WorldWideScience

Sample records for neutral beam line

  1. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  2. Evaluation of beam-line components for use in a large neutral-beam injector

    International Nuclear Information System (INIS)

    Fink, J.H.

    1977-01-01

    A conceptual model of a neutral-beam injector was used to examine the effect of beam-line components on reactor performance. Criteria were established to optimize a reactor's reliability and minimize its cost

  3. Final design of the neutral beam lines for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Pittenger, L.C.; Valby, L.E.; Stone, R.R.; Pedrotti, L.R.; Denhoy, B.; Yoard, R.

    1979-01-01

    Final design of the neutral beam lines for TFTR has been completed. A prototype has been assembled at Lawrence Berkeley Laboratory and is undergoing testing as part of the Neutral Beam System Test Facility (NBSTF). The final neutral beam line (NBL) configuration differs in several details from that previously reported upon; certain components have been added; and testing of the cryopump system has led to some design simplification. It is these developments which are reported herein

  4. Analysis of particle species evolution in neutral beam injection lines

    International Nuclear Information System (INIS)

    Kim, J.; Haselton, H.H.

    1978-07-01

    Analytic solutions to the rate equations describing the species evolution of a multispecies positive ion beam of hydrogen due to charge exchange and molecular dissociation are derived as a function of the background gas (H 2 ) line density in the neutralizing gas cell and in the drift tube. Using the solutions, calculations are presented for the relative abundance of each species as a function of the gas cell thickness, the reionization loss rates in the drift tube, and the neutral beam power as a function of the beam energy and the species composition of the original ion beam

  5. Doppler-shift spectra of Hα lines from negative-ion-based neutral beams for large helical device neutral beam injection

    International Nuclear Information System (INIS)

    Oka, Y.; Ikeda, K.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Grisham, L.; Umeda, N.; Honda, A.; Ikeda, Y.; Yamamoto, T.

    2006-01-01

    The velocity spectra of the negative-ion-(H - ) based neutral beams are studied in high-performance large-area ion sources during injection into large helical device fusion plasmas. We are conducting systematic observations in standard neutral beam injection to correlate beam spectra with source operating conditions. Almost all of the transmitted beam power was at full acceleration energy (∼170 keV). The small stripping beam component which was produced in the extraction gap was evaluated to be about 9%-22% by amplitude of the measured spectra for the sources in beam lines 1 and 2. H - production uniformity from the spectrum profile was 86%-90% for three sources. For the longest pulse injection during 74 and 128 s, a full energy component tended to decrease with time, while the accelerator gap stripping tail tended to increase slightly with time, which is attributed to beam-induced outgassing in the accelerator. A higher conductance multislot ground grid accelerator appeared to show little growth in the accelerator gap beam stripping during long pulses compared to the conventional multiaperture ground grid. The beam uniformity appeared to vary in part with the Cs uniformity on the plasma grid

  6. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  7. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.

    1978-05-01

    A conceptual design of a neutral beam line based on the neutralization of negative deuterium ions is presented. This work is a detailed design of a complete neutral beam line based on using negative ions from a direct extraction source. Anticipating major technological advancements, beam line components have been scaled including the negative ion sources and components for the direct energy recovery of charged beams and high speed cryogenic pumping. With application to the next step in experimental fusion reactors (TNS), the neutral beam injector system that has been designed provides 10 MW of 200 keV neutral deuterium atoms. Several arms are required for plasma ignition

  8. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  9. Development of the TFTR neutral beam injection system

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.

    1978-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources are being developed by LBL and a prototype beam line which will be tested at Berkeley is being developed as a cooperative effort by LLL and LBL. The implementation of these beam lines has required the development of several associated pieces of hardware. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982

  10. JET neutral beam duct Optical Interlock

    Energy Technology Data Exchange (ETDEWEB)

    Ash, A.D.; Jones, T.T.C.; Surrey, E.; Ćirić, D.; Hall, S.I.; Young, D.; Afzal, M.; Hackett, L.; Day, I.E.; King, R.

    2015-10-15

    Highlights: • Optical Interlocks were installed on the JET NBI system as part of the EP2 upgrade. • The system protects the JET tokamak and NBI systems from thermal load damage. • Balmer-α beam emission is used to monitor the neutral beam-line pressure. • We demonstrate an improved trip delay of 2 ms compared to 50 ms before EP2. - Abstract: The JET Neutral Beam Injection (NBI) system is the most powerful neutral beam plasma heating system currently operating. Optical Interlocks were installed on the beam lines in 2011 for the JET Enhancement Project 2 (EP2), when the heating power was increased from 23 MW to 34 MW. JET NBI has two beam lines. Each has eight positive ion injectors operating in deuterium at 80 kV–125 kV (accelerator voltage) and up to 65 A (beam current). Heating power is delivered through two ducts where the central power density can be more than 100 MW/m{sup 2}. In order to deliver this safely, the beam line pressure should be below 2 × 10{sup −5} mbar otherwise the power load on the duct from the re-ionised fraction of the beam is excessive. The new Optical Interlock monitors the duct pressure by measuring the Balmer-α beam emission (656 nm). This is proportional to the instantaneous beam flux and the duct pressure. Light is collected from a diagnostic window and focused into 1-mm diameter fibres. The Doppler shifted signal is selected using an angle-tuned interference filter. The light is measured by a photo-multiplier module with a logarithmic amplifier. The interlock activation time of 2 ms is sufficient to protect the system from a fully re-ionised beam—a significant improvement on the previous interlock. The dynamic range is sufficient to see bremsstrahlung emission from JET plasma and not saturate during plasma disruptions. For high neutron flux operations the optical fibres within the biological shield can be annealed to 350 °C. A self-test is possible by illuminating the diagnostic window with a test lamp and measuring

  11. Neutral beam data systems at ORNL

    International Nuclear Information System (INIS)

    Stewart, C.R.

    1982-01-01

    A control system for neutral injection beam lines has been designed, implemented, and used with much success. Despite the problems with very high power levels this system is very successful in relieving the operators burdens of slow conditioning, data recording, and mode switching. The use of computer control with multiple beam lines now appears very promising

  12. Guidelines for remote handling maintenance of ITER neutral beam line components: Proposal of an alternate supporting system

    International Nuclear Information System (INIS)

    Cordier, J.J.; Bayetti, P.; Hemsworth, R.; David, O.; Friconneau, J.P.

    2007-01-01

    Remote handling (R/H) maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the assembly and nuclear phase of exploitation of ITER. It must be considered at a very early stage since it significantly impacts on the components design, interfaces management, assembly, maintenance and integration aspects. A large part of the R/H equipment will be procured by the EU Participating Team, including the whole Neutral Beam R/H Equipment. The Neutral Beam Heating and Current Drive system (NB and CD) design is being revisited by the ITER project. A vertical maintenance scheme is presently considered which may significantly impact on the reference design and associated components and lead to a new design of the NB and CD vacuum tank. In addition, NB line components remote handling solutions are being studied. The neutral beam test facility ITER to be built in Europe in the near future is also based on the vertical NB maintenance scheme of beam line components. New design guidelines compliant for both the ITER NB and CD system and the NB test facility proposed by the CEA association are described in the paper

  13. Development of the TFTR neutral beam injection system

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.

    1977-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed for separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982

  14. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1983-01-01

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  15. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Directory of Open Access Journals (Sweden)

    Mitosinkova Klara

    2016-12-01

    Full Text Available The COMPASS tokamak is equipped with two identical neutral beam injectors (NBI for additional plasma heating. They provide a beam of deuterium atoms with a power of up to ~(2 × 300 kW. We show that the neutral beam is not monoenergetic but contains several energy components. An accurate knowledge of the neutral beam power in each individual energy component is essential for a detailed description of the beam- -plasma interaction and better understanding of the NBI heating processes in the COMPASS tokamak. This paper describes the determination of individual energy components in the neutral beam from intensities of the Doppler-shifted Dα lines, which are measured by a high-resolution spectrometer viewing the neutral beam-line at the exit of NBI. Furthermore, the divergence of beamlets escaping single aperture of the last accelerating grid is deduced from the width of the Doppler-shifted lines. Recently, one of the NBI systems was modified by the removal of the Faraday copper shield from the ion source. The comparison of the beam composition and the beamlet divergence before and after this modification is also presented.

  16. Heat flux estimation for neutral beam line components using inverse heat conduction procedures

    International Nuclear Information System (INIS)

    Bharathi, P.; Prahlad, V.; Quereshi, K.; Bansal, L.K.; Rambabu, S.; Sharma, S.K.; Parmar, S.; Patel, P.J.; Baruah, U.K.; Patel, Ravi

    2015-01-01

    In this work, we describe and compare the analytical IHCP methods such-as semi-infinite method, finite slab method and a numerical method called Stolz method for estimating the incident heat flux from the experimentally measured temperature data. In case of analytical methods, the finite time response of the sensor is needed to be accounted for an accurate power density estimations. The modified models corrected for the response time of the sensors are also discussed in this paper. Application of these methods using example temperature waveforms obtained on the SST1-NBI test stand is presented and discussed. For choosing the suitable method for the calorimetry on beam line components, the estimated results are also validated using the ANSYS analysis done on these beam Iine components. As a conclusion, the finite slab method corrected for the influence of the sensor response time found out to be the most suitable method for the inversion of temperature data in case of neutral beam line components

  17. TFTR neutral beam injection system conceptual design

    International Nuclear Information System (INIS)

    1975-01-01

    Three subsystems are described in the following chapters: (1) Neutral Beam Injection Line; (2) Power Supplies; and (3) Controls. Each chapter contains two sections: (1) Functions and Design Requirements; this is a brief listing of the requirements of components of the subsystem. (2) Design Description; this section describes the design and cost estimates. The overall performance requirements of the neutral beam injection system are summarized. (MOW)

  18. ORNL 150 keV neutral beam test facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Kim, J.; Menon, M.M.; Schilling, G.

    1977-01-01

    The 150 keV neutral beam test facility provides for the testing and development of neutral beam injectors and beam systems of the class that will be needed for the Tokamak Fusion Test Reactor (TFTR) and The Next Step (TNS). The test facility can simulate a complete beam line injection system and can provide a wide range of experimental operating conditions. Herein is offered a general description of the facility's capabilities and a discussion of present system performance

  19. High power neutral beam injection in LHD

    International Nuclear Information System (INIS)

    Tsumori, K.; Takeiri, Y.; Nagaoka, K.

    2005-01-01

    The results of high power injection with a neutral beam injection (NBI) system for the large helical device (LHD) are reported. The system consists of three beam-lines, and two hydrogen negative ion (H - ion) sources are installed in each beam-line. In order to improve the injection power, the new beam accelerator with multi-slot grounded grid (MSGG) has been developed and applied to one of the beam-lines. Using the accelerator, the maximum powers of 5.7 MW were achieved in 2003 and 2004, and the energy of 189 keV reached at maximum. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-lines in 2003. Although the accelerator had an advantage in high power beam injection, it involved a demerit in the beam focal condition. The disadvantage was resolved by modifying the aperture shapes of the steering grid. (author)

  20. Data acquisition system for medium power neutral beam test facility

    International Nuclear Information System (INIS)

    Stewart, C.R. Jr.; Francis, J.E. Jr.; Hammons, C.E.; Dagenhart, W.K.

    1978-06-01

    The Medium Power Neutral Beam Test Facility at Oak Ridge National Laboratory was constructed in order to develop, test, and condition powerful neutral beam lines for the Princeton Large Torus experiment at Princeton Plasma Physics Laboratory. The data acquisition system for the test stand monitors source performance, beam characteristics, and power deposition profiles to determine if the beam line is operating up to its design specifications. The speed of the computer system is utilized to provide near-real-time analysis of experimental data. Analysis of the data is presented as numerical tabulation and graphic display

  1. Cryogenic supplies for the TFTR neutral beam line cryopanels

    International Nuclear Information System (INIS)

    Pinter, G.

    1977-01-01

    Cryocondensing panels will be used for the Neutral Beam Lines of the TFTR to satisfy a pumping speed requirement of 2.5 x 10 6 l/s. The cryocondensing panels are fed by liquid helium (LHe), boiling at selectable temperatures of 4.5 0 K or 3.8 0 K. Liquid nitrogen (LN 2 ) panels and chevrons thermally shield the LHe panel. The closed-loop LHe supply system and the open loop LN 2 system are discussed. The helium refrigerator of minimum 1070-W capacity, together with its distribution system, and the nitrogen distribution system in the ton/hour LN 2 range is presented. Problems and their solutions in connection with the LHe system, including the distribution over a distance of 500 feet of large quantities of liquid/gas mixtures with load variations over the range of about 3 : 1, and the economies of various types of distribution lines (passive, pumped, shielded, combined), are described. The system design passed the preliminary phase. Design features and auxiliary equipment to assure dispersion of large quantities of nitrogen into the atmosphere and to permit operation under degraded cryogenic helium refrigerator performance are also discussed in Design Considerations

  2. Neutral beam monitoring

    International Nuclear Information System (INIS)

    Fink, J.H.

    1979-01-01

    A neutral beam generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange partially neutralizes the high energy beam, is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are identified. (U.K.)

  3. Bunched beam neutralization

    International Nuclear Information System (INIS)

    Gammel, G.M.; Maschke, A.W.; Mobley, R.M.

    1979-01-01

    One of the steps involved in producing an intense ion beam from conventional accelerators for Heavy Ion Fusion (HIF) is beam bunching. To maintain space charge neutralized transport, neutralization must occur more quickly as the beam bunches. It has been demonstrated at BNL that a 60 mA proton beam from a 750 kV Cockcroft--Walton can be neutralized within a microsecond. The special problem in HIF is that the neutralization must occur in a time scale of nanoseconds. To study neutralization on a faster time scale, a 40 mA, 450 kV proton beam was bunched at 16 MHz. A biased Faraday cup sampled the bunched beam at the position where maximum bunching was nominally expected, about 2.5 meters from the buncher. Part of the drift region, about 1.8 meters, was occupied by a series of Gabor lenses. In addition to enhancing beam transport by transverse focussing, the background cloud of electrons in the lenses provided an extra degree of neutralization. With no lens, the best bunch factor was at least 20. Bunch factor is defined here as the ratio of the distance between bunches to the FWHM bunch length. With the lens, it was hoped that the increased plasma frequency would decrease the neutralization time and cause an increase in the bunch factor. In fact, with the lens, the instantaneous current increased about three times, but the bunch factor dropped to about 10. Even with the lens, the FWHM of the bunches at the position of maximum bunching was still comparable to or less than the oscillation period of the surrounding electron plasma. Thus, the electron density in the lens must increase before neutralization could be effective in this case, or bunching should be done at a lower frequency

  4. Personal computer applications in DIII-D neutral beam operation

    International Nuclear Information System (INIS)

    Glad, A.S.

    1986-01-01

    An IBM PC AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for on-line shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host minicomputers, support multitasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e., LOTUS 123, PC PLOT, etc.), host communications software (i.e., PCLink, KERMIT, etc.), and applications developed software utilizing fortran and basIc. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for on-line control and analysis

  5. Modeling and experimental studies of the DIII-D neutral beam system

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, B., E-mail: crowleyb@fusion.gat.com; Rauch, J.; Scoville, J.T.

    2015-10-15

    Highlights: • The issues surrounding proposals to increase neutral beam power are evaluated. • A tetrode version of the DIII-D ion source is modeled. • A neutralization efficiency of the DIII-D neutral beam is measured. • A power loading model of the neutral beam line is presented. - Abstract: In this paper, we present the results of beam physics experimental and modeling efforts aimed at learning from and building on the experience of the DIII-D off-axis neutral beam upgrade and other neutral beam system upgrades such as those at JET. The modeling effort includes electrostatic accelerator modeling (using a Poisson solver), gas dynamics modeling for the neutralizer and beam transport models for the beamline. Experimentally, spectroscopic and calorimetric techniques are used to evaluate the system performance. We seek to understand and ameliorate problems such as anomalous power deposition, originating from misdirected or excessively divergent beam particles, on a number of beamline components. We qualitatively and quantitatively evaluate possible project risks such as neutralization efficiency deficit and high voltage hold off associated with increasing the beam energy up to 105 keV.

  6. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  7. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  8. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  9. BNL neutral beam development group. Progress report FY 1980

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1981-01-01

    The objective of the BNL Neutral Beam Program is to develop a 250 keV neutral beam system suitable for heating and other experiments in toroidal or mirror plasma devices. The system is based on acceleration and neutralization of negative hydrogen ions produced in and directly extracted from a source. The objective of source studies is to develop a module delivering 10 A of negative ion currents, with pulse lengths ranging from several seconds duration up to a steady-state operation. The extracted current density should be several hundred mA/cm 2 , and the source should operate with power and gas efficiencies acceptable from the beam line point of view. The objective of beam extraction and transport studies is to design a system matching the 10 A source module to the acceleration stage. The 250 keV acceleration studies cover several options, including a d.c. close-coupled system, a large aperture d.c. system matched to the source by a bending magnet, a multiaperture d.c. system following a multiaperture strong focusing transport line, and a MEQALAC structure

  10. Mechanical design for modification of a neutral beam for off-axis injection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: anderson@fusion.gat.com; Hong, R.-M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    DIII-D is planning to implement off-axis neutral beam current drive by neutral beam injection through a midplane port at angles up to 15 deg. from horizontal. To accommodate the beam-line tilting, the following modifications are planned: (1) move the beam line away from the tokamak by 0.39 m to allow for a 0.68 m inside diameter welded bellows of necessary length to provide 15 deg. of vertical motion between the vessel port and the beam line; (2) reduce the vertical height of the injected beam from 0.48 m to 0.43 m to provide clearance for the inclined beam as it passes through the length of the vessel port; (3) add a linkage system between the front of the beam line and the tokamak to restrain the NB against the vacuum loading from the bellows while maintaining zero roll about the axis of the beam line as it is moved about a virtual pivot axis; (4) add a forward and two rear vertical actuators for raising and lowering the beam line (These actuators require coordinated position control to rotate the NB about a virtual pivot axis.); (5) incorporate lateral restraint to comply with seismic requirements.

  11. Feasibility of a fast optical pressure interlock for the ITER neutral beam injectors

    International Nuclear Information System (INIS)

    Ash, Andrew; Surrey, Elizabeth

    2009-01-01

    The feasibility of using Balmer-α emission for a high-speed pressure diagnostic and beam interlock for the ITER neutral beam heating system is investigated. An interlock is needed to prevent excessive re-ionisation of the neutral beam when rapid excursions of pressure occur in either the electrostatic residual ion dump (ERID), or the neutral beam duct (NBD). The re-ionised fraction of the beam, will be deflected by stray tokamak fields, potentially causing excessive thermal loads on beam line components. Experience from JET indicates that a response time of order 100 μs is required in order to prevent fast pressure excursions. Fast penning gauges have a time response of around 30-50 ms, however, a faster response (around 1 μs) is possible by monitoring the H α (656.3 nm)/D α (656.1 nm) emission from collisional excitation of the background gas and neutral beam. Published total cross-sections are used to calculate a signal of 3.5x10 13 -3.0x10 17 photons s -1 m -2 sr -1 for normal conditions. This signal must be distinguished from the background light of the tokamak plasma (line emission and bremsstrahlung). The beam emission is Doppler shifted by up to 21 nm (D operation) and up to 27 nm (H operation) depending on angle of observation and this can be used to help distinguish against background line emission. The distribution of background light along the beam line is calculated with a two-dimensional radiosity code, solving the equilibrium energy balance within the beam line enclosure. The Balmer-α signal and background signal due to bremsstrahlung are compared for a 500-MW reference plasma.

  12. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  13. Plasma neutralizer for H- beams

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1977-01-01

    Neutralization of H - beams by a hydrogen plasma is discussed. Optimum target thickness and maximum neutralization efficiency as a function of the fraction of the hydrogen target gas ionized is calculated for different H - beam energies. Also, the variation of neutralization efficiency with respect to target thickness for different H - beam energies is computed. The dispersion of the neutralized beam by a magnetic field for different energies and different values of B . z is found. Finally, a type of plasma jet is proposed, which may be suitable for a compact H - neutralizer

  14. Evidence for neutral beam injected oxygen impurities in 2XIIB

    International Nuclear Information System (INIS)

    Drake, R.P.; Moos, H.W.

    1978-01-01

    A series of experiments indicates that the principal source of impurities in the 2XIIB mirror confinement plasma experiment at Lawrence Livermore Laboratory is oxygen in the neutral beams. The dependence of 0 II 539 A emissions on neutral beam current, spatial scans of oxygen emissions, impurity injection experiments, spectral scans of the 0 VI 1032 A line, and other experiments all support this conclusion

  15. Mechanical engineering problems in the TFTR neutral beam system

    International Nuclear Information System (INIS)

    Cannon, D.D.; Bryant, E.H.; Johnson, R.L.; Kim, J.; Queen, C.C.; Schilling, G.

    1975-01-01

    A conceptual design of a prototype beam line for the TFTR Neutral Beam System has been developed. The basic components have been defined, cost estimates prepared, and the necessary development programs identified. Four major mechanical engineering problems, potential solutions and the required development programs are discussed

  16. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Foote, J.H.; Molvik, A.W.; Turner, W.C.

    1982-01-01

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  17. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  18. Progress in computer-assisted diagnosis and control of neutral beam lines

    International Nuclear Information System (INIS)

    Theil, E.; Elischer, V.; Fiddler, J.; Jacobs, N.J.D.; Jacobson, V.; Lawhorn, R.; Uber, D.; Wilner, D.

    1981-01-01

    This paper discusses the principles that have guided the development of a computerized diagnostic and control system for both the Neutral Beam Systems Test Facility at Lawrence Berkeley Laboratory and the Doublet III neutral beams at the General Atomic Company. The emphasis is not on the particular details of the implementation, but on general considerations which have influenced the design criteria for the system. Foremost among these are the requirements of an appropriate human interface to the system, and effective use of a relational data base. Examples are used to illustrate how these principles are carried out in practice. A systems view of diagnostic programs is suggested in the light of our experience. (author)

  19. Progress in computer-assisted diagnosis and control of neutral beam lines

    International Nuclear Information System (INIS)

    Theil, E.; Elischer, V.; Fiddler, J.; Jacobs, N.J.D.; Jacobson, V.; Lawhorn, R.; Uber, D.; Wilner, D.

    1980-09-01

    This paper discusses the principles that have guided the development of a computerized diagnostic and control system for both the Neutral Beam Systems Test Facility at Lawrence Berkeley Laboratory and the Doublet III neutral beams at the General Atomic Company. The emphasis is not on the particular details of the implementation, but on general considerations which have influenced the design criteria for the system. Foremost among these are the requirements of an appropriate human interface to the system, and effective use of a relational data base. Examples are used to illustrate how these principles are carried out in practice. A systems view of diagnostic programs is suggested in the light of our experience

  20. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  1. Progress report on the neutral beam radiation hardening study

    International Nuclear Information System (INIS)

    Lee, J.D.; Condit, R.H.; Hoenig, C.L.; Wilcox, T.P.; Erickson, J.

    1978-01-01

    A neutral beam injector as presently conceived directly views the plasma it is sustaining. In turn the injector is exposed to the primary fusion neutrons plus secondary neutrons and gammas streaming back up the neutral beam duct. The intent of this work is to examine representative beam lines to see how performance and lifetimes could be affected by this radiation environment and to determine how unacceptable effects could be alleviated. Potential radiation induced problems addressed in this report have been limited to: (1) overheating of cryopanels and insulators, (2) gamma flux induced electrical conductivity increase of insulators, and (3) neutron and gamma fluence induced damage to insulator materials

  2. Spectroscopic determination of species and divergence of hydrogen beams in the W7AS neutral beam injectors

    International Nuclear Information System (INIS)

    Ott, W.; Penningsfeld, F.P.

    1993-01-01

    Light-collecting systems are installed at the neutralizers of the W7AS neutral beam lines. They receive light emitted at an angle of 120 to the beam axes. Hydrogen beams are analyzed at around the wavelength of H α (6562.8 A), helium beams at around 5875.6 A. The hydrogen spectra show the well-known shifted and unshifted lines emitted by the different beam species and the background gas. The line widths are mainly determined by the beam focussing, the beamlet divergence and the apparatus profile. Knowing the focussing properties of the ion source and the instrument function of the spectrometer, one can determine the beamlet divergence. The spectrum is approximated by a series of Gaussians using least-squares fitting methods and evaluated with respect to beam species and divergence. Evaluation of the spectra proved difficult because they show a structured background, which is observed in the whole range of the Doppler shift. It is shown with helium beams that the background is caused by wall reflection of light emitted by the beam in the whole angular range between 0 and 180 . The knowledge of the background structure gained with He beams allows interpretation of the more complicated hydrogen spectra. (orig.)

  3. TFTR neutral beam power system

    International Nuclear Information System (INIS)

    Deitz, A.; Murray, H.; Winje, R.

    1977-01-01

    The TFTR NB System will be composed of four beam lines, each containing three ion sources presently being developed for TFTR by the Lawrence Berkeley Laboratories (LBL). The Neutral Beam Power System (NBPS) will provide the necessary power required to operate these Ion Sources in both an experimental or operational mode as well as test mode. This paper describes the technical as well as the administrative/management aspects involved in the development and building of this system. The NBPS will combine the aspects of HV pulse (120 kV) and long pulse width (0.5 sec) together to produce a high power system that is unique in the Electrical Engineering field

  4. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  5. An Indian test facility to characterise diagnostic neutral beam for ITER

    International Nuclear Information System (INIS)

    Singh, M.J.; Bandyopadhyay, M.; Rotti, C.; Singh, N.P.; Shah, Sejal; Bansal, G.; Gahlaut, A.; Soni, J.; Lakdawala, H.; Waghela, Harshad; Ahmed, I.; Roopesh, G.; Baruah, U.K.; Chakraborty, A.K.

    2011-01-01

    The diagnostic neutral beam (DNB) line shall be used to diagnose the He ash content in the D-T phase of the ITER machine using the charge exchange recombination spectroscopy (CXRS). Implementation of a successful DNB at ITER requires several challenges related to the production, neutralization and transport of the neutral beam over path lengths of 20.665 m, to be overcome. The delivery is aided if the above effects are tested prior to onsite commissioning. As DNB is a procurement package for INDIA, an ITER approved Indian test facility, INTF, is under construction at Institute for Plasma Research (IPR), India and is envisaged to be operational in 2015. The timeline for this facility is synchronized with the RADI, ELISE (IPP, Garching), SPIDER (RFX, Padova) in a manner that best utilization of configurational inputs available from them are incorporated in the design. This paper describes the facility in detail and discusses the experiments planned to optimise the beam transmission and testing of the beam line components using various diagnostics.

  6. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Shuff, R., E-mail: robin.shuff@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Van Uffelen, M.; Damiani, C. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Tesini, A.; Choi, C.-H. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Meek, R. [Oxford Technologies Limited, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom)

    2014-10-15

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper.

  7. Progress in the design of the ITER Neutral Beam cell Remote Handling System

    International Nuclear Information System (INIS)

    Shuff, R.; Van Uffelen, M.; Damiani, C.; Tesini, A.; Choi, C.-H.; Meek, R.

    2014-01-01

    The ITER Neutral Beam cell will include a suite of Remote Handling equipment for maintenance tasks. This paper summarises the current status and recent developments in the design of the ITER Neutral Beam Remote Handling System. Its concept design was successfully completed in July 2012 by CCFE in the frame of a grant agreement with F4E, in collaboration with the ITER Organisation, including major systems like monorail crane, Beam Line Transporter, beam source equipment, upper port and neutron shield equipment and associated tooling. Research and development activities are now underway on the monorail crane radiation hardened on-board control system and first of a kind remote pipe and lip seal maintenance tooling for the beam line vessel, reported in this paper

  8. Neutral beam heating in stellarators: a numerical approach

    International Nuclear Information System (INIS)

    Hokin, S.A.; Rome, J.A.; Hender, T.C.; Fowler, R.H.

    1983-03-01

    Calculation of neutral beam deposition and heating in stellarators is complicated by the twisty stellarator geometry and by the usual beam focusing, divergence, and cross-sectional shape considerations. A new deposition code has been written that takes all of this geometry into account. A unique feature of this code is that it gives particle deposition in field-line coordinates, enabling the thermalization problem to be solved more efficiently

  9. Remote sensing of a near-Earth neutral line during the 5 October 2000 substorm

    Directory of Open Access Journals (Sweden)

    D. Nagata

    2006-12-01

    Full Text Available In this paper we examined the continuous motions of a near-Earth neutral line during the recovery phase of the 5 October 2000 substorm. Estimation was based on the PSBL ion beam model proposed by Onsager (1991 and the Geotail observations. Estimated distances from the Earth ranged from 20 to 60 RE and retreated tailward at velocities of 250 and 300 km/s. This event initiated with the arrival of solar wind discontinuity. Simultaneous observations of electromagnetic field and electrons indicate the existence of earthward propagating waves associated with field-aligned currents. Based on these observations, we suggest that the source of the PSBL ion beams was the retreating near-Earth neutral line formed by the compression of the magnetosphere. Two scenarios of near-Earth neutral line motion in the tail dynamics are also proposed. One is the formation of plural neutral lines to create a long plasmoid. The other is the oscillation of one neutral line between the near-Earth region and the mid-tail stagnant plasmoid.

  10. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  11. Guidelines for Remote Handling Maintenance of ITER Neutral Beam Components

    International Nuclear Information System (INIS)

    Cordier, J.-J.; Hemsworth, R.; Bayetti, P.

    2006-01-01

    Remote handling maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the nuclear phase of exploitation of ITER, and be considered at a very early stage since it significantly impacts on the components design, interfaces management and integration business. A large part of the R/H equipment will be procured by the EU partner, in particular the whole Neutral Beam Remote Handling (RH) equipment package. A great deal of work has already been done in this field during the EDA phase of ITER project, but improvements and alternative option that are now proposed by ITER lead to added RH and maintenance engineering studies. The Neutral Beam Heating -and- Current Drive system 1 is being revisited by the ITER project. The vertical maintenance scheme that is presently considered by ITER, may significantly impact on the reference design of the Neutral Beam (NB) system and associated components and lead to new design of the NB box itself. In addition, revision of both NB cell radiation level zoning and remote handling classification of the beam line injector will also significantly impact on components design and maintenance. Based on the experience gained on the vertical maintenance scheme, developed in detail for the ITER Neutral Beam Test Facility 2 to be built in Europe in a near future, guidelines for the revision of the design and preliminary feasibility study of the remote handling vertical maintenance scheme of beam line components are described in the paper. A maintenance option for the SINGAP3 accelerator is also presented. (author)

  12. ORNL neutral-beam program in 1978

    International Nuclear Information System (INIS)

    Whealton, J.H.

    1982-12-01

    This report was presented at the ion source workshop held at Culham Laboratory, Abingdon, Oxfordshire, in 1978. Because the proceedings of that conference are unavailable, and because the material in this report is still not to be found elsewhere, it is issued as a laboratory report. The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G.G. Kelley and O.B. Morgan. We describe the ion sources under development at this laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  13. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  14. Ion-beam Plasma Neutralization Interaction Images

    International Nuclear Information System (INIS)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-01

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented

  15. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  16. Temporal behavior of neutral particle fluxes in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.

    1989-09-01

    Data from an E parallel B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs

  17. Efficient, radiation-hardened, 400- and 800-keV neutral-beam injection systems

    International Nuclear Information System (INIS)

    Anderson, O.A.; Cooper, W.S.; Fink, J.A.; Goldberg, D.A.; Ruby, L.; Soroka, L.; Tanabe, J.

    1983-04-01

    We present designs for two negative-ion based neutral beam lines with reactor-level power output. Both beam lines make use of such technologically advanced features as high-current-density surface-conversion ion sources, transverse-field-focussing (TFF) acceleration and transport, and laser photodetachment. For the second of these designs, we also presented detailed beam and vacuum calculations, as well as a brief description of a proof-of-principle test system currently under development

  18. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1986-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500 to 700 keV are needed for this device

  19. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1987-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500-700 keV are needed for this device

  20. Computer system for the beam line data processing at JT-60 prototype neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kawai, Mikito; Ohara, Yoshihiro

    1987-08-01

    The present report describes the hard and soft wares of the data acquisition computer system for the prototype neutral injector unit for JT-60. In order to operate the unit, more than hundreds of signals of the beam line components have to be measured. These are mainly differential thermometers for the coolant waters and thermocouples for the beam dump components but not include those for the cryo system. Since the unit operates in a series of pulses, the measurement should be conducted very quickly in order to ensure the simultaneity of large number of the measured data. The present system actualize fast data acquisition using a small computer of 128 kB and measuring instruments connected through the bus. The system is connected to the JAERI computer center since the data capacity is fairly large to completely process them by the small computer. Therefore the measured data can be transferred to the computer center to calculate there, and the results can be received. After the system was completed the computer quickly print out the power flow data, which needed much work to calculate with hands. This system was very useful. It enhanced the experiments at the unit and reduced the labor. It enables us to early demonstrate the rated operation of the unit and to accurately estimate such operation data of the JT-60 NBI as the injection power. (author)

  1. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Targets for high power neutral beams

    International Nuclear Information System (INIS)

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  3. Computerized operation of the DIII-D neutral beams

    International Nuclear Information System (INIS)

    Glad, A.S.; Tooker, J.F.

    1986-01-01

    Operation of the DIII-D neutral beams utilizes computerized control to provide routine tokamak beam heating shots and an effective method for automatic ion source operation. Computerized control reduces operational complexity, thus providing consistent reliability and availability of beams and a significant reduction in the the costs of routine operation. The objectives in implementing computerized control for operation were: (1) to improve operator efficiency for controlling multiple beam lines and increasing beam availability through standard procedures, (2) to provide a simplified scheme that operators and coordinators can construct and maintain, and (3) to provide a single integrated mechanism for both tokamak operation and automatic source conditioning. The years of experience in operating neutral beams at Doublet III provided the data necessary to meet the objectives. The method for computerized control consisted of three integrated functions: (1) a structured command language was implemented to provide the mechanism for automatically sequencing beams, (2) a historical file was constructed from the operational parameters to characterize the ion source, and consists of data from approximately 100,000 beam shots, and (3) procedures were developed integrating the language to the historical file for normal operation and source conditioning. This paper describes the method for sequencing beams automatically, the structure of the historical data file, and the procedures which integrate the historical data with tokamak operation and automatic source conditioning

  4. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-03-01

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  5. Neutral-beam-heating applications and development

    International Nuclear Information System (INIS)

    Menon, M.M.

    1981-01-01

    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  6. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  7. Neutral beam in ALVAND IIC tokamak

    International Nuclear Information System (INIS)

    Ghrannevisse, M.; Moradshahi, M.; Avakian, M.

    1992-01-01

    Neutral beams have a wide application in tokamak experiments. It used to heat; fuel; adjust electric potentials in plasmas and diagnose particles densities and momentum distributions. It may be used to sustain currents in tokamaks to extend the pulse length. A 5 KV; 500 mA ion source has been constructed by plasma physics group, AEOI and it used to produce plasma and study the plasma parameters. Recently this ion source has been neutralized and it adapted to a neutral beam source; and it used to heat a cylindrical DC plasma and the plasma of ALVAND IIC Tokamak which is a small research tokamak with a minor radius of 12.6 cm, and a major radius of 45.5 cm. In this paper we report the neutralization of the ion beam and the results obtained by injection of this neutral beam into plasmas. (author) 2 refs., 4 figs

  8. Soviet exoatmospheric neutral particle beam research

    International Nuclear Information System (INIS)

    Leiss, J.E.; Abrams, R.H.; Ehlers, K.W.; Farrell, J.A.; Gillespie, G.H.; Jameson, R.A.; Keefe, D.; Parker, R.K.

    1988-02-01

    This technical assessment was performed by a panel of eight U.S. scientists and engineers who are familiar with Soviet research through their own research experience, their knowledge of the published scientific literature and conference proceedings, and personal contacts with Soviet scientists and other foreign colleagues. Most of the technical components of a neutral particle beam generating system including the ion source, the accelerator, the accelerator radio frequency power supply, the beam conditioning and aiming system, and the beam neutralizer system are addressed. It does not address a number of other areas important to an exoatmospheric neutral beam system

  9. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  10. Optimization of a constrained linear monochromator design for neutral atom beams

    International Nuclear Information System (INIS)

    Kaltenbacher, Thomas

    2016-01-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.

  11. Optimization of a constrained linear monochromator design for neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbacher, Thomas

    2016-04-15

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.

  12. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  13. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  14. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  15. Beam-induced pressure variations in a TFTR neutral-beam injector

    International Nuclear Information System (INIS)

    Willis, J.E.; Berkner, K.H.

    1981-10-01

    In neutral-beam injection systems either all or part of the gas flow into the neutralizer comes from the plasma source. When the beam is switched on, ions from the plasma source, which used to contribute to the gas flow, are converted to an energetic beam and are pumped away: hence reducing the gas input to the neutralizer. The large volume of the neutralizer and its high conductance damp out rapid changes; for example, when the gas to the source is first turned on, there is a 230 msec exponential rise time associated with pressure in the neutralizer. The neutralizer in turn acts as a source of gas to the first chamber and the first chamber to the second and so on. Beam dumps become additional sources of gas in the second chamber and target tank as gas molecules are collisionally desorbed from the surface of the dump. A simple analytical model (the equivalent of an electrical RC circuit) of the volumes and conductances of the system has been used to describe the pressure variations. The use of time dependent sources terms in the model gives an estimate of the desorption rate from the dumps and its time variation during a beam pulse

  16. Intense ion beam neutralization using underdense background plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berdanier, William [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Roy, Prabir K. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kaganovich, Igor [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  17. Recent DIII-D neutral beam calibration results

    International Nuclear Information System (INIS)

    Wight, J.; Hong, R.M.; Phillips, J.

    1991-10-01

    Injected DIII-D neutral beam power is estimated based on three principle quantities: the fraction of ion beam that is neutralized in the neutralizer gas cell, the beamline transmission efficiency, and the fraction of beam reionized in the drift duct. System changes in the past few years have included a new gradient grid voltage operating point, ion source arc regulation, routine deuterium operations and new neutralizer gas flow controllers. Additionally, beam diagnostics have been improved and better calibrated. To properly characterize the beams the principle quantities have been re-measured. Two diagnostics are primarily used to measure the quantities. The beamline waterflow calorimetry system measures the neutralization efficiency and the beamline transmission efficiency, and the target tile thermocouples measure the reionization loss. An additional diagnostic, the target tile pyrometer, confirmed the reionization loss measurement. Descriptions and results of these measurements will be presented. 4 refs., 5 figs., 2 tabs

  18. Positive ion portion of the LBL/LLL Neutral Beam Program

    International Nuclear Information System (INIS)

    Pyle, R.V.; Baker, W.R.; Anderson, O.A.

    1978-06-01

    The positive ion portion of the Neutral Beam Development Program at the Lawrence Berkeley (LBL) and Livermore (LLL) Laboratories has two purposes: (a) to carry out general research and development in a timely way to assure that users' needs can be met in principle, and (b) to carry out specific development for users. To meet the first requirement, we have programs to develop sources capable of producing beams with high (85%) atomic fractions, long pulse lengths (10 sec to DC), and at beam energies up to 150 keV. We are also pursuing the development of on-line computer diagnostics and controls, the sophisticated high-power electronics required by neutral beam systems, and energy recovery. To meet the second requirement, we are developing prototype source modules to meet the requirements of the TMX and MFTF experiments at Lawrence Livermore Laboratory, the TFTR experiment at the Princeton Plasma Physics Laboratory, and the Doublet III experiment at General Atomic Co. The Lawrence Laboratories are also constructing and will demonstrate at LBL a complete prototype neutral injection system for TFTR, and are designing a similar system for Doublet III

  19. Mechanical design criteria for continuously operating neutral beams

    International Nuclear Information System (INIS)

    Vosen, S.R.; Bender, D.J.; Fink, J.H.; Lee, J.D.

    1977-01-01

    A schematic of a neutral beam injector is shown. Neutral gas is injected into the ion source, where a discharge ionizes the gas. The ions are drawn from the source by an extractor grid and then accelerated to full energy by the accel grids. After acceleration the ions pass through the neutralizer cell. Once through the neutralizer cell, the beam consists of neutrals and ions. The ions traveling with the beam are space charge neutralized by background electrons. The grid which precedes the direct converter is negatively charged and acts to separate the electrons from the rest of the beam. As a result of the beam's uncompensated space charge the remaining ions spread out from the beam to be collected at the direct converter. This paper presents a generalized analysis which will be useful in determining effects of energy and particle fluxes on the long-term performance of the grids

  20. Fusion Energy Division automation of the ISX-B neutral beams

    International Nuclear Information System (INIS)

    Bates, S.C.; Hanna, P.C.

    1982-06-01

    Operation of the two neutral beams on the ISX-B tokamak has been fully automated for an injected power up to 2 MW. A PDP 11/34 FORTRAN program conditions and injects the beams using commercial CAMAC hardware and ad hoc modifications of the beam controls. The fundamental beam conditioning algorithm is based on the breakdown history of the source. Difficulties encountered were noise entering the CAMAC system through control and data lines and the lack of well-defined operating heuristics detailed problem diagnostic techniques. A brief description is given of the hardware and software systems, operating techniques, and items of special concern

  1. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  2. Shielding calculations for the TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Santoro, R.T.; Lillie, R.A.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1979-07-01

    Two-dimensional discrete ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor (TFTR) neutral beam injectors. Two sets of calculations were performed: one to determine the dose equivalent rate on the roof and walls of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m are sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/DT pulse

  3. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  4. Current neutralization of converging ion beams

    International Nuclear Information System (INIS)

    Mosher, D.

    1978-01-01

    It is desired to consider the problem of current neutralization of heavy ion beams traversing gas backgrounds in which the conductivity changes due to beam heating and beam convergence. The procedure is to determine Green's-function solutions to the magnetic-diffusion equation derived from Maxwell's equations and an assumed scaler-plasma conductivity sigma for the background-electron current density j/sub e/. The present calculation is more general than some previously carried out in that arbitrary time variations for the beam current j/sub b/ and conductivity are allowed and the calculation is valid for both weak and strong neutralization. Results presented here must be combined with an appropriate energy-balance equation for the heated background in order to obtain the neutralization self-consistently

  5. Modeling of the lithium based neutralizer for ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Dure, F., E-mail: franck.dure@u-psud.fr [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Lifschitz, A.; Bretagne, J.; Maynard, G. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Simonin, A. [IRFM, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, 13108 Saint-Paul lez Durance (France); Minea, T. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer We compare different lithium based neutraliser configurations to the deuterium one. Black-Right-Pointing-Pointer We study characteristics of the secondary plasma and the propagation of the 1 MeV beam. Black-Right-Pointing-Pointer Using lithium increases the neutralisation effiency keeping correct beam focusing. Black-Right-Pointing-Pointer Using lithium also reduces the backstreaming effect in direction of the ion source. - Abstract: To achieve thermonuclear temperatures necessary to produce fusion reactions in the ITER Tokamak, additional heating systems are required. One of the main method to heat the plasma ions in ITER will be the injection of energetic neutrals (NBI). In the neutral beam injector, negative ions (D{sup -}) are electrostatically accelerated to 1 MeV, and then stripped of their extra electron via collisions with a target gas, in a structure known as neutralizer. In the current ITER specification, the target gas is deuterium. It has been recently proposed to use lithium vapor instead of deuterium as target gas in the neutralizer. This would allow to reduce the gas load in the NBI vessel and to improve the neutralization efficiency. A Particle-in-Cell Monte Carlo code has been developed to study the transport of the beams and the plasma formation in the neutralizer. A comparison between Li and D{sub 2} based neutralizers made with this code is presented here, as well as a parametric study on the geometry of the Li based neutralizer. Results demonstrate the feasibility of a Li based neutralizer, and its advantages with respect to the deuterium based one.

  6. Plasma neutralizers for H- or D- beams

    International Nuclear Information System (INIS)

    Berkner, K.H.; Pyle, R.V.; Savas, S.E.; Stalder, K.R.

    1980-10-01

    Plasma neutralizers can produce higher conversion efficiencies than are obtainable with gas neutralizers for the production of high-energy neutral beams from negative hydrogen ions. Little attention has been paid to experimental neutralizer studies because of the more critical problems connected with the development of negative-ion sources. With the prospect of accelerating ampere dc beams from extrapolatable ion sources some time next year, we are re-examining plasma neutralizers. Some basic considerations, two introductory experiments, and a next-step experiment are described

  7. Active ion temperature measurement with heating neutral beam

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Matsuda, Toshiaki; Yamamoto, Shin

    1987-03-01

    When the heating neutral-beam (hydrogen beam) is injected into a deuterium plasma, the density of neutral particles is increased locally. By using this increased neutral particles, the local ion temperature is measured by the active charge-exchange method. The analyzer is the E//B type mass-separated neutral particle energy analyzer and the measured position is about one third outside of the plasma radius. The deuterium energy spectrum is Maxwellian, and the temperature is increased from 350 eV to 900 eV during heating. Since the local hydrogen to deuterium density concentration and the density of the heating neutral-beam as well as the ion temperature can be obtained good S/N ratio, the usefulness of this method during neutral-beam heating is confirmed by this experiment. (author)

  8. Neutral-beam development plan, FY 1982-1987

    International Nuclear Information System (INIS)

    1981-09-01

    The following chapters are included: (1) status of BNL negative ion source development, (2) source development program plan, (3) status of beam transport and acceleration, (4) accelerator development program plan, (5) neutralizer concepts, (6) neutralization program plan, (7) neutral beam systems, (8) test facilities, (9) program milestones and time schedules, (10) organization and Grumman participation, and (11) funding tables

  9. Neutral beam development plan

    International Nuclear Information System (INIS)

    Staten, H.S.

    1980-08-01

    The national plan is presented for developing advanced injection systems for use on upgrades of existing experiments, and use on future facilities such as ETF, to be built in the late 1980's or early 90's where power production from magnetic fusion will move closer to a reality. Not only must higher power and longer pulse length systems be developed , but they must operate reliably; they must be a tool for the experimenter, not the experiment itself. Neutral beam systems handle large amounts of energy and as such, they often are as complicated as the plasma physics experiment itself. This presents a significant challenge to the neutral beam developer

  10. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  11. Heavy-atom neutral beams for tandem-mirror end plugs

    International Nuclear Information System (INIS)

    Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

    1981-05-01

    The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams

  12. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  13. Charge neutralization of small ion beam clumps

    Energy Technology Data Exchange (ETDEWEB)

    Welch, D R [Mission Research Corp., Albuquerque, NM (United States); Olson, C L; Hanson, D L [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The mega-ampere currents associated with light ion fusion (LIF) require excellent charge neutralization to prevent divergence growth. As the size and space-charge potential of a beam clump or `beamlet` become small (submillimeter size and kilovolt potentials), the neutralization becomes increasingly difficult. Linear theory predicts that plasma electrons cannot neutralize potentials < {phi}{sub crit} = (1/2)m{sub e}v{sub i}{sup 2}/e, where m{sub e} is the electron mass and v{sub i} is the ion beam velocity. A non-uniform beam would, therefore, have regions with potentials sufficient to add divergence to beam clumps. The neutralization of small beamlets produced on the SABLE accelerator and in numerical simulation has supported the theory, showing a plateau in divergence growths as the potential in the beamlet exceeds {phi}{sub crit}. (author). 1 tab., 2 figs., 4 refs.

  14. Supervisory control software for MFTF neutral beams

    International Nuclear Information System (INIS)

    Woodruff, J.P.

    1981-01-01

    We describe the software structures that control the operation of MFTF Sustaining Neutral Beam Power Supplies (SNBPS). These components of the Supervisory Control and Diagnostics System (SCDS) comprise ten distinct tasks that exist in the SCDS system environment. The codes total about 16,000 lines of commented Pascal code and occupy 240 kbytes of memory. The controls have been running since March 1981, and at this writing are being integrated to the Local Control System and to the power supply Pulse Power Module Controller

  15. Hydrogen ion species analysis and related neutral beam injection power assessment in the Heliotron E neutral beam injection system

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Obiki, Tokuhiro; Sasaki, Akihiko; Iiyoshi, Atsuo; Uo, Koji

    1982-01-01

    The hydrogen ion species in a Heliotron E neutral beam injection system of maximum electric power 6.3 MW were analyzed in order to assess the neutral beam power injected into the torus. The masimum p roton ratio of the cylindrical bucket type ion source used was observed to be more than 90 percent assuming that the angular divergences for the respective species in the beam are the same. The experimental data are compared with calculations using a particle balance model. The analysis indicates that the net injection power reaches nearly 2.7 MW at the optimal conditions of the system considering the geometrical limitation of the neutral beam path. (author)

  16. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  17. The control of powerful neutral beams

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.

    1986-01-01

    While significant progress has been made in the development of neutral beams for the heating and sustaining of plasmas in large fusion experiments, the control of such devices has largely been a matter of hardware interlocks and operator experience. The need for computer-assisted control becomes more evident, however, with the initiation of multi-beamline experiments. This paper describes a software system that incorporates simple mathematical models coupled to Kalman filters for control of the high power (6 to 8 MW) beams currently under development at Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility. Among the principal features of the system are: reduction of a large number of operator variables to just a few (usually one or two); the ability to describe most of the major neutral beams in use and under development; a foundation resting on statistical data analysis and control system principles rather than rules-of-thumb

  18. Real time neutral beam power control on MAST

    Energy Technology Data Exchange (ETDEWEB)

    Homfray, David A., E-mail: david.homfray@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Benn, A.; Ciric, D.; Day, I.; Dunkley, V.; Keeling, D.; Khilar, S.; King, D.; King, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Kurutz, U. [Department of Experimental Plasma Physics, University of Augsburg, Augsburg (Germany); Payne, D.; Simmonds, M.; Stevenson, P.; Tame, C. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2011-10-15

    Real time power control of neutral beam provides an excellent tool for many different plasma physics studies. Power control at a better resolution than the level of a single injector is usually achieved by modulating individual power supplies. However, the short beam slowing down time on MAST is such that the plasma would be sensitive to modulating the neutral beam using this 100% on-off pulse-width modulation method. A novel alternative method of power control has been demonstrated, where the arc current, and hence beam current, has been controlled in real time allowing variations in neutral beam power. This has been demonstrated in a MAST plasma with almost no loss of transmission as a consequence of the optical properties of the high perveance MAST neutral beam system. This paper will detail the methodology, experiment and results and discuss the full implementation of this method that will allow MAST to control the beam power in real time.

  19. The text neutral lithium beam edge density diagnostic

    International Nuclear Information System (INIS)

    Howald, A.M.; McChesney, J.M.; West, W.P.

    1994-07-01

    A fast neutral lithium beam has been installed on the TEXT tokamak for Beam Emission Spectroscopy (BES) studies of the edge plasma electron density profile. The diagnostic was recently upgraded from ten to twenty spatial channels, each of which has two detectors, one to measure lithium beam signal and one to monitor plasma background light. The spatial resolution is 6 mm, and the temporal resolution is designed to be as high as 10 ms for studies of transient events including plasma density fluctuations. Initial results are presented from the ten-channel system: Edge electron densities unfolded from the LiI(2 s 2 S - 2 p 2 P) 670.8 nm emission profile have the same general time dependence as the line-averaged density measured by microwave interferometry

  20. Measurement of neutral beam power and beam profile distribution on DNB

    International Nuclear Information System (INIS)

    Liu Zhimin; Liu Sheng; Song Shihua; Han Xiaopu; Li Jun; Hu Chundong; Hu Liqun; Xie Jun

    2005-01-01

    The injection power of a diagnostic neutral beam (DNB) can be obtained with the thermocouple probe measurement system on the Hefei superconducting Tokamak-7 (HT-7). With the 49 kv, 6 A, 100 ms pulse charge of an acceleration electrode, a thermocouple probe measurement system with 13 thermocouples crossly distributed on a coppery heat target was used to measure the temperature rise of the target, and the maximum measured temperature rise was 14 degree C. And the neutral beam power of 160 kW and beam profile distribution was obtained by calculation. The total neutral beam power of 130 kW was also obtained by integral calculation with the temperature rise on the heat section board. The difference between the two means was analyzed. The experiment results shows that the method of heat section board with thermocouple probe is one of the effective ways to measure the beam power and beam profile distribution. (authors)

  1. Intense diagnostic neutral beam development for ITER

    International Nuclear Information System (INIS)

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-μs accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance

  2. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  3. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  4. Design and development of neutral beam module components

    International Nuclear Information System (INIS)

    Holl, P.M.; Bulmer, R.H.; Dilgard, L.W.; Horvath, J.A.; Molvik, A.W.; Porter, G.D.; Shearer, J.W.; Slack, D.S.; Colonias, J.S.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) injection system consists of twenty 20 keV start-up, and twenty-four 80 keV sustaining neutral beam source modules. The neutral beam modules are mounted in four clusters equally spaced around the waist of the vacuum vessel which contains the superconducting magnets. A module is defined here as an assembly consisting of a beam source and the interfacing components between that beam source and the vacuum chamber. Six major interfacing components are the subject of this paper. They are the magnetic shield, the neutralizer duct, the isolation valve, mounting gimbals, aiming bellows and actuators

  5. Fault detection and protection system for neutral beam generators on the Neutral Beam Engineering Test Facility (NBETF)

    International Nuclear Information System (INIS)

    deVries, G.J.; Chesley, K.L.; Owren, H.M.

    1983-12-01

    Neutral beam sources, their power supplies and instrumentation can be damaged from high voltage sparkdown or from overheating due to excessive currents. The Neutral Beam Engineering Test Facility (NBETF) in Berkeley has protective electronic hardware that senses a condition outside a safe operating range and generates a response to terminate such a fault condition. A description of this system is presented in this paper. 8 references, 2 figures, 2 tables

  6. Neutral-particle-beam production and injection

    International Nuclear Information System (INIS)

    Post, D.; Pyle, R.

    1982-07-01

    This paper is divided into two sections: the first is a discussion of the interactions of neutral beams with confined plasmas, the second is concerned with the production and diagnosis of the neutral beams. In general we are dealing with atoms, molecules, and ions of the isotopes of hydrogen, but some heavier elements (for example, oxygen) will be mentioned. The emphasis will be on single-particle collisions; selected atomic processes on surfaces will be included

  7. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Wong, K.L.; Scott, S.; Hsuan, H.; Grek, B.; Johnson, D.; Tait, G.

    1990-01-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments [Phys. Rev. Lett. 55, 2587 (1985)] with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted Ti XXI Kα line radiation. The experiments were conducted for neutral beam powers in the range 2.1--3.8 MW and line-averaged densities in the range 1.8--3.0x10 19 m -2 . The observed rotation velocity increase during compression is consistent with theoretical estimates

  8. Optimal neutral beam heating scenario for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Houlberg, W.A.; Attenberger, S.E.

    1981-01-01

    Optimal neutral beam heating scenarios are determined for FED based on a 1/one-half/-D transport analysis. Tradeoffs are examined between neutral beam energy, power, and species mix for positive ion systems. A ramped density startup is found to provide the most economical heating. The resulting plasma power requirements are reduced by 10-30% from a constant density startup. For beam energies between 100 and 200 keV, the power needed to heat the plasma does not decrease significantly as beam energy is increased. This is due to reduced ion heating, more power in the fractional energy components, and rising power supply requirements as beam energy increases

  9. 40-kV, 25-ms neutral-beam power supply for TMX

    International Nuclear Information System (INIS)

    Leavitt, G.A.

    1977-01-01

    Modifications are described to upgrade the neutral-beam power supply for the TMX from 40 kV, 10 ms to 40 kV, 25 ms. The redesign of the accel and suppressor power supplies to achieve separation of the high-voltage and control sections, operation of the arc pulse lines in series, operation of the arc pulse lines in a noisy environment with SCR trigger and crowbar, and modifications to the electrolytic storage banks are discussed

  10. Transmission of the Neutral Beam Heating Beams at TJ-II

    International Nuclear Information System (INIS)

    Fuentes Lopez, C.

    2007-01-01

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs

  11. Summary of fueling by neutral beams

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1978-01-01

    Injected neutral beams supply energy, particles, and momentum to a plasma, while the thermalizing fast ions also increase the fusion reactivity by beam-target or hot-ion reactions. Magnetic mirror machines take advantage of all of these features, with the exception of the momentum input. Neutral-beam injection into toroidal plasmas has been proposed and has so far been utilized mainly as a source of heat, and secondarily as a source of increased neutron production. Nevertheless, fueling by injected beams can also play an important role in toroidal plasmas, especially in the start-up phase of ignited plasmas, or for the quasi-steady maintenance of low-Q plasmas where the average ion energy may exceed the electron energy by a large factor

  12. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  13. Extending DIII-D Neutral Beam Modulated Operations with a Camac Based Total on Time Interlock

    International Nuclear Information System (INIS)

    Baggest, D.S.; Broesch, J.D.; Phillips, J.C.

    1999-01-01

    A new total-on-time interlock has increased the operational time limits of the Neutral Beam systems at DIII-D. The interlock, called the Neutral Beam On-Time-Limiter (NBOTL), is a custom built CAMAC module utilizing a Xilinx 9572 Complex Programmable Logic Device (CPLD) as its primary circuit. The Neutral Beam Injection Systems are the primary source of auxiliary heating for DIII-D plasma discharges and contain eight sources capable of delivering 20MW of power. The delivered power is typically limited to 3.5 s per source to protect beam-line components, while a DIII-D plasma discharge usually exceeds 5 s. Implemented as a hardware interlock within the neutral beam power supplies, the NBOTL limits the beam injection time. With a continuing emphasis on modulated beam injections, the NBOTL guards against command faults and allows the beam injection to be safely spread over a longer plasma discharge time. The NBOTL design is an example of incorporating modern circuit design techniques (CPLD) within an established format (CAMAC). The CPLD is the heart of the NBOTL and contains 90% of the circuitry, including a loadable, 1 MHz, 28 bit, BCD count down timer, buffers, and CAMAC communication circuitry. This paper discusses the circuit design and implementation. Of particular interest is the melding of flexible modern programmable logic devices with the CAMAC format

  14. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  15. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  16. PDX neutral-beam reionization losses

    International Nuclear Information System (INIS)

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H 0 and 2 MW D 0 neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed

  17. Plasma heating with multi-MeV neutral atom beams

    International Nuclear Information System (INIS)

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D 0 formed from D - . The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV

  18. The diagnostic neutral beam injector with arc-discharge plasma source on the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Karpushov, Alexander N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)], E-mail: alexander.karpushov@epfl.ch; Andrebe, Yanis; Duval, Basil P.; Bortolon, Alessandro [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)

    2009-06-15

    The diagnostic neutral beam injector (DNBI) together with a charge exchange recombination spectroscopy (CXRS) system has been used on the TCV Tokamak as a diagnostic tool for local measurements of plasma ion temperature, velocity and carbon impurity density based on analysis of the beam induced impurity radiation emission since 2000. To improve the performance of the CXRS diagnostic, several upgrades of both the optical system and the neutral beam were performed. An increase of the plasma source size together with beam optimization in 2003 resulted in a twofold increase the beam current. The RF plasma generator was replaced by an arc-discharge plasma source together with a new ion optical system (IOS) in 2006 and subsequent beam optimization is presented herein. This was designed to increase the line brightness of the beam in the CXRS observation region without increasing of the injected power (to avoid plasma perturbation by the beam). The beam characteristics are measured by a multi-chord scanning of Doppler-shifted H{sub {alpha}} emission, thermal measurements on a movable calorimeter and visible optical measurements inside the Tokamak vessel.

  19. Beam-plasma instability in ion beam systems used in neutral beam generation

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.

    1977-02-01

    The beam-plasma instability is analyzed for the ion beams used for neutral beam generation. Both positive and negative ion beams are considered. Stability is predicted when the beam velocity is less than the electron thermal velocity; the only exception occurs when the electron density accompanying a negative ion beam is less than the ion density by nearly the ratio of electron to ion masses. For cases in which the beam velocity is greater than the electron thermal velocity, instability is predicted near the electron plasma frequency

  20. Very-high-level neutral-beam control system

    International Nuclear Information System (INIS)

    Elischer, V.; Jacobson, V.; Theil, E.

    1981-10-01

    As increasing numbers of neutral beams are added to fusion machines, their operation can consume a significant fraction of a facility's total resources. LBL has developed a very high level control system that allows a neutral beam injector to be treated as a black box with just 2 controls: one to set the beam power and one to set the pulse duration. This 2 knob view allows simple operation and provides a natural base for implementing even higher level controls such as automatic source conditioning

  1. A neutral-beam profile monitor with a phosphor screen and a high-sensitivity camera for the J-PARC KOTO experiment

    Science.gov (United States)

    Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.

    2018-03-01

    We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.

  2. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  3. The latest development of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xu Yongjian

    2014-01-01

    As the first full superconducting non-circular cross section Tokomak in the world, EAST is used to explore the forefront physics and engineering issues on the construction of Tokomak fusion reactor. Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, a set of neutral beam injector (4∼8 MW, 10∼100 s)will be built and operational in 2014. The paper presents the latest development of EAST neutral beam injector and the latest experiment results of long pulse beam extraction and high power beam extraction are reported, those results show that all targets reach or almost reach the design targets. All these will lay a solid foundation for the achievement of plasma heating and current drive for EAST in 2014. (authors)

  4. All solid state high voltage power supply for neutral beam sources

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1984-01-01

    The conceptual design of a high frequency solid state, high power, high voltage, power system that reacts fast enough to be compatible with the requirements of a neutral beam source is presented. The system offers the potential of significant advantages over conventional power line frequency systems; such as high reliability, long life, relatively little maintenance requirements, compact size and modular design

  5. Manufacturing of neutral beam sources at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Baird, E.D.; Duffy, T.J.; Harter, G.A.; Holland, E.D.; Kloos, W.A.; Pastrone, J.A.

    1979-01-01

    Over 50 neutral beam sources (NBS) of the joint Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) design have been manufactured, since 1973, in the LLL Neutral Beam Source Facility. These sources have been used to provide start-up and sustaining neutral beams for LLL mirror fusion experiments, including 2XIIB, TMX, and Beta II. Experimental prototype 20-kV and 80-kV NBS have also been designed, built, and tested for the Mirror Fusion Test Facility (MFTF)

  6. Multiple track Doppler-shift spectroscopy system for TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Kugel, H.W.; Reale, M.A.

    1986-09-01

    A Doppler-shift spectroscopy system has been installed on the TFTR neutral beam injection system to measure species composition during both conditioning and injection pulses. Two intensified vidicon detectors and two spectrometers are utilized in a system capable of resolving data from up to twelve ion sources simultaneously. By imaging the light from six ion sources onto one detector, a cost-effective system has been achieved. Fiber optics are used to locate the diagnostic in an area remote from the hazards of the tokamak test cell allowing continuous access, and eliminating the need for radiation shielding of electronic components. Automatic hardware arming and interactive data analysis allow beam composition to be computed between tokamak shots for use in analyzing plasma heating experiments. Measurements have been made using lines of sight into both the neutralizer and the drift duct. Analysis of the data from the drift duct is both simpler and more accurate since only neutral particles are present in the beam at this location. Comparison of the data taken at these two locations reveals the presence of partially accelerated particles possessing an estimated 1/e half-angle divergence of 15 0 and accounting for up to 30% of the extracted power

  7. Magnetic analysis of the magnetic field reduction system of the ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Germán, E-mail: german.barrera@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Ahedo, Begoña; Alonso, Javier; Ríos, Luis [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Chareyre, Julien; El-Ouazzani, Anass [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 07/08, 08019 Barcelona (Spain)

    2015-10-15

    The neutral beam system for ITER consists of two heating and current drive neutral beam injectors (HNB) and a diagnostic neutral beam (DNB) injector. The proposed physical plant layout allows a possible third HNB injector to be installed later. For the correct operation of the beam, the ion source and the ion path until it is neutralized must operate under a very low magnetic field environment. To prevent the stray ITER field from penetrating inside those mentioned critical areas, a magnetic field reduction system (MFRS) will envelop the beam vessels and the high voltage transmission lines to ion source. This system comprises the passive magnetic shield (PMS), a box like assembly of thick low carbon steel plates, and the Active Correction and Compensation Coils (ACCC), a set of coils carrying a current which depends on the tokamak stray field. This paper describes the magnetic model and analysis results presented at the PMS and ACCC preliminary design review held in ITER organization in April 2013. The paper focuses on the magnetic model description and on the description of the analysis results. The iterative process for obtaining optimized currents in the coils is presented. The set of coils currents chosen among the many possible solutions, the magnetic field results in the interest regions and the fulfillment of the magnetic field requirements are described.

  8. Neutron production by neutral beam sources

    International Nuclear Information System (INIS)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments

  9. Neutron production by neutral beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments.

  10. MHD phenomena in a neutral beam heated high beta, low qa disruption

    International Nuclear Information System (INIS)

    Chu, M.S.; Greene, J.M.; Kim, J.S.; Lao, L.; Snider, R.T.; Stambaugh, R.D.; Strait, E.J.; Taylor, T.S.

    1988-01-01

    A neutral beam heated, β maximizing discharge at low q a in Doublet III ending in disruption is studied and correlated with theoretical models. This discharge achieved MHD β-values close to the theoretical Troyon-Sykes-Wesson limit in its evolution. The MHD phenomena of this discharge are analysed. The sequence of events leading to the high β disruptions is hypothesized as follows: the current and pressure profiles are broadened continuously by neutral beam injection. A last sawtooth internal disruption initiates an (m/n = 2/1) island through current profile steepening around the q=2 surface. The loss of plasma through stochastic field lines slows the island rotation and enhances its interaction with the limiter. The resultant enhanced island growth through island cooling or profile change enlarged the edge stochastic region. The overlapping of the edge stochastic region with the sawtooth mixing region precipitated the pressure disruption. Thus, in our hypothetical model for this discharge, β increase by neutral beam heating does not directly cause the disruption but ushers the plasma indirectly towards it through the profile broadening process and contributes to the destabilization of the 1/1 and 2/1 tearing modes. (author). 26 refs, 12 figs

  11. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  12. Applications of neutral beam and rf technologies

    International Nuclear Information System (INIS)

    Haselton, H.H.

    1987-04-01

    This presentation provides an update on the applications of neutral beams and radiofrequency (rf) power in the fusion program; highlights of the ion cyclotron heating (ICH) experiments now in progress, as well as the neutral beam experiments; and heating requirements of future devices and some of the available options. Some remarks on current drive are presented because this area of technology is one that is being considered for future devices

  13. Neutral-beam performance analysis using a CCD camera

    International Nuclear Information System (INIS)

    Hill, D.N.; Allen, S.L.; Pincosy, P.A.

    1986-01-01

    We have developed an optical diagnostic system suitable for characterizing the performance of energetic neutral beams. An absolutely calibrated CCD video camera is used to view the neutral beam as it passes through a relatively high pressure (10 -5 Torr) region outside the neutralizer: collisional excitation of the fast deuterium atoms produces H/sub proportional to/ emission (lambda = 6561A) that is proportional to the local atomic current density, independent of the species mix of accelerated ions over the energy range 5 to 20 keV. Digital processing of the video signal provides profile and aiming information for beam optimization. 6 refs., 3 figs

  14. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  15. Neutral Beam Injection for Plasma and Magnetic Field Diagnostics

    International Nuclear Information System (INIS)

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton, Fred

    2007-01-01

    At the Lawrence Berkeley National Laboratory (LBNL) a diagnostic neutral beam injection system for measuring plasma parameters, flow velocity, and local magnetic field is being developed. High proton fraction and small divergence is essential for diagnostic neutral beams. In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller) elliptical beam spot at 2.5 m from the end of the extraction column is produced. The beam will deliver up to 5 A of hydrogen beam to the target with a pulse width of ∼1 s, once every 1-2 min. The H1+ ion species of the hydrogen beam will be over 90 percent. For this application, we have compared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antenna behind a dielectric RF-window. The second one uses an internal antenna in similar ion source geometry. The source needs to generate uniform plasma over a large (8 cm x 5 cm) extraction area. We expect that the ion source with internal antenna will be more efficient at producing the desired plasma density but might have the issue of limited antenna lifetime, depending on the duty factor. For both approaches there is a need for extra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator material such as quartz that has been observed to generate plasma with higher atomic fraction than sources with metal walls. The ion beam will be extracted and accelerated by a set of grids with slits, thus forming an array of 6 sheet-shaped beamlets. The multiple grid extraction will be optimized using computer simulation programs. Neutralization of the beam will be done in neutralization chamber, which has over 70 percent neutralization efficiency

  16. Power supply for plasma generator of HL-1M neutral beam injector

    International Nuclear Information System (INIS)

    Wang Detai; Qian Jiamei; Lei Guangjiu; Shun Mengda; Jiang Shaofeng; Wang Enyao; Lu Xuejun; Yang Tiehai; Wang Xuehua; Zhao Zhimin; Hao Ming; Huang Jianrong; Yu Yanqiu; Cheng Baoqiang; Wu Zhige; Sheng Ning; Hu Qingtao

    1999-01-01

    The diagram of the HL-1M Neutral Beam Injector (NBI) and the power supply (PS) system is shown. The NBI consists of ion source, beam line and power supply system etc. The ion source includes plasma generator and three-electrode extraction system. The power supply for plasma generator consists of a filament PS, an arc PS and gas valve PS. Testing has shown that the PS for plasma generator of the HL-1M NBI has excellent stability and obtain good plasma heating effect

  17. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  18. Current neutralization of nanosecond risetime, high-current electron beam

    International Nuclear Information System (INIS)

    Lidestri, J.P.; Spence, P.W.; Bailey, V.L.; Putnam, S.D.; Fockler, J.; Eichenberger, C.; Champney, P.D.

    1991-01-01

    This paper reports that the authors have recently investigated methods to achieve current neutralization in fast risetime (<3 ns) electron beams propagating in low-pressure gas. For this investigation, they injected a 3-MV, 30-kA intense beam into a drift cell containing gas pressures from 0.10 to 20 torr. By using a fast net current monitor (100-ps risetime), it was possible to observe beam front gas breakdown phenomena and to optimize the drift cell gas pressure to achieve maximum current neutralization. Experimental observations have shown that by increasing the drift gas pressure (P ∼ 12.5 torr) to decrease the mean time between secondary electron/gas collisions, the beam can propagate with 90% current neutralization for the full beam pulsewidth (16 ns)

  19. Performance of the PDX neutral beam wall armor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Williams, M.D.

    1985-02-01

    The PDX wall armor was designed to function as an inner wall thermal armor, a neutral beam diagnostic, and a large area inner toroidal plasma limiter. In this paper we discuss its thermal performance as wall armor during two years of PDX neutral beam heating experiments. During this period it provided sufficient inner wall protection to permit perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma involving special experiments, calibrations, and tests important for the optimization and development of the PDX neutral beam injection system. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices

  20. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Experimental tests of energy recovery are made on an injector of energetic neutral atoms in which the ion source (the circular periplasmatron) is operated at the ground potential and the neutralizer is biased at the high negative potential corresponding to the desired neutral beam energy. To prevent the acceleration of the neutralizer plasma electrons toward the collector of the decelerated ions (the recovery electrode), a potential barrier is created by means of a negatively biased long cylindrical grid (called the suppressor grid) surrounding the beam. For a given negative potential (relative to the neutralizer) applied to this grid a plasma sheath develops at the periphery of the beam. At the entry of the grid the width of this sheath is generally much smaller than the beam radius. However, the ions are deflected by the electric field of the sheath outward through the grid. The ion density in the sheath is thus decreasing as the beam propagates and the result is a sheath-widening process which in turn causes more ions to be deflected. If the suppressor grid is sufficiently long the sheath will eventually fill the whole section of the beam, the potential on the axis will fall below the neutralizer potential and stop the electrons. Concurrently, most of the ions are deflected out of the suppressor. These ions can be decelerated and collected outside the region where the neutral beam propagates. A drawing of such a system is shown

  1. Initial operation and performance of the PDX neutral-beam injection system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Eubank, H.P.; Kozub, T.A.; Rossmassler, J.E.; Schilling, G.; van Halle, A.; Williams, M.D.

    1982-01-01

    In 1981, the joint ORNL/PPPL PDX neutral beam heating project succeeded in reliably injecting 7.2 MW of D 0 into the PDX plasma, at nearly perpendicular angles, and achieved ion temperatures up to 6.5 keV. The expeditious achievement of this result was due to the thorough conditioning and qualification of the PDX neutral beam ion sources at ORNL prior to delivery coupled with several field design changes and improvements in the injection system made at PPPL as a result of neutral beam operating experience with the PLT tokamak. It has been found that the operation of high power neutral beam injection systems in a tokamak-neutral beam environment requires procedures and performance different from those required for development operation on test stands. In this paper, we review the installatin of the PDX neutral beam injection system, and its operation and performance during the initial high power plasma heating experiments with the PDX tokamak

  2. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar{sup +} beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ∼5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  3. BNL neutral-beam development group. Progress report FY 1982

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1983-01-01

    Efforts were concentrated on the development of H - /D - sources capable of delivering about 1A of beam current, operating steady state at an energy of several tens of keV and having properties that would allow a scaling up to 10A and their use in a high energy neutral beam line. In the seventies we have developed negative ion sources of the plasms surface type with extracted current densities of several hundred mA/cm 2 . Particularly successful was the development of the magnetron source, from which pulsed beam currents in excess of one ampere have been obtained and accelerated up to 120 kV. These magnetrons have become standard sources in high energy accelerator laboratories around the world and they are candidates for application in polarized H - ion sources as well. Work on hollow cathode deuterium sources and neutraizers is reported

  4. Performance test results of ion beam transport for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M R; Mattoo, S K [Institute for Plasma Research Bhat, Gandhinagar-382428, Gujarat (India); Uhlemann, R, E-mail: mukti@ipr.res.i [Forschungszentrum Juelich, Institute fur Energieforschung IEF-4, Plasmaphysik D-52425 Juelich (Germany)

    2010-02-01

    A neutral beam injector is built at IPR to heat the plasma of SST-1 and its upgrade. It delivers a maximum beam power of 1.7 MW for 55 kV Hydrogen beam or 80 kV Deuterium beam. At lower beam voltage, the delivered power falls to 500 kW at 30 kV Hydrogen beam which is adequate to heat SST-1 plasma ions to {approx} 1 keV. Process of acceleration of ions to the required beam voltage, conversion of ions to neutrals and removal of un-neutralized ions and the beam diagnostic systems occupy a large space. The consequence is that linear extent of the neutral beam injector is at least a few meters. Also, port access provides a very narrow duct. Even a very good injector design and fabrication practices keep beam divergence at a very low but finite value. The result is beam transport becomes an important issue. Since a wide area beam is constructed by hundreds of beam lets, it becomes essential they be focused in such a way that beam transport loss is minimized. Horizontal and vertical focal lengths are two parameters, in addition to beam divergence, which give a description of the beam transport. We have obtained these two parameters for our injector by using beam transport code; making several hundred simulation runs by varying optical parameters of the beam. The selected parameters set has been translated into the engineering features of the extractor grid set of the ion source. Aperture displacement technique is used to secure the horizontal beam focusing at 5.4 m. Combination of both aperture displacement and inclining of two grid halves to {approx} 17 mrad are secured for vertical beam focusing at 7 m from earth grid of the ion source. The gaps between the design, engineered and performance tested values usually arise due to lack of exercising control over fabrication processes or due to inaccuracies in the assumption made in the model calculations of beam optics and beam transport. This has been the case with several injectors, notably with JET injector. To overcome

  5. Possible impact of multi-electron loss events on the average beam charge state in an HIF target chamber and a neutral beam approach

    Science.gov (United States)

    Grisham, L. R.

    2001-05-01

    Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams

  6. Instrumentation system for long-pulse MFTF neutral beams

    International Nuclear Information System (INIS)

    Risch, D.M.

    1981-01-01

    The instrumentation system for long pulse neutral beams for MFTFS consists of monitoring and protective circuitry. Global synchronization of high speed monitoring data across twenty-four neutral beams is achieved via an experiment wide fiber optic timing system. Fiber optics are also used as a means of isolating signals at elevated voltages. An excess current monitor, interrupt monitor, sparkdown detector, spot detector and gradient grid ratio detector form the primary protection for the neutral beam source. A unique hierarchical interlocking scheme allows other protective devices to be factored into the shutdown circuitry of the power supply so that the initiating cause of a shutdown can be isolated and even allows some non-critical devices to be safely ignored for a period of time

  7. Neutralization of positive particle beams by electron trapping

    International Nuclear Information System (INIS)

    Mobley, R.M.; Irani, A.A.; LeMaire, J.L.; Maschke, A.W.

    1977-01-01

    Initial results are presented of a planned series of experimental tests of positive ion beam neutralization, involving transverse space charge studies of a 720 keV 60mA H + beam in a drift region of 4.6 meters. Two conclusions drawn from the data are: (1) the change in transmission observed is consistent with complete neutralization in the drift pipe for grounded or negative electrodes, and with complete de-neutralization in the case of greater than +240 V electrodes; and (2) background gas ionization cannot be the main source of electrons

  8. Neutral beam current drive with balanced injection

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1990-01-01

    Current drive with fast ions has proved its capability to sustain a tokamak plasma free of externally induced electric fields in a stationary state. The suprathermal ion population within the toroidal plasma was created by quasi-tangential and uni-directional injection of high-energy neutral atoms, their ionisation and subsequent deceleration by collisions with the background plasma particles. In future large tokamaks of the NET/INTER-type, with reactor-relevant values of plasma density and temperature, this current drive scheme is expected to maintain the toroidal current at the plasma centre, as current drive by lower hybrid waves will be restricted to the outer plasma regions owing to strong wave damping. Adequate penetration of the neutral atoms through the dense plasma requires particle energies of several hundred kilovolts per nucleon since beam absorption scales roughly with the ratio beam energy over density. The realisation of such high-energy high-power neutral beams, based on negative ion technology, is now under study. (author) 7 refs., 2 figs

  9. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Scott, S.; Wong, K.L.

    1986-07-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted TiXXI-Kα line radiation. The experiments were conducted for neutral beam powers in the range from 2.1 to 3.8 MW and line-averaged densities in the range from 1.8 to 3.0 x 10 19 m -2 . The observed rotation velocity increase during compression is in agreement with results from modeling calculations which assume classical slowing-down of the injected fast deuterium ions and momentum damping at the rate established in the precompression plasma

  10. Design of cryo-vacuum system for MW neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xie Yuanlai

    2010-01-01

    Neutral beam injector is an equipment that is used to produce and then to neutralize high energetic particle beam. A neutral beam injector (EAST-NBI) with MW magnitude neutral beam power is considered to be developed to support the EAST physical research. The requirements for vacuum system were analyzed after introducing the principle of EAST-NBI. A differential vacuum system structure was chosen after analyzing the performance of different vacuum pumping system structure. The gas sources and their characteristics were analyzed, and two inserted type cryocondensation pumps were chosen as main vacuum pump. The schematic structure of the two cryocondensation pump with pumping area 8 m 2 and 6 m 2 were given and their cooling method and temperature control mode were determined. (authors)

  11. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  12. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  13. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Stevenson, T.; O'Connor, T.; Garzotto, V.

    1995-01-01

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  14. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  15. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  16. Doublet III neutral beam multi-stream command language system

    International Nuclear Information System (INIS)

    Campbell, L.; Garcia, J.R.

    1983-01-01

    A multi-stream command language system was developed to provide control of the dual source neutral beam injectors on the Doublet III experiment at GA Technologies Inc. The Neutral Beam command language system consists of three parts: compiler, sequencer, and interactive task. The command language, which was derived from the Doublet III tokamak command language, POPS, is compiled, using a recursive descent compiler, into reverse polish notation instructions which then can be executed by the sequencer task. The interactive task accepts operator commands via a keyboard. The interactive task directs the operation of three input streams, creating commands which are then executed by the sequencer. The streams correspond to the two sources within a Doublet III neutral beam, plus an interactive stream. The sequencer multiplexes the execution of instructions from these three streams. The instructions include reads and writes to an operator terminal, arithmetic computations, intrinsic functions such as CAMAC input and output, and logical instructions. The neutral beam command language system was implemented using Modular Computer Systems (ModComp) Pascal and consists of two tasks running on a ModComp Classic IV computer. The two tasks, the interactive and the sequencer, run independently and communicate using shared memory regions. The compiler runs as an overlay to the interactive task when so directed by operator commands. The system is succesfully being used to operate the three neutral beams on Doublet III

  17. Data acquisition system for PLT Neutral Beam Test Stand

    International Nuclear Information System (INIS)

    Francis, J.E. Jr.; Hammons, C.E.

    1977-01-01

    The PLT Neutral Beam Test Stand at Oak Ridge National Laboratory was constructed to test and condition powerful neutral beam sources for the Princeton Large Torus experiment at Princeton Plasma Physics Laboratory. The data acquisition system for the test stand monitors the beam characteristics and power output to determine if the beam is operating at its design specifications. The high speed of the computer system is utilized to provide near-real-time analysis of experimental data. The analysis of the data is presented as numerical tabulation and graphic display

  18. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  19. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R. [Southwestern Institute of Physics, Chengdu, 610041 (China)

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  20. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    Science.gov (United States)

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  1. Discrimination of Charged Particles in a Neutral Beam Line by Using a Solid Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Kwan; Ko, Jewou; Liu, Dong [Jeju National University, Jeju (Korea, Republic of)

    2017-01-15

    In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a charged particle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.

  2. Possible neutral beam requirements for TFTR upgrades

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.; Little, R.; Post, D.E.; Schmidt, J.A.

    1977-01-01

    A discussion is provided of possible neutral beam requirements and constraints for a TFTR upgrade. The time scale is the early 80s and beams of 250 keV D 0 , probably using 65 ampere negative ion sources, existing power supplies and vacuum enclosures would be required

  3. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  4. Modeling and simulation of a proton beam space-charge neutralization

    International Nuclear Information System (INIS)

    Fleury, Xavier

    2000-01-01

    The aim of this work is to understand and to model the build-up of a plasma in the low-energy beam transport line of a proton accelerator. This plasma is generated by the beam, which ionizes the residual gas remaining in this low-energy section. By neutralizing the space-charge of the beam, the plasma modifies its transport, thus, to control the beam, it is necessary to study this phenomenon. In this work, we consider a continuous beam and we take interest in the stationary states of the plasma. We first restrict the description of the plasma to a plane perpendicular to the beam, by assuming that the beam and the plasma are longitudinally invariant. The build-up of the plasma is first described with a kinetic model where binary collisions are neglected, based on the Vlasov-Poisson system with source terms which take into account ionization. We prove mathematically that this system has no stationary solution, by using appropriate subsets of the phase-space that we call trapping-sets. Yet, measurements show that the plasma evolves towards a steady state. To account for this evolution, we modify the source terms of the model. The resulting model is solved by a particle-in-cell method, and the results are compared to the measurements. Then, we show that binary collisions between plasma electrons and beam ions or gas molecules help to maintain the equilibrium of the plasma. In the last part of the thesis, we use hydrodynamic models to investigate more easily the coupling between transversal and longitudinal effects. The preliminary study of a one-dimensional model enables to find the behaviour of the transverse potential of the plasma. Finally, a two-dimensional model of the transport of the beam when it is neutralized by the plasma is solved numerically, which shows that the longitudinal electric field should play an important role in the set-up of the equilibrium of the plasma. (author) [fr

  5. The ASDEX 100 keV neutral lithium beam diagnostic gun

    International Nuclear Information System (INIS)

    McCormick, K.; Kick, M.

    1983-04-01

    The neutral lithium beam gun intended for measurement of the poloidal magnetic field and of the density gradient in the scrape-off layer of ASDEX is described, and test results over a beam energy range of 27-100 keV are presented. In the gun, lithium ions are extracted from a solid emitter (#betta#-Eurcryptite) in a Pierce-type configuration, accelerated and focused in a two-tube immersion lens, and neutralized in a charge-exchange cell using sodium. The beam can be pulsed from less than one to several seconds, depending on experimental needs. At a distance of 165 cm from the gun the neutral beam equivalent current is typically greater than 1 mA (0.16 mA) for a beam energy of 100 keV (27 keV), the beam FWHM being about 8-9 mm. It is found that to produce a particular beam with a certain ratio must be maintained between the extraction and total beam voltages, this relationship depending in turn on the emitter-extractor separation. The principal features which distinguish the ASDEX gun from that employed on W7a are the greater compactness - all the active elements, i.e. emitter, extractor, lens, deflection plates and neutralizer, are contained with 57 cm - and the vacuum vessel, which simultaneously serves as the magnetic shielding. (orig.)

  6. A Neutral Beam Injector Upgrade for NSTX

    International Nuclear Information System (INIS)

    Stevenson, T.; McCormack, B.; Loesser, G.D.; Kalish, M.; Ramakrishnan, S.; Grisham, L.; Edwards, J.; Cropper, M.; Rossi, G.; Halle, A. von; Williams, M.

    2002-01-01

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current

  7. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  8. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  9. Calculation of beam neutralization in the IPNS-Upgrade RCS

    International Nuclear Information System (INIS)

    Chae, Yong-Chul.

    1995-01-01

    The author calculated the neutralization of circulating beam in this report. In the calculation it is assumed that all electrons liberated from the background molecules due to the collisional processes are trapped in the potential well of the proton beam. Including the dependence of ionization cross sections on the kinetic energy of the incident particle, the author derived the empirical formula for beam neutralization as a function of time and baseline vacuum pressure, which is applicable to the one acceleration cycle of the IPNS-Upgrade RCS

  10. PC application in DIII-D neutral beam operation

    International Nuclear Information System (INIS)

    Gladd, A.S.

    1986-01-01

    An IBM PC/AT has been implemented to improve operation of the DIII-D neutral beams. The PC system provides centralization of all beam data with reasonable access for online shot-to-shot control and analysis. The PC hardware was configured to interface all four neutral beam host mini-computers, support multi-tasking, and provide storage for approximately one month's accumulation of beam data. The PC software is composed of commercial packages used for performance and statistical analysis (i.e. LOTUS 123, PC PLOT, etc.) host communications software (i.e. PCLINK, KERMIT, etc.) and applications developed software utilizing FORTRAN and BASIC. The objectives of this paper are to describe the implementation of the PC system, the methods of integrating the various software packages, and the scenario for online control and analysis

  11. PLT neutral beam injection systems

    International Nuclear Information System (INIS)

    Menon, M.M.; Barber, G.C.; Blue, C.W.

    1979-01-01

    A brief description of the Princeton Large Torus (PLT) neutral beam injection system is given and its performance characteristics are outlined. A detailed operational procedure is included, as are some tips on troubleshooting. Proper operation of the source is shown to be a crucial factor in system performance

  12. Doublet III neutral beam multi-stream command language system

    International Nuclear Information System (INIS)

    Campbell, L.; Garcia, J.R.

    1983-12-01

    A multi-stream command language system was developed to provide control of the dual source neutral beam injectors on the Doublet III experiment at GA Technologies Inc. The Neutral Beam command language system consists of three parts: compiler, sequencer, and interactive task. The command language, which was derived from the Doublet III tokamak command language, POPS, is compiled, using a recursive descent compiler, into reverse polish notation instructions which then can be executed by the sequencer task. The interactive task accepts operator commands via a keyboard. The interactive task directs the operation of three input streams, creating commands which are then executed by the sequencer. The streams correspond to the two sources within a Doublet III neutral beam, plus an interactive stream. The sequencer multiplexes the execution of instructions from these three streams. The instructions include reads and writes to an operator terminal, arithmetic computations, intrinsic functions such as CAMAC input and output, and logical instructions. The neutral beam command language system was implemented using Modular Computer Systems (ModComp) Pascal and consists of two tasks running on a ModComp Classic IV computer

  13. Apparatus and method for neutralizing the beam in an ion implanter

    International Nuclear Information System (INIS)

    Douglas, E.C.

    1982-01-01

    An ion implanter apparatus is described with provision for neutralizing the space charge potential of the ionic beam with a closed loop feedback system responding to the electrical charges that tend to accumulate on a target specimen. Neutralization is provided by a controllable electron source surrounding the beam. Flow of electrons to a plate radially outward of the electron source is used to derive a signal proportional to the beam ion current when the space charge potential of the beam is neutralized. The beam current signal can be used (1) to provide a read-out display for the operator; (2) to control the magnitude of the ion beam; (3) to be integrated to determine the total positive charge that enters the faraday cage of the implanter for use to control the ion beam shutter; or (4) to effect relative movement of the specimen and the beam

  14. ITER neutral beam system US conceptual design

    International Nuclear Information System (INIS)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus

  15. Lawrence Berkeley laboratory neutral-beam engineering test facility power-supply system

    International Nuclear Information System (INIS)

    Lutz, I.C.; Arthur, C.A.; deVries, G.J.; Owren, H.M.

    1981-10-01

    The Lawrence Berkeley Laboratory is upgrading the neutral beam source test facility (NBSTF) into a neutral beam engineering test facility (NBETF) with increased capabilities for the development of neutral beam systems. The NBETF will have an accel power supply capable of 170 kV, 70 A, 30 sec pulse length, 10% duty cycle; and the auxiliary power supplies required for the sources. This paper describes the major components, their ratings and capabilities, and the flexibility designed to accomodate the needs of source development

  16. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Energy recovery tests performed on an injector of energetic neutral atoms in which the ion source is operated at the ground potential and the neutralizer is biased at the high energy potential corresponding to the desired neutral beam energy, are presented. The operation of the suppressor grid is studied in two different experiments. These tests underline the problems to be solved for an efficient recovery of the energy of the unneutralized beam fraction

  17. Development of neutral beam source using electron beam excited plasma

    International Nuclear Information System (INIS)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Hara, Tamio

    2011-01-01

    A low-energy neutral beam (NB) source, which consists of an electron-beam-excited plasma (EBEP) source and two carbon electrodes, has been developed for damageless etching of ultra-large-scale integrated (ULSI) devices. It has been confirmed that the Ar ion beam energy was controlled by the acceleration voltage and the beam profile had good uniformity over the diameter of 80 mm. Dry etching of a Si wafer at the floating potential has been carried out by Ar NB. Si sputtering yield by an Ar NB clearly depends on the acceleration voltage. This result shows that the NB has been generated through the charge exchange reaction from the ion beam in the process chamber. (author)

  18. TFTR neutral beam control and monitoring for DT operations

    International Nuclear Information System (INIS)

    O'Connor, T.; Kamperschroer, J.; Chu, J.

    1995-01-01

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions

  19. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  20. A specialized bioengineering ion beam line

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I.G.; Wiedemann, H.

    2007-01-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology

  1. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  2. Design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Koehler, G.; Wells, R.P.

    1981-10-01

    The Neutral Beam Engineering Test Facility will test Neutral Beam Sources up to 170 keV, 65 Amps, with 30 second beam-on times. For this application actively cooled beam dumps for both the neutral and ionized particles will be required. The dumps will be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/cm 2 anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on a prototype panel. The prototype tests were performed on two different panel designs, one manufactured by Mc Donnell Douglas (MDAC) the other by United Technologies (UT). The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies

  3. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  4. Overview of the JET Neutral Beam Enhancement Project

    International Nuclear Information System (INIS)

    Ciric, D.

    2006-01-01

    Three objectives of the JET Neutral Beam Enhancement (NBE) are a) to increase the NB power delivered to JET from 25 MW to >34 MW; b) to extend the beam pulse duration from 10 to 20 seconds and c) to improve availability and reliability of the JET NB system. The project is based on the upgrade of the two existing JET neutral injectors, each equipped with eight positive ion neutral injectors (PINIs). The main increase of the NB power will come from the rearrangement of the ion source permanent magnets from the present supercusp to pure chequerboard configuration, thus eliminating the magnetic filter used to limit primary electrons reaching the extraction region. This modification considerably increases the fraction of molecular ions, which leads to higher neutralisation efficiency. Further increase in the injected neutral beam power will result from higher beam transmission, the consequence of high uniformity and superior properties of the beams extracted from chequerboard ion sources. Finally, the maximum extracted deuterium ion current will be increased from the present ∼ 55 A to ∼ 65 A. This will be accomplished by the minor modification of the extraction aperture diameter and the accelerator gap. All PINIs will be operated at the same acceleration voltage (125 kV). The increase of the beam pulse length from 10 to 20 seconds requires modification or replacement of inter-pulse water cooled beamline components. The most challenging among these tasks is the replacement the duct liner, which protects the vessel from re-ionised beam power at the beam entry into the torus. It will be replaced with an actively cooled liner based on proven hypervapotron technology. To improve the overall reliability of the JET neutral beam system and to allow extraction of 65 A of deuterium ion current, eight existing 80 kV/60 A high voltage power supplies (HVPS) will be replaced with four new 130 kV/130 A units. This means that, after the completion of the NBE project, 75% of the JET

  5. Applications of high energy neutralized ion beams to a compact torus

    International Nuclear Information System (INIS)

    Rostoker, N.; Katzenstein, J.

    1986-01-01

    Pulsed ion beams can be produced with ion diodes and Marx generators. The technology exists to produce high energy beams efficiently. A neutralized ion beam has an equal number of co-moving electrons. The resultant beam is electrically neutral, has no net current and can be transported across a magnetic field if the current density is sufficiently large. Preliminary experimental results have been obtained on injecting a neutralized proton beam into a small tokamak. To illuminate the physical processes involved in injection and trapping an experiment has been designed for TEXT. Possible applications to a compact torus include plasma heating, current maintenance and non-equilibrium reactors that do not require ignition. Each application is discussed and comparisons are made with other methods. (author)

  6. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  7. Neutral beam injection optimization at TJ-II

    International Nuclear Information System (INIS)

    Fuentes, C.; Liniers, M.; Wolfers, G.; Alonso, J.; Marcon, G.; Carrasco, R.; Guasp, J.; Acedo, M.; Sanchez, E.; Medrano, M.; Garcia, A.; Doncel, J.; Alejaldre, C.; Tsai, C.C.; Barber, G.; Sparks, D.

    2005-01-01

    Neutral beam injection (NBI) heating has been used on the TJ-II stellarator for the first time. The beam has a port-through power between 200 and 400 kW and injection energy 28 kV. Beam transmission is limited by beam interception at the injection port and the first toroidal field coil, therefore, beam steering optimization is of critical importance. The beam interaction areas inside TJ-II vacuum chamber are surveyed by infrared thermography. Beam reionization can be a problem due to the presence of residual gas in the duct region. Halpha emission is used to monitor the reionization at the duct. A careful optimization of the injected gas has been carried out

  8. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    Science.gov (United States)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  9. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  10. Energy spectrum of neutrals formed in an ion accelerator

    International Nuclear Information System (INIS)

    Fink, J.H.

    1982-01-01

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed

  11. Particle reflection and TFTR neutral beam diagnostics

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Newman, R.A.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-04-01

    Determination of two critical neutral beam parameters, power and divergence, are affected by the reflection of a fraction of the incident energy from the surface of the measuring calorimeter. On the TFTR Neutral Beam Test Stand, greater than 30% of the incident power directed at the target chamber calorimeter was unaccounted for. Most of this loss is believed due to reflection from the surface of the flat calorimeter, which was struck at a near grazing incidence (12 degrees). Beamline calorimeters, of a ''V''-shape design, while retaining the beam power, also suffer from reflection effects. Reflection, in this latter case, artificially peaks the power toward the apex of the ''V'', complicating the fitting technique, and increasing the power density on axis by 10 to 20%; an effect of import to future beamline designers. Agreement is found between measured and expected divergence values, even with 24% of the incident energy reflected

  12. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Yang Lei; Li Xinxia; Lu Xingqiang; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by the neutral beam injection is investigated in a large aspect ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are figured out. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current considered, the net current density obviously decreases due to electron return current, at the same time the peak of current moves towards the centre plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the neutral beam injection but also on the ratio of the velocity of fast ions to the critical velocity: the value of net current is small for the neutral beam parallel injection but increases multipliedly for perpendicular injection, and increases with beam energy increasing. (authors)

  13. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  14. Neutral-beam requirements for compression-boosted ignited tokamak plasmas

    International Nuclear Information System (INIS)

    Cohn, D.R.; Jassby, D.L.; Kreischer, K.

    1977-12-01

    Neutral-beam energies of 200 to 500-keV D 0 may be required to insure adequate penetration into the center of ignition-sized tokamak plasmas. However, the beam energy requirement can be reduced by using a start-up scenario in which the final plasma is formed by major-radius compression of a beam-heated plasma whose density-radius product, na, is determined by satisfactory neutral-beam penetration. ''Compression boosting'' is attractive only for plasmas in which ntau/sub E/ increases with na, because a major-radius compression C increases na by C 3 / 2 . The dependence on C of beam energy and beam power for plasmas which obey ''empirical scaling laws'' of the type ntau/sub E/ varies as (na) 2 is analyzed. The dependences on C of stored magnetic energy and TF-coil power dissipation are also determined. It is found that a compression ratio of 1.5 to attain the ignited plasma permits adequate penetration by 150-keV D 0 beams

  15. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  16. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  17. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    Science.gov (United States)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  18. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  19. Conceptual design of a neutral-beam injection system for the TFTR

    International Nuclear Information System (INIS)

    Ehlers, K.W.; Berkner, K.H.; Cooper, W.S.; Hooper, E.B.; Pyle, R.V.; Stearns, J.W.

    1975-11-01

    The neutral-beam injection requirements for heating and fueling the next generation of fusion reactor experiments far exceed those of present devices; the neutral-beam systems needed to meet these requirements will be large and complex. A conceptual design of a TFTR tokamak injection system to produce 120 keV deuterium-ion beams with a total power of about 80 MW is given

  20. RF Plasma Source for Heavy Ion Beam Charge Neutralization

    Science.gov (United States)

    Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.

    2003-10-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.

  1. Multimegawatt neutral beams for tokamaks

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1979-03-01

    Most of the large magnetic confinement experiments today and in the near future use high-power neutral-beam injectors to heat the plasma. This review briefly describes this remarkable technique and summarizes recent results as well as near term expectations. Progress has been so encouraging that it seems probable that tokamaks will achieve scientific breakeven before 1990

  2. Experimental study of the stability of a neutralized electron beam

    International Nuclear Information System (INIS)

    Kudelainen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1983-01-01

    Results are reported from measurements of the spectral properties of a long neutralized electron beam in the NAP-M proton storage ring. It is shown that when the number of secondary electrons is small, both the longitudinal and the transverse oscillations are strongly damped, so that beam instability is suppressed. The current density of the neutralized electron beam produced in the experiments was approx.10 2 times greater than the theoretical value determined from the instability threshold for nonaxisymmetric oscillations

  3. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  4. Prototype ion source for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Akiba, M.

    1981-01-01

    A prototype ion source for JT-60 neutral beam injectors has been fabricated and tested. Here, we review the construction of the prototype ion source and report the experimental results about the source characteristics that has been obtained at this time. The prototype ion source is now installed at the prototype unit of JT-60 neutral beam injection units and the demonstration of the performances of the ion source and the prototype unit has just started

  5. Neutral beam injection in 2XIIB

    International Nuclear Information System (INIS)

    Hibbs, S.M.

    1975-01-01

    Integrated into the operation of the 2XIIB controlled fusion experiment is a 600-A, 20-keV neutral injection system: the highest neutral-beam current capacity of any existing fusion machine. This paper outlines the requirements of the injection system and the design features to which they led. Both mechanical and electrical aspects are discussed. Also included is a brief description of some operational aspects of the system and some of the things we have learned along the way, as well as a short history of the most significant developments

  6. Long plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Grant Logan, Larry B.; Seidl, Peter A.; Waldron, William

    2009-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage (∼8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO 3 source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5x10 10 cm -3 density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios ∼120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high-energy-density physics applications.

  7. Multi-megawatt neutral beams for MFTF-B

    International Nuclear Information System (INIS)

    Kerr, R.G.

    1982-01-01

    Multi-megawatt neutral-beam sources have successfully made the transition from prototype to commercial production, with some operational improvements due to the commercialization. Long pulse source operation results will be available soon

  8. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-01-01

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  9. Electron-impact ionization of SiCl{sub 3} using an improved crossed fast-neutral-beam - electron-beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J M; Gutkin, M V; Tarnovsky, V; Becker, K [Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)], E-mail: kbecker@poly.edu

    2008-05-15

    The fast-neutral-beam technique is a versatile approach to the determination of absolute cross sections for electron-impact ionization of atoms, stable molecules as well as free radicals and metastable species. A fast neutral beam of the species under study is prepared by charge-transfer neutralization of a mass-selected ion beam and the species are subsequently ionized by an electron beam. Mass- and energy-dispersive selection separates singly from multiply charged ions and parent from fragment ions and allows the determination of partial ionization cross sections. Here we describe some major improvements that were made recently to the fast-beam apparatus that has been used extensively for ionization cross section measurements for the past 15 years in our group. Experiments using well-established ionization cross sections in conjunction with extensive ion trajectory simulations were carried out to test the satisfactory performance of the modified fast-neutral-beam apparatus. We also report absolute partial cross sections for the formation of various singly charged positive ions produced by electron impact on SiCl{sub 3} for impact energies from threshold to 200 eV in the modified fast-beam apparatus.

  10. RF plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures ∼ 10 -5 Torr at full ionization. The initial operation of the source has been at pressures of 10 -4 -10 -1 Torr and electron densities in the range of 10 8 -10 11 cm -3 . Recently, pulsed operation of the source has enabled operation at pressures in the 10 -6 Torr range with densities of 10 11 cm -3 . Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun

  11. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    Science.gov (United States)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  12. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    International Nuclear Information System (INIS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L.D.

    2012-01-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli (E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  13. Tokamak heating by neutral beams and adiabatic compression

    International Nuclear Information System (INIS)

    Furth, H.P.

    1973-08-01

    ''Realistic'' models of tokamak energy confinement strongly favor reactor operation at the maximum MHD-stable β-value, in order to maximize plasma density. Ohmic heating is unsuitable for this purpose. Neutral-beam heating plus compression is well suited; however, very large requirements on device size and injection power seem likely for a DT ignition experiment using a Maxwellian plasma. Results of the ATC experiment are reviewed, including Ohmic heating, neutral-beam heating, and production of two-energy-component plasmas (energetic deuteron population in deuterium ''target plasma''). A modest extrapolation of present ATC parameters could give zero-power conditions in a DT experiment of the two-energy-component type. (U.S.)

  14. An experimental investigation on bending stiffness and neutral axis depth variation of over-reinforced high strength concrete beams

    International Nuclear Information System (INIS)

    Mohammadhassani, Mohammad; Bin Jumaat, Mohd Zamin; Chemrouk, Mohamed; Akbar Maghsoudi, Ali; Jameel, Mohammed; Akib, Shatirah

    2011-01-01

    Highlights: → Improvement of the assessment of correspond stress for calculation of modules of elasticity → better evaluation of cracked moment of inertia. → Low distinction of neutral axis depth → low bending stiffness variation. → Rate of slope in the line connecting the origin of first crack to yield point of N.A.D-LOAD graph → rate of ductility of beam section. - Abstract: The present work is an attempt to study the neutral axis variation and the evolution of the moment inertia with the loading of over reinforced high strength concrete sections in conjunction with ACI 318-05. In this sense, four high strength concrete beams, having different tension reinforcement quantities expressed as proportions of the balanced steel ratio (0.75ρ b , 0.85ρ b , ρ b , 1.2ρ b ) were tested. Measurements of the deflection and the reinforcement and concrete strains of all specimens were made during the loading process. The load-neutral axis depth variation and the load-section stiffness curves were drawn. The slope of the line connecting the origin of the first crack to the initial yielding of the failure point in the neutral axis depth-load graphs shows the rate of ductility; ductile behaviour in the beam increases as the slope becomes steeper. Based on the results of this study, it is recommended that the modulus of elasticity of concrete E c be reviewed and evaluated at a stress higher than 0.5f ' c for the determination of the cracked moment of inertia.

  15. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Eckard, R.D.; Van Ness, H.W.

    1979-01-01

    A fixed-price procurement contract for $24.9 million was awarded to Aydin Energy Division, Palo Alto, CA, for the design, manufacture, installation, and acceptance testing of the sustaining neutral beam power supply system (SNBPSS). This system is scheduled for completion in early 1981 and will provide the conditioned power for the 24 neutral beam source modules. Each of the 24 power supply sets will provide the accel potential of 80 kV at 88 A, the arc power, the filament power, and the suppressor power for its associated neutral beam source module

  16. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  17. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  18. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  19. Determination of the D/T fuel mixture using two-photon laser induced fluorescence in combination with neutral beam injection

    International Nuclear Information System (INIS)

    Voslamber, D.; Mandl, W.

    1997-08-01

    Doppler-free two-photon induced fluorescence in the Lyman-α lines of H, D and T has been suggested previously as a local and isotope-selective diagnostic of the intrinsic neutral hydrogen densities in magnetically confined fusion plasmas. In the present paper it is shown that the diagnostic potential of this method is significantly increased if it is combined with neutral atom beams whose characteristics are such that efficient production of thermal ground state atoms via charge exchange reactions is achieved. Considerably deeper plasma regions than just the plasma edge can thus be probed and local, isotope-selective information is obtained on the more relevant ions rather than on the neutrals. Additional diagnostic possibilities, e.g. those arising from the spectroscopic investigation of the beam particles themselves, are also discussed. (author)

  20. ECR plasma source for heavy ion beam charge neutralization

    Science.gov (United States)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.

  1. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Pierluigi, E-mail: pierluigi.veltri@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy); INFN—Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy)

    2016-06-15

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment.

  2. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    International Nuclear Information System (INIS)

    Veltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi

    2016-01-01

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment

  3. Gas utilization in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T 2 allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H 2 to D 2 could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs

  4. Crosstalk measurement on the D-III neutral beam power supplies

    International Nuclear Information System (INIS)

    Nerm, A.; Bowles, E.; Callis, R.W.; Colleraine, A.; Cowels, G.; Finizio, R.; Moore, D.; Tooker, J.F.; Varga, H.

    1983-01-01

    The Doublet III neutral beam plasma heating system comprises three beamlines with a total of six ion sources. Each of these ion sources is energized from a Neutral Beam Power System (NBPS) which is capable of delivering pulses at 80 kV and 100 A with pulse lengths up to 1 second in duration. A 138 kV San Diego Gas and Electric Company line is used as the prime power source for the NBPS. The 138 kV line is stepped down through an 84 MVA (pulse rating) 138 kV-12.47 kV transformer and an 8 MVA (pulse rating) 138 kV--480 V transformer. The 12.47 kV transformer feeds six NBPS high voltage circuits. The 480 V transformer supplies power to the filament, arc, and auxiliary power systems and control consoles in each NBPS. Each of the NBPS may block (controlled interruption of NBPS to protect the ion source) several times during a shot. Voltage variations due to such blocking by one or more systems have been measured on the 12.47 kV distribution bus as part of an effort to reduce system interaction. Interaction due to blocking during shots was found to be caused by noise picked up in low level circuits during ion source faults. High voltage DC fluctuations due to blocking do not cause interaction unless the voltage sags below the minimum required anode voltage for the pulse tetrodes in the Modular/Regulator, but interaction due to crowbar of the high voltage DC supply by a NBPS may result in a domino effect unless the remaining online systems are caused to block until the crowbarred system is cleared from the line (This feature is not presently implemented.). Voltage sag on the 480 V bus results from simultaneous operation of the ion sources. This sag, when it occurs, may lower the arc power input to the ion sources and cause reduced output power

  5. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    International Nuclear Information System (INIS)

    Pace, D.C.; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-01-01

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  6. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D.C., E-mail: pacedc@fusion.gat.com; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-11-15

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  7. Comparison of beam deposition for three neutral beam injection codes

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.; Mense, A.T.

    1979-03-01

    The three neutral beam injection codes BEAM (Houlberg, ORNL), HOFR (Howe, ORNL), and FREYA (Post, PPPL) are compared with respect to the calculation of the fast ion deposition profile H(r). Only plasmas of circular cross section are considered, with injection confined to the mid-plane of the torus. The approximations inherent in each code are pointed out, and a series of comparisons varying several parameters (beam energy and radius, machine size, and injection angle) shows excellent agreement among all the codes. A cost comparison (execution time and memory requirements) is made which points out the relative merits of each code within the context of incorporation into a plasma transport simulation code

  8. Component design description of the neutral beam injectors for PLT

    International Nuclear Information System (INIS)

    Johnson, R.L.; Baer, M.B.; Dagenhart, W.K.; Haselton, H.H.; Mann, T.L.; Queen, C.C.; Stirling, W.L.; Whitfield, P.W.

    1977-01-01

    Plasma heating by injection of high energy neutrals is one of the experiments to be carried out on Princeton Large Torus (PLT). A four unit neutral beam injection system has been designed, built and tested which should inject a total of 3 MW of neutrals into PLT with a 200 millisecond pulse length. A typical system unit is described where the major components are identified. The following discussion describes each of these items along with some details of the design and fabrication problems encountered. Some early design considerations addressed the problems of separation and dumping of residual ions from the neutral beam, calorimetry of the neutrals with incident fuxes of 25 KW/cm 2 , and pumping speeds of several hundred thousand liters per second for hydrogen gas. Solutions were found for these problems while also resolving the complex dilemma of interfacing four large systems to a tokamak

  9. Noninterferometric phase imaging of a neutral atomic beam

    International Nuclear Information System (INIS)

    Fox, P.J.; Mackin, T.R.; Turner, L.D.; Colton, I.; Nugent, K.A.; Scholten, R.E.

    2002-01-01

    We demonstrate quantitative phase imaging of a neutral atomic beam by using a noninterferometric technique. A collimated thermal atomic beam is phase shifted by an off-resonant traveling laser beam with both a Gaussian and a TEM 01 profile and with both red and blue detuning of as much as 50 GHz. Phase variations of more than 1000 rad were recovered from velocity-selective measurements of the propagation of the atomic beam and were found to be in quantitative agreement with theoretical predictions based on independently measured phase object intensity profiles and detunings

  10. Analytic Scalings of the Constant-Neutralization Beam Envelope Equation, with Applications

    International Nuclear Information System (INIS)

    McCarrick, J F

    2007-01-01

    Neutralized transport of relativistic electron beams can achieved in various circumstances. In one form, the beam is transported through a plasma, either pre-formed or beam generated, where the plasma electrons are ejected due to the space charge influence of the beam. The beam can be fully neutralized this way if the plasma is sufficiently dense. Typically, the transport physics of concern in this case are the various macro- and micro-instabilities that can develop due to interactions of the beam with the plasma; charge and current neutralization are certainly important but tend to be just one set of concerns among many. The study of beam/plasma interactions has been active for many years [e.g. 1]. In a different scenario, the beam impinges on a plasma with a sharp boundary (as maintained on the timescale of a beam pulse) and, via space charge, extracts ions from the plasma; extraction energies can be hundreds of kilovolts in the case of tightly focused, high current beams. In this case, the ions have a lower density than the beam and are not accompanied by a plasma electron population; the main transport issue is charge neutralization. Such a sharply bounded plasma can occur via ionization of surface impurities from a solid target; the transport of the beam through this thin layer is typically not of interest relative to the transport upstream of the surface and the beam/target interactions beyond the surface. Since the partial neutralization of the beam changes its focusing characteristics on the target, and since the high extraction energy means the ion column is moving rapidly into the beam and introducing strong time variation, this 'backstreaming ion' phenomenon has been an area of active study in the transport of the high-intensity electron beams used in radiographic accelerators (see [2] for an example of such machines). However, much of the work has been experimental [3] and numerical [4]. The conceptual understanding provided by pencil-and-paper analysis

  11. Upgrade of the TCV tokamak, first phase: Neutral beam heating system

    Energy Technology Data Exchange (ETDEWEB)

    Karpushov, Alexander N., E-mail: alexander.karpushov@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Alberti, Stefano; Chavan, René [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Davydenko, Vladimir I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Duval, Basil P. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Ivanov, Alexander A. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Fasel, Damien; Fasoli, Ambrogio [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Gorbovsky, Aleksander I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Goodman, Timothy [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Kolmogorov, Vyacheslav V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Martin, Yves; Sauter, Olivier [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Sorokin, Aleksey V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); and others

    2015-10-15

    Highlights: • Widening the parameter range of reactor relevant regimes on the TCV tokamak. • Installation of 1 MW, 30 keV neutral beam, direct ion heating, access to T{sub i}/T{sub e} ≥ 1. • ASTRA simulation of plasma response to NB and EC heating in different regimes. • Specific low divergency neutral beam injector with tunable beam power and energy. - Abstract: Experiments on TCV are designed to complement the work at large integrated tokamak facilities (such as JET) to provide a stepwise approach to extrapolation to ITER and DEMO in areas where medium-size tokamaks can often exploit their experimental capabilities and flexibility. Improving the understanding and control requirements of burning plasmas is a major scientific challenge, requiring access to plasma regimes and configurations with high normalized plasma pressure and a wide range of ion to electron temperature ratios, including T{sub e}/T{sub i} ∼ 1. These conditions will be explored by adding a 1 MW neutral heating beam to TCV's auxiliary for direct ion heating (2015) and increasing the ECH power injected in X-mode at the third harmonic (2 MW in 2015–2016). The manufacturing of the neutral beam injector was launched in 2014.

  12. Plasma Heating and Current Drive by Neutral Beam and Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Okumura, Y [Fusion Research and Development Directorate, Japan Atomic Energy Agency (Japan)

    2012-09-15

    The purpose of plasma heating is to raise the plasma temperature enough to produce a deuterium and tritium reaction (D + T {yields} {sup 4}He + n). The required plasma temperature T is in the range of 10-30 keV. Since the high temperature plasma is confined by a strong magnetic field, injection of energetic ions from outside to heat the plasma is difficult due to the Lorenz force. The most efficient way to heat the plasma by energetic particles is to inject high energy 'neutrals' which get ionized in the plasma. Neutral beam injection (NBI) with a beam energy much above the average kinetic energy of the plasma electrons or ions is used (beam energy typically {approx}40 keV - 1 MeV). This heating scheme is similar to warming up cold water by pouring in hot water. There are two types of neutral beam, called P-NBI and N-NBI (P- and N- means 'positive' and 'negative', respectively). P-NBI uses the acceleration of positively charged ions and their neutralization, while N-NBI uses the acceleration of negative ions (electrons attached to neutral atoms) and their neutralization. Details are given in NBI technology Section. The first demonstration of plasma heating by P-NBI was made in ORMAK and ATC in 1974, while that by N-NBI was made in JT-60U for the first time in 1996. ITER has also adopted the N-NBI system as the heating and current drive system with a beam energy of 1 MeV. Figure A typical bird's eye view of a tokamak with N-NBI and N-NBI (JT-60U) is shown. (author)

  13. 8MVA modulator/regulator for neutral beams

    International Nuclear Information System (INIS)

    Remsen, D.B. Jr.; Overett, T.H.

    1980-05-01

    This paper describes very generally the modulator/regulator (Mod/Reg) being built for Transrex by Systems, Science and Software for use on the neutral beam power supplies that Transrex is building for General Atomic Company to power the neutral beam heating systems that will be used on the Doublet III fusion device. The Mod/Reg is required to provide an 80 kV, 100 A pulse for a second every 90 sec. The voltage is to be regulated to 3%, and in case of fault the pulse must be interrupted within 10 μsec. An additional requirement was that the total system have very low capacity such that the total energy stored would be less than 15 joules. This is a restriction imposed by the source designer to prevent destroying the source in case of an arc within the source

  14. Neutral beam injector for 475 keV MARS sloshing ions

    International Nuclear Information System (INIS)

    Goebel, D.M.; Hamilton, G.W.

    1983-01-01

    A neutral beam injector system which produces 5 MW of 475 keV D 0 neutrals continuously on target has been designed. The beamline is intended to produce the sloshing ion distribution required in the end plug region of the conceptual MARS tandem mirror commercial reactor. The injector design utilizes the LBL self-extraction negative ion source and Transverse Field Focusing (TFF) accelerator to generate a long, ribbon ion beam. A laser photodetachment neutralizer strips over 90% of the negative ions. Magnetic and neutron shield designs are included to exclude the fringe fields of the end plug and provide low activation by the neutron flux from the target plasma. The use of a TFF accelerator and photodetachment neutralizer produces a total system electrical efficiency of about 63% for this design

  15. Design study of a neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR)

    International Nuclear Information System (INIS)

    1977-10-01

    Design study has been made of a 200 kV, 45 MW D 0 neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR) covering the following: determination of the ion source specifications, design of components such as ion source with extraction electrodes, energy converter, cryopump and cooling system, and estimations of the energy conversion efficiency, overall power efficiency and total power required for operation of the NBI system, and also a hydrogen isotope separation method using cryo-sorption pumps. Optimizations and parameter studies of the neutralizing cell length, gas flow rate, operating pressure of ion sources, total pumping speed and pressure of energy converters are made in the design study based on reactor plasma requirements. Hollow cathode ion sources are proposed because of the extended operation time at low gas pressure (about 4.5 x 10 -3 Torr) and the high gas efficiency (40%). Life of the extraction electrodes is determined by blistering due to deuterium ions. Fast neutron radiation damage is relatively small. In-line direct converters with grounded recovery electrodes and neutralizing cells floated at negative potential -190 kV are used to recover residual deuterium ion energy without interrupting the neutral beam trajectories. Energy conversion efficiency of 80% and overall power efficiency of about 40% are obtained. (auth.)

  16. Efficient, radiation-hardened, 800-keV neutral beam injection system

    International Nuclear Information System (INIS)

    Anderson, O.A.; Cooper, W.S.; Goldberg, D.A.; Ruby, L.; Soroka, L.; Fink, J.H.

    1982-10-01

    Recent advances and new concepts in negative ion generation, transport, acceleration, and neutrailzation make it appear likely that an efficient, radiation-hardened neutral beam injection system could be developed in time for the proposed FED-A tokamak. These new developments include the operation of steady-state H - ion sources at over 5 A per meter of source length, the concept of using strong-focussing electrostatic structures for low-gradient dc acceleration of high-current sheet beams of negative ions and the transport of these beams around corners, and the development of powerful oxygen-iodine chemical lasers which will make possible the efficient conversion of the negative ions to neutrals using a photodetachment scheme in which the ion beam passes through the laser cavity

  17. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  18. Status of ACCULINNA beam line

    CERN Document Server

    Rodin, A M; Bogdanov, D D; Golovkov, M S; Fomichev, A S; Sidorchuk, S I; Slepnev, R S; Wolski, R; Ter-Akopian, G M; Oganessian, Yu T; Yukhimchuk, A A; Perevozchikov, V V; Vinogradov, Yu I; Grishenchkin, S K; Demin, A M; Zlatoustovskii, S V; Kuryakin, A V; Filchagin, S V; Ilkaev, R I

    2003-01-01

    The separator ACCULINNA was upgraded to achieve new experimental requirements. The beam line was extended by new ion-optical elements beyond the cyclotron hall. The new arrangements yield much better background conditions. The intensities of sup 6 He and sup 8 He radioactive beams produced in fragmentation of 35 A MeV sup 1 sup 1 B ions were increased up to a factor of 10. The upgraded beam line was used in experiments to study the sup 5 H resonance states populated in the t+t reaction. A cryogenic liquid tritium target was designed and installed at the separator beam line.

  19. Heat transfer study of water-cooled swirl tubes for neutral beam targets

    International Nuclear Information System (INIS)

    Kim, J.; Davis, R.C.; Gambill, W.R.; Haselton, H.H.

    1977-01-01

    Heat transfer considerations of water-cooled swirl-tubes including heat transfer correlations, burnout data, and 2-D considerations are presented in connection with high power neutral beam target applications. We also discuss performance results of several swirl tube targets in use at neutral beam development facilities

  20. Automated Calculation of DIII-D Neutral Beam Availability

    International Nuclear Information System (INIS)

    Phillips, J.C.; Hong, R.M.; Scoville, B.G.

    1999-01-01

    The neutral beam systems for the DIII-D tokamak are an extremely reliable source of auxiliary plasma heating, capable of supplying up to 20 MW of injected power, from eight separate beam sources into each tokamak discharge. The high availability of these systems for tokamak operations is sustained by careful monitoring of performance and following up on failures. One of the metrics for this performance is the requested injected power profile as compared to the power profile delivered for a particular pulse. Calculating this was a relatively straightforward task, however innovations such as the ability to modulate the beams and more recently the ability to substitute an idle beam for one which has failed during a plasma discharge, have made the task very complex. For example, with this latest advance it is possible for one or more beams to have failed, yet the delivered power profile may appear perfect. Availability used to be manually calculated. This paper presents the methods and algorithms used to produce a system which performs the calculations based on information concerning the neutral beam and plasma current waveforms, along with post-discharge information from the Plasma Control System, which has the ability to issue commands for beams in real time. Plots representing both the requested and actual power profiles, along with statistics, are automatically displayed and updated each shot, on a web-based interface viewable both at DIII-D and by our remote collaborators using no-cost software

  1. 3D-Printed Beam Splitter for Polar Neutral Molecules

    Science.gov (United States)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  2. Modification of beam lines at VEC

    Energy Technology Data Exchange (ETDEWEB)

    Shoor, Bivas; Chakraborty, P S; Mallik, C; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1997-12-01

    From the experience of light ion beam transportation through the Variable Energy Cyclotron beam line, it was observed that the beam line performance has to be improved in view of heavy ion acceleration program at the centre. The aim of this work was to study the feasibility of reducing the number of operational parameters without hampering the beam transmission and at the same time, to improve the vacuum of the beam line by reducing the hardware 2 refs., 1 fig.

  3. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Science.gov (United States)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  4. Tangential neutral-beam-driven instabilities in the princeton beta experiment

    OpenAIRE

    Heidbrink, WW; Bol, K; Buchenauer, D; Fonck, R; Gammel, G; Ida, K; Kaita, R; Kaye, S; Kugel, H; LeBlanc, B; Morris, W; Okabayashi, M; Powell, E; Sesnic, S; Takahashi, H

    1986-01-01

    During tangential neutral-beam injection into the PBX tokamak, bursts of two types of instabilities are observed. One instability occurs in the frequency range 120-210 kHz and the other oscillates predominantly near the frequency of bulk plasma rotation (20-30 kHz). Both instabilities correlate with drops in neutron emission and bursts in charge-exchange neutral flux, indicating that beam ions are removed from the center of the plasma by the instabilities. The central losses are comparable to...

  5. Long pulse characteristics of 5 MW ion source for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M.R. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: mukti@ipr.res.in; Mattoo, S.K.; Chakraborty, A.K.; Baruah, U.K.; Patel, G.B.; Jayakumar, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2008-10-15

    We present characteristics of a 5 MW ion source for SST-1 neutral beam injector. Before the source could be tested for its performance, it was conditioned by 480 arc discharges of 1 s and beam extraction of hydrogen species at various beam voltages ranging between 19 kV and 56 kV. Breakdown free beam extraction could be secured only after about 3000 beam second extraction. The ion source is capable of delivering 1.7 MW of neutral beam power at 55 kV with horizontal and vertical focal length of 5.4 m and 7 m respectively. Beam divergence is {approx}0.97 deg. Steady-state beam energy of 31 MJ at 41 kV was achieved during 14 s long beam extraction. We have not noticed any deterioration of beam parameters, including beam divergence during long pulse operation. These results indicate that 0.5 MW of neutral beam power at 30 kV required for heating of plasma in SST-1 can be delivered.

  6. Long pulse characteristics of 5 MW ion source for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.; Chakraborty, A.K.; Baruah, U.K.; Patel, G.B.; Jayakumar, P.K.

    2008-01-01

    We present characteristics of a 5 MW ion source for SST-1 neutral beam injector. Before the source could be tested for its performance, it was conditioned by 480 arc discharges of 1 s and beam extraction of hydrogen species at various beam voltages ranging between 19 kV and 56 kV. Breakdown free beam extraction could be secured only after about 3000 beam second extraction. The ion source is capable of delivering 1.7 MW of neutral beam power at 55 kV with horizontal and vertical focal length of 5.4 m and 7 m respectively. Beam divergence is ∼0.97 deg. Steady-state beam energy of 31 MJ at 41 kV was achieved during 14 s long beam extraction. We have not noticed any deterioration of beam parameters, including beam divergence during long pulse operation. These results indicate that 0.5 MW of neutral beam power at 30 kV required for heating of plasma in SST-1 can be delivered.

  7. Analysis of activation and shutdown contact dose rate for EAST neutral beam port

    Science.gov (United States)

    Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong

    2017-12-01

    For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.

  8. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  9. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  10. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    International Nuclear Information System (INIS)

    McNeill, D.H.; Kim, J.

    1980-05-01

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively

  11. Stable operation of an effectively axisymmetric neutral beam driven tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.

    1990-01-01

    A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab

  12. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment – II

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  13. Computational study of the first stage of hypersonic ion beam neutralization: The cross neutralization stage

    International Nuclear Information System (INIS)

    Pomot, C.; Dolique, J.M.

    1975-01-01

    A study is made of the first stage of evolution of a hypersonic ion beam in which thermoelectrons are emitted by a heated grid, known as the neutralizer. Downstream from the neutralizer there appears successively as a sheath a range of periodic and quasi-stationary electric field and a front where the electric field oscillates with the plasma frequency. The sheath is self-regulated. Some electrons are trapped in the periodic and stationary electric field. The characteristics of the periodic, quasi-stationary range correspond to those of both an experimental study and one-dimensional time-independent macroscopic theory. This quasi-stationary regime builds up in a time smaller than ω/subp/e -1 and is studied for a few periods ω/subP//sube/ -1 . The subsequent evolution of this state of nonequilibrium is not investigated. The experimental study has shown that, as for the neutralization of a subsonic ion beam, it leads to a field-free, homogeneous medium: a ''synthesized plasma.'' The importance of the first stage described herein, which may be called the gross neutralization stage, is due to the properties of mean neutrality in the current and in the charge insured by the regulating sheath, properties which will be preseved downstream

  14. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  15. Sawtooth stability in neutral beam heated plasmas in TEXTOR

    NARCIS (Netherlands)

    Chapman, I.T.; Pinches, S. D.; Koslowski, H. R.; Liang, Y.; Kramer-Flecken, A.; De Bock, M.

    2008-01-01

    The experimental sawtooth behaviour in neutral beam injection (NBI) heated plasmas in TEXTOR is described. It is found that the sawtooth period is minimized with a low NBI power oriented in the same direction as the plasma current. As the beam power is increased in the opposite direction to the

  16. Advances in the operation of the DIII-D neutral beam computer systems

    International Nuclear Information System (INIS)

    Phillips, J.C.; Busath, J.L.; Penaflor, B.G.; Piglowski, D.; Kellman, D.H.; Chiu, H.K.; Hong, R.M.

    1998-02-01

    The DIII-D neutral beam system routinely provides up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak, and is a critical part of the DIII-D physics experimental program. The four computer systems previously used to control neutral beam operation and data acquisition were designed and implemented in the late 1970's and used on DIII and DIII-D from 1981--1996. By comparison to modern standards, they had become expensive to maintain, slow and cumbersome, making it difficult to implement improvements. Most critical of all, they were not networked computers. During the 1997 experimental campaign, these systems were replaced with new Unix compliant hardware and, for the most part, commercially available software. This paper describes operational experience with the new neutral beam computer systems, and new advances made possible by using features not previously available. These include retention and access to historical data, an asynchronously fired ''rules'' base, and a relatively straightforward programming interface. Methods and principles for extending the availability of data beyond the scope of the operator consoles will be discussed

  17. Gas injection in EBT-S for assessment of particle loading effects of neutral beam injection

    International Nuclear Information System (INIS)

    Carpenter, K.H.; Glowienka, J.C.

    1979-01-01

    Experiments have begun to examine the physics of neutral beam injection on EBT-S. Preliminary experiments have been limited to a calibrated gas puffing experiment which simulates the effects of a pulsed beam with zero energy. These experiments begin to address some of the compatibility problems that exist for future beam heating experiments on EBT devices. In particular, neutral beams are to be a significant part of the planned EBT-II experiment which is designed to demonstrate steady-state, reactor-like conditions with both electron cyclotron heating and neutral beam heating

  18. Assessment of the plasma start-up in Wendelstein 7-X with neutral beam injection

    International Nuclear Information System (INIS)

    Gradic, D.; Dinklage, A.; Brakel, R.; McNeely, P.; Rust, N.; Wolf, R.; Osakabe, M.

    2015-01-01

    Plasma start-up by neutral beam injection was investigated for stellarators. A zero-dimensional collisional model was extended to evaluate the temporal evolution of the plasma start-up in a confining toroidal magnetic field. Inclusion of different beam energy components indicated a substantial effect due to the energy dependence of beam–gas collisions. Additional collision processes and particle equations were considered to simulate the plasma start-up in helium–hydrogen mixtures. The isotope effect between operation with hydrogen and deuterium beams was also investigated. As a major objective the conditions necessary for a plasma start-up with neutral beams in W7-X have been examined. The assessed beam configuration in W7-X was found not to allow plasma start-up by neutral beam injection alone. The model has been validated for experimental data from W7-AS and Large Helical Device. Quantitative predictions of this study show that the ratio of the beam–plasma interaction length and the plasma volume is an essential quantity for the successful plasma start-up with neutral beams. (paper)

  19. High-power neutral-beam heating in the adiabatic toroidal compressor

    International Nuclear Information System (INIS)

    Ellis, R.A.; Eubank, H.P.; Goldston, R.; Smith, R.R.; Nagashima, T.

    1976-05-01

    Neutral-beam injection experiments on ATC have resulted in net power deposited in the plasma of up to 230 kW. The power deposited in the plasma ions is large compared to that from ohmic heating. For a variety of beam and plasma ion species, the increase in ion temperature is proportional to beam power

  20. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  1. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  2. Considerations involved in the design of negative-ion-based neutral beam systems

    International Nuclear Information System (INIS)

    Cooper, W.S.

    1983-11-01

    We consider the requirements and constraints for negative-ion-based neutral beam injection systems, and show how these are reflected in design considerations. We will attempt to develop a set of guidelines for users and developers to use to see how well (in a qualitative sense, at least) a particular neutral beam system fits a particular proposed need

  3. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  4. Design and Control of Small Neutral Beam Arc Chamber for Investigations of DIII-D Neutral Beam Failure During Helium Operation

    Science.gov (United States)

    Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim

    2017-10-01

    The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  5. Modified source of a fast neutral atom beam with a controlled energy

    International Nuclear Information System (INIS)

    Gostev, V.A.; Elakhovskij, D.V.; Khakhaev, A.D.

    1980-01-01

    A source of a metastable helium atom beam with a controlled energy based on a phenomenon of resonant ion neutralization on the surface of a solid body is described. The neutral particle energy control is carried out by changing ion velocities before their transformation into metastable atoms. The results of experiments with a modified construction of atomic beam source are stated. These experiments were conducted to find the possibilities to control velocities of atoms in a flow as well as to elucidate the peculiarities of operation of a collimator-converter of this construction. Dependences of a halfwidth of the ion velocity distribution function on the ion source parameters have been investigated. The possibility for particle energy control in a collimated flow of fast neutral. atoms has been experimentally shown, it is also shown that a mean value of atom energy in a beam coincides with a value of mean energy of ions from which atoms are produced by the resonant neutralization method; the construction of the source provides the possibility to realize the method of ''overtaking beams'' for neutral atoms and as a result of this to give a possibility for studying atom-atom collisions in a wide energy range at relatively high densities of flows

  6. Tangential neutral-beam--driven instabilities in the Princeton beta experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Bol, K.; Buchenauer, D.

    1986-01-01

    During tangential neutral-beam injection into the PBX tokamak, bursts of two types of instabilities are observed. One instability occurs in the frequency range 120--210 kHz and the other oscillates predominantly near the frequency of bulk plasma rotation (20--30 kHz). Both instabilities correlate with drops in neutron emission and bursts in charge-exchange neutral flux, indicating that beam ions are removed from the center of the plasma by the instabilities. The central losses are comparable to the losses induced by the fishbone instability during perpendicular injection

  7. Outgassing measurements and results used in designing the Doublet III Neutral Beam Injector System

    International Nuclear Information System (INIS)

    Yamamoto, R.M.; Harvey, J.

    1979-11-01

    Material vacuum properties played an important part in designing the Neutral Beam Injector System for General Atomic's Doublet III Tokamak. Low operating vacuum tank pressures were desired to keep re-ionization of the Neutral Beam to a minimum. Plasma contamination was also a major concern, hence stringent material impurity constraints were imposed. Outgassing Rate Measurement and Residual Gas Analyses were performed on different types of materials to determine if their vacuum properties were compatible with the Neutral Beam Injector System requirements

  8. The elettra beam line control system

    International Nuclear Information System (INIS)

    Mignacco, M.; Abrami, A.; Dequal, Z.

    1994-01-01

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  9. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    International Nuclear Information System (INIS)

    Glad, A.S.; Jacobson, V.

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc

  10. Neutral beam deployment on DEMO and its influence on design

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Elizabeth, E-mail: elizabeth.surrey@ccfe.ac.uk [EURATOM/CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); King, Damian; Lister, Jonathan; Porton, Michael; Timmis, William; Ward, David [EURATOM/CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)

    2011-10-15

    The demands on the neutral beam heating and current drive system of a DEMO device exceed those of existing fusion experiments by several orders of magnitude. By predicting possible power waveforms it is possible to analyse the technological advances necessary to achieve a system relevant to deployment on a power plant. Achieving the necessary efficiency will require simultaneous improvements in beam current density, neutralization efficiency and beam transmission. Considering the deployment on the tokamak vessel shows no major disruption to the tritium breeder blanket and no requirement to reach a high packing density of injectors. The thermal management of components subjected to low heat flux for many hours is considered and it is shown that radiation cooling can be exploited to control the temperature of such items.

  11. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  12. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Li Xinxia; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  13. Study of the synthesized plasma resulting from forced neutralization of a mercury ions beam

    International Nuclear Information System (INIS)

    Spiess, G.

    1969-01-01

    When an ionic beam is used (space simulation etc...) it needs a forced space charge neutralization by means of electrons injection when the perturbations resulting from the ionic space charge are not already eliminated by the well known self neutralization of the beam on the back ground gas of the tank. We have shown that it is possible to obtain the forced neutralization of a low energy (a few KeV) Hg + ion beam, 10 cm in diameter, with a neutraliser made of a hot emissive filament located inside the beam close to the ion source. The computed solution of the plane waves dispersion equation has shown that the synthesized plasma, resulting from the neutralised beam, is damping fluctuations with any wave length when the average ions velocity is less than the neutralizing electrons thermal velocity. This last conclusion assumes that no external electromagnetic field is applied. When a longitudinal electric field is applied, by means of a polarized grid into the beam, the plasma stability range is changed. (author) [fr

  14. Recent improvements to the DIII-D neutral beam instrumentation and control system

    International Nuclear Information System (INIS)

    Kellman, D.H.; Hong, R.

    1997-11-01

    The DIII-D neutral beam (NB) instrumentation and control (I and C) system provides for operational control and synchronization of the eight DIII-D neutral beam injection systems, as well as for pertinent data acquisition and safety interlocking. Recently, improvements were made to the I and C system. With the replacement of the NB control computers, new signal interfacing was required to accommodate the elimination of physical operator panels, in favor of graphical user interface control pages on computer terminal screens. The program in the mode control (MC) programmable logic controller (PLC), which serves as a logic-processing interface between the NB control computers and system hardware, was modified to improve the availability of NB heating of DIII-D plasmas in the event that one or more individual beam systems suddenly become unavailable while preparing for a tokamak experimental shot sequences. An upgraded computer platform was adopted for the NB control system operator interface and new graphical user interface pages were developed to more efficiently display system status data. A failure mode of the armor tile infrared thermometers (pyrometers), which serve to terminate beam pulsing if beam shine-through overheats wall thermal shielding inside the DIII-D tokamak, was characterized such that impending failures can be detected and repairs effected to mitigate beam system down-time. The hardware that controls gas flow to the beamline neutralizer cells was upgraded to reduce susceptibility to electromagnetic interference (EMI), and interlocking was provided to terminate beam pulsing in the event of insufficient neutralizer gas flow. Motivation, implementation, and results of these improvements are presented

  15. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  16. Ferroelectric plasma source for heavy ion beam space charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Davidson, Ronald C.; Grisham, Larry; Grant Logan, B.; Seidl, Peter A.; Waldron, William; Yu, Simon S.

    2007-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to allow them to focus to a small spot size and compress their axial pulse length. The plasma source should be able to operate at low neutral pressures and without strong externally applied electric or magnetic fields. To produce 1 m-long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients are being developed. The sources utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic material, and high voltage (∼7 kV) will be applied between the drift tube and the front surface of the ceramics. A prototype ferroelectric source, 20 cm in length, has produced plasma densities of 5x10 11 cm -3 . It was integrated into the Neutralized Transport Experiment (NTX), and successfully charge neutralized the K + ion beam. A 1 m-long source comprised of five 20-cm-long sources has been tested. Simply connecting the five sources in parallel to a single pulse forming network power supply yielded non-uniform performance due to the time-dependent nature of the load that each of the five plasma sources experiences. Other circuit combinations have been considered, including powering each source by its own supply. The 1-m-long source has now been successfully characterized, producing relatively uniform plasma over the 1 m length of the source in the mid-10 10 cm -3 density range. This source will be integrated into the NDCX device for charge neutralization and beam compression experiments

  17. Neutral-beam aiming and calorimetry for MFTF-B

    International Nuclear Information System (INIS)

    Goldner, A.I.; Margolies, D.

    1981-01-01

    The vessel for the Tandem Mirror Fusion Test Facility (MFTF-B) will have up to eleven 0.5-s-duration neutral-beam injectors for the initial heating of the MFTF-B plasma. Knowing the exact alignment of the beams and their total power is critical to the performance of the experiment. Using prototype aiming and calorimetry systems on the High Voltage Test Stand (HVTS) at Lawrence Livermore National Laboratory (LLNL), we hope to prove our ability to obtain an aiming accuracy of +-1 cm at the plasma and a calorimetric accuracy of +-5% of the actual total beam energy

  18. Engineering problems of future neutral beam injectors

    International Nuclear Information System (INIS)

    Fink, J.

    1977-01-01

    Because there is no limit to the energy or power that can be delivered by a neutral-beam injector, its use will be restricted by either its cost, size, or reliability. Studies show that these factors can be improved by the injector design, and several examples, taken from mirror reactor studies, are given

  19. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  20. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  1. PLT and Doublet III neutral beam injection systems

    International Nuclear Information System (INIS)

    Haselton, H.H.; Dagenhart, W.K.; Schechter, D.E.; Stewart, L.D.; Stirling, W.L.

    1976-01-01

    The design program is being supported by experimental work with all beam line components: gas cells, bending magnets, beam stops, magnetic shielding, and high speed-high throughput cryopumping systems. Stray toroidal fields and fields produced by external transmission or mirror magnets are under study to determine the optimum means of removing the unneutralized component from the beam. Concepts utilizing materials with high permeability are adequate to provide the source with the necessary magnetic shielding. Beam stops capable of dissipating a power density of 10 to 40 kW/cm 2 are required for ion dumps, diagnostics, and on line ion source conditioning

  2. Characterization of a 5-eV neutral atomic oxygen beam facility

    Science.gov (United States)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  3. Comparison of calculated neutral beam shine through with measured shine-through in DIII-D

    International Nuclear Information System (INIS)

    Chiu, H.K.; Hong, R.

    1997-11-01

    A comparison of the calculated shine through of neutral particle beams in the DIII-D plasma to measured values inferred from the target temperature rise is reported. This provides an opportunity to verify the shine through calculations and makes them more reliable in those cases where the shine through can not be measured. The DIII-D centerpost neutral beam target tiles are safe-guarded against excessive beam shine-through by pyrometry and thermocouple (TC) arrays on the tiles. Shine-through beam power is calculated from the measured temperature changes reported by the target tile TC array. These measurements are performed at the beginning of each operational year at DIII-D. Theoretically, the beam energy deposited into the plasma can be expressed as a function of the change in beam density. Neutral beam energy deposition in plasma (of known density) is inferred by comparing the results of a series of shine-through measurements for the 1997 campaign at DIII-D to the expected shine-through given by theory

  4. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  5. Observation of Beam Driven Modes during Neutral Beam Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Gorelenkov, E.D.; Cheng, C.Z.; Bell, R.; Darrow, D.; Johnson, D.; Kaye, S.; LeBlanc, B.; Menard, J.; Kubota, S.; Peebles, W.

    2001-01-01

    With the first injection of neutral beams on the National Spherical Torus Experiment (NSTX), a broad and complicated spectrum of coherent modes was seen between approximately 0.4 MHz and 2.5 MHz [where f(subscript ''ci'')] for deuterium is approximately 2.2 MHz. The modes have been observed with high bandwidth magnetic pick-up coils and with a reflectometer. The parametric scaling of the mode frequency with density and magnetic field is consistent with Alfvenic modes (linear in B, inversely with the square root of density). These modes have been identified as magnetosonic waves or compressional Alfven eigenmodes (CAE) excited by a cyclotron resonance with the neutral-beam ions. Modes have also been observed in the frequency range 50-150 kHz with toroidal mode numbers n = 1-5. These lower frequency modes are thought to be related to the TAE [Toroidal Alfven Eigenmode] seen commonly in tokamaks and driven by energetic fast ion populations resulting from ICRF [ion cyclotron range of frequency] and NBI [neutral-beam injection] heating. There is no clear indication of enhanced fast ion losses associated with the modes

  6. Heavy Neutral Beam Probe for edge plasma analysis in tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The Heavy Neutral Beam Probe project presented in this document is part of an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadian de Fusion Magnetique. The overall objective of the effort is to apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes facility in Montreal, Canada. To achieve this goal, a research and development project was started in December, 1990 to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present, satisfactory progress has been achieved. The ion gun is fully operational with the neutralizer in the final assembly stage in preparation for testing. The beam diagnostics have been completed and mounted in the computer automated test stand. The analyzer design and detailed trajectory calculations are nearing completion to allow for the vacuum interface construction. The CAMAC based data acquisition system hardware was integrated into the test stand. Part of this hardware is a component of the Tokamak de Varennes' contribution to the collaboration. Next steps on the critical path include the beginning of the neutralization tests and the start of the analyzer construction. Anticipated installation of the diagnostic on the tokamak is Spring 1992

  7. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  8. Vaccum and beam diagnostic controls for ORIC beam lines

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1991-01-01

    Vacuum and beam diagnostic equipment on beam lines from the Oak Ridge Isochronous Cyclotron, ORIC, is now controlled by a new dedicated system. The new system is based on an industrial programmable logic controller with an IBM AT personal computer providing control room operator interface. Expansion of this system requires minimal reconfiguration and programming, thus facilitating the construction of additional beam lines. Details of the implementation, operation, and performance of the system are discussed. 2 refs., 2 figs

  9. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  10. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    Science.gov (United States)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  11. Improved numerical calculation of the generation of a neutral beam by charge transfer between chlorine ions/neutrals and a graphite surface

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Samukawa, Seiji; Watanabe, Naoki; Ohtsuka, Shingo; Iwasaki, Takuya; Ono, Kohei; Iriye, Yasuroh

    2014-01-01

    The charge transfer process between chlorine particles (ions or neutrals) and a graphite surface on collision was investigated by using a highly stable numerical simulator based on time-dependent density functional theory to understand the generation mechanism of a high-efficiency neutral beam developed by Samukawa et al (2001 Japan. J. Appl. Phys. 40 L779). A straightforward calculation was achieved by adopting a large enough unit cell. The dependence of the neutralization efficiency on the incident energy of the particle was investigated, and the trend of the experimental result was reproduced. It was also found that doping the electrons and holes into graphite could change the charge transfer process and neutralization probability. This result suggests that it is possible to develop a neutral beam source that has high neutralization efficiency for both positive and negative ions. (paper)

  12. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  13. Implementation of a quasi-realtime display of DIII-D neutral beam heating waveforms

    International Nuclear Information System (INIS)

    Phillips, J.C.

    1993-10-01

    The DIII-D neutral beam system employs eight 80 keV ion sources mounted on four beamlines to provide plasma heating to the DIII-D tokamak. The neutral beam system is capable of injecting over 20 MW of deuterium power with flexibility in terms of timing and modulation of the individual neutral beams. To maintain DIII-D's efficient tokamak shot cycle and make informed control decisions, it is important to be able to determine which beams fired, and exactly when, by the time the tokamak shot is over. Previously this information was available in centralized form only after a several minute wait. A cost-effective alternative to the traditional eight-channel storage oscilloscope has been implemented using off the shelf PC hardware and software. The system provides a real time display of injected neutral beam accelerator voltages and tokamak plasma current, as well an a summation waveform indicative of the total injected power as a function of time. The hardware consists of a Macintosh Centris 650 PC with a Motorola 68040 microprocessor. Data acquisition is accomplished using a National Instrument's 16-channel analog to digital conversion board for the Macintosh. The color displays and functionality were developed using National Instruments' LabView environment. Because the price of PCs has been decreasing rapidly and their capabilities increasing, this system is far less expensive than an eight-channel storage oscilloscope. As a flexible combination of PC and software, the system also provides much more capability than a dedicated oscilloscope, acting as the neutral beam coordinator's logbook, recording comments and availability statistics. Data such as shot number and neutral beam parameters are obtained over the local network from other computers and added to the display. Waveforms are easily archived to disk for future recall. Details of the implementation will be discussed along with samples of the displays and a description of the system's function and capabilities

  14. Implementation of a quasi-realtime display of DIII-D neutral beam heating waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.C.

    1993-10-01

    The DIII-D neutral beam system employs eight 80 keV ion sources mounted on four beamlines to provide plasma heating to the DIII-D tokamak. The neutral beam system is capable of injecting over 20 MW of deuterium power with flexibility in terms of timing and modulation of the individual neutral beams. To maintain DIII-D`s efficient tokamak shot cycle and make informed control decisions, it is important to be able to determine which beams fired, and exactly when, by the time the tokamak shot is over. Previously this information was available in centralized form only after a several minute wait. A cost-effective alternative to the traditional eight-channel storage oscilloscope has been implemented using off the shelf PC hardware and software. The system provides a real time display of injected neutral beam accelerator voltages and tokamak plasma current, as well an a summation waveform indicative of the total injected power as a function of time. The hardware consists of a Macintosh Centris 650 PC with a Motorola 68040 microprocessor. Data acquisition is accomplished using a National Instrument`s 16-channel analog to digital conversion board for the Macintosh. The color displays and functionality were developed using National Instruments` LabView environment. Because the price of PCs has been decreasing rapidly and their capabilities increasing, this system is far less expensive than an eight-channel storage oscilloscope. As a flexible combination of PC and software, the system also provides much more capability than a dedicated oscilloscope, acting as the neutral beam coordinator`s logbook, recording comments and availability statistics. Data such as shot number and neutral beam parameters are obtained over the local network from other computers and added to the display. Waveforms are easily archived to disk for future recall. Details of the implementation will be discussed along with samples of the displays and a description of the system`s function and capabilities.

  15. Measurement of extent of intense ion beam charge neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany). INR

    1997-12-31

    Various diagnostic tools were employed to study and optimize the extent of space charge neutralization in the pulsed intense proton beam facility PROFA, comprising Langmuir probes, capacitive probes, and a novel type of the three electrode collector. The latter does not only allow us to measure ion and electron beam current densities in a high magnetic field environment, but also to deduce the density spectrum of the beam electrons. Appropriate operating conditions were identified to attain a complete space charge neutralisation. (author). 5 figs., 4 refs.

  16. Overview of the JET neutral beam enhancement project

    International Nuclear Information System (INIS)

    Ciric, D.; Brown, D.P.D.; Challis, C.D.; Chuilon, B.; Cox, S.J.; Crowley, B.; Day, I.E.; Edwards, D.C.; Evison, G.; Hackett, L.J.; Hotchin, S.; Hudson, Z.; Jenkins, I.; Jones, T.T.C.; King, R.; Kovari, M.; Martin, D.; Milnes, J.; Parkin, A.; Puma, A. Li

    2007-01-01

    The JET neutral beam (NB) heating system is being upgraded as a part of the ongoing JET Enhancement Programme. This is one of the largest upgrades of the JET machine carried out within the EFDA-JET framework. The main goals of the project are to increase the NB power delivered to JET plasma, to increase the beam pulse duration and to improve the availability and reliability of the JET NB system. The upgrade of the system is being carried out through the modification of the two existing neutral injector boxes (NIBs), each equipped with up to eight positive ion neutral injectors (PINIs). Significant changes of the JET NB system will be carried out within the next few years and will include modification of all PINIs, modification or replacement of various beamline components and corresponding instrumentation, procurement and installation of new high voltage power supply (HVPS) units and corresponding control systems and refurbishment of the 36 kV power distribution. Various physics, engineering and planning issues related to this project, as well as the current status of the project are discussed in detail. Particular attention is given to the results of a PINI prototype test, which are of crucial importance for the successful completion of the entire enhancement programme. Upon the completion of the project in 2009/2010, JET NB system should be capable of delivering more than 34 MW of deuterium beam power into the JET plasma for a duration of up to 20 s with improved reliability. This will significantly enhance overall capabilities of the JET machine in support of ITER development

  17. EPICS - MDSplus integration in the ITER Neutral Beam Test Facility

    International Nuclear Information System (INIS)

    Luchetta, Adriano; Manduchi, Gabriele; Barbalace, Antonio; Soppelsa, Anton; Taliercio, Cesare

    2011-01-01

    SPIDER, the ITER-size ion-source test bed in the ITER Neutral Beam Test Facility, is a fusion device requiring a complex central system to provide control and data acquisition, referred to as CODAS. The CODAS software architecture will rely on EPICS and MDSplus, two open-source, collaborative software frameworks, targeted at control and data acquisition, respectively. EPICS has been selected as ITER CODAC middleware and, as the final deliverable of the Neutral Beam Test Facility is the procurement of the ITER Heating Neutral Beam Injector, we decided to adopt this ITER technology. MDSplus is a software package for data management, supporting advanced concepts, such as platform and underlying hardware independence, self description data, and data driven model. The combined use of EPICS and MDSplus is not new in fusion, but their level of integration will be new in SPIDER, achieved by a more refined data access layer. The paper presents the integration software to use effectively EPICS and MDSplus, including the definition of appropriate EPICS records to interact with MDSplus. The MDSplus and EPICS archive concepts are also compared on the basis of performance tests and data streaming is investigated by ad-hoc measurements.

  18. Fast-scan monitor examines neutral-beam ion-density profile

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    All of the magnetic mirror confinement fusion experiments at LLL and at other laboratories depend on pulsed, energetic neutral-beam injection for fueling and imparting energy to the trapped plasma for density build-up and stability studies. It is vital to be able to monitor how well the injected ion beam is aimed and focused. To do this, we have designed an ion-beam current-density profile monitor that uses a commercial minimodular data acquisition system. Our prototype model monitors a single 20-kV, 50-A, 10-ms beam. However, the method is applicable to any number of beams with similar sampling target arrays. Also, the electronics can be switched to monitor any one of several target collectors

  19. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

    1980-01-01

    In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year

  20. Automation of multiple neutral beam injector controls at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Pollock, G.G.

    1977-01-01

    The computer control system used on the twelve Neutral Beams of the 2XIIB experiment at the Lawrence Livermore Laboratory (LLL) has evolved over the last three years. It is now in its final form and in regular use. It provides automatic data collection, reduction, and graphics presentation, as well as automatic conditioning, automatic normal operation, and processing of calorimeter data. This paper presents an overview of the capabilities and implementation of the current system, a detailed discussion of the automatic conditioning algorithm, and discusses the future directions for neutral beam automation

  1. Performance of the KTeV high-energy neutral kaon beam at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1998-01-01

    The performance of the primary and secondary beams for the KTeV experiments E832 and E799-II is reviewed. The beam was commissioned in the summer of 1996 and initially operated for approximately one year. The report includes results on the primary beam, target station including primary beam dump and muon sweeping system, neutral beam collimation system, and alignment

  2. Low Emittance Growth in a LEBT with Un-Neutralized Section

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel [Fermilab; Carneiro, Jean-Paul [Fermilab; Shemyakin, Alexander [Fermilab

    2016-06-01

    In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam's own space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT that contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report discusses the experimental realization of such a scheme at Fermilab's PXIE, where low beam emittance dilution was demonstrated

  3. Development of neutral beams for fusion plasma heating

    International Nuclear Information System (INIS)

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies

  4. Development of neutral beams for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies.

  5. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  6. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  7. Neutral beam system for an ignition tokamak

    International Nuclear Information System (INIS)

    Fasolo, J.; Fuja, R.; Jung, J.; Moenich, J.; Norem, J.; Praeg, W.; Stevens, H.

    1978-01-01

    We have attempted to make detailed designs of several neutral beam systems which would be applicable to a large machine, e.g. an ITR (Ignition Test Reactor), EPR (Experimental Power Reactor), or reactor. Detailed studies of beam transport to the reactor and neutron transport from the reactor have been made. We have also considered constraints imposed by the neutron radiation environment in the injectors, and the resulting shielding, radiation-damage, and maintenance problems. The effects of neutron heat loads on cryopanels and ZrAl getter panels have been considered. Design studies of power supplies, vacuum systems, bending magnets, and injector layouts are in progress and will be discussed

  8. Neutral beam current drive scaling in DIII-D

    International Nuclear Information System (INIS)

    Porter, G.D.; Bhadra, D.K.; Burrell, K.H.

    1989-03-01

    Neutral beam current drive scaling experiments have been carried out on the DIII-D tokamak at General Atomics. These experiments were performed using up to 10 MW of 80 keV hydrogen beams. Previous current drive experiments on DIII-D have demonstrated beam driven currents up to 340 kA. In the experiments reported here we achieved beam driven currents of at least 500 kA, and have obtained operation with record values of poloidal beta (εβ/sub p/ = 1.4). The beam driven current reported here is obtained from the total plasma current by subtracting an estimate of the residual Ohmic current determined from the measured loop voltage. In this report we discuss the scaling of the current drive efficiency with plasma conditions. Using hydrogen neutral beams, we find the current drive efficiency is similar in Deuterium and Helium target plasmas. Experiments have been performed with plasma electron temperatures up to T/sub e/ = 3 keV, and densities in the range 2 /times/ 10 19 m/sup /minus/3/ 19 m/sup /minus/3/. The current drive efficiency (nIR/P) is observed to scale linearly with the energy confinement time on DIII-D to a maximum of 0.05 /times/ 10 20 m/sup /minus/2/ A/W. The measured efficiency is consistent with a 0-D theoretical model. In addition to comparison with this simple model, detailed analysis of several shots using the time dependent transport code ONETWO is discussed. This analysis indicates that bootstrap current contributes approximately 10--20% of the the total current. Our estimates of this effect are somewhat uncertain due to limited measurements of the radial profile of the density and temperatures. 4 refs., 1 fig., 1 tab

  9. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  10. A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)

    Science.gov (United States)

    Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem

    2015-11-01

    Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  11. Preliminary considerations concerning neutral plasma beam propagation across a magnetic field

    International Nuclear Information System (INIS)

    Shanahan, W.R.; Faehl, R.J.; Godfrey, B.B.

    1979-08-01

    A plan to address physical questions of interest for exoatmospheric military applications of intense neutralized plasma beams is described. After a brief review of earlier work relevant to this matter and a detailed explanation of why such work cannot answer questions of present interest, a plan employing interactive application of several numerical and analytic techniques to treat relevant phenomena occurring on the various rather disparate time and length scales involved is suggested. The first part of the study would determine the macroscopic features of beam propagation through calculations effected with a magnetohydrodynamical numerical code. Classical transport coefficients would be employed in this initial phase. Using information thus gained concerning gross charge and current distributions, particle-in-cell simulations would be initialized to study those microscopic, phase-space-dependent phenomena which can alter the phenomonological transport coefficients appearing in the fluid description. Insight thereby gained concerning anomaous, collectively induced transport effects would then be applied to yield a refined, accurate description of the macroscopic aspects of neutral plasma beam propagation. Personnel and computational resources available at the Los Alamos Scientific Laboratory are described. Results of a very preliminary particle-in-cell simulation of a neutral plasma beam propagating across a magnetic field are presented

  12. Neutral Beam Power System for TPX

    International Nuclear Information System (INIS)

    Ramakrishnan, S.; Bowen, O.N.; O'Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-01-01

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements

  13. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  14. DIII-D tokamak control and neutral beam computer system upgrades

    International Nuclear Information System (INIS)

    Penaflor, B.G.; McHarg, B.B.; Piglowski, D.A.; Pham, D.; Phillips, J.C.

    2004-01-01

    This paper covers recent computer system upgrades made to the DIII-D tokamak control and neutral beam computer systems. The systems responsible for monitoring and controlling the DIII-D tokamak and injecting neutral beam power have recently come online with new computing hardware and software. The new hardware and software have provided a number of significant improvements over the previous Modcomp AEG VME and accessware based systems. These improvements include the incorporation of faster, less expensive, and more readily available computing hardware which have provided performance increases of up to a factor 20 over the prior systems. A more modern graphical user interface with advanced plotting capabilities has improved feedback to users on the operating status of the tokamak and neutral beam systems. The elimination of aging and non supportable hardware and software has increased overall maintainability. The distinguishing characteristics of the new system include: (1) a PC based computer platform running the Redhat version of the Linux operating system; (2) a custom PCI CAMAC software driver developed by general atomics for the kinetic systems 2115 serial highway card; and (3) a custom developed supervisory control and data acquisition (SCADA) software package based on Kylix, an inexpensive interactive development environment (IDE) tool from borland corporation. This paper provides specific details of the upgraded computer systems

  15. The ITER neutral beam test facility: Designs of the general infrastructure, cryosystem and cooling plant

    International Nuclear Information System (INIS)

    Cordier, J.J.; Hemsworth, R.; Chantant, M.; Gravil, B.; Henry, D.; Sabathier, F.; Doceul, L.; Thomas, E.; Houtte, D. van; Zaccaria, P.; Antoni, V.; Bello, S. Dal; Marcuzzi, D.; Antipenkov, A.; Day, C.; Dremel, M.; Mondino, P.L.

    2005-01-01

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKAEA European Associations, in the first ITER neutral beam (NB) injector and the ITER neutral beam test facility design (EFDA task ref. TW3-THHN-IITF1). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF includes the test facility itself equipped with a dedicated beamline vessel [P.L. Zaccaria, et al., Maintenance schemes for the ITER neutral beam test facility, this conference] and integration studies of associated auxiliaries such as cooling plant, cryoplant and forepumping system

  16. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    Science.gov (United States)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  17. Fast magnetic field penetration into an intense neutralized ion beam

    International Nuclear Information System (INIS)

    Armale, R.

    1992-06-01

    Experiments involving propagation of neutralized ion beams across a magnetic field indicate a magnetic field penetration time determined by the Hall resistivity rather than the Spitzer or Pedersen resistivity. In magnetohydrodynamics the Hall current is negligible because electrons and ions drift together in response to an electric field perpendicular to the magnetic field. For a propagating neutralized ion beam, the ion orbits are completely different from the electron orbits and the Hall current must be considered. There would be no effect unless there is a component of magnetic field normal to the surface which would usually be absent for a good conductor. It is necessary to consider electron inertia and the consequent penetration of the normal component to a depth c/ω p . In addition it is essential to consider a component of magnetic field parallel to the velocity of the beam which may be initially absent, but is generated by the Hall effect. The penetration time is determined by whistler waves rather than diffusion

  18. SLIA beam line design

    International Nuclear Information System (INIS)

    Petillo, J.; Chernin, D.; Kostas, C.; Mondelli, A.

    1990-01-01

    The Spiral Line Induction Accelerator (SLIA) is a multi-kiloampere compact electron accelerator. It uses linear induction accelerator modules on the straight sections of a racetrack spiral, with strong-focusing bends to recirculate the electrons. The strong focusing is provided by stellarator windings on the bends. Stellarator coils are used to provide the strong focusing on the bends. The matching of the electron beam from a diode through a series of accelerator modules and stellarator bends is a major issue in the design of this accelerator. The beam line design for a proof-of-concept SLIA experiment (10 kA, 7 MeV) to be carried out at Pulse Sciences, Inc. will be presented. The design will demonstrate beam matching from element to element in the focusing system, the design of an achromatic bend, and the requirements for avoiding collective instabilities

  19. The Impact of Beam Deposition on Bootstrap Current of Fast Ion Produced by Neutral Beam Tangential Injection

    International Nuclear Information System (INIS)

    Huang Qian-Hong; Gong Xue-Yu; Lu Xing-Qiang; Yu Jun; Cao Jin-Jia

    2015-01-01

    The density profile of fast ions arising from a tangentially injected diffuse neutral beam in tokamak plasma is calculated. The effects of mean free paths and beam tangency radius on the density profile are discussed under typical HL-2A plasmas parameters. The results show that the profile of fast ions is strongly peaked at the center of the plasma when the mean free path at the maximum deuteron density is larger than the minor radius, while the peak value decreases when the mean free path at the maximum deuteron density is larger than twice that of the minor radius due to the beam transmission loss. Moreover, the bootstrap current of fast ions for various mean free paths at the maximum deuteron density is calculated and its density is proved to be closely related to the deposition of the neutral beam. With the electron return current considered, the net current density obviously decreases. Meanwhile, the peak central fast ion density increases when the beam tangency radius approaches the major radius, and the net bootstrap current increases rapidly with the increasing beam tangency radius. (paper)

  20. Using computer graphics to analyze the placement of neutral-beam injectors for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1977-01-01

    To optimize the neutral-beam current incident on the fusion plasma and limit the heat load on exposed surfaces of the Mirror Fusion Test Facility magnet coils, impingement of the neutral beams on the magnet structure must be minimized. Also, placement of the neutral-beam injectors must comply with specifications for neutral-current heating of the plasma and should allow maximum flexibility to accommodate alternative beam aiming patterns without significant hardware replacement or experiment down-time. Injector placements and aimings are analyzed by means of the Structural Analysis Movie Post Processor (SAMPP), a general-purpose graphics code for the display of three-dimensional finite-element models. SAMPP is used to visually assemble, disassemble, or cut away sections of the complex three-dimensional apparatus, which is represented by an assemblage of 8-node solid finite elements. The resulting picture is used to detect and quantify interactions between the structure and the neutral-particle beams

  1. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  2. Mixed deuterium-tritium neutral beam injection

    International Nuclear Information System (INIS)

    Ruby, L.; Lewis, M.S.

    1989-01-01

    An alternative mixed beam neutral beam injector (MNBI) for fusion reactors is proposed that eliminates the conventional isotope separation system (ISS) in the fuel cycle. The principal advantage of the alternative system is a capital and operating cost savings in the fuel cycle, as the ISS employs cryogenic distillation at liquid-hydrogen temperatures to effect a separation of hydrogen isotopes and to eliminate a buildup of normal hydrogen in the recycled fuel. Possible additional advantages of the alternative method involve an improvement in overall safety and a reduction of the amount of tritium in the fuel cycle. The alternative heating system uses an electromagnetic separation in the MNBI to limit the buildup of normal hydrogen. Calculations indicate that an MNBI can be reasonably optimized in the case of an upgraded injection system for the Tokamak Fusion Test Reactor

  3. Performance of the DIII-D neutral beam injection system

    International Nuclear Information System (INIS)

    Kim, J.; Callis, R.W.; Colleraine, A.P.; Cummings, J.; Glad, A.S.; Gootgeld, A.M.; Haskovec, J.S.; Hong, R.; Kellman, D.H.; Langhorn, A.R.

    1987-01-01

    During the upgrade of the Doublet III tokamak, the neutral beam injection system as also modified to accommodate long pulse sources and to utilize the larger entrance apertures to the torus vessel. All four beamlines on DIII-D are now in operation with a total of eight common long pulse sources. These have exhibited easier conditioning and good reproducibility. Performance results of the beamlines and supporting systems are presented, and the observed beam properties are discussed

  4. Neutral-beam-injected tokamak fusion reactors: a review

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1976-08-01

    The theories of energetic-ion velocity distributions, stability, injection, and orbits were summarized. The many-faceted role of the energetic ions in plasma heating, fueling, and current maintenance, as well as in the direct enhancement of fusion power multiplication and power density, is discussed in detail for three reactor types. The relevant implications of recent experimental results on several beam-injected tokamaks are examined. The behavior of energetic ions is found to be in accordance with classical theory, large total ion energy densities are readily achieved, and plasma equilibrium and stability are maintained. The status of neutral-beam injectors and of conceptual design studies of beam-driven reactors are briefly reviewed. The principal plasma-engineering problems are those associated directly with achieving quasi-stationary operation

  5. TFTR neutral-beam power system

    International Nuclear Information System (INIS)

    Winje, R.A.

    1982-10-01

    The TFTR Neutral Beam Power System (NBPS) consists of the accelerator grid power supply and the auxiliary power supplies required to operate the TFTR 120-keV ion sources. The current configuration of the NBPS including the 11-MVA accelerator grid power supply and the Arc and Filament power supplies isolated for operation at accelerator grid voltages up to 120 kV, is described. The prototype NBPS has been assembled at the Princeton Plasma Physics Laboratory and has been operated. The results of the initial operation and the description and resolution of some of the technical problems encountered during the commissioning tests are presented

  6. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    International Nuclear Information System (INIS)

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-01-01

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  7. An algorithm to provide real time neutral beam substitution in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Phillips, J.C.; Greene, K.L.; Hyatt, A.W.; McHarg, B.B. Jr.; Penaflor, B.G.

    1999-06-01

    A key component of the DIII-D tokamak fusion experiment is a flexible and easy to expand digital control system which actively controls a large number of parameters in real-time. These include plasma shape, position, density, and total stored energy. This system, known as the PCS (plasma control system), also has the ability to directly control auxiliary plasma heating systems, such as the 20 MW of neutral beams routinely used on DIII-D. This paper describes the implementation of a real-time algorithm allowing substitution of power from one neutral beam for another, given a fault in the originally scheduled beam. Previously, in the event of a fault in one of the neutral beams, the actual power profile for the shot might be deficient, resulting in a less useful or wasted shot. Using this new real-time algorithm, a stand by neutral beam may substitute within milliseconds for one which has faulted. Since single shots can have substantial value, this is an important advance to DIII-D's capabilities and utilization. Detailed results are presented, along with a description not only of the algorithm but of the simulation setup required to prove the algorithm without the costs normally associated with using physics operations time

  8. Neutral beam source commercialization study. Final report

    International Nuclear Information System (INIS)

    King, H.J.

    1980-06-01

    The basic tasks of this Phase II project were to: generate a set of design drawings suitable for quantity production of sources of this design; fabricate a functional neutral beam source incorporating as many of the proposed design changes as proved feasible; and document the procedures and findings developed during the contract. These tasks have been accomplished and represent a demonstrated milestone in the industrialization of this complete device

  9. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O. [Graduate school of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shinto, K. [IFMIF R and D Center, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Wada, M. [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  10. Neutral beam power measurements inside the ASDEX torus

    International Nuclear Information System (INIS)

    Zengliang, Y.; Staebler, A.; Vollmer, O.

    1982-11-01

    Neutral beam power measurements inside the ASDEX torus are done with a retractable calorimeter which is only radiation cooled. The calorimeter plate made from Molybdenum is subdivided into nine segments whose increase in energy content due to a shot yields the absorbed beam power. Different models for the backward extrapolation of the measured temperature curves are examined for a series of low energy shots with the result that pure radiation cooling is a valid assumption. Furthermore, a temperature correction to the measured power is derived from these experiments. The evaluation of the shots onto this calorimeter is done by a computer program. The application of this program to a few full power shots shows that a neutral power up to 3.2 MW has been injected into the ASDEX vessel by the two injectors with an overall efficiency of up to 40%. Reionization losses due to the ASDEX stray field are less than 10%; they do not show any dependence upon the pulse length for shots up to 200 ms. (orig.)

  11. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  12. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  13. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  14. Transmission of the Neutral Beam Heating Beams at TJ-II; Transmision del Haz de Neutros de Calentamiento en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Lopez, C

    2007-09-27

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs.

  15. Modeling of neutral beam ion loss from CHS plasmas

    International Nuclear Information System (INIS)

    Darrow, D.S.; Isobe, Mitsutaka; Sasao, Mamiko; Kondo, T.

    2000-01-01

    Beam ion loss measurements from Compact Helical System (CHS) plasmas under a variety of conditions show a strong loss of ions in the range of pitch angles corresponding to transition orbits at the probe location. A numerical model has been developed which includes the beam ion orbits, and details of the detector, plasma, vessel, and neutral beam geometry. From this, the expected classical (i.e. collisionless single particle orbit) signal at the detector can be computed. Preliminary comparisons between the experimental data and model predictions indicate that the classical behavior of the orbits and the machine geometry are insufficient to explain the observations. (author)

  16. Ion transport studies on the PLT tokamak during neutral beam injection

    International Nuclear Information System (INIS)

    Suckewer, S.; Cavallo, A.; Cohen, S.

    1983-12-01

    Radial transport of ions during co- and counter-neutral beam heating in the PLT tokamak has been studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral beam heating, were measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction were observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10 3 cm/sec superposed to a diffusion coefficient of the order 10 4 cm 2 /sec for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the center while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element

  17. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  18. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  19. Start-up neutral-beam power supply system for MFTF

    International Nuclear Information System (INIS)

    Mooney, L.J.

    1979-01-01

    This paper describes some of the design features and considerations of the MFTF start-up neutral-beam power supplies. In particular, we emphasize features of the system that will ensure MFTF compatibility and achieve the required reliability/availability for the MFTF to be successful

  20. Design of the calorimeter and beam dump for the TFTR prototype neutral beam injector

    International Nuclear Information System (INIS)

    Stone, R.R.; Haughian, J.M.

    1977-01-01

    A calorimeter has been designed for use with the TFTR prototype neutral beam injection system. It consists of three vees each having two 18.8-mm-thick (0.75 in.) copper plates at a 6-deg angle, relative to the beam centerline. The maximum power density on a plate with this arrangement will be 2.0 kW/cm 2 , resulting in a front surface temperature rise of about 420 0 C. A support and retraction system moves the calorimeter in and out of the beam centerline. Various factors used in the selection of the absorber plate material will be discussed and also some experimental test results will be presented

  1. Development of the ion source for PDX neutral beam injection

    International Nuclear Information System (INIS)

    Menon, M.M.; Tsai, C.C.; Gardner, W.L.; Barber, G.C.; Haselton, H.H.; Ponte, N.S.; Ryan, P.M.; Schechter, D.E.; Stirling, W.L.; Whealton, J.H.

    1979-01-01

    The paper describes the development of the ion source for neutral beam injection heating of PDX plasma. After a brief description of the plasma generator, the performance characteristics of the source, with different types of grids, are described. Based on test stand results it is concluded that at least two different versions of the source should be able to meet and even exceed the neutral power and energy requirements expected out of PDX injectors

  2. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  3. Diode line scanner for beam diagnostics

    International Nuclear Information System (INIS)

    Gustov, S.A.

    1987-01-01

    The device-scanning diode line is described. It is applied for beam profile measuring with space precision better than ± 0.5 mm and with discreteness of 3 mm along Y-axis and 0.25 mm along X-axis. The device is easy in construction, reliable and has a small time of information acquisition (2-5 min). The working range is from 100 to 10 6 rad/min (10 6 -10 10 part/mm 2 /s for 660 MeV protons). Radioresistance is 10 7 rad. The device can be applied for precise beam line element tuning at beam transporting and emittance measuring. The fixed diode line (a simplified device version) has smaller dimensions and smaller time of data acquisition (2-5 s). It is applied for quick preliminary beamline tuning. The flowsheet and different variants of data representation on beam profile are given

  4. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  5. Empirical Scaling Laws of Neutral Beam Injection Power in HL-2A Tokamak

    International Nuclear Information System (INIS)

    Cao Jian-Yong; Wei Hui-Ling; Liu He; Yang Xian-Fu; Zou Gui-Qing; Yu Li-Ming; Li Qing; Luo Cui-Wen; Pan Yu-Dong; Jiang Shao-Feng; Lei Guang-Jiu; Li Bo; Rao Jun; Duan Xu-Ru

    2015-01-01

    We present an experimental method to obtain neutral beam injection (NBI) power scaling laws with operating parameters of the NBI system on HL-2A, including the beam divergence angle, the beam power transmission efficiency, the neutralization efficiency and so on. With the empirical scaling laws, the estimating power can be obtained in every shot of experiment on time, therefore the important parameters such as the energy confinement time can be obtained precisely. The simulation results by the tokamak simulation code (TSC) show that the evolution of the plasma parameters is in good agreement with the experimental results by using the NBI power from the empirical scaling law. (paper)

  6. Standardization of beam line representations

    International Nuclear Information System (INIS)

    Carey, David C.

    1998-01-01

    Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT will be discussed

  7. Standardization of beam line representations

    International Nuclear Information System (INIS)

    Carey, David C.

    1999-01-01

    Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT will be discussed

  8. Calculations of Neutral Beam Ion Confinement for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Redi, M.H.; Darrow, D.S.; Egedal, J.; Kaye, S.M.; White, R.B.

    2002-01-01

    The spherical torus (ST) concept underlies several contemporary plasma physics experiments, in which relatively low magnetic fields, high plasma edge q, and low aspect ratio combine for potentially compact, high beta and high performance fusion reactors. An important issue for the ST is the calculation of energetic ion confinement, as large Larmor radius makes conventional guiding center codes of limited usefulness and efficient plasma heating by RF and neutral beam ion technology requires minimal fast ion losses. The National Spherical Torus Experiment (NSTX) is a medium-sized, low aspect ratio ST, with R=0.85 m, a=0.67 m, R/a=1.26, Ip*1.4 MA, Bt*0.6 T, 5 MW of neutral beam heating and 6 MW of RF heating. 80 keV neutral beam ions at tangency radii of 0.5, 0.6 and 0.7 m are routinely used to achieve plasma betas above 30%. Transport analyses for experiments on NSTX often exhibit a puzzling ion power balance. It will be necessary to have reliable beam ion calculations to distinguish among the source and loss channels, and to explore the possibilities for new physics phenomena, such as the recently proposed compressional Alfven eigenmode ion heating

  9. Low Emittance Growth in a LEBT with Un-Neutralized Section

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. [Fermilab; Carneiro, J.-P. [Fermilab; Shemyakin, A. [Fermilab

    2017-12-20

    In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam’s space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern usually changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT that contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report introduces the rationale for the proposed scheme and formulates the physical arguments for it as well as its limitations. An experimental realization of the scheme was carried out at Fermilab’s PIP2IT where low beam emittance dilution was demonstrated for a 5 mA, 30 keV H- beam.

  10. Telescope-based cavity for negative ion beam neutralization in future fusion reactors.

    Science.gov (United States)

    Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid

    2018-03-01

    In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5  m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.

  11. Diamagnetic measurement of JFT-2 plasma heated by neutral beam injection

    International Nuclear Information System (INIS)

    Maeno, Masaki; Sengoku, Seio; Yamamoto, Shin; Suzuki, Norio; Yamauchi, Toshihiko; Kawashima, Hisato; Miura, Yukitoshi

    1984-01-01

    A neutral beam was injected into the plasma in the JFT-2 tokamak, and the poloidal beta value βsub(p) of the plasma was determined by a diamagnetic method in which the change in the magnetic flux due to the plasma was obtained by measuring the very small perturbation of the current in the tokamak's toroidal field coil. The ratio of the perturbed to unperturbed currents in the coil was found to be (2-3) x 10 -4 . The poloidal beta value βsub(pd) determined by this method agrees within experimental error with that obtained from magnetic and energy profile analyses. βsub(pd) increases linearly with the total power Psub(net) deposited by the neutral beam in the plasma when Psub(net)=1.5 MW. The heating efficiency of the beam injection heating was found to be lower than that of Joule heating. (author)

  12. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Biagi, L.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-12-01

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities

  13. Superconducting magnetic shields for neutral beam injectors. Final report

    International Nuclear Information System (INIS)

    1985-04-01

    Large high energy deuterium neutral beams which must be made from negative ions require extensive magnetic shielding against the intense fringe fields surrounding a magnetic fusion power plant. The feasibility of shielding by multilayer sheets of copper-superconducting laminated material was investigated. It was found that, if necessary fabrication techniques are developed, intrinsically stable type II superconductors will be able to shield against the magnetic fields of the fusion reactors. Among the immediate benefits of this research is better magnetic shields for neutral beam injectors in support of DOE's fusion program. Another application may be in the space vehicles, where difficulties in transporting heavy μ-metal sections may make a comparatively light superconducting shield attractive. Also, as high-field superconducting magnets find widespread applications, the need for high-intensity magnetic shielding will increase. As a result, the commercial market for the magnetic shields should expand along with the market for superconducting magnets

  14. Measurements of radiation near an atomic spectral line from the interaction of a 30 GeV electron beam and a long plasma

    International Nuclear Information System (INIS)

    Catravas, P.E.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C; Joshi, C.; Marsh, K.A.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2000-01-01

    Emissions produced or initiated by a 30 GeV electron beam propagating through a ∼ 1 m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creating of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured

  15. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  16. Relative and absolute level populations in beam-foil--excited neutral helium

    International Nuclear Information System (INIS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n -3 , but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number

  17. Confinement studies of neutral beam heated discharges in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M.; Arunasalam, V.; Bell, J.D.; Stauffer, F.; Bell, M.G.; Bitte, M.; Blanchard, W.R.; Boody, F.; Britz, N.

    1985-11-01

    The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2T). Recently, the D/sup 0/ neutral beam heating power has been increased to 6.3 MW. By operating at low plasma current (I/sub p/ approx. = 0.8 MA) and low density anti n/sub e/ approx. = 1 x 10/sup 19/m/sup -3/), high ion temperatures (9 +- keV) and rotation speeds (7 x 10/sup 5/ m/s) have been achieved during injection. At the opposite extreme, pellet injection into high current plasmas has been used to increase the line-average density to 8 x 10/sup 19/m/sup -3/ and the central density to 1.6 x 10/sup 20/m/sup -3// This wide range of operating conditions has enabled us to conduct scaling studies of the global energy confinement time in both ohmically and beam heated discharges as well as more detailed transport studies of the profile dependence. In ohmic discharges, the energy confinement time is observed to scale linearly with density only up to anti n/sub e/ approx. 4.5 x 10/sup 19/m/sup -3/ and then to increase more gradually, achieving a maximum value of approx. 0.45 s. In beam heated discharges, the energy confinement time is observed to decrease with beam power and to increase with plasma current. With P/sub b/ = 5.6 MW, anti n/sub e/ = 4.7 x 10/sup 19/m/sup -3/, I/sub p/ = 2.2 MA and B/sub T = 4.7T, the gross energy confinement time is 0.22 s and T/sub i/(0) = 4.8 keV. Despite shallow penetration of D/sup 0/ beams (at the beam energy less than or equal to 80 keV with low species yield), tau/sub E/(a) values are as large as those for H/sup 0/ injection, but central confinement times are substantially greater. This is a consequence of the insensitivity of the temperature and safety factor profile shapes to the heating profile. The radial variation of tau/sub E/ is even more pronounced with D/sup 0/ injection into high density pellet-injected plasmas. 25 refs.

  18. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  19. National negative-ion-based neutral-beam development plan

    International Nuclear Information System (INIS)

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades

  20. Impurity transport studies by means of tracer-encapsulated solid pellet injection in neutral beam heated plasmas on LHD

    International Nuclear Information System (INIS)

    Tamura, N; Sudo, S; Khlopenkov, K V; Kato, S; Sergeev, V Yu; Muto, S; Sato, K; Funaba, H; Tanaka, K; Tokuzawa, T; Yamada, I; Narihara, K; Nakamura, Y; Kawahata, K; Ohyabu, N; Motojima, O

    2003-01-01

    The quantitative properties of impurity transport in large helical device (LHD) plasmas heated by neutral beam injection have been investigated by means of tracer-encapsulated solid pellet (TESPEL) injection. In the case of a titanium (Ti) tracer, the behaviour of the emission lines from the highly ionized Ti impurity, Ti Kα(E He-like ∼ 4.7 keV) and Ti XIX (λ = 16.959 nm), has been observed clearly by a soft x-ray pulse height analyzer and a vacuum ultraviolet spectrometer, respectively. A fairly longer decay time of the Ti Kα emission lines is obtained above the value of a line-averaged electron density, 3.0x10 19 m -3 . The dependence of the behaviour of the Ti tracer impurity on the line-averaged electron density below the value of that, 3.5x10 19 m -3 is in qualitative agreement with the characteristics obtained from the observation of the behaviour of an intrinsic metallic impurity in neutral beam heated plasmas on LHD. In order to estimate the properties of the Ti impurity transport quantitatively, the one-dimensional impurity transport code, MIST has been used. As a result of the transport analysis with the MIST code, even an small inward convection should be necessary to account for the experimental results with the value of the line-averaged electron density, 3.5x10 19 m -3 . In order to examine the experimentally obtained transport coefficients, neoclassical analysis with respect to the radial impurity flux has been performed. The inferred rise of the inward convection cannot be explained solely by neoclassical impurity transport. Therefore, in order to account for the inward convection, the effect of a radial electric field and/or some other effect must be taken into account additionally

  1. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  2. Beam line for Schools: beyond expectations

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    Out of 292 proposals for CERN's first ever "Beam line for Schools" contest, two teams of high-school students – Odysseus' Comrades from Varvakios Pilot School in Athens, Greece and Dominicuscollege from Dominicus College in Nijmegen in the Netherlands – were selected to spend 10 days conducting their proposed experiments at the fully equipped T9 beam line on CERN's Meyrin site. Dedicated CERN staff and users from across the departments have put in a huge effort to ensure the success of the project.   Detector physicist Cenk Yidriz (centre, white helmet) explains the setup of the "Beamline for schools" experiment at the T9 beamline. It's finally beam time. After months of organisation, coding, engineering and even painting the experimental area, the T9 beam line is ready to deliver protons to experiments devised and built by high-school students. “They are here to collect data and experience the l...

  3. Pascal software structures achieve definite control of the 24 MFTF sustaining neutral-beam power supplies

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Precise control of large, complex systems is not assured unless there is known to be no unintended interactions in the control system. The software controlling the sustaining neutral-beam power supplies of the Mirror Fusion Test Facility accomplishes this feat. The software structures comprise some 16,000 lines of commented Pascal code, distributed amoung 10 different tasks. Each task may control any of the 24 power supplies. All the tasks are strictly event-driven, and are not subject to any system mode. Since there is no global information in the software, we know that all the power supplies are controlled independently

  4. Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2016-01-01

    A wideband neutralization line is proposed to reduce the mutual coupling of a compact ultrawideband (UWB) MIMO antenna. With the introduced decoupling method, the designed UWB MIMO antenna covers the band of 3.1-5 GHz with an isolation of higher than 22 dB. The proposed wideband neutralization line...

  5. Control and calculation of the titanium sublimation pumping speed and re-ionisation in the MAST neutral beam injectors

    International Nuclear Information System (INIS)

    McAdams, R.

    2015-01-01

    Highlights: • The titanium sublimation pumps for the MAST neutral beam injectors are described. • Evaporation regimes are established to give constant pumping speed for the titanium sublimation pumps. • The MCNP code is used to calculate the pumping speeds and gas profiles in the neutral beam injectors. • The gas profiles are then used to calculate the level of re-ionisation in the beamline. - Abstract: A high pumping speed is required in neutral beam injectors to minimise re-ionisation of the neutral beams. The neutral beam injectors on MAST use titanium sublimation pumps. These pumps do not have a constant pumping speed; their pumping speed depends on the gettering surface history and on both the integrated and applied gas load. In this paper we describe a method of maintaining a constant pumping speed, through different evaporation schemes, specifically suitable for operations of the MAST neutral beam injector beamlines for both short and relatively long beam pulses by measurement of the pressure in the beamline. In addition the MCNP code is then used to calculate the pumping speed and gas profile in the beamline by adjusting the input pumping speed to match the measured pressure. This allows the resulting gas profile to be used for calculation of the re-ionisation levels and an example is given

  6. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.; Spolaore, M. [Consorzio RFX, Padova 35127 (Italy); Sartori, E. [Consorzio RFX, Padova 35127 (Italy); Università degli Studi di Padova, Padova 35122 (Italy); Veltri, P. [Consorzio RFX, Padova 35127 (Italy); INFN-LNL, Legnaro (PD) 35020 (Italy)

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  7. Neutral particle beam distributed data acquisition system

    International Nuclear Information System (INIS)

    Daly, R.T.; Kraimer, M.R.; Novick, A.H.

    1987-01-01

    A distributed data acquisition system has been designed to support experiments at the Argonne Neutral Particle Beam Accelerator. The system uses a host VAXstation II/GPX computer acting as an experimenter's station linked via Ethernet with multiple MicroVAX IIs and rtVAXs dedicated to acquiring data and controlling hardware at remote sites. This paper describes the hardware design of the system, the applications support software on the host and target computers, and the real-time performance

  8. Divergence in intense ion beams caused by incomplete charge neutralization

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.

    1993-01-01

    Space charge neutralization for light ion fusion (LIF) ion beam transport is usually assumed to be perfect in the open-quotes charge-neutralclose quotes region of the diode and in the gas transport cell. However, small charge clumps in the beam will not be totally charge-neutralized, and the residual net space charge may contribute to the beam microdivergence θ μ . If the net potential of the clump is limited only by electron trapping, the minimum potential will be eφ ∼ 1/2 m e v i 2 where m e is the electron mass and v i is the ion velocity. For proton beams this leads to θ μ ∼ (m e /M p ) 1/2 ∼ 23 mrad, where M p is the proton rest mass. For non-protonic beams, different results occur. The mechanism predicts (1) no dependence of θ μ on diode voltage, (2) non-protonic θ μ greater than proton θ μ for proton-contaminated beams, and (3) axial energy spread Δε parallel /ε parallel ∼ ±2 θ μ , which are all consistent with present data. Results of analytic studies and computer simulations of this mechanism are presented. Plasma shielding reduces the effects of this mechanism but collisions and magnetic fields reduce the plasma shielding effects. 2-D PIC MAGIC simulations show that this mechanism contributes to θ μ both in the open-quotes charge-neutralclose quotes region and in the gas transport region. It is concluded that this mechanism is especially important in the open-quotes charge-neutralclose quotes region

  9. The measurement of neutral beam thermal profiles on 'V'-shaped calorimeters

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Lagin, L.J.; Silber, K.

    1995-01-01

    It is customary in high power neutral beam systems to use a V-shaped calorimeter to stop and measure the beam. With proper instrumentation, it is possible to determine both the neutral beam power and divergence. By utilizing a near-grazing angle of incidence, the area over which the beam is in contact with the surface is increased, thereby decreasing the power density over the case of normal incidence. Thermocouples on the back of the calorimeter, in conjunction with real time fitting algorithms, are used to deduce the divergence from the thermal profile. This measurement implicitly assumes that the measured profile corresponds to that of the incident beam. It is shown that such is not the case. Energetic particle reflection at near-grazing angle causes the thermal profile on the calorimeter to be more peaked than the incident distribution. The implications of this on the non-linear multiple regression technique of determining the divergence are discussed. With the aid of a reflection model, developed and applied to the beam from a typical TFTR ion source, it is shown that a peaked power density can be modelled. Neural networks are being studied as a means of supplanting the older regression technique of measuring divergence. Y-direction divergences have been successfully derived using a one-dimensional neural network

  10. Development of BPM/BLM DAQ System for KOMAC Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young-Gi; Kim, Jae-Ha; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The KOMAC installed 10 beam lines, 5 for 20-MeV beams and 5 for 100-MeV beams. The proton beam is transmitted to two target room. The KOMAC has been operating two beam lines, one for 20 MeV and one for 100 MeV. New beam line, RI beam line is under commissioning. A Data Acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. A data acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. The DAQ digitizes beam signal and the sampling is synchronized with a reference signal which is an external trigger for beam operation. The digitized data is accessible by the Experimental Physics and Industrial Control System (EPICS)-based control system, which manages the whole accelerator control. The beam monitoring system integrates BLM and BPM signals into the control system and offers realtime data to operators. The IOC, which is implemented with Linux and a PCI driver, supports data acquisition as a very flexible solution.

  11. Generalized emittance measurements in a beam transport line

    International Nuclear Information System (INIS)

    Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.

    1991-01-01

    Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab

  12. Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.

    1982-02-01

    A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Deposition profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10 13 - 2 x 10 14 cm -3 , and beam orientation ranging from perpendicular to tangential to the inside wall

  13. Transient field behavior in an electromagnetic pulse from neutral-beam reflection

    International Nuclear Information System (INIS)

    Strobel, G.L.

    1990-01-01

    A neutral beam of electrons and positrons catches up to an electromagnetic pulse moving in a medium with refractive index n. The neutral beam is reflected and deposits some of its energy in a current region in the tail of the pulse. The location, size, and shape of the transient-induced electric fields in the current region are modeled using current densities from uniform averaged fields. The electric field in the current region is predicted to rise linearly with time, with a doubling time determined by the beam parameters and the initial local electromagnetic field. A coordinate frame comoving with the pulse is used to determine the extent of and conditions within the current region. In this comoving frame the Lorentz-transformed electric field is zero, but there is an enhanced Lorentz-transformed magnetic field. The extent of the current region is found from the radius of the semicircular charged-particle orbits in the comoving frame

  14. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  15. 750 keV beam line construction at the KEK

    International Nuclear Information System (INIS)

    Ishimaru, H.; Anami, S.; Inagaki, T.; Sakaue, T.; Itoh, K.; Fukumoto, S.

    1976-01-01

    The construction of 750 keV beam line of the KEK injector of the 12 GeV proton synchrotron was described. The beam line consists of the beam focusing quadrupoles, vacuum system, the electrostatic chopper and the various beam monitors. (author)

  16. Enhancement of the neutral-beam stopping cross section in fusion plasmas due to multistep collision processes

    International Nuclear Information System (INIS)

    Boley, C.D.; Janev, R.K.; Post, D.E.

    1983-10-01

    Multistep processes involving excited atomic states are found to produce a substantial increase in the stopping cross section for a neutral hydrogen beam injected into a plasma, and thus to reduce the beam penetration. For typical plasma and beam parameters of current large tokamak experiments, the stopping cross-sectional enhancement is found to vary from 25% to 50% depending on the beam energy, plasma density, and impurity level. For neutral hydrogen beams with energies greater than or equal to 500 keV, envisioned in tokamak amd mirror reactor designs, the enhancement can be as large as 80 to 90%

  17. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  18. The IFUSP microtron accelerator beam transport line

    International Nuclear Information System (INIS)

    Rios, Paulo Beolchi

    2002-01-01

    In this work, the electron optical project of the IFUSP microtron beam transport line is presented, including the operational values for the parameters of the dipolar and quadrupolar electromagnets, as well as their location along the beam line. Analytical calculations and computer simulations were performed to obtain these results, and a programming tool was developed in order to analyze the beam parameters and to help studying racetrack microtrons. The electron optical simulations were split into two different study cases: the microtron booster, and the transfer line. In the first case, it was determined the main operational parameters of a microtron working far from its usual stability conditions. In the latter, it was done the basic design of the linking line between the booster and main (not yet built) microtrons, and between them and the experimental hall, with a total path length of approximately 32 m including large horizontal and vertical deflections with variable beam energy. (author)

  19. Relative and absolute level populations in beam-foil-excited neutral helium

    Science.gov (United States)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  20. Fast ion profiles during neutral beam and lower hybrid heating

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Strachan, J.D.; Bell, R.E.; Cavallo, A.; Motley, R.; Schilling, G.; Stevens, J.; Wilson, J.R.

    1985-07-01

    Profiles of the d(d,p)t fusion reaction are measured in the PLT tokamak using an array of collimated 3 MeV proton detectors. During deuterium neutral beam injection, the emission profile indicates that the beam deposition is at least as narrow as predicted by a bounce-averaged Fokker-Planck code. The fast ion tail formed by lower hybrid waves (at densities above the critical density for current drive) also peaks strongly near the magnetic axis

  1. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.; Sink, D.A.

    1979-01-01

    A design is presented that suggests that a negative ion neutral beam based on direct extraction is applicable to TNS, assuming technological advancements in several areas. Improvements in negative ion sources, direct energy conversion of charged beams, and high speed cryogenic pumping are needed. The increase in efficiency over a positive ion system and the encouraging results of the first attempt at a total design justify increased effort in the development of the above mentioned areas

  2. Fast ion behavior during neutral beam injection in ATF

    International Nuclear Information System (INIS)

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H.; Aceto, S.C.

    1993-01-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970's. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations

  3. On-line spectroscopy with thermal atomic beams

    International Nuclear Information System (INIS)

    Thibault, C.; Guimbal, P.; Klapisch, R.; Saint Simon, M. de; Serre, J.M.; Touchard, F.; Duong, H.T.; Jacquinot, P.; Juncar, P.

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a cw tunable dye laser interacts at right angles with a thermal atomic beam. sup(76-98)Rb, sup(118-145)Cs and sup(208-213)Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while sup(20-31)Na and sup(38-47)K have been studied by setting the apparaturs directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. (orig.)

  4. Some aspects of VUV beam line design

    International Nuclear Information System (INIS)

    Gaupp, A.; Peatman, W.

    1997-01-01

    Some aspects of the design and usage of vacuum ultraviolet beam lines are discussed. Fermat's principle for imaging is introduced and applied to grating monochromators. Some typical vacuum ultraviolet beam lines are presented, and some further topics believed to be of importance today and in the future are mentioned. (author)

  5. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  6. Impurity ion transport studies on the PLT tokamak during neutral-beam injection

    International Nuclear Information System (INIS)

    Suckewer, S.; Cavallo, A.; Cohen, S.

    1984-01-01

    Radial transport of medium- and high-Z ions during co- and counter-neutral-beam heating in the PLT tokamak is studied, using molybdenum and scandium ions as tracer elements. The time evolution of the radial profiles of several ionization stages of both elements, injected by laser blowoff during the neutral-beam heating, is measured under three significantly different beam-plasma combinations. No noticeable differences in the radial profiles attributable to the beam direction are observed. However, a given injected amount resulted in considerably larger interior concentrations of the tracer element in the counter-beam heating cases, suggesting larger penetration of the plasma periphery. Computer simulation with the MIST code suggests a net inward drift of the order 10 3 cm.s -1 superposed to a diffusion coefficient of the order 10 4 cm 2 .s -1 for both scandium and molybdenum ions. Injection of larger amounts of the tracer element, sufficient to cause measurable central electron temperature changes, resulted in dramatic changes in ion-state distributions, making some appear peaked in the centre while others disappeared. This effect could be produced with both co- and counter-beam heating, but with lesser amounts in the latter case. It is interpreted as rearrangement of the ionization balance, rather than any preferential accumulation of the injected element. (author)

  7. Beam instrumentation for the BNL Heavy Ion Transfer Line

    International Nuclear Information System (INIS)

    Witkover, R.L.; Buxton, W.; Castillo, V.; Feigenbaum, I.; Lazos, A.; Li, Z.G.; Smith, G.; Stoehr, R.

    1987-01-01

    The Heavy Ion Transfer Line (HITL) was constructed to transport beams from the BNL Tandem Van de Graaff (TVDG) to be injected into the AGS. Because the beam line is approximately 2000 feet long and the particle rigidity is so low, 20 beam monitor boxes were placed along the line. The intensity ranges from 1 to 100 nanoAmps for the dc trace beam used for line set-up, to over 100 μA for the pulsed beam to be injected into the AGS. Profiles are measured using multiwire arrays (HARPS) while Faraday cups and beam transformers monitor the intensity. The electronics stations are operated through 3 Instrumentation Controllers networked to Apollo workstations in the TVDG and AGS control rooms. Details of the detectors and electronics designs and performance will be given

  8. Diagnostics Neutral Beam Injector at the TCV Tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.; Shukaev, A.N.; Bosshard, P.; Duval, B.P.; Ivanov, A.A.; Kollegov, M.; Kolmogorov, V.V.; Llobet, X.; Pitts, R.A.; Weisen, H.

    2001-10-01

    Within this report we summarize the technical and experimental effort made on diagnostics neutral beam injector (DNBI) which was installed at tokamak TCV last year. Basic components of DNBI are reviewed, its remote control is presented in more detail. Profile and attenuation studies are referred to. First experimental results obtained with DNBI, which led to a decision to upgrade the machine, are discussed in the last section. (author)

  9. Software upgrade for the DIII-D neutral beam control systems

    International Nuclear Information System (INIS)

    Cummings, J.W.; Thurgood, P.A.

    1991-11-01

    The neutral beams are used to heat the plasma in the DIII-D tokamak, a fusion energy research experiment operated by General Atomics (GA) and funded by the Department of Energy (DOE). The experiment is dedicated to demonstrating noninductive current drive of high beta high temperature divertor plasma with good confinement. The neutral beam heating system for the DIII-D tokamak uses four MODCOMP Classic computers for data acquisition and control of the four beamlines. The Neutral Beam Software Upgrade project was launched in early 1990. The major goals were to upgrade the MAX IV operating system to the latest revision (K.1), use standard MODCOMP software (as much as possible), and to develop a very ''user friendly,'' versatile system. Accomplishing these goals required new software to be developed and modifications to existing applications software to make it compatible with the latest operating system. The custom operating system modules to handle the message service and interrupt handling were replaced by the standard MODCOMP Inter Task Communication (ITC) and interrupt routines that are part of the MAX IV operating system. The message service provides the mechanism for doing shot task sequencing (task scheduling). The interrupt routines are used to connect external interrupts to the system. The new software developed consists of a task dispatcher, screen manager, and interrupt tasks. The existing applications software had to be modified to be compatible with the MODCOMP ITC services and consists of the Modcomp Infinity Data Base Manager, a multi-user system, and menu-driven operating system interface routines using the Infinity Data Base Manager

  10. Conceptual design of a compact absolute valve for the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Chris [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)], E-mail: chris.m.jones@jet.uk; Waldon, Chris; Martin, David; Watson, Mike [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sonderegger, Kurt; Lenherr, Bruno [VAT Vakuumventile AG, CH-9469 Haag (Switzerland); Andrews, Ian; Mansbridge, Simon [VAT Vacuum Products Ltd., Edmund House, Rugby Road, Leamington Spa, Warwickshire CV32 6EL (United Kingdom)

    2009-06-15

    The reference design for the ITER neutral beam injectors incorporated a fast shutter to limit tritium migration to the injector vacuum enclosures. In 2005, a need for an 'absolute' isolation valve was identified to facilitate injector maintenance procedures and protect the system from an in-vessel ingress of coolant event (ICE). An outline concept for an all-metal seal valve was developed during 2006, in close cooperation with the Swiss valve manufacturer VAT. During the following year, it became apparent that the length of beamline available for the valve was significantly less than originally envisaged, resulting in a radical revision of the design concept. A casing length of 760 mm has been achieved by means of major changes to the casing structure, plate dimensions, pendulum mechanism and seal actuators. A concept for a seal protection system has been developed to prevent beam line contamination reaching the valve components and to protect the valve plate from surface heating by plasma radiation. The new design concept has been extensively validated by analysis, including a whole-system FE model of the valve.

  11. Neutral beam injection on the PLT tokamak

    International Nuclear Information System (INIS)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Knauer, R.C.; Stewart, L.D.; Stooksberry, R.W.; Ulrickson, M.; Williams, M.D.

    1981-01-01

    We describe the operation of the neutral beam injection system on the PLT tokamak. Improvements, retrofits, and conditioning have changed the injection system from an experiment in itself to a fairly reliable and useful plasma heating tool. We will present a brief overview of our physics achievements and then describe the system as it exists now. This will include injector performance, conditioning needs, maintenance needs, reliability, and daily operating sequences. We will also include hardware modifications and additions, electrical and mechanical, and point out remaining problem areas

  12. First neutral beam injection experiments on KSTAR tokamaka)

    Science.gov (United States)

    Jeong, S. H.; Chang, D. H.; Kim, T. S.; In, S. R.; Lee, K. W.; Jin, J. T.; Chang, D. S.; Oh, B. H.; Bae, Y. S.; Kim, J. S.; Park, H. T.; Watanabe, K.; Inoue, T.; Kashiwagi, M.; Dairaku, M.; Tobari, H.; Hanada, M.

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1/3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D+:D2+:D3+ = 75:20:5 at beam current density of 85 mA/cm2. The arc efficiency is more than 1.0 A/kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the Ti and Te profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  13. Heating efficiency of high-power perpendicular neutral-beam injection in PDX

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Arunasalam, V.; Bell, M.

    1982-03-01

    The heating efficiency of high power (up to 7.2 MW) near-perpendicular neutral beam injection in the PDX tokamak is comparable to that of tangential injection in PLT. Collisionless plasmas with central ion temperatures up to 6.5 keV and central electron temperatures greater than 2.5 keV have been obtained. The plasma pressure, including the contribution from the beam particles, increases with increasing beam power and does not appear to saturate, although the parametric dependence of the energy confinement time is different from that observed in ohmic discharges

  14. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Mitošinková, Klára; Stöckel, Jan; Varju, Jozef; Weinzettl, Vladimír

    2016-01-01

    Roč. 61, č. 4 (2016), s. 419-423 ISSN 0029-5922. [Summer School of Plasma Diagnostics PhDiaFusion 2015: “Soft X-ray Diagnostics for Fusion Plasma”. Bezmiechowa, 16.06.2015-20.06.2015] R&D Projects: GA MŠk(CZ) LM2011021; GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : tokamak * neutral beam injection (NBI) * Doppler effect * beam composition * beam composition Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 http://www.ichtj.waw.pl/nukleonikaa/?p=1256

  15. A beam position feedback system for beam lines at the photon factory

    International Nuclear Information System (INIS)

    Katsura, T.; Kamiya, Y.; Haga, K.; Mitsuhashi, T.

    1987-01-01

    The beam position of the synchrotron radiation produced from the Storage Ring was stabilized by a twofold position feedback system. A digital feedback system was developed to suppress the diurnal beam movement (one cycle of sin-like drifting motion per day) which became a serious problem in low-emittance operation. The feedback was applied to the closed-orbit-distortion (COD) correction system in order to cancel the position variation at all the beam lines proportionately to the variation monitored at one beam line. An analog feedback system is also used to suppress frequency components faster than the slow diurnal movement

  16. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  17. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  18. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors

    Science.gov (United States)

    Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.

    2017-08-01

    The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.

  19. Design data for calculating neutral beam penetration into Z/sub eff/ > 1 plasmas

    International Nuclear Information System (INIS)

    Olson, R.E.; Berkner, K.H.; Graham, W.G.; Pyle, R.V.; Schlachter, A.S.; Stearns, J.W.

    1978-01-01

    Impurities such as C, N, O, Fe, and Mo in a confined plasma reduce the penetration of the energetic neutral deuterium or hydrogen beam injected for heating or fueling the plasma, thus affecting the energy- and fuel-deposition profiles. New calculations, confirmed by recent experimental results, show that previous estimates of the reduction of neutral beam penetration due to impurities in the plasma were overly pessimistic. Until recently, the cross sections used to calculate beam attenuation had been assumed to be q 2 times the cross section for H + + H obtained from the Born approximation, where q is the charge state of the ion. This led to very large cross sections for large values of q, and thus to very stringent requirements on the acceptable level of impurity ions in the plasma

  20. Argon line broadening by neutral atoms and application to the measurement of oscillator strengths of AI resonance lines

    International Nuclear Information System (INIS)

    Vallee, O.; Ranson, P.; Chapelle, J.

    1977-01-01

    AI line broadening was studied from collisions between neutral argon atoms (3p 5 4p-3p 5 4s transitions) in a weakly ionised plasma jet (neutral atoms temperature T 0 approximately 4000K, electrons temperature Tsub(e) approximately 6000K, electronic density Nsub(e) 15 cm -3 , ionisation rate α -4 , and pressure range from 1 to 3 kg/cm 2 ). A satisfactory description of Van der Waals broadened lines is obtained by means of a Lennard-Jones potential. Measurement of line widths whose corresponding transitions occur on resonant levels, gives with relatively good accuracy the oscillator strength of the argon resonance lines [fr

  1. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R S [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  2. Characterization of the Goubau line for testing beam diagnostic instruments

    Science.gov (United States)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  3. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  4. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  5. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  6. New wiggler beam line for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.

    1982-08-01

    A new high-intensity-beam line with a wiggler magnet source is described. This project, in final stages of design, is a joint effort between Lawrence Berkeley Laboratory (LBL), the Exxon Research and Engineering Company (EXXON), and the Stanford Synchrotron Radiation Laboratory (SSRL). Installation at SSRL will begin in the summer of 1982. The goal of this project is to provide extremely high-brightness synchrotron radiation beams over a broad spectral range from 50 eV to 40 keV. The radiation source is a 27 period (i.e., 55 pole) permanent magnet wiggler of a new design. The wiggler utilizes rare-earth cobalt (REC) material in the steel hybrid configuration to achieve high magnetic fields with short periods. An analysis has been made of the polarization, angular distribution and power density of the radiation produced by the wiggler. Details of the wiggler design are presented. The magnet is outside a thin walled (1mm) variable gap stainless steel vacuum chamber. The chamber gap will be opened to 1.8 cm for beam injection into SPEAR and then closed to 1.0 cm (or less) for operation. Five remotely controlled drives are provided; to change the wiggler gap, to change the vacuum chamber aperture and to position the wiggler. Details of the beam line optics and end stations are presented. Thermal loading on beam line components is severe. The peak power density at 7.5 m is 5 kW/cm 2 for the nominal wiggler field and present SPEAR beam currents and will approach 20 kW/cm 2 with the maximum wiggler field and projected SPEAR beam currents

  7. The H line: a brand new beam line for fundamental physics at the J-PARC muon facility

    International Nuclear Information System (INIS)

    Kawamura, N; Shimomura, K; Miyake, Y; Toyoda, A; Saito, N; Mihara, S; Aoki, M

    2013-01-01

    The muon facility, J-PARC (Muon Science Establishment; MUSE), has been operated since first beam in 2008. Starting with a 200 kW proton beam, the beam intensity has reached 3×10 6 / muons/s, the most intense pulsed muon beam in the world. A 2 cm thick graphite target permits the extraction of four secondary muon beams. A brand new beam line, the H line, is planned to be constructed. The new beam line is designed to have a large acceptance, will provide the ability to tune the momentum, and use a kicker magnet and/or Wien filter. This beam line will provide an intense beam for experiments that require high statistics and must occupy the experimental areas for a relatively long period.

  8. First neutral beam injection experiments on KSTAR tokamak.

    Science.gov (United States)

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  9. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-01-01

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  10. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metel, A. S., E-mail: ametel@stankin.ru [Moscow State University of Technology ' Stankin,' (Russian Federation)

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  11. Development of a 1-m plasma source for heavy ion beam charge neutralization

    Science.gov (United States)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-05-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ˜0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ˜10 -6 Torr with plasma densities of 10 11 cm -3. Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (˜1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ˜10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed.

  12. Development of a 1-m plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-01-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ∼10 -6 Torr with plasma densities of 10 11 cm -3 . Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (∼1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ∼10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed

  13. Development of vacuum components for neutral beam injection applications

    International Nuclear Information System (INIS)

    Schwenterly, S.W.

    1977-01-01

    Neutral beam injectors and divertors for fusion devices require very high-speed pumping capabilities to remove cold gas and impurities from the beam and plasma drift regions. Cryopumping is one of the most favorable methods due to its freedom from contamination and relatively low capital cost. The theory of cryosorption pumping is summarized and contrasted with the process of cryocondensation. A variable-temperature cryostat for basic studies on small test cryosorption panels is described. Using results of these studies, a large sorption panel with an inlet area of 2 m 2 is being designed and fabricated. The design characteristics of this pump are discussed

  14. Period doubling on a non-neutral magnetized electron beam

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Low frequency oscillations on a non-neutral magnetized electron beam of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large amplitude fundamental mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increasedthe waveform ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement

  15. A rule-based computer control system for PBX-M neutral beams

    International Nuclear Information System (INIS)

    Frank, K.T.; Kozub, T.A.; Kugel, H.W.

    1987-01-01

    The Princeton Beta Experiment (PBX) neutral beams have been routinely operated under automatic computer control. A major upgrade of the computer configuration was undertaken to coincide with the PBX machine modification. The primary tasks included in the computer control system are data acquisition, waveform reduction, automatic control and data storage. The portion of the system which will remain intact is the rule-based approach to automatic control. Increased computational and storage capability will allow the expansion of the knowledge base previously used. The hardware configuration supported by the PBX Neutral Beam (XNB) software includes a dedicated Microvax with five CAMAC crates and four process controllers. The control algorithms are rule-based and goal-driven. The automatic control system raises ion source electrical parameters to selected energy goals and maintains these levels until new goals are requested or faults are detected

  16. DISSOLVED OXYGEN REDUCTION IN THE DIII-D NEUTRAL BEAM ION SOURCE COOLING SYSTEM

    International Nuclear Information System (INIS)

    YIP, H.; BUSATH, J.; HARRISON, S.

    2004-03-01

    OAK-B135 Neutral beam ion sources (NBIS) are critical components for the neutral beam injection system supporting the DIII-D tokamak. The NBIS must be cooled with 3028 (ell)/m (800 gpm) of de-ionized and de-oxygenated water to protect the sources from overheating and failure. These ions sources are currently irreplaceable. Since the water cooled molybdenum components will oxidize in water almost instantaneously in the presence of dissolved oxygen (DO), de-oxygenation is extremely important in the NBIS water system. Under normal beam operation the DO level is kept below 5 ppb. However, during weeknights and weekends when neutral beam is not in operation, the average DO level is maintained below 10 ppb by periodic circulation with a 74.6 kW (100 hp) pump, which consumes significant power. Experimental data indicated evidence of continuous oxygen diffusion through non-metallic hoses in the proximity of the NBIS. Because of the intermittent flow of the cooling water, the DO concentration at the ion source(s) could be even higher than measured downstream, and hence the concern of significant localized oxidation/corrosion. A new 3.73 kW (5 hp) auxiliary system, installed in the summer of 2003, is designed to significantly reduce the peak and the time-average DO levels in the water system and to consume only a fraction of the power

  17. Sparking protection for MFTF-B Neutral Beam Power Supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel DC current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  18. Sparking protection for MFTF-B neutral beam power supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel dc current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  19. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  20. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  1. Welding for fusion grade neutral beam components - requirements, challenges, experiences and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2016-01-01

    Negative ion based Neutral Beam Injectors (NBI) are the integral part of large size fusion devices where Neutral Beams of Hydrogen/Deuterium atoms are injected into the fusion reactor to heat the plasma, drive a plasma current, provide fuel to the plasma and also help to diagnose the plasma through spectroscopic measurements. The presentation shares the experiences of handling, some of special welding activities applicable for fusion prototypes developments, experiments, methodology developed for the inspection/tests, criteria considered with the appropriate justifications. This also shares the view point of authors code should further be supplement and incorporate the fusion specific applications considering future needs. In addition, explorations to meet our future needs of welding with specific attention to indigenous developments have been described

  2. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1981-02-01

    Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma ray streaming on the performance of the Engineering Test Facility (ETF) neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10 -3 MW/m 3 which implies a total heat load of 2.2 x 10 -4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated

  3. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  4. Criticality in the fabrication of ion extraction system for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.

    2008-01-01

    For the heating of plasma in steady-state superconducting tokamak (SST-1) (Y.C. Saxena, SST-1 Team, Present status of the SST-1 project, Nucl. Fusion 40 (2000) 1069-1082; D. Bora, SST-1 Team, Test results on systems developed for the SST-1 tokamak, Nucl. Fusion 43 (2003) 1748-1758), a neutral beam injector is provided to raise the ion temperature to ∼1 keV. This injector has a capability of injecting hydrogen beam with the power of 0.5 MW at 30 keV. For the upgrade of SST-1, power of 1.7 MW at 55 KeV is required. Further, beam power is to be provided for a pulse length of 1000S. We have designed a neutral beam injector (S.K. Mattoo, A.K. Chakraborty, U.K. Baruah, P.K. Jayakumar, M. Bandyopadhyay, N. Bisai, Ch. Chakrapani, M.R. Jana, R. Onali, V. Prahlad, P.J. Patel, G.B. Patel, B. Prajapati, N.V.M. Rao, S. Rambabu, C. Rotti, S.K. Sharma, S. Shah, V. Sharma, M.J. Singh, Engineering design of the steady-state neutral beam injector for SST-1, Fusion Eng. Des. 56 (2001) 685-691; A.K. Chakraborty, N. Bisai, M.R. Jana, P.K. Jayakumar, U.K. Baruah, P.J. Patel, K. Rajasekar, S.K. Mattoo, Neutral beam injector for steady-state superconducting tokamak, Fusion Technol. (1996) 657-660; P.K. Jayakumar, M.R. Jana, N. Bisai, M. Bajpai, N.P. Singh, U.K. Baruah, A.K. Chakraborty, M. Bandyopadhyay, C. Chrakrapani, D. Patel, G.B. Patel, P. Patel, V. Prahlad, N.V.M. Rao, C. Rotti, V. Sreedhar, S.K. Mattoo, Engineering issues of a 1000S neutral beam ion source, Fusion Technol. 1 (1998) 419-422) satisfying the requirements for both SST-1 and its upgrade. Since intense power is to be transported to SST-1 situated at a distance of several meters from the ion source, the optical quality of the beam becomes a primary concern. This in turn, is determined by the uniformity of the ion source plasma and the extractor geometry. To obtain the desired optical quality of the beam, stringent tolerances are to be met during the fabrication of ion extractor system. SST-1 neutral beam injector is

  5. Magnet power supply and beam line control for a secondary beam line K6

    International Nuclear Information System (INIS)

    Suzuki, Y.; Takasaki, M.; Minakawa, M.; Ishii, H.; Kato, Y.; Ieiri, M.; Tanaka, K.H.; Noumi, H.; Yamanoi, Y.

    1992-01-01

    K6 is a secondary separated-beam line with momentum range up to 2.0 GeV/c in the north experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS). On the construction, newly developed magnet power supplies (MPSs), in each of them a microprocessor is embedded, are introduced. The features of the MPS are as follows: 1, The MPS is connected to an upper-level beam line controller (BLC) by GPIB highway for exchanging simple messages. 2, All the operations of the MPS are supervised by the microprocessor, which has its individual parameters and fault messages. It reduces the load of the upper-level controller. 3, The MPS has functions to inspect itself and to report the result. It saves much time and labor of maintenance. (author)

  6. Mode and sawtooth behaviour during neutral beam injection in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Grieger, G.; Renner, H.; Sapper, J.; Wobig, H.; Dorst, D.; Cattanei, G.; Javel, P.; Rau, F.; Zippe, M.; Jaeckel, H.

    1980-02-01

    The mode behaviour during Neutral Beam Injection in the WENDELSTEIN VII-A stellarator is presented. The analysis is mainly relying on soft X-ray measurements. Two types of discharges were found during Neutral Beam Injection with plasma currents >= 20 kA. The first type is dominated by large, regular and long sawteeth, which are caused by a (m,n) = (1,1) mode. In the second type the sawteeth disappear completely. Later in the discharge a local disruption causes a transition to the first type; this disruption has a (3,2) mode precursor. A new mode (2,2) is found and phase coupled to the (3,2) mode. Even at a high external rotational transform (t 0 = 0.23) a large (2,1) mode is found after the (3,2) mode has caused the local disruption. At slightly lower external rotational transform values major current disruptions may even occur. This is mainly due to the enhanced edge heating by the Neutral Beam Injection. Results of simulations of the mode structures are also presendet. (orig./GG)

  7. Magnetic Field Considerations for the Design and Location of a Diagnostic Neutral Beam Injector for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Lopez Fraguas, A.; Balbin, R.

    2004-01-01

    A diagnostic neutral beam injection system is being developed for the TJ-II stellarator. The principal goal is to increase the signal-to-noise ratio and to provide spatial resolution along the plasma minor radius in Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis diagnostics, while also opening up new opportunities for physics studies. After summarizing the compact diagnostic neutral beam injector system selected as well as the TJ-II vacuum vessel and coil geometry, we address the sensitivity of TJ-II magnetic configurations to the ferromagnetic materials that shield the ion source and neutralizer tubing of the neutral beam injection system using a popular approach in which the field is approximated via magnetic dipole moments, finally, the scientific and design trade-offs made to minimize the impact are discussed. (Author) 24 refs

  8. Facility for the testing of the TFTR prototype neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Haughian, J.M.

    1977-07-01

    The design of the prototype neutral beam injection system for TFTR is nearing completion at the Lawrence Livermore Laboratory. This paper describes some of the features of the facility at the Lawrence Berkeley Laboratory where this prototype will be assembled and tested.

  9. Facility for the testing of the TFTR prototype neutral beam injector

    International Nuclear Information System (INIS)

    Haughian, J.M.

    1977-07-01

    The design of the prototype neutral beam injection system for TFTR is nearing completion at the Lawrence Livermore Laboratory. This paper describes some of the features of the facility at the Lawrence Berkeley Laboratory where this prototype will be assembled and tested

  10. Protection and fault detection for Lawrence Berkeley Laboratory neutral beam sources

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Baker, W.R.; Berkner, K.H.; Ehlers, K.W.; Honey, V.J.; Lietzke, A.F.; Milnes, K.A.; Owren, H.M.

    1979-11-01

    Testing of TFTR neutral beam (NB) sources has begun at the LBL Neutral Beam System Test Facility (NBSTF). Operation at 120 kV, 65 A, 0.5 sec should be achieved soon. Because NB sources spark down frequently during conditioning, the main accelerating (accel) power supply must be interrupted within a few microseconds to avoid degrading the voltage holding capability, or even the damaging, of the NB source. A variety of improper magnitudes and/or ratios of voltages, currents, and times can occur and must be recognized as fault conditions in order to initiate a prompt interruption of the accel power supply. This paper discusses in detail the key signals which must be monitored and the manner in which they are processed in fault detector circuitry for safe operation of LBL NB sources. The paper also reviews the more standard interlocks and protective features recommended for these sources

  11. A line beam electron gun for rapid thermal processing

    Science.gov (United States)

    Pauli, M.; Müller, J.; Hartkopf, K.; Barth, T.

    1992-04-01

    A line beam electron gun based on the Pierce gun type was developed. The line cathode was realized by a directly heated tungsten rod. The temperature distribution along the tungsten rod was simulated numerically. The simulation shows a flat temperature across 2/3 of the cathode length and it agrees with appropriate measurable parameters. The beam profiles of the electron gun perpendicular to the line direction were examined as a function of electrical and geometrical parameters: The space-charge distribution in front of the cathode was found to be responsible for the shape of the beam profile. The shape of the beam profile is weakly influenced by the acceleration to the anode. The heating current induced voltage drop along the cathode was found to be responsible for the nonuniform emission in line direction. A model for the emission behavior of the line beam electron gun was developed. The model is based on the results of the measurements and on a numerical simulation of the potential distribution in the area between Pierce reflectors and anode. The emission model shows a solution to homogenize the emission by a suitable variation of geometrical parameters in line direction. A linear variation was realized in experiment which enables a uniform emission across 2/3 of the cathode length. The beam profile is adjustable by a bias voltage between the cathode and the Pierce reflectors.

  12. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  13. Negative hydrogen ion sources for neutral beam injectors

    International Nuclear Information System (INIS)

    Prelec, K.

    1977-01-01

    Negative ion sources offer an attractive alternative in the design of high energy neutral beam injectors. The requirements call for a single source unit capable of yielding H - or D - beam currents of up to 10 A, operating with pulses of 1 s duration or longer, with gas and power efficiencies comparable to or better than achievable with double electron capture systems. H - beam currents of up to 1 A have already been achieved in pulses of 10 ms; gas and power efficiencies were, however, lower than required. In order to increase the H - yield, extend the pulse length and improve gas and power efficiencies fundamental processes in the source plasma and on cesium covered electrode surfaces have to be analyzed; these processes will be briefly reviewed and scaling rules established. Based on these considerations as well as on results obtained with 1 A source models a larger model was designed and constructed, having a 7.5 cm long cathode with forced cooling. Results of initial tests will be presented and possible scaling up to 10 A units discussed

  14. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    International Nuclear Information System (INIS)

    Politzer, P.A.

    2005-01-01

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f bs ). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ∼80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ∼20% NBCD. This is achieved at β N [approximately equal to] β p > 3, but at relatively high q 95 (∼10). In lower q 95 Advanced Tokamak plasmas, f bs ∼ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high β p and β N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing β, limiting the achievable average β and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory

  15. Thermal problems on high flux beam lines

    International Nuclear Information System (INIS)

    Avery, R.T.

    1983-09-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler Beam Line VI now nearing operation will be able to provide up to approx. 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 meters from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2 . Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2 ) and is comparable to that of welding torches. Clearing, cooling and configuration are of critical importance. Configurations for the first fixed mask, the movable mask, and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on heating of crystals and mirrors is also presented

  16. TFTR neutral-beam test facility

    International Nuclear Information System (INIS)

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date

  17. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  18. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    International Nuclear Information System (INIS)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  19. Heavy Neutral Beam Probe for edge plasma analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.; Saravia, E.; Beckstead, J.; Aceto, S.

    1993-01-01

    The contents of this report present the progress achieved to date on the Heavy Neutral Beam Probe project. This effort is an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadien de Fusion Magnetique (CCFM). The overall objective of the effort is to develop and apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes (TdeV) facility in Montreal, Canada. To achieve this goal, a research and development project was established to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present the project is in the middle of its second budget period with the instrumentation on-site at TdeV. The first half of this budget period was used to complete total system tests at InterScience, Inc., dismantle and ship the hardware to TdeV, re-assemble and install the HNBP on the tokamak. Integration of the diagnostic into the TdeV facility has progressed to the point of first beam production and measurement on the plasma. At this time, the HNBP system is undergoing final de-bugging prior to re-start of machine operation in early Fall of this year

  20. Neutral beam control systems for the Tandem Mirror Experiment

    International Nuclear Information System (INIS)

    Ross, R.I.

    1979-01-01

    The Tandem Mirror Experiment (TMX) is presently developing the technology and approaches which will be used in larger fusion systems. This paper describes some of the designs which were used in creating the control system for the TMX neutral beams. To create a system of controls that would work near these large, rapid switching current sources required a mixture of different technologies: fiberoptic data transmission, printed circuit and wirewrap techniques, etc

  1. A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector

    Science.gov (United States)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-10-01

    The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

  2. Considerations and calculations for the neutral-injection system in ZEPHYR

    International Nuclear Information System (INIS)

    Feist, J.H.; Herrmann, W.; Speth, E.

    1981-01-01

    The heating of the ZEPHYR plasma to ignition temperatures shall be accomplished by neutral injection and subsequent compression of the plasma. 25 MW of neutral power are required. A parametrical study of beam transmission was performed to find limitations on the type and arrangement of sources imposed by the small width of the porthole to the torus and the small height of the plasma target. A reference beam line has been designed and the power transmission calculated as a function of gas flow through the sources. The limitations mentioned make it necessary to design the beam lines as compact as possible to avoid intolerable losses in the duct or power outside the plasma target. Depending on the reliability of a single source, the number of sources that are available in at least 75 % of the discharges has been calculated for different numbers of installed sources. (author)

  3. Design and implementation of a user-friendly interface for DIII-D neutral beam automated operation

    International Nuclear Information System (INIS)

    Phillips, J.; Colleraine, A.P.; Hong, R.; Kim, J.; Lee, R.L.; Wight, J.J.

    1989-12-01

    The operational interface to the DIII-D neutral beam system, in use for the past 10 years, consisted of several interactive devices that the operator used to sequence neutral beam conditioning and plasma heating shots. Each of four independent MODCOMP Classic control computers (for four DIII-D beamlines) included a touch screen, rotary knobs, an interactive dual port terminal, and a keyboard to selectively address each of five display screens. Most of the hardware had become obsolete and repair was becoming increasingly expensive. It was clear that the hardware could be replaced with current equipment, while improving the ergonomics of control. Combined with an ongoing effort to increase the degree of automated operation and its reliability, a single microcomputer-based interface for each of the four neutral beam MODCOMP Classic control computers was developed, effectively replacing some twenty pieces of hardware. Macintosh II microcomputers were selected, with 1 megabyte of RAM and ''off-the-shelf'' input/output (I/O) consisting of a mouse, serial ports, and two monochrome high-resolution video monitors. The software is written in PASCAL and adopts standard Macintosh ''window'' techniques. From the Macintosh interface to the MODCOMP Classic, the operator can control the power supply setpoints, adjust ion source timing and synchronization, call up waveform displays on the Grinnell color display system, view the sequencing of procedures to ready a neutral beam shot, and add operator comments to an automated shot logging system. 3 refs., 2 figs

  4. Absolute transition probabilities for 559 strong lines of neutral cerium

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2009-07-07

    Absolute radiative transition probabilities are reported for 559 strong lines of neutral cerium covering the wavelength range 340-880 nm. These transition probabilities are obtained by scaling published relative line intensities (Meggers et al 1975 Tables of Spectral Line Intensities (National Bureau of Standards Monograph 145)) with a smaller set of published absolute transition probabilities (Bisson et al 1991 J. Opt. Soc. Am. B 8 1545). All 559 new values are for lines for which transition probabilities have not previously been available. The estimated relative random uncertainty of the new data is +-35% for nearly all lines.

  5. Instrumentation and control of the Doublet III Neutral Beam Injector System

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  6. Instrumentation and control of the Doublet III Neutral Beam Injector System

    International Nuclear Information System (INIS)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks

  7. Initial Beam Test of the Prototype Strip Line BPM

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Ryu, Jin Yeong; Jang, Ji Ho; Cho, Yong Sub

    2011-01-01

    A beam position monitor (BPM) was developed which would be used for the Proton Engineering Frontier Project (PEFP) beam line. It is a strip line BPM which is commonly used one for the proton beam. The BPM cross section was designed with the SUPERFISH code and the matching section to the feed through was designed by the MWS code. The design parameters of the BPM are shown in Table 1. The designed BPM was fabricated to verify the manufacturing process and check its electrical performance. After the low power test at the test stand, the BPM was installed at the 20-MeV proton accelerator beam line as shown in Fig. 1

  8. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  9. Neutral beam energy and power requirements for expanding radius and full bore startup of tokamak reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.

    1979-09-01

    Natural beam power and energy requirements are compared for full density full bore and expanding radius startup scenarios in an elongated plasma, The Next Step (TNS), as a function of beam pulse time and plasma density. Because of the similarity of parameters, the results should also be applicable to Engineering Test Facility (ETF) and International Tokamak Reactor (INTOR) studies. A transport model consisting of neoclassical ion conduction and anomalous electron conduction and diffusion based on ALCATOR scaling leads to average densities in the range approx. 0.8 to 1.2 x 10 14 cm -3 being sufficient for ignition. Neutral deuterium beam energies in the range 120 to 180 keV are adequate for penetration, with the required power injected into the plasma decreasing with increasing beam energy. The neutral beam power decreases strongly with increasing beam pulse length b/sub b/ until t/sub b/ exceeds a few total energy confinement times, yielding b/sub b/ approx. = 4 to 6 s for the TNS plasma

  10. Design process and modeling studies of SSRL beam line wunder

    International Nuclear Information System (INIS)

    Bachrach, R.Z.; Bringans, R.D.

    1984-01-01

    SSRL Beam Line Wunder will be the first soft X-ray energy range synchrotron radiation beam line specifically designed to exploit the unique aspects of periodic insertion devices in the wiggler-undulator (wunder) regime. Aspects of the development of this beam line are described in this paper and in particular, we discuss the design methodology adopted and emphasize the joint optical, thermal and mechanical optimization studies that were required. (orig.)

  11. Conceptual design for the ZEPHYR neutral-beam injection system

    International Nuclear Information System (INIS)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs

  12. E-line: A new crystal collimator beam line for source size measurements at CHESS

    International Nuclear Information System (INIS)

    White, Jeffrey A.; Revesz, Peter; Finkelstein, Ken

    2007-01-01

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring

  13. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  14. Development of an rf-driven plasma neutralizer for negative ions

    International Nuclear Information System (INIS)

    Moses, K.G.

    1989-01-01

    The assertion that beams of negative ions can be neutralized more efficiently by impacting a plasma, rather than a cold gas target, is confirmed scientifically by the work of K.H. Berkner et al. What remains to be done is the realization of practical means of generating plasmas efficiently with appropriate integrated line densities (target thickness). The work performed by JAYCOR, under this grant, over the past few years has made significant progress towards that goal. In this work, large volumes of plasma are generated using low-frequency pulsed inductive rf discharges within a ring cusp multipole-magnetic field geometry. These plasmas exhibit sufficient line-integrated electron densities and degrees of ionization to neutralize beams of energetic negative ions whose energies exceed 500 keV. The method of plasma generation and the cell configuration used in these studies are directly applicable to higher energy neutral beam injector systems (NBIS). Innate scalability and modularity of the system design facilitates linear stacking to achieve a desired target thickness. Further, the plasma formation process is accomplished with an electrical economy consistent with increased overall electrical efficiency of the NBIS compared to that possible using a cold gas target. 5 refs., 16 figs

  15. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  16. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  17. Design of the ESCAR injection beam line

    International Nuclear Information System (INIS)

    Tanabe, J.; Staples, J.; Yourd, R.

    1975-01-01

    The design features of the elements of the ESCAR (Experimental Superconducting Accelerator Ring) injection beam line are described. The junction of the proton transport system with the ESCAR injection straight section requires the design of mechanical elements compatible with the 10 -11 torr vacuum requirements of the main ring. These elements include a novel septum magnet whose salient design features include a current-carrying septum of tapered thicknesses to reduce the overall power requirements and total enclosure of the magnet coil in a metal can for vacuum compatibility. Other elements are a wire electro-static septum and several fast-rise ''bump magnets''. A transition cryopump is designed to separate the main ring vacuum from the relatively poor 10 -6 torr vacuum of the conventional beam transport line. A brief description of the conventional beam transport line from the 50 MeV proton linac, recently installed for Bevatron injection,is also included. (U.S.)

  18. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    International Nuclear Information System (INIS)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism

  19. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  20. Manufacturing of the full size prototype of the ion source for the ITER neutral beam injector – The SPIDER beam source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Boilson, Deirdre [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bonicelli, Tullio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Boury, Jacques [Thales Electron Devices, Velizy Villacoublay (France); Bush, Michael [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Ceracchi, Andrea; Faso, Diego [CECOM S.r.l., Via Tiburtina – Guidonia Montecelio, Roma (Italy); Graceffa, Joseph [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heinemann, Bernd [Max-Planck-Institut für Plasmaphysik, D-85740 Garching (Germany); Hemsworth, Ronald [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lievin, Christophe [Thales Electron Devices, Velizy Villacoublay (France); Marcuzzi, Diego [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Masiello, Antonio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Sczepaniak, Bernd [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Singh, Mahendrajit [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Toigo, Vanni; Zaccaria, Pierluigi [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy)

    2015-10-15

    Highlights: • Negative ion sources are key components of neutral beam injectors for nuclear fusion. • The SPIDER experiment aims to optimize the negative ion source of MITICA and HNB. • The SPIDER Beam Source manufacturing is currently on-going. • Manufacturing and assembling technological issues encountered are presented. - Abstract: In ITER, each heating neutral beam injector (HNB) will deliver about 16.5 MW heating power by accelerating a 40 A deuterium negative ion beam up to the energy of 1 MeV. The ions are generated inside a caesiated negative ion source, where the injected H{sub 2}/D{sub 2} is ionized by a radio frequency electromagnetic field. The SPIDER test bed, currently being manufactured, is going to be the ion source test facility for the full size ion source of the HNBs and of the diagnostic neutral beam injector of ITER. The SPIDER beam source comprises an ion source with 8 radio-frequency drivers and a three-grid system, providing an overall acceleration up to energies of about 100 keV [1]. SPIDER represents a substantial step forward between the half ITER size ion source, which is currently being tested at the ELISE test bed in IPP-Garching, and the negative ion sources to be used on ITER, in terms of layout, dimensions and operating parameters. The SPIDER beam source will be housed inside a vacuum vessel which will be equipped with a beam dump and a graphite diagnostic calorimeter. The manufacturing design of the main parts of the SPIDER beam source has been completed and many of the tests on the prototypes have been successfully passed. The most complex parts, from the manufacturing point of view, of the ion source and the accelerator, developed by galvanic deposition of copper are being manufactured. The manufacturing phase will be completed within 2015, when the assembly of the device will start at the PRIMA site, in Padova (I). The paper describes the status of the procurement, the adaptations operated on the design of the beam

  1. High-beta experiments with neutral-beam injection on PDX

    International Nuclear Information System (INIS)

    Johnson, D.; Bell, M.; Bitter, M.

    1983-01-01

    Experimental investigations of high-beta plasmas produced in PDX with near-perpendicular neutral-beam injection are reported. Systematic power scans have been performed over a wide range of toroidal fields (νsub(T)q.7 T< Bsub(T)<2.2 T) and plasma currents (200 kA< Isub(p)<500 kA). At high toroidal fields, the change in total stored energy due to beam injection increases linearly with input power and also increases with plasma current. At lower toroidal fields and low injection power levels, the stored energy also increases with power and plasma current. However, at high power and low toroidal fields, a saturation in heating is observed. This result suggests the onset of a νsub(T) limit for circular cross-section tokamaks with near-perpendicular injection. Scaling experiments indicate that this νsub(T) limit increases with rising 1/q. Values of νsub(T)approx.=3% at qsub(PSI)=1.8 have been achieved. At high values of νsub(T)q, short bursts of MHD activity are observed, synchronized with sharply increased fluxes of perpendicular charge-exchange neutrals and rapid decreases in the rate of beam-driven neutron production. When strong bursts occur, there is a significant depletion of the fast-ion population. Estimates of the fast-ion loss indicate that it could explain the observed decrease in heating, although an additional reduction in thermal-plasma confinement cannot be ruled out. Numerical studies using measured pressure profiles predict that the equilibria obtained become unstable to the ideal n=1 internal mode, at about the same value of 0 where the new fluctuations are observed. (author)

  2. Capacitive beam position monitors and automatic beam centering in the transfer lines of Ganil

    International Nuclear Information System (INIS)

    Gudewicz, P.; Petit, E.

    1991-01-01

    A non-interceptive beam position monitor, made of four capacitive electrodes, has been designed at GANIL in order to allow a permanent measurement of the ion beam position over a large intensity range (50 enA to 10 eμA). Signal processing is based on a 10 kHz heterodyne and on an amplitude to phase conversion in order to measure the beam position. An immediate application of these monitors is the automatic beam centering. For this, two algorithms have been developed using the information on the center of gravity given by the beam position monitors which is then fed back to the steerers, an iterative method and a variational method. Both methods have been used on a section of beam line and have given similar and encouraging results. The next step is to center the beam on the completely equipped line. (author) 4 refs., 2 figs., 1 tab

  3. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  4. E-line: A new crystal collimator beam line for source size measurements at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeffrey A. [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)], E-mail: jaw7@cornell.edu; Revesz, Peter; Finkelstein, Ken [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)

    2007-11-11

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring.

  5. FIRST BEAM TESTS OF THE MUON COLLIDER TARGET TEST BEAM LINE AT THE AGS

    International Nuclear Information System (INIS)

    BROWN, K.A.; GASSNER, D.; GLENN, J.W.; PRIGL, R.; SIMOS, N.; SCADUTO, J.; TSOUPAS, N.

    2001-01-01

    In this report we will describe the muon collider target test beam line which operates off one branch of the AGS switchyard. The muon collider target test facility is designed to allow a prototype muon collider target system to be developed and studied. The beam requirements for the facility are ambitious but feasible. The system is designed to accept bunched beams of intensities up to 1.6 x 10 13 24 GeV protons in a single bunch. The target specifications require beam spot sizes on the order of 1 mm, 1 sigma rms at the maximum intensity. We will describe the optics design, the instrumentation, and the shielding design. Results from the commissioning of the beam line will be shown

  6. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B

    International Nuclear Information System (INIS)

    FOERSTER, C.

    1999-01-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of ∼ 1 x 10 -10 Torr without beam and ∼ 1 x 10 -9 Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not

  7. Sensibility Studies for the Neutral Beam Injection System in TJ-II

    International Nuclear Information System (INIS)

    Fuentes, C.; Liniers, M.; Guasp, J.

    1999-01-01

    The sensibility of the Neutral Beam Injection system of TJ-II to the changes of several parameters is analysed. Transmission, absorption and power loads at the intercepting structures are evaluated. The adopted values for the ion source distance, focal length and divergence are confirmed as optimal, showing a small sensitivity to changes, except for the divergence. The operational margins for beam misalignments has been found to be small but feasible, confirming also the reference directions as optimal. Finally four possible alternatives, intended to reduce the power loads at the beam entering structures, are analysed. All of them have been discarded since lead to the appearance of new risk zones, with unacceptable load levels, and reduce the transmitted power. (Author) 13 refs

  8. Neutral beams in two-ribbon flares and in the geomagnetic tail

    International Nuclear Information System (INIS)

    Martens, P.C.H.; Young, A.

    1990-01-01

    The current sheet created in the wake of an erupting filament during a two-ribbon flare is studied. A comparison with the geomagnetic tail shows that the physics of these systems is very similar, and therefore the existence of super Dreicer fields and the generation of netural beams traveling down the postflare loops with small pitch angles may be expected. The observational evidence for neutral beams in flares is reviewed and found to be generally supportive, while contracting the widely held hypothesis of electron beams. A dimensional analysis further demonstrates that the results for self-consistent numerical simulations of the current sheet in the geomagnetic tail can directly be scaled to the coronal current sheet, and the scaling parameters are derived. 71 refs

  9. Detailed design of the RF source for the 1 MV neutral beam test facility

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Palma, M. Dalla; Pavei, M.; Heinemann, B.; Kraus, W.; Riedl, R.

    2009-01-01

    In the framework of the EU activities for the development of the Neutral Beam Injector for ITER, the detailed design of the Radio Frequency (RF) driven negative ion source to be installed in the 1 MV ITER Neutral Beam Test Facility (NBTF) has been carried out. Results coming from ongoing R and D on IPP test beds [A. Staebler et al., Development of a RF-Driven Ion Source for the ITER NBI System, this conference] and the design of the new ELISE facility [B. Heinemann et al., Design of the Half-Size ITER Neutral Beam Source Test Facility ELISE, this conference] brought several modifications to the solution based on the previous design. An assessment was carried out regarding the Back-Streaming positive Ions (BSI+) that impinge on the back plates of the ion source and cause high and localized heat loads. This led to the redesign of most heated components to increase cooling, and to different choices for the plasma facing materials to reduce the effects of sputtering. The design of the electric circuit, gas supply and the other auxiliary systems has been optimized. Integration with other components of the beam source has been revised, with regards to the interfaces with the supporting structure, the plasma grid and the flexible connections. In the paper the design will be presented in detail, as well as the results of the analyses performed for the thermo-mechanical verification of the components.

  10. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    International Nuclear Information System (INIS)

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures

  11. A global fitting code for multichordal neutral beam spectroscopic data

    International Nuclear Information System (INIS)

    Seraydarian, R.P.; Burrell, K.H.; Groebner, R.J.

    1992-05-01

    Knowledge of the heat deposition profile is crucial to all transport analysis of beam heated discharges. The heat deposition profile can be inferred from the fast ion birth profile which, in turn, is directly related to the loss of neutral atoms from the beam. This loss can be measured spectroscopically be the decrease in amplitude of spectral emissions from the beam as it penetrates the plasma. The spectra are complicated by the motional Stark effect which produces a manifold of nine bright peaks for each of the three beam energy components. A code has been written to analyze this kind of data. In the first phase of this work, spectra from tokamak shots are fit with a Stark splitting and Doppler shift model that ties together the geometry of several spatial positions when they are fit simultaneously. In the second phase, a relative position-to-position intensity calibration will be applied to these results to obtain the spectral amplitudes from which beam atom loss can be estimated. This paper reports on the computer code for the first phase. Sample fits to real tokamak spectral data are shown

  12. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    International Nuclear Information System (INIS)

    Kaye, S.M.; Bell, M.; Bol, K.

    1983-11-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H/sub α/ emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but it can be degraded due to either the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Te near the plasma edge (approx. 450 eV) with sharp radial gradients (approx. 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix

  13. On a laser beam fiducial line application for metrological purposes

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, J.; Lyablin, M.; Rusakovich, N.; Sisakyan, A.; Topilin, N.; Khubua, J.; Lasseur, C.

    2008-01-01

    The possibility of a collimated one-mode laser beam used as a fiducial line is considered. The technology of an 'extended' laser beam formation and application for a much extended fiducial line is proposed

  14. Proposed neutral-beam diagnostics for fast confined alpha particles in a burning plasma

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Cooper, W.S.

    1986-10-01

    Diagnostic methods for fast confined alpha particles are essential for a burning plasma experiment. Several methods which use energetic neutral beams have been proposed. We review these methods and discuss system considerations for their implementation

  15. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  16. Design and test of-80 kV snubber core assemblies for MFTF sustaining-neutral-beam power supplies

    International Nuclear Information System (INIS)

    Bishop, S.R.; Mayhall, D.J.; Wilson, J.H.; De Vore, K.R.; Ross, R.I.; Sears, R.G.

    1981-01-01

    Core snubbers, located near the neutral beam source ends of the Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS) source cables, protect the neutral beam source extractor grid wires from overheating and sputtering during internal sparkdowns. The snubbers work by producing an induced counter-emf which limits the fault current and by absorbing the capacitive energy stored on the 80 kV source cables and power supplies. A computer program STACAL was used in snubber magnetic design to choose appropriate tape wound cores to provide 400 Ω resistance and 25 J energy absorption. The cores are mounted horizontally in a dielectric structure. The central source cable bundle passes through the snubber and terminates on three copper buses. Multilam receptacles on the buses connect to the source module jumper cables. Corona rings and shields limit electric field stresses to allow close clearances between snubbers

  17. Maintenance schemes for the ITER neutral beam test facility

    International Nuclear Information System (INIS)

    Zaccaria, P.; Dal Bello, S.; Marcuzzi, D.; Masiello, A.; Coniglio, A.; Antoni, V.; Cordier, J.J.; Hemsworth, R.; Jones, T.; Di Pietro, E.; Mondino, P.L.

    2004-01-01

    The ITER neutral beam test facility (NBTF) is planned to be built, after the approval of the ITER construction and the choice of the ITER site, with the agreement of the ITER International Team and of the JA and RF participant teams. The key purpose is to progressively increase the performance of the first ITER injector and to demonstrate its reliability at the maximum operation parameters: power delivered to the plasma 16.5 MW, beam energy 1 MeV, accelerated D - ion current 40 A, pulse length 3600 s. Several interventions for possible modifications and for maintenance are expected during the early operation of the ITER injector in order to optimize the beam generation, aiming and steering. The maintenance scheme and the related design solutions are therefore a very important aspect to be considered for the NBTF design. The paper describes consistently the many interrelated aspects of the design, such as the optimisation of the vessel and cryopump geometry, in order to get a better maintenance flexibility, an easier man access and a larger access for diagnostic and monitoring. (authors)

  18. Performance of positive ion based high power ion source of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-01-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST

  19. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  20. Commissioning of the LHC Beam Transfer Line TI 8

    International Nuclear Information System (INIS)

    Uythoven, J.A.; Arduini, G.; Goddard, B.; Jacquet, D.; Kain, V.; Lamont, M.; Mertens, V.; Spinks, A.; Wenninger, J.; Chao, Y.-C.

    2005-01-01

    The first of the two LHC transfer lines was commissioned in autumn 2004. Beam reached an absorber block located some 2.5 km downstream of the SPS extraction point at the first shot, without the need of any threading. The hardware preparation and commissioning phase will be summarized, followed by a description of the beam tests and their results regarding optics and other line parameters, including the experience gained with beam instrumentation, the control system and the machine protection equipment

  1. Heat flux to the limiter during disruptions and neutral beam injection in Doublet-III

    International Nuclear Information System (INIS)

    Hino, T.; DeGrassie, J.; Taylor, T.S.; Hopkins, G.; Meyer, C.; Petrie, T.W.; Kahn, C.L.; Ejima, S.

    1984-01-01

    The heat flux to the Doublet-III primary limiter has been monitored during plasma disruptions and during neutral beam injection. The surface temperature of the movable TiC-coated graphite limiter was measured with an Inframetrics thermal imaging system and a suitably filtered silicon photodiode spot detector. In addition, the floating electric potential of the limiter with respect to the vacuum vessel was measured. The heat pulse duration to the limiter was measured by the spot detector with a time response of x approx.= 10 μs and these times were correlated with the plasma parameters. In limiter discharges, 20% of the plasma kinetic stored energy goes to the limiter during disruptions. The power balance during disruptions is also discussed. During neutral beam injection, the limiter is not heated uniformly; the ion drift side receives much more thermal flux than the electron drift side. The fraction of beam power going to the limiter is as high as approx.= 35% in normal limiter discharges. (orig.)

  2. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. ATS Department

    2018-01-01

    In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.

  3. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    Energy Technology Data Exchange (ETDEWEB)

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware

  4. Development of slow positron beam lines and applications

    Science.gov (United States)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  5. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  6. Ion trajectories of the MFTF unshielded 80-keV neutral-beam sources

    International Nuclear Information System (INIS)

    Ling, R.C.; Bulmer, R.H.; Cutler, T.A.; Foote, J.H.; Horvath, J.A.

    1978-01-01

    The trajectories of ions from the Magnetic Fusion Test Facility (MFTF) 80-keV neutral-beam sources are calculated to obtain a preliminary understanding of the ion-beam paths and the magnitude of the power densities. This information will be needed for locating and designing thermal (kinetic-energy) absorbers for the ions. The calculations are made by employing a number of previously written computer codes. The TIBRO code is used to calculate the trajectories of the ions in the fringe magnetic field of the MFTF machine, which can operate with a center-field intensity of up to 2 T. The SAMPP code gives three-dimensional views of the ion beams for better visualization of the ion-beam paths. Also used are the codes MIG, XPICK, and MERGE, which were all previously written for manipulating data

  7. Construction of the facility for the testing of the TFTR Neutral Beam Injector

    International Nuclear Information System (INIS)

    Haughian, J.; Lou, K.; Roth, D.

    1979-11-01

    The prototype for the TFTR Neutral Beam Injection System has been assembled at the Lawrence Berkeley Laboraory, and is presently under test. Some of the construction features of the shielding enclosure, the cryogenic supply system, control and computer area, and the auxiliary vacuum and utility supply system are described. In addition, the paper describes the target chamber, its beam dump and cryopanels, and the duct that connects the target chamber to the injector vessel

  8. NSLS infra-red beam line (U3) conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1984-02-09

    We describe the conceptual design of an infrared (I-R) beam line on the vacuum-ultra-violet storage ring of the National Synchrotron Light Source. The beam line forms part of the Phase II expansion of the NSLS. Consistent with the implementation of the current design is the extraction of hitherto wasted radiation and the establishment of a mezzanine floor or platform to make full use of the available headroom. This means that the I-R beam line, once established, does not interfere with any existing operations on the VUV floor.

  9. Heat-exchanger concepts for neutral-beam calorimeters

    International Nuclear Information System (INIS)

    Thompson, C.C.; Polk, D.H.; McFarlin, D.J.; Stone, R.

    1981-01-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included (1) smooth tube/straight flow, (2) smooth tube with swirl flow created by tangential injection of the coolant, and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO 2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout (as evidenced by a coolant leak) occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/cm 2 was obtained for the molybdenum tube swirl flow configuration

  10. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Patterson, J.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-01-01

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm 2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  11. Tandem mirror experiment-upgrade neutral beam test stand: a powerful tool for development and quality assurance

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Kane, R.J.; Kerr, R.G.; Poulsen, P.

    1983-01-01

    During construction of the Tandem Mirror Experiment-Upgrade (TMX-U), we assembled a test stand to develop electronics for the neutral beam system. In the first six months of test stand use we operated a few neutral beam injector modules and directed considerable effort toward improving the electronic system. As system development progressed, our focus turned toward improving the injector modules themselves. The test stand has proved to be the largest single contributor to the successful operation of neutral beams on TMX-U, primarily because it provides quality assurance andd development capability in conjunction with the scheduled activities of the main experiment. This support falls into five major categories: (1) electronics development, (2) operator training, (3) injector module testing and characterization, (4) injector module improvements, and (5) physics improvements (through areas affected by injector operation). Normal day-to-day operation of the test stand comes under the third category, testing and characterization, and comprises our final quality assurance activity for newly assembled or repaired modules before they are installed on TMX-U

  12. Parametric scaling studies of energy-confinement time for neutral-beam-heated Heliotron-E plasmas

    International Nuclear Information System (INIS)

    Sano, F.; Takeiri, Y.; Hanatani, K.

    1989-02-01

    Kinetic analysis of the global energy confinement time for neutral-beam-heated Heliotron-E plasmas has been performed with the 1-D, time-independent transport analysis code, PROCTR-Mod. Beam-power scans were performed by firing various number of hydrogen neutral beams, while density scans were performed by puffing gas and/or pellet fueling under the metallic or carbonized wall conditions. The wall carbonization facilitated the density increase due to the enhanced particle recycling on the walls, and also enabled long-pulse, quasi-stationary, currentless ECH + NBI operation with reduced heavy-impurity contamination. The data analysis shows that the favorable density dependence partially offsets the unfavorable power dependence, and that the anomalous electron transport loss becomes dominant in the over-all energy balance as the beam power and plasma density are increased. An alternative scaling law is also presented which is to fit τ E G [ms] by an 'offset-linear' law. The latter scaling is found to provide a better fit to the presented data sets in spite of its simple form. The parametric scaling of the local electron thermal diffusivity, χ e , is also discussed on the basis of the kinetic analysis. (J.P.N.)

  13. Bending magnets for the CBA beam-transport line

    International Nuclear Information System (INIS)

    Thern, R.E.

    1983-01-01

    The beam-transport line from the AGS to CBA requires 68 large bending magnets, consisting of pure dipoles and two types of combined function gradient magnets. All three types were designed with magnetic-field calculation program POISSON, using the same exterior dimensions and coil package. The design goal of +-1% momentum acceptance for the transport line required a wide horizontal aperture, with a much-smaller vertical aperture for economy. Two prototypes of one gradient magnet were built, and a facility constructed to measure them and the later production magnets. Measurements were done using both a long coil and a point coil (Rawson-Lush gaussmeter). Preliminary results show δB/B - 3 , δG/G - 2 , and δB 2 /B - 4 cm - 2 over the beam aperture. Due to end effects, the actual gradient differs from the design gradient by 1%, which has been compensated for in the beam-line design

  14. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    Science.gov (United States)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-03-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start

  15. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    International Nuclear Information System (INIS)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-01-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D - and capable of delivering 16.5 MW of D 0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H - to 100 keV will inject ≅15 A equivalent of H 0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D - and H - current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start

  16. The Doublet III neutral beam injector cryosystem

    International Nuclear Information System (INIS)

    Langhorn, A.R.

    1984-01-01

    This chapter describes neutral beam injection into the Doublet III tokamak for plasma heating experiments. Cryopanels employed in the beamline vacuum pumping system are force flow cooled to 3.8 K by a closed loop refrigeration system. Topics considered include beamline description, cryosystem description, system characteristics, and operational history. Evaluation of the first beamline was carried out using a 25 L/h liquefier and a unique reliquefaction heat exchanger to permit subatmospheric operation and panel flow rates of 140 L/h. The system was upgraded for three beamline operation by substitution of a 100 L/h liquefier and more cryogen storage capacity. It is concluded that the cryosystem gives stable operation of three beamline cryopanel arrays with little operator intervention

  17. Workshop on a project for a FZR-beam line at ESRF

    International Nuclear Information System (INIS)

    Matz, W.

    1993-10-01

    The Research Center Rossendorf (FZR) investigates the possibilities to install its own beam line as a Cooperate Research Group-project (CRG) at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The main interests for the FZR to use high brillant synchrotron radiation are in the Institute of Radiochemistry and the Institute of Ion Beam Physics and Materials Research. This workshop was organized by these two institutes together with the FZR Study group Synchrotron. The purpose of the workshop was to achieve a better understanding for the technical needs of the projected beam line for the planned research projects. Experts with experience in beam line design met with the Rossendorf groups to discuss the best layout for such a beam line. The summary of this workshop and the copies of transparencies of the lectures that were given are published in this booklet. (orig.)

  18. Neutralized transport experiment

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Gilson, E.P.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; Waldron, W.L.; Shuman, D.B.; Vanecek, D.L.; Welch, D.R.; Rose, D.V.; Thoma, C.; Davidson, R.C.; Efthimion, P.C.; Kaganovich, I.; Sefkow, A.B.; Sharp, W.M.

    2005-01-01

    Experimental details on providing active neutralization of high brightness ion beam have been demonstrated for Heavy Ion Fusion program. A K + beam was extracted from a variable-perveance injector and transported through 2.4 m long quadrupole lattice for final focusing. Neutralization was provided by a localized cathode arc plasma plug and a RF volume plasma system. Effects of beam perveance, emittance, convergence focusing angle, and axial focusing position on neutralization have been investigated. Good agreement has been observed with theory and experiment throughout the study

  19. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  20. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.

    2001-01-01

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies