then significantly enhance the neutrino flux at a distant detector. Neutrino beams can effectively be focused in the same manner as other charged particle beams, by means of quadrupoles and bending magnets. The bending magnets also can serve to define the momentum of the neutrino beams. Alternatively, neutrino beams can be focused by the use of magnetic horns. Both systems are described here. Proposed experiments with neutrinos to detect neutrino oscillations place the detector hundreds of kilometers away from the source. The flux of neutrinos through the detector then becomes very small. The calculation of the flux by conventional Monte Carlo or numerical integration techniques becomes prohibitively difficult. An alternate mathematical technique can be used to give results which are reliable to about 10%

  19. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  20. Los Neutrinos Los Neutrinos

    OpenAIRE

    Julián Félix

    2012-01-01

    From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and moment...

  1. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  2. Supernova neutrinos

    International Nuclear Information System (INIS)

    Cardall, C.Y.

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis

  3. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of {sup 100}Mo beta beta decay; Double radioactivite beta et physique du neutrino. Etude du bruit de fond a 3 MeV dans la recherche de la desintegration beta beta du {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, F.

    1994-05-01

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 10{sup 25} years for {sup 100}Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e{sup +} - e{sup -} pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of {sup 214}Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e{sup +} - e{sup -}pairs. (author).

  4. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  5. Neutrino Telescope

    International Nuclear Information System (INIS)

    Mezzetto, M.

    2011-01-01

    The Conference Series 'Un Altro Modo di guardare il Cielo', held in Venice, started in 1988. It included 13.editions of 'Neutrino Telescopes' and four editions of 'Neutrino Oscillations in Venice'. The conference Series ideated , created and conducted by Prof. Milla Baldo Ceolin, after her guidance 'Un Altro Modo di guardare il Cielo' became one of the most important fixed appointments of thr neutrino physics and astrophysics community.

  6. Reactor Neutrinos

    OpenAIRE

    Kim, Soo-Bong; Lasserre, Thierry; Wang, Yifang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  7. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  8. Neutrino factory

    Directory of Open Access Journals (Sweden)

    M. Bogomilov

    2014-12-01

    Full Text Available The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that θ_{13}>0. The measured value of θ_{13} is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (antineutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EUROν Design Study consortium. EUROν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF collaboration. The EUROν baseline accelerator facility will provide 10^{21} muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  9. Atmospheric neutrinos and discovery of neutrino oscillations.

    Science.gov (United States)

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  10. Solar neutrinos; Les neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Cribier, M. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Laboratoire astroparticule et cosmologie (APC), 75 - Paris (France); Bowles, Th. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2005-09-15

    Several decades of studies of solar neutrinos lead now to clear indications that the oscillation between {nu}{sub e} produced in the core of the Sun and other flavours ({nu}{sub {mu}} or {nu}{sub {tau}} ) is the correct explanation of the deficit observed by all experiments. This implies that neutrinos are massive, in contradiction with the minimal standard model of particle physics. Moreover, thanks to the SNO (Sudbury neutrino observatory) experiment, we know that solar models built by astrophysicists predict correctly the flux of neutrinos. (authors)

  11. Solar Neutrinos

    OpenAIRE

    Bellini, G.; Ianni, A.; Ranucci, G.

    2010-01-01

    Solar neutrino investigation has represented one of the most active field of particle physics over the past decade, accumulating important and sometimes unexpected achievements. After reviewing some of the most recent impressive successes, the future perspectives of this exciting area of neutrino research will be discussed.

  12. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  13. Oscillations des neutrinos sur et hors faisceau : étude des performances du système d'acquisition d'OPERA

    CERN Document Server

    Brugière, Timothée

    OPERA (" Oscillation Project with Emulsion-tRacking Apparatus ") is a neutrino beam experiment located in hall C of the Gran Sasso underground laboratory (LNGS), in Italia, under a equivalent of 3.8 km water (corresponding to a cut at 1.5 TeV for the muons). The first purpose of OPERA is the direct observation of the νμ ➝ ντ oscillation in the atmospheric sector observing an ντ appearance 730 km away from the target in a quasi pure νμ beam (CNGS). OPERA is an hybrid detector with an instrumented target part (~125 000 bricks made with emulsion and lead sheets) and a spectrometer. The data taking have started in 2006 and 55 000 events have been registred. The first ντ candidate have been observed this year. The work done during this thesis is oriented around three main topics : Define the trigger rules of the target tracker acquisition system for beam neutrino events, synchronise target tracker and RPC elements, implement the results inside the simulation and the study of the feasibility of an atmos...

  14. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  15. Solar Neutrinos

    OpenAIRE

    Pallavicini, Marco

    2009-01-01

    The status of solar neutrino experiments and their implications for both nonstandard astrophysics ({\\it e.g.,} cool sun models) and nonstandard neutrino properties ({\\it e.g.,} MSW conversions) are discussed. Assuming that all of the experiments are correct, the relative rates observed by Kamiokande and Homestake are hard to account for by a purely astrophysical solution, while MSW conversions can describe all of the data. Assuming the standard solar model, there are two allowed regions for M...

  16. Solar Neutrinos

    OpenAIRE

    Antonelli, V.; Miramonti, L.; Peña Garay, Carlos; Serenelli, A.

    2013-01-01

    The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in...

  17. Sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, J. [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany); Machado, P. A. N., E-mail: pedro.machado@uam.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Maltoni, M. [Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Schwetz, T. [Institute for Nuclear Physics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany)

    2016-06-21

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  18. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  19. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  20. Neutrino clouds

    International Nuclear Information System (INIS)

    Stephenson Jr, G.J.; McKellar, B.H.J.

    1997-01-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs

  1. Solar neutrino detectors as sterile neutrino hunters

    Science.gov (United States)

    Pallavicini, Marco; Borexino-SOX Collaboration; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cloué, O.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Ortica, F.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Reinert, Y.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssière, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2017-09-01

    The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a 144Ce-144Pr anti-neutrino source and, possibly in the medium term future, with a 51Cr neutrino source.

  2. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA ... Neutrinos that displayed oscillations. 2. Neutrinos from a core collapse supernova. 3. Neutrinos with extremely large / small energies. 4. Exploring the universe in ... Produced due to natural radioactivity in the Earth's crust. Recently confirmed, after separating reactor neutrinos.

  3. Neutrino cave

    CERN Multimedia

    1977-01-01

    Here the end of the underground decay tunnel, its window and beam stopper. On the left one sees the end of the last quadrupole of the neutrino narrow-band beam, and the detectors measuring the beam profile. Further downstream one sees two Beam Current Transformers (BCT, see photo 7801005) measuring the beam intensity, and a Cerenkov counter.

  4. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  5. Solar Neutrinos

    Indian Academy of Sciences (India)

    ance of S Umasankar. I thank my guide and S H Patil for their guidance and encouragement throughout the project. I would also like to thank STELAB, Nagoya University, Japan for giving me permission to use their computer facilities to prepare the final manuscript. Suggested Reading. [1] J N Bahcall,Neutrino Astrophysics, ...

  6. Neutrino Oscillations

    Indian Academy of Sciences (India)

    The 2015 Nobel Prize in Physics was awarded to two physicists-Takaaki Kajita and Arthur B McDonald, whose teams discoveredthat neutrinos, which come in three flavours, changefrom one flavour to another. This discovery is a major milestonein particle physics as it gives a clear evidence of physicsbeyond the Standard ...

  7. Neutrino Oscillations

    Indian Academy of Sciences (India)

    could sensibly bear that name [4], E Fermi proposed the term neutrino instead of neutron for Pauli's mysterious particle, also concluding. E Fermi proposed the ... In June 1956, just two years prior to Pauli's death, Reines and Cowan could send a telegram informing Pauli about their dis- covery. The discovery quoting the ...

  8. Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshkov, Yuri [Univ. of Tennesse, Knoxville, TN (United States); Handler, Thomas [Univ. of Tennesse, Knoxville, TN (United States)

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  9. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    2014-11-08

    Outline of talk. Neutrino Oscillations: the context. Solar and geo neutrino physics. Reactor neutrino physics. Atmospheric and long-baseline neutrino physics. Atmospheric neutrinos and INO. Nov 8, 2014, IASc Annual Meeting, IIT-Madras, Chennai – p. 2 ...

  10. Measuring neutrino mass without neutrinos!

    CERN Multimedia

    Peach, Kenneth J

    2004-01-01

    Neutrinoless double beta decay offers the most precise (if challenging) way of measuring the absolute mass of the neutrino. Particle Physics met at the Rutherford Appleton Laboratory last autumn to discuss wether the UK should take a lead in setting up such an experiment

  11. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  12. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  13. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  14. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  15. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  16. Neutrino problems proliferate (Neutrino 94 conference report)

    International Nuclear Information System (INIS)

    Gordon, Fraser

    1994-01-01

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992

  17. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  18. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  19. Working Group Report: Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P. [et al.

    2013-10-16

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  20. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  1. The World of Neutrinos

    Indian Academy of Sciences (India)

    Neutrinos from the big bang. Cosmic microwave background: 400 photons/ cm3. Temperature: ∼ 3 K. Cosmic neutrino background: 300 neutrinos / cm3. Temperature: ∼ 2 K. The “relic” neutrinos. The second-most abundant particles in the universe. Detection still far in future. (unless someone has a brilliant idea) ...

  2. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  3. Introduction to massive neutrinos

    International Nuclear Information System (INIS)

    Kayser, B.

    1984-01-01

    We discuss the theoretical ideas which make it natural to expect that neutrinos do indeed have mass. Then we focus on the physical consequences of neutrino mass, including neutrino oscillation and other phenomena whose observation would be very interesting, and would serve to demonstrate that neutrinos are indeed massive. We comment on the legitimacy of comparing results from different types of experiments. Finally, we consider the question of whether neutrinos are their own antiparticles. We explain what this question means, discuss the nature of a neutrino which is its own antiparticles, and consider how one might determine experimentally whether neutrinos are their own antiparticles or not

  4. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  5. 50 years of neutrinos

    CERN Document Server

    Goldhaber, M

    1980-01-01

    On December 4 1930, Wolfgang Pauli addressed an "open letter" to Lise Meitner and others attending a physics meeting, suggesting the neutrino as a way out of the difficulties confronted in beta rays research, especially by the existence of a continuous beta spectrum. He proposed a new particle later called the neutrino. The prehistory leading up to Pauli's letter will be reviewed, as well as the later discovery of the electron-neutrino followed by the muon-neutrino. There are now believed to be three different types of neutrino and their anti-particles. Neutrinos have a spin 1/2; but only one spin component has been found in nature: neutrinos go forward as "left-handed" screws and anti-neutrinos as "right-handed" ones. A question still not convincingly resolved today is wether neutrinos have a mass different from zero and, if they do, what consequences this would have for the behaviour of neutrinos and for cosmology.

  6. Developments in Neutrino Physics

    CERN Document Server

    González-Garciá, M Concepción

    2003-01-01

    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. We review the phenomenology of neutrino oscillations in vacuum and in matter. We present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the LSND experiment. We describe the theoretical inputs that are used to interpret the experimental results in terms of neutrino oscillations. We derive the allowed ranges for the mass and mixing parameters in three frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three active neutrino framework; Third, the LSND results are added, and the status of accommodating all three signals in the framework of three active and one sterile light neutrinos is presented. We review the theoretical implications ...

  7. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  8. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  9. Neutrino Pair Cerenkov Radiation for Tachyonic Neutrinos

    Directory of Open Access Journals (Sweden)

    Ulrich D. Jentschura

    2017-01-01

    Full Text Available The emission of a charged light lepton pair by a superluminal neutrino has been identified as a major factor in the energy loss of highly energetic neutrinos. The observation of PeV neutrinos by IceCube implies their stability against lepton pair Cerenkov radiation. Under the assumption of a Lorentz-violating dispersion relation for highly energetic superluminal neutrinos, one may thus constrain the Lorentz-violating parameters. A kinematically different situation arises when one assumes a Lorentz-covariant, space-like dispersion relation for hypothetical tachyonic neutrinos, as an alternative to Lorentz-violating theories. We here discuss a hitherto neglected decay process, where a highly energetic tachyonic neutrino may emit other (space-like, tachyonic neutrino pairs. We find that the space-like dispersion relation implies the absence of a q2 threshold for the production of a tachyonic neutrino-antineutrino pair, thus leading to the dominant additional energy loss mechanism for an oncoming tachyonic neutrino in the medium-energy domain. Surprisingly, the small absolute values of the decay rate and energy loss rate in the tachyonic model imply that these models, in contrast to the Lorentz-violating theories, are not pressured by the cosmic PeV neutrinos registered by the IceCube collaboration.

  10. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  11. The physics of neutrinos

    CERN Document Server

    Barger, Vernon D; Whisnant, Kerry

    2012-01-01

    The physics of neutrinos- uncharged elementary particles that are key to helping us better understand the nature of our universe - is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model ...

  12. Sterile neutrinos in cosmology

    Science.gov (United States)

    Abazajian, Kevork N.

    2017-11-01

    Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate ∼3.5 keV X-ray line detections consistent with the decay of a ∼7 keV sterile neutrino dark matter particle.

  13. Astroparticle physics with solar neutrinos

    OpenAIRE

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consis...

  14. Detection of magnetic monopoles in the future neutrino telescope Antares and characterization of the photomultiplier pulse treatment; Etude de la detection de monopoles magnetiques au sein du futur telescope a neutrinos antares et caracterisation des performances du traitement des impulsions des photomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, J.St

    2002-10-01

    Grand unified theories (GUT) involve phase transitions in the early universe, that could create topological defects, like magnetic monopoles. Monopoles main characteristics are shown and in particular energy losses and flux limits. High energy neutrino telescopes offer a new opportunity for magnetic monopole search. The study of the photomultiplier pulse treatment by the Antares detector front-end electronics indicates that this one is well adapted to the telescope needs. The pulses detailed analysis has allowed to obtain a time measurement precision lower than 0.6 ns and electronic noise and saturation have no relevant effect on the telescope performances. Relativistic monopoles generate a large amount of light, that leads to an effective area for the Antares detector of about 0.06 km{sup 2} for velocities {beta}{sub mon} = 0.6 and 0.35 km{sup 2} for velocities {beta}{sub mon} {approx} 1. Monopole track are well reconstructed and the velocity determination is made with an error lower than few percents, which represents a decisive result for the background rejection, caused by high energy muons with a velocity {beta}{sub {mu}} {approx} 1. The very dispersive light emission of monopoles below the Cherenkov limit, 0.6 {approx}< {beta}{sub mon} {<=} 0.74, via the delta-rays produced by ionisation, does not allow an accurate expecting signal and the bad reconstructed muons rejection must be improved. Above the Cherenkov limit, {beta}{sub mon} {>=} 0.8, bad reconstructed events can be rejected from the Cherenkov emission parametrisation. A magnetic monopole signal can then clearly be distinguished from background. (author)

  15. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  16. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  17. Neutrinos from Supernovae

    Science.gov (United States)

    Tamborra, Irene; Murase, Kohta

    2018-02-01

    Neutrinos are fundamental particles in the collapse of massive stars. Because of their weakly interacting nature, neutrinos can travel undisturbed through the stellar core and be direct probes of the still uncertain and fascinating supernova mechanism. Intriguing recent developments on the role of neutrinos during the stellar collapse are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope. The detection perspectives of the next burst and of the diffuse supernova background will be also outlined. High-energy neutrinos in the GeV-PeV range can follow the MeV neutrino emission. Various scenarios concerning the production of high-energy neutrinos are discussed.

  18. The neutrino mirror

    International Nuclear Information System (INIS)

    Vannucci, F.

    2003-09-01

    The neutrino is not an elementary particle like others, it is the most stunning of all: the neutrino is undetectable by itself, we have only indirect evidences of its existence, but the neutrino is essential to explain the weak interaction, to understand why matter triumphed over anti-matter just after the Big-bang, or to solve the riddle of the hidden mass of the universe. This book is a popular work dedicated to the neutrino from its discovery in beta decays to the most recent theories such as neutrino oscillations, and via the worldwide experiments dedicated to the study of the neutrinos. (A.C.)

  19. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  20. Neutrino observations from the Sudbury Neutrino Observatory

    CERN Document Server

    Noble, A J

    2001-01-01

    Neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by sup 8 B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Results for the fluxes observed with these reactions will be provided when further calibrations have been completed.

  1. Electromagnetic Properties of Neutrinos

    Directory of Open Access Journals (Sweden)

    C. Broggini

    2012-01-01

    theoretical predictions. We discuss also the phenomenology of a neutrino charge radius and radiative decay. Finally, we describe the theory of neutrino spin and spin-flavor precession in a transverse magnetic field and we summarize its phenomenological applications.

  2. Ghost basis for neutrino

    International Nuclear Information System (INIS)

    Novello, M.

    1976-07-01

    A class of solutions of DIRAC'S equation in gravitational fields for ghost neutrinos is given. Comments are restricted to the neutrino cosmological model recently found by M. Novello e I.D. Soares [pt

  3. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  4. Neutrino Physics and JINR

    International Nuclear Information System (INIS)

    Bednyakov, V.A.; Naumov, D.V.; Smirnov, O.Yu.

    2016-01-01

    The current status of neutrino physics is briefly reviewed, the basic properties of the neutrino are discussed, and the currently most challenging problems in this rapidly developing field are described. Written to mark the anniversary of the Joint Institute for Nuclear Research, this paper highlights JINR's contributions to the development of the neutrino physics and places special emphasis on the prospects of the JINR neutrino program. [ru

  5. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  6. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  7. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    Abstract. With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new ...

  8. The Tau neutrino

    International Nuclear Information System (INIS)

    Bugge, Lars; Ould-Saada, Faris

    2001-01-01

    In the summer 2000 the first direct demonstration of the Tau neutrino was announced. After describing some Physical history lines emphasizing the development of the Neutrino Physics, the article describes the experiment which lead to the direct discovery of the Tau neutrino

  9. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    neutrino factories and these promise to take neutrino physics to a new era. Hopefully these as well as the long baseline experiments will lead to a determination of the neutrino parameters. Of course, entirely new phenomena could also be discovered. References. [1] R Davis, D S Harmer and K C Hoffman, Phys. Rev. Lett.

  10. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1993-01-01

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  11. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications ...

  12. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  13. Neutrino observations from the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter, T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald, D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin, C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener, M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.

    2001-01-01

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D 2 O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar ν e flux and the total flux of all active neutrino species. Solar neutrinos from the decay of 8 B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to ν e , the ES reaction also has a small sensitivity to ν μ and ν τ . In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from 8 B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The ν e flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3σ. This is evidence for an active neutrino component, in additional to ν e , in the solar neutrino flux. These results also allow the first experimental determination of the total active 8 B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions

  14. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  15. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  16. High energy neutrinos

    OpenAIRE

    Masip, M.

    2018-01-01

    We describe several components in the diffuse flux of high energy neutrinos reaching the Earth and discuss whether they could explain IceCube's observations. Then we focus on TeV neutrinos from the Sun. We show that this solar neutrino flux is correlated with the cosmic-ray shadow of the Sun measured by HAWC, and we find that it is much larger than the flux of atmospheric neutrinos. Stars like our Sun provide neutrinos with a very steep spectrum and no associated gammas. We argue that this is...

  17. Geo-neutrinos

    OpenAIRE

    L. Ludhova

    2012-01-01

    Geo-neutrinos, electron anti-neutrinos produced in β-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction about the Earth (mostly for physicists) and the very basics about the neutrinos and anti-neutrinos (mostly for geologists), I describe the geo-neutrinos' properties and the main aims of their study. An overview of the latest experimental results obtained by KamLand and Borexino experiments is provid...

  18. The Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Boger, J.; Hahn, R.L.; Rowley, J.K.; Carter, A.L.; Hollebone, B.; Kessler, D.; Blevis, I.; Dalnoki-Veress, F.; DeKok, A.; Farine, J.; Grant, D.R.; Hargrove, C.K.; Laberge, G.; Levine, I.; McFarlane, K.; Mes, H.; Noble, A.T.; Novikov, V.M.; O' Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Clifford, E.T.H.; Deal, R.; Earle, E.D.; Gaudette, E.; Milton, G.; Sur, B.; Bigu, J.; Cowan, J.H.M.; Cluff, D.L.; Hallman, E.D.; Haq, R.U.; Hewett, J.; Hykawy, J.G.; Jonkmans, G.; Michaud, R.; Roberge, A.; Roberts, J.; Saettler, E.; Schwendener, M.H.; Seifert, H.; Sweezey, D.; Tafirout, R.; Virtue, C.J.; Beck, D.N.; Chan, Y.D.; Chen, X.; Dragowsky, M.R.; Dycus, F.W.; Gonzalez, J.; Isaac, M.C.P.; Kajiyama, Y.; Koehler, G.W.; Lesko, K.T.; Moebus, M.C.; Norman, E.B.; Okada, C.E.; Poon, A.W.P.; Purgalis, P.; Schuelke, A.; Smith, A.R.; Stokstad, R.G.; Turner, S.; Zlimen, I.; Anaya, J.M.; Bowles, T.J.; Brice, S.J.; Esch, Ernst-Ingo; Fowler, M.M.; Goldschmidt, Azriel; Hime, A.; McGirt, A.F.; Miller, G.G.; Teasdale, W.A.; Wilhelmy, J.B.; Wouters, J.M.; Anglin, J.D.; Bercovitch, M.; Davidson, W.F.; Storey, R.S.; Biller, S.; Black, R.A.; Boardman, R.J.; Bowler, M.G.; Cameron, J.; Cleveland, B.; Ferraris, A.P.; Doucas, G.; Heron, H.; Howard, C.; Jelley, N.A. E-mail: N.Jelley1@physics.ox.ac.uk; Knox, A.B.; Lay, M.; Locke, W.; Lyon, J.; Majerus, S.; Moorhead, M.; Omori, M.; Tanner, N.W.; Taplin, R.K.; Thorman, M.; Wark, D.L.; West, N.; Barton, J.C.; Trent, P.T.; Kouzes, R.; Lowry, M.M.; Bell, A.L.; Bonvin, E.; Boulay, M.; Dayon, M.; Duncan, F.; Erhardt, L.S.; Evans, H.C.; Ewan, G.T.; Ford, R.; Hallin, A.; Hamer, A.; Hart, P.M.; Harvey, P.J.; Haslip, D.; Hearns, C.A.W.; Heaton, R.; Hepburn, J.D.; Jillings, C.J.; Korpach, E.P.; Lee, H.W.; Leslie, J.R.; Liu, M.-Q.; Mak, H.B.; McDonald, A.B.; MacArthur, J.D.; McLatchie, W.; Moffat, B.A.; Noel, S.; Radcliffe, T.J.; Robertson, B.C.; Skensved, P.; Stevenson, R.L.; Zhu, X.; Gil, S.; Heise, J.; Helmer, R.L.; Komar, R.J.; Nally, C.W. [and others

    2000-07-11

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D{sub 2}O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  19. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1987-10-01

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  20. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  1. Properties of neutrinos: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1987-01-01

    Recent progress in experimental determinations of the properties of neutrinos is summarized. In particular, the extensive work on direct kinematic measurements of neutrino mass, on neutrino counting and on neutrino oscillations is highlighted. It is concluded that there may already be sufficient information to fix the masses of the neutrinos, but the evidence is still far from convincing. 63 refs., 13 figs

  2. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  3. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  4. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  5. Transmission of neutrinos through matter

    Indian Academy of Sciences (India)

    Abstract. Neutrinos travel through matter with negligible absorption except in very extreme situations. However, the index of refraction of neutrinos can play an important role in the oscillation of one type of neutrino to another when passing through matter.

  6. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  7. Charged Cosmic Rays and Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kachelrieß, M.

    2013-04-15

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test “vanilla” models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at “Neutrino 2012”.

  8. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  9. CERN: Neutrino facelift

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    With the termination this summer of the CHARM II neutrino experiment at the SPS proton synchrotron, CERN's 30- year tradition of neutrino physics came to a temporary halt. However with these enigmatic particles playing a vital role in today's Standard Model but continually reluctant to give up all their secrets, neutrino physics will continue to be in the forefront of this research

  10. Neutrino mass anarchy

    Science.gov (United States)

    Hall; Murayama; Weiner

    2000-03-20

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.

  11. Neutrino Mass Anarchy

    Science.gov (United States)

    Hall, Lawrence; Murayama, Hitoshi; Weiner, Neal

    2000-03-01

    What is the form of the neutrino mass matrix which governs the oscillations of the atmospheric and solar neutrinos? Features of the data have led to a dominant viewpoint where the mass matrix has an ordered, regulated pattern, perhaps dictated by a flavor symmetry. We challenge this viewpoint and demonstrate that the data are well accounted for by a neutrino mass matrix which appears to have random entries.

  12. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg, E.; Deyoung, T.; Edsjo, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; LOwder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-03-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B with an expected effective area for TeV neutrinos of {approx} 10{sup 4} m{sup 2}, has been taking data since 1997. Progress with calibration, investigation of ice properties, as well as muon and neutrino data analysis are described. The next stage 20-string detector AMANDA-II with {approx}800 PMTs will be completed in spring 2000.

  13. The AMANDA Neutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Askebjer, P.; Barwick, S.; Bay, R.; Bergstrom, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Cowen, D.; Costa, C.; Dalberg,E.; Deyoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren,A.; Halzen, F.; Hardtke, R.; He, Y.; Hill, G.; Hulth, P.; Hundertmark,S.; Jacobsen, J.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold,M.; Lindahl, P.; Liss, T.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; de, los, Heros, CP.; Porrata, R.; Price, P.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering,C.; Steffen, P.; Stokstad, R.; Streicher, O.; Thollander, L.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    1999-08-23

    The first stage of the AMANDA High Energy Neutrino Detectorat the South Pole, the 302 PMT array AMANDA-B with an expected effectivearea for TeV neutrinos of similar to 10(4) m(2), has been taking datasince 1997. Progress with calibration, investigation of ice properties,as well as muon and neutrino data analysis are described. The next stage20-string detector AMANDA-II with similar to 800 PMTs will be completedin spring 2000.

  14. Oscillations with laboratory neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Biagio

    2001-05-01

    The status of searches for oscillations using neutrinos produced in the laboratory is reviewed. The most recent results from experiments approaching completion are reported and the potential capabilities of long baseline projects being developed in USA and Europe are considered and compared. The steps that should naturally follow this new generation of experiments are outlined and the impact of future facilities - such as neutrino factories or conventional superbeams - in precision measurements of elements of the neutrino mixing matrix is discussed.

  15. Astrophysical and atmospheric neutrinos

    International Nuclear Information System (INIS)

    Lee, H.

    1986-01-01

    The low energy ( 1 TeV) astrophysical neutrino flux by a nearly model-independent analytic method for estimate the ultra-high energy neutrino flux from active astrophysical compact objects by comparison with the observed gamma ray flux at comparable energies. Applied to several known gamma ray sources, the calculation shows the neutrino flux from them to be only marginally detectable by DUMAND-size underwater detectors

  16. Neutrinos in astrophysics

    CERN Document Server

    Rees, Martin J

    1980-01-01

    The amount of 4He synthesised in the "big bang" is sensitive to the early particle content and to the expansion rate. If there was indeed a "big bang", surprisingly strong conclusions can be drawn about the number of species of neutrinos, and about the possibility that such particles have non-zero rest mass. The dynamics of supernovae are sensitive to the det~ils of neutrino physics; such explosions would yield IO L-1053 ergs of -v IO Mev neutrinos, in a burst lasting a few milliseconds. Galactic nuclei, cosmic ray sources and other high energy cosmic phenomena could yield a low background of~ 10 Gev neutrinos.

  17. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  18. The Baikal Neutrino Telescope

    International Nuclear Information System (INIS)

    Aynutdinov, V. M.; Balkanov, V. A.; Belolaptikov, I. A.; Bezrukov, L. B.; Borschev, D. A.; Budnev, N. M.; Burmistrov, K. V.; Danilchenko, I. A.; Davidov, Ya. I.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gaponenko, O. N.; Golubkov, K. V.; Gress, O. A.; Gress, T. I.; Grishin, O. V.; Klabukov, A. M.

    2006-01-01

    We review the present status of the Baikal Neutrino Experiment and present results of a search for upward-going atmospheric neutrinos and magnetic monopoles obtained with the detector NT200. The results of a search for very high energy neutrinos are presented and an upper limit on the extraterrestrial diffuse neutrino flux is obtained. We describe the strategy of upgrading the NT200 to NT200+ and creating a detector on the Gigaton scale at Lake Baikal. The first results obtained with the new NT200+ detector as a basic cell of a future Gigaton detector are presented

  19. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....

  20. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  1. Muons and neutrinos

    Science.gov (United States)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  2. Neutrinos: Fast & Curious

    CERN Document Server

    Barenboim, Gabriela

    2016-01-01

    The Standard Model has been effective way beyond expectations in foreseeing the result of almost all the experimental tests done up so far. In it, neutrinos are massless. Nonetheless, in recent years we have collected solid proofs indicating little but non zero masses for the neutrinos (when contrasted with those of the charged leptons). These masses permit neutrinos to change their flavor and oscillate, indeed a unique treat. In these lectures, I discuss the properties and the amazing potential of neutrinos in and beyond the Standard Model.

  3. Extremely high energy cosmic neutrinos and relic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  4. Jinping Neutrino Experiment

    Science.gov (United States)

    Wan, Linyan; Jinping Neutrino Experiment Research Group

    2017-09-01

    Jinping Neutrino Experiment (Jinping) is a unique observatory for low-energy neutrino physics, astrophysics and geophysics. Jinping is located in China JinPing underground Laboratory (CJPL), identified by the thickest overburden, lowest reactor neutrino background, etc. For solar neutrinos, Jinping has the capacity to measure the oscillation transition phase from vacuum to matter, to discover the CNO cycle neutrino, and to address the solar metallicity problem. Jinping will be able to precisely measure geo-neutrinos with signal-to-background ratio of 8.2:1.0 in the energy range of 1.8 MeV to 3.3 MeV. The ratio of U/Th can be determined to 10%. We also expect a promising sensitivity for neutrinos from a Milky Way supernova, the diffuse supernova neutrino background, and dark matter annihilation. The first, small phase of the laboratory (CJPL I) is already in operation, hosting dark matter experiments. The second, large phase (CJPL II) is already under construction, with ≈ 100,000 m3 being excavated.

  5. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Abstract. We derive relativistic fluid set of equations for neutrinos and electrons from relativistic. Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dis- persion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming ...

  6. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability.

  7. The Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Hime, A.

    1996-09-01

    A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

  8. Helicity of the Neutrino

    Indian Academy of Sciences (India)

    IAS Admin

    Measurement of the helicity of the neutrino was crucial in identifying the nature of weak interac- tion. The measurement is an example of great ingenuity in choosing, (i) the right nucleus with a specific type of decay, (ii) the technique of res- onant fluorescence scattering for determining di- rection of neutrino and (iii) ...

  9. Perturbed S3 neutrinos

    DEFF Research Database (Denmark)

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos...

  10. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    In this talk, I shall try to give a bird's eye view of the current status of neutrino oscillations. ..... the night effect. An asymmetry between the night and day rates would be an unambiguous signal for neutrino oscillations independent of the details of the solar ... It is particularly important to see the effect of the core of the earth [19].

  11. Neutrinos (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  12. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  13. Neutrinos (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  14. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    measurements can also provide information on direction and energy of the incoming neutrinos. The electron scattering reaction used in sK and sNO has excellent directional sensitivity. In fact through this reaction the Kamiokande experiment first demonstrated the solar origin of the neutrinos. The left panel in figure 1 plots ...

  15. The World of Neutrinos

    Indian Academy of Sciences (India)

    Neutrinos as messengers from the sky. No bending in magnetic fields ⇒ point back to the source. Minimal obstruction / scattering ⇒ can arrive directly from regions from where ..... Mapping the universe. CMB from Planck. Neutrinos entering this domain, slowly but surely... We should be adding more colors to the universe...

  16. Experimental Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Richard Jeffrey [Univ. of Washington, Seattle, WA (United States)

    2017-11-15

    The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began efforts to measure (or significantly determine the absence of) 1 the CP-violating phase parameter δCP and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

  17. Future of neutrino experiments

    Indian Academy of Sciences (India)

    January 2009 physics pp. 109–117. Future of neutrino experiments. TAKAAKI KAJITA. ICRR and IPMU, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582,. Japan. E-mail: kajita@icrr.u-tokyo.ac.jp. Abstract. Atmospheric, solar, reactor and accelerator neutrino oscillation experiments have measured Δm2.

  18. Muon and neutrino fluxes

    Science.gov (United States)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  19. The solar neutrino problem

    International Nuclear Information System (INIS)

    Roxburgh, I.W.

    1981-01-01

    The problems posed by the low flux of neutrinos from the sun detected by Davis and coworkers are reviewed. Several proposals have been advanced to resolve these problems and the more reasonable (in the author's opinion) are presented. Recent claims that the neutrino may have finite mass are also considered. (orig.)

  20. The solar neutrino problem

    Indian Academy of Sciences (India)

    The solar neutrino problem, the longstanding disagreement between the measured and predicted neutrino flux from the Sun, has moved from being a curiosity of solar physics to a research problem that now commands the attention of a large number of physicists who have at their disposal impressive experimental ...

  1. Introduction to sterile neutrinos

    Science.gov (United States)

    Volkas, R. R.

    2002-07-01

    Model-building issues raised by the prospect of light sterile neutrinos are discussed in a pedagogical way. I first review the naive proposal that sterile neutrinos be identified with “right handed neutrinos”. A critical discussion of the simple expedient of adding three gauge singlet fermions to the usual minimal standard model matter content is followed by an examination of right handed neutrinos in extended theories. I introduce the terminology of “fully sterile” and “weakly sterile” to classify varieties usually conflated under the sterile neutrino banner. After introducing the concepts of “technical naturalness” and plain “naturalness”, the unbearable lightness of being a sterile neutrino is confronted. This problem is used to motivate mirror neutrinos, whose connection with pairwise maximal mixing is emphasised. Some brief remarks about phenomenology are made throughout. The impossibility of identifying the sole sterile neutrino of the currently favoured 2 + 2 and 3 + 1 phenomenological constructs as a lone gauge singlet fermion added to the minimal standard model is explained. Finally, I remark on the beauty and subtlety of light sterile neutrino cosmology.

  2. Solar Neutrino Physics

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-01-01

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters

  3. The solar neutrino problem

    International Nuclear Information System (INIS)

    Zatsepin, G.

    1982-01-01

    The problem of missing solar neutrinos is reviewed and discussed. The experiments of the 70s show a solar neutrino flux to be 4 times lower than the flux predicted by the standard model of the Sun. The three possible origins of this contradiction are analysed: the cross sections of nuclear reactions going on in the internal region of the Sun must be remeasured; the unknown properties of neutrino, like neutrino oscillation or decay, must be investigated theoretically and experimentally; or the standard model of the Sun must be changed, e.g. by a periodically pulsating star model or by a model describing periodic admixtures of He-3 to the central region of the Sun. Some new models and newly proposed experiments are described. The importance of new electronic detection methods of neutrinos is underlined. (D.Gy.)

  4. Solar Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  5. Neutrino anomaly and -nucleus interactions

    Indian Academy of Sciences (India)

    The neutrino anomaly generally refers to the solar neutrino problem where the observed number of electron type neutrinos from the sun was found to be considerably smaller than the number predicted in standard model of particle interactions [1–2]. Similar depletion of muon type neutrinos is found in the flux of atmospheric ...

  6. The Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    McLatchie, W.; Earle, E.D.

    1987-08-01

    This report initially discusses the Homestake Mine Experiment, South Dakota, U.S.A. which has been detecting neutrinos in 38 x 10 litre vats of cleaning fluid containing chlorine since the 1960's. The interation between neutrinos and chlorine produces argon so the number of neutrinos over time can be calculated. However, the number of neutrinos which have been detected represent only one third to one quarter of the expected number i.e. 11 per month rather than 48. It is postulated that the electron-neutrinos originating in the solar core could change into muon- or tau-neutrinos during passage through the high electron densities of the sun. The 'low' results at Homestake could thus be explained by the fact that the experiment is only sensitive to electron-neutrinos. The construction of a heavy water detector is therefore proposed as it would be able to determine the energy of the neutrinos, their time of arrival at the detector and their direction. It is proposed to build the detector at Creighton mine near Sudbury at a depth of 6800 feet below ground level thus shielding the detector from cosmic rays which would completely obscure the neutrino signals from the detector. The report then discusses the facility itself, the budget estimate and the social and economic impact on the surrounding area. At the time of publication the proposal for the Sudbury Neutrino Observatory was due to be submitted for peer review by Oct. 1, 1987 and then to various granting bodies charged with the funding of scientific research in Canada, the U.S.A. and Britain

  7. Astroparticle physics with solar neutrinos.

    Science.gov (United States)

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  8. Astroparticle physics with solar neutrinos

    Science.gov (United States)

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  9. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  10. Neutrinos at CERN

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  11. Monochromatic neutrino beams

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Burguet-Castell, Jordi; Espinoza, Catalina; Lindroos, Mats

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [U e3 ] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [U e3 ] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

  12. Anarchy of Neutrino Mass

    Science.gov (United States)

    Haba, Naoyuki; Murayama, Hitoshi

    We have advocated a new approach to build models of fermion masses and mixings, namely anarchy. The approach relies only on the approximate flavor symmetries, and scan the O(1) coefficients randomly. The randomness in O(1) coupling constants is indeed what one expects in models which are sufficiently complicated or which have a large number of fields mixed with each other. Assuming there is no physical distinction among three generations of neutrinos, the near-maximal mixings, as observed in the atmospheric neutrino data and as required in the LMA solution to the solar neutrino problem, are highly probable.

  13. Neutrino Mixing: Theoretical Overview

    CERN Document Server

    Altarelli, Guido

    2013-01-01

    We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large $\\theta_{13}$, possible non maximal $\\theta_{23}$, approaching sensitivity on $\\delta_{CP}$) and their implications on models of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups that can be improved following the indications from the data.

  14. Submarine neutrino communication

    International Nuclear Information System (INIS)

    Huber, Patrick

    2010-01-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  15. Searching for neutrino disappearence

    CERN Multimedia

    1983-01-01

    A low-energy neutrino oscillation facility using 12-20 GeV/c extracted PS proton beam to produce low-energy neutrinos with a spectrum peaking around 1 to 2 GeV was directed towards the existing large detectors of WA1 (CDHS Collaboration, PS169, foreground) and of WA18 (CHARM Collaboration, PS181, background, left). Both experiments have each installed compact 'near' detectors about 150 m from the target, in the ISR area, then looking over 750 m flight path of neutrinos. See Annual Report 1982 p.43, Fig 13.

  16. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjoe, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; Heros, C.P. de los; Hill, G.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriquez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwartz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-05-01

    With an effective telescope area of order 10{sup 4} m{sup 2} for TeV neutrinos, a threshold near {approx}50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.

  17. Neutrino studies in nuclei and intense neutrino sources

    International Nuclear Information System (INIS)

    Ejiri, H.

    2003-01-01

    Nuclei are used as micro laboratories for studying fundamental properties of neutrinos and weak interactions. Nuclear responses for neutrinos are crucial for neutrino studies in nuclei. The responses, which are mainly nuclear spin isospin responses, are studied indirectly by charge exchange hadronic reactions for charged current responses, and photo nuclear reactions for neutral current responses. Intense neutrino sources provided by stopped pions from intense proton beams are very promising probes for studying directly nuclear weak responses. SNS/ORLaND and JHP combined with large neutrino detectors such as MOON are of potential interest for nuclear response studies with intense neutrino beams

  18. Neutrino physics present and future

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny.

  19. Neutrinos, on your marks...!

    CERN Multimedia

    2006-01-01

    As the Bulletin was about to be released, the CNGS team was ready to produce its first neutrinos. The gradual commissioning of the installation should result in the production of a nominal beam during the month of August.

  20. Sterile neutrino anarchy

    Science.gov (United States)

    Heeck, Julian; Rodejohann, Werner

    2013-02-01

    Lepton mixing, which requires physics beyond the Standard Model, is surprisingly compatible with a minimal, symmetryless and unbiased approach, called anarchy. This contrasts with highly involved flavor symmetry models. On the other hand, hints for light sterile neutrinos have emerged from a variety of independent experiments and observations. If confirmed, their existence would represent a groundbreaking discovery, calling for a theoretical interpretation. We discuss anarchy in the two-neutrino eV-scale seesaw framework. The distributions of mixing angles and masses according to anarchy are in agreement with global fits for the active and sterile neutrino parameters. Our minimal and economical scenario predicts the absence of neutrinoless double beta decay and one vanishing neutrino mass, and can therefore be tested in future experiments.

  1. Perspectives in Neutrino Physics

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    This is a Concluding Talk, not a Summary of the Conference. I will discuss some of the highlights that particularly impressed me (a subjective choice) and make some comments on the status and the prospects of neutrino mass and mixing.

  2. Neutrino mass: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 13.5 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. 38 refs., 1 figs., 2 tabs

  3. Neutrinos in the universe

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1981-01-01

    Although neutrinos are apparently insignificant particles, which were not discovered for more than 25 years after their existence was predicted, they have had a big influence on the evolution of the Universe, particularly if it had a hot origin. Their importance may be increased if recent suggestions that their mass is finite are confirmed. In this article a brief account is given of the properties of neutrinos and this is followed by a discussion of the way in which they influence the evolution of the hot big bang Universe and of their role in the late stages of stellar evolution. There is also a brief discussion of the problem of the solar neutrinos and of the manner in which neutrino instability might reduce or solve it. (author)

  4. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  5. Introduction to neutrino physics

    International Nuclear Information System (INIS)

    Naumov, D.V.

    2011-01-01

    This is a manuscript of lectures presented by the author at the Baikal Summer School on Physics of Elementary Particles and Astrophysics 2010. The lectures are intended mainly for students and young researchers as an introductory course of neutrino physics

  6. Search for heavy neutrinos

    International Nuclear Information System (INIS)

    Abela, R.; Daum, M.; Eaton, G.H.; Frosch, R.; Jost, B.; Kettle, P.-R.; Steiner, E.

    1982-01-01

    The authors have measured the energy spectrum of muons from the decay of pions at rest in a scintillator. The existence of a heavy neutrino would result in an additional line in this spectrum. From the data, no evidence is found for the existence of a heavy neutrino in the mass range between 4 MeV/c 2 and 30 MeV/c 2 . (Auth.)

  7. Effective Majorana neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)

    2016-08-15

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)

  8. Massive neutrinos in astrophysics

    International Nuclear Information System (INIS)

    Qadir, A.

    1982-08-01

    Massive neutrinos are among the big hopes of cosmologists. If they happen to have the right mass they can close the Universe, explain the motion of galaxies in clusters, provide galactic halos and even, possibly, explain galaxy formation. Tremaine and Gunn have argued that massive neutrinos cannot do all these things. I will explain, here, what some of us believe is wrong with their arguments. (author)

  9. Neutrinos: Heavy water detector

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The proponents of the Sudbury Neutrino Observatory (SNO) received a welcome Christmas present when William Winegard, Canadian Minister for Science and Technology announced the final details of the funding for this project, totalling 48 million Canadian dollars and including contributions from the US and the UK. The SNO experiment will extend significantly the study of solar neutrinos, using some 1,000 tonnes of heavy water to be installed more than two kilometres below ground in a nickel mine at Sudbury, Ontario

  10. Supernova Neutrino Detection With Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, Aldo, E-mail: aldo.ianni@lngs.infn.it [I.N.F.N. Gran Sasso Laboratory, S.S. 17bis, 67100, Assergi (Italy)

    2011-08-10

    Core collapse supernovae are a remarkable source of neutrinos. These neutrinos can also be detected by means of massive liquid scintillators located underground. Observations of supernova neutrinos can shed light on the explosion mechanism and on neutrino properties. In this paper we review the detection channels for neutrinos in liquid scintillators. We consider present and future experiments for supernova neutrino searches.

  11. Monochromatic neutrino beams

    CERN Document Server

    Bernabeu, J; Espinoza, C; Lindroos, M

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [Ue3] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameter...

  12. Nonthermal cosmic neutrino background

    Science.gov (United States)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  13. Physics of neutrino flavor transformation through matter–neutrino resonances

    Directory of Open Access Journals (Sweden)

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  14. Constraining neutrino magnetic moment with solar and reactor neutrino data

    OpenAIRE

    Tortola, M. A.

    2004-01-01

    We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...

  15. Short review on solar neutrinos experiments and search for sterile neutrinos with solar neutrino detectors

    Directory of Open Access Journals (Sweden)

    Pallavicini Marco

    2015-01-01

    Full Text Available The spectroscopy of solar neutrinos is now entering the precision era, after a golden age which has led to the discovery of neutrino oscillations and the MSW effect. In this paper we summarise the current experimental knowledge in the field and its future perspectives, showing that solar neutrino detectors are and will remain a crucial tool for a deeper understanding of stars, neutrinos, and fundamental physics. We also show that solar neutrinos may become pivotal for the search of sterile neutrinos.

  16. Neutrino phenomenology the case of two right-handed neutrinos

    CERN Document Server

    Ibarra, A

    2004-01-01

    We make a general analysis of neutrino phenomenology for the case neutrino masses are generated by the see-saw mechanism with just two right handed neutrinos. We find general constraints on leptogenesis and lepton flavour violating processes. We also analyse the predictions following from a nontrivial texture zero structure.

  17. Bounds on neutrino mixing with exotic singlet neutrinos E

    Indian Academy of Sciences (India)

    This allows us to neglect the masses of light (known) neutrinos. In the SM the process occurs at tree level via light neutrino exchange in t- and u-channels. The neu- trino mixing in special cases (e.g. mixing of exotic and/or singlets), induces non-diagonal light–heavy neutrino neutral currents and additional contribution to the ...

  18. Symplectic symmetry of the neutrino mass for many neutrino flavors

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Ankara Univ.

    2001-01-01

    The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)

  19. Probing pseudo-Dirac neutrino through detection of neutrino ...

    Indian Academy of Sciences (India)

    Also calculated are the muon-to-shower ratios. Keywords. Ultra-high energy neutrinos; pseudo-Dirac neutrinos; neutrino oscillation. PACS Nos 98.70.Rz; 95.85.Ry; 14.60.Pq. 1. Introduction. Evidence has been obtained from the satellite-borne observations, the existence of the gamma ray bursts (GRB) from extra galactic (or ...

  20. CrossRef Neutrino factories

    CERN Document Server

    Wildner, Elena

    2016-01-01

    Neutrinos are produced by many processes in our universe. These elusive particles reach the earth having a certain energy permitting them to react with nuclei in detectors that are specifically designed to probe their properties. However, to get higher intensities and higher energy neutrinos for better statistics and better physics reach, the use of accelerators is necessary to advance in the field of neutrino research. To produce neutrinos with an accelerator, one needs to send a high power beam onto a target to get particles or isotopes that produce neutrinos with the required properties, by decay. The parent particles have to be collected and prepared for injection into an accelerating structure. Accelerator-based experiments can tune the energy of the produced neutrinos by boosting and controlling the energy of the parent particle. The produced neutrinos will travel the distance between the source and the detector, generally through earth; the distance the neutrino travels through earth, the energy of the...

  1. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  2. Eighty years of neutrino physics

    International Nuclear Information System (INIS)

    Roy, D.P.

    2009-01-01

    This is a pedagogical overview of neutrino physics from the invention of neutrino by Pauli in 1930 to the precise measurement of neutrino mass and mixing parameters via neutrino oscillation experiments in recent years. I have tried to pitch it at the level of undergraduate students, occasionally cutting corners to avoid the use of advanced mathematical tools. I hope it will be useful in introducing this exciting field to a broad group of young physicists. (author)

  3. Physics of the neutrino mass

    International Nuclear Information System (INIS)

    Mohapatra, R N

    2004-01-01

    Recent neutrino oscillation experiments have yielded valuable information on the nature of neutrino masses and mixings and qualify as the first evidence for physics beyond the standard model. Even though we are far from a complete understanding of the new physics implied by them, there are many useful hints. As the next precision era in neutrino physics is about to be launched, we review the physics of neutrino mass: what we have learned and what we are going to learn

  4. Gravitational Lensing of Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; /Fermilab /Rome U.; Mocioiu, Irina; /Penn State U.; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  5. Systems of neutrinos with mass

    International Nuclear Information System (INIS)

    Groot, S.R. de

    1984-01-01

    From the formalism of relativistic kinetic theory and the weak interaction Lagrangian the volume viscosity of a massive neutrino system is derived. Its value is calculated as a function of the neutrino mass and the temperature. Its role in the way of expanding or contraction of neutrino clouds in the universe is discussed. (Author) [pt

  6. Understanding neutrino masses and mixings

    Indian Academy of Sciences (India)

    atmospheric neutrino observations, where there is a deficit of observed neutrinos compared to theoretical expectations. ... and reactor neutrinos as in the Kamland experiment have also shown deficits in their flux compared to ... In this brief overview, I wish to draw attention to some of the theoretical ideas for understanding ...

  7. Neutrino anomaly and -nucleus interactions

    Indian Academy of Sciences (India)

    neutrino nucleus interactions in the domain of low and intermediate energy. The nuclear physics inputs mainly enter through two types of processes. These are: A. The nuclear processes responsible for neutrino production in the calculation of solar and atmospheric neutrino fluxes. B. The nuclear processes in which ...

  8. Neutrinos from the Milky Way

    NARCIS (Netherlands)

    Visser, Erwin Lourens

    2015-01-01

    A guaranteed source of neutrinos is the production in cosmic ray interactions with the interstellar matter in our Galaxy. The signal has never been detected however and only an upper limit on this flux of neutrinos has been published by the AMANDA-II detector. The ANTARES neutrino telescope, located

  9. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  10. The CERN Neutrino Platform

    CERN Document Server

    Bordoni, Stefania

    2018-01-01

    The long-baseline neutrino programme has been classified as one of the four highest-priority sci- entific objectives in 2013 by the European Strategy for Particle Physics. The Neutrino Platform is the CERN venture to foster and support the next generation of accelerator-based neutrino os- cillation experiments. Part of the present CERN Medium-Term Plan, the Neutrino Platform provide facilities to develop and prototype the next generation of neutrino detectors and contribute to unify the European neu- trino community towards the US and Japanese projects. A significative effort is made on R&D; for LAr TPC technologies: two big LAr TPC prototypes for the DUNE far detector are under con- struction at CERN. Those detectors will be exposed in 2018 to an entirely new and NP-dedicated beam-line from the SPS which will provide electron, muon and hadron beams with energies in the range of sub-GeV to a few GeV. Other projects are also presently under development: one can cite the refurbishing and shipping to the US ...

  11. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  12. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  13. Solar neutrino results from the Sudbury Neutrino Observatory

    CERN Document Server

    Lawson, I T

    2002-01-01

    Solar neutrinos from the decay of sup 8 B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged-current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to electron neutrinos while the ES reaction also has a small sensitivity to muon and tau neutrinos. The flux of electron neutrinos from sup 8 B decays measured by the CC reaction and ES reaction, assuming no flavour transformation, will be presented. These flux measurements provide evidence that there is a non-electron flavour active neutrino component in the solar flux. The total flux of active sup 8 B neutrinos will be presented and shown to be in good agreement with predictions of solar models.

  14. Neutrino interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    We examine tests of the Glashow-Weinberg-Salam (GWS) Standard Theory of Electroweak Interactions. The tests are model-independent in the sense that they are relations between experimental quantities that are direct consequences of the GWS theory, but they are independent of the detailed structure of the nucleus. Such relationships were anticipated by Weinberg. Neutrino reactions with nuclei are considered, focusing largely on charged-lepton production, and it is demonstrated that intermediate-energy neutrino reactions have a central and unique role to play in our understanding of semileptonic weak interactions. This point is illustrated by discussing a complete kinematic experiment on the nucleon. A discussion of what neutrino reactions could teach us about nuclear structure is also given

  15. NEUTRINOS FROM ICARUS

    Directory of Open Access Journals (Sweden)

    Christian Farnese

    2013-12-01

    Full Text Available Liquid Argon Time Projection Chambers are very promising detectors for neutrino and astroparticle physics due to their high granularity, good energy resolution and 3D imaging, allowing for a precise event reconstruction. ICARUS T600 is the largest liquid Argon (LAr TPC detector ever built (~600 ton LAr mass and is presently operating underground at the LNGS laboratory. This detector, internationally considered as the milestone towards the realization of the next generation of massive detectors (~tens of ktons for neutrino and rare event physics, has been smoothly running since summer 2010, collecting data with the CNGS beam and with cosmics. The status of this detector will be shortly described together with the intent to adopt the LAr TPC technology at CERN as a possible solution to the sterile neutrino puzzle.

  16. Massive neutrinos and cosmology

    International Nuclear Information System (INIS)

    Shandarin, S.F.

    1991-01-01

    This paper discussed the importance of the consequences of a nonzero neutrino rest mass on cosmology, perhaps, first recognized by Gershtein and Zeldovich, after the discover of the 3-K microwave background radiation MBR. Since the first works on the primordial synthesis of 4 He, it has been known that additional neutrino species increase the rate of expansion of the universe during the epoch of the primordial nucleosynthesis, which increases the yield of 4 He. Combining the results of the theory with astronomical measurements of the 4 He abundance and the estimate of the mass density of MBR, Shvartsman suggested the upper limit on the mass density of all relativistic matter at that epoch: ρ rel ≤ 5ρ MBR which eventually became the upper limit for the number of neutrino species: N ν ≤ 7. At that time, the constraints based on cosmological arguments were much stronger than one based on laboratory experiments

  17. Neutrino physics: Summary talk

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1989-04-01

    This paper is organized as follows: First, I describe the state of neutrino phenomenology. Emphasis is placed on sin 2 θ W , its present status and future prospects. In addition, some signatures of ''new physics'' are described. Then, kaon physics at Fermilab is briefly discussed. I concentrate on the interesting rare decay K L → π 0 e + e - which may be a clean probe direct CP violation. Neutrino mass, mixing, and electromagnetic moments are surveyed. There, I describe the present state and future direction of accelerator based experiments. Finally, I conclude with an outlook on the future. Throughout this summary, I have drawn from and incorporated ideas discussed by other speakers at this workshop. However, I have tried to combine their ideas with my own perspective on neutrino physics and where it is headed. 49 refs., 3 figs., 4 tabs

  18. Astrophysics and neutrinos

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is primarily intended for CERN guides. The formation of sun-like stars, their life cycle, and their final destiny will be explained in simple terms, appropriate for the majority of our visitors. An overview of the nuclear reaction chains in our sun will presented (Standard Solar Model), with special emphasis on the production of neutrinos and their measurement in underground detectors. These detectors are also able to record high-energy cosmic neutrinos. Since many properties of neutrinos are still unknown, a brief description of table-top and nuclear reactor experiments is included, as well as those using beams from particle accelerators. Measurements with a variety of space telescopes complement the knowledge of our universe, previously limited to the visible range of the electromagnetic spectrum.

  19. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  20. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  1. Review article "Geo-neutrinos"

    Directory of Open Access Journals (Sweden)

    L. Ludhova

    2012-12-01

    Full Text Available Geo-neutrinos, electron anti-neutrinos produced in β-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction about the Earth (mostly for physicists and the very basics about the neutrinos and anti-neutrinos (mostly for geologists, I describe the geo-neutrino properties and the main aims of their study. An overview of the latest experimental results obtained by KamLAND and Borexino experiments is provided. A short overview of future perspectives of this new inter-disciplinary field is given.

  2. Detection of the neutrino

    International Nuclear Information System (INIS)

    Reines, F.

    1989-01-01

    Using the nuclear bomb developed at Los Alamos as an intense source of neutrinos, the author aimed to build a detector suitable to observe this newly predicted particle for the first time during his work there in the early 1950s. He chose to work on the reaction of beta decay inversion. The discovery of organic liquid scintillation counters brought the possibility of neutrino detection one place closer. Delayed coincidence between positron and neutron capture pulses were planned as a way to eliminate background signals. Experiments finally went ahead using nuclear reactors rather than bombs and was successful although many problems with shielding, and the sheer scale of the apparatus were encountered. (UK)

  3. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  4. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstrom,L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson,M.; Chinowsky, W.; Chirkin, D.; Conrad,J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; de, los, Heros,C.P.; Hill, G.; Hulth, PO.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren,D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch,C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.; AMANDACollaboration

    1999-04-01

    With an effective telescope area of order 10(4) m(2) for TeVneutrinos, a threshold near similar to 50 GeV and a pointing accuracy of2.5 degrees per muon track, the AMANDA detector represents the first of anew generation of high energy neutrino telescopes, reaching a scaleenvisaged over 25 years ago. We describe early results on the calibrationof natural deep ice as a particle detector as well as on AMANDA'sperformance as a neutrino telescope.

  5. Neutrino properties from cosmology

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...

  6. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  7. Real oscillations of virtual neutrinos

    International Nuclear Information System (INIS)

    Grimus, W.; Stockinger, P.

    1996-01-01

    We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates x searrow P and x searrow D , respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit L=|x searrow D -x searrow P |→∞ the virtual neutrinos become open-quote open-quote real close-quote close-quote and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities. copyright 1996 The American Physical Society

  8. Experimental data on solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ludhova, Livia [INFN, Milano (Italy)

    2016-04-15

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques. (orig.)

  9. Beam and experiments summary [neutrino studies

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will. Answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high- intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only mode...

  10. Testing Lorentz and CPT Invariance with Neutrinos

    Directory of Open Access Journals (Sweden)

    Jorge S. Díaz

    2016-10-01

    Full Text Available Neutrino experiments can be considered sensitive tools to test Lorentz and CPT invariance. Taking advantage of the great variety of neutrino experiments, including neutrino oscillations, weak decays, and astrophysical neutrinos, the generic experimental signatures of the breakdown of these fundamental symmetries in the neutrino sector are presented.

  11. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  12. Neutrinos and our Sun - Part 2

    Indian Academy of Sciences (India)

    pep. 0.3. 3. 10. Neutrino Energy (MeV). The neutrino energy spectrum as predicted by the stan- dard solar model is shown in Figure 2, (see also [1]). 2. Detection of Neutrinos. Since neutrinos have very weak interaction with matter, they are very difficult particles to detect. This property of neutrinos is actually a boon to us ...

  13. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  14. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  15. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    From this figure alone, without need for Monte Carlo simulation, assuming the cause to be neutrino oscillations, one can ... In fact, as seen by the dashed lines overlying the data points, the simulations do produce an excellent fit to the muon ..... Of course the game has hardly begun and many a sub- lety may await our ...

  16. Neutrino magnetic moment

    International Nuclear Information System (INIS)

    Vysotsky, M.I.

    1990-03-01

    I would like to discuss the problem of a neutrino magnetic moment which is of interest since it deals with the probable time anticorrelation of the solar v flux with the Sun magnetic activity. (author). 19 refs, 2 figs, 1 tab

  17. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  18. CERN Neutrino Platform Hardware

    CERN Document Server

    Nelson, Kevin

    2017-01-01

    My summer research was broadly in CERN's neutrino platform hardware efforts. This project had two main components: detector assembly and data analysis work for ICARUS. Specifically, I worked on assembly for the ProtoDUNE project and monitored the safety of ICARUS as it was transported to Fermilab by analyzing the accelerometer data from its move.

  19. Aspects of neutrino astrophysics

    NARCIS (Netherlands)

    de Graaf, Tjeerd

    1969-01-01

    Neutrino-astrofysica lS een onderdeel van de hoge-energieastrofysica, het interdis onderzoekgebied waar de resultaten van de van elementaire deeltjes in verband worden gebracht met 1n de astrofysica. Aan de ene kant kunnen astrofysische bronnen worden voor onderzoekingen naar het van elementaire

  20. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  1. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass measurement yet. The most weakly interacting particles. Do not interact with light ⇒ Dark matter. Stopping radiation with lead shielding:.

  2. Physicists to target neutrinos

    CERN Multimedia

    Hand, Eric

    2008-01-01

    "The new focus for America's high-energy physics should be an elusive one: the zippy, chargeless, near-massless neutrino, according to a report that provides the US Department of Energy (DOE) and the National Science Foundation (NSF) with a roadmap for the next decade. (1 page)

  3. Long baseline neutrino experiments

    Indian Academy of Sciences (India)

    Atmospheric neutrino experiments (IMB, Kamiokande, Super-Kamiokande (SK)) show that νµ created in cosmic ray interactions with atmospheric nuclei are being converted into ντ but νe created in such interactions are unaffected. SK measure- ment of νµ and νe event rates as functions of zenith angle is the key ...

  4. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    sRUBABATI GOsWAMI. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Email: sruba@mri.ernet.in. Abstract. This article summarises the status of the solar neutrino oscillation phe- nomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed ...

  5. Helicity of the Neutrino

    Indian Academy of Sciences (India)

    IAS Admin

    attention as soon as we focus our gaze on it. The ex- periment on the determination of helicity of the neutrino falls in a similar category among experiments in the field of modern physics. The experiments on the discovery of parity violation in 1957 [1] had established that the vi- olation parity was maximal in beta decay and ...

  6. COLA with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-10-01

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.

  7. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  8. Laboratory Limits on Neutrino Masses

    Science.gov (United States)

    Weinheimer, Christian

    The recent neutrino oscillation experiments have obtained nonzero differences of squared neutrino masses and therefore proven that neutrinos are massive particles. The values of the neutrino masses have to be determined in a different way. There are two classes of laboratory experiments, both of which have yielded up to now only upper limits on neutrino masses. The direct mass experiments investigate the kinematics of weak decays, obtaining information about the neutrino mass without further requirements. Here, the tritium β decay experiments give the most stringent results. The search for neutrinoless double β decay is also very sensitive to the neutrino mass states. However, this search is complementary to direct neutrino mass experiments, since it requires neutrinos to be identical to their antiparticles and probes a linear combination of neutrino masses including complex phases. This chapter is structured as follows. After an introduction in Sect. 2.1, the two approaches are discussed together with the current experimental results in Sects. 2.2 and 2.3, followed by consideration of the outlook for future activities in Sect. 2.4.

  9. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  10. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  11. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2012-08-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

  12. Challenging Lorentz noninvariant neutrino oscillations without neutrino masses

    OpenAIRE

    Barger, V.; Marfatia, D.; Whisnant, K.

    2007-01-01

    We show that the combined data from solar, long-baseline and reactor neutrino experiments can exclude the generalized bicycle model of Lorentz noninvariant direction-dependent and/or direction-independent oscillations of massless neutrinos. This model has five parameters, which is more than is needed in standard oscillation phenomenology with neutrino masses. Solar data alone are sufficient to exclude the pure direction-dependent case. The combination of solar and long-baseline data rules out...

  13. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia [Univ. of Colorado, Boulder, CO (United States)

    2015-06-29

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinosμ) and the appearance of electron neutrinose), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of νe appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of νμ disappearance and νe appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  14. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (? ? ) and the appearance of electron neutrinos (? e ), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ? e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ? ? disappearance and ? e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  15. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  16. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  17. First neutrino observations from the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Tafirout, R.; Boulay, M.G.; Bonvin, E.

    2001-01-01

    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location information, the data in the region of interest appear to be dominated by 8 B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the natural current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed

  18. Constraints on a massive Dirac neutrino model

    International Nuclear Information System (INIS)

    Wynter, T.; Randall, L.

    1994-01-01

    We examine constraints on a simple neutrino model in which there are three massless and three massive Dirac neutrinos and in which the left-handed neutrinos are linear combinations of doublet and singlet neutrinos. We examine constraints from direct decays into heavy neutrinos, indirect effects on electroweak parameters, and flavor-changing processes. We combine these constraints to examine the allowed mass range for the heavy neutrinos of each of the three generations

  19. Gauge Trimming of Neutrino Masses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  20. Solar neutrino experiments: An update

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  1. Quantum coherence of relic neutrinos.

    Science.gov (United States)

    Fuller, George M; Kishimoto, Chad T

    2009-05-22

    We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.

  2. Neutrinos in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2016-06-21

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  3. The Masses of the Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Peter S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-10

    If the cosmological limits on the sum of the neutrino masses are taken seriously we have first measurements of the masses of the neutrinos. Using the Planck experiment's limit $\\sum_{i=1}^3{m_i} < 230 ~meV$ and some simple assumptions on measurement uncertainties the mass of the heaviest neutrino is $63\\pm11 ~meV$ and the lightest $40\\pm18 ~meV$ for either hierarchy.

  4. An Overview of Neutrino Mixing

    CERN Document Server

    Altarelli, G

    2013-01-01

    We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large $\\theta_{13}$, possible non maximal $\\theta_{23}$, approaching sensitivity on $\\delta_{CP}$) and their implications on models of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups.

  5. Sterile neutrinos in the milky way

    DEFF Research Database (Denmark)

    Riemer-Sørensen, Signe; Hansen, Steen Harle; Pedersen, K.

    2006-01-01

    Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30......Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30...

  6. Neutrino geophysics - a future possibility

    International Nuclear Information System (INIS)

    Kiss, Dezsoe

    1988-01-01

    The history and basic properties of the neutrinos are reviewed. A new idea: neutrino tomography of the Earth interior is discussed in detail. The main contradiction: the high pervasivity of neutrinos, which makes possible the transillumination of the Earth, and the gigantic technical problems of detection caused by the small cross section is pointed out. The proposed possibilities of detection (radiowaves, sound, muons and Cherenkov light emitted by neutrinos) are described. Proposed futuristic technical ideas (mobile muon detectors aboard trucks, floating proton accelerators of 100 km circumference, moving in the ocean) and supposed geological aims (Earth's core, internal density anomalies, quarries of minerals and crude oil) are discussed. (D.Gy.) 5 figs

  7. Double success for neutrino lab

    CERN Multimedia

    2010-01-01

    "The Gran Sasso National Laboratory in Italy is celebrating two key developments in the field of neutrino physics. Number one is the first ever detection, by the OPERA experiement, of possible tau neutrino that has switched its identity from a muon neutrino as it travelled form its origins at CERN in Switzerland to the Italian lab. Number two is the successful start-up of the ICARUS detector, which, like OPERA, is designed to study neutrinos that "oscillate" between types" (0.5 pages)

  8. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  9. The excitement of neutrino physics

    International Nuclear Information System (INIS)

    Agarwalla, Sanjib Kumar

    2017-01-01

    Marvelous world-class experiments involving neutrinos from the Sun, the Earth's atmosphere, nuclear reactors, and accelerators have firmly established neutrino flavor oscillations. This implies that neutrinos have mass and they mix with each other, providing an evidence for physics beyond the Standard Model. The most recent development in this field is the discovery of the smallest lepton mixing angle ?13. This signifies an important breakthrough in validating the standard three-flavor oscillation picture of neutrinos. In the first part of my talk, I will discuss the basics of neutrino oscillation, and identify the fundamental oscillation parameters which govern this phenomenon. Then, we will review the present knowledge about these parameters, and list the remaining fundamental issues which need to be addressed in current and future neutrino oscillation experiments. In the latter half of my talk, I will mention the role of the upcoming large magnetized Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) facility to explore the Earth's matter effect by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. Finally, I will describe how this experiment is going to play an important role to address some of the outstanding issues in neutrino oscillation physics. (author)

  10. 50 Years of Neutrino Physics

    International Nuclear Information System (INIS)

    Zralek, M.

    2010-01-01

    Some important topics from history of neutrino physics over the last fifty years are discussed. History of neutrinos is older, at 4 th December 2010 it will be eightieth anniversary of the neutrino birth. In that day W. Pauli wrote the famous letter to participants of the physics conference at Tubingen with the suggestion that '' there could exist in the nuclei electrically neutral particle ''. We will concentrate mostly on the 50 years of neutrino history just to show the long tradition of the Zakopane Theoretical School. (author)

  11. Some neutrino decays

    International Nuclear Information System (INIS)

    Levy, J.M.

    1984-01-01

    Massive neutrinos mixing with weak interaction eigenstates are expected to decay into various channels depending on their masses and their mixing pattern. The author reviews some of these decay modes in the simpliest possible frame (νsub(H) → e - e + νsub(e), νsub(n) → γνsub(e), νsub(n) → γγνsub(e) and considers only the addition of right handed neutrino fields to the spectrum of the standard Glashow-Salam-Weinberg theory of weak interactions, thereby allowing for the existence of Dirac masses generated through the coupling of these fields and their left handed mates with the usual Higgs doublet and its charge conjugate, as is the case for quarks

  12. NEUTRINOS: Moriond spotlight

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1991-01-01

    The regular 'Rencontres de Moriond' meetings in the French Alps, which celebrate their 25th anniversary this year, have a strong tradition of reflecting new trends in physics thinking and January's session on 'Tests of Fundamental Laws in Physics' was no exception. The spotlight this time fell on the neutrino sector, a branch of physics frequently in evolution, if not controversial

  13. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  14. Entanglement of neutrino states

    OpenAIRE

    Khokhlov, D. L.

    2007-01-01

    Muon and muon antineutrino born in the decay of charged pion form the entangled spin state. The decay of muon with the left helicity triggers the left helicity for muon antineutrino to preserve the null total angular momentum of muon and muon antineutrino. This is forbidden for antineutrino hence one cannot detect the muon antineutrino after the decay of muon. This effect may explain the deficit of muon neutrino flux in the Super-Kamiokande, K2K, MINOS experiments.

  15. Anarchy and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Jean-François; Giasson, Nicolas; Marleau, Luc [Département de Physique, de Génie Physique et d’Optique,Université Laval, Québec, QC G1V 0A6 (Canada)

    2017-04-21

    The neutrino sector of a seesaw-extended Standard Model is investigated under the anarchy hypothesis. The previously derived probability density functions for neutrino masses and mixings, which characterize the type I-III seesaw ensemble of N×N complex random matrices, are used to extract information on the relevant physical parameters. For N=2 and N=3, the distributions of the light neutrino masses, as well as the mixing angles and phases, are obtained using numerical integration methods. A systematic comparison with the much simpler type II seesaw ensemble is also performed to point out the fundamental differences between the two ensembles. It is found that the type I-III seesaw ensemble is better suited to accommodate experimental data. Moreover, the results indicate a strong preference for the mass splitting associated to normal hierarchy. However, since all permutations of the singular values are found to be equally probable for a particular mass splitting, predictions regarding the hierarchy of the mass spectrum remains out of reach in the framework of anarchy.

  16. Neutrino physics with SHIP

    CERN Document Server

    van Herwijnen, Eric

    2016-01-01

    SHIP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee. It recommended that the experiment proceed further to a Comprehensive Design phase. In its initial phase, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 POT (Protons On Target) in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c 2 . The main focus will be the physics of the so-called Hidden Portals. The sensitivity to Heavy Neutrinos will allow to probe for the first time the mass range between the kaon and the charm meson mass, and a range of couplings for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions. ντ ...

  17. Neutrino physics at LAMPF

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1989-01-01

    There are three neutrino experiments at LAMPF in various stages of completion or development. E225, the study of electron-neutrino electron scattering, which completed data taking in December 1986 and has just about completed all its analysis. E645, a search for /bar /nu///sub μ/ → /bar /nu///sub e/ oscillation, is in its third and final year of data taking. The Large Cerenkov Detector (LCD), associated with E1015, has undergone extensive scientific and technical review and we are presently trying to obtain the necessary funds to build the detector, beam line, and target. In the following, each of these experiments will be briefly discussed. Before doing so, it is useful to show the characteristics of the neutrino spectrum resulting from the decay of π + at rest. It is also useful to realize that, on average, an 800-MeV proton from LAMPF produces about 0.1 π + decaying at rest. 16 refs., 5 figs., 4 tabs

  18. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  19. Flipped Heavy Neutrinos from the Solar Neutrino Problem to Baryogenesis

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A

    1993-01-01

    We discuss baryogenesis using the flipped $SU(5)$ model for lepton mass matrices. We show that the generalized see-saw mechanism in this model can not only provide MSW neutrino mixing suitable for solving the solar neutrino problem, and supply a hot dark matter candidate ($\

  20. Radiative neutrino mass model with degenerate right-handed neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwase, Shoichi; Suematsu, Daijiro [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2016-03-15

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z{sub 2} symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  1. ANIS: High energy neutrino generator for neutrino telescopes

    Science.gov (United States)

    Gazizov, A.; Kowalski, M.

    2005-11-01

    We present the high-energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The program provides a detailed and flexible neutrino event simulation for high-energy neutrino detectors, such as AMANDA, ANTARES or ICECUBE. It generates neutrinos of any flavor according to a specified flux and propagates them through the Earth. In a final step neutrino interactions are simulated within a specified volume. All relevant standard model processes are implemented. We discuss strengths and limitations of the program. Catalogue identifier:ADWF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWF Program is obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested: Intel-Pentium based Personal Computers Operating system:Linux Programming language used:C++ Memory required to execute:13 megabyte Number of lines in distributed program, including test data, etc.:912 424 Number of bytes in distributed program, including test data, etc.: 6 876 631 Distribution format:tar.gz Libraries used by ANIS:HepMC [M. Dobbs, J.B. Hansen, Comput. Phys. Comm. 134 (2001) 41], CLHEP vector package [http://wwwinfo.cern.ch/asd/lhc++/clhep] Nature of physical problem:Monte Carlo neutrino event generator for high-energy neutrino telescopes. Method of solution:Neutrino events are first sampled according a specified flux, then propagated through the Earth and finally are allowed to interact inside a detection volume. Restrictions of the program:Neutrino energies range from 10 to 1012 GeV. Typical running time:104 events require typically a 1-GHz CPU time of about 300 s.

  2. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  3. The indium solar neutrino project

    International Nuclear Information System (INIS)

    Booth, N.E.; Salmon, G.L.; Hukin, D.A.

    1984-01-01

    The only way to resolve the solar neutrino puzzle is to perform a new experiment. It is shown that 115 In has unique possibilities as a target for solar neutrino detection. Progress in developing a detector based on 115 In is reviewed and future plans are outlined. (author)

  4. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... However, the light takes ∼105 yr to reach us, while neutrinos escape from the solar matter undisturbed. Consequently, a precision measurement of ... neutrinos is therefore a major goal with important cosmological implications. ..... In addition, the water plants have been modified for a better control of.

  5. Standard and nonstandard neutrino properties

    CERN Document Server

    Valle, José W F

    2003-01-01

    I review the interpretation of solar and atmospheric neutrino data in terms neutrino oscillations and describe some ways to account for the required neutrino masses and mixing angles from first principles, both within top down and bottom-up approaches. Non-oscillation phenomena such as beta beta /sub 0 nu / probe the absolute scale of neutrino mass, and if found, would reveal the Majorana nature of neutrinos. Leptonic CP violation induced by "Majorana" phases drop from oscillations but play a role in the leptogenesis scenario for the baryon asymmetry of the Universe. Direct CP tests in oscillation experiments, such as neutrino factories, will be a tough challenge, due to the hierarchical neutrino mass splittings and the smallness of theta /sub 13/ indicated by reactors. The large solar mixing angle theta /sub 12/ offers a way to probe otherwise inaccessible features of supernova physics. Finally, I note that in lowscale models of neutrino mass, one may probe all mixing angles, including the atmospheric theta ...

  6. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  7. Neutrino astronomy: Present and future

    Indian Academy of Sciences (India)

    neutrino telescope in the Mediterranean Sea off the coast of France. The full design calls for 12 strings, with 25 ... The NESTOR detector [19] is a proposed deep-sea neutrino telescope located off the coast of Greece. Planned deployment will be at a depth of 4000 meters. The full detector, with an effective area of 104 m2 for ...

  8. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...... of possible sterile neutrinos with O(eV)-masses for cosmology....

  9. New ideas in neutrino detection

    Indian Academy of Sciences (India)

    What is new in the field of neutrino detection? In addition to new projects probing both the low and high ends of the neutrino energy scale, an inexpensive, effective technique is being developed to allow tagging of antineutrinos in water Cherenkov (WC) detectors via the addition to water of a solute with a large neutron ...

  10. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in understanding both ... describes the thermonuclear processes in the core of the Sun and foresees the emission of neutrinos from ..... neutrino–electron elastic scattering and does not benefit from the handle of the delayed coincidence ...

  11. The Mystery of Neutrino Mixings

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    In the last years we have learnt a lot about neutrino masses and mixings. Neutrinos are not all massless but their masses are very small. Probably masses are small because neutrinos are Majorana particles with masses inversely proportional to the large scale M of lepton number (L) violation, which turns out to be compatible with the GUT scale. We have understood that there is no contradiction between large neutrino mixings and small quark mixings, even in the context of GUTs and that neutrino masses fit well in the SUSY GUT picture. Out of equilibrium decays with CP and L violation of heavy RH neutrinos can produce a B-L asymmetry, then converted near the weak scale by instantons into an amount of B asymmetry compatible with observations (baryogenesis via leptogenesis). It appears that active neutrinos are not a significant component of Dark Matter in the Universe. A long list of models have been formulated over the years to understand neutrino masses and mixings. With the continuous improvement of the data m...

  12. CERN neutrino project on target

    CERN Multimedia

    2005-01-01

    Scientists at CERN announced the completion of the target assembly for the CERN neutrinos to Gran Sasso project, CNGS. On schedule for start-up in May 2006, CNGS will send a beam of neutrinos through the Earth to the Gran Sasso laboratory 730 km away in Italy in a bid to unravel the mysteries of nature's most elusive particles (½ page)

  13. Astrophysical neutrinos and atmospheric leptons

    Directory of Open Access Journals (Sweden)

    Gaisser T.K.

    2017-01-01

    Full Text Available IceCube measurements of the neutrino flux from TeV to PeV show the signal of astrophysical neutrinos standing out at high energy well above the steeply falling foreground of atmospheric neutrinos. The astrophysical signal appears both in measurements of neutrino-induced muons and in the starting event sample, which responds preferentially to electron and tau neutrinos, but which also includes muon neutrinos. Searches for point sources of astrophysical neutrinos have, however, not yet identified a single source or class of sources for the astrophysical component. Some constraints on astrophysical sources implied by the current observations will be described in this talk. Uncertainties in the fluxes of atmospheric leptons resulting from an incomplete knowledge of the primary cosmic-ray spectrum and from a limited understanding of meson production, including charm will also be reviewed. The ultimate goal is to improve the understanding of the astrophysical spectrum in the transition to lower energy where atmospheric neutrinos dominate. The main aspects of this presentation will be included in the author's Review Talk at the end of the Symposium.

  14. Unconventional model of neutrino masses

    Science.gov (United States)

    Georgi, Howard M.; Glashow, Sheldon Lee; Nussinov, Shmuel

    1981-12-01

    Gelmini and Roncadelli have proposed a model of neutrino masses in which B- L symmetry is spontaneously broken by a small vacuum expectation value of a Higgs triplet. We give an exegesis of this model. We show that the massive neutrinos in this model cannot be cosmologically relevant today and that conflicting analyses of double beta decay experiments can be reconciled.

  15. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    2012-11-17

    Nov 17, 2012 ... a low-energy neutrino detector sensitive to neutrino energies below 1 MeV have also started. (c) In order to ..... characteristics and long-term stability of the RPCs under test, the stack is also being used to study and ... as silicone, has been found to improve the efficiency and reduce noise degradation of the.

  16. Gif 2011 school: neutrinos. Slides of the presentations

    International Nuclear Information System (INIS)

    Smirnov, A.; Pascoli, S.; Piquemal, F.; Lasserre, T.; Kouchner, A.; Patzak, T.; Lavignac, S.; Volpe, C.; Katsanevas, S.; Rubbia, A.

    2012-01-01

    This document gathers the slides of the lectures given at the GIF 2011 school. These lectures were pedagogical reviews of both theoretical and experimental physics around neutrino issues. There were 9 lectures: 1) the origin of the neutrino mass, 2) theory of neutrino oscillations, 3) measuring the neutrino mass, 4) measuring the neutrino oscillation parameters, 5) astronomy with neutrinos, 6) the story of the neutrino, 7) neutrinos beyond the standard model, 8) neutrinos in cosmology, and 9) future experiments. (A.C.)

  17. KARMEN: neutrino spectroscopy at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kernphysik

    1996-11-01

    The Karlsruhe-Rutherford Neutrino Experiment KARMEN at the spallation neutron facility ISIS investigates fundamental properties of neutrinos as well as their interactions with matter. Low energy neutrinos with energies up to 50 MeV emitted by the pulsed {nu}-source ISIS are detected by a 56 tonne high resolution liquid scintillation calorimeter. Clear {nu}-signatures allow a reliable search for neutrino oscillations of the type {nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub e} as well as a detailed investigation of neutrino-nucleus interactions in an energy range important for astrophysics. We present the results of the KARMEN experiment from data taking in the period from June 1990 - December 1995. (author) 9 figs., 10 refs.

  18. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  19. Cosmological bounds on neutrino statistics

    Science.gov (United States)

    de Salas, P. F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N.

    2018-03-01

    We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2σ.

  20. Neutrino masses and family replication

    International Nuclear Information System (INIS)

    Hung, P.Q.

    1999-01-01

    The issue of whether or not there is any link between the smallness of the neutrino mass (if present) and the odd or even nature of the number of families is investigated. It is found that, by assuming the existence of right-handed neutrinos (which would imply that neutrinos will have a mass) and a new chiral SU(2) gauge theory, a constraint on the nature of the number of families can be obtained. In addition, a model, based on that extra SU(2), is constructed where it is plausible to have one 'very heavy' fourth neutrino and three almost degenerate light neutrinos whose masses are all of the Dirac type. copyright 1999 The American Physical Society

  1. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  2. Contributed report: Flavor anarchy for Majorana neutrinos

    Indian Academy of Sciences (India)

    scales, while for neutrinos a third scale – that of lepton number breaking – is involved. Consequently, the selection ... flavor parameters related to the neutrino sector: three neutrino masses, three lepton mixing angles, and ... In other words, each of the sectors – up, down, charged lepton and neutrino – could equally well be.

  3. Light sterile neutrinos: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Giunti, Carlo

    2016-07-15

    The indications in favor of the existence of light sterile neutrinos at the eV scale found in short-baseline neutrino oscillation experiments is reviewed. The future perspectives of short-baseline neutrino oscillation experiments and the connections with β-decay measurements of the neutrino masses and with neutrinoless double-β decay experiments are discussed.

  4. Mass and oscillations of Dirac neutrinos

    International Nuclear Information System (INIS)

    Collot, J.

    1989-01-01

    In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations

  5. Light Sterile Neutrinos: A White Paper

    DEFF Research Database (Denmark)

    Abazajian, K. N.; Acero, M. A.; Agarwalla, S. K.

    2012-01-01

    This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.......This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data....

  6. Hans Bethe, the Sun and the Neutrinos

    Indian Academy of Sciences (India)

    and the stars remained a major puzzle in science, which led to many ..... per sec at Davis's huge tank of the detecting fluid, only about one neutrino per three days interacted. That is the meaning of. 'weak interaction'. See S N Ganguli, Neutrinos and our .... To understand neutrino oscillation, one must think of neutrino as a ...

  7. Solar and atmospheric four-neutrino oscillations

    CERN Document Server

    González-Garciá, M Concepción; Peña-Garay, C

    2001-01-01

    We present an analysis of the neutrino oscillation solutions of the solar and atmospheric neutrino problems in the framework of four--neutrino mixing where a sterile neutrino is added to the three standard ones and the mass spectra presents two separated doublets. Such scenarios allow for simultaneous transitions of solar $\

  8. The neutrino factory beam and experiments

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P M; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour-mixing. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a \

  9. Constraints on three flavor neutrino mixing

    Indian Academy of Sciences (India)

    first map out the allowed region in the three neutrino parameter space using solar and atmospheric neutrino data. .... φ leads to a larger region of allowed parameter space in the three flavor oscillation scenario as will be .... the neutrinos are coming from below, i.e., neutrinos which travel the whole diameter of the earth to ...

  10. Signature of heavy sterile neutrinos at CEPC

    Science.gov (United States)

    Liao, Wei; Wu, Xiao-Hong

    2018-03-01

    We study the production of heavy sterile neutrino N , e+e-→N ν (ν ¯), at the Circular Electron Positron Collider (CEPC) and its l j j signal in its decay to three charged fermions. We study background events for this process which are mainly events coming from W pair production. We study the production of a single heavy sterile neutrino and the sensitivity of CEPC to the mixing of the sterile neutrino with active neutrinos. We study the production of two degenerate heavy sterile neutrinos in a low energy seesaw model by taking into account the constraints on mixings of sterile neutrinos from the neutrinoless double β decay experiment and the masses and mixings of active neutrinos. We show that CEPC under proposal has a good sensitivity to the mixing of sterile neutrinos with active neutrinos for a mass of a sterile neutrino around 100 GeV.

  11. Massive neutrinos flavor mixing of leptons and neutrino oscillations

    CERN Document Server

    2015-01-01

    Since the discovery of neutrino oscillations neutrino physics has become an interesting field of research in physics. They imply that neutrino must have a small mass and that the neutrinos, coupled to the charged leptons, are mixtures of the mass eigenstates, analogous to the flavor mixing of the quarks. The mixing angles for the quarks are small, but for the leptons two of the mixing angles are large. The masses of the three neutrinos must be very small, less than 1 eV, but from the oscillation experiments we only know the mass differences — the absolute masses are still unknown. Also we do not know, if the masses of the neutrinos are Dirac masses, as the masses of the charged leptons and of the quarks, or whether they are Majorana masses. In this volume, an overview of the present state of research in neutrino physics is given by well-known experimentalists and theorists. The contents — originated from talks and discussions at a recent conference addressing some of the most pressing open questions in n...

  12. The geo-neutrinos

    Directory of Open Access Journals (Sweden)

    Bellini G.

    2012-04-01

    Full Text Available The study of the antineutrinos emitted by the radioactive decays in the Earth interior is the only way to investigate how much of the terrestrial heat is produced by these decays and which is their contribution in the various Earth components. The existence of the geo-neutrinos has recently been demonstrated by Borexino and confirmed by Kamland. Kamland had found some hints already in 2005 and 2008 Nevertheless the statistics is not yet enough to discriminate among the various geological models.

  13. The Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    McLatchie, W.; Earle, E.D.

    1987-04-01

    A group of Canadian scientists, in collaboration with colleagues from the United States and England, proposes to establish a world class laboratory in INCO's Creighton Mine. The laboratory would be dedicated to the study of neutrinos from the sun and other astrophysical objects to advance our understanding of the physical processes which govern the properties of stars, as well as our understanding of the fundamental properties of matter. The laboratory would capitalize on two unique Canadian resources, i.e. access to one of the deepest mines in the western hemisphere and Canada's temporary surplus of heavy water

  14. Sterile Neutrinos in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Benjamin J.P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  15. Spéciation du cadmium, du chrome, du cuivre et du plomb dans les ...

    African Journals Online (AJOL)

    L'exploitation du minerai de phosphate au sud-est du Togo engendre des déchets miniers qui sont déversés dans la mer sans traitement. Cette étude a pour but l'estimation de la biodisponibilité du cadmium, du chrome, du cuivre et du plomb par leur spéciation. La caractérisation physicochimique des sédiments des ...

  16. Light Sterile Neutrinos from Large Extra Dimensions

    OpenAIRE

    Ma, Ernest; Rajasekaran, G.; Sarkar, Utpal

    2000-01-01

    An experimentally verifiable Higgs-triplet model of neutrino masses from large extra dimensions was recently proposed. We extend it to accomodate a light sterile neutrino which also mixes with the three active neutrinos. A previously proposed phenomenological model of four neutrinos (\\underline {the only viable such model now left}, in view of the latest atmospheric and solar neutrino-oscillation data) is specifically realized.

  17. Neutrino oscillations and a new Faraday effect

    International Nuclear Information System (INIS)

    Anwar Mughal, M.; Ahmed, K.

    1992-07-01

    By analogy with the classical Faraday effect for the electromagnetic waves, a Faraday effect for massive neutrinos is found to be a somewhat generic description of neutrino oscillations when the neutrinos traverse a dense medium with or without a magnetic field. We further plot the Faraday angle for the solar neutrino problem as an illustration of the fact that the Faraday effect may yield a conceptually convenient parametrization of various neutrino oscillation scenarios. (author). 8 refs, 3 figs

  18. A search for decays of heavy neutrinos

    International Nuclear Information System (INIS)

    Bergsma, F.; Dorenbosch, J.; Jonker, M.; Nieuwenhuis, C.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Barone, L.; Berger, C.; Capone, A.; Flegel, W.; Lanceri, L.; Metcalf, M.; Panman, J.; Winter, K.; Abt, I.; Aspiazu, J.; Buesser, F.W.; Daumann, H.; Gall, P.D.; Niebergall, F.; Ranitzsch, K.H.; Schuett, P.; Staehelin, P.; Valente, V.; Istituto Nazionale di Fisica Nucleare, Frascati

    1983-01-01

    A search for heavy neutrinos was conducted in the neutrino beam produced by the 400 GeV proton beam-dump and in the 400 GeV wide-band neutrino beam at CERN. A heavy neutrino associated with the tau lepton was searched for in the beam-dump experiment. No assumption on the nature of heavy neutrinos was made in the wide-band beam experiment. A search was made for neutrinos decaying into two electrons and a light neutrino. Since no events were observed, an upper limit on the neutrino mixing angles as a function of the neutrino mass is derived. The beam-dump experiment is sensitive to a neutrino mass range of 10-250 MeV and an upper limit at 90% confidende level on the square of the neutrino mixing angle of approx.=10 -10 was obtained for neutrino masses greater than 180 MeV. The wide-band neutrino experiment is sensitive to neutrinos with a mass in a larger range (10-490 MeV), and for masses greater than 250 MeV yields an upper limit on the square of the neutrino mixing angle of approx.= 10 -6 . (orig.)

  19. Updating neutrino magnetic moment constraints

    Directory of Open Access Journals (Sweden)

    B.C. Cañas

    2016-02-01

    Full Text Available In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs, discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1×10−11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1|≤5.6×10−11μB, |Λ2|≤4.0×10−11μB, and |Λ3|≤3.1×10−11μB (90% C.L., irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.

  20. Current Direct Neutrino Mass Experiments

    Directory of Open Access Journals (Sweden)

    G. Drexlin

    2013-01-01

    Full Text Available In this contribution, we review the status and perspectives of direct neutrino mass experiments, which investigate the kinematics of β-decays of specific isotopes (3H, 187Re, 163Ho to derive model-independent information on the averaged electron (antineutrino mass. After discussing the kinematics of β-decay and the determination of the neutrino mass, we give a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for 3H, cryobolometers for 187Re. We then describe the Karlsruhe Tritium Neutrino (KATRIN experiment currently under construction at Karlsruhe Institute of Technology, which will use the MAC-E-Filter principle to push the sensitivity down to a value of 200 meV (90% C.L.. To do so, many technological challenges have to be solved related to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium β-decay at 18.6 keV. We then review new approaches such as the MARE, ECHO, and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. Altogether, the novel methods developed in direct neutrino mass experiments will provide vital information on the absolute mass scale of neutrinos.

  1. Neutrino oscillations with LSND

    International Nuclear Information System (INIS)

    Stancu, Ion

    2000-01-01

    The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF) has conducted searches for ν-bar μ → ν-bar e oscillations using ν-bar μ from μ + decay at rest (DAR) and for ν μ → ν e oscillations using ν μ from π + decay in flight (DIF). For the 1993-1995 data taking period, significant beam-excess events have been found in both oscillation channels. For the DAR search, a total excess of 51.8 +18.7 -16.9 ± 8.0 events from the ν-bar e p → e + n inverse β-decay reaction is observed, with e + energies between 20-60 MeV. For the DIF search, a total excess of 18.1 ± 6.6 ± 4.0 events from the ν e C → e - X inclusive reaction is observed, with e - energies between 60-200 MeV. If interpreted as neutrino oscillations, these excesses correspond to oscillation probabilities of (3.1±1.2±0.5) x 10 -3 and (2.6 ± 1.0 ± 0.5) x 10 -3 , respectively. Additional data collected during the 1996-1998 runs has been preliminarily analyzed for the DAR channel and yields very good agreement with the previously obtained results, for a combined oscillation probability of (3.3±0.9±0.5) x 10 -3

  2. MUON STORAGE RINGS - NEUTRINO FACTORIES

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8degree angle for BNL-Soudan, and 3degree angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design

  3. Report on solar neutrino experiments

    International Nuclear Information System (INIS)

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research

  4. An Overview of Neutrino Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Altarelli, G., E-mail: guido.altarelli@cern.ch [Dipartimento di Fisica ‘E. Amaldi’, Università di Roma Tre, INFN Sezione di Roma Tre, I-00146 Rome (Italy); CERN, Department of Physics, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2013-08-15

    We present a concise review of the recent important experimental developments on neutrino mixing (hints for sterile neutrinos, large θ{sub 13}, possible non maximal θ{sub 23}, approaching sensitivity on δ{sub CP}) and their implications on models of neutrino mixing. The new data disfavour many models but the surviving ones still span a wide range going from Anarchy (no structure, no symmetry in the lepton sector) to a maximum of symmetry, as for the models based on discrete non-abelian flavour groups.

  5. The search for solar neutrinos

    International Nuclear Information System (INIS)

    Ryder, L.

    1976-01-01

    The pioneering work on the detection of solar neutrinos by R. Davis is discussed. The discrepancy between the theoretical neutrino flux rate, according to a recent standard solar model, of 5.6 solar neutrino units (SNU) and the observed rate of 1 SNU together with three suggested solutions of the discrepancy are examined. Very recently Davis has announced an increased count rate of about 4 SNU while groups in Birmingham and in the Crimea have reported solar oscillations. The impact of these latest developments is discussed. (U.K.)

  6. Possible experiments at neutrino factories

    CERN Document Server

    Niinikoski, T O

    2001-01-01

    There are currently plans to construct neutrino factories based on muon storage rings. Such projects are parts of large programmes for the production, cooling, acceleration and storage of muons for dedicated muon colliders, and the lower-energy neutrino factories are perceived as a first step towards the colliders at a much higher energy. We shall explore possible experiments at the projected high- intensity neutrino beams. Among these experiments the measurement of the nuclear coherent scattering cross section would be based on the use of thermal calorimetric detectors segmented so that self-vetoing would supplement the surrounding veto detectors. (4 refs).

  7. Neutrino physics at the AGS

    International Nuclear Information System (INIS)

    Sokolsky, P.

    1978-01-01

    The AGS neutrino beam is the last low energy (1 to 2 GeV) neutrino beam left. As more work is done at higher energies and as the whole realm of new physics (whose threshold seems barely attainable at AGS ν energies) is explored in increasing detail, it is appropriate to ask what physics remains to be done here. To answer this question, current theory and experiment are confronted, not in an attempt to confirm or refute theoretical (or experimental) prejudices, but to ask if present experiments at low energies are good enough. In the process, the recent AGS neutrino experimental program are reviewed

  8. The neutrino as problem particle

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Vignaud, D.

    1997-01-01

    Every second, more than 60 billion of neutrinos coming from sky cross each squared centimeter of our body... and continue indifferently their way at the lights speed. These elementary particles, to which matter is casi-totally transparent, are one of the universe future pivots. They bear witness to what is happening inside stars during their life and death. Pursued since more than 25 years, neutrinos emitted by the sun, seem less than predicated, that presents an important puzzle. Furthermore, through neutrinos, the standard model of particle physics might be put at fault. (author). 7 Refs., 2 Figs

  9. Leptogenesis. Theory and neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.

    2012-12-15

    After a brief discussion of baryon and lepton number nonconservation, we review the status of thermal leptogenesis with GUT scale neutrino masses, as well as low scale alternatives with keV neutrinos as dark matter and heavy neutrino masses within the reach of the LHC. Recent progress towards a full quantum mechanical description of leptogenesis is described with resonant leptogenesis as an application. Finally, cosmological B-L breaking after inflation is considered as origin of the hot early universe, generating entropy, baryon asymmetry and dark matter.

  10. Neutrino physics in a tagged-neutrino beam

    International Nuclear Information System (INIS)

    Bernstein, R.H.

    1989-02-01

    A new high-energy neutrino program is described. The experiment would tag and reconstruct semileptonic decays in an intense K/sub L/ beam. The species and energy of outgoing neutrinos would be identified event-by-event and the neutrino interactions recorded in a massive iron detector. Such a system could search new regions in (Δm 2 , sin 2 2θ) space for neutrino oscillations with small mixing angles and measure ν/sub μ/ and ν/sub e/ cross-sections to ∼1%. The system could determine sin 2 θ/sub W/ in deep-inelastic scattering off quarks to +-.002--.004, a significant improvement over existing measurements. 17 refs., 5 figs., 2 tabs

  11. Phenomenology of neutrino oscillations at the neutrino factory

    International Nuclear Information System (INIS)

    Tang, Jian

    2011-01-01

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain μ + → ν e → ν μ → μ - and the right-charge muons coming from the chain μ + → anti ν μ → anti ν μ → μ - (similar to μ - chains), where ν e → ν μ and anti ν μ → anti ν μ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of τ decays, generated by appearance channels ν μ → ν τ and ν e → ν τ , on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero θ 13 , which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the

  12. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  13. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia Diane [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  14. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ∼2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)± 0.068 0.065 (sys.)±0.02(theor.)] x 10 6 cm -2 s -1 , via the elastic-scattering interaction is [2.21±0.22(stat.)± 0.12 0.11 (sys.)±0.01(theor.)] x 10 6 cm -2 s -1 , and via the neutral-current interaction is [5.05±0.23(stat.)± 0.37 0.31 (sys.)±0.06(theor.)] x 10 6 cm -2 s -1 . The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation

  15. Sterile neutrinos beyond LSND at the neutrino factory

    International Nuclear Information System (INIS)

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-01-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated Δm 41 2 -range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |Δm 41 2 |>>|Δm 31 2 |, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional ν τ detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  16. Coherent neutrino interactions in a dense medium

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1997-01-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p∼G F ρ/√(2). We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic open-quotes standard modelclose quotes with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos. copyright 1997 The American Physical Society

  17. Radiative emission of neutrino pairs in atoms and light sterile neutrinos

    Directory of Open Access Journals (Sweden)

    D.N. Dinh

    2015-03-01

    Full Text Available The process of Radiative Emission of Neutrino Pair (RENP in atoms is sensitive to the absolute neutrino mass scale, the type of spectrum neutrino masses obey and the nature – Dirac or Majorana – of massive neutrinos. We analyse the possibility to test the hypothesis of existence of neutrinos with masses at the eV scale coupled to the electron in the weak charged lepton current in an RENP experiment. The presence of eV scale neutrinos in the neutrino mixing is associated with the existence of sterile neutrinos which mix with the active flavour neutrinos. At present there are a number of hints for active–sterile neutrino oscillations driven by Δm2∼1 eV2. We perform a detailed analysis of the RENP phenomenology within the “3+1” scheme with one sterile neutrino.

  18. Direct measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the Β decay of 35 S and 63 Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs

  19. Een gevoelig oor voor neutrino's

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Eijk, D. van; Nieuwland, R.A.; Toet, P.M.

    2014-01-01

    Sinds de ontdekking van kosmische straling zijn veel verchillende detectoren ontwikkeld om dit fenomeen te onderzoeken. Nieuw in het rijtje is de optische hydrofoonsensor, waarmee naar hoogenergetisache neutrino's gespeurd kan worden.

  20. Neutrino beam in West Area

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Window closing the access to the decay tunnel at the end of the neutrino cave. Beyond the window one sees the first part of the decay tunnel, eventually arriving in front of BEBC. On the right Manfred Mast

  1. Neutrino to be lucky catch

    CERN Multimedia

    2005-01-01

    Neutrinos released in Switzerland are due to be caught in Italy under the International project OPERA. The system of detectors for identifying these mysterious particles is developed by a joint effort of Russian and Ukrainian scientists (1 page)

  2. Neutrinos and nucleosynthesis in supernova

    Energy Technology Data Exchange (ETDEWEB)

    Solis, U [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); D' Olivo, J C [Instituto de Ciencias Nucleares, Departamento de Fisica de Altas EnergIas, Universidad Nacional Autonoma de Mexico (ICN-UNAM). Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico)

    2006-05-15

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment.

  3. Neutrinos and nucleosynthesis in supernova

    International Nuclear Information System (INIS)

    Solis, U; D'Olivo, J C; Cabral-Rosetti, L G

    2006-01-01

    The type II supernova is considered as a candidate site for the production of heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we calculate the electron fraction in this environment

  4. An expansion for Neutrino Phenomenology

    CERN Document Server

    Grinstein, Benjamin

    2012-01-01

    We develop a formalism for constructing the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and neutrino masses using an expansion that originates when a sequence of heavy right handed neutrinos are integrated out, assuming a seesaw mechanism for the origin of neutrino masses. The expansion establishes relationships between the structure of the PMNS matrix and the mass differences of neutrinos, and allows symmetry implications for measured deviations from tri-bimaximal form to be studied systematically. Our approach does not depend on choosing the rotation between the weak and mass eigenstates of the charged lepton fields to be diagonal. We comment on using this expansion to examine the symmetry implications of the recent results from the Daya-Bay collaboration reporting the discovery of a non zero value for theta_{13}, indicating a deviation from tri-bimaximal form, with a significance of 5.2 sigma.

  5. A search for heavy neutrinos

    International Nuclear Information System (INIS)

    Abela, R.; Daum, M.; Eaton, G.H.; Frosch, R.; Jost, B.; Kettle, P.-R.; Rosengard, U.; Steiner, E.

    1980-01-01

    The possible existence of massive neutrinos and the means whereby they might be observed experimentally in (π, K)sub(l2) decays and in nuclear beta decay has been discussed. The authors have carried out preliminary searches for such heavy neutrinos in the mass range from 4 to 14 MeV. In the searches, the momentum spectrum of muons from the decay of stopped pions in a target were measured. (Auth.)

  6. Lepton asymmetries from neutrino oscillations

    International Nuclear Information System (INIS)

    Volkas, R.R.

    2000-01-01

    Reasonably large relic neutrino asymmetries can be generated by active-sterile neutrino oscillations. After briefly discussing possible applications, I describe the Quantum Kinetic Equation formalism used to compute the asymmetry growth curves. I then show how the basic features of these curves can be understood on the basis of the adiabatic limit approximation in the collision dominated epoch, and the pure MSW effect at lower temperatures (author)

  7. High energy neutrinos from GRBs

    CERN Document Server

    De Paolis, F; Orlando, D; Perrone, L

    2001-01-01

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy gamma-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  8. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  9. The Mainz Neutrino Mass Experiment

    Czech Academy of Sciences Publication Activity Database

    Kraus, C.; Bornschein, L.; Bonn, J.; Bornschein, B.; Flatt, B.; Kovalík, Alojz; Müller, B.; Otten, EW; Schall, JP.; Thummler, T.; Weinheimer, C.

    2005-01-01

    Roč. 143, - (2005), s. 143 ISSN 0920-5632. [International Conference on Neutrino Physics and Astrophysics /21./. Paříž, 14.06.2004-19.06.2004] R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutrino mass * tritium beta decay Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.875, year: 2005

  10. Coherence effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1996-01-01

    We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution. copyright 1995 The American Physical Society

  11. SRF for neutrino factories

    International Nuclear Information System (INIS)

    Padamsee, H.

    2003-01-01

    The Neutrino Factory calls for nearly 500 meters of 200 MHz SRF cavities to provide 7.5 GV. Such a facility is more demanding than the largest SRF installation to date, i.e., LEP-II, where 500 m of niobium-coated copper cavities provided more than 3 GV of acceleration. Based on the high real estate gradient desired to minimize muon loss, superconducting cavities are selected to provide active gradients of 15 - 17 MV/m, and a real estate gradient of 7.5 MV/m. At such high gradients, the peak RF power demand for copper cavities would become prohibitively expensive. By virtue of low losses, SC cavities can be filled slowly (rise time 3 ms) reducing the peak power demand to roughly half MW per cell. (author)

  12. Neutrinos and Beyond

    International Nuclear Information System (INIS)

    Huber, Patrick

    2016-01-01

    Scientifically, this grant supported the further development and maintenance of GLoBES, which serves as standard tool for all long-baseline oscillation experiments, including DUNE. A strong focus was on the oscillation physics in long-baseline experiments including the difficult issues of optimization and systematics as well as search for new physics. Sterile neutrinos at the eV-scale, their phenomenological implications and possibilities to test their existence represented another major topic. In particular, we have performed the to-date most accurate computation of the antineutrino spectrum resulting from fissions in a nuclear reactor. In synergy with this research area we also explored potential applications to nuclear non-proliferation safeguards.

  13. Neutrinos and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Physics. Center for Neutrino Physics

    2016-09-16

    Scientifically, this grant supported the further development and maintenance of GLoBES, which serves as standard tool for all long-baseline oscillation experiments, including DUNE. A strong focus was on the oscillation physics in long-baseline experiments including the difficult issues of optimization and systematics as well as search for new physics. Sterile neutrinos at the eV-scale, their phenomenological implications and possibilities to test their existence represented another major topic. In particular, we have performed the to-date most accurate computation of the antineutrino spectrum resulting from fissions in a nuclear reactor. In synergy with this research area we also explored potential applications to nuclear non-proliferation safeguards.

  14. Neutrinos from the sun and from radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, A. [INFN Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Bellini, G. [Dipartimento di Fisica, Universitá degli Studi e INFN, Milano 20133 (Italy); Benziger, J. [Chemical Engineering Department, Princeton University, Princeton, NJ 08544 (United States); Bick, D. [Institut für Experimentalphysik, Universität Hamburg (Germany); Bonfini, G. [INFN Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Bravo, D. [Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buizza Avanzini, M.; Caccianiga, B. [Dipartimento di Fisica, Universitá degli Studi e INFN, Milano 20133 (Italy); Cadonati, L. [Physics Department, University of Massachusetts, Amherst 01003 (United States); Calaprice, F. [Physics Department, Princeton University, Princeton, NJ 08544 (United States); Carraro, C. [Dipartimento di Fisica, Universitá e INFN, Genova 16146 (Italy); Cavalcante, P. [INFN Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Chavarria, A. [Physics Department, Princeton University, Princeton, NJ 08544 (United States); D' Angelo, D. [Dipartimento di Fisica, Universitá degli Studi e INFN, Milano 20133 (Italy); Davini, S. [Dipartimento di Fisica, Universitá e INFN, Genova 16146 (Italy); Department of Physics, University of Houston, Houston, TX 77204 (United States); Derbin, A. [St. Petersburg Nuclear Physics Institute, Gatchina 188350 (Russian Federation); Etenko, A. [NRC Kurchatov Institute, Moscow 123182 (Russian Federation); Franco, D. [APC, Laboratoire AstroParticule et Cosmologie, 75231 Paris cedex 13 (France); Fomenko, K. [INFN Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); and others

    2013-04-15

    A brief review of the solar neutrino observations is given. Future solar neutrino measurements are discussed. The use of an artificial neutrino source to be used with low threshold solar neutrino detectors is presented. At present the neutrino source is mainly planned for short baseline neutrino studies.

  15. The experimental status of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  16. Neutrinos and Physics Beyond Electroweak and Cosmological Standard Models

    CERN Document Server

    Kirilova, Daniela

    2014-01-01

    This is a short review of the established and the proposed by physics beyond Standard Electroweak Model and beyond Standard Cosmological Model neutrino characteristics. In particular, cosmological effects of and cosmological constraints on: extra neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino, are discussed.

  17. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  18. Neutrino-induced reactions and neutrino scattering with nuclei in low and high neutrino energy

    Energy Technology Data Exchange (ETDEWEB)

    Cheoun, Myung-Ki, E-mail: cheoun@ssu.ac.kr; Ha, Eunja; Yang, Ghil-Seok [Department of Physics and OMEG institute, Soongsil Univ., Seoul 156-743 (Korea, Republic of); Kim, K. S. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Kajino, T. [National Astronomical Observatory of Japan, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-06-21

    We reviewed present status regarding theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation (DWBA) for quasielastic region are presented for MiniBooNE data. We also discussed that one step-process estimated by the DWBA is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data.

  19. Physics prospects of the Jinping neutrino experiment

    Science.gov (United States)

    Beacom, John F.; Chen, Shaomin; Cheng, Jianping; Doustimotlagh, Sayed N.; Gao, Yuanning; Gong, Guanghua; Gong, Hui; Guo, Lei; Han, Ran; He, Hong-Jian; Huang, Xingtao; Li, Jianmin; Li, Jin; Li, Mohan; Li, Xueqian; Liao, Wei; Lin, Guey-Lin; Liu, Zuowei; McDonough, William; Šrámek, Ondřej; Tang, Jian; Wan, Linyan; Wang, Yuanqing; Wang, Zhe; Wang, Zongyi; Wei, Hanyu; Xi, Yufei; Xu, Ye; Xu, Xun-Jie; Yang, Zhenwei; Yao, Chunfa; Yeh, Minfang; Yue, Qian; Zhang, Liming; Zhang, Yang; Zhao, Zhihong; Zheng, Yangheng; Zhou, Xiang; Zhu, Xianglei; Zuber, Kai

    2017-02-01

    The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh).

  20. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  1. Interactions of neutrinos with matter

    Science.gov (United States)

    Vannucci, F.

    2017-07-01

    Neutrinos are elementary particles electrically neutral which belong to the family of leptons. As a consequence and in first approximation they only undergo weak processes. This gives them very special properties. They are ideal tools to study precisely the weak interactions, but there is a price to pay: neutrinos are characterized by extremely low probabilities of interactions, they easily penetrate large amount of matter without being stopped. Consequently, it is hard to perform neutrino physics measurements. In practice the difficulty is twofold: in order to accumulate enough statistics, experiments must rely on huge fluxes traversing huge detectors, the number of interactions being obviously proportional to these two factors. As a corollary, backgrounds are difficult to handle because they appear much more commonly than good events. Nevertheless, neutrino interactions have been detected from a variety of sources, both man-made and natural, from very low to very large energies. The aim of this review is to survey our current knowledge about interaction cross sections of neutrinos with matter across all pertinent energy scales. We will see that neutrino interactions cover a large range of processes: nuclear capture, inverse beta-decay, quasi-elastic scattering, resonant pion production, deep inelastic scattering and ultra-high energy interactions. All the gathered information will be used to study weak properties of matter but it will also allow to explore the properties of the neutrinos themselves. In particular, the known three different flavors of neutrinos have different behaviors inside matter and this will be relevant to give some precious understanding about their intrinsic parameters in particular their masses and mixings. As a second order process, neutrinos can undergo electromagnetic interactions. This will also be discussed. Although the corresponding phenomena are not yet experimentally proven by actual measurements, the theory is able to calculate

  2. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Capone, A.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G.V.; Salesa, F.; Samtleben, D.F.E.; Sanchez-Losa, A.; Sapienza, P.; Schnabel, J.; Schock, F.; Schuller, J.P.; Schussler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.; ANTARES Collaboration

    2013-01-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos

  3. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J-L.; Galata, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sanchez-Losa, A.; Sapienza, P.; Schnabel, J.; Schoeck, F.; Schuller, J-P.; Schuessler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos

  4. Neutrinos from LHC and the Mediterranean very large neutrino telescope (KM3NeT)

    Science.gov (United States)

    Shanidze, Rezo

    2006-11-01

    High-energy neutrinos will be copiously produced from the proton beams of the Large Hadron Collider (LHC) at CERN. We consider neutrino fluxes from the LHC and estimate possible event rates for a future very large volume neutrino telescope in the Mediterranean Sea (KM3NeT). The rates were obtained for the case when the LHC neutrinos are directed to the neutrino telescope, although in the current configuration neutrino fluxes are not pointing to the possible KM3NeT sites. Availability of the artificial and controllable source of neutrinos could significantly enhance the physics potential of the KM3NeT project.

  5. Neutrinos from LHC and the Mediterranean very large neutrino telescope (KM3NeT)

    Energy Technology Data Exchange (ETDEWEB)

    Shanidze, Rezo [Physics Institute, University of Erlangen, Erwin-Rommel Str.1, D-91058 Erlangen (Germany)]. E-mail: shanidze@physik.uni-erlangen.de

    2006-11-15

    High-energy neutrinos will be copiously produced from the proton beams of the Large Hadron Collider (LHC) at CERN. We consider neutrino fluxes from the LHC and estimate possible event rates for a future very large volume neutrino telescope in the Mediterranean Sea (KM3NeT). The rates were obtained for the case when the LHC neutrinos are directed to the neutrino telescope, although in the current configuration neutrino fluxes are not pointing to the possible KM3NeT sites. Availability of the artificial and controllable source of neutrinos could significantly enhance the physics potential of the KM3NeT project.

  6. One right-handed neutrino to generate complete neutrino mass spectrum in the framework of NMSSM

    Directory of Open Access Journals (Sweden)

    Yi-Lei Tang

    2015-01-01

    Full Text Available The see-saw mechanism is usually applied to explain the lightness of neutrinos. The traditional see-saw mechanism introduces at least two right-handed neutrinos for the realistic neutrino spectrum. In the case of supersymmetry, loop corrections can also contribute to neutrino masses, which lead to the possibility to generate the neutrino spectrum by introducing just one right-handed neutrino. To be realistic, MSSM suffers from the μ problem and other phenomenological difficulties, so we extend NMSSM (the MSSM with a singlet S by introducing one single right-handed neutrino superfield (N and relevant phenomenology is discussed.

  7. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaewon [Univ. of Rochester, NY (United States)

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  8. Neutrinos do come from solar-fusion

    CERN Multimedia

    1990-01-01

    Results from Kamiokande 11 have given the first convincing evidence that neutrinos are emitted by nuclear fusion in the sun. However, the measured neutrino flux is less than half that predicted by the standard solar model (4 paragraphs).

  9. Neutrino mixing, flavor states and dark energy

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.

    2008-01-01

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe

  10. Experimental bounds on sterile neutrino mixing angles

    CERN Document Server

    Ruchayskiy, Oleg

    2012-01-01

    We derive bounds on the mixing between the left-chiral ("active") and the right-chiral ("sterile") neutrinos, provided from the combination of neutrino oscillation data and direct experimental searches for sterile neutrinos. We demonstrate that the mixing of sterile neutrinos with any flavour can be significantly suppressed, provided that the angle theta_13 is non-zero. This means that the lower bounds on sterile neutrino lifetime, coming from the negative results of direct experimental searches can be relaxed (by as much as the order of magnitude at some masses). We also demonstrate that the results of the negative searches of sterile neutrinos with PS191 and CHARM experiments are not applicable directly to the see-saw models. The reinterpretation of these results provides up to the order of magnitude stronger bounds on sterile neutrino lifetime than previously discussed in the literature. We discuss the implications of our results for the Neutrino Minimal Standard Model (the NuMSM).

  11. Neutrino masses and mixing in supersymmetric theories

    Indian Academy of Sciences (India)

    parity violation provide a natural framework where small neutrino masses can be generated. We discuss neutrino masses and mixing in these theories in the presence of trilinear lepton number violating couplings. It will be shown that ...

  12. Working group report: Neutrino and astroparticle physics

    Indian Academy of Sciences (India)

    8. We present the discussions carried out during the workshop on selected topics in the above fields and also indicate progress made subsequently. The neutrino physics subgroup studied the possibilities of constraining neutrino masses, ...

  13. Solar neutrino spectroscopy (before and after superkamiokande)

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    1996-11-01

    Results of solar neutrino spectroscopy based on data from four experiments are presented. Perspectives related to forthcoming experiments are discussed. Implications of the results for neutrino properties are considered. (author). 54 refs, 2 tabs

  14. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  15. Working group report: Neutrino and astroparticle physics

    Indian Academy of Sciences (India)

    8. We present the discussions carried ... The working group on neutrino and astroparticle physics had two main themes, neutrinos and cosmology. ...... errors due to insufficient memory while running CMBFAST. [15c] If you get a Segmentation ...

  16. Neutrino properties and fundamental symmetries

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs

  17. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  18. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos

  19. Sterile neutrinos in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Malaney, R.A. (Lawrence Livermore National Lab., CA (USA)); Fuller, G.M. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  20. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1996-01-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  1. Searches for heavy neutrinos and heavy leptons

    CERN Document Server

    Kim, Jae Sung

    2017-01-01

    The discovery of non-zero neutrino masses has opened a new window for heavy neutrinos at TeV scale. The CMS experiment has performed many searches for heavy neutrinos at the LHC. We present an overview of these heavy neutrino (Majorana type) searches in events with two leptons and two jets or three leptons, using proton-proton collision data recorded by the CMS experiment.

  2. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G.G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  3. Research in Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Busenitz, Jerome [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Physics and Astronomy

    2014-09-30

    We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for θ13 based on 100 days of data from the far detector. Our data indicates that θ13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2(2θ13) = 0.086 ± 0.041 (stat) ± 0.030 (syst). The null oscillation hypothesis is excluded at the 94.6% C.L. This result has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2(2θ13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will

  4. Measurement of the Solar Neutrino Capture Rate by SAGE and Implications for Neutrino Oscillations in Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Abdurashitov, J. N. [Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia (Russian Federation); Bowles, T. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cherry, M. L. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Cleveland, B. T. [University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Davis, R. Jr. [University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Elliott, S. R. [University of Washington, Seattle, Washington 98195 (United States); Gavrin, V. N. [Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia (Russian Federation); Girin, S. V. [Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia (Russian Federation); Gorbachev, V. V. [Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia (Russian Federation); Ibragimova, T. V. [Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia (Russian Federation)] (and others)

    1999-12-06

    The Russian-American solar neutrino experiment has measured the capture rate of neutrinos on metallic gallium in a radiochemical experiment at the Baksan Neutrino Observatory. Eight years of measurement give the result 67.2{sup +7.2+3.5}{sub -7.0-3.0} solar neutrino units, where the uncertainties are statistical and systematic, respectively. The restrictions these results impose on vacuum neutrino oscillation parameters are given. (c) 1999 The American Physical Society.

  5. Detection of supernova neutrinos with neutrino-iron scattering

    International Nuclear Information System (INIS)

    Samana, A. R.; Bertulani, C. A.

    2008-01-01

    The ν e - 56 Fe cross section is evaluated in the projected quasiparticle random phase approximation (PQRPA). This model solves the puzzle observed in RPA for nuclei with mass around 12 C, because it is the only RPA model that treats the Pauli Principle correctly. The cross sections as a function of the incident neutrino energy are compared with recent theoretical calculations of similar models. The average cross section weighted with the flux spectrum yields a good agreement with the experimental data. The expected number of events in the detection of supernova neutrinos is calculated for the LVD detector, leading to an upper limit for the electron neutrino energy of particular importance in this experiment

  6. Neutrino mass hierarchy and octant determination with atmospheric neutrinos.

    Science.gov (United States)

    Barger, Vernon; Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Marfatia, Danny; Prakash, Suprabh; Raut, Sushant K; Sankar, S Uma

    2012-08-31

    The recent discovery by the Daya-Bay and RENO experiments, that θ(13) is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of θ(13) implies that θ(23) is likely to be different from π/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of θ(23). We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4σ with moderate exposure times, and the octant at the level of 2-3σ with greater exposure.

  7. The hunt for cosmic accelerators. Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa [TUM, Munich (Germany)

    2016-07-01

    The recent discovery of high energy cosmic neutrinos from the IceCube Neutrino Observatory opens new opportunities for particle and astrophysics. We report here the IceCube observation of a diffuse neutrino background and the on-going searches for counterparts.

  8. Working group report: Neutrino and astroparticle physics

    Indian Academy of Sciences (India)

    These talks followed by detailed discussions and work on specific problems by smaller groups. P Bhattacharjee, S Uma Sankar and Shiv Sethi suggested problems in the areas of ultra high energy neutrinos, low energy neutrinos and neutrinos in cosmology respectively. We give below a progress report of the work initiated.

  9. Contributed report: Flavor anarchy for Majorana neutrinos

    Indian Academy of Sciences (India)

    Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.

  10. Contributed report: Flavor anarchy for Majorana neutrinos

    Indian Academy of Sciences (India)

    scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy. Keywords. Neutrino masses; flavor symmetries; Majorana. PACS Nos 14.60.Pq; 12.15.

  11. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the

  12. Neutrinos as Probes of Lorentz Invariance

    Directory of Open Access Journals (Sweden)

    Jorge S. Díaz

    2014-01-01

    Full Text Available Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.

  13. Detecting sterile neutrinos with KATRIN like experiments

    DEFF Research Database (Denmark)

    Riis, Anna Sejersen; Hannestad, Steen

    2011-01-01

    A sterile neutrino with mass in the eV range, mixing with bar nue, is allowed and possibly even preferred by cosmology and oscillation experiments. If such eV-mass neutrinos exist they provide a much better target for direct detection in beta decay experiments than the active neutrinos which...

  14. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  15. Neutrino spectrum from theory and experiments

    Indian Academy of Sciences (India)

    The precision results on the deficit in the muon neutrinos of atmospheric origin obtained at super-Kamioka [1] may be regarded as confirmation of the long standing suspicion that the neutrino has a mass [2]. The most likely interpretation of these results is that at least one neutrino is massive. Results from different solar ...

  16. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    In this article I review the constraints on neutrino mass and mixing coming from type-II supernovae. The bounds obtained on these parameters from shock reheating, -process nucleosynthesis and from SN1987A are discussed. Given the current constraints on neutrino mass and mixing the effect of oscillations of neutrinos ...

  17. On the muon neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Angelov, N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Balestra, F. [Dipartimento di Fisica Generale ' Amedeo Avogadro' , University of Torino, INFN, Sez. di Torino, Turin (Italy); Batusov, Yu. [Joint Institute for Nuclear Research, Dubna (Russian Federation)] (and others)

    2006-12-11

    During the runs of the PS 179 experiment at LEAR of CERN, we photographed an event of antiproton-Ne absorption, with a complete {pi}{sup +}->{mu}{sup +}->e{sup +} chain. From the vertex of the reaction a very slow energy {pi}{sup +} was emitted. The {pi}{sup +} decays into a {mu}{sup +} and subsequently the {mu}{sup +} decays into a positron. At the first decay vertex a muon neutrino was emitted and at the second decay vertex an electron neutrino and a muon antineutrino. Measuring the pion and muon tracks and applying the momentum and energy conservation and using a classical statistical interval estimator, we obtained an experimental upper limit for the muon neutrino mass: m{sub {nu}}<2.2 MeV at a 90% confidence level. A statistical analysis has been performed of the factors contributing to the square value of the neutrino mass, to deduce the possibility to reach experimentally the lowest muon neutrino mass limit from the {pi}->{mu}{nu} decays.

  18. Muon neutrino disappearance at MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, R [Indiana Univ., Bloomington, IN (United States)

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm322 = 2.45+0.12-0.12 x 10-3 eV2 and sin232) = 1.00-0.04+0.00 (> 0.90 at 90% confidence level).

  19. Prospects for relic neutrino detection

    International Nuclear Information System (INIS)

    Smith, P.F.

    1991-03-01

    The standard big bang model predicts a universal background of relic neutrinos, comparable in number density to the background microwave photons. This neutrino background is undetectable at the present time firstly because the neutrino energy is very low (10 -4 -10 -5 eV) resulting in a very low energy transfer to any conceivable detector, and secondly the low energy gives a lower interaction cross section and hence a very low event rate per unit mass. These obstacles have so far precluded any realistic proposal for relic neutrino detection. The aim of this paper is to illustrate the difficulties in detecting these neutrinos by summarizing six detection ideas which have been previously considered, indicating in each case the problems which have prevented the idea being developed into an experimental proposal. The most promising direction for further study would appear to be that of coherent interactions. So far, no investigations of this idea have resulted in a practical detection scheme, but in this paper one new variation is suggested which could in principle give an observable effect, if the necessary stringent experimental conditions could be created. It is suggested that this may become possible with the aid of foreseeable 21st century developments in nanotechnology. (author)

  20. Neutrinos and Big Bang Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Gary Steigman

    2012-01-01

    Full Text Available According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN and the cosmic microwave background (CMB radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation, on the baryon asymmetry (baryon density, and on a possible lepton asymmetry (neutrino degeneracy are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of ~3.

  1. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  2. Neutrinos from the Early Universe and physics beyond standard models

    Directory of Open Access Journals (Sweden)

    Kirilova Daniela

    2015-01-01

    Full Text Available Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological effects and constraints. Particularly, the contemporary cosmological constraints on the number of neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino are briefly reviewed.

  3. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    International Nuclear Information System (INIS)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-01-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  4. Status of neutrino mass experiments

    International Nuclear Information System (INIS)

    Fackler, O.

    1985-12-01

    In 1980 two experiments ignited a fertile field of research the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily I will discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. However, let me begin in Section I to discuss astronomical and terrestrial observations which motivated these experiments. In Section II, I will quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other papers. I will continue by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations will be reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks. 24 refs., 24 figs

  5. Neutrinos in a Sterile Throat

    CERN Document Server

    Gripaios, Ben Matthew

    2007-01-01

    We consider field-theoretic models of a warped extra dimension with multiple throats, in which fermions that are singlets of the Standard Model gauge group propagate in a separate throat from the Standard Model fields, which we call the sterile throat. The singlets mix with Standard Model fields via interactions localized on the UV brane that connects the two throats. This leads to three, light, mostly-active, Majorana neutrinos via a higher-dimensional see-saw mechanism, together with Kaluza-Klein towers of mostly-sterile neutrinos, whose scale is set by the warp factor in the sterile throat and can be very low if the throat is deep. We suggest that a model of this kind may explain all the neutrino data, reconciling the LSND result with astrophysical constraints.

  6. Status of neutrino mass experiments

    International Nuclear Information System (INIS)

    Fackler, O.

    1985-01-01

    In 1980 two experiments ignited a fertile field of research - the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily the author discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. Section I begins with a discussion of astronomical and terrestrial observations which motivated these experiments. In Section II, the author quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other paper. The author continues by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations are reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks

  7. Neutrino physics in the spotlight

    CERN Document Server

    2009-01-01

    Following on from the Council recommendation made in Lisbon in 2006 and responding to the needs of a large community of scientists, CERN will organize the European Strategy for Future Neutrino Physics workshop on 1-3 October. One of the main goals of the workshop is to start establishing a roadmap for the coherent participation of Europe in neutrino physics."The format of the workshop will consist of invited talks to present the current situation and future possibilities; unlike other workshops, 30% of the time will be reserved for discussion", explains Ewa Rondio from the organising committee. "Resources for future neutrino experiments will be difficult to acquire. A coordinated approach and the participation of a large community of interested scientists are undoubtedly crucial factors". The workshop will be the opportunity to highlight the areas where substantial research and development activities are required in order to design the facilities of the next decade. "The w...

  8. Recent developments in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of {bar {nu}}{sub e} mass via beta endpoint studies; status of solar neutrino observations; status of 17-keV neutrino'' reports; and the use of {nu}p elastic scattering to determine the strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs.

  9. Recent developments in neutrino physics

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of bar ν e mass via beta endpoint studies; status of solar neutrino observations; status of ''17-keV neutrino'' reports; and the use of νp elastic scattering to determine the ''strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs

  10. Cri du chat syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001593.htm Cri du chat syndrome To use the sharing features on this page, please enable JavaScript. Cri du chat syndrome is a group of symptoms that result ...

  11. PREFACE: Nobel Symposium 129 on Neutrino Physics

    Science.gov (United States)

    Bergström, Lars; Botner, Olga; Carlson, Per; Hulth, Per Olof; Ohlsson, Tommy

    2005-01-01

    Nobel Symposium 129 on Neutrino Physics was held at Haga Slott in Enköping, Sweden during August 19 24, 2004. Invited to the symposium were around 40 globally leading researchers in the field of neutrino physics, both experimental and theoretical. In addition to these participants, some 30 local researchers and graduate students participated in the symposium. The dominant theme of the lectures was neutrino oscillations, which after several years were recently verified by results from the Super-Kamiokande detector in Kamioka, Japan and the SNO detector in Sudbury, Canada. Discussion focused especially on effects of neutrino oscillations derived from the presence of matter and the fact that three different neutrinos exist. Since neutrino oscillations imply that neutrinos have mass, this is the first experimental observation that fundamentally deviates from the standard model of particle physics. This is a challenge to both theoretical and experimental physics. The various oscillation parameters will be determined with increased precision in new, specially designed experiments. Theoretical physics is working intensively to insert the knowledge that neutrinos have mass into the theoretical models that describe particle physics. It will probably turn out that the discovery of neutrino oscillations signifies a breakthrough in the description of the very smallest constituents of matter. The lectures provided a very good description of the intensive situation in the field right now. The topics discussed also included mass models for neutrinos, neutrinos in extra dimensions as well as the `seesaw mechanism', which provides a good description of why neutrino masses are so small. Also discussed, besides neutrino oscillations, was the new field of neutrino astronomy. Among the questions that neutrino astronomy hopes to answer are what the dark matter in the Universe consists of and where cosmic radiation at extremely high energies comes from. For this purpose, large neutrino

  12. Contributed report: Flavor anarchy for Majorana neutrinos

    Science.gov (United States)

    Nir, Yosef; Shadmi, Yael

    2004-12-01

    We argue that neutrino flavor parameters may exhibit features that are very different from those of quarks and charged leptons. Specifically, within the Froggatt--Nielsen (FN) framework, charged fermion parameters depend on the ratio between two scales, while for neutrinos a third scale -- that of lepton number breaking -- is involved. Consequently, the selection rules for neutrinos may be different. In particular, if the scale of lepton number breaking is similar to the scale of horizontal symmetry breaking, neutrinos may become flavor-blind even if they carry different horizontal charges. This provides an attractive mechanism for neutrino flavor anarchy.

  13. Sterile neutrinos and B-L symmetry

    Science.gov (United States)

    Fileviez Pérez, Pavel; Murgui, Clara

    2018-02-01

    We revisit the relation between the neutrino masses and the spontaneous breaking of the B-L gauge symmetry. We discuss the main scenarios for Dirac and Majorana neutrinos and point out two simple mechanisms for neutrino masses. In this context the neutrino masses can be generated either at tree level or at quantum level and one predicts the existence of very light sterile neutrinos with masses below the eV scale. The predictions for lepton number violating processes such as μ → e and μ → eγ are discussed in detail. The impact from the cosmological constraints on the effective number of relativistic degree of freedom is investigated.

  14. SOX. Search for sterile neutrinos with Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mikko [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Collaboration: BOREXINO-Collaboration

    2016-07-01

    Several observed anomalies in the neutrino sector could be explained by a 4th (sterile) neutrino with a squared mass difference in the order of 1 eV{sup 2} to the other three standard neutrinos. This hypothesis can be tested with an artificial kCi antineutrino (Ce-144/Pr-144) source deployed near or inside a large low background detector like Borexino. The SOX project (short baseline neutrino oscillation with Borexino) aims for the detection of sterile neutrinos and offers the almost unique possibility to observe the characteristic antineutrino oscillation pattern within the detector. The talk summarizes this concept and shows the sensitivities for the possible phases of the experiment.

  15. Experimental results on neutrino-electron scattering

    International Nuclear Information System (INIS)

    Dorenbosch, J.; Udo, F.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baubillier, M.; Bergsma, F.; Capone, A.; Flegel, W.; Grancagnolo, F.; Jonker, M.; Lanceri, L.; Metcalf, M.; Nieuwenhuis, C.; Panman, J.; Plunkett, R.; Santoni, C.; Winter, K.; Abt, I.; Buesser, F.W.; Daumann, H.; Gall, P.D; Hebbeker, T.; Niebergall, F.; Staehelin, P.; Baroncelli, A.; Barone, L.; Borgia, B.; Bosio, C.; Diemoz, M.; Dore, U.; Ferroni, F.; Longo, E.; Luminari, L.; Monacelli, P.; Morganti, S.; De Notaristefani, F.; Tortora, L.; Valente, V.

    1989-01-01

    A determination of sin 2 θ w based on measurements of elastic scattering of muon-neutrinos and muon-anti-neutrinos on atomic electrons is described. These purely leptonic processes were studied using the CHARM calorimeter exposed to neutrino and antineutrino wide-band beams at the CERN super proton synchrotron. A total of 83±16 neutrino-electron and 112±21 antineutrino-electron events have been detected. From the measurement of the ratio of muon-neutrino and muon-antineutrino cross-sections a value of sin 2 θ w =0.211±0.037 was obtained. (orig.)

  16. NeSSiE and sterile neutrinos

    Science.gov (United States)

    Marsella, G.; NESSiE Collaboration

    2015-08-01

    The wonderful frame pinpointed for the 3 standard neutrinos, beautifully adjusted by the Θ13 measurement, left out some relevant questions such as leptonic CP violation, mass values, Dark Matter and anomalies and discrepancies in several neutrino experiment results. The NESSiE collaboration proposes to undertake conclusive experiments to clarify the muon neutrino disappearance measurements at small L/E, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time.

  17. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  18. Direct measurements of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Holzschuh, E. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    The direct measurements have so far given no indication for a nonzero (positive) mass of any of the three known neutrinos. The experiments measuring the tau and the muon neutrino are good shape. The tritium experiments are in an unfortunate situation. It is unclear to me whether the problems are experimental or theoretical or a combination of both. The electronic final states distribution have been calculated, but the results have never been tested experimentally. The most important question to be answered is about the validity of the sudden approximation. (author) 9 figs., 2 tabs., 16 refs.

  19. Decay phenomenology of supernova neutrinos

    OpenAIRE

    Luis Carlos Tapia Herrera

    2011-01-01

    Resumo: Apresentamos neste trabalho um estudo da fenomenologias dos neutrinos, que inicia com um modelo além do Modelo Padrão, que gera massa e decaimento para os neutrinos. O modelo foi proposto por Gelmini e Roncadelli [3], no modelo é introducido um tripleto escalar que interage com o dubleto de Higgs a través de um potencial escalar. O tripleto interage também com os leptons da teoria a través de um potencial de Yukawa, é este potencial que conjuntamente com a quebra espontânea da simetri...

  20. Atmospheric neutrinos in Soudan 2

    International Nuclear Information System (INIS)

    Goodman, M. C.

    1999-01-01

    The value and zenith angle dependence of the atmospheric neutrino flavor ratio is interpreted as evidence for neutrino oscillations. The latest values from the Soudan 2 detector are presented. From 4.2 kt-years fiducial exposure, Soudan 2 measures R = 0.66 ± 0.11(stat) + 0.05--0.06(syst). Using a subset of the data with the best angular resolution, they plot the L/E distribution and use this to find the allowed region in oscillation parameter space. Their fit suggests that delta m-squared is greater than 10 -3 eV 2 at 90% CL

  1. Neutrino radiation hazards: A paper tiger

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Grossman, N.L.; Marshall, E.T.

    1996-09-01

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the 'exotic' particles produced, including the neutrinos. Furthermore, the very word neutrino ('little neutral one', as coined by Enrico Fermi) can lead to public concern due to confusion with 'neutron', a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a 'paper tiger'. 14 refs., 1 fig., 1 tab

  2. The appearance of the tau-neutrino

    International Nuclear Information System (INIS)

    Bettini, A.

    2010-01-01

    The Opera experiment, installed in the Gran Sasso laboratory, aims at detecting the oscillations of muon-neutrinos into tau-neutrinos on their way from the CERN accelerator 730 km away. The neutrino beam produced by the CERN is mainly composed of muon-neutrinos with no tau-neutrinos. Experimentally, the 2 types of neutrinos can be distinguished when they produced a charged lepton: a muon-neutrino produces a muon while a tau-neutrino produces a tau. Opera is a tracking detector and to observe a tau track a micrometer scale spatial resolution is necessary, something that only nuclear emulsions provide. Because of the relatively short distance, only a fraction of neutrinos (1 to 2%) are expected to oscillate, considering in addition the very small cross-section of the neutrino, the conclusion is that the detector mass needs to be larger than 1000 tons. This is why the technique of the emulsion cloud chamber (ECC) was chosen. It is based on sandwiches of thin (50 μm) emulsion sheets, providing the 1 μm resolution tracking, interleaved with 1 mm thick lead sheets, providing the mass. Electronic trackers are used to identify the brick containing the interaction, which is then removed and processed. In august 2009 the first tau-neutrino was detected by Opera. (A.C.)

  3. Faraday effect and solar neutrino problem

    International Nuclear Information System (INIS)

    Nawaz, S.

    2001-01-01

    We have studied the Faraday effect and solar neutrino problem. Our main emphasis was on the Faraday rotation of neutrino de Broglie wave of electron-neutrino producing in the nuclear reactions in the sun and converting into any other flavor of neutrino while passing through matter and/or magnetic field of the sun. We have shown that specific Faraday angle can minimize the number of free parameters occurring in the neutrino oscillation. We have also shown that the resonant Faraday angle corresponding to the resonance of MSW effect can be obtained the knowledge of the oscillation parameter delta m/sup 2/ and the neutrino energy. Using neutrino-Faraday angle approach, we have shown that the matter enhanced neutrino oscillations is dominating over the resonant spin flavor precession (RSFP) even in the favorable region of the spin flavor procession. Using the latest solar neutrino data, we have shown that Faraday angle is almost 10/sup -3/ times smaller. This can be interpreted as the interaction of magnetic moment of neutrino with the solar magnetic field is negligibly small as compare to the effect of matter field on the neutrino oscillation. (author)

  4. formes histologiques particulieres du cancer du nasopharynx

    African Journals Online (AJOL)

    19 déc. 2007 ... tique. Nous avons étudié le profil thérapeutique et évolutif de ces formes rares. J. TUN ORL - N° 19 DÉCEMBRE 2007. 47. FORMES HISTOLOGIQUES PARTICULIERES. DU CANCER DU NASOPHARYNX. H. DHOUIB, M. MNEJJA, W. BOUAYED, A.CHAKROUN, T. BOUDAWARA*,. I. CHARFEDDINE, M.

  5. Reactor Neutrino Experiments: Present and Future

    Science.gov (United States)

    Wen, L. J.; Cao, J.; Wang, Y. F.

    2017-10-01

    Reactor neutrinos have been an important tool for both discovery and precision measurement in the history of neutrino studies. Since the first generation of reactor neutrino experiments in the 1950s, the detector technology has advanced greatly. New ideas, new knowledge, and modern software have also enhanced the power of the experiments. The current reactor neutrino experiments, Daya Bay, Double Chooz, and RENO, have led neutrino physics into the precision era. In this article, we review these developments and advances, address the key issues in designing a state-of-the-art reactor neutrino experiment, and explain how the challenging requirements of determining the neutrino mass hierarchy with the next-generation experiment JUNO could be realized in the near future.

  6. Flipped neutrino emissivity from strange matter

    International Nuclear Information System (INIS)

    Goyal, A.; Dutta, S.

    1994-01-01

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos

  7. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  8. Neutrino Oscillation Results from NOvA

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    NOvA is an accelerator long-baseline neutrino oscillation experiment optimised to measure electron neutrino appearance in a high-purity beam of muon neutrinos from Fermilab. The exciting discovery of the theta13 neutrino mixing angle in 2012 has opened a door to making multiple new measurements of neutrinos. These include leptonic CP violation, the neutrino mass ordering and the octant of theta23. NOvA with its 810km baseline and higher energy beam has about triple the matter effect of T2K which opens a new window on the neutrino mass ordering. With about 20% of our design beam exposure and significant analysis improvements we have recently released updated results. I will present both our disappearance and appearance measurements.

  9. Nuclear responses for neutrinos and neutrino studies by double ...

    Indian Academy of Sciences (India)

    ... (3) solar and supernova 's by inverse decays and responses for 71Ga and 100Mo, and (4) MOON (molybdenum observatory of neutrinos) for spectroscopic studies of Majorana masses with sensitivity of ∼ 0.03 eV by decays of 100Mo and real-time studies of low energy solar and supernova 's by inverse ...

  10. Bounds on neutrino mixing with exotic singlet neutrinos E

    Indian Academy of Sciences (India)

    1Department of Physics, Government College, Sawai Madhopur 322 001, India. 2Department of Physics ... ZZ (where a = e,µ or τ) with the inclusion of neutrino mixing. The threshold of the process Ôs ..... JKS thanks University Grants Commission and NKS thanks DST for financial assistance. References. [1] P Langacker ...

  11. Probing pseudo-Dirac neutrino through detection of neutrino ...

    Indian Academy of Sciences (India)

    The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated and compared with the same in the case of mass-flavour oscillations and for no oscillation cases. The calculated muon yields indicate that to probe such small pseudo-Dirac splittings one ...

  12. Nuclear responses for neutrinos and neutrino studies by double ...

    Indian Academy of Sciences (India)

    laboratories for studying low energy neutrinos (ν) and fundamental weak interactions. Here nuclei are used to select and enhance particular processes relevant toν properties beyond the standard theory of SU(2)Д¢U(1). Actually Majorana ν masses, ...

  13. Bulletin du CRDI #123

    International Development Research Centre (IDRC) Digital Library (Canada)

    Dans ce numéro, découvrez comment les travaux de recherche que nous finançons contribuent à l'autonomisation des femmes. Apprenez-en plus sur notre nouveau partenariat avec Cancer Research UK, et n'oubliez pas de participer à notre Assemblée publique annuelle. Logo du Bulletin du CRDI Bulletin du CRDI ...

  14. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    Energy Technology Data Exchange (ETDEWEB)

    Khruschov, V. V., E-mail: khruschov-vv@nrcki.ru; Fomichev, S. V., E-mail: fomichev-sv@nrcki.ru; Titov, O. A., E-mail: titov-oa@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-09-15

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal active neutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a{sub 2} type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  15. Neutrino Oscillations and Non-standard Interactions

    Directory of Open Access Journals (Sweden)

    Yasaman Farzan

    2018-02-01

    Full Text Available Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of θ23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NOνA. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC NSI and Neutral Current (NC NSI. Our focus will be mainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1 gauge symmetry with a gauge boson of mass ≲ 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged

  16. Search for high-energy neutrinos from dust obscured Blazars

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; Vries, K. D.; Gentile, G.; Scholten, O.; van Eijndhoven, N.

    2015-01-01

    The recent discovery of high-energy cosmic neutrinos by the IceCube neutrino observatory opens up a new field in physics, the field of neutrino astronomy. Using the IceCube neutrino detector we plan to search for high-energy neutrinos emitted from Active Galactic Nuclei (AGN), since AGN are believed

  17. Neutrino oscillations: From a historical perspective to the present status

    International Nuclear Information System (INIS)

    Bilenky, S.

    2016-01-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  18. La gouvernance du CRDI

    International Development Research Centre (IDRC) Digital Library (Canada)

    d'assurer l'intégrité des systèmes d'information de gestion et de contrôle interne;. · de suivre de près le rendement du Centre en fonction du cadre stratégique et des plans .... Adjointe spéciale principale auprès du président du Nigeria chargée des objectifs du Millénaire pour le développement. A assisté à 1 réunion sur 3.

  19. Baby-MIND neutrino detector

    Science.gov (United States)

    Mefodiev, A. V.; Kudenko, Yu. G.; Mineev, O. V.; Khotjantsev, A. N.

    2017-11-01

    The main objective of the Baby-MIND detector (Magnetized Iron Neutrino Detector) is the study of muon charge identification efficiency for muon momenta from 0.3 to 5 GeV/ c. This paper presents the results of measurement of the Baby-MIND parameters.

  20. The future of neutrino physics

    CERN Multimedia

    2009-01-01

    On 1-3 October, CERN held the first workshop to discuss the strategy that Europe should follow in the field of neutrino physics. Many members of the neutrino physics community from all over the world participated in the workshop, demonstrating the vitality and interest of this research field. The European Strategy for Future Neutrino Physics workshop is the second of a series of workshops organized by CERN to coordinate efforts and define strategies for the future of physics research in Europe. The first workshop was organized in May; it outlined the best projects that have excellent scientific goals and for which CERN’s facilities are unique. Currently, these projects are being discussed within the community and in the CERN scientific committees. The same bottom-up approach was taken for the organisation of this second workshop that focussed on neutrino physics. More than 250 people participated and 44 posters were presented in a separate session. Unlike in the first workshop, the focus was not on specif...

  1. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    The current status of the India-based Neutrino Observatory (INO) is summarized. The main physics goals are described followed by the motivation for building a magnetized iron calorimetric (ICAL) detector. The charge identification capability of ICAL would make it complementary to large water Cerenkov and other detectors ...

  2. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND ...

  3. Working group report: Neutrino physics

    Indian Academy of Sciences (India)

    nos: Aspects and prospects by Pomita Ghoshal, Potential of long baseline experi- ments by Sanjib Agarwalla .... But the right-handed neutrinos, being SU(2) × U(1) singlets with small Yukawa couplings, remained ... Yukawa couplings and very heavy SU(2) doublet superfields with leptogenesis aris- ing successfully from ...

  4. Understanding neutrino masses and mixings

    Indian Academy of Sciences (India)

    that all the above data can be understood in terms of oscillations of the three known neutrinos, i.e., among themselves. since the ... are expressed in terms of the mass eigenstates. ( = 1 2 3) as follows: « = И ... down by one order of magnitude. 1.1.4 Н 3. The reactor experiments CHOOZ and PALO VERDE imply that Н 3 ≤.

  5. Missing Neutrinos from the Sun?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Missing Neutrinos from the Sun? Anjan S Joshipura. Research News Volume 2 Issue 8 August 1997 pp 79-81 ... Author Affiliations. Anjan S Joshipura1. Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India.

  6. Neutrino assisted GUT baryogenesis revisited

    Science.gov (United States)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  7. Neutrino-induced nuclear excitations

    Energy Technology Data Exchange (ETDEWEB)

    Belusevic, R. [National Laboratory for High Energy Physics (KEK), Oho 1-1, Tsukuba-shi, Ibaraki-ken, 305 (Japan)

    1995-04-01

    We present an improved, compared to that of Belusevic and Rein, theoretical value of the cross section for the neutrino-induced nuclear excitation of iron. This result is based on a measurement of the photoabsorption cross section on the same nucleus, which can be related to the transverse part of the neutrino cross section via the conserved vector current hypothesis. The longitudinal part is related to the pion absorption cross section through the partial conservation of the axial-vector current, and thus reflects the spontaneous breaking of chiral symmetry. A general formula for the excitation cross section is derived, which is valid for both low and high incident neutrino energies. When caused by a weak neutral current, this process may play an important role in core-collapse supernovae. It can also be detected using low-temperature techniques with the purpose of cosmological and weak-interaction studies. A new estimate of the cross sections for neutrino-induced nonscaling processes described by Belusevic and Rein is discussed in the context of two experiments using iron targets, but at very different beam energies.

  8. CERN fires up neutrino beams

    CERN Multimedia

    2006-01-01

    "CERN has switched on a new neutrino beam, aimed through the earth to the INFN Gran Sasso Laboratories some 730km away near Rome. This is the latest additin to a global endeavour to understand this most elusive of particles and unlock the secrest it carries about the origins and evolution of our Universe." (2 pages)

  9. Golden Jubilee photos: Elusive Neutrinos

    CERN Multimedia

    2004-01-01

    Catching neutrinos isn't easy. They interact only rarely with matter, so they have a good chance of passing straight through the Earth without stopping. However, when they do interact it is possible to see what effect they have on other particles. CERN had been doing this type of research for more than a decade by the time the detector in the picture was finished in 1977. The picture shows Klaus Winter, who worked on the 100 tonne CHARM experiment. CHARM is seen here in the West Area where it was set up with the 1250 tonne CDHS experiment. Researchers used these machines to help develop the Standard Model of particle physics and further our understanding of the structure of the atomic nucleus. The research also helped expand physics into a new field aimed at understanding the peculiar behaviour of neutrinos. There are three 'flavours' of neutrino - the electron, muon, and the tau neutrino. Over a long enough distance, they oscillate from one flavour to another. In 2006, CERN will try to make more progress on...

  10. Neutrino signals from dark matter

    Science.gov (United States)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  11. Academic Training: Neutrino Physics, Present and Future

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29, 30 November, 1st December, from 11:00 to 12:00 - TH Auditorium, bldg 4 - 3 - 006 Neutrino Physics, Present and Future B. KAYSER, Fermilab, USA Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny....

  12. Academic Training: Neutrino Physics, Present and Future

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29, 30 November, 1st December, from 11:00 to 12:00 - TH Auditorium, bldg 4 - 3 - 006 Neutrino Physics, Present and Future B. KAYSER / Fermilab, USA Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny....

  13. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Van Elewyck, Véronique

    2014-01-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed

  14. Probing the Absolute Mass Scale of Neutrinos

    International Nuclear Information System (INIS)

    Formaggio, Joseph A.

    2011-01-01

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  15. Neutrino detector for the nuclear power plant in Belarus and description of the neutrino field

    Science.gov (United States)

    Gilewsky, V. V.

    2017-11-01

    The possibility and desirability of constructing a neutrino detector near the Belarus Nuclear Power Plant are justified. Possible ways of describing the neutrino field are analyzed. A convenient decomposition of the Dirac field into two Majorana ones is found.

  16. Atmospheric neutrinos, νe–νs oscillations and a novel neutrino evolution equation

    International Nuclear Information System (INIS)

    Akhmedov, Evgeny

    2016-01-01

    If a sterile neutrino ν s with an eV-scale mass and a sizeable mixing to the electron neutrino exists, as indicated by the reactor and gallium neutrino anomalies, a strong resonance enhancement of ν e –ν s oscillations of atmospheric neutrinos should occur in the TeV energy range. At these energies neutrino flavour transitions in the 3+1 scheme depend on just one neutrino mass squared difference and are fully described within a 3-flavour oscillation framework. We demonstrate that the flavour transitions of atmospheric ν e can actually be very accurately described in a 2-flavour framework, with neutrino flavour evolution governed by an inhomogeneous Schrödinger-like equation. Evolution equations of this type have not been previously considered in the theory of neutrino oscillations.

  17. Large neutrino mixing from small quark and lepton mixings

    CERN Document Server

    Altarelli, Guido; Masina, Isabella; Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella

    2000-01-01

    We discuss the special class of models where nearly maximal neutrino mixing is produced through the see-saw mechanism, starting from only nearly diagonal matrices for charged leptons, Dirac neutrinos and Majorana right-handed neutrinos.

  18. Introduction to the physics of massive and mixed neutrinos

    CERN Document Server

    Bilenky, Samoil

    2018-01-01

    Small neutrino masses are the first signs of new physics beyond the Standard Model of particle physics. Since the first edition of this textbook appeared in 2010, the Nobel Prize has been awarded "for the discovery of neutrino oscillations, which shows that neutrinos have mass". The measurement of the small neutrino mixing angle $\\theta_{13}$ in 2012, launched the precision stage of the investigation of neutrino oscillations. This measurement now allows such fundamental problems as the three-neutrino mass spectrum - is it normal or inverted? – and the $CP$ violation in the lepton sector to be tackled. In order to understand the origin of small neutrino masses, it remains crucial to reveal the nature of neutrinos with definite masses: are they Dirac neutrinos possessing a conserved lepton number, which distinguishes neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos and antineutrinos? Experiments searching for the neutrinoless double beta decay are presently under way to ans...

  19. Electron capture and the neutrino mass

    Science.gov (United States)

    Faessler, Amand

    2018-02-01

    The electron neutrino mass can be determined by electron capture. One expects the largest influence of the neutrino mass on this decay for a small Q value of Q = 2.8 keV for {}67163\\text{Ho}+e{\\to }66163\\text{Dy}+v. The energy of the Q value is distributed to the emitted neutrino and the excitation of the Dy atom. Thus the energy difference between the Q value and the upper end of the deexcitation spectrum is the electron neutrino mass. The electron wave functions are calculated selfconsistently by the Dirac-Hartree-Fock approach for the bound and the continuum states. To extract the neutrino mass from the spectrum is only possible, if the background is reduced relative to the present situation. The analysis presented here shows, that the determination of the electron neutrino mass by electron capture is difficult, but seems not to be impossible.

  20. Measuring anisotropies in the cosmic neutrino background

    Science.gov (United States)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  1. Search for neutrinos from flaring blazars

    Energy Technology Data Exchange (ETDEWEB)

    Kreter, Michael [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Eberl, Thomas; James, Clancy [ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Kadler, Matthias [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2016-07-01

    Jets from Active Galactic Nuclei (AGN) are among the best candidates for the recently detected extraterrestrial neutrino flux. Hadronic AGN jet-emission models predict a tight correlation between the neutrino flux and the time-variable gamma-ray emission. At the same time, the atmospheric-background (noise) signal, which often dominates in neutrino-astronomical observations, can be substantially reduced by rejecting long-lasting periods of low flux. For these reasons, short high-amplitude gamma-ray flares, as often observed in blazars, can be used to substantially increase the sensitivity of neutrino telescopes in point-source searches. We develop a strategy to search for TeV neutrinos from flaring blazar jets from the TANAMI sample using the ANTARES telescope and Fermi gamma-ray light curves. An unbinned maximum-likelihood method is applied to optimize the probability of a neutrino detection from TANAMI sources.

  2. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  3. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope ANTARES Collaboration

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Capone, A.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Petrovic, J.; Piattelli, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G.V.; Samtleben, D.F.E.; Sanchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schock, F.; Schuller, J.P.; Schussler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vecchi, M.; Vernin, R.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2012-01-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical

  4. Sensitivity of the Baikal neutrino telescope NT-200 to point sources of very high energy neutrinos

    International Nuclear Information System (INIS)

    Krabi, J.; Spiering, C.; Bugaev, E.V.; Klimushin, S.I.

    1991-12-01

    The sensitivity of the deep underwater muon and neutrino detector 'NT-200' in lake Baikal to point sources of extraterrestrial neutrinos is calculated. Results are given for different assumptions on the neutrino source spectrum and the reconstruction capabilities of the detector. (orig.)

  5. Flux normalized charged current neutrino cross sections up to neutrino energies of 260 GeV

    CERN Document Server

    Barish, B C; Blair, R; Bodek, A; Edwards, D N; Edwards, H; Fackler, O; Fisk, E; Fukushima, Y; Jenkins, K; Kerns, Q; Kondo, T; Krafczyk, G; Lee, J; Linsay, P; Ludwig, J; Marsh, W; Messner, R; Nease, D; Sciulli, F; Segler, S; Shaevitz, M; Theriot, D

    1979-01-01

    Preliminary measurements of flux normalized charged current neutrino cross sections are presented. From a sample of 6000 neutrino events with energies between 50 and 260 GeV the authors find that sigma /sub nu //E/sub nu /=(0.67+or-0.04)*10/sup -38/ cm/sup 2//GeV independent of neutrino energy. (0 refs).

  6. Fiche technique du spermogramme et du spermocytogramme ...

    African Journals Online (AJOL)

    En Afrique la stérilité du couple constitue un drame social. Selon l'OMS, environ 8 à 12 % des couples africains sont touchés par une infertilité. La responsabilité masculine dans la stérilité est comprise entre 30 à 40%. Les causes de l'infertilité masculine peuvent être l'impuissance et/ ou l'altération du sperme. L'étude de ...

  7. Neutrino-oscillation search with cosmic-ray neutrinos

    International Nuclear Information System (INIS)

    Ayres, D.S.; Gaisser, T.K.; Mann, A.K.; Shrock, R.E.

    1982-10-01

    It is shown that a sensitive search for neutrino oscillations involving more flavors than just nu/sub e/ and nu/sub μ/ is provided by measurement of the ratio of the total interaction rates of upward- and downward-going cosmic-ray neutrinos within a massive (approx. 10 kiloton) detector. Assuming mixing between all pairs of nu/sub e/, nu/sub μ/ and nu/sub tau/, the experiment is capable of observing time-averaging probabilities /sub t/ of magnitude set by mixing strengths corresponding to, e.g., the d- to s-quark mixing strength, and of reaching the limit δm/sub ij/ 2 identical with vertical bar m/sub i/ 2 -m/sub j/ 2 vertical bar approx. = 10 - 4 eV 2 , where m/sub i/, m/sub j/ are neutrino mass eigenstates, and P/sub e tau/ and p/sub μ tau/ are the probabilities for nu/sub e/ and nu/sub μ/, respectively, to oscillate into nu/sub tau/ after traversing a distance L approx. = diameter of the earth

  8. Massive Neutrinos and the Higgs Mass Window

    CERN Document Server

    Casas, J A; Ibarra, Alejandro; Quirós, Mariano

    2000-01-01

    If neutrino masses are produced by a see-saw mechanism the Standard Model prediction for the Higgs mass window (defined by upper (perturbativity) and lower (stability) bounds) can be substantially affected. Actually the Higgs mass window can close completely, which settles an upper bound on the Majorana mass for the right-handed neutrinos, $M$, ranging from $10^{13}$ GeV for three generations of quasi-degenerate massive neutrinos with $m_\

  9. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  10. Relic neutrino asymmetry evolution from first principles

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.

    1998-09-01

    The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)

  11. Dynamical seesaw mechanism for Dirac neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Valle, José W.F., E-mail: valle@ific.uv.es; Vaquera-Araujo, C.A., E-mail: vaquera@ific.uv.es

    2016-04-10

    So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

  12. Dynamical seesaw mechanism for Dirac neutrinos

    Directory of Open Access Journals (Sweden)

    José W.F. Valle

    2016-04-01

    Full Text Available So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.

  13. Neutrino oscillations in a predictive SUSY GUT

    International Nuclear Information System (INIS)

    Blazek, T.; Raby, S.; Tobe, K.

    1999-01-01

    In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society

  14. Fuzzy dark matter and nonstandard neutrino interactions

    OpenAIRE

    Brdar, Vedran; Kopp, Joachim; Liu, Jia; Prass, Pascal; Wang, Xiao-Ping

    2018-01-01

    We discuss novel ways in which neutrino oscillation experiments can probe dark matter. In particular, we focus on interactions between neutrinos and ultralight (“fuzzy”) dark matter particles with masses of order 10−22 eV. It has been shown previously that such dark matter candidates are phenomenologically successful and might help ameliorate the tension between predicted and observed small scale structures in the Universe. We argue that coherent forward scattering of neutrinos on fuzzy dark...

  15. Neutrino mixing in a grand unified theory

    International Nuclear Information System (INIS)

    Milton, K.; Tanaka, K.

    1980-01-01

    Neutrino mixing in a grand unified theory in which the neutrino mass matrix is determined by the Gell-Mann-Ramond-Slansky mechanism was investigated. With an arbitrary real right-handed Majorana mass matrix which incorporates three neutrino mass scales, the effects of the up-quark mass matrix are found to be dominant and as a result no significant mixing of ν/sub e/ occurs, while ν/sub μ/ - ν/sub γ/ mixing can be substantial

  16. The AMANDA Neutrino Detector - Status report

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.; Bay, R.; Becker, K.; Bergstroem, L.; Bertrand, D.; Besson, D.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Cowen, D.F.; Costa, C.; Dalberg, E.; Desiati, P.; Dewulf, J.; Deyoung, T.; Doksus, P.; Edsjoe, J.; Ekstroem, P.; Feser, T.; Frichter, G.; Gaisser, T.; Goldschmidt, A.; Goobar, A.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hellwig, M.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koepke, L.; Kowalski, M.; Kravchenko, I.; Lamoureux, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Loaiza, P.; Lowder, D.; Ludvig, J.; Marciniewski, P.; Matis, H.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Neunhoeffer, T.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rawlins, K.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Sander, H.; Schaefer, U.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Silvestri, A.; Smoot, G.; Solarz, M.; Spiczak, G.; Spiering, C.; Starinski, N.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    2000-05-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with {approx}650 PMTs will be completed in spring 2000.

  17. MEDITERRANEAN: Underwater neutrinos get off the ground

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Now funded is the initial stage of NESTOR, an imaginative new programme for a dedicated underwater neutrino astroparticle physics laboratory. Located in the international waters off the southernmost corner of continental Europe near the town of Pylos in S.W. Greece, NESTOR (NEutrinos from Supernovae and TeV sources Ocean Range) recalls the wise king of Pylos who counselled the Greeks during the Trojan war, an excellent tradition for new scientific goals of detecting neutrinos

  18. Interaction between neutrinos and nonstationary plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T. [Instituto Superior Tecnico, Lisboa (Portugal). Centro de Electrodinamica; Bingham, R. [Rutherford Appleton Lab., Chilton (United Kingdom); Shukla, P.K. [Bochum Univ. (Germany). Inst. fuer Theoretische Physik; Dawson, J.M. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Tsytovich, V.N. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Obshchej Fiziki

    1995-12-11

    The collective interaction of electron neutrinos with a dense non-stationary plasma is described here. This effect can eventually lead to a significant loss of energy of the neutrinos emitted by a collapsing supernova. The present effect is an exact analogue of the photon acceleration in an ionization front. We present here a classical estimate of the neutrino energy losses and also give the corresponding quantum description. (orig.).

  19. Muon Colliders: the Ultimate Neutrino Beamlines

    International Nuclear Information System (INIS)

    King, Bruce J.

    1999-01-01

    It is shown that muon decays in straight sections of muon collider rings will naturally produce highly collimated neutrino beams that can be several orders of magnitude stronger than the beams at existing accelerators. We discuss possible experimental setups and give a very brief overview of the physics potential from such beamlines. Formulae are given for the neutrino event rates at both short and long baseline neutrino experiments in these beams

  20. Neutrino clustering and the Z-burst model

    International Nuclear Information System (INIS)

    McKellar, B.H.J.; Garbutt, M.; Stephenson, G.J.; Goldman, T.

    2001-01-01

    The possibility that the observed Ultra High Energy Cosmic Rays are generated by high energy neutrinos creating 'Z-bursts' in resonant interactions with the background neutrinos has been proposed, but there are difficulties in generating enough events with reasonable incident neutrino fluxes. We point out that this difficulty is overcome if the background neutrinos have coalesced into 'neutrino clouds' - a possibility previously suggested by some of us in another context. The limitations that this mechanism for the generation of UHECRs places on the high energy neutrino flux, on the masses of the background neutrinos and the characteristics of the neutrino clouds are discussed

  1. Very low-energy neutrino interactions

    Science.gov (United States)

    Suzuki, Toshio

    2015-05-01

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ13 can be determined from abundance ratio of 7Li/11B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on 40Ar and 208Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-40Ar are presented. The need for new theoretical evaluations of the cross sections for ν-208Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  2. Neutrino mass anarchy and the Universe

    Science.gov (United States)

    Lu, Xiaochuan; Murayama, Hitoshi

    2014-08-01

    We study the consequence of the neutrino mass anarchy on cosmology, in particular the total mass of neutrinos and baryon asymmetry through leptogenesis. We require independence of measure in each mass matrix elements in addition to the basis independence, which uniquely picks the Gaussian measure. A simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. We also discuss possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data.

  3. The ANTARES telescope neutrino alert system

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-03-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  4. IceCube: Neutrinos and multimessenger astronomy

    Science.gov (United States)

    Ahlers, Markus; Halzen, Francis

    2017-12-01

    We review the status of the IceCube observations of cosmic neutrinos. We investigate model-independent constraints on the properties of the sources where they originate. Specifically, we evaluate the multimessenger relations connecting neutrino, gamma ray, and cosmic ray observations and conclude that neutrinos are ubiquitous in the nonthermal universe, suggesting a more significant role than previously anticipated. Subsequently, we study the implications of IceCube's upper limits on the flux from individual point sources, as well as on the "guaranteed" flux of cosmogenic neutrinos.

  5. Neutrino emission from nearby supernova progenitors

    Science.gov (United States)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  6. Neutral currents, supernovae neutrinos, and nucleosynthesis

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    The inelastic interactions of neutrinos during stellar collapse and neutron star cooling are discussed. The primary mechanism for dissipative neutrino reactions is nuclear excitation by neutral current scattering, a process not included in standard descriptions of supernovae. Charge-current and neutral current ''preheating'' of iron lying outside the shock front appears to be significant in the few milliseconds near shock breakout. This could help produce a more energetic shock. During the cooling phase, the neutral current interactions of muon and taon neutrinos appear to be responsible for some interesting nucleosynthesis. I discuss two examples the production of fluorine and neutrino-induced r-process nucleosynthesis. 26 refs., 1 fig., 3 tabs

  7. Dark Energy and Right-Handed Neutrinos

    CERN Document Server

    Barbieri, Riccardo; Oliver, S J; Strumia, A; Barbieri, Riccardo; Hall, Lawrence J.; Oliver, Steven J.; Strumia, Alessandro

    2005-01-01

    We explore the possibility that a CP violating phase of the neutrino mass matrix is promoted to a pseudo-Goldstone-boson field and is identified as the quintessence field for Dark Energy. By requiring that the quintessence potential be calculable from a Lagrangian, and that the extreme flatness of the potential be stable under radiative corrections, we are led to an essentially unique model. Lepton number is violated only by Majorana masses of light, right-handed neutrinos, comparable to the Dirac masses that mix right- with left-handed neutrinos. We outline the rich and constrained neutrino phenomenology that results from this proposal.

  8. Searches for heavy neutrinos from Z decays

    International Nuclear Information System (INIS)

    Abreu, P.; Adam, W.; Adami, F.

    1992-01-01

    We have searched for possible fourth family heavy neutrinos, pair produced in Z 0 decays, in a sample of about 112 000 hadronic Z 0 final states collected with the DELPHI detector. For all mixing matrix elements we exclude a new Dirac neutrino light than 44.5 GeV at a 95% confidence level, if the neutrino couples to the electron or muon family, and lighter than 44.0 GeV, if the neutrino couples to the tau family. Depending on the values of the mixing element and to which lepton family the neutrino couples, we obtain mass limits up to 46.2 GeV. For all mixing matrix elements we exclude a new Majorana neutrino lighter than 39.0 GeV, if it couples to the electron or the muon family, and lighter than 38.2 GeV, if it couples to the tau family. Depending on the values of the mixing matrix element and to which lepton family the neutrino couples, we obtain mass limits up to 44.7 GeV. We also exclude stable new Dirac neutrinos lighter than 45.0 GeV and new Majorana neutrinos lighter than 39.5 GeV. (orig.)

  9. Stimulated neutrino conversion in the CERN beam

    CERN Document Server

    González-Garciá, M Concepción

    1996-01-01

    We discuss the possibility of searching for anomalous magnetic transitions of neutrinos in the CERN beam induced by the absorption or emission of low-energy photons in a high-quality resonant cavity such as the LEP radio-frequency cavities. With the attainable sensitivities of the present CERN neutrino detectors, this experiment would impose strong limits on this transition and on the radiative decay lifetime of neutrinos with masses in the range of interest to the resolution of the dark matter solar and atmospheric neutrino puzzles.

  10. Seeking sterile neutrinos in Finslerian cosmology

    Science.gov (United States)

    Wang, Deng; Meng, Xin-He

    2017-11-01

    For the first time, to search for sterile neutrinos in the framework of Finler geometry, we constrain four cosmological models using the most stringent constraint we can provide so far. We find that the Finslerian massless sterile neutrino model can, respectively, give a better cosmological fit to data and alleviate the current H_0 tension more effectively than the other three models. For the Finslerian massless sterile neutrino model, we obtain the constraint N_eff=3.237^{+0.092}_{-0.185}, which is consistent with Δ N_eff > 0 at the 1.03σ confidence level (CL). This gives a very weak hint of massless sterile neutrinos and may imply the non-existence of massless sterile neutrinos in the Finslerian cosmological setting. For the Finslerian massive sterile neutrino model, we obtain the constraints N_eff=3.143^{+0.064}_{-0.066}, which favors Δ N_eff > 0 at the 1.47σ CL, and m_{ν , sterile}^eff sterile neutrinos are also non-existent in the Finslerian scenarios. Consequently, one may conclude that the sterile neutrinos are possibly non-existent in the Finslerian universe. Our results are compatible with the recent results of the neutrino oscillation experiments implemented by the Daya Bay and MINOS collaborations and the cosmic ray one carried out by the IceCube collaboration.

  11. Naturalness of nearly degenerate neutrinos

    CERN Document Server

    Casas, J A; Ibarra, Alejandro; Navarro, I

    1999-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate. We study whether radiative corrections can or cannot be responsible for the small mass splittings, in agreement with all the available experimental data. We perform an exhaustive exploration of the bimaximal mixing scenario, finding that (i) the vacuum oscillations solution to the solar neutrino problem is always excluded; (ii) if the mass matrix is produced by a see-saw mechanism, there are large regions of the parameter space consistent with the large angle MSW solution, providing a natural origin for the Delta m^2_{sol} << Delta m^2_{atm} hierarchy; (iii) the bimaximal structure becomes then stable under radiative corrections. We also provide analytical expressions for the mass splittings and mixing angles and present a particularly simple see-saw ansatz consistent with all the observations.

  12. Neutrino oscillations in deconstructed dimensions

    International Nuclear Information System (INIS)

    Haellgren, Tomas; Ohlsson, Tommy; Seidl, Gerhart

    2005-01-01

    We present a model for neutrino oscillations in the presence of a deconstructed non-gravitational large extra dimension compactified on the boundary of a two-dimensional disk. In the deconstructed phase, sub-mm lattice spacings are generated from the hierarchy of energy scales between ∼ 1 TeV and the usual B-L breaking scale ∼ 10 15 GeV. Here, short-distance cutoffs down to ∼ 1 eV are motivated by the strong coupling behavior of gravity in local discrete extra dimensions. This could make it possible to probe the discretization of extra dimensions and non-trivial field configurations in theory spaces which have only a few sites, i.e., for coarse latticizations. Thus, the model has relevance to present and future precision neutrino oscillation experiments. (author)

  13. Cosmology and CPT violating neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; Salvado, Jordi [Universitat de Valencia-CSIC, Departament de Fisica Teorica y Instituto de Fisica Corpuscular, Burjassot (Spain)

    2017-11-15

    The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment. (orig.)

  14. The Bugey 3 neutrino detector

    Energy Technology Data Exchange (ETDEWEB)

    Abbes, M.; Achkar, B.; Ait-Boubker, S.; Aleksan, R.; Avenier, M.; Bagieu, G.; Ballansat, J.; Barnoux, C.; Bazzoli, R.; Berger, J.; Bermond, M.; Besson, P.; Billault, M.; Boucher, J.; Bouchez, J.; Bouriant, M.; Brissot, R.; Camberlin, B.; Cavaignac, J.F.; Charvin, P.; Collot, J.; Commercon, A.; Cousinou, M.C.; Cussonneau, J.P.; Daguin-Moynot, G.; Declais, Y.; Desanlis, T.; Dubois, J.M.; Dufour, Y.; Farrache, G.; Favier, J.; Gally, Y.; Garciaz, F.; Giacobone, L.; Guerre-Chaley, B.; Jobez, J.P.; Jourde, D.; Kajfasz, E.; De Kerret, H.; Koang, D.H.; Lefievre, B.; Leon, F.; Lesquoy, E.; Mallet, J.; Menthe, A.; Metref, A.; Mullie, J.; Nagy, E.; Obolensky, M.; Ollive, P.; Oriboni, A.; Pessard, H.; Pierre, F.; Poinsignon, J.; Potheau, R.; Provasi, R.; Stutz, A.; Thion, J.; Thomas, J.F.; Wuthrick, J.P. [Laboratoire d`Annecy-le-Vieux de Physique des Particules, LAPP, IN2P3-CNRS, BP 110, F-74941 Annecy-le-Vieux, Cedex (France)]|[Institut des Sciences Nucleaires, IN2P3-CNRS, F-38026 Grenoble, Cedex (France)]|[Centre de Physique des Particules de Marseille, Faculte des Sciences de Luminy, IN2P3-CNRS, F-91288 Marseille, Cedex 09 (France)]|[College de France, Laboratoire de Physique Corpusculaire, IN2P3-CNRS, F-75231 Paris, Cedex 05 (France)]|[CEA, DAPNIA, CE Saclay, F-91191 Gif-sur-Yvette, Cedex (France)

    1996-05-21

    The Bugey 3 experiment, designed to measure oscillations of reactor neutrinos, has used 3 identical detection modules, each of 600 liters, filled with a new {sup 6}Li-loaded liquid scintillator. These modules were located in two shielding bunkers, respectively 15 and 40 m away from the reactor core. We describe here the mechanical characteristics of these modules, their shielding, the associated electronics, the trigger, the acquisition systems, the calibration and monitoring of these detectors, and the Monte Carlo simulations of their response to particles. We conclude on the overall performance of this new detection technique which has allowed the recording of 120 000 neutrino interactions with good neutron efficiency (49%), low background (2.5 evts/hr) and good energy resolution (4% at 4.4 MeV). (orig.).

  15. Les Cahiers du CREAD

    African Journals Online (AJOL)

    Admin

    cette économie. Cette technique d'estimation permet de connaître la taille relative de l'économie informelle et d'en suivre l'évolution au cours du temps. ..... Mémoire de Magister en Sciences économiques, Université de Tlemcen. Bounoua C, (1992). Une lecture critique du secteur informel dans les pays du tiers monde, ...

  16. Bulletin du CRDI #124

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les femmes jouent un rôle important dans les exploitations minières artisanales et à petite échelle en Afrique subsaharienne. De concert ... Couverture du livre: Une vie saine pour les femmes et les enfants vulnérables · Couverture du livre: Entre el activismo y la intervención · Couverture du livre: Revitalizing Health for All.

  17. NCenter wide band neutrino beam

    International Nuclear Information System (INIS)

    Stutte, L.G.

    1985-01-01

    This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab

  18. Neutrino-Induced Hydrogen Burning

    International Nuclear Information System (INIS)

    Kishimoto, Chad T.; Fuller, George M.

    2006-01-01

    The principal hydrogen burning mechanisms that take place in stars have been elucidated and explored for many decades. However, the introduction of a prodigious flux of electron anti-neutrinos would significantly accelerate these mechanisms and change the path toward the production of an α particle. We discuss the nature of such changes in the hydrogen burning mechanisms, and the side effects spawned from such alterations

  19. Chaotic amplification of neutrino chemical potentials by neutrino oscillations in big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. [Department of Physics, Queen`s University, Kingston, Ontario, K7L 3N6 (CANADA)

    1996-08-01

    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a {approximately}1 eV {nu}{sub {ital e}}, the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. {copyright} {ital 1996 The American Physical Society.}

  20. Chaotic amplification of neutrino chemical potentials by neutrino oscillations in big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Shi, X.

    1996-01-01

    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a ∼1 eV ν e , the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. copyright 1996 The American Physical Society