WorldWideScience

Sample records for neurotropism-associated variable surface

  1. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    Energy Technology Data Exchange (ETDEWEB)

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  2. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, Gary S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  3. Modeling sea-surface temperature and its variability

    Science.gov (United States)

    Sarachik, E. S.

    1985-01-01

    A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.

  4. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H. [Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael [Max Planck Institute for Solar System Research, Göttingen (Germany); Izawa, Matthew R. M.; Cloutis, Edward A. [University of Winnipeg, Winnipeg, Manitoba (Canada); Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E. [German Aerospace Center (DLR), Institute of Planetary Research, Berlin (Germany); Castillo-Rogez, Julie C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Schenk, Paul [Lunar and Planetary Institute, Houston, TX 77058 (United States); Williams, David A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, David E. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zuber, Maria T. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  5. Similar Ruled Surfaces with Variable Transformations in Minkowski 3-space

    OpenAIRE

    Önder, Mehmet

    2012-01-01

    In this study, we consider the notion of similar ruled surface for timelike and spacelike ruled surfaces in Minkowski 3-space. We obtain some properties of these special surfaces in E_1^3 and we show that developable ruled surfaces in E_1^3 form a family of similar ruled surfaces if and only if the striction curves of the surfaces are similar curves with variable transformation. Moreover, we obtain that cylindrical surfaces and conoids form two families of similar ruled surfaces in E_1^3.

  6. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  7. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  8. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 4. Variability of soil moisture and its relationship with surface albedo and soil thermal ... The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends ...

  9. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  10. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  11. Intraseasonal sea surface temperature variability in Indonesian seas

    Science.gov (United States)

    Napitu, A. M.; Gordon, A. L.; Yuan, X.

    2012-12-01

    The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an average SST standard deviation (STD) between 0.4-0.5°C, with strongest signature during boreal winter. What physical processes force the SST ISV variability within the Indonesian seas? Ocean process, sea-air interaction, or both? To help identify the main forcing, the satellite derived outgoing longwave radiation (OLR) and wind stress data in the region are examined. The OLR shows robust intraseasonal variations and is significantly correlated with the SST, particularly for variability with periods of 30-60 days, with OLR accounting for ~60-70% of the SST variance. The OLR is also maximum during boreal winter. Conversely, the surface wind may play insignificant role in perturbing the SST at intraseasonal timescales as shown by weak correlation between wind stress and SST. We thus suspect that the surface solar flux (suggested by the OLR) is likely more dominant than the surface turbulent heat flux (indicated by the surface wind) as the main source for the ISV in the SST in Indonesian seas. Furthermore the maximum OLR phase, coupled with a period of minimum mixed layer depth, may explain the strong SST variation during boreal winter in Indonesian seas. The influence of the Madden-Julian Oscillation (MJO) on the OLR and SST variability is currently being evaluated.

  12. Joint variability of global runoff and global sea surface temperatures

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  13. Variability in surface inversion characteristics over India in winter ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 1. Variability in surface inversion ... Decadal variations in inversion strength show weak inversion frequencies decreasing from the 1st to the 3rd decade while moderate/strong inversions occur more frequently at most stations. Frequencies of very strong ...

  14. Variability of surface ozone with cloud coverage over Kolkata, India

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 2. Variability of surface ozone with cloud coverage over Kolkata, India. D Ghosh ... Engineering, Jadavpur University, Jadavpur, Kolkata 700 032, India. Department of Atmospheric Sciences, Calcutta University, 92, A.P.C. Road, Kolkata 700 009, India.

  15. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  16. Global and regional variability in marine surface temperatures

    OpenAIRE

    Laepple, T.; Huybers, P.

    2014-01-01

    The temperature variability simulated by climate models is generally consistent with that observed in instrumental records at the scale of global averages, but further insight can also be obtained from regional analysis of the marine temperature record. A protocol is developed for comparing model simulations to observations that account for observational noise and missing data. General consistency between Coupled Model Intercomparison Project Phase 5 model simulations and regional sea surface...

  17. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  18. The spinning minimal surfaces without the Grassmann variables

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1988-01-01

    Generalizing the model of the spinning Dirac electron with Zitterbewegung we give a theory of spinning strings, membranes and p-branes in curved background spaces of arbitrary dimensions. The dynamical variables are surface co-ordinates x μ (ξ α ) and a single c-number spinor z(ξ α ). We use a phase space action which reduces in the limit to that of spinless membranes. A Hamiltonian formulation is also given. (author). 8 refs

  19. Gravitational lensing by a smoothly variable surface mass density

    Science.gov (United States)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  20. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  1. Variability of emissivity and surface temperature over a sparsely vegetated surface

    International Nuclear Information System (INIS)

    Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A.

    1994-01-01

    Radiometric surface temperatures obtained from remote sensing measurements are a function of both the physical surface temperature and the effective emissivity of the surface within the band pass of the radiometric measurement. For sparsely vegetated areas, however, a sensor views significant fractions of both bare soil and various vegetation types. In this case the radiometric response of a sensor is a function of the emissivities and kinetic temperatures of various surface elements, the proportion of those surface elements within the field of view of the sensor, and the interaction of radiation emitted from the various surface components. In order to effectively utilize thermal remote sensing data to quantify energy balance components for a sparsely vegetated area, it is important to examine the typical magnitude and degree of variability of emissivity and surface temperature for such surfaces. Surface emissivity measurements and ground and low-altitude-aircraft-based surface temperature measurements (8-13 micrometer band pass) made in conjunction with the Monsoon '90 field experiment were used to evaluate the typical variability of those quantities during the summer rainy season in a semiarid watershed. The average value for thermal band emissivity of the exposed bare soil portions of the surface was found to be approximately 0.96; the average value measured for most of the varieties of desert shrubs present was approximately 0.99. Surface composite emissivity was estimated to be approximately 0.98 for both the grass-dominated and shrub-dominated portions of the watershed. The spatial variability of surface temperature was found to be highly dependent on the spatial scale of integration for the instantaneous field of view (IFOV) of the instrument, the spatial scale of the total area under evaluation, and the time of day

  2. Variability of surface temperature in agricultural fields of central California

    Science.gov (United States)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.

    1982-01-01

    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  3. Amplification of surface temperature trends and variability in thetropical atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Santer, B.D.; Wigley, T.M.L.; Mears, C.; Wentz, F.J.; Klein,S.A.; Seidel, D.J.; Taylor, K.E.; Thorne, P.W.; Wehner, M.F.; Gleckler,P.J.; Boyle, J.S.; Collins, W.D.; Dixon, K.W.; Doutriaux, C.; Free, M.; Fu, Q.; Hansen, J.E.; Jones, G.S.; Ruedy, R.; Karl, T.R.; Lanzante, J.R.; Meehl, G.A.; Ramaswamy, V.; Russell, G.; Schmidt, G.A.

    2005-08-11

    The month-to-month variability of tropical temperatures is larger in the troposphere than at the Earth's surface. This amplification behavior is similar in a range of observations and climate model simulations, and is consistent with basic theory. On multi-decadal timescales, tropospheric amplification of surface warming is a robust feature of model simulations, but occurs in only one observational dataset. Other observations show weak or even negative amplification. These results suggest that either different physical mechanisms control amplification processes on monthly and decadal timescales, and models fail to capture such behavior, or (more plausibly) that residual errors in several observational datasets used here affect their representation of long-term trends.

  4. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  5. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  6. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Science.gov (United States)

    Bachem, Paul E.; Risebrobakken, Bjørg; De Schepper, Stijn; McClymont, Erin L.

    2017-09-01

    The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial-interglacial variability. Here, we present high-resolution records of sea surface temperature (SST) and ice-rafted debris (IRD) in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  7. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  8. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    Science.gov (United States)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  9. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  10. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  11. Analysis of variability of tropical Pacific sea surface temperatures

    Science.gov (United States)

    Davies, Georgina; Cressie, Noel

    2016-11-01

    Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.

  12. Atmospheric impacts on climatic variability of surface incident solar radiation

    Directory of Open Access Journals (Sweden)

    K. C. Wang

    2012-10-01

    Full Text Available The Earth's climate is driven by surface incident solar radiation (Rs. Direct measurements have shown that Rs has undergone significant decadal variations. However, a large fraction of the global land surface is not covered by these observations. Satellite-derived Rs has a good global coverage but is of low accuracy in its depiction of decadal variability. This paper shows that daily to decadal variations of Rs, from both aerosols and cloud properties, can be accurately estimated using globally available measurements of Sunshine Duration (SunDu. In particular, SunDu shows that since the late 1980's Rs has brightened over Europe due to decreases in aerosols but dimmed over China due to their increases. We found that variation of cloud cover determines Rs at a monthly scale but that aerosols determine the variability of Rs at a decadal time scale, in particular, over Europe and China. Because of its global availability and long-term history, SunDu can provide an accurate and continuous proxy record of Rs, filling in values for the blank areas that are not covered by direct measurements. Compared to its direct measurement, Rs from SunDu appears to be less sensitive to instrument replacement and calibration, and shows that the widely reported sharp increase in Rs during the early 1990s in China was a result of instrument replacement. By merging direct measurements collected by Global Energy Budget Archive with those derived from SunDu, we obtained a good coverage of Rs over the Northern Hemisphere. From this data, the average increase of Rs from 1982 to 2008 is estimated to be 0.87 W m−2 per decade.

  13. An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature

    NARCIS (Netherlands)

    Tantet, A.J.J.; Dijkstra, H.A.

    2014-01-01

    On interannual- to multidecadal timescales variability in sea surface temperature appears to be organized in large-scale spatiotemporal patterns. In this paper, we investigate these patterns by studying the community structure of interaction networks constructed from sea surface temperature

  14. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    The trends and periodicities of surface meteorological parameters (sea surface temperature, air temperature, cloudiness, wind speed and sea level pressure) over the western, central, eastern and southern Arabian Sea regions are studied...

  15. Decadal variability of surface solar radiation over China

    Science.gov (United States)

    Wang, K.

    2015-12-01

    Observations show that national average surface solar radiation (Rs) decreased by -8.0 W m-2 per decade from 1960 to 1990 and sharply increased from 1990 to 1993. However, none of the state-of-the-art climate models can reproduce such decrease/increase of Rs. This study shows that Rs observations over China have significant inhomogeneity. Before 1989, Rs was calculated as a sum of direct (Rsdir) and diffuse (Rsdif) solar radiation observations measured by pyrheliometers and shaded pyranometers separately. Due to technical limitations and irregular calibration, pyranometers before 1990 had a strong sensitivity drift problem, which introduced crucial spurious decreasing trends into Rsdif and Rs data. From 1990 to 1993, instruments and measurement methods were replaced and measuring stations were restructured in China, which resulted in an abrupt increase in the observed Rs. Rs calculated from Sunshine duration (SunDu) provide a reliable reference in assessing decadal variability of Rs. SunDu derived Rs have no sensitivity drift problem because of its daily changed recording material. SunDu-derived Rs averaged over China decreased by -2.9 W m-2 per decade from 1961 to 1990, and had a negligible trend afterward. During the period of 1994-2012 when Rs observations were free of inhomogeneity mentioned above, the observed and SunDu-derived Rs consistently show a negligible trend, being less than 0.1 W m-2 per decade. These trends can be reproduced by high-quality CMIP5 Earth System Models (ESM). This level of agreement is due to the incorporation of a near real emission inventory of atmospheric aerosols by CMIP5 ESMs. Rs from ERA-Interim has a good agreement with SunDu-derived Rs. However, ERA-interim does not allow aerosol loading to change annually. ERA-Interim Rs shows an unreliable increasing trend of 1.9 W m-2 per decade from 1990 to 2013 because it does not include the impact of recent increased atmospheric aerosols over China. GEWEX Rs calculated from ISCCP cloud

  16. Quantifying the spatial variability in critical zone architecture through surface mapping and near-surface geophysics

    Science.gov (United States)

    DiBiase, R.; Del Vecchio, J.; Mount, G.; Hayes, J. L.; Comas, X.; Guo, L.; Lin, H.; Zarif, F.; Forsythe, B.; Brantley, S. L.

    2016-12-01

    The composition and structure of Earth's surface and shallow subsurface control the flux of water, solutes, and sediment from hillslopes into rivers. Additionally, bedrock weathering profiles and the stratigraphy of soil and colluvium preserve a record of past surface processes. However, landscapes often exhibit heterogeneity in critical zone architecture that is difficult to capture with remote sensing and costly to characterize through direct measurement in soil pits or drill cores. Here we present results from a multifaceted approach to quantifying spatial variability in critical zone architecture using airborne lidar topography, surface mapping, and a suite of geophysical surveys. We focus on Garner Run, a first order sandstone catchment in the Susquehanna Shale Hills Critical Zone Observatory situated in the valley and ridge province of central Pennsylvania, 80 km southwest of the last glacial maximum ice limit. Results from lidar topographic analysis and detailed mapping of surface cover (e.g., soil versus boulder-mantled) reveal a pattern of relict periglacial landforms and deposits that vary depending on slope position and aspect. Additionally, a drill core taken from an unchanneled valley at the head of Garner Run indicates at least 9 meters of alternating sand- and boulder-rich colluvial fill sourced from adjacent hillslopes, indicating the potential preservation of multiple cycles of periglacial climate conditions. Through the use of shallow geophysical techniques, including cross-valley transects of seismic refraction, multiple frequency ground-penetrating radar (GPR), and electrical resistivity tomography (ERT), we image spatial patterns in subsurface architecture at a range of scales (10-1,000 m), and high spatial resolution (cm). Notably, despite challenging environmental conditions, there is agreement among diverse subsurface methods in highlighting aspect-dependent controls on weathering zone thickness that furthermore can be directly connected to

  17. Sea surface salinity variability in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Heffner, D.M.

    . Thompson et al. (2006) reported the Indian Ocean circulation and SSS variability during IODZM events, using different OGCM (Ocean General Circulation Model) simulations and assimilated data sets of SODA (Simple Ocean Data Assimilation) and ECCO...

  18. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  19. Variability of surface ozone with cloud coverage over Kolkata, India

    Indian Academy of Sciences (India)

    Critical analysis of experimental surface ozone data and cloud coverage is reported over Kolkata during the period January 2011 to December 2011. Significant relationship between these two parameters is observed. Analysis shows that the trend of surface ozone concentration and cloud coverage follow opposite ...

  20. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher’s shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel......-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study....

  1. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo

    Science.gov (United States)

    2013-07-01

    Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672 (Polarization: Measurement, Analysis , and Remote Sensing IX), 76720A-1-7, 7...condensation nuclei activity and hygroscopicity of in-situ biomass burning aerosol,” American Assoc. Aerosol Research 31 st Annual Conference...tunable liquid crystal variable retarders (LCVRs) allows the API to achieve much faster Stokes-image acquisition than instruments that rely on

  2. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    30 N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with sur- face albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a.

  3. Variability in surface inversion characteristics over India in winter ...

    Indian Academy of Sciences (India)

    a serious threat to the health of the public while reduced visibility due to fog is hazardous for avia- tion and surface transport. Therefore, knowledge of inversions may help in understanding the dispersal of pollutants and fog, both of which will immensely benefit the public at large, especially in the cities, which has expanded ...

  4. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  5. Biofilm retention on surfaces with variable roughness and hydrophobicity.

    Science.gov (United States)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter; Schramm, Andreas; Bischoff, Claus; Meyer, Rikke Louise

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher's shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study.

  6. Interannual variability of sea surface temperature and circulation in ...

    African Journals Online (AJOL)

    A regional ocean model was used to study interannual variations in the Tanzanian shelf region and offshore in the tropical western Indian Ocean for the period 1980–2007. The model was forced with surface winds and heat fluxes from the National Centers for Environmental Prediction (NCEP) reanalysis, and its initial and ...

  7. A Study of Horizontal Sea Surface Temperature Variability.

    Science.gov (United States)

    1981-12-01

    INTRODUCTION A. BACKGROUND The study of ocean characteristics has long been of interest to men of the sea. Early mariners were the first to discover that...Surface Temperature, J. Phys. Oceanogr., 11, 864-870. Federov, K.N., 1978: The Thermohaline Finestructure of the Ocean, Pergamon Press. Fieux, M., S

  8. Interannual variability in stratiform cloudiness and sea surface temperature

    Science.gov (United States)

    Norris, Joel R.; Leovy, Conway B.

    1994-01-01

    Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.

  9. Internal gravity wave contributions to global sea surface variability

    Science.gov (United States)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  10. Variability of silver fir (Abies alba Mill. cones – variability structure of scale surface area

    Directory of Open Access Journals (Sweden)

    Aniszewska Monika

    2017-03-01

    Full Text Available This study was conducted on a batch of closed silver fir cones from Jawor Forest District and a mixture of scales from the seed extraction facility Grotniki. The scales were divided into three size classes corresponding to the bottom, middle and upper part of the cones and their area was measured with the Multi Scan Base v.18.03 software. Based on the sum of the inner and outer surface area of all scales, we then determined the total area of evaporation from the cones. In addition, the area of protruding scales was measured for differently sized scales from different parts of the cones. Previous studies have shown that the average outer surface of a closed cone, calculated as the sum of protruding scales, accounts for 10% of the outer surface of an open cone. Pictures of both scale surfaces with the internal seed bed and the external protrusions were taken using a scanning electron microscope. We noticed significant differences in dimension and shape of the channels and trichomes on the scale surface. On the inner side of the scales, we found a high diversity of trichomes of different lengths, whilst the outer side contained channels. Presumably, these characteristics affect the rate of water loss from the cones during desiccation and separation of the seed. In-depth knowledge on the evaporative surfaces of fir cones and scale structure will be helpful for optimizing the industrial processes of seed extraction.

  11. Time-variable surface patterns as an indicator of the surface environments on Mars

    Science.gov (United States)

    Toyota, T.; Kawaguchi, K.; Kurita, K.

    2008-09-01

    Introduction On the planets having atmosphere such as Mars various types of interactions between the atmosphere and the ground surface cause observable change in the surface pattern. Polar caps and aeolian features are typical examples. With the accumulation of satellitebased exploratory data, time-variable surface patterns have been focused and investigated extensively [1,2], because they can be direct indicators of the changing surface environments. Here we report two types of time-variable surface patterns that have been unidentified until now. One is dark halo near the top of high altitude volcanoes in Tharsis region. The other is brightness of the Outer Lobe of Double Layered Ejecta crater at the northern lowlands. Both have almost no associated topography and they are only recognized in visible/IR images as albedo patterns. Dark halo near the top of high altitude volcanoes in the Tharsis region Fig. 1 shows MOC wide-angle image of Pavonis Mons (R1400388NRed). The large caldera can be seen at the top of the volcano. Surrounding the caldera there exists a dark halo. Fig. 1B is MOC wide-angle image which shows detailed structure of the dark halo in the SW part. The dark zone is not uniform and instead it is composed of many slender dark stripes aligned in radial direction from the top (caldera center). Each unit is spindle-shaped with length of 30- 50km and width at the middle part of 5km. Spindles seem to start from higher position because it is always clear and darker. The initiation point is quite narrow region, which can be considered as a point. In many cases, there exist no recognisable obstacles at the initiation point. This is a remarkable difference from the wind streaks, which is caused by erosion/sedimentation of wind by local turbulence behind topographical anomaly. This makes us to consider something is emanating from subsurface, blown off by the mountain winds and deposited in downwind part. Similar pattern is observed in high altitude large volume

  12. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  13. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  14. Future climate warming increases Greenland ice sheet surface mass balance variability

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.; Price, S.

    2014-01-01

    The integrated surface mass balance (SMB) of the Greenland ice sheet (GrIS) has large interannual variability. Long-term future changes to this variability will affect GrIS dynamics, freshwater fluxes, regional oceanography, and detection of changes in ice volume trends. Here we analyze a simulated

  15. Monitoring the variability of sea level and surface circulation with satellite altimetry

    NARCIS (Netherlands)

    Volkov, Denis L. "Jr"

    2004-01-01

    Variability in the ocean plays an important role in determining global weather and climate conditions. The advent of satellite altimetry has significantly facilitated the study of the variability of sea level and surface circulation. Satellites provide high-quality regular and nearly global

  16. Seasonal variability of sea surface chlorophyll-a of waters around ...

    Indian Academy of Sciences (India)

    Lanka. Here, the variability of surface phytoplankton pigments in Indian Ocean waters around Sri Lanka has been studied using CZCS raw data. The knowledge of surface pigment concentrations can be used in the location upwelling areas off the coast. When upwelling brings nutrients to sunlit waters primary production.

  17. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing

    NARCIS (Netherlands)

    Lakayan, Dina; Tuppurainen, Jussipekka; Albers, Martin; van Lint, Matthijs J.; van Iperen, Dick J.; Weda, Jelmer J.A.; Kuncova-Kallio, Johana; Somsen, Govert W.; Kool, Jeroen

    2018-01-01

    A variable-wavelength Kretschmann configuration surface plasmon resonance (SPR) apparatus with angle scanning is presented. The setup provides the possibility of selecting the optimum wavelength with respect to the properties of the metal layer of the sensorchip, sample matrix, and biomolecular

  18. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    Directory of Open Access Journals (Sweden)

    J. Fyke

    2017-11-01

    Full Text Available Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and ice core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.

  19. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey

    2009-06-21

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  20. Surface quality and topographic inspection of variable compliance part after precise turning

    Science.gov (United States)

    Nieslony, P.; Krolczyk, G. M.; Wojciechowski, S.; Chudy, R.; Zak, K.; Maruda, R. W.

    2018-03-01

    The paper presents the problem of precise turning of the mould parts with variable compliance and demonstrates a topographic inspection of the machined surface quality. The study was conducted for the cutting tools made of cemented carbide with coatings, in a range of variable cutting parameters. The long shaft with special axial hole, made of hardened 55NiCrMoV6 steel was selected as a workpiece. The carried out study included the stiffness measurement of the machining system, as well as the investigation of cutting force components. In this context, the surface topography parameters were evaluated using the stylus profile meter and analysed. The research revealed that the surface topography, alongside the 3D functional parameters, and PSD influences the performance of the machined surface. The lowest surface roughness parameters values, equalled to Sa = 1 μm and Sz = 4.3 μm have been obtained during turning with cutting speed vc = 90 m/min. The stable turning of variable compliance part affects the surface texture formation with a unidirectional perpendicular, anisotropic structure. Nevertheless, in case of unstable turning, the characteristic chatter marks are observed, and process dynamics has greater contribution in formation of surface finish than turning kinematics and elastic plastic deformation of workpiece.

  1. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    Science.gov (United States)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  2. Pacific climate variability and the possible impact on global surface CO2 flux

    Directory of Open Access Journals (Sweden)

    Kawamiya Michio

    2011-10-01

    Full Text Available Abstract Background Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM control run are examined. Results Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA. By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. Conclusions Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

  3. Pacific climate variability and the possible impact on global surface CO2 flux.

    Science.gov (United States)

    Okajima, Hideki; Kawamiya, Michio

    2011-10-08

    Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined. Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

  4. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  5. Spatial Variability of Soil Properties and its Impact on Simulated Surface Soil Moisture Patterns

    Science.gov (United States)

    Korres, W.; Bothe, T.; Reichenau, T. G.; Schneider, K.

    2015-12-01

    The spatial variability of soil properties (particle size distribution, PSD, and bulk density, BD) has large effects on the spatial variability of soil moisture and therefore on plant growth and surface exchange processes. In model studies, soil properties from soil maps are considered homogeneous over mapping units, which neglects the small scale variability of soil properties and leads to underestimated small scale variability of simulated soil moisture. This study focuses on the validation of spatial variability of simulated surface soil moisture (SSM) in a winter wheat field in Western Germany using the eco-hydrological simulation system DANUBIA. SSM measurements were conducted at 20 different sampling points and nine different dates in 2008. Frequency distributions of BD and PSD were derived from an independent dataset (n = 486) of soil physical properties from Germany and the USA. In the simulations, BD and PSD were parameterized according to these frequency distributions. Mean values, coefficients of variation and frequency distributions of simulated SSM were compared to the field measurements. Using the heterogeneous model parameterization, up to 76 % of the frequency distribution of the measured SSM can be explained. Furthermore, the results show that BD has a larger impact on the variability of SSM than PSD. The introduced approach can be used for simulating mean SSM and SSM variability more accurately and can form the basis for a spatially heterogeneous parameterization of soil properties in mesoscale models.

  6. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  7. Distinct mechanisms of Korean surface temperature variability during early and late summer

    Science.gov (United States)

    Yeo, Sae-Rim; Yeh, Sang-Wook; Won, Youjin; Jo, Hyunsu; Kim, WonMoo

    2017-06-01

    Several climate factors were identified that affect the surface air temperature (SAT) variations in Korea during summer (June-July-August). Korean summer SAT variation exhibits remarkable differences between early summer (June) and late summer (July and August). On one hand, the significant warming trend during early summer is primarily influenced by the global-scale trend that is manifested in East Asia. The residual variability, obtained by removing warming trend from total SAT, represents Korean SAT variability independent of the global-scale trend. This residual variability is closely related to the meridional dipole-like air temperature structure between Korea and northeastern China, which is largely controlled by the atmospheric circulations over East Asia. However, this atmospheric structure does not originate from the remote oceanic forcing such as sea surface temperature (SST) variability over Pacific. During late summer, on the other hand, the Korean SAT is dominantly regulated by the atmospheric variability, which is closely related to the Pacific SST variability, while the contribution of global warming signal is insignificant. The SST anomalies in the central to eastern tropical Pacific lead to a dipole-like atmospheric circulation from the tropics to East Asia, which modulates SAT in Korea. These results imply that the Korean SAT variability during early and late summer has different sources. That is, both the global-scale trend and atmospheric variability over the East Asia should be considered in monitoring Korean SAT during early summer, whereas the SST variability in the central to eastern tropical Pacific needs more attention during late summer.

  8. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  9. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface

    Science.gov (United States)

    Yeo, K. L.; Solanki, S. K.; Norris, C. M.; Beeck, B.; Unruh, Y. C.; Krivova, N. A.

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  10. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  11. Observed metre scale horizontal variability of elemental carbon in surface snow

    International Nuclear Information System (INIS)

    Svensson, J; Lihavainen, H; Ström, J; Hansson, M; Kerminen, V-M

    2013-01-01

    Surface snow investigated for its elemental carbon (EC) concentration, based on a thermal–optical method, at two different sites during winter and spring of 2010 demonstrates metre scale horizontal variability in concentration. Based on the two sites sampled, a clean and a polluted site, the clean site (Arctic Finland) presents the greatest variability. In side-by-side ratios between neighbouring samples, 5 m apart, a ratio of around two was observed for the clean site. The median for the polluted site had a ratio of 1.2 between neighbouring samples. The results suggest that regions exposed to snowdrift may be more sensitive to horizontal variability in EC concentration. Furthermore, these results highlight the importance of carefully choosing sampling sites and timing, as each parameter will have some effect on EC variability. They also emphasize the importance of gathering multiple samples from a site to obtain a representative value for the area. (letter)

  12. In Situ Global Sea Surface Salinity and Variability from the NCEI Global Thermosalinograph Database

    Science.gov (United States)

    Wang, Z.; Boyer, T.; Zhang, H. M.

    2017-12-01

    Sea surface salinity (SSS) plays an important role in the global ocean circulations. The variations of sea surface salinity are key indicators of changes in air-sea water fluxes. Using nearly 30 years of in situ measurements of sea surface salinity from thermosalinographs, we will evaluate the variations of the sea surface salinity in the global ocean. The sea surface salinity data used are from our newly-developed NCEI Global Thermosalinograph Database - NCEI-TSG. This database provides a comprehensive set of quality-controlled in-situ sea-surface salinity and temperature measurements collected from over 340 vessels during the period 1989 to the present. The NCEI-TSG is the world's most complete TSG dataset, containing all data from the different TSG data assembly centers, e.g. COAPS (SAMOS), IODE (GOSUD) and AOML, with more historical data from NCEI's archive to be added. Using this unique dataset, we will investigate the spatial variations of the global SSS and its variability. Annual and interannual variability will also be studied at selected regions.

  13. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    Science.gov (United States)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  14. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

    Directory of Open Access Journals (Sweden)

    N. Ghilain

    2012-08-01

    Full Text Available Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I, showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI and Fractional Vegetation Cover (FVC products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land

  15. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  16. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  17. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...... summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled...

  18. Age of oil palm plantations causes a strong change in surface biophysical variables

    Science.gov (United States)

    Sabajo, Clifton; le Maire, Guerric; Knohl, Alexander

    2016-04-01

    Over the last decades, Indonesia has experienced dramatic land transformations with an expansion of oil palm plantations at the expense of tropical forests. As vegetation is a modifier of the climate near the ground these large-scale land transformations are expected to have major impacts on the surface biophysical variables i.e. surface temperature, albedo, and vegetation indices, e.g. the NDVI. Remote sensing data are needed to assess such changes at regional scale. We used 2 Landsat images from Jambi Province in Sumatra/Indonesia covering a chronosequence of oil palm plantations to study the 20 - 25 years life cycle of oil palm plantations and its relation with biophysical variables. Our results show large differences between the surface temperature of young oil palm plantations and forest (up to 9.5 ± 1.5 °C) indicating that the surface temperature is raised substantially after the establishment of oil palm plantations following the removal of forests. During the oil palm plantation lifecycle the surface temperature differences gradually decreases and approaches zero around an oil palm plantation age of 10 years. Similarly, NDVI increases and the albedo decreases approaching typical values of forests. Our results show that in order to assess the full climate effects of oil palm expansion biophysical processes play an important role and the full life cycle of oil palm plantations need to be considered.

  19. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970-2009

    DEFF Research Database (Denmark)

    Koldunov, Nikolay V.; Serra, Nuno; Koehl, Armin

    2014-01-01

    is in reasonable agreement with available measurements. Focusing on results from one of the models for a detailed analysis, it is shown that the decadal-scale SSH variability over shelf areas and deep parts of the Arctic Ocean have pronounced differences that are determined mostly by salinity variations. A further......The performance of several numerical ocean models is assessed with respect to their simulation of sea surface height (SSH) in the Arctic Ocean, and the main patterns of SSH variability and their causes over the past 40 years (1970-2009) are analyzed. In comparison to observations, all tested models...... of low-salinity shelf water. Overall, we show that present-day models can be used for investigating the reasons for low-frequency SSH variability in the region....

  20. Monitoring the variability of sea level and surface circulation with satellite altimetry

    Science.gov (United States)

    Volkov, Denis L. "Jr"

    2004-10-01

    Variability in the ocean plays an important role in determining global weather and climate conditions. The advent of satellite altimetry has significantly facilitated the study of the variability of sea level and surface circulation. Satellites provide high-quality regular and nearly global measurements enabling us to study the oceanic variability on the spatial scales from the size of an eddy to global, and on the temporal scales from weeks to interannual and longer. This thesis demonstrates how satellite altimetry measurements can be used to study the mesoscale, seasonal and interannual variability of sea level and surface circulation. Oceanic variability at these time scales is mainly induced by the variations of heat and fresh water fluxes (buoyancy fluxes) at air-sea interface, the variations of heat and salt budget due to the advection of water masses with different properties, eddy generation mechanisms due to the instability of oceanic currents, Rossby waves, etc. It is shown how the sea level in the extratropical North Atlantic Ocean was changing during the investigated time interval from 1993 to 2003. The mesoscale, seasonal and inter-annual modes of the variability are revealed, and the magnitude and relative contribution of each mode to the total variance is assessed. The inter-annual change of the sea surface height in the northern North Atlantic, measured with altimetry, is coupled with in situ observations along the transatlantic section AR7E, repeated almost every year from 1990 to 2003 in the framework of the WOCE (World Ocean Circulation Experiment) and CLIVAR (CLImate VARiability) hydrographic programs. This allowed interpreting the observed inter-annual change of sea level in terms of changes in the sea water properties and the distribution of water masses. A comparative analysis of changes observed in the extratropical North Atlantic and in the extratropical North Pacific is performed. The magnitudes, spatial patterns, and also trends of the

  1. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  2. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  3. Codominant water control on global interannual variability and trends in land surface phenology and greenness.

    Science.gov (United States)

    Forkel, Matthias; Migliavacca, Mirco; Thonicke, Kirsten; Reichstein, Markus; Schaphoff, Sibyll; Weber, Ulrich; Carvalhais, Nuno

    2015-09-01

    Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund-Potsdam-Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming-induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land-use and land-cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale. © 2015 John Wiley & Sons Ltd.

  4. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Science.gov (United States)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2018-01-01

    This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI). The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN) ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD). Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation-frequency-modulation (AM-FM) representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  5. Variability of the temporal bone surface's topography: implications for otologic surgery

    Science.gov (United States)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  6. Variability and Immunogenicity of Caprine Arthritis-Encephalitis Virus Surface Glycoprotein

    Science.gov (United States)

    Valas, S.; Benoit, C.; Baudry, C.; Perrin, G.; Mamoun, R. Z.

    2000-01-01

    The complete surface glycoprotein (SU) nucleotide sequences of three French isolates of caprine arthritis-encephalitis virus (CAEV) were determined and compared with those of previously described isolates: three American isolates and one French isolate. Phylogenetic analyses revealed the existence of four distinct and roughly equidistant evolutionary CAEV subtypes. Four conserved and five variable domains were identified in the SU. The fine specificities of antibodies produced against these domains during natural infection were examined using a pepscan analysis. Nine immunogenic segments were delineated throughout the conserved and variable domains of SU, two of them corresponding to conserved immunodominant epitopes. Antigenic determinants which may be involved in the immunopathogenic process induced by CAEV were identified. These results also provide sensitive and specific antigen peptides for the serological detection and differentiation of CAEV and visna/maedi virus infections. PMID:10846103

  7. Global-mean surface temperature variability: space-time perspective from rotated EOFs

    Science.gov (United States)

    Chen, Xianyao; Tung, Ka-Kit

    2017-10-01

    The observed global-mean surface temperature (GST) has been warming in the presence of increasing atmospheric concentration of greenhouse gases, but its rise has not been monotonic. Attention has increasingly been focused on the prominent variations about the linear trend in GST, especially on interdecadal and multidecadal time scales. When the sea-surface temperature (SST) and the land- plus-ocean surface temperature (ST) are averaged globally to yield the global-mean SST (GSST) and the GST, respectively, spatial information is lost. Information on both space and time is needed to properly identify the modes of variability on interannual, decadal, interdecadal and multidecadal time scales contributing to the GSST and GST variability. Empirical Orthogonal Function (EOF) analysis is usually employed to extract the space-time modes of climate variability. Here we use the method of pair-wise rotation of the principal components (PCs) to extract the modes in these time-scale bands and obtain global spatial EOFs that correspond closely with regionally defined climate modes. Global averaging these clearly identified global modes allows us to reconstruct GSST and GST, and in the process identify their components. The results are: Pacific contributes to the global mean variation mostly on the interannual time scale through El Nino-Southern Oscillation (ENSO) and its teleconnections, while the Atlantic contributes strongly to the global mean on the multidecadal time scale through the interhemispheric mode called the Atlantic Multidecadal Oscillation (AMO). The Pacific Decadal Oscillation (PDO) has twice as large a variance as the AMO, but its contribution to GST is only 1/10 that of the AMO because of its compensating patterns of cold and warm SST in northwest and northeast Pacific. Its teleconnection pattern, the Pacific/North America (PNA) pattern over land, is also found to be self-cancelling when globally averaged because of its alternating warm and cold centers. The

  8. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature

    Science.gov (United States)

    Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio

    2017-07-01

    This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two

  9. Sea surface temperature variability at the Scripps Institution of Oceanography Pier

    DEFF Research Database (Denmark)

    Checkley, David M.; Lindegren, Martin

    2014-01-01

    Sea surface temperature (SST) has been measured from near the end of the SIO pier daily since 1916. It is one of the world’s longest instrumental time series of SST. It is widely used in studies of climate and marine ecosystems and in fisheries management. We hypothesized that a discontinuity...... similar results. SSTSIO measured over three days shows a diel cycle and short-term variability consistent with rip current transport of warm surf zone water to the end of the SIO pier. We hypothesize that rip current transport increased with the change from the old to the present pier and contributed...

  10. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...... the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87...

  11. Three-variable solution in the (2+1)-dimensional null-surface formulation

    Science.gov (United States)

    Harriott, Tina A.; Williams, J. G.

    2018-04-01

    The null-surface formulation of general relativity (NSF) describes gravity by using families of null surfaces instead of a spacetime metric. Despite the fact that the NSF is (to within a conformal factor) equivalent to general relativity, the equations of the NSF are exceptionally difficult to solve, even in 2+1 dimensions. The present paper gives the first exact (2+1)-dimensional solution that depends nontrivially upon all three of the NSF's intrinsic spacetime variables. The metric derived from this solution is shown to represent a spacetime whose source is a massless scalar field that satisfies the general relativistic wave equation and the Einstein equations with minimal coupling. The spacetime is identified as one of a family of (2+1)-dimensional general relativistic spacetimes discovered by Cavaglià.

  12. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  13. Temporal and spatial characteristics of sea surface height variability in the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    D. Cromwell

    2006-01-01

    Full Text Available We investigate the spatial and temporal variability of sea surface height (SSH in the North Atlantic basin using satellite altimeter data from October 1992–January 2004. Our primary aim is to provide a detailed description of such variability, including that associated with propagating signals. We also investigate possible correlations between SSH variability and atmospheric pressure changes as represented by climate indices. We first investigate interannual SSH variations by deriving the complex empirical orthogonal functions (CEOFs of altimeter data lowpass-filtered at 18 months. We determine the spatial structure of the leading four modes (both in amplitude and phase and also the associated principal component (PC time series. Using wavelet analysis we derive the time-varying spectral density of the PCs, revealing when particular modes were strongest between 1992–2004. The spatial pattern of the leading CEOF, comprising 30% of the total variability, displays a 5-year periodicity in phase; signal propagation is particularly marked in the Labrador Sea. The second mode, with a dominant 3-year signal, has strong variability in the eastern basin. Secondly, we focus on the Azores subtropical frontal zone. The leading mode (35% is strong in the south and east of this region with strong variations at 3- and 5-year periods. The second mode (21% has a near-zonal band of low variance between  22°–27° N, sandwiched between two regions of high variance. Thirdly, we lowpass filter the altimeter data at a cutoff of 30 days, instead of 18 months, in order to retain signals associated with propagating baroclinic Rossby waves and/or eddies. The leading mode is the annual steric signal, around 46% of the SSH variability. The third and fourth CEOFs,  11% of the remaining variability, are associated with westward propagation which is particularly dominant in a "waveband" between 32°–36° N. For all three cases considered above, no significant cross

  14. Less sensitive of urban surface to climate variability than rural in Northern China.

    Science.gov (United States)

    Yao, Rui; Wang, Lunche; Huang, Xin; Chen, Jiangping; Li, Jiarui; Niu, Zigeng

    2018-02-14

    In this study, the relationships between interannual variations of surface urban heat islands (SUHIs) and climate variability were studied in 31 cities of China for the period 2001-2016. For cold and dry Northern China, it was found that the interannual variations of SUHI intensity (SUHII, land surface temperature (LST) in urban minus rural) in urban cores was significantly (purban cores (1.141°C for SDs and 2.535°C for WDs) than in rural areas (1.890°C for SDs and 3.377°C for WDs). The standard deviation was further used to reflect the interannual stabilities of LST, enhanced vegetation index (EVI) and white sky albedo (WSA). Interestingly, the standard deviations of LST across 2001-2016 were generally lower in urban cores (0.994°C for SDs and 1.577°C for WDs) than in rural areas (1.431°C for SDs and 2.077°C for WDs). Similar results were observed for EVI and WSA (winter). The results suggested that the urban surface is less sensitive to climate variability than rural areas in Northern China. Comparatively, most findings were less evident in hot and humid Southern China. Despite the whole world would become warmer or colder in future, the insensitivity of urban surface may mitigate its impacts in cold and dry Northern China. However, it does not mean that urbanization is totally good due to its environmental problem. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007

    Science.gov (United States)

    Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.

    2014-01-01

    Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.

  16. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    Science.gov (United States)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  17. Ocean Surface Waves and Turbulence: Air-Sea Fluxes and Climate Variability

    Science.gov (United States)

    Melville, W. Kendall

    2009-11-01

    Apart from heating of the atmosphere, two of the most important consequences of current climate variability are changes in sea level, and acidification of the oceans. Over decadal time scales, changes in sea level are caused by changes in heat content and salinity of the ocean, and by changes in mass resulting from exchanges between the ocean, glaciers and other land-based reservoirs. The oceans have absorbed about one third of the anthropogenic CO2 due to fossil fuel burning. This reduces the green house effect in the atmosphere, but the CO2 reacts in the surface waters of the ocean to lower pH. Conservative projections of sea level rise over the next century are O(0.1 - 1) m, while ocean acidification is already having an impact on marine ecosystems. Both these processes depend on air-sea fluxes: heat flux for sea level rise, and gas flux for ocean acidification. These fluxes are among the most poorly constrained in current climate models, but both ultimately depend on fluid dynamics at the ocean surface and in the adjacent boundary layers. Traditional boundary layer models of the marine boundary layer and the marine atmospheric boundary layer were based on classical theories of boundary layers over rigid surfaces, but there is increasing evidence that these models must now include surface wave effects. In this talk the motivating climate data and modeling will be briefly reviewed, and then recent work on surface wave dynamics, air-sea fluxes and the adjacent boundary layers will be presented. The roles of surface wave breaking, Langmuir circulations, wave-turbulence interactions and gravity-capillary waves will be discussed.

  18. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment

    Science.gov (United States)

    Soundharajan, Bankaru-Swamy; Adeloye, Adebayo J.; Remesan, Renji

    2016-07-01

    This study employed a Monte-Carlo simulation approach to characterise the uncertainties in climate change induced variations in storage requirements and performance (reliability (time- and volume-based), resilience, vulnerability and sustainability) of surface water reservoirs. Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change-perturbed future runoff scenarios. The resulting runoff ensembles were used to force simulation models of the behaviour of the reservoir to produce 'populations' of required reservoir storage capacity to meet demands, and the performance. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the variability in the impacts. The methodology was applied to the Pong reservoir on the Beas River in northern India. The reservoir serves irrigation and hydropower needs and the hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall, both of which are predicted to change due to climate change. The results show that required reservoir capacity is highly variable with a coefficient of variation (CV) as high as 0.3 as the future climate becomes drier. Of the performance indices, the vulnerability recorded the highest variability (CV up to 0.5) while the volume-based reliability was the least variable. Such variabilities or uncertainties will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of their sheer magnitudes as obtained in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing

  19. Response surface based optimization of system variables for liquid chromatographic analysis of candesartan cilexetil

    Directory of Open Access Journals (Sweden)

    Jagdish V. Manwar

    2017-01-01

    Full Text Available A statistical optimization method was successfully employed to study the effect of system variables on the chromatographic analysis of candesartan cilexetil. The effect of simultaneously varying the flow rate, temperature and concentration of acetonitrile in the mobile phase in water (0.05% O-phosphoric acid (0.05% OPA was studied to optimize the method to obtain excellent chromatographic responses. The optimum conditions were determined with the help of response surface methodology (RSM using Plackett–Burman designs. From the response surface graphs, the optimum regions were selected to be −1, +1 and +1 for flow rate (0.8 ml/min, temperature (25 °C and concentration of acetonitrile in water (0.05% OPA (80%, v/v, respectively. Pareto ranking indicated that the most important variable affecting the selected responses was temperature. Linearity was found in the range of 10 of 50 μg/ml, with a significantly high correlation coefficient (r2 = 0.9989. The limits of detection and quantitation were 0.12 and 0.33 μg/ml, respectively. The developed method was validated for accuracy, precision, linearity, range, and specificity. The method was successfully used to analyze a tablet formulation to assess the chromatographic performance, and it was found to be 99.03%, with a standard deviation of ±0.04.

  20. Observed modes of sea surface temperature variability in the South Pacific region

    Science.gov (United States)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2018-02-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  1. Interannual and interdecadal variability in United States surface-air temperatures, 1910-87

    Science.gov (United States)

    Dettinger, M.D.; Ghil, M.; Keppenne, C.L.

    1995-01-01

    Monthly mean surface-air temperatures at 870 sites in the contiguous United States were analyzed for interannual and interdecadal variability over the time interval 1910-87. The temperatures were analyzed spatially by empirical-orthogonal-function analysis and temporally by singularspectrum analysis (SSA). The dominant modes of spatio-temporal variability are trends and nonperiodic variations with time scales longer than 15 years, decadal-scale oscillations with periods of roughly 7 and 10 years, and interannual oscillations of 2.2 and 3.3 years. Together, these modes contribute about 18% of the slower-than-annual United States temperature variance. Two leading components roughly capture the mean hemispheric temperature trend and represent a long-term warming, largest in the southwest, accompanied by cooling of the domain's southeastern quadrant. The extremes of the 2.2-year interannual oscillation characterize temperature differences between the Northeastern and Southwestern States, whereas the 3.3-year cycle is present mostly in the Western States. The 7- to 10-year oscillations are much less regular and persistent than the interannual oscillations and characterize temperature differences between the western and interior sectors of the United States. These continental- or regional-scale temperature variations may be related to climatic variations with similar periodicities, either global or centered in other regions; such variations include quasi-biennial oscillations over the tropical Pacific or North Atlantic and quasi-triennial oscillations of North Pacific sea-surface temperatures.

  2. Two leading modes of the interannual variability in South American surface air temperature during austral winter

    Science.gov (United States)

    Li, Yanjie; Li, Jianping; Kucharski, Fred; Feng, Jin; Zhao, Sen; Zheng, Jiayu

    2017-11-01

    The first two empirical orthogonal function (EOF) modes of the surface air temperature (SAT) interannual variability in the South American (SA) continent have been revealed in several previous studies. This presentation focuses on winter season and furtherly investigates the detailed advection and cloud-radiation processes and teleconnections from tropical sea surface temperature anomalies (SSTA) combining statistical analysis with Rossby wave dynamics and modelling experiments. The EOF1, featured with the anomalous center in the central part, is related to the tropical eastern Pacific SSTA, which may impact on the SA SAT variability through the Walker circulation and a regional Hadley cell. The anomalous center is largely attributed to low-level advection transported by the Hadley cell. The EOF2, as a fluctuation between anomalies in the southeast Brazil and the southern tip, is related to the SSTA surrounding the Maritime Continent, which may generate a barotropic wave train propagating to the SA continent. This wave train can strengthen high latitude westerly flow transporting warm advection to the southern tip, and generate southeast anomalous flow transporting cold advection to the southeast Brazil. Meanwhile, the cloud-radiation processes are also involved to enhance the advection-induced SAT anomalies in both areas.

  3. Observed modes of sea surface temperature variability in the South Pacific region

    Science.gov (United States)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2017-04-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  4. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  5. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  6. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    Science.gov (United States)

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  7. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    Science.gov (United States)

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  8. A next generation altimeter for mapping the sea surface height variability: opportunities and challenges

    Science.gov (United States)

    Fu, Lee-Lueng; Morrow, Rosemary

    2016-07-01

    The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.

  9. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  10. Assessing surface water availability considering human water use and projected climate variability

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  11. The effect of an inclined landing surface on biomechanical variables during a jumping task.

    Science.gov (United States)

    Hagins, Marshall; Pappas, Evangelos; Kremenic, Ian; Orishimo, Karl F; Rundle, Andrew

    2007-11-01

    Professional dancers sustain a high number of injuries. Epidemiological studies have suggested that performing on inclined "raked" stages increases the likelihood of injury. However, no studies have examined if biomechanical differences exist between inclined and flat surfaces during functional tasks, such as landing from a jump. Such differences may provide a biomechanical rationale for differences in injury risk for raked stages. Eight professional dancers performed drop jumps from a 40cm platform on flat and inclined surfaces while forces, lower extremity kinematics, and electromyographic activity were collected in a controlled laboratory environment. Dancers landed on the laterally inclined surface with significantly higher knee valgus (4 degrees ), peak knee flexion (9 degrees ), and medial-lateral ground reaction force (GRF) (13.4% body weight) compared to the flat condition. The posterior GRF was higher in the anterior inclined condition compared to the flat condition. In the anterior inclined condition, subjects landed with 1.4 degrees higher knee valgus, 4 degrees more plantarflexion at initial contact, and 3 degrees less dorsiflexion at the end of landing. Biomechanical variables that have been suggested to contribute to injury in previous studies are increased in the inclined floor conditions. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.

  12. Unsteady free convection from a sphere in a porous medium with variable surface temperature

    International Nuclear Information System (INIS)

    Rahimi, Asghar Baradaran

    2011-01-01

    All works on natural convection around a sphere in porous media, except the transient work of Nakayama and Koyama and Nguyen and Paik which are for body of arbitrary geometric configuration, have been conducted only for constant temperature or constant heat flux on its surface. In this paper a transient free convection flow around a sphere with variable surface temperature and embedded in a porous medium has been considered. The temperature of the sphere is suddenly raised and subsequently maintained at values that vary with position on surface. This situation is specially encountered when nuclear wastes, for example, are buried in earth. The method of asymptotic expansions is applied for small Rayleigh numbers up to the second-order of approximation and then a finite-difference scheme is used to solve the problem numerically for finite values of Rayleigh numbers. Transient and steady-state flow and temperature patterns around the sphere are discussed in details and a comparison between numerical and analytical results has been presented. (author)

  13. Geometric Parameters of Cutting Tools that Can be Used for Forming Sided Surfaces with Variable Profile

    Directory of Open Access Journals (Sweden)

    Razumov M.

    2017-03-01

    Full Text Available This article describes machining technology of polyhedral surfaces with varying profile, which is provided by planetary motion of multiblade block tools. The features of the technology and urgency of the problem is indicated. The purpose of the study is to determine the minimum value of the clearance angle of the tool. Also, the study is carried out about changing the value of the front and rear corners during the formation of polygonal surface using a planetary gear. The scheme of calculating the impact of various factors on the value of the minimum clearance angle of the tool and kinematic front and rear corners of the instrument is provided. The mathematical formula for calculating the minimum clearance angle of the tool is given. Also, given the formula for determining the front and rear corners of the tool during driving. This study can be used in the calculation of the design operations forming multifaceted external surfaces with a variable profile by using the planetary gear.

  14. Short-term variability of surface heat budget of the east central Arabian Sea during November, 1992

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Rao, L.V.G.

    The analysis of surface meteorological data collected from the east central Arabian Sea during 10-28 November, 1992 revealed considerable variability in the meteorological parameters and heat budget components on both daily and diurnal time scales...

  15. Decadal variability in Gulf of Mexico sea surface temperatures since 1734 CE

    Science.gov (United States)

    DeLong, K. L.; Maupin, C. R.; Flannery, J. A.; Quinn, T. M.; lin, K.; Shen, C.

    2012-12-01

    The Gulf of Mexico is a major source of moisture to North America and is a source region for the Gulf Stream, which transports ocean heat northward. Sea surface temperature (SST) variations on centennial to millennial time scales have been documented for this region using paleoceanographic proxies; however, records capable of resolving decadal to subannual variability are lacking. Here we present 274 years of monthly-resolved SST variations derived from records of strontium-to-calcium ratios (Sr/Ca) extracted from four Siderastrea siderea cores recovered from coral colonies within the Dry Tortugas National Park (24°42‧N, 82°48‧W) in the Gulf of Mexico. We find no significant difference in mean Sr/Ca among these cores and significant correlation between cores (r ≥ 0.90, p ≤ 0.05 for monthly). The cross-dated chronology, determined by counting annual bands and correlating Sr/Ca variations, agrees with four 230Th dates within ±2σ analytical precision. Calibration and verification of our multi-core coral Sr/Ca record with local temperature records reveals high agreement (Sr/Ca = -0.042 SST + 10.074, R2 = 0.96; σregression = 0.70°C, 1σ), similar to those reported for single cores from this location. We find winter SSTs tend to be more variable than summer SSTs (0.99 and 0.81°C, 1σ; respectively) with periodic intervals of 10 to 15 years with cooler summer temperatures. The average reconstructed SST during the Little Ice Age (LIA; 1734-1880 CE) is colder (-0.82°C) than that during the late twentieth century (1971-2000 CE). The amplitude of decadal-scale variability (1 to 2.5°C) in the LIA is larger compared to similar scale variability in the twentieth century. The secular trend and decadal-scale variability in our reconstruction is broadly similar to an ~ decadally-resolved (~12 years/sample) Mg/Ca record from planktic foraminifer in the northern Gulf of Mexico (Richey et al., 2007), thus further confirming the reconstructed patterns of temperature

  16. Image-based Exploration of Iso-surfaces for Large Multi- Variable Datasets using Parameter Space.

    KAUST Repository

    Binyahib, Roba S.

    2013-05-13

    With an increase in processing power, more complex simulations have resulted in larger data size, with higher resolution and more variables. Many techniques have been developed to help the user to visualize and analyze data from such simulations. However, dealing with a large amount of multivariate data is challenging, time- consuming and often requires high-end clusters. Consequently, novel visualization techniques are needed to explore such data. Many users would like to visually explore their data and change certain visual aspects without the need to use special clusters or having to load a large amount of data. This is the idea behind explorable images (EI). Explorable images are a novel approach that provides limited interactive visualization without the need to re-render from the original data [40]. In this work, the concept of EI has been used to create a workflow that deals with explorable iso-surfaces for scalar fields in a multivariate, time-varying dataset. As a pre-processing step, a set of iso-values for each scalar field is inferred and extracted from a user-assisted sampling technique in time-parameter space. These iso-values are then used to generate iso- surfaces that are then pre-rendered (from a fixed viewpoint) along with additional buffers (i.e. normals, depth, values of other fields, etc.) to provide a compressed representation of iso-surfaces in the dataset. We present a tool that at run-time allows the user to interactively browse and calculate a combination of iso-surfaces superimposed on each other. The result is the same as calculating multiple iso- surfaces from the original data but without the memory and processing overhead. Our tool also allows the user to change the (scalar) values superimposed on each of the surfaces, modify their color map, and interactively re-light the surfaces. We demonstrate the effectiveness of our approach over a multi-terabyte combustion dataset. We also illustrate the efficiency and accuracy of our

  17. Effects of surface orientation, fluid chemistry and mechanical polishing on the variability of dolomite dissolution rates

    Science.gov (United States)

    Saldi, Giuseppe D.; Voltolini, Marco; Knauss, Kevin G.

    2017-06-01

    Recent studies of carbonate surface reactivity have underscored the fundamental variability of dissolution rates and the heterogeneous distribution of the reaction over the mineral surface due to the inhomogeneous distribution of surface energy. Dolomite dissolution rates relative to different cleavage planes (r-planes) and surfaces cut approximately perpendicular to the c-axis (c-planes) were studied at 50 °C as a function of pH (3.4 ≤ pH ≤ 9.0) and solution composition by vertical scanning interferometry (VSI) and atomic force microscopy (AFM), with the aim of providing an estimate of the intrinsic rate variation of dolomite single crystals and describing the surface reaction distribution and the rate controlling mechanisms. Surface normal retreat rates measured under acidic conditions increased linearly with time and were not visibly affected by the parallel increase of surface roughness. Mean total dissolution rates of r-planes decreased by over 200 times from pH 3.4 to pH 9.0 and CO32--rich solutions, whereas corresponding rate variations spanned over 3 orders of magnitude when also c-plane rate distributions were included in the analysis. At acid to near neutral pH, c-planes dissolved ∼ three times faster than the adjoining r-planes but slower at basic pH and high total carbon concentration, displaying a distinctive morphologic evolution in these two regimes. The comparison of polished and unpolished crystals showed that polished cleavage planes dissolved about three times faster than the unpolished counterpart at near neutral to basic conditions, whereas no significant difference in reactivity was observed at pH < 5. Although experimental data and observations indicate a tendency of dolomite faces to reach a low-energy topography over the course of the reaction, the evolution of the entire crystal morphology depends also on the reactivity of edge and corner regions, whose contribution to measured rates is not generally taken into account by laboratory

  18. Surface Wind Observational Database in North Eastern North America: Quality Control Procedure and Climatological Variability

    Science.gov (United States)

    Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Hidalgo, Ángela; Conte, Jorge; Beltrami, Hugo

    2015-04-01

    This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. It also presents some insights of the long-term climatological variability over the region. The database consists of 527 sites (487 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions. The records span from 1940 to 2010 and cover an approximate spatial extension of 2.2 × 106 km2. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. Due to the size of the data set, a great effort has been made on the automation of the procedures. A number of problems are associated with data management and data conventions: unification of measurement units and recording times due to the variety of institutional sources; detection of erroneous data sequence duplications within a station or among different ones; and detection of errors related with physically unrealistic data measurements. From the other hand there is a variety of treated instrumental errors: problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; high variability related erroneous records; wind speed biases on week to monthly timescales and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Around 2.4% of wind direction data have been also corrected. The already quality controlled database allows for subsequent climatological analyses. The intra and inter decadal variability of the monthly surface wind field in such a vast and orographically complex region as the North Eastern North America is explored. Several decades of quality

  19. Spatial variability of surface fuels in treated and untreated ponderosa pine forests of the southern Rocky Mountains

    Science.gov (United States)

    Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson

    2016-01-01

    There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...

  20. Variability of water content useful in surface along a rainfall gradient Mediterranean

    International Nuclear Information System (INIS)

    Ruiz-Sinoga, J. D.; Martinez-Murillo, J. F.; Gabarron-Galeote, M. A.

    2009-01-01

    A climatic gradient was defined in South of spain with a great decreased of rainfall from West to East (>1,000 mm), which produces changes in vegetation and hydric resources. this study was carried out in five hill slopes under different climatic conditions and their aims were to analyze: the variability of available water along the gradient since 2002 to 2006, the key factors of it and the influence on the vegetal cover. Results showed that clay content had a great influence in the surface available water for plants, which did not decrease in the deerfield sites, where the amount of days with hydric deficient was lower. Relationships between vegetation and soil water were stronger in the more humid field sites, where existed a feedback between both properties. (Author) 4 refs.

  1. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue.

    Science.gov (United States)

    Gonzalez-Izal, Miriam; Lusa Cadore, Eduardo; Izquierdo, Mikel

    2014-03-01

    Concentric (CON) and eccentric (ECC) contractions may involve different mechanisms related to changes in sarcolemma status and the consequent alteration of action potential transmission along muscle fibers. Muscle conduction velocity (CV), surface electromyography signal (sEMG), muscle quality, and blood lactate concentrations were analyzed during CON and ECC actions. Compared with ECC, the CON protocol resulted in greater muscle force losses, blood lactate concentrations, and changes in sEMG parameters. Similar reductions in CV were detected in both protocols. Higher echo intensity values were observed 2 days after ECC due to greater muscle damage. The effects of the muscle damage produced by ECC exercise on the transmission of action potentials along muscle fibers (measured as the CV) may be comparable with the effects of hydrogen accumulation produced by CON exercise (related to greater lactate concentrations), which causes greater force loss and change in other sEMG variables during CON than during ECC actions.

  2. Periodontal inflamed surface area as a novel numerical variable describing periodontal conditions.

    Science.gov (United States)

    Park, Shin-Young; Ahn, Soyeon; Lee, Jung-Tae; Yun, Pil-Young; Lee, Yun Jong; Lee, Joo Youn; Song, Yeong Wook; Chang, Yoon-Seok; Lee, Hyo-Jung

    2017-10-01

    A novel index, the periodontal inflamed surface area (PISA), represents the sum of the periodontal pocket depth of bleeding on probing (BOP)-positive sites. In the present study, we evaluated correlations between PISA and periodontal classifications, and examined PISA as an index integrating the discrete conventional periodontal indexes. This study was a cross-sectional subgroup analysis of data from a prospective cohort study investigating the association between chronic periodontitis and the clinical features of ankylosing spondylitis. Data from 84 patients without systemic diseases (the control group in the previous study) were analyzed in the present study. PISA values were positively correlated with conventional periodontal classifications (Spearman correlation coefficient=0.52; P variable. PISA is advantageous for quantifying periodontal inflammation and plaque accumulation.

  3. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  4. Surface Area Variability of a North-Central Tanzanian Crater Lake

    Directory of Open Access Journals (Sweden)

    Lindsey Higgins

    2016-06-01

    Full Text Available A history of modern (1973–2015 surface area variability for Lake Basotu in north-central Tanzania has been reconstructed using archived Landsat images from the dry season between June and October. This record was compared to local weather data as well as larger scale weather patterns. The lake has been in a state of decline interrupted by major flood events since the beginning of the satellite record. From 1973 to 1997, the lake area was between 0.97 km2 and 4.28 km2. Lake extent abruptly increased to 13.86 km2 in 1998, when a co-occurrence of El Niño and a positive Indian Ocean Dipole led to extensive flooding. It is hypothesized that local agricultural practices leading to soil erosion and subsequent basin sedimentation have most likely increased the sensitivity of Lake Basotu to climatic fluctuations.

  5. Mechanisms for Seasonal and Interannual Sea Surface Salinity Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, J.; Stammer, D.; Serra, N.; Bryan, F.

    2016-12-01

    Space-borne salinity data in the Indian Ocean are analyzed over the period 2000-2015 based on data from the European Space Agency's (ESA) "Soil Moisture and Ocean Salinity" (SMOS) and the National Aeronautical Space Agency's (NASA) "Aquarius/SAC-D" missions. The seasonal variability is the dominant mode of sea surface salinity (SSS) variability in the Indian Ocean, accounting for more than 50% of salinity variance. Through a combined analysis of the satellite and ARGO data, dominant forcing terms for seasonal salinity changes are identified. It is found, that E-P controls seasonal salinity tendency in the western Indian Ocean, where the ITCZ has a strong seasonal cycle. In contrast, Ekman advection is the dominant term in the northern and eastern equatorial Indian Ocean. The influence of vertical processes on the salinity tendency is enhanced in coastal upwelling regions and south of the equator due to mid-ocean upwelling. Jointly those processes can explain most of the observed seasonal cycle with a correlation of 0.85 and an RMS difference of 0.07/month. However, the detailed composition of driving terms depends on underlying data products. In general, our study confirms previous results from Lisan Yu (2011); however, in the eastern Indian Ocean contrasting results indicate the leading role of meridional Ekman advection to the seasonal salinity tendency instead of surface external forces due to precipitation. The inferred dominant salinity budget terms are confirmed by results obtained from a high resolution NCAR Core model run driven by NCEP forcing fields. From an EOF analysis of the salinity fields after substracting the annual and semiannual cycle we found that the first EOF mode explains more than 20% of salinity variance. The first principal component of SSS EOF is correlated with the Indian Ocean Dipole Mode Index. Nevertheless the EOF pattern shows a meridional tripole structure, while the IOD describes a zonal SST dipole (Saji et al, 1999).

  6. Mapping Regional Impervious Surface Distribution from Night Time Light: The Variability across Global Cities

    Science.gov (United States)

    Lin, M.; Yang, Z.; Park, H.; Qian, S.; Chen, J.; Fan, P.

    2017-12-01

    Impervious surface area (ISA) has become an important indicator for studying urban environments, but mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime light data is (NTL) and Resolution Imaging Spectroradiometer (MODIS) are the major remote sensing data source for regional ISA mapping. A single regression relationship between fractional ISA and NTL or various index derived based on NTL and MODIS vegetation index (NDVI) data was established in many previous studies for regional ISA mapping. However, due to the varying geographical, climatic, and socio-economic characteristics of different cities, the same regression relationship may vary significantly across different cities in the same region in terms of both fitting performance (i.e. R2) and the rate of change (Slope). In this study, we examined the regression relationship between fractional ISA and Vegetation Adjusted Nighttime light Urban Index (VANUI) for 120 randomly selected cities around the world with a multilevel regression model. We found that indeed there is substantial variability of both the R2 (0.68±0.29) and slopes (0.64±0.40) among individual regressions, which suggests that multilevel/hierarchical models are needed for accuracy improvement of future regional ISA mapping .Further analysis also let us find the this substantial variability are affected by climate conditions, socio-economic status, and urban spatial structures. However, all these effects are nonlinear rather than linear, thus could not modeled explicitly in multilevel linear regression models.

  7. An analysis of surface air temperature trends and variability along the Andes

    Science.gov (United States)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of

  8. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  9. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  10. Heart rate variability and surface electromyography of trained cyclists at different cadences

    Directory of Open Access Journals (Sweden)

    Bruno Saraiva

    2016-06-01

    Full Text Available The heart rate variability (HRV and surface electromyography (sEMG are important tools in the evaluation of cardiac autonomic system and neuromuscular parameters, respectively. The aim of the study was to evaluate the behavior of HRV and sEMG of the vastus lateralis in two exercise protocols on a cycle ergometer at 60 and 80 rpm. Eight healthy men cyclists who have trained for at least two years were evaluated. Reduction was observed followed by stabilization of RMSSD and SDNN indices of HRV (p<0.05 along with increases in the amplitude of the sEMG signal (p<0.05 in both protocols. Significant correlations were observed between the responses of HRV and sEMG in the cadence of 60 rpm (RMSSD and sEMG: r = -0.42, p=0.03; SDNN and sEMG: r = -0.45, p=0.01 and 80 rpm (RMSSD and sEMG: r = -0.47, p=0.02; SDNN and sEMG: r = -0.49, p=0.01, yet no difference was observed for these variables between the two protocols. We concluded that the parasympathetic cardiac responses and sEMG are independent of cadences applied at the same power output.

  11. Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology

    International Nuclear Information System (INIS)

    Enweremadu, C. C.; Rutto, H. L.

    2015-01-01

    This paper presents an optimization study in the production of biodiesel production from Marula oil. The study was carried out using a central composite design of experiments under response surface methodology. A mathematical model was developed to correlate the transesterification process variables to biodiesel yield. The transesterification reaction variables were methanol to oil ratio, x /sub 1/ (10-50 wt percentage), reaction time, x /sub 2/ (30-90 min), reaction temperature, x /sub 3/ (30-90 Degree C) stirring speed, x /sub 4/ (100-400 rpm) and amount of catalyst, x /sub 5/ (0.5-1.5 g). The optimum conditions for the production of the biodiesel were found to be methanol to oil ratio (29.43 wt percentage), reaction time (59.17 minutes), reaction temperature (58.80 Degree C), stirring speed (325 rpm) and amount of catalyst (1.02 g). The optimum yield of biodiesel that can be produced was 95 percentage. The results revealed that the crucial fuel properties of the biodiesel produced at the optimum conditions met the ASTM biodiesel specifications. (author)

  12. Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data

    Science.gov (United States)

    Fu, Lee-Lueng

    2007-01-01

    The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.

  13. Sahel rainfall and decadal to multi-decadal sea surface temperature variability

    Energy Technology Data Exchange (ETDEWEB)

    Mohino, Elsa [LOCEAN/IPSL, CNRS, Universite Pierre et Marie Curie, Paris (France); Universidad de Sevilla, Seville (Spain); Janicot, Serge [LOCEAN/IPSL, IRD, Universite Pierre et Marie Curie, Paris (France); Bader, Juergen [Bjerknes Centre for Climate Research, Bergen (Norway); Geophysical Institute, University of Bergen, Bergen (Norway)

    2011-08-15

    Decadal Sahelian rainfall variability was mainly driven by sea surface temperatures (SSTs) during the twentieth century. At the same time SSTs showed a marked long-term global warming (GW) trend. Superimposed on this long-term trend decadal and multi-decadal variability patterns are observed like the Atlantic Multidecadal Oscillation (AMO) and the inter-decadal Pacific Oscillation (IPO). Using an atmospheric general circulation model we investigate the relative contribution of each component to the Sahelian precipitation variability. To take into account the uncertainty related to the use of different SST data sets, we perform the experiments using HadISST1 and ERSSTv3 reconstructed sets. The simulations show that all three SST signals have a significant impact over West Africa: the positive phases of the GW and the IPO lead to drought over the Sahel, while a positive AMO enhances Sahel rainfall. The tropical SST warming is the main cause for the GW impact on Sahel rainfall. Regarding the AMO, the pattern of anomalous precipitation is established by the SSTs in the Atlantic and Mediterranean basins. In turn, the tropical SST anomalies control the impact of the IPO component on West Africa. Our results suggest that the low-frequency evolution of Sahel rainfall can be interpreted as the competition of three factors: the effect of the GW, the AMO and the IPO. Following this interpretation, our results show that 50% of the SST-driven Sahel drought in the 1980s is explained by the change to a negative phase of the AMO, and that the GW contribution was 10%. In addition, the partial recovery of Sahel rainfall in recent years was mainly driven by the AMO. (orig.)

  14. Modeling land surface hydrology sensitivity in the Colorado River Basin to historical climate variability

    Science.gov (United States)

    Whitney, K. M.; Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Over the past century, the Colorado River Basin (CRB) has experienced substantial warming and interannual climate variations, including prolonged drought periods. These patterns are projected to accelerate in the 21st century, with major consequences for water resources in the southwestern U.S. and northwestern Mexico. To evaluate future projections appropriately, however, it is important to first quantify the regional hydrologic response to historical climate variability in the CRB. In the current effort, we force the Variable Infiltration Capacity (VIC) land surface hydrology model and a river routing model with historical meteorological data to estimate water balance components and naturalized streamflow response in the CRB at 1/16o spatial resolution and at an hourly time step over the period 1950-2013. We utilize data products from satellite remote sensing to specify spatiotemporal variations in vegetation parameters and include an irrigation scheme to account for evapotranspiration from croplands in the CRB. Furthermore, we apply recent modifications in VIC to more properly account for bare soil evaporation in arid and semiarid ecosystems. Analyses of the historical model simulations are focused on quantifying the spatiotemporal variability of the soil moisture, evapotranspiration, streamflow and snowmelt response and their linkages to extreme meteorological events. Here we characterize the annual and monthly distributions, trends, and statistical extremes and central tendencies of water balance terms averaged over the CRB and its sub-basins for the entire study period 1950-2013. By building a model-based hydrologic climatology and catalog of historical extreme events for the CRB, we aim to construct a basis for future activities that analyze the impact of statistically downscaled climate change projections on the hydrology of the CRB and its urban areas.

  15. Diurnal variability of gas phase and surface water ethanol in southeastern North Carolina, USA

    Science.gov (United States)

    Kieber, R. J.; Powell, J. P.; Foley, L.; Mead, R. N.; Willey, J. D.; Avery, G. B.

    2017-11-01

    Diurnal variations in gas phase and surface water concentrations of ethanol and acetaldehyde were investigated at five locations in southeastern North Carolina, USA. There were distinct diurnal oscillations observed in gas phase concentrations with maxima occurring in late afternoon suggesting that photochemical production is an important process in the cycling of these analytes in the troposphere. The rapid decrease in concentrations after the mid day maximum suggests that there is also an atmospheric photochemical sink for both analytes most likely involving photo produced hydroxyl radicals with a half-life on the order of hours rather than days at ground level. Ethanol concentrations in the surface microlayer taken at the same time as gas phase samples had a very similar diurnal profile suggesting photochemical processes, in addition to atmospheric deposition, play a role in the aqueous phase cycling of both analytes. The concentration of ethanol and acetaldehyde increased significantly in flasks containing freshwater collected from the Cape Fear River exposed to simulated sunlight for 6 h underscoring the importance of in situ photochemical production. Results of this study are significant because they represent the first simultaneous analyses of the temporal variability of ethanol and acetaldehyde concentrations in the gas and aqueous phases. These measurements are essential in order to better define the processes involved in the global biogeochemical cycling of ethanol both now and in the future as our use of the biofuel continues to grow.

  16. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  17. Adriatic Sea surface temperature and ocean colour variability during the MFSPP

    Directory of Open Access Journals (Sweden)

    E. Böhm

    2003-01-01

    Full Text Available Two years and six months of night-time Advanced Very High Resolution Radiometer (AVHRR sea surface temperature (SST and daytime Sea viewing Wide Field of view Sensor (SeaWiFS data collected during the MFSPP have been used to examine spatial and temporal variability of SST and chlorophyll (Chl in the Adriatic Sea. Flows along the Albanian and the Italian coasts can be distinguished year-round in the monthly averaged Chl but only in the colder months in the monthly averaged SST’s. The Chl monthly-averaged fields supply less information on circulation features away from coastal boundaries and where conditions are generally oligotrophic, except for the early spring bloom in the Southern Adriatic Gyre. To better characterise the year-to-year and seasonal variability, exploratory data analysis techniques, particularly the plotting of multiple Chl-SST histograms, are employed to make joint quantitative use of monthly-averaged fields. Modal water mass (MW, corresponding to the Chl-SST pairs in the neighbourhood of the maximum of each monthly histogram, are chosen to represent the temporal and spatial evolution of the prevalent processes and their variability in the Adriatic Sea. Over an annual cycle, the MW followed a triangular path with the most pronounced seasonal and interannual variations in both Chl-SST properties and spatial distributions of the MW in the colder part of the year. The winter of 1999 is the colder (by at least 0.5°C and most eutrophic (by 0.2 mg/m 3. The fall of the year 2000 is characterised by the lack of cooling in the month of November that was observed in the previous year. In addition to characterising the MW, the two-dimensional histogram technique allows a distinction to be made between different months in terms of the spread of SST values at a given Chl concentration. During spring and summer, the spread is minimal indicating surface homothermal conditions. In fall and winter, on the other hand, a spread of points

  18. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  19. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001–2016

    Directory of Open Access Journals (Sweden)

    C. A. Mortimer

    2018-02-01

    Full Text Available Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA decreased at a rate of 0.029±0.025 decade−1 over that period. Larger reductions in BSA occurred in July (−0.050±0.031 decade−1. No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001–2016, the mean summer land surface temperature (LST over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr−1, and the BSA record was negatively correlated (r: −0.86 with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  20. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001-2016

    Science.gov (United States)

    Mortimer, Colleen A.; Sharp, Martin

    2018-02-01

    Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI) are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA) decreased at a rate of 0.029±0.025 decade-1 over that period. Larger reductions in BSA occurred in July (-0.050±0.031 decade-1). No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001-2016, the mean summer land surface temperature (LST) over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr-1, and the BSA record was negatively correlated (r: -0.86) with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  1. Modeling South America regional smoke plume: aerosol optical depth variability and shortwave surface forcing

    Science.gov (United States)

    Rosário, N. E.; Longo, K. M.; Freitas, S. R.; Yamasoe, M. A.; Fonseca, R. M.

    2012-07-01

    Intra-seasonal variability of smoke aerosol optical depth (AOD) and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS). Measurements of AOD from the AErosol RObotic NETwork (AERONET) and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET) were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon Basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon Basin the model systematically underestimated AOD. This is likely due to the cloudy nature of the region, preventing accurate detection of the fire spots used in the emission model. Moreover, measured AOD were very often close to background conditions and emissions other than smoke were not considered in the simulation. Therefore, under the background scenario, one would expect the model to underestimate AOD. The issue of high aerosol loading events in the southern part of the Amazon and cerrado is also discussed in the context of emission shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable. Thus, lower quality data were used. Root-mean-square-error (RMSE) between the model and observations decreased from 0.48 to 0.17 when extreme AOD events (AOD550 nm ≥ 1.0) and Cuiabá were excluded from analysis. Downward surface solar irradiance comparisons also followed similar trends when extremes AOD were excluded. This highlights the need to improve the modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. Aerosol optical model based on the mean intensive properties of smoke from the southern part of the

  2. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam.

    Science.gov (United States)

    Wilbers, Gert-Jan; Becker, Mathias; Nga, La Thi; Sebesvari, Zita; Renaud, Fabrice G

    2014-07-01

    Surface water pollution in the Vietnamese Mekong Delta (MD) could threaten human, animal and ecosystem health given the fact that this water source is intensively used for drinking, irrigation and domestic services. We therefore determined the levels of pollution by organic pollutants, salts, metals and microbial indicators by (bi)monthly monitoring of canals between November 2011 and July 2012 at 32 sampling locations, representing fresh and saline/brackish environments. The results were compared with national water quality guidelines, between the studied regions and with water quality data from main waterways. Key factors explaining the observed levels of pollution in surface water were identified through principal component analysis (PCA). Temporal variations due to tidal regime and seasonality were also assessed. Based on regression models, the spatial variability of five water quality parameters was visualized using GIS based maps. Results indicate that pH (max. 8.6), turbidity (max. 461 FTU), maximum concentrations of ammonium (14.7 mg L(-1)), arsenic (44.1 μg L(-1)), barium (157.5 μg L(-1)), chromium (84.7 μg L(-1)), mercury (45.5 μg L(-1)), manganese (1659.7 μg L(-1)), aluminum (14.5 mg L(-1)), iron (17.0 mg L(-1)) and the number of Escherichia coli (87,000 CFU 100 mL(-1)) and total coliforms (2,500,000 CFU 100 mL(-1)) in canals exceed the thresholds set by Vietnamese quality guidelines for drinking and domestic purposes. The PCA showed that i) urbanization; ii) metal leaching from soils; iii) aquaculture; and iv) tidal regime explain 85% of the variance of surface water quality attributes. Significant differences in water quality were found due to daily tidal regime and as a result of seasonality. Surface water quality maps for dissolved oxygen, ammonium, ortho-phosphate, manganese and total coliforms were developed to highlight hot-spot areas of pollution. The results of this study can assist policy makers in developing water management strategies

  3. Variability of recurrence interval for New Zealand surface-rupturing paleoearthquakes

    Science.gov (United States)

    Nicol, A., , Prof; Robinson, R., Jr.; Van Dissen, R. J.; Harvison, A.

    2015-12-01

    Recurrence interval (RI) for successive earthquakes on individual faults is recorded by paleoseismic datasets for surface-rupturing earthquakes which, in New Zealand, have magnitudes of >Mw ~6 to 7.2 depending on the thickness of the brittle crust. New Zealand faults examined have mean RI of ~130 to 8500 yrs, with an upper bound censored by the sample duration (arithmetic mean) values have been used to quantify RI variability for geological and simulated earthquakes on >100 New Zealand active faults. RI for individual faults can vary by more than an order of magnitude. CoV of RI for paleoearthquake data comprising 4-10 events ranges from ~0.2 to 1 with a mean of 0.6±0.2. These values are generally comparable to simulated earthquakes (>100 events per fault) and suggest that RI ranges from quasi periodic (e.g., ~0.2-0.5) to random (e.g., ~1.0). Comparison of earthquake simulation and paleoearthquake data indicates that the mean and CoV of RI can be strongly influenced by sampling artefacts including; the magnitude of completeness, the dimensionality of spatial sampling and the duration of the sample period. Despite these sampling issues RI for the best of the geological data (i.e. >6 events) and earthquake simulations are described by log-normal or Weibull distributions with long recurrence tails (~3 times the mean) and provide a basis for quantifying real RI variability (rather than sampling artefacts). Our analysis indicates that CoV of RI is negatively related to fault slip rate. These data are consistent with the notion that fault interaction and associated stress perturbations arising from slip on larger faults are more likely to advance or retard future slip on smaller faults than visa versa.

  4. Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions

    Science.gov (United States)

    van Hooidonk, R.; Huber, M.

    2012-03-01

    Future widespread coral bleaching and subsequent mortality has been projected using sea surface temperature (SST) data derived from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. Such weaknesses most likely reduce the accuracy of predicting coral bleaching, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends, and their propagation in predictions. To analyze the relative importance of various types of model errors and biases in predicting coral bleaching, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from 24 GCMs 20th century simulations included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate accuracy using an objective measure of forecast quality, the Peirce skill score (PSS). Major findings are that: (1) predictions are most sensitive to the seasonal cycle and inter-annual variability in the ENSO 24-60 months frequency band and (2) because models tend to understate the seasonal cycle at reef locations, they systematically underestimate future bleaching. The methodology we describe can be used to improve the accuracy of bleaching predictions by characterizing the errors and uncertainties involved in the predictions.

  5. Bed Surface Responses to Spatially Variable Flow in Low Relative Submergence Conditions

    Science.gov (United States)

    Monsalve Sepulveda, A.; Yager, E.

    2017-12-01

    Flow hydraulics and sediment fluxes in mountainous rivers are partly controlled by large relatively immobile grains and sediment patches. Generally, in these rivers the flow depth is similar to the size of these large grains (low relative submergence), and is characterized by 3D heterogeneity and plunging flow that can cause spatial distributions of bed surface elevations, textures, and sedimentation rates. Sediment patches, on the other hand, consist of distinct areas of the bed with relatively narrow grain size distributions (GSD) and greater sorting compared to that of the reach, can cause spatial distributions of flow properties, and therefore, a continuous feedback between them and flow hydraulics exists and partially controls the evolution of a river. Although sediment-water interactions are affected by sediment patches, they are rarely explicitly included in bedload transport calculations, in part because their formation and evolution are controlled by highly temporal and spatially variable mechanisms, such as shear stress fields, flow discharges, turbulence, and local GSD. To explore how the bed surface evolves and sediment patches are formed, we conducted a set of experiments in which we varied the relative submergence (RS) of staggered simulated boulders between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial gravel bed thickness and GSD. Different RS between experiments were achieved by simultaneously adjusting flow discharge and bed slope (2.15 - 3.7 %). To obtain a detailed flow field we combined our laboratory measurements with a 3D flow model. Around the boulders, the shear stress field was highly variable and controlled the sediment flux rates and its direction. The divergence in shear stress caused by the boulders promoted size-selective bedload deposition, which in some cases resulted in the formation of a coarse sediment patch upstream of the boulders but, for the higher slopes, a bar

  6. The impact of variable building height on drag, flow and turbulence over a realistic suburban surface

    Science.gov (United States)

    Giometto, M. G.; Christen, A.; Calaf, M.; Parlange, M. B.

    2014-12-01

    In urban environments, where buildings have variable configurations and heights, the tallest structures have a disproportional impact on drag, mean flow and turbulence. Although wind-engineering studies document well the effects of individual high-rise buildings on the immediate surrounding, the impact of varying building heights on the larger horizontally averaged flow has not been quantified systematically for realistic urban configurations. We use Large Eddy Simulation (LES) as a means to study the fully developed turbulent flow over and within a 512 x 512 m2 subset of the true urban geometry in the city of Basel, Switzerland. A periodic LES domain is centered on the location of a tower, where measurements of turbulence were performed in 2001/02, which allows a direct validation of the LES at a specific location in the domain. The Lagrangian scale-dependent LES model is adopted to parametrize the subgrid stresses in the bulk of the flow and buildings are taken into account adopting a discrete-forcing-approach immersed boundary method (IBM), with the geometry taken from a highly accurate digital building model. A series of high-resolution LES runs are performed for various directions of the approaching flow, and with all buildings included and then buildings above a certain height threshold progressively removed, to isolate the impact of tall structures. Results show how the presence of isolated tall buildings strongly modifies the roughness properties of the entire urban roughness sublayer, causing an increase in resolved pressure forces, which contributes to the overall surface induced drag. In the presence of tall buildings the local structure of the roughness sublayer is partitioned into two regimes: fine scale wake turbulence and elongated, high speed streak-like motions, locked between the position of isolated structures, with their axis aligned in the stream wise direction. For arrays with differing building heights statistics significantly differ from

  7. Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures

    Directory of Open Access Journals (Sweden)

    T. Maldonado

    2016-04-01

    Full Text Available The midsummer drought (MSD in Central America is characterised in order to create annual indexes representing the timing of its phases (start, minimum and end, and other features relevant for MSD forecasting such as the intensity and the magnitude. The MSD intensity is defined as the minimum rainfall detected during the MSD, meanwhile the magnitude is the total precipitation divided by the total days between the start and end of the MSD. It is shown that the MSD extends along the Pacific coast, however, a similar MSD structure was detected also in two stations in the Caribbean side of Central America, located in Nicaragua. The MSD intensity and magnitude show a negative relationship with Niño 3.4 and a positive relationship with the Caribbean low-level jet (CLLJ index, however for the Caribbean stations the results were not statistically significant, which is indicating that other processes might be modulating the precipitation during the MSD over the Caribbean coast. On the other hand, the temporal variables (start, minimum and end show low and no significant correlations with the same indexes.The results from canonical correlation analysis (CCA show good performance to study the MSD intensity and magnitude, however, for the temporal indexes the performance is not satisfactory due to the low skill to predict the MSD phases. Moreover, we find that CCA shows potential predictability of the MSD intensity and magnitude using sea surface temperatures (SST with leading times of up to 3 months. Using CCA as diagnostic tool it is found that during June, an SST dipole pattern upon the neighbouring waters to Central America is the main variability mode controlling the inter-annual variability of the MSD features. However, there is also evidence that the regional waters are playing an important role in the annual modulation of the MSD features. The waters in the PDO vicinity might be also controlling the rainfall during the MSD, however, exerting an

  8. Long-Term Monitoring of Regional Sea Surface Height Variability Using High-Resolution Satellite Altimetry

    Science.gov (United States)

    Rice, A. E.; Crout, R. L.

    2017-12-01

    Shallow water altimetry is an emerging field that in recent years has rapidly gained attention for both the numerous applications it can offer to the oceanographic community (e.g. assessment of climate change impacts to the coastal zone; quantification of sea state etc.) and, depending on the altimeter used, for the wealth of available historical data that can be employed for climatological studies. In this study we focus on the long-term analysis of regional sea surface height anomaly (SSHA) variability over the mid and outer shelf (≥ 16 km from the coast) for 18 selected coastal altimeter tracks located on the east coast of the US and Asia for a period of eight years (294 passes from July 2008 to July 2016) using Jason-2 20 Hz altimeter data from the L2 AVISO-PISTACH experimental products. After implementing geophysical corrections to the raw altimeter range, signal noise in the individual SSH passes was reduced by applying a median filter followed by a 60-point (18 km) low-pass filter as in Birol and Delebeque (2014). Since individual altimeter passes did not cease to collect data at the same distance from the coastline, a nearest-point-to-land (NPTL) was determined for each track for statistical analysis of the data. NPTL time series and SSHA envelopes, computed by subtracting mean SSHAs from individual passes, were used for the analysis. A comparison of wind and water level gauge data to a US east coast track reveals correlation between SSHA and winds and a relationship to subtidal water level frequencies. Time series of NPTL for all tracks show intra-annual and inter and intra-seasonal variability, with higher and lower water levels linked to seasons. Lastly, envelope plots display higher SSHA variability over the mid shelf than the outer shelf, revealing the location and magnitude (up to 0.5 m water level differences) of setup and set down occurrences. Various products derived from the analysis that are useful for oceanographic operations, including water

  9. Satellite Observed Variability in Antarctic and Arctic Surface Temperatures and Their Correlation to Open Water Areas

    Science.gov (United States)

    Comiso, Josefino C.; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Recent studies using meterological station data have indicated that global surface air temperature has been increasing at a rate of 0.05 K/decade. Using the same set of data but for stations in the Antarctic and Arctic regions (>50 N) only, the increases in temperature were 0.08, and 0.22 K/decade, when record lengths of 100 and 50 years, respectively, were used. To gain insights into the increasing rate of warming, satellite infrared and passive microwave observations over the Arctic region during the last 20 years were processed and analyzed. The results show that during this period, the ice extent in the Antarctic has been increasing at the rate of 1.2% per decade while the surface temperature has been decreasing at about 0.08 K per decade. Conversely, in the Northern Hemisphere, the ice extent has been decreasing at a rate of 2.8% per decade, while the surface temperatures have been increasing at the rate of 0.38 K per decade. In the Antarctic, it is surprising that there is a short term trend of cooling during a global period of warming. Very large anomalies in open water areas in the Arctic were observed especially in the western region, that includes the Beaufort Sea, where the observed open water area was about 1x10(exp 6) sq km, about twice the average for the region, during the summer of 1998. In the eastern region, that includes the Laptev Sea, the area of open water was also abnormally large in the summer of 1995. Note that globally, the warmest and second warmest years in this century, were 1998 and 1995, respectively. The data, however, show large spatial variability with the open water area distribution showing a cyclic periodicity of about ten years, which is akin to the North Atlantic and Arctic Oscillations. This was observed in both western and eastern regions but with the phase of one lagging the other by about two years. This makes it difficult to interpret what the trends really mean. But although the record length of satellite data is still

  10. Periodontal inflamed surface area as a novel numerical variable describing periodontal conditions

    Science.gov (United States)

    2017-01-01

    Purpose A novel index, the periodontal inflamed surface area (PISA), represents the sum of the periodontal pocket depth of bleeding on probing (BOP)-positive sites. In the present study, we evaluated correlations between PISA and periodontal classifications, and examined PISA as an index integrating the discrete conventional periodontal indexes. Methods This study was a cross-sectional subgroup analysis of data from a prospective cohort study investigating the association between chronic periodontitis and the clinical features of ankylosing spondylitis. Data from 84 patients without systemic diseases (the control group in the previous study) were analyzed in the present study. Results PISA values were positively correlated with conventional periodontal classifications (Spearman correlation coefficient=0.52; Pperiodontal indexes, such as BOP and the plaque index (PI) (r=0.94; Pperiodontal classification, PI, bleeding index, and smoking, but not in the multivariate analysis. In the multivariate linear regression analysis, PISA values were positively correlated with the quantity of current smoking, PI, and severity of periodontal disease. Conclusions PISA integrates multiple periodontal indexes, such as probing pocket depth, BOP, and PI into a numerical variable. PISA is advantageous for quantifying periodontal inflammation and plaque accumulation. PMID:29093989

  11. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    Darbhasayanam Srinivasacharya

    2016-06-01

    Full Text Available This paper investigates the influence of thermophoresis on mixed convection heat and mass transfer flow over a vertical wavy surface in a porous medium with variable properties, namely variable viscosity and variable thermal conductivity. The effect of wavy surface is incorporated into non-dimensional equations by using suitable transformations and then transformed into non-linear ordinary differential equations by employing the similarity transformations and then solved numerically. The transport process of flow, heat and mass transfer in the boundary layer for aiding and opposing flow cases is discussed. The structure of flow, temperature and concentration fields in the Darcy porous media are more pronounced by complex interactions among variable viscosity, variable thermal conductivity, mixed convective parameter, thermophoresis and amplitude of the wavy surface. Increasing thermophoresis parameter enhances velocity profile, concentration distribution and Sherwood number while reduces Nusselt number. As increase in variable viscosity, temperature and concentration distributions are enhanced while velocity profile, Nusselt number and Sherwood numbers are reduced. This study finds applications in aerosol Technology, space technology and processes involving high temperatures.

  12. Variable-focus microscopy and UV surface dissolution imaging as complementary techniques in intrinsic dissolution rate determination

    DEFF Research Database (Denmark)

    Ward, Adam; Walton, Karl; Box, Karl

    2017-01-01

    This work reports a novel approach to the assessment of the surface properties of compacts used in Surface Dissolution Imaging (SDI). SDI is useful for determining intrinsic dissolution rate (IDR), an important parameter in early stage drug development. Surface topography, post-compaction and post-SDI...... possible polymorphic changes that may have occurred post-compaction and post-SDI run. IBUs IDR decreased from 0.033mg/min/cm(2) to 0.022mg/min/cm(2) from 10 to 20min, respectively, during the experiment. XRD and DSC showed no form changes during the SDI run. The surface topography images showed...... that a distinct imprint was embossed on the surfaces of some compacts which could affect IDRs. Surface parameter values were associated with the SDI experiments which showed strong correlations with the IDR values. The variable-focus microscope can be used as a complimentary tool in the determination of IDR...

  13. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  14. Plio-Pleistocene Sea Surface Temperature Variability As Measured by Different Proxies - A Cautionary Tale

    Science.gov (United States)

    Lawrence, K. T.; Woodard, S. C.; Castañeda, I. S.; deMenocal, P. B.; Peterson, L.; Rosenthal, Y.; Bochner, L.; Gorbey, D. B.; Mauriello, H.

    2016-12-01

    Conflicting interpretations from the application of different sea surface temperature (SST) proxies seeking to characterize past climate conditions of the same region have given rise to a number of controversies about key elements of Pliocene climate. Thus, a detailed look at whether or not different temperature proxies yield consistent results is warranted. Here, we examine Pliocene climate variability at the orbital scale reporting new alkenone-derived SST estimates from ODP Site 1088 (South Atlantic) and ODP Site 846 (Eastern Equatorial Pacific). Using these novel datasets and previously published records from a variety of different sites in a variety of localities, we further examine the consistency of Plio-Pleistocene SST variability and orbital signatures from faunal, Mg/Ca, and TEX86 SST records relative to Uk'37 SST records. We find that many companion SST records produce very similar mean trends and standard deviations as well as absolute temperature estimates that are generally within error of each other. Our analysis also suggests that many companion records, with a few notable exceptions, capture the same dominant Milankovitch periodicities and produce phase estimates relative to benthic oxygen isotope estimates that are within error of each other. However, marked structural differences occur between different proxy records on glacial-interglacial timescales in Uk'37 versus Mg/Ca comparisons and some Uk'37 versus TEX86 comparisons. Therefore, the temperature estimates of individual glacial-interglacial cycles may vary significantly when a specific time slice is explored. Our preliminary investigation suggests that whether or not climate records derived from different paleothermometers yield consistent results depends on the timescale being explored and the study site, which reflects key factors such as seasonality, ecology, and diagenetic regime. Additional work that explores the underlying causes of the differences observed among proxies and uses a

  15. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    Full Text Available Intra-seasonal variability of smoke aerosol optical depth (AOD and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracers Transport model with the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS. Measurements of total and fine mode fraction (FMF AOD from the AErosol RObotic NETwork (AERONET and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon basin the model systematically underestimated total AOD, as expected, since smoke contribution is not dominant as it is in the southern portion and emissions other than smoke were not considered in the simulation. Better agreement was obtained comparing the model results with observed FMF AOD, which pointed out the relevance of coarse mode aerosol emission in that region. Likewise, major discrepancies over cerrado during high AOD events were found to be associated with coarse mode aerosol omission in our model. The issue of high aerosol loading events in the southern part of the Amazon was related to difficulties in predicting the smoke AOD field, which was discussed in the context of emissions shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable for both total and FMF AOD. Thus, lower quality data were used. Root-mean-square error (RMSE between the model and observed FMF AOD decreased from 0.34 to 0.19 when extreme AOD events (FMF AOD550 nm ≥ 1.0 and Cuiabá were excluded from the analysis. Downward surface solar irradiance comparisons also followed similar trends when extreme AOD were excluded

  16. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing

    Science.gov (United States)

    Emanuel, Kerry; Sobel, Adam

    2013-06-01

    A single-column model is used to estimate the equilibrium response of sea surface temperature (SST), precipitation, and several variables related to tropical cyclone (TC) activity to changes in both local and global forcing. Response to local forcing is estimated using the weak temperature gradient (WTG) approximation. The surface temperature is calculated using a thin slab ocean so as to maintain surface energy balance. Forcing is varied by changing the solar constant, atmospheric CO2 concentration, surface wind speed, and the convergence of upper ocean heat flux. These experiments show that precipitation and variables related to TC activity are not unique functions of SST on time scales long enough for surface energy balance to be maintained. Precipitation varies inversely with SST in experiments in which the surface wind speed is varied. At low wind speed, the WTG experiments reveal a regime of high relative SST and low precipitation, which is maintained by increased transmission of longwave radiation from the surface directly to space through a dry troposphere. In general, TC potential intensity and genesis potential vary much more rapidly with SST in response to varying surface wind speed than in response to other forcings. Local changes in TC potential intensity are highly correlated with local changes in SST, showing that relative SST is a good proxy for potential intensity when forcing is strictly local, but it cannot capture potentially important changes in potential intensity that arise from global-scale changes in forcing.

  17. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  18. Variability of the Surface Meteorological Fields over Eurasia for the Recent 30 Years

    International Nuclear Information System (INIS)

    Basharin, D.V.

    2009-10-01

    On the basis of the Japanese reanalysis (JRA25) dataset (1979-2008), linear trends, interannual to decadal variability of the sea level pressure (SLP), surface air temperature (SAT) and precipitation fields over the Eurasian region have been studied. For the recent 30 years there are only significant positive linear trends of SAT in the northwestern part of the Eurasia/eastern Asia in winter and central Europe in summer. Areas with significant negative trends of SAT are absent. For precipitation field there are no significant tendencies except for the significantly positive area over England both in winter and in summer time. In winter, there are two areas with the opposite SLP tendencies: insignificant negative (to the north of 45-50N) and significant positive (to the south of 45-50N) one. These trends could be accompanied by the corresponding tendencies bee-hive reproduction and honey production in different regions of Ukraine. Space-time patterns of the first, second and third EOF of the fields under study are mainly determined by the NAO and in the less extent by the SO (only in spring-summer). It was found that the leading modes become more contributive over the Eurasia for the last 30 years comparing with NCEP data for the previous period (1950-2001). It could imply that an internal signal of the ocean-atmosphere system, which determines space-time patterns over Eurasia, has arisen. Intercomparison of the space-time EOF patterns between JRA25 and NCEP (1950-2001) re-analyses show that in autumn, winter and spring the first 3-4 corresponding time coefficients stay at the same order (coefficient correlations between them are significant), while in summer such correspondence in order of modes is changed. (author)

  19. Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA

    Science.gov (United States)

    Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.

    2014-01-01

    Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  20. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    Science.gov (United States)

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    Science.gov (United States)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  2. Tracing variability in the iodine isotopes and species along surface water transect from the North Sea to the Canary Islands

    DEFF Research Database (Denmark)

    He, Peng; Aldahan, Ala; Hou, Xiaolin

    2016-01-01

    A complete transect of surface water samples from the North Sea to the Canary Islands was collected during a continuous period in 2010. The samples were analyzed for total 129I and 127I isotopes and their iodide and iodate species. The results indicate a large variability in the total 129I and its...

  3. The magnitude and variability of soil-surface CO2 efflux increase with temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Creighton M. Litton; Christian P. Giardina; Jeremy K. Albano; Michael S. Long; Gregory P. Asner

    2011-01-01

    Soil-surface CO2 efflux (FS; ‘soil respiration’) accounts for 50% of the CO2 released annually by the terrestrial biosphere to the atmosphere, and the magnitude and variability of this flux are likely to be sensitive to climate change. We measured FS in nine permanent plots along a 5.2C mean annual...

  4. Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2009-08-01

    Full Text Available Bacteriophage T4 nanoparticles possess characteristics that make them ideal candidates as materials for sensors, particularly as sensor probes. Their surface can be modified, either through genetic engineering or direct chemical conjugation to display functional moieties such as antibodies or other proteins to recognize a specific target. However, in order for T4 nanoparticles to be utilized as a sensor probe, it is necessary to understand and control the variables that determine their assembly and organization on a surface. The aim of this work is to discuss some of variables that we have identified as influencing the behavior of T4 nanoparticles on surfaces. The effect of pH, ionic strength, substrate characteristics, nanoparticle concentration and charge was addressed qualitatively using atomic force microscopy (AFM.

  5. Trend and Variability of China Precipitation in Spring and Summer: Linkage to Sea Surface Temperatures

    Science.gov (United States)

    Yang, Fanglin; Lau, K.-M.

    2004-01-01

    Observational records in the past 50 years show an upward trend of boreal-summer precipitation over central eastern China and a downward trend over northern China. During boreal spring, the trend is upward over southeastern China and downward over central eastern China. This study explores the forcing mechanism of these trends in association with the global sea-surface temperature (SST) variations on the interannual and inter-decadal timescales. Results based on Singular Value Decomposition analyses (SVD) show that the interannual variability of China precipitation in boreal spring and summer can be well defined by two centers of actions for each season, which are co-varying with two interannual modes of SSTs. The first SVD modes of precipitation in spring and summer, which are centered in southeastern China and northern China, respectively, are linked to an ENSO-like mode of SSTs. The second SVD modes of precipitation in both seasons are confined to central eastern China, and are primarily linked to SST variations over the warm pool and Indian Ocean. Features of the anomalous 850-hPa winds and 700-Wa geopotential height corresponding to these modes support a physical mechanism that explains the causal links between the modal variations of precipitation and SSTs. On the decadal and longer timescale, similar causal links are found between the same modes of precipitation and SSTs, except for the case of springtime precipitation over central eastern China. For this case, while the interannual mode of precipitation is positively correlated with the interannual variations of SSTs over the warm pool and Indian Ocean; the inter-decadal mode is negatively correlated with a different SST mode, the North Pacific mode. The later is responsible for the observed downward trend of springtime precipitation over central eastern China. For all other cases, both the interannual and inter-decadal variations of precipitation can be explained by the same mode of SSTs. The upward trend

  6. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  7. Results of Vertical Scanning Interferometry (VSI) of Dissolved Borosilicate Glass: Evidence for Variable Surface Features and Global Surface Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P.; Luttge, Andreas; McGrail, B. Peter; Beig, Mikhala S.; Arvidson, Rolf S.; Cordova, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2003-10-29

    Two disparate reaction mechanisms have been invoked to explain the reactivity of glass in contact with aqueous solution. One model is based on arguments from Transition State Theory (TST), which postulates that glass dissolution rates are surface reaction controlled. Alternatively, the second model argues that release of elements from glass to solution is governed by diffusion through an altered layer that forms on the surface of glass. Vertical Scanning Interferometry (VSI) is a new technique that allows one to observe surface features of specimens exposed to solution and may, potentially, be used to distinguish between competing models. We performed a series of dissolution experiments with a suite of glass compositions from chemically simple (sodium borosilicate) to complex (sixteen component borosilicate). Dissolution rates were determined using single-pass flow-through (SPFT) apparatus at 90ºC and pH = 9 and over a solution saturation interval. Upon termination of the experiments, glass coupons were examined by VSI techniques. Effluent chemistry and VSI measurements indicate a nearly constant rate of 2.2 to 3.4 g m-2 d-1 over the solution interval; rates calculated from both methods are identical within experimental uncertainty. We argue that this glass is phase separated, and propose a model for dissolution based on the relative rates of dissolution of the two glass compositions. The data are consistent with a modified version of TST and indicate the potency of VSI methods to elucidate glass reaction mechanisms.

  8. Spatial and temporal variability of N2O in the surface groundwater: a detailed analysis from a sandy aquifer in northern Germany

    OpenAIRE

    Heide, C.; Böttcher, J.; Deurer, M.; Duijnisveld, W.; Weymann, D.; Well, R.

    2009-01-01

    The knowledge of the spatial and temporal variability of N2O concentrations in surface groundwater is the first step towards upscaling of potential indirect N2O emissions from the scale of localized samples to aquifers. This study aimed to investigate the spatial and the temporal variability of N2O concentrations at different scales in the surface groundwater of a denitrifying aquifer in northern Germany. The spatial variability of N2O concentrations in the surface groundwater was analysed at...

  9. Effects of playing surface on physiological responses and performance variables in a controlled football simulation.

    Science.gov (United States)

    Hughes, Michael G; Birdsey, Laurence; Meyers, Rob; Newcombe, Daniel; Oliver, Jon Lee; Smith, Paul M; Stembridge, Michael; Stone, Keeron; Kerwin, David George

    2013-01-01

    In spite of the increased acceptance of artificial turf in football, few studies have investigated if matches are altered by the type of surface used and no research has compared physiological responses to football activity on artificial and natural surfaces. In the present study, participants performed a football match simulation on high-quality artificial and natural surfaces. Neither mean heart rate (171 ± 9 beats · min(-1) vs. 171 ± 9 beats · min(-1); P > 0.05) nor blood lactate (4.8 ± 1.6 mM vs. 5.3 ± 1.8 mM; P > 0.05) differed between the artificial and natural surface, respectively. Measures of sprint, jumping and agility performance declined through the match simulation but surface type did not affect the decrease in performance. For example, the fatigue index of repeated sprints did not differ (P > 0.05) between the artificial, (6.9 ± 2.1%) and natural surface (7.4 ± 2.4%). The ability to turn after sprinting was affected by surface type but this difference was dependent on the type of turn. Although there were small differences in the ability to perform certain movements between artificial and natural surfaces, the results suggest that fatigue and physiological responses to football activity do not differ markedly between surface-type using the high-quality pitches of the present study.

  10. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  11. The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter

    Science.gov (United States)

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2015-01-01

    Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

  12. Low frequency variability of the Indian Ocean from TOPEX/POSEIDON sea surface height anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, Y.K.; Murty, V.S.N.; Sarma, Y.V.B.

    and off Sumatra present large variability on both seasonal and inter-annual time scales. The SSH anomalies off Sumatra show dominant influence of warm (cold) ENSO events with peak negative (positive) anomalies coinciding with El Nino (La Nina...

  13. On the role of sea surface temperature variability over the Tropical Indian Ocean in relation to summer monsoon using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Muraleedharan, P.M.; Sathe, P.V.

    The sea surface temperature (SST) variability over the tropical Indian Ocean is studied for the period January 1988 to December 1992 using the multichannel sea surface temperature (MCSST) from the NOAA series of satellites. The MCSST values were...

  14. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    November, 1985. During this period the mean heat storage in the upper 125 m water column is found to be 300 W.m-2. The net surface heat fluxes indicate a mean loss of 37 W.m-2 across the sea surface. Estimation of the heat flux divergence at residual from...

  15. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria.

    Science.gov (United States)

    Wachter, Jenny; Hill, Stuart

    2016-01-01

    Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes.

  16. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  17. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  18. Atmospheric response to multidecadal sea surface temperature variability in the Pacific Ocean (IPV) and the North Atlantic Ocean (AMV)

    Science.gov (United States)

    Elsbury, D.; Peings, Y.; Magnusdottir, G.

    2017-12-01

    Multidecadal modes of sea surface temperature (SST) variability in the Pacific and Atlantic Oceans act as forcing fields in a series of atmospheric global climate model (AGCM) simulations. These modes, Interdecadal Pacific Variability (IPV) and Atlantic Multidecadal Variability (AMV), are important regulators of global temperature, precipitation, extreme climate events (droughts and temperature extremes), and have recently been implicated as playing an important role in the global warming hiatus. Despite a growing recognition of the importance of these climate modes, the most fundamental atmospheric and climatic responses to the long-term internal variability and interplay of these two ocean basins is not well understood. In a series of 200-yr experiments using the Whole Atmosphere Community Climate Model (WACCM), the atmosphere is forced by the 9 different combinations of the AMV and IPV states (neutral, positive, negative) using a single polarity from each the IPV and the AMV, and different combinations. The atmospheric response associated with each combination of SST anomalies is investigated, with a focus on modes of variability such as the North Atlantic Oscillation (NAO) and associated temperature/precipitation variability. Of particular interest is the response related to forcing from the tropical Pacific, the stratospheric response and associated stratosphere-troposphere interactions, and the response of extreme weather events in both winter and summer. These results yield a more complete understanding of climate predictability associated with each basin at multidecadal time scales, and how their respective influences interfere with each other.

  19. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    Science.gov (United States)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of

  20. Remarkable Impacts of Indian Ocean Sea Surface Temperature on Interdecadal Variability of Summer Rainfall in Southwestern China

    OpenAIRE

    Jingpeng Liu; Hong-Li Ren; Weijing Li; Jinqing Zuo

    2018-01-01

    During the boreal summer from June to August, rainfall in Southwestern China shows substantial interdecadal variabilities on timescales longer than 10 years. Based on observational analyses and numerical modeling, we investigated the characteristics of interdecadal Southwestern China summer rainfall (SWCSR) and its dynamic drivers. We find that the SWCSR is markedly impacted by the interdecadal Indian Ocean basin mode (ID-IOBM) of the sea surface temperature (SST), which may induce anomalous ...

  1. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  2. Seasonal variability of near surface soil water and groundwater tables in Florida : phase II.

    Science.gov (United States)

    2008-01-01

    The seasonal high groundwater table (SHGWT) is a critical measure for design projects requiring : surface water permits including roadway design and detention or retention pond design. Accurately : measuring and, more importantly, predicting water ta...

  3. Observed variability of sea surface salinity and thermal inversions in the Lakshadweep Sea during contrast monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Johnson, Z.; Salgaonkar, G.; Nisha, K.; Rajan, C.K.; Rao, R.R.

    a weak (2002) monsoon. The resultant near-surface thermal inversions also have shown large differences in the life cycle and depth of occurrence between these two winters. Citation: Gopalakrishna, V. V., Z. Johnson, G. Salgaonkar, K. Nisha, C. K...

  4. Far Eastern Pacific Fresh Pool surface salinity variability observed by SMOS and Aquarius sensors over the period 2010-2012

    Science.gov (United States)

    Reul, Nicolas; Alory, Gael; Maes, Christophe; Illig, Serena; Chapron, Bertrand

    2013-04-01

    The seasonal and interannual variability of the Sea Surface Salinity (SSS) deduced from SMOS and Aquarius/SAC-D satellite missions are analyzed over the period 2010-2012 in the Far Eastern Pacific Fresh Pool. The lowest values of salinity in surface layers (migration of the Intertropical Convergence Zone (ITCZ) over Central America (Alory et al., 2012). During the boreal winter, as the ITCZ moves southward, the north-easterly Panama gap wind creates a south-westward jet-like current in its path with a dipole of Ekman pumping/eddies on its flanks. As a result, upwelling in the Panama Bight brings cold and salty waters to the surface which erode the fresh pool on its eastern side while surface currents stretch the pool westward. The present study focuses on the fresh pool patterns ranging from the seasonal and interannual variability over the last 3 year period. Each year, satellite SSS products reveal the erosion of the fresh pool by the Panama upwelling. Compared to the SSS climatology from the World Ocean Atlas, satellite SSS data systematically exhibit fresher surface water (by ~0.5 to 1 unit in SSS) just after the occurrence of the maximum SSS reached in the region during the Panama upwelling events (April-May). Using Tropical Rainfall Measuring Mission (TRMM) data, we found that these fresh anomalies coincide with local excess precipitation. Moreover, except during the boreal winter 2011, saltier surface waters than in the climatology were observed during the intensification phase of the Panama upwelling events (Fev-March). Using ASCAT sensor surface winds, TRMM data, surface current deduced from altimeter data combined with the satellite SSS, the study will analyze how these observed SSS anomalies could be related to the interannual variability in the dominant physical mechanisms involved in the freshpool dynamics. A particular focus will be set on the consistency between SMOS and Aquarius observations and on the potential role of the surface freshwater

  5. Lower limb kinematic variability in dancers performing drop landings onto floor surfaces with varied mechanical properties.

    Science.gov (United States)

    Reeve, Helen K; Hopper, Luke S; Elliott, Bruce C; Ackland, Timothy R

    2013-08-01

    Elite dancers perform highly skilled and consistent movements. These movements require effective regulation of the intrinsic and extrinsic forces acting within and on the body. Customized, compliant floors typically used in dance are assumed to enhance dance performance and reduce injury risk by dampening ground reaction forces during tasks such as landings. As floor compliance can affect the extrinsic forces applied to the body, secondary effects of floor properties may be observed in the movement consistency or kinematic variability exhibited during dance performance. The aim of this study was to investigate the effects of floor mechanical properties on lower extremity kinematic variability in dancers performing landing tasks. A vector coding technique was used to analyze sagittal plane knee and ankle joint kinematic variability, in a cohort of 12 pre-professional dancers, through discrete phases of drop landings from a height of 0.2m. No effect on kinematic variability was observed between floors, indicating that dancers could accommodate the changing extrinsic floor conditions. Future research may consider repeat analysis under more dynamic task constraints with a less experienced cohort. However, knee/ankle joint kinematic variability was observed to increase late in the landing phase which was predominantly comprised of knee flexion coupled with the terminal range of ankle dorsiflexion. These findings may be the result of greater neural input late in the landing phase as opposed to the suggested passive mechanical interaction of the foot and ankle complex at initial contact with a floor. Analysis of joint coordination in discrete movement phases may be of benefit in identifying intrinsic sources of variability in dynamic tasks that involve multiple movement phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Dental microwear texture analysis of extant sika deer with considerations on inter-microscope variability and surface preparation protocols

    Directory of Open Access Journals (Sweden)

    Mugino O. Kubo

    2017-12-01

    Full Text Available Recently, dental microwear texture analysis (DMTA has been applied to various kinds of vertebrates to infer dietary preference. More data are needed on inter-microscope variability to assure the objectivity and repeatability of this method. In the present paper, we investigated inter-microscope variability between two confocal laser microscopes with different specifications, as well as variability due to different protocols applied to the obtained surface before DMTA. We used two different methods of DMTA: the scale sensitive fractal analysis (SSFA and the surface texture analysis (STA. We collected DMTA data of extant Japanese sika deer populations with varying diets. We found that different protocols produced significantly different results for both SSFA and STA, whereas nearly two thirds of the parameters were not significantly different between the machines when applying the same pre-analysis protocol. Finally, we analyzed DMTA data of 244 sika deer from 11 populations. Twenty nine parameters were significantly different among the populations. Tooth enamel surface of grazing sika deer is dominated by a number of well-aligned scratches, whereas that of browsing deer is more flattened and characterized by more sporadic pits. Therefore, DMTA can identify intraspecific variation in diets, which is smaller than the interspecific dietary variation in extant ruminants.

  7. Biological variables for the site survey of surface ecosystems - existing data and survey methods

    International Nuclear Information System (INIS)

    Kylaekorpi, Lasse; Berggren, Jens; Larsson, Mats; Liberg, Maria; Rydgren, Bernt

    2000-06-01

    In the process of selecting a safe and environmentally acceptable location for the deep level repository of nuclear waste, site surveys will be carried out. These site surveys will also include studies of the biota at the site, in order to assure that the chosen site will not conflict with important ecological interests, and to establish a thorough baseline for future impact assessments and monitoring programmes. As a preparation to the site survey programme, a review of the variables that need to be surveyed is conducted. This report contains the review for some of those variables. For each variable, existing data sources and their characteristics are listed. For those variables for which existing data sources are inadequate, suggestions are made for appropriate methods that will enable the establishment of an acceptable baseline. In this report the following variables are reviewed: Fishery, Landscape, Vegetation types, Key biotopes, Species (flora and fauna), Red-listed species (flora and fauna), Biomass (flora and fauna), Water level, water retention time (incl. water body and flow), Nutrients/toxins, Oxygen concentration, Layering, stratification, Light conditions/transparency, Temperature, Sediment transport, (Marine environments are excluded from this review). For a major part of the variables, the existing data coverage is most likely insufficient. Both the temporal and/or the geographical resolution is often limited, which means that complementary surveys must be performed during (or before) the site surveys. It is, however, in general difficult to make exact judgements on the extent of existing data, and also to give suggestions for relevant methods to use in the site surveys. This can be finally decided only when the locations for the sites are decided upon. The relevance of the different variables also depends on the environmental characteristics of the sites. Therefore, we suggest that when the survey sites are selected, an additional review is

  8. Biological variables for the site survey of surface ecosystems - existing data and survey methods

    Energy Technology Data Exchange (ETDEWEB)

    Kylaekorpi, Lasse; Berggren, Jens; Larsson, Mats; Liberg, Maria; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2000-06-01

    In the process of selecting a safe and environmentally acceptable location for the deep level repository of nuclear waste, site surveys will be carried out. These site surveys will also include studies of the biota at the site, in order to assure that the chosen site will not conflict with important ecological interests, and to establish a thorough baseline for future impact assessments and monitoring programmes. As a preparation to the site survey programme, a review of the variables that need to be surveyed is conducted. This report contains the review for some of those variables. For each variable, existing data sources and their characteristics are listed. For those variables for which existing data sources are inadequate, suggestions are made for appropriate methods that will enable the establishment of an acceptable baseline. In this report the following variables are reviewed: Fishery, Landscape, Vegetation types, Key biotopes, Species (flora and fauna), Red-listed species (flora and fauna), Biomass (flora and fauna), Water level, water retention time (incl. water body and flow), Nutrients/toxins, Oxygen concentration, Layering, stratification, Light conditions/transparency, Temperature, Sediment transport, (Marine environments are excluded from this review). For a major part of the variables, the existing data coverage is most likely insufficient. Both the temporal and/or the geographical resolution is often limited, which means that complementary surveys must be performed during (or before) the site surveys. It is, however, in general difficult to make exact judgements on the extent of existing data, and also to give suggestions for relevant methods to use in the site surveys. This can be finally decided only when the locations for the sites are decided upon. The relevance of the different variables also depends on the environmental characteristics of the sites. Therefore, we suggest that when the survey sites are selected, an additional review is

  9. The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability

    Science.gov (United States)

    Ciarniello, M.; Raponi, A.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Kappel, D.; Rousseau, B.; Arnold, G.; Capria, M. T.; Barucci, M. A.; Quirico, E.; Longobardo, A.; Kuehrt, E.; Mottola, S.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Migliorini, A.; Zinzi, A.; Palomba, E.; Schmitt, B.; Piccioni, G.; Cerroni, P.; Ip, W.-H.; Rinaldi, G.; Salatti, M.

    2016-11-01

    VIRTIS-M observations of the nucleus of comet 67P/Churyumov-Gerasimenko acquired from 2014 August to 2015 May have been analysed to investigate surface temporal variability at both seasonal and diurnal scales. The measured reflectance spectra are studied by means of comet spectral indicators (CSI) such as slopes in the visible and infrared ranges, and 3.2 μm band area and band centre. CSI maps derived from data acquired at different heliocentric distances (from 3.62 to 1.72 au) along the inbound leg of the comet's orbit are used to infer surface water ice abundance. We measure a global scale enrichment of water ice from 2014 August to 2015 May across the body of the comet, along with variability at small spatial scale, possibly related with the local insolation conditions. Analysis of water ice diurnal variability is performed on 2014 August observations. Water ice appears at the border of receding shadows in the neck of the comet (Hapi), sublimating in less than 1 h, after exposure to sunlight. As similar variability is not observed in other regions of the comet, we interpreted this as the expression of a diurnal cycle of sublimation and re-condensation of water ice, triggered by sudden shadowing produced on the neck by the body and the head of the nucleus.

  10. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    This paper presents an analysis of mean wind measurements from a coordinated system of long-range WindScanners. From individual scan patterns the mean wind field was reconstructed over a large area, and hence it highlights the spatial variability. From comparison with sonic anemometers, the quality...

  11. Spatio-temporal variability of five surface water quality parameters in ...

    African Journals Online (AJOL)

    Variability of salinity, temperature, pH, dissolved oxygen and turbidity in the temporarily open/closed Swartvlei estuarine system, measured from 1991 to 2013, was investigated at various temporal (seasonal, estuarine open/closed phase, long-term) and spatial (inter- and intra-waterbody) scales. Longitudinal pH and salinity ...

  12. Self-Organization Maps for Analyzing the Black Sea Bio-Physical Variability and Surface Wind Forcing

    Science.gov (United States)

    Chu, P. C.; Gulher, E.

    2014-12-01

    Spatial and temporal variability of the Black Sea surface circulation and chlorophyll-a concentration with the link to the surface winds is investigated using the self-organizing maps (SOMs) on the satellite data from Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and Quick Scatterometer (QuikSCAT). Six spatial patterns with temporal variability are identified for the surface currents: Pattern-1 (Sevastopol Cyclonic and Batumi Dipole Eddies, 21%) Pattern-2 (Cyclonic RIM Current and Anti-cyclonic Batumi Eddy, 16%), Pattern-3 (Anti-cyclonic Sevastopol and Batumi Eddies, 17%), Pattern-4 (Cyclonic RIM Current and Cyclonic Batumi Eddy, 21%), Pattern-5 (Anti-cyclonic RIM Current and Batumi Dipole Eddies, 15%), Pattern-6 (Anti-cyclonic RIM Current and Multi Eddies, 10%). The bi-modal characteristics has been changed in 1999-2009 with the fall bloom being more significant than the spring bloom. The surface circulation pattern-4 (cyclonic RIM current and Batumi eddy) is associated with the occurrence of the fall bloom. Evident connection of negative NAO and negative ENSO to the pattern-4 circulation implies the large-scale atmospheric effect. Possible connection of these patterns to the climatological indices, such as the North Atlantic Oscillation (NAO) and the East Atlantic/West Russian (EAWR), oscillation are also discussed.

  13. Ice Surface Temperature Variability in the Polar Regions and the Relationships to 2 Meter Air Temperatures

    Science.gov (United States)

    Hoyer, J.; Madsen, K. S.; Englyst, P. N.

    2017-12-01

    Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over

  14. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    Science.gov (United States)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before

  15. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  16. Observed seasonal and interannual variability of the near-surface thermal structure of the Arabian Sea Warm Pool

    Science.gov (United States)

    Rao, R. R.; Ramakrishna, S. S. V. S.

    2017-06-01

    The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990-2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November-December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air-sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February-March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air-sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater

  17. The variability of surface water quality indicators in relation to watercourse typology, Czech Republic.

    Science.gov (United States)

    Langhammer, Jakub; Hartvich, Filip; Mattas, Daniel; Rödlová, Sylva; Zbořil, Aleš

    2012-06-01

    This paper examines the relationships between watercourse typology and selected indicators of long-term surface water quality for rivers in the Czech Republic. The parameters used to define watercourse typology are in accord with the Water Framework Directive 2000/60/EC outlined by the European Commission. The relationships were tested using descriptive and multivariate statistical analysis, namely cluster analysis and canonical correspondence analysis. It was found that only some of the typological parameters have a close association with indicators of surface water quality. Specifically, the parameters of altitude and geology show clear relationships with pH, calcium content, and the saprobity index of macroinvertebrates. Conversely, parameters that are strongly influenced by anthropogenic pollution show weak relationships with indicators of surface water quality. These depend instead on the presence of pollution sources rather than on natural environmental conditions.

  18. Remotely sensed sea surface temperature variability off California during a 'Santa Ana' clearing

    Science.gov (United States)

    Lynn, R. J.; Svejkovsky, J.

    1984-01-01

    Multichannel atmospheric correction equations for the NOAA 6 proposed by Bernstein (1982) and by McClain (1981) are evaluated by using satellite and in situ data collected over and in the Southern California Bight. The temporal and spatial variation of sea surface temperature over small scales is estimated from the data, and the effect of this variation in matching satellite and in situ data sets is discussed. Changes in the temperature fields between images are examined for diurnal variation and for surface advection of horizontal temperature gradients.

  19. On the intrinsic timescales of temporal variability in measurements of the surface solar radiation

    Directory of Open Access Journals (Sweden)

    M. Bengulescu

    2018-01-01

    Full Text Available This study is concerned with the intrinsic temporal scales of the variability in the surface solar irradiance (SSI. The data consist of decennial time series of daily means of the SSI obtained from high-quality measurements of the broadband solar radiation impinging on a horizontal plane at ground level, issued from different Baseline Surface Radiation Network (BSRN ground stations around the world. First, embedded oscillations sorted in terms of increasing timescales of the data are extracted by empirical mode decomposition (EMD. Next, Hilbert spectral analysis is applied to obtain an amplitude-modulation–frequency-modulation (AM–FM representation of the data. The time-varying nature of the characteristic timescales of variability, along with the variations in the signal intensity, are thus revealed. A novel, adaptive null hypothesis based on the general statistical characteristics of noise is employed in order to discriminate between the different features of the data, those that have a deterministic origin and those being realizations of various stochastic processes. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency variability components, irrespective of the geographical location or of the local climate. Moreover, the amplitude of this latter feature is shown to be modulated by variations in the yearly cycle, which is indicative of nonlinear multiplicative cross-scale couplings. The study has possible implications on the modeling and the forecast of the surface solar radiation, by clearly discriminating the deterministic from the quasi-stochastic character of the data, at different local timescales.

  20. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    Science.gov (United States)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  1. Attributing seasonal pH variability in surface ocean waters to governing factors

    NARCIS (Netherlands)

    Hagens, M.; Middelburg, J.J.

    2016-01-01

    On-going ocean acidification and increasing availability of high-frequency pH data have stimulated interest to understand seasonal pH dynamics in surface waters. Here we show that it is possible to accurately reproduce observed pH values by combining seasonal changes in temperature (T), dissolved

  2. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders

    L.Biofilm formation on surfaces in food production and processing can deteriorate the quality of food products and be a hazard to consumers. The food industry currently uses a number of approaches to either remove biofilm or prevent its formation. Due to the inherent resilience of bacteria...

  3. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance

    Directory of Open Access Journals (Sweden)

    C. Bassani

    2012-06-01

    Full Text Available Current aerosol retrievals based on visible and near infrared remote-sensing, are prone to loss of accuracy, where the assumptions of the applied algorithm are violated. This happens mostly over land and it is related to misrepresentation of specific aerosol conditions or surface properties. New satellite missions, based on high spectral resolution instruments, such as PRISMA (Hyperspectral Precursor of the Application Mission, represent a valuable opportunity to improve the accuracy of τa550 retrievable from a remote-sensing system developing new atmospheric measurement techniques. This paper aims to address the potential of these new observing systems in more accurate retrieving τa550, specifically over land in heterogeneous and/or homogeneous areas composed by dark and bright targets. The study shows how the variation of the hyperspectral observed radiance can be addressed to recognise a variation of Δτa550 = 0.02. The goal has been achieved by using simulated radiances by combining two aerosol models (urban and continental and two reflecting surfaces: dark (represented by water and bright (represented by sand for the PRISMA instrument, considering the environmental contribution of the observed radiance, i.e., the adjacency effect. Results showed that, in the continental regime, the expected instrument sensitivity would allow for retrieval accuracy of the aerosol optical thickness at 550 nm of 0.02 or better, with a dark surface surrounded by dark areas. The study also showed that for the urban regime, the surface plays a more significant role, with a bright surface surrounded by dark areas providing favourable conditions for the aerosol load retrievals, and dark surfaces representing less suitable situations for inversion independently of the surroundings. However, over all, the results obtained provide evidence that high resolution observations of Earth spectrum between

  4. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for In-Situ Mars Surface Sample Analysis

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Jerman, G. A.; Harvey, R. P.; Doloboff, I. J.; Neidholdt, E. L.

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Sciences (ROSES), will build upon previous miniaturized SEM designs and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. This project is a collaboration between NASA Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), electron gun and optics manufacturer Applied Physics Technologies, and small vacuum system manufacturer Creare. Dr. Ralph Harvery and environmental SEM (ESEM) inventor Dr. Gerry Danilatos serve as advisors to the team. Variable pressure SEMs allow for fine (nm-scale) resolution imaging and micron-scale chemical study of materials without sample preparation (e.g., carbon or gold coating). Charging of a sample is reduced or eliminated by the gas surrounding the sample. It is this property of ESEMs that make them ideal for locations where sample preparation is not yet feasible, such as the surface of Mars. In addition, the lack of sample preparation needed here will simplify the sample acquisition process and allow caching of the samples for future complementary payload use.

  5. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  6. Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

  7. Seasonally Resolved Surface Water (delta)14C Variability in the Lombok Strait: A Coralline Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T P; Fallon, S J; Moore, M D; Schrag, D P; Charles, C D

    2008-04-23

    We have explored surface water mixing in the Lombok Strait through a {approx}bimonthly resolved surface water {Delta}{sup 14}C time-series reconstructed from a coral in the Lombok Strait that spans 1937 through 1990. The prebomb surface water {Delta}{sup 14}C average is -60.5{per_thousand} and individual samples range from -72{per_thousand} to 134{per_thousand}. The annual average post-bomb maximum occurs in 1973 and is 122{per_thousand}. The timing of the post-bomb maximum is consistent with a primary subtropical source for the surface waters in the Indonesian Seas. During the post-bomb period the coral records regular seasonal cycles of 5-20{per_thousand}. Seasonal high {Delta}{sup 14}C occur during March-May (warm, low salinity), and low {Delta}{sup 14}C occur in September (cool, higher salinity). The {Delta}{sup 14}C seasonality is coherent and in phase with the seasonal {Delta}{sup 14}C cycle observed in Makassar Strait. We estimate the influence of high {Delta}{sup 14}C Makassar Strait (North Pacific) water flowing through the Lombok Strait using a two endmember mixing model and the seasonal extremes observed at the two sites. The percentage of Makassar Strait water varies between 16 and 70%, and between 1955 and 1990 it averages 40%. During La Nina events there is a higher percentage of Makassar Strait (high {Delta}{sup 14}C) water in the Lombok Strait.

  8. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  9. The Impact of Reduced SST Gradients and MJO-like Tropical Variability on Surface Winds at Midlatitude Upwelling Sites

    Science.gov (United States)

    Arnold, N. P.; Tziperman, E.

    2012-12-01

    Sediment core data suggest that sea surface temperatures (SST) at present-day sites of wind-driven coastal upwelling were much warmer during the early Pliocene, and only cooled gradually over the last 3-4My. Several hypotheses have been advanced to explain the Pliocene warm anomalies, including a globally deeper thermocline and weaker upwelling-favorable winds, but it remains unclear if the SST anomalies reflect differences in upwelling intensity or in subsurface water properties. In this study we explore two factors which might affect the surface winds responsible for midlatitude upwelling: (1) differences in the large-scale SST distribution and their impact on the atmospheric general circulation, and (2) teleconnections from changes in tropical convective variability. We run the NCAR Community Atmosphere Model with a spectrum of meridional and zonal surface temperature gradients, ranging from a modern climatology to a low-gradient state reminiscent of the early Pliocene. A prescribed forcing is then added to the model to stimulate tropical convective variability based on the observed Madden-Julian Oscillation (MJO), which can impact midlatitude sites by exciting atmospheric Rossby waves. Quantitative metrics of along-shore wind stress at several midlatitude sediment core sites are presented as a function of the prescribed SST gradients and tropical forcing amplitude.

  10. Spatiotemporal Variability of Land Surface Phenology in China from 2001–2014

    Directory of Open Access Journals (Sweden)

    Zhaohui Luo

    2017-01-01

    Full Text Available Land surface phenology is a highly sensitive and simple indicator of vegetation dynamics and climate change. However, few studies on spatiotemporal distribution patterns and trends in land surface phenology across different climate and vegetation types in China have been conducted since 2000, a period during which China has experienced remarkably strong El Niño events. In addition, even fewer studies have focused on changes of the end of season (EOS and length of season (LOS despite their importance. In this study, we used four methods to reconstruct Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI dataset and chose the best smoothing result to estimate land surface phenology. Then, the phenophase trends were analyzed via the Mann-Kendall method. We aimed to assess whether trends in land surface phenology have continued since 2000 in China at both national and regional levels. We also sought to determine whether trends in land surface phenology in subtropical or high altitude areas are the same as those observed in high latitude areas and whether those trends are uniform among different vegetation types. The result indicated that the start of season (SOS was progressively delayed with increasing latitude and altitude. In contrast, EOS exhibited an opposite trend in its spatial distribution, and LOS showed clear spatial patterns over this region that decreased from south to north and from east to west at a national scale. The trend of SOS was advanced at a national level, while the trend in Southern China and the Tibetan Plateau was opposite to that in Northern China. The transaction zone of the SOS within Northern China and Southern China occurred approximately between 31.4°N and 35.2°N. The trend in EOS and LOS were delayed and extended, respectively, at both national and regional levels except that of LOS in the Tibetan Plateau, which was shortened by delayed SOS onset more than by delayed EOS onset. The

  11. Global-scale modes of surface temperature variability on interannual to century timescales

    Science.gov (United States)

    Mann, Michael E.; Park, Jeffrey

    1994-01-01

    Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.

  12. On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability

    Science.gov (United States)

    Jacox, Michael G.; Alexander, Michael A.; Stock, Charles A.; Hervieux, Gaëlle

    2017-03-01

    The California Current System (CCS) is a biologically productive Eastern Boundary Upwelling System that experiences considerable environmental variability on seasonal and interannual timescales. Given that this variability drives changes in ecologically and economically important living marine resources, predictive skill for regional oceanographic conditions is highly desirable. Here, we assess the skill of seasonal sea surface temperature (SST) forecasts in the CCS using output from Global Climate Forecast Systems in the North American Multi-Model Ensemble (NMME), and describe mechanisms that underlie SST predictability. A simple persistence forecast provides considerable skill for lead times up to 4 months, while skill above persistence is mostly confined to forecasts of late winter/spring and derives primarily from predictable evolution of ENSO-related variability. Specifically, anomalously weak (strong) equatorward winds are skillfully forecast during El Niño (La Niña) events, and drive negative (positive) upwelling anomalies and consequently warm (cold) temperature anomalies. This mechanism prevails during moderate to strong ENSO events, while years of ENSO-neutral conditions are not associated with significant forecast skill in the wind or significant skill above persistence in SST. We find also a strong latitudinal gradient in predictability within the CCS; SST forecast skill is highest off the Washington/Oregon coast and lowest off southern California, consistent with variable wind forcing being the dominant driver of SST predictability. These findings have direct implications for regional downscaling of seasonal forecasts and for short-term management of living marine resources.

  13. Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D.

    Science.gov (United States)

    Linsley, B K; Wellington, G M; Schrag, D P

    2000-11-10

    We present a 271-year record of Sr/Ca variability in a coral from Rarotonga in the South Pacific gyre. Calibration with monthly sea surface temperature (SST) from satellite and ship measurements made in a grid measuring 1 degrees by 1 degrees over the period from 1981 to 1997 indicates that this Sr/Ca record is an excellent proxy for SST. Comparison with SST from ship measurements made since 1950 in a grid measuring 5 degrees by 5 degrees also shows that the Sr/Ca data accurately record decadal changes in SST. The entire Sr/Ca record back to 1726 shows a distinct pattern of decadal variability, with repeated decadal and interdecadal SST regime shifts greater than 0. 75 degrees C. Comparison with decadal climate variability in the North Pacific, as represented by the Pacific Decadal Oscillation index (1900-1997), indicates that several of the largest decadal-scale SST variations at Rarotonga are coherent with SST regime shifts in the North Pacific. This hemispheric symmetry suggests that tropical forcing may be an important factor in at least some of the decadal variability observed in the Pacific Ocean.

  14. Seasonal and inter-annual variability of sea surface temperature at the east coast fishing area off Peninsular Malaysia

    Science.gov (United States)

    Nurul Ridani, S.; Mustapha, M. A.; Lihan, T.; Ku Kassim, K. Y.; Raja Bidin, R. H.

    2015-09-01

    Empirical orthogonal function (EOF) analysis was used to study a time-series of the aqua MODIS data imageries in the exclusive economic zone of east coast off Peninsular Malaysia. Temporal and spatial characteristics were examined to determine the dominant pattern of sea surface temperature (SST) variability from January 2003 to December 2011.The data were analysed from daily Level 1A (1km spatial resolution) to monthly composites Level 3 data using SeaDAS and ERDAS imagine software. Four modes was obtained from the analysis with the highest variance (7.9%) represented by mode 1 which explained the seasonal cycle. Mode 2 (5.11 % of total variance) showed positive and negative peak signal during March and April and in October and November with variability near the Kelantan and Pahang waters that indicated the inter monsoon. Mode 3 (3.8 % of variance) shows variability near the Terengganu, Kelantan and Johor waters to the open sea during July and August and in May and June representing the Southwest monsoon. Mode 4 (3.36 %) showed positive signal during November and December with strong signal near Pahang and Kelantan waters while weak signal was detected near Terengganu and Kelantan's open sea representing the Northeast monsoon. The SST variability was influenced by the monsoonal system which originated by the wind forcing condition that influences circulation in the study area.

  15. Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    M. B. K. Moorthy

    2012-01-01

    Full Text Available The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subject to variable viscosity are numerically analyzed, by taking into account the diffusion-thermo (Dufour and thermal-diffusion (Soret effects. The governing equations of continuity, momentum, energy, and concentrations are transformed into nonlinear ordinary differential equations, using similarity transformations, and then solved by using Runge-Kutta-Gill method along with shooting technique. The parameters of the problem are variable viscosity, buoyancy ratio, Lewis number, Prandtl number, Dufour effect, Soret effect, and Schmidt number. The velocity, temperature, and concentration distributions are presented graphically. The Nusselt number and Sherwood number are also derived and discussed numerically.

  16. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    Global climate models (GCMs) are a vital tool for ensuring the prosperity and security of modern society. They allow scientists to understand complex interactions between the air, ocean, and land, and are used by policymakers to project future changes in climate on regional and global scales. The previous generation of GCMs, represented by CMIP3 models, are shown to be deficient in their representation of precipitation over the western United States, a region that depends critically on wintertime orographically enhanced precipitation for drinking water. In addition, aerosol-cloud interactions were prescribed in CMIP3 models, which decreased the value of their representation of global aerosol, cloud, and precipitation features. This has potentially large impacts on global radiation budgets, since aerosol-cloud interactions affect the spatial extent and magnitude of clouds and precipitation. The newest suite of GCMs, the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, includes state-of-the-art parameterizations of small-scale features such as aerosols, clouds, and precipitation, and is widely used by the scientific community to learn more about the climate system. The Community Earth System Model (CESM), in conjunction with observations, provides several simulations to investigate the role of aerosols, clouds, and precipitation in the climate system and how they interact with larger modes of climate variability. We show that CESM produces a realistic spatial distribution of precipitation extremes over the western U.S., and that teleconnected signals of ENSO and the Pacific Decadal Oscillation to large-scale circulation patterns and precipitation over the western U.S. are improved when compared to CCSM3. We also discover a new semi-direct effect between dust and stratocumulus clouds over the subtropical North Atlantic, whereby boundary layer inversion strength increases during the most dusty summers due to shortwave absorption of dust above the planetary

  17. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  18. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2016-01-01

    Full Text Available This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of water carbon nanotubes when compared with the kerosene oil carbon nanotubes.

  19. Modeling Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface.

    Science.gov (United States)

    Yahya, Noorazrul; Ebert, Martin A; House, Michael J; Kennedy, Angel; Matthews, John; Joseph, David J; Denham, James W

    2017-02-01

    We assessed the association of the spatial distribution of dose to the bladder surface, described using dose-surface maps, with the risk of urinary dysfunction. The bladder dose-surface maps of 754 participants from the TROG 03.04-RADAR trial were generated from the volumetric data by virtually cutting the bladder at the sagittal slice, intersecting the bladder center-of-mass through to the bladder posterior and projecting the dose information on a 2-dimensional plane. Pixelwise dose comparisons were performed between patients with and without symptoms (dysuria, hematuria, incontinence, and an International Prostate Symptom Score increase of ≥10 [ΔIPSS10]). The results with and without permutation-based multiple-comparison adjustments are reported. The pixelwise multivariate analysis findings (peak-event model for dysuria, hematuria, and ΔIPSS10; event-count model for incontinence), with adjustments for clinical factors, are also reported. The associations of the spatially specific dose measures to urinary dysfunction were dependent on the presence of specific symptoms. The doses received by the anteroinferior and, to lesser extent, posterosuperior surface of the bladder had the strongest relationship with the incidence of dysuria, hematuria, and ΔIPSS10, both with and without adjustment for clinical factors. For the doses to the posteroinferior region corresponding to the area of the trigone, the only symptom with significance was incontinence. A spatially variable response of the bladder surface to the dose was found for symptoms of urinary dysfunction. Limiting the dose extending anteriorly might help reduce the risk of urinary dysfunction. Copyright © 2016. Published by Elsevier Inc.

  20. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves.

    Science.gov (United States)

    Destgeer, Ghulam; Jung, Jin Ho; Park, Jinsoo; Ahmed, Husnain; Sung, Hyung Jin

    2017-01-03

    A sessile droplet of water carrying polystyrene microparticles of different diameters was uniformly exposed to high frequency surface acoustic waves (SAWs) produced by an interdigitated transducer (IDT). We investigated the concentration behavior of the microparticles as the SAWs generated a strong acoustic streaming flow (ASF) inside the water droplet and exerted a direct acoustic radiation force (ARF) on the suspended particles, the magnitude of which depended upon the particle diameter. As a result of the ARF, the microparticles were concentrated according to their diameters at different positions inside the sessile droplet placed in the path of the SAW, right in front of the IDT. The microparticle concentration behavior changed as the sessile droplet contact angle with the substrate was varied by adding surfactant to the water or by gradually evaporating the water. The positions at which the smaller and larger microparticles were concentrated remained distinguishable, even at very different experimental conditions. The long-term exposure of the droplets to the SAWs was accompanied by the gradual evaporation of the carrier fluid, which dynamically changed the droplet contact angle as well as the concentration of particles. Complete evaporation of the fluid left behind several concentrated yet separated clusters of particles on the substrate surface. The effect of the droplet contact angle on particles' concentration behavior and consequent separation of particles has been uniquely studied in this SAW-based report.

  1. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    Science.gov (United States)

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length.

    Science.gov (United States)

    Rufin, M A; Gruetzner, J A; Hurley, M J; Hawkins, M L; Raymond, E S; Raymond, J E; Grunlan, M A

    2015-04-14

    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO) 3 Si(CH 2 ) 2 -oligodimethylsiloxane 13 - block -poly(ethylene oxide) n -OCH 3 ( n = 3, 8, and 16). Conventional PEO-silane analogues ( n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance.

  3. Surface Freshwater Storage and Variability in the Amazon Basin from Multi-Satellite Observations, 1993-2007

    Science.gov (United States)

    Papa, Fabrice; Frappart, Frederic; Guntner, Andreas; Prigent, Catherine; Aires, Filipe; Getirana, Augusto; Maurer, Raffael

    2013-01-01

    The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatio-temporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of approx. 1200 cu km is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and flood-plains of the Amazon basin was, respectively, approx. 230 (approx. 40%) and 210 (approx. 50%) cu km below the 1993-2007 average. This new 15year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.

  4. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  5. North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Bustamante, E.; Jimenez, P.A. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Navarro, J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Xoplaki, E. [University of Bern, Institute of Geography and Oeschger Centre for Climate Change Research, Bern (Switzerland); Montavez, J.P. [Universidad de Murcia, Departamento de Fisica, Murcia (Spain)

    2012-01-15

    The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992-2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified

  6. Large-scale sea surface temperature variability from satellite and shipboard measurements

    Science.gov (United States)

    Bernstein, R. L.; Chelton, D. B.

    1985-01-01

    A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor.

  7. Impacts of Climate Variability on Surface Energy and Water Budgets in sub-Saharan Africa

    Science.gov (United States)

    Harrison, Laura Suzanne

    According to the IPCC Fifth Assessment Report, climate change will exacerbate current climate and non-climate stressors on agricultural systems in sub-Saharan Africa. This will adversely impact food security and the wellbeing of communities. Small-scale farmers grow more than 90 percent of the food produced in the region and many households depend on productive local growing conditions to support for their families. A better understanding of recent and near future climate constraints is important for identifying future food security risks and locally-appropriate adaptation strategies. This dissertation research examines impacts of weather and climate on vegetation productivity in geographically diverse areas of east Africa and the semi-arid Sahel. The focus of this research is how surface energy and water budgets respond to variations in rainfall and temperature. It asks the following questions: Where will warmer temperature pose a hazard to rainfed agriculture in the Sahel in the next 20 years? What environment and weather conditions led to above average surface temperature during the recent decade in east Africa? How have declines in rainfall since the 1980s impacted vegetation productivity and hydrology in Tanzania? The research incorporates a variety of earth observation data, including historical records from in situ, model-derived, and satellite-observed sources and projections from global climate models. A major contribution is the identification of specific areas, mainly in semi-arid climate zones, where increases in temperature and decreases to rainfall have large negative impacts on vegetation productivity. The research also presents new methods for evaluating land-atmosphere interactions in the context of hazards to vegetation.

  8. Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors.

    Science.gov (United States)

    Han, Ning; Pang, Liang; Xu, Jun; Hyun, Hyesun; Park, Jinho; Yeo, Yoon

    2017-05-01

    To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to β-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.

  9. On the behavior of surface electromyographic variables during the menstrual cycle

    International Nuclear Information System (INIS)

    Soares, Fabiano Araujo; Salomoni, Sauro Emerick; De Carvalho, Joao Luiz Azevedo; Nascimento, Francisco Assis de Oliveira; Veneziano, Wilson Henrique; Pires, Kenia Fonseca; Da Rocha, Adson Ferreira

    2011-01-01

    The goal of this work is to study the behavior of electromyographic variables during the menstrual cycle. Ten female volunteers (24.0 ± 2.8 years of age) performed fatiguing isometric contractions, and electromyographic signals were measured on the biceps brachii in four phases of the menstrual cycle. Adaptations of classical algorithms were used for the estimation of the root mean square (RMS) value, absolute rectified value (ARV), mean frequency (MNF), median frequency (MDF), and conduction velocity (CV). The CV estimator had a higher (p = 0.002) rate of decrease at the end of the follicular phase and at the end of the luteal phase. The MDF (p = 0.002) and MNF (p = 0.004) estimators had a higher rate of decrease at the beginning of the follicular phase and at the end of the luteal phase. No significant differences between phases of the menstrual cycle were detected with the ARV and RMS estimators (p > 0.05). These results suggest that the behavior of the muscles in women presents different characteristics during different phases of the menstrual cycle. In particular, women were more susceptible to fatigue at the end of the luteal phase

  10. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    Science.gov (United States)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  11. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime

    Science.gov (United States)

    Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei

    2017-11-01

    In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width

  12. Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean

    Science.gov (United States)

    Sutton, A. J.; Wanninkhof, R.; Sabine, C. L.; Feely, R. A.; Cronin, M. F.; Weller, R. A.

    2017-06-01

    Variability and change in the ocean sink of anthropogenic carbon dioxide (CO2) have implications for future climate and ocean acidification. Measurements of surface seawater CO2 partial pressure (pCO2) and wind speed from moored platforms are used to calculate high-resolution CO2 flux time series. Here we use the moored CO2 fluxes to examine variability and its drivers over a range of time scales at four locations in the Pacific Ocean. There are significant surface seawater pCO2, salinity, and wind speed trends in the North Pacific subtropical gyre, especially during winter and spring, which reduce CO2 uptake over the 10 year record of this study. Starting in late 2013, elevated seawater pCO2 values driven by warm anomalies cause this region to be a net annual CO2 source for the first time in the observational record, demonstrating how climate forcing can influence the timing of an ocean region shift from CO2 sink to source.

  13. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island

    Science.gov (United States)

    Hart, Melissa A.; Sailor, David J.

    2009-03-01

    The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

  14. Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing

    Science.gov (United States)

    Haekkinen, Sirpa

    1995-01-01

    A fully prognostic Arctic ice-ocean model is used to study the interannual variability of deepwater formation in the Greenland Sea Gyre based on the simulations for the Arctic ice-ocean system for the period 1955 and 1960 - 1985. The model uses monthly climatology for thermodynamic forcing components (such as air temperature and cloudiness), together with constant annual net precipitation and river runoff. The daily wind forcing is derived from analyzed sea level air pressures from the National Center for Atmospheric Research (NCAR). In summary, the model shows that the occurence of deep convection in the Greenland Sea Gyre is controlled by the extensive Fram Strait ice export and/or local wind conditions in the Greenland Sea. In the latter case the weakening of the local wind curl allows the Polar Front to move eastward. The movement of the Polar Front causes adverse ice conditions, often together with much larger than normal ice export from the Arctic, such as in 1968, which can block convection in the gyre. The density difference between upper and lower layers is investigated as an indication of water mass formation through convection, occurring as strong diffusion in the model. The model-simulated density difference between the average top 100 m and deep levels reveals that the period 1960 - 1985 had only a few distinct years with weak stratification, and, especially, the model predicts no deep convection since the nid-1970s. The common factor for the years of the weakest decrease of the model-predicted heat content of the upper 2000 m which can, to a high degree, be explained by local heat loss.

  15. Global Surface Ozone Variability and Trends - The TOAR database and metrics products

    Science.gov (United States)

    Schultz, Martin

    2017-04-01

    In the context of the first Tropospheric Ozone Assessment Report (TOAR) the world's largest collection of surface ozone data has been assembled in a database at Forschungszentrum Juelich, Germany. Data span the period from 1970 to 2014. Station metadata have been harmonized and extended with information from several global high-resolution datasets. This allows for a first, globally uniform station characterisation as "urban" or "rural". Extensive quality control of the metadata and data was performed and feedback provided to original data providers. This harmonized database was then used to generate hundreds of aggregated aggregate statistics and ozone metrics for use in the analysis of trends in human health, vegetation, and climate impact assessments. These data products form the core data of the TOAR publications which shall become available as a special journal issue in October 2017. The presentation will provide an overview about the TOAR database and the TOAR data files, and demonstrate how they can be accessed and used. The potential for future developments will be discussed.

  16. Verification of Forecast Weather Surface Variables over Vietnam Using the National Numerical Weather Prediction System

    Directory of Open Access Journals (Sweden)

    Tien Du Duc

    2016-01-01

    Full Text Available The national numerical weather prediction system of Vietnam is presented and evaluated. The system is based on three main models, namely, the Japanese Global Spectral Model, the US Global Forecast System, and the US Weather Research and Forecasting (WRF model. The global forecast products have been received at 0.25- and 0.5-degree horizontal resolution, respectively, and the WRF model has been run locally with 16 km horizontal resolution at the National Center for Hydro-Meteorological Forecasting using lateral conditions from GSM and GFS. The model performance is evaluated by comparing model output against observations of precipitation, wind speed, and temperature at 168 weather stations, with daily data from 2010 to 2014. In general, the global models provide more accurate forecasts than the regional models, probably due to the low horizontal resolution in the regional model. Also, the model performance is poorer for stations with altitudes greater than 500 meters above sea level (masl. For tropical cyclone performance validations, the maximum wind surface forecast from global and regional models is also verified against the best track of Joint Typhoon Warning Center. Finally, the model forecast skill during a recent extreme rain event in northeast Vietnam is evaluated.

  17. Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology

    Directory of Open Access Journals (Sweden)

    Rasheed Uthman Owolabi

    2018-01-01

    Full Text Available A satisfactory model for predicting monomer conversion in free radical polymerization has been a challenge due to the complexity and rigors associated with classical kinetic models. This renders the usage of such model an exciting endeavour in the academia but not exactly so in industrial practice. In this study, the individual and interactive effects of three processing conditions (reaction temperature, reaction time and initiator concentration on monomer conversion in the solution polymerization of styrene using acetone as solvent was investigated in a batch reactor through the central composite design (CCD model of response surface methodology (RSM for experimental design, modelling and process optimization. The modelled optimization conditions are: reaction time of 30 min, reaction temperature of 120 °C, and initiator concentration of 0.1135 mol/l, with the corresponding monomer conversion of 76.82% as compared to the observed conversion of 70.86%. A robust model for predicting monomer conversion that is very suitable for routine industrial usage is thus obtained.

  18. A Conceptual Model for Spatial Grain Size Variability on the Surface of and within Beaches

    Directory of Open Access Journals (Sweden)

    Edith Gallagher

    2016-05-01

    Full Text Available Grain size on the surface of natural beaches has been observed to vary spatially and temporally with morphology and wave energy. The stratigraphy of the beach at Duck, North Carolina, USA was examined using 36 vibracores (~1–1.5 m long collected along a cross-shore beach profile. Cores show that beach sediments are finer (~0.3 mm and more uniform high up on the beach. Lower on the beach, with more swash and wave action, the sand is reworked, segregated by size, and deposited in layers and patches. At the deepest measurement sites in the swash (~−1.4 to −1.6 m NAVD88, which are constantly being reworked by the energetic shore break, there is a thick layer (60–80 cm of very coarse sediment (~2 mm. Examination of two large trenches showed that continuous layers of coarse and fine sands comprise beach stratigraphy. Thicker coarse layers in the trenches (above mean sea level are likely owing to storm erosion and storm surge elevating the shore break and swash, which act to sort the sediment. Those layers are buried as water level retreats, accretion occurs and the beach recovers from the storm. Thinner coarse layers likely represent similar processes acting on smaller temporal scales.

  19. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  20. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

    International Nuclear Information System (INIS)

    Casso-Torralba, P.; Rosa Soler, M.; Vila-Guerau de Arellano, J.; Bosveld, F.; Vermeulen, A.; Werner, C.; Moors, E.

    2008-08-01

    The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 m tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation from linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE)

  1. Reconciling Land-Ocean Moisture Transport Variability in Reanalyses with P-ET in Observationally-Driven Land Surface Models

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.

    2016-01-01

    Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC equals P minus ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P minus ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to minus 0.03 millimeters per day per decade are reduced by the adjustments to 0.016 millimeters per day per decade, much closer to the LSM P minus ET estimate (0.007 millimeters per day per decade). Neither is significant at the 90 percent level. ENSO (El Nino-Southern Oscillation)-related modulation of VMFC and P minus ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86.

  2. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2017-08-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  3. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    Science.gov (United States)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  4. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    Science.gov (United States)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  5. Variability of nutrient and thermal structure in surface waters between New Zealand and Antarctica, October 2004–January 2005

    Directory of Open Access Journals (Sweden)

    Alessandra Campanelli

    2011-04-01

    Full Text Available We describe the upper ocean thermal structure and surface nutrient concentrations between New Zealand and Antarctica along five transects that cross the Subantarctic Front, the Polar Front (PF and the southern Antarctic Circumpolar Current (ACC front. The surface water thermal structure is coupled with variations in surface nutrient concentrations, making water masses identifiable by both temperature and nutrient ranges. In particular, a strong latitudinal gradient in orthosilicate concentration is centred at the PF. On the earlier sections that extend south-west from the Campbell Plateau, orthosilicate increases sharply southward from 10–15 to 50–55 µmol l−1 between 58° S and 60° S, while surface temperature drops from 7°C to 2°C. Nitrate increases more regularly toward the south, with concentrations ranging from 10–12 µmol l−1 at 54° S to 25–30 µmol l−1 at 66° S. The same features are observed during the later transects between New Zealand and the Ross Sea, but the sharp silica and surface temperature gradients are shifted between 60° S and 64° S. Both temporal and spatial factors may influence the observed variability. The January transect suggests an uptake of silica, orthophosphate and nitrate between 63° S and 70° S over the intervening month, with an average depletion near 37%, 44% and 29%, respectively. An N/P (nitrite + nitrate/orthophosphate apparent drawdown ratio of 8.8±4.1 and an Si/N (silicic acid/nitrite + nitrate apparent drawdown ratio >1 suggest this depletion results from a seasonal diatom bloom. A southward movement of the oceanic fronts between New Zealand and the Ross Sea relative to prior measurements is consistent with reports of recent warming and changes in the ACC.

  6. Discrimination of two equine racing surfaces based on forelimb dynamic and hoof kinematic variables at the canter.

    Science.gov (United States)

    Crevier-Denoix, Nathalie; Pourcelot, Philippe; Holden-Douilly, Laurène; Camus, Mathieu; Falala, Sylvain; Ravary-Plumioën, Bérangère; Vergari, Claudio; Desquilbet, Loïc; Chateau, Henry

    2013-12-01

    The type and condition of sport surfaces affect performance and can also be a risk factor for injury. Combining the use a 3-dimensional dynamometric horseshoe (DHS), an accelerometer and high-speed cameras, variables reflecting hoof-ground interaction and maximal limb loading can be measured. The aim of the present study was to compare the effects of two racing surfaces, turf and all-weather waxed (AWW), on the forelimbs of five horses at the canter. Vertical hoof velocity before impact was higher on AWW. Maximal deceleration at impact (vertical impact shock) was not significantly different between the two surfaces, whereas the corresponding vertical force peak at impact measured by the DHS was higher on turf. Low frequency (0-200 Hz) vibration energy was also higher on turf; however high frequency (>400 Hz) vibration energy tended to be higher on AWW. The maximal longitudinal force during braking and the maximal vertical force at mid-stance were lower on AWW and their times of occurrence were delayed. AWW was also characterised by larger slip distances and sink distances, both during braking and at maximal sink. On a given surface, no systematic association was found between maximal vertical force at mid-stance and either sink distance or vertical impact shock. This study confirms the damping properties of AWW, which appear to be more efficient for low frequency events. Given the biomechanical changes induced by equestrian surfaces, combining dynamic and kinematic approaches is strongly recommended for a reliable assessment of hoof-ground interaction and maximal limb loading. Copyright © 2013. Published by Elsevier Ltd.

  7. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason

    2016-01-01

    Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.

  8. Mid-Piacenzian Variability of Nordic Seas Surface Circulation Linked to Terrestrial Climatic Change in Norway

    Science.gov (United States)

    Panitz, Sina; De Schepper, Stijn; Salzmann, Ulrich; Bachem, Paul E.; Risebrobakken, Bjørg; Clotten, Caroline; Hocking, Emma P.

    2017-12-01

    During the mid-Piacenzian, Nordic Seas sea surface temperatures (SSTs) were higher than today. While SSTs provide crucial climatic information, on their own they do not allow a reconstruction of potential underlying changes in water masses and currents. A new dinoflagellate cyst record for Ocean Drilling Program (ODP) Site 642 is presented to evaluate changes in northward heat transport via the Norwegian Atlantic Current (NwAC) between 3.320 and 3.137 Ma. The record is compared with vegetation and SST reconstructions from Site 642 and SSTs from Iceland Sea ODP Site 907 to identify links between SSTs, ocean currents, and vegetation changes. The dinocyst record shows that strong Atlantic water influence via the NwAC corresponds to higher-than-present SSTs and cool temperate vegetation during Marine Isotope Stage (MIS) transition M2-M1 and KM5. Reduced Atlantic water inflow relative to the warm stages coincides with near-modern SSTs and boreal vegetation during MIS M2, KM6, and KM4-KM2. During most of the studied interval, a strong SST gradient between Sites 642 and 907 indicates the presence of a proto-Arctic Front (AF). An absent gradient during the first half of MIS KM6, due to reduced Atlantic water influence at Site 642 and warm, presumably Atlantic water reaching Site 907, is indicative of a weakened NwAC and East Greenland Current. We conclude that repeated changes in Atlantic water influence directly affect terrestrial climate and that an active NwAC is needed for an AF to develop. Obliquity forcing may have played a role, but the correlation is not consistent.

  9. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere.

    Science.gov (United States)

    Bowers, Robert M; Clements, Nicholas; Emerson, Joanne B; Wiedinmyer, Christine; Hannigan, Michael P; Fierer, Noah

    2013-01-01

    Bacteria and fungi are ubiquitous throughout the Earth's lower atmosphere where they often represent an important component of atmospheric aerosols with the potential to impact human health and atmospheric dynamics. However, the diversity, composition, and spatiotemporal dynamics of these airborne microbes remain poorly understood. We performed a comprehensive analysis of airborne microbes across two aerosol size fractions at urban and rural sites in the Colorado Front Range over a 14-month period. Coarse (PM10-2.5) and fine (PM2.5) particulate matter samples were collected at weekly intervals with both bacterial and fungal diversity assessed via high-throughput sequencing. The diversity and composition of the airborne communities varied across the sites, between the two size fractions, and over time. Bacteria were the dominant type of bioaerosol in the collected air samples, while fungi and plants (pollen) made up the remainder, with the relative abundances of fungi peaking during the spring and summer months. As bacteria made up the majority of bioaerosol particles, we analyzed the bacterial communities in greater detail using a bacterial-specific 16S rRNA gene sequencing approach. Overall, bacterial taxonomic richness and the relative abundances of specific bacterial taxa exhibited significant patterns of seasonality. Likewise, airborne bacterial communities varied significantly between sites and across aerosol size fractions. Source-tracking analyses indicate that soils and leaves represented important sources of bacteria to the near-surface atmosphere across all locations with cow fecal bacteria also representing an important source of bioaerosols at the more rural sites during early fall and early spring. Together, these data suggest that a complex set of environmental factors, including changes in atmospheric conditions and shifts in the relative importance of available microbial sources, act to control the composition of microbial bioaerosols in rural and

  10. Adsorption of Polyanion onto Large Alpha Alumina Beads with Variably Charged Surface

    Directory of Open Access Journals (Sweden)

    Tien Duc Pham

    2014-01-01

    Full Text Available Adsorption of strong polyelectrolyte, poly(styrenesulfonate, PSS, of different molecular weights onto large α-Al2O3 beads was systematically investigated as functions of pH and NaCl concentrations. The ultraviolet (UV absorption spectra of PSS at different pH and salt concentrations confirmed that the structure of PSS is independent of pH. With the change of molecular weight from 70 kg/mol (PSS 70 to 1000 kg/mol (PSS 1000, adsorption amount of PSS increases and proton coadsorption on the surface of α-Al2O3 decreases at given pH and salt concentration. It suggests that higher molecular weight of PSS was less flat conformation than lower one. The adsorption density of PSS 70 and PSS 1000 decreases with decreasing salt concentrations, indicating that both electrostatic and nonelectrostatic interactions are involved. Experimental results of both PSS 70 and PSS 1000 adsorption isotherms onto α-Al2O3 at different pH and salt concentrations can be represented well by two-step adsorption model. The effects of molecular weight and salt concentration are explained by structure of adsorbed PSS onto α-Al2O3. The influence of added SDS on the isotherms is evaluated from the sequential adsorption. The SDS uptake onto α-Al2O3 in the presence of hemimicelles can prevent the adsorption of PSS at low concentration so that adsorption of PSS reduces with preadsorbed SDS.

  11. Variability of Surface pollutants and aerosol concentration over Abu Dhabi, UAE - sources, transport and current levels

    Science.gov (United States)

    Phanikumar, Devulapalli V.; Basha, Ghouse; Ouarda, Taha B. M. J.

    2015-04-01

    In the view of recent economic, industrial, and rapid development, Abu Dhabi (24.4oN; 54.4oE; 27m msl) has become one of the most populated regions in the world despite of extreme heat, frequent dust storms, and with distinctive topography. The major sources of air pollution are from the dust and sand storms, greenhouse gas emissions, and to some extent from industrial pollution. In order to realize the accurate and comprehensive understanding of air quality and plausible sources over this region, we have made a detailed analysis of three years simultaneous measurements during 2011-13 of pollutants such as O3, SO2, NO2, CO, and PM10 concentrations. Diurnal variation of meteorological parameters such as temperature and wind speed/relative humidity clearly shows daytime maximum/minimum in summer followed by pre-monsoon, post-monsoon and winter. The prevailing winds over this region are mostly from northwesterly direction (Shamal wind). Diurnal wind pattern showed a clear contrast with the majority of the wind pattern during nighttime and early morning is from the westerly/northwesterly and daytime is from southwesterly/southeasterly directions. The diurnal pattern of O3 shows minimum during 08 LT and increases thereafter reaching maximum at 17 LT and decreases during nighttime. However, the diurnal pattern of SO2 and NO2 show a peak at ~ 08 LT and dip at ~ 14 LT during all the seasons with some variability in each season. On the other hand, the diurnal pattern of CO shows a peculiar picture of elevated levels during daytime peaking at ~ 10 LT (prominent in summer and post-monsoon) followed by a sharp decrease and minimum is ~14 LT. PM10 concentration has an early morning peak at ~ 02 LT and then decreases to a minimum value at ~11 LT and again increases in the afternoon hours (maximum at ~17 LT) depicting a forenoon-afternoon asymmetry. Monthly variation of PM10 shows maximum in pre-monsoon season and minimum in winter. Our observations show the diurnal pattern of

  12. Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake

    Science.gov (United States)

    Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard

    2017-04-01

    The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.

  13. Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River

    Science.gov (United States)

    Siam, Mohamed S.; Wang, Guiling; Demory, Marie-Estelle; Eltahir, Elfatih A. B.

    2014-08-01

    A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.

  14. Strong Dependence of U.S. Summertime Air Quality on the Decadal Variability of Atlantic Sea Surface Temperatures

    Science.gov (United States)

    Shen, Lu; Mickley, Loretta J.; Leibensperger, Eric M.; Li, Mingwei

    2017-12-01

    We find that summertime air quality in the eastern U.S. displays strong dependence on North Atlantic sea surface temperatures, resulting from large-scale ocean-atmosphere interactions. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface air quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cycle ( 35 years) of the AMO from cold to warm phase, summertime maximum daily 8 h ozone concentrations increase by 1-4 ppbv and PM2.5 concentrations increase by 0.3-1.0 μg m-3 over much of the east. These air quality changes are related to warmer, drier, and more stagnant weather in the AMO warm phase, together with anomalous circulation patterns at the surface and aloft. If the AMO shifts to the cold phase in future years, it could partly offset the climate penalty on U.S. air quality brought by global warming, an effect which should be considered in long-term air quality planning.

  15. Global climatology and variability of potential new production estimated from remote sensing of sea-surface temperature

    Science.gov (United States)

    Dugdale, Richard C.; Wilkerson, Frances P.

    1995-01-01

    During this project we have collected numerous shipboard data-bases of oceanic nitrate and silicate versus temperature for both equatorial and coastal upwelling regions. These cruises all have accompanying N-15 measurements of new production. The inverse relationships between nutrients and temperatures have been determined and are being used to obtain surface nutrient fields from sea surface temperatures measured remotely by satellite borne sensors- i.e. AVHRR data from NOAA satellites contained in the MCSST data set for the world ocean provided by the University of Miami. The images and data derived from space in this way show the strong seasonal fluctuations and interannual el Nino fluctuations of the nitrate field. the nitrate data has been used to make estimates of new production for the equatorial pacific which are compared with shipboard measurements when available. The importance of silicate as a nutrient driving new production and the ratio of nitrate to silicate has been discovered to be crucial to better understand the causes of new production variability, so we have added these parameters to our study and have begun to make estimates of these for the equatorial Pacific, derived from the weekly averaged sea surface temperatures (SSTs).

  16. Application of the Unity Rockfall Model to Variable Surface Material Conditions

    Science.gov (United States)

    Sala, Zac; Hutchinson, D. Jean; Ondercin, Matthew

    2017-04-01

    Rockfall is a geological process that poses risks to the safe operation of transportation infrastructure in mountainous environments world wide. The Unity rockfall model was created as a tool for 3D rockfall simulation as part of the Railway Ground Hazards Research Program, studying the impact of geotechnical hazards affecting Canadian railways [1]. The Unity rockfall model demonstrates the applicability of 3D video game engines for the development of realistic simulations, leveraging high-resolution site data collected using remote sensing techniques. Currently work is being done to further calibrate the model as an engineering tool for decision support. Calibration datasets include high-resolution terrestrial LiDAR and helicopter photogrammetry data collected as part of an ongoing rockfall monitoring program along the Thompson River Valley in south-central British Columbia, Canada. Change detection techniques developed as part of the program have been used to construct a database of rockfall event history and to develop magnitude-frequency relationships for rockfalls in the area [2][3]. Data collected as part of a controlled rock-rolling field program in Christchurch, New Zealand [4] is also being utilized for model calibration. Data on block dynamics for the artificially triggered rockfalls were collected through the use of embedded motion sensors and a sixteen camera setup. These experiments provide detailed information on block kinematics, and capture each impact point of the rockfall with the slope, thus offering a valuable dataset for comparison with modelling results. The research reported here explores the ability of the game engine based modelling technique to simulate rockfall under the variable slope conditions present at each of the sites where calibration data was collected. This includes steep natural rock slopes, with debris-talus cover, as well as shallower slopes with soil cover and vegetation. The varying slope conditions in each environment

  17. Variability of pesticides and nitrates concentrations along a river transect: chemical and isotopic evidence of groundwater - surface water interconnections

    Science.gov (United States)

    Baran, Nicole; Petelet-Giraud, Emmanuelle; Saplairoles, Maritxu

    2015-04-01

    concentration. Finally, downstream the quantified pesticides were different from those observed in the upper part of the Crieu but similar to those observed in groundwater. Sr isotopes together with major elements and Sr concentrations allow to identify 3 distinct end-members to explain the river quality evolution : 1) surface water, 2) groundwater and 3) sub-surface water. On this basis, we first demonstrate that the contribution of the different end-members to the river flow is highly variable from upstream to downstream. Secondly, we evidence water exchanges between the river and the groundwater compartment and vice-versa. The combination of the isotopic and geochemical approaches was essential to understand the complex relations and exchanges between surface and ground-waters occurring in few kilometers along the Crieu River. This understanding allows the comprehension of spatial variability of surface water quality. This is of primary importance when to help water managers to select relevant sampling points to be monitored in the framework of the WFD. Amalric L., et al. (2013). International Journal of Environmental Analytical Chemistry, 93: 1660-1675 Loos R. et al. (2010). Water Research, 44: 4115-4126 Stuart M. et al. (2012). Science of the Total Environment, 416: 1-21.

  18. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...... present the final project findings regarding the analysis of hourly SEVIRI SSTs from SEVIRI over the Atlantic Ocean and the European Seas, revealing the regional extend of diurnal warming. As satellite SSTs are representative of the upper centimetre of the water column, they do not provide information...... Model (GOTM) was used to resolve the vertical temperature structure of the upper water column and provide the link between surface temperatures and the ones observed at some depth. The model proved able to reproduce signals observed from satellite and in situ instruments, thus can be a candidate model...

  19. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  20. Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies

    Science.gov (United States)

    Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; hide

    2015-01-01

    The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

  1. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon

    Science.gov (United States)

    Ahmad, Mohd Azmier; Afandi, Nur Syahidah; Bello, Olugbenga Solomon

    2017-05-01

    This study investigates the adsorptive removal of malachite green (MG) dye from aqueous solutions using chemically modified lime-peel-based activated carbon (LPAC). The adsorbent prepared was characterized using FTIR, SEM, Proximate analysis and BET techniques, respectively. Central composite design (CCD) in response surface methodology (RSM) was used to optimize the adsorption process. The effects of three variables: activation temperature, activation time and chemical impregnation ratio (IR) using KOH and their effects on percentage of dye removal and LPAC yield were investigated. Based on CCD design, quadratic models and two factor interactions (2FI) were developed correlating the adsorption variables to the two responses. Analysis of variance (ANOVA) was used to judge the adequacy of the model. The optimum conditions of MG dye removal using LPAC are: activation temperature (796 °C), activation time (1.0 h) and impregnation ratio (2.6), respectively. The percentage of MG dye removal obtained was 94.68 % resulting in 17.88 % LPAC yield. The percentage of error between predicted and experimental results for the removal of MG dye is 0.4 %. Model prediction was in good agreement with experimental results and LPAC was found to be effective in removing MG dye from aqueous solution.

  2. Multi-Scale observation of time-variable surface and subsurface interactions of an intermittent urban stream

    Science.gov (United States)

    Cain, Molly; Ward, Adam; Schmadel, Noah; Hixson, Jase

    2016-04-01

    Our current understanding of stream-hyporheic tansport is primarily based on field observations conducted during baseflow conditions in perennial streams, with few studies considering time-variable stream-aquifer interactions during storm events. During the summer of 2015, we completed 21 sets of four slug injections prior to, during and after storm events in an urban stream. These data allow for the comparison of temporal heterogeneity in transport processes when the stream was intermittent, or consisting of spatially disconnected pools of water with subsurface flow in between, and when there was continuous surface flow during and after rainfall. The injections were performed in three adjacent 50-meter study reaches, enabling the additional comparison of spatial heterogeneity in transport processes. Reach-scale data demonstrate apparent trends with discharge in both short-term storage (commonly "transient storage") and long-term storage (commonly "channel water balance"). Preliminary results indicate the interaction of changing advective timescales for tracer studies are an important control on inferred process dynamics. Furthermore, observations of stream connectivity inform time-variable transport processes within intermittent streams. Comparison of short-term and long-term storage at varying discharge demonstrates opportunities and challenges for interpretation of multi-scale solute tracer data along the stream-hyporheic-riparian-floodplain continuum in intermittent streams.

  3. Remarkable Impacts of Indian Ocean Sea Surface Temperature on Interdecadal Variability of Summer Rainfall in Southwestern China

    Directory of Open Access Journals (Sweden)

    Jingpeng Liu

    2018-03-01

    Full Text Available During the boreal summer from June to August, rainfall in Southwestern China shows substantial interdecadal variabilities on timescales longer than 10 years. Based on observational analyses and numerical modeling, we investigated the characteristics of interdecadal Southwestern China summer rainfall (SWCSR and its dynamic drivers. We find that the SWCSR is markedly impacted by the interdecadal Indian Ocean basin mode (ID-IOBM of the sea surface temperature (SST, which may induce anomalous inter-hemispheric vertical circulation. During the cold phase of the ID-IOBM, an enhanced lower-level divergence and upper-level convergence exist over the tropical Indian Ocean. The simultaneous lower-level outflow anomalies further converge over the Indo-China peninsula, resulting in an anomalous ascending motion and a lower-level cyclone that contribute to strengthening the eastward moisture transport from the Bay of Bengal to Southwestern China. The joint effects of the anomalous ascending motion and the above-normal moisture transport play a key role in increasing the SWCSR. In summers during the warm phase of the ID-IOBM, the situation is approximately the same, but with opposite polarity. After the beginning of the 1970s, the impacts of interdecadal Indian Ocean dipole (ID-IOD on SWCSR is strengthening. The anomalous vertical circulation associated with the positive (negative phase of ID-IOD is in favor of decreased (increased rainfall in SWC. However, the impacts of ID-IOD on SWCSR is relatively weak before the 1970s, indicating that the ID-IOD is the secondary driver of the interdecadal variability of SWCSR. Modeling results also indicate that the ID-IOBM of SST anomalies is the main driver of interdecadal variability of SWCSR.

  4. A Conceptual Framework to Better Understand the Processes which Control the Surface Temperature Variability from the Soil Thermal Inertie to the Boundary Layer

    Science.gov (United States)

    Cheruy, F.; Ait Mesbah, S.; Dufresne, J.

    2016-12-01

    A simple model based on the surface energy budget at equilibrium is proposed. It gives a conceptual framework to quantity the role of atmosphere or land surface processes in the surface temperature variability. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. Then the model is used to identify the relevant processes controlling the surface temperature variability.In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. This sensitivity is controlled by the capacity of both the sensible and the thermal heat flux to balance the nocturnal radiative cooling, In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the sensitivity of the surface temperature to the thermal inertia is increased. In these not too wet (energy limited) and not too dry (moisture limited) soil moisture (SM) ``hot spots'', it is generally admitted that the variability of the surface temperature is explained by the soil moisture trough its control on the evaporation; here, we show that the variability of the thermal inertia through its soil moisture dependence can damp up to 50 % of the variability of the near surface temperature.Finally, in high latitude regions, due to the significant variability of the thermal inertia of the snow as a function of its density and to the low evaporation rates, the surface temperature is also partially controled by the thermal inertial. This work emphasizes the role of the soil thermal inertia on the control of the mean and high frequency variability of the surface temperature. It enlights the necessity of a correct representation

  5. Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water

    Directory of Open Access Journals (Sweden)

    Natália Canal

    2016-06-01

    Full Text Available Abstract Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacE Δ1 gene at the 3′ conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.

  6. Interdecadal variations of the South Asian summer monsoon circulation variability and the associated sea surface temperatures on interannual scales

    Science.gov (United States)

    Gao, Ya; Wang, Huijun; Chen, Dong

    2017-07-01

    We investigate the interannual variability of the South Asian summer monsoon (SASM) circulation, which has experienced a significant interdecadal change since 2000. This change is primarily influenced by sea surface temperatures (SSTs) in the tropical Pacific and North Atlantic oceans. During the pre-2000 period examined in this study (1979-99), the SASM is negatively correlated with eastern Pacific SSTs (the canonical ENSO mode) and positively correlated with the negative phase of the North Atlantic SST tripole (NAT). During the post-2000 period (2000-14), the SASM is negatively correlated with central Pacific SSTs and positively correlated with the positive phase of the NAT pattern. The associated Pacific SSTs change from the eastern to central region, leading to the rising (subsiding) branch of the Walker circulation moving westwards to the Maritime Continent in the latter period, which can impact the interannual variability of the SASM through modulating the wind field in the troposphere. In addition to Pacific SSTs, the NAT SSTs can propagate energy from the North Atlantic to the South Asian High (SAH) region through the wave activity flux, and then further impact the SASM via the SAH. Because the SASM is intimately related with precipitation over the Asian region, we briefly discuss the features of the precipitation patterns associated with the SASM during the two periods. The westward shifting Walker circulation leads to the shrinking and weakened anomalous westerlies of the SASM in the lower level, inducing the Maritime Continent rainfall location to move westwards and more moisture to arrive in southern China from the Pacific Ocean in the latter period.

  7. Quality Control and First Insights on the Variability of Surface Wind Observations for North Eastern North America

    Science.gov (United States)

    Lucio-Eceiza, E.; González-Rouco, F. J.; Navarro Montesinos, J.; Hidalgo; Jiménez, P.; García-Bustamante, E.; Conte, J.; Casabella, N.; Beltrami, H.

    2013-12-01

    Over the last decades, a policy change in energy sources has been fostered in Atlantic Canada. The purpose of this has been to reduce the dependency on energy produced abroad and to propose feasible alternatives with the aim of reducing greenhouse emissions. The region offers a high potential for the development of wind energy facilities and studies within the framework of wind resource assessment are encouraged. Studies of this nature rely on the quality of observational data. Henceforth, it is essential to develop procedures that ensure the reliability of observations before they are subjected to any subsequent analysis. This work summarizes the Quality Control process applied to an observational database of surface wind module and direction in North Eastern North America. The data set consists of 525 stations compiled from three different sources: 344 land sites from Environment Canada (EC; 1940-2009) located in the provinces of Atlantic Canada and Quebec; 40 buoys distributed over the East Coast and the Canadian Great Lakes provided by Fisheries and Oceans Canada (FOC; 1988-2008); and 141 land sites over both Eastern Canada and North Eastern USA provided by the National Center of Atmospheric Research (NCAR; 1975-2010). The process comprises different phases that: 1) unify measurement units and recording times; 2) find accidentally duplicated periods of data within a time series or between different stations; 3) check for physical consistency in the ranges of values; 4) detect time intervals of anomalous low and high variability; and 5) look for long term biases in mean and variance. The temporal extension and resolution of the quality controlled database allows to explore the wind variability at different temporal scales, from daily to multidecadal. This contribution will present a first assessment of the wind field climatology in the region, including a description of long term trends, analogous of wind circulation regimes and their relationship to large scale

  8. Twenty years of high-resolution sea surface temperature imagery around Australia: inter-annual and annual variability.

    Science.gov (United States)

    Foster, Scott D; Griffin, David A; Dunstan, Piers K

    2014-01-01

    The physical climate defines a significant portion of the habitats in which biological communities and species reside. It is important to quantify these environmental conditions, and how they have changed, as this will inform future efforts to study many natural systems. In this article, we present the results of a statistical summary of the variability in sea surface temperature (SST) time-series data for the waters surrounding Australia, from 1993 to 2013. We partition variation in the SST series into annual trends, inter-annual trends, and a number of components of random variation. We utilise satellite data and validate the statistical summary from these data to summaries of data from long-term monitoring stations and from the global drifter program. The spatially dense results, available as maps from the Australian Oceanographic Data Network's data portal (http://www.cmar.csiro.au/geonetwork/srv/en/metadata.show?id=51805), show clear trends that associate with oceanographic features. Noteworthy oceanographic features include: average warming was greatest off southern West Australia and off eastern Tasmania, where the warming was around 0.6°C per decade for a twenty year study period, and insubstantial warming in areas dominated by the East Australian Current, but this area did exhibit high levels of inter-annual variability (long-term trend increases and decreases but does not increase on average). The results of the analyses can be directly incorporated into (biogeographic) models that explain variation in biological data where both biological and environmental data are on a fine scale.

  9. Twenty years of high-resolution sea surface temperature imagery around Australia: inter-annual and annual variability.

    Directory of Open Access Journals (Sweden)

    Scott D Foster

    Full Text Available The physical climate defines a significant portion of the habitats in which biological communities and species reside. It is important to quantify these environmental conditions, and how they have changed, as this will inform future efforts to study many natural systems. In this article, we present the results of a statistical summary of the variability in sea surface temperature (SST time-series data for the waters surrounding Australia, from 1993 to 2013. We partition variation in the SST series into annual trends, inter-annual trends, and a number of components of random variation. We utilise satellite data and validate the statistical summary from these data to summaries of data from long-term monitoring stations and from the global drifter program. The spatially dense results, available as maps from the Australian Oceanographic Data Network's data portal (http://www.cmar.csiro.au/geonetwork/srv/en/metadata.show?id=51805, show clear trends that associate with oceanographic features. Noteworthy oceanographic features include: average warming was greatest off southern West Australia and off eastern Tasmania, where the warming was around 0.6°C per decade for a twenty year study period, and insubstantial warming in areas dominated by the East Australian Current, but this area did exhibit high levels of inter-annual variability (long-term trend increases and decreases but does not increase on average. The results of the analyses can be directly incorporated into (biogeographic models that explain variation in biological data where both biological and environmental data are on a fine scale.

  10. Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States

    Directory of Open Access Journals (Sweden)

    X. Lu

    2016-11-01

    Full Text Available Increasing wildfire activities in the mountainous western US may present a challenge for the region to attain a recently revised ozone air quality standard in summer. Using current Eulerian chemical transport models to examine the wildfire ozone influences is difficult due to uncertainties in fire emissions, inadequate model chemistry, and resolution. Here we quantify the wildfire influence on the ozone variability, trends, and number of high MDA8 (daily maximum 8 h average ozone days over this region in summers (June, July, and August 1989–2010 using a new approach. We define a fire index using retroplumes (plumes of back-trajectory particles computed by a Lagrangian dispersion model (FLEXPART and develop statistical models based on the fire index and meteorological parameters to interpret MDA8 ozone concentrations measured at 13 Intermountain West surface sites. We show that the statistical models are able to capture the ozone enhancements by wildfires and give results with some features different from the GEOS-Chem Eulerian chemical transport model. Wildfires enhance the Intermountain West regional summer mean MDA8 ozone by 0.3–1.5 ppbv (daily episodic enhancements reach 10–20 ppbv at individual sites with large interannual variability, which are strongly correlated with the total MDA8 ozone. We find large fire impacts on the number of exceedance days; for the 13 CASTNet sites, 31 % of the summer days with MDA8 ozone exceeding 70 ppbv would not occur in the absence of wildfires.

  11. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  12. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  13. Analysis of likely Frost Events and day-to-night Variability in near-surface Water Vapor at Gale

    Science.gov (United States)

    Martinez, G.; Fischer, E.; Renno, N. O.; Sebastian, E.; Kemppinen, O.; Bridges, N.; Borlina, C.; Meslin, P. Y.; Genzer, M.; Harri, A. M.; Vicente-Retortillo, A.; de la Torre-Juárez, M.; Ramos, M.; Gomez, F.; Gomez-Elvira, J.

    2015-12-01

    We analyze REMS simultaneous measurements of relative humidity and ground temperature with the highest confidence to identify frost events at Gale crater during the first 1000 sols of the MSL mission. The relative humidity sensor has recently been recalibrated (June 2015), providing relative humidity values slightly lower than those in the previous release (Dec 2014). Here we only use relative humidity data obtained with the latest recalibration parameters. We find that the most likely frost events occurred at four different locations: Dingo Gap during sols 529-535, an unnamed place during sols 554-560, Kimberley during sols 609-617, and an unnamed place during sols 673-676. At these four locations, the terrain features thermal inertia of ~200 SI units, a value much lower than that of 365 ± 50 SI units obtained from satellite measurements at the landing ellipse. We estimate a maximum thickness of the frost layer likely developed at these four locations of the order of tenths of μm, with the precipitable water content (PWC) showing values of a few pr-μm. Since water vapor pressure values derived from REMS measurements present high uncertainties during the daytime, the day-to-night variability in the near-surface water content at Gale cannot be analyzed using only REMS products. By comparing the nighttime PWC values obtained from REMS with the daytime PWC values obtained from satellite, we estimate a day-to-night ratio of the near-surface water vapor pressure at Gale of about 5.

  14. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    Science.gov (United States)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  15. Study on the essential variables for pipe outer surface irradiated laser stress improvement process (L-SIP). Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Muroya, Itaru; Asada, Seiji; Nakamura, Yasuo

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the essential variables for L-SIP is studied by experimental and FEM analysis. The range of the essential variables for L-SIP, which are defined by thermo-elastic FEM analysis, are Tmax=550 - 650degC, L Q /√rh ≥ 3, W Q /√rh ≥ 1.7, and, 0.04 ≤ F 0 ≤ 0.10 where Tmax is maximum temperature on the monitor point of the outer surface, F 0 is k x τ 0 /h 2 , k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x v, υ is moving velocity, L Q is the uniform temperature length in the axial direction, h is thickness of the pipe, and r is average radius of the pipe. It is showed by thermo-elastic-plastic FEM analysis that the residual stresses near the inner surface of pipes are improved in 4 different size pipes under the same essential variables. L-SIP is actually applied to welding joints of 4B x Sch160 and 2B x Sch80 SUS304 type stainless steel pipes within the defined range of the essential variables. The measured welding residual stresses on the inner surface near the welding joints are tensile. The residual stresses on the inner surface change to compression in all joints by L-SIP. (author)

  16. Dental microwear variability on buccal tooth enamel surfaces of extant Catarrhini and the Miocene fossil Dryopithecus laietanus (Hominoidea).

    Science.gov (United States)

    Galbany, J; Moyà-Solà, S; Pérez-Pérez, A

    2005-01-01

    Analyses of buccal tooth microwear have been used to trace dietary habits of modern hunter-gatherer populations. In these populations, the average density and length of striations on the buccal surfaces of teeth are significantly cor-related with the abrasive potential of food items consumed. In non-human pri-mates, tooth microwear patterns on both occlusal and buccal wear facets have been thoroughly studied and the results applied to the characterization of dietary habits of fossil species. In this paper, we present inter- and intra-specific buccal microwear variability analyses in extant Cercopithecoidea (Cercopithecus mitis, C. neglectus, Chlorocebus aethiops, Colobus spp., Papio anubis) and Hominoidea (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). The results are tentatively compared to buccal microwear patterns of the Miocene fossils Dryopithecus and Oreopithecus. Significant differences in striation density and length are found among the fossil taxa studied and the extant primates, suggesting that buccal microwear can be used to identify dietary differences among taxa. The Dryopithecus buccal microwear pattern most closely resembles that of abrasive, tough plant foods consumers, such as the gorilla, in contrast to stud-ies of dental morphology that suggest a softer, frugivorous diet. Results for Oreopithecus were equivocal, but suggest a more abrasive diet than that previously thought. (c) 2005 S. Karger AG, Basel.

  17. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales

    Science.gov (United States)

    Dong, Lu; McPhaden, Michael J.

    2017-03-01

    Global mean surface temperature (GMST) shows considerable decadal variations superimposed on a pronounced warming trend, with rapid warming during 1920-1945 and 1977-2000 and warming hiatuses during 1946-1976 and 2001-2013. The prevailing view is that internally generated variations associated with the Interdecadal Pacific Oscillation (IPO) dominate decadal variations in GMST, while external forcing from greenhouse gases and anthropogenic aerosols dominate the long-term trend in GMST over the last hundred years. Here we show evidence from observations and climate models that external forcing largely governs decadal GMST variations in the historical record with internally generated variations playing a secondary role, except during those periods of IPO extremes. In particular, the warming hiatus during 1946-1976 started from a negative IPO but was later dominated by the eruption of Mount Agung in 1963, while the subsequent accelerated warming during 1977-2000 was due primarily to increased greenhouse gas forcing. The most recent warming hiatus apparent in observations occurred largely through cooling from a negative IPO extreme that overwhelmed the warming from external forcing. An important implication of this work is that when the phase of the IPO turns positive, as it did in 2014, the combination of external forcing and internal variability should lead to accelerated global warming. This accelerated warming appears to be underway, with record high GMST in 2014, 2015, and 2016.

  18. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  19. Sea surface temperature variability in Panamá and Galápagos: Extreme temperatures causing coral bleaching

    Science.gov (United States)

    Podestá, Guillermo P.; Glynn, Peter W.

    1997-07-01

    We examined associations between warm sea surface temperature (SST) anomalies and coral bleaching in the Galápagos Islands and the Gulf of Panamá, in the tropical eastern Pacific Ocean. Interannual SST variability is dominated by the El Niño-Southern Oscillation phenomenon at Galápagos, whereas only strong events have an SST signature in Panamá. We explored various SST-related metrics potentially associated with bleaching occurrence: maximum absolute SST, SST anomaly, and the combined effect of intensity and duration of both SST anomalies (described via a "degree days" index) and high SST events. In Galápagos, three Niño years (1983, 1987, and 1992) coincided with bleaching. These were the top three years in both maximum annual SSTs and degree days values. In Panamá, bleaching in 1983 coincided with high maximum SSTs and high degree days. In contrast, no bleaching was detected in 1972 despite high values of both quantities. We found all temperature-related metrics to be highly correlated, and it was impossible to isolate their effects.

  20. Independent Subspace Analysis of the Sea Surface Temperature Variability: Non-Gaussian Sources and Sensitivity to Sampling and Dimensionality

    Directory of Open Access Journals (Sweden)

    Carlos A. L. Pires

    2017-01-01

    Full Text Available We propose an expansion of multivariate time-series data into maximally independent source subspaces. The search is made among rotations of prewhitened data which maximize non-Gaussianity of candidate sources. We use a tensorial invariant approximation of the multivariate negentropy in terms of a linear combination of squared coskewness and cokurtosis. By solving a high-order singular value decomposition problem, we extract the axes associated with most non-Gaussianity. Moreover, an estimate of the Gaussian subspace is provided by the trailing singular vectors. The independent subspaces are obtained through the search of “quasi-independent” components within the estimated non-Gaussian subspace, followed by the identification of groups with significant joint negentropies. Sources result essentially from the coherency of extremes of the data components. The method is then applied to the global sea surface temperature anomalies, equatorward of 65°, after being tested with non-Gaussian surrogates consistent with the data anomalies. The main emerging independent components and subspaces, supposedly generated by independent forcing, include different variability modes, namely, The East-Pacific, the Central Pacific, and the Atlantic Niños, the Atlantic Multidecadal Oscillation, along with the subtropical dipoles in the Indian, South Pacific, and South-Atlantic oceans. Benefits and usefulness of independent subspaces are then discussed.

  1. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  2. The Use of MTM-SVD Technique to Explore the Joint Spatiotemporal Modes of Wind and Sea Surface Variability in the North Indian Ocean during 1993–2005

    Directory of Open Access Journals (Sweden)

    Thaned Rojsiraphisal

    2009-01-01

    Full Text Available Sea surface height (SSH and sea surface temperature (SST in the North Indian Ocean are affected predominantly by the seasonally reversing monsoons and in turn feed back on monsoon variability. In this study, a set of data generated from a data-assimilative ocean model is used to examine coherent spatiotemporal modes of variability of winds and surface parameters using a frequency domain technique, Multiple Taper Method with Singular Value Decomposition (MTM-SVD. The analysis shows significant variability at annual and semiannual frequencies in these fields individually and jointly. The joint variability of winds and SSH is significant at interannual (2-3 years timescale related to the ENSO mode—with a “/dipole/” like spatial pattern. Joint variability with SST showed similar but somewhat weaker behavior. Winds appear to be the driver of variability in both SSH and SST at these frequency bands. This offers prospects for long-lead projections of the North Indian Ocean climate.

  3. Variability and trends of downward surface global solar radiation over the Iberian Peninsula based on ERA-40 reanalysis

    KAUST Repository

    Perdigão, João Carlos

    2016-01-26

    © 2016 Royal Meteorological Society. A climate study of the incidence of downward surface global solar radiation (SSRD) in the Iberian Peninsula (IP) based primarily on ERA-40 reanalysis is presented. NCEP/NCAR reanalysis and ground-based records from several Portuguese and Spanish stations have been also considered. The results show that reanalysis can capture a similar inter-annual variability as compared to ground-based observations, especially on a monthly basis, even though annual ERA-40 (NCEP/NCAR) values tend to underestimate (overestimate) the observations with a mean relative difference of around 20Wm-2 (40Wm-2). On the other hand, ground-based measurements in Portuguese stations during the period 1964-1989 show a tendency to decrease until the mid-1970s followed by an increase up to the end of the study period, in line with the dimming/brightening phenomenon reported in the literature. Nevertheless, there are different temporal behaviours as a greater increase since the 1970s is observed in the south and less industrialized regions. Similarly, the ERA-40 reanalysis shows a noticeable decrease until the early 1970s followed by a slight increase up to the end of the 1990s, suggesting a dimming/brightening transition around the early 1970s, earlier in the south and centre and later in the north of the IP. Although there are slight differences in the magnitude of the trends as well as the turning year of the dimming/brightening periods, the decadal changes of ERA-40 fairly agree with the ground-based observations in Portugal and Spain, in contrast to most of the literature for other regions of the world, and is used in the climatology of the SSRD in the study area. NCEP/NCAR reanalysis does not capture the decadal variations of SSRD in the IP. The results show that part of the decadal variability of the global radiation in the IP is related to changes in cloud cover (represented in ERA-40).

  4. A multi-year study of radioactivity in surface air and its relation to climate variables in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Ajtić Jelena V.

    2013-01-01

    Full Text Available Activities of 7Be and 210Pb were monitored in surface air in Belgrade, Serbia, from 2004 to 2012. The measurements were taken from two locations, in an open field of a city suburb and in the central city area. The activities were determined on HPGe detectors by standard gamma spectrometry. The 7Be activity shows a pronounced seasonal pattern, with the maximum in spring-summer and minimum in winter, while the 210Pb activity exhibits two maxima, in autumn and late winter. The mean monthly concentrations measured at both sites are below 9 mBq/m3 and 1.3 mBq/m3 for 7Be and 210Pb, respectively. The obtained correlation of the 7Be activity with the number of sun-spots is not statistically significant. Relations of the radionuclides' activities with climate variables (precipitation, temperature, relative humidity, cloud cover, sunshine hours, and atmospheric pressure are also investigated, but the only significant correlations are found for the 7Be activity with temperature and sunshine hours, and the 210Pb activity with atmospheric pressure. The maximum 7Be and 210Pb activities corresponding to binned total monthly precipitation data imply different modes of the radionuclide scavenging from the atmosphere. During dry periods, accumulation of the radionuclides in the atmosphere leads to their increased activities, but no correlation was found between the activities and the number of consecutive dry days. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  5. Sea ice concentration temporal variability over the Weddell Sea and its relationship with tropical sea surface temperature

    Science.gov (United States)

    Barreira, S.; Compagnucci, R.

    2007-01-01

    Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.

  6. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures

    Science.gov (United States)

    Narapusetty, Balachandrudu

    2017-06-01

    The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.

  7. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea

    Directory of Open Access Journals (Sweden)

    V. S. Kumar

    2016-10-01

    Full Text Available We assess the influence of monsoon variability on the surface waves using measured wave data covering 7 years and reanalysis data from 1979 to 2015 during the Indian summer monsoon (JJAS in the eastern Arabian Sea. The inter-annual comparison shows that the percentage of higher wave heights ( >  2.5 m is higher ( ∼  26% in 2014 than in other years due to the higher monsoon wind speed (average speed ∼ 7.3 m s−1 in 2014. Due to the delayed monsoon, monthly average significant wave height (Hm0 of June was lowest (∼ 1.5 m in 2009. The spectral peak shifted to lower frequencies in September due to the reduction of wind seas as a result of decrease in monsoon intensity. The study shows high positive correlation (r ∼ 0.84 between average low-level jet (LLJ for the block 0–15° N, 50–75° E and Hm0 of eastern Arabian Sea in all the months except in August (r ∼ 0.66. The time series data on wave height shows oscillations with periods 5 to 20 days. Wavelet coherence analysis indicates that the LLJ and Hm0 are in-phase related (phase angle 0° almost all the time and LLJ leads Hm0. The monsoon seasonal anomaly of Hm0 is found to have a negative relationship with the Oceanic Niño Index indicating that the monsoon average Hm0 is relatively low during the strong El Niño years.

  8. Assessment of trends and variability in surface air temperature on multiple high-resolution datasets over the Indochina Peninsula

    Science.gov (United States)

    Ge, Fei; Peng, Ting; Fraedrich, Klaus; Sielmann, Frank; Zhu, Xiuhua; Zhi, Xiefei; Liu, Xiaoran; Tang, Weiwei; Zhao, Pengguo

    2018-03-01

    The climatological means and surface air temperature (SAT) trends of the Indochina Peninsula (ICP) are being analyzed on a yearly and seasonal basis using a newly published observation dataset (SA-OBS). The SAT for the period 1981 to 2010 shows a north-south gradient over the ICP, with the highest mean annual temperature in the central plain and the lowest in the northern mountain region. In addition, over the past 30 years, the ICP has been undergoing a significant warming trend of 0.37 °C/decade. The seasonal mean SAT fluctuations are significant in the dry seasons compared to the wet seasons, with a rapid increase in JFM (January to March) and OND (October to December). Further, comparisons are made using SA-OBS and the other observation (CRU, GHCN_CAMS, DEL) or reanalysis (ERA-20C, CERA-20C, ERA-Interim, JRA-55) datasets. The result shows (i) that the SA-OBS dataset can capture the spatial distributions and temporal patterns reasonably well throughout the ICP on annual and seasonal scales. (ii) CERA-20C is very similar to SA-OBS in replicating the annual mean SAT over the ICP, suggesting that the ECMWF's coupled data assimilation system (CERA) could obviously improve the temperature estimates in that region. (iii) That significant differences, however, still exist between observations and reanalyses in annual and seasonal trends. These discrepancies need to be taken into account to study climate change and variability or to assess regional climate models with focus on the ICP.

  9. Landscape and Seasonal Variability in CO2 Efflux from Soil and Water Surfaces in the Northern Pantanal

    Science.gov (United States)

    Couto, E. G.; Pinto-Jr, O. B.; Lathuilliere, M. J.; Dalmagro, H. J.; Johnson, M. S.

    2014-12-01

    The Pantanal is one of the largest wetlands in the world, with an area of 150,000 km2. It extends over three countries (Brazil, Paraguay and Bolivia) with 80% located in the Brazilian states of Mato Grosso and Mato Grosso do Sul. Ecosystems in the Northern Pantanal rely on a seasonal flood pulse in phase with the wet season, which inundates grasslands and forests between January and May. This pulse results in an important change in local biogeochemistry. Inundation saturates the Pantanal's soils with changes in the balance of carbon dioxide and other greenhouse gases. This study summarize the main CO2 effluxes measured from a variety of landscape in the Northern Pantanal during dry and wet seasons, fully or partially inundated soils, as part of Project 2.01 of the Brazilian Institute for Science and Technology in Wetlands (Monitoring aquatic carbon fluxes and water quality). Using a network of dataloggers installed in 4 environments, we have been modeling soil CO2 efflux on a half hourly basis through a combination of infrared gas analyzers measurements and laboratory soil physical parameter estimates. The selected environments presented unique biogeochemical behavior as they relate to inundation and soil type. So far, we have estimated average CO2 efflux in 3 environments with mean values of 3.53 µmol m-2 s-1 (soil CO2 efflux for the "Carrapatal" tree island), 3.41 µmol m-2 s-1 (soil CO2 efflux for the "Baia das Pedras" tree island), and 1.79 µmol m-2 s-1 (aquatic CO2 evasion from the water surface of the "Cambarazal" flooded forest). More measurements are currently underway to complete the landscape variability in CO2 effluxes in the Northern Pantanal.

  10. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet

    NARCIS (Netherlands)

    van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556

    2011-01-01

    We present the seasonal cycle and interannual variability of the surface energy balance (SEB) in the ablation zone of the west Greenland ice sheet, using seven years (September 2003–August 2010) of hourly observations from three automatic weather stations (AWS). The AWS are situated along the 67◦ N

  11. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  12. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  13. Quantifying the effect of crops surface albedo variability on GHG budgets in a life cycle assessment approach : methodology and results.

    Science.gov (United States)

    Ferlicoq, Morgan; Ceschia, Eric; Brut, Aurore; Tallec, Tiphaine

    2013-04-01

    We tested a new method to estimate the radiative forcing of several crops at the annual and rotation scales, using local measurements data from two ICOS experimental sites. We used jointly 1) the radiative forcing caused by greenhouse gas (GHG) net emissions, calculated by using a Life Cycle Analysis (LCA) approach and in situ measurements (Ceschia et al. 2010), and 2) the radiative forcing caused by rapid changes in surface albedo typical from those ecosystems and resulting from management and crop phenology. The carbon and GHG budgets (GHGB) of 2 crop sites with contrasted management located in South West France (Auradé and Lamasquère sites) was estimated over a complete rotation by combining a classical LCA approach with on site flux measurements. At both sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for GHG fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHGB for a range of cropping systems and management regimes. N2O emissions were or calculated following the IPCC (2007) guidelines, and CH4 emissions were assumed to be negligible compared to other contributions to the net GHGB. Additionally, albedo was calculated continuously using the short wave incident and reflected radiation measurements in the field (0.3-3µm) from CNR1 sensors. Mean annual differences in albedo and deduced radiative forcing from a reference value were then compared for all site-years. Mean annual differences in radiative forcing were then converted in g C equivalent m-2 in order

  14. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    Science.gov (United States)

    Li, P.; Xie, J.; Cheng, J.; Wu, K. K.

    2014-07-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25-80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface.

  15. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    Science.gov (United States)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  16. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  17. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river run off proxies

    Digital Repository Service at National Institute of Oceanography (India)

    Gebregiorgis, D.; Hathorne, E.C.; Sijinkumar, A; Nath, B.N.; Nurnberg, D.; Frank, M.

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past...

  18. Use of a variable exposure photographic pyrometer to measure surface temperatures on a hemispherical-face model

    Science.gov (United States)

    Kantsios, A. G.; Henley, W. C., Jr.; Snow, W. L.

    1982-01-01

    The use of a photographic pyrometer for nonintrusive measurement of high temperature surfaces in a wind tunnel test is described. The advantages of the pyrometer for measuring surfaces whose unique shape makes use of thermocouples difficult are pointed out. The use of computer operated densitometers or optical processors for the data reduction is recommended.

  19. Climatic variability of near-surface turbulent kinetic energy over the United States: implications for fire-weather predications

    Science.gov (United States)

    Warren E. Heilman; Xindi. Bain

    2013-01-01

    Recent research suggests that high levels of ambient near-surface atmospheric turbulence are often associated with rapid and sometimes erratic wildland fire spread that may eventually lead to large burn areas. Previous research has also examined the feasibility of using near-surface atmospheric turbulent kinetic energy (TKEs) alone or in...

  20. Short-term variability of surface carbon dioxide and sea-air CO2 fluxes in the shelf waters of the Galician coastal upwelling system

    Directory of Open Access Journals (Sweden)

    Alba Marina Cobo-Viveros

    2013-01-01

    Full Text Available Using data collected during the DYBAGA and ECO cruises, remote sensing chlorophyll-a estimations and the averaged upwelling index of the previous fortnight (Iw’, we studied the variability of the sea surface CO2 fugacity (fCO2 over the Galician continental shelf during three seasonal cycles. Sea surface salinity (SSS distribution controlled fCO2 mainly in spring, while sea surface temperature (SST did so during periods of intense cooling in November and warming in June. The uptake of carbon by photosynthetic activity, which was more intense during spring and autumn, masked the surface increase in the dissolved inorganic carbon concentration during upwelling events, especially during spring. A significant low correlation between fCO2 and Iw’ was found during spring and summer when upwelling events were observed, whereas no relationship was observed during the downwelling period. High fCO2 exceeding atmospheric values was only found during the summer stratification breakdown. Although sea-air CO2 fluxes showed a marked inter-annual variability, surface waters off the Galician coast were net sinks for atmospheric CO2 in every seasonal cycle, showing a lower CO2 uptake (~65% compared to previously published values. Marked inter-annual changes in the sea-air CO2 fluxes seem to be influenced by fresh water inputs on the continental shelf under different meteorological scenarios.

  1. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  2. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    Science.gov (United States)

    Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; Brousseau, P.; Brun, E.; Calvet, J.-C.; Carrer, D.; Decharme, B.; Delire, C.; Donier, S.; Essaouini, K.; Gibelin, A.-L.; Giordani, H.; Habets, F.; Jidane, M.; Kerdraon, G.; Kourzeneva, E.; Lafaysse, M.; Lafont, S.; Lebeaupin Brossier, C.; Lemonsu, A.; Mahfouf, J.-F.; Marguinaud, P.; Mokhtari, M.; Morin, S.; Pigeon, G.; Salgado, R.; Seity, Y.; Taillefer, F.; Tanguy, G.; Tulet, P.; Vincendon, B.; Vionnet, V.; Voldoire, A.

    2013-07-01

    SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  3. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    Directory of Open Access Journals (Sweden)

    V. Masson

    2013-07-01

    Full Text Available SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs or in coupled mode (from mesoscale models to numerical weather prediction and climate models. An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy. Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  4. Sea surface temperature and sea ice variability in the sub-polar North Atlantic from explosive volcanism of the late thirteenth century

    DEFF Research Database (Denmark)

    Sicre, M.-A.; Khodri, M.; Mignot, J.

    2013-01-01

    In this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short-and long......-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling...

  5. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    Science.gov (United States)

    2013-07-01

    temperature is observed during the suppressed phase of the MJO because of the weak winds and large shortwave radiation (Weller and Anderson 1996...western PacificOceans (e.g.,Weller andAnderson 1996; Soloviev and Lukas 1997; Bellenger and Duvel 2009). The diurnal cycle of the solar radiation ...the difference in surface shortwave radiation caused by the small-scale cloud variability, which cannot be resolved by the atmospheric model. Also

  6. An examination of the spatial variability of the United States surface water balance using the Budyko relationship for current and projected climates

    Science.gov (United States)

    Ficklin, D. L.; Abatzoglou, J. T.

    2017-12-01

    The spatial variability in the balance between surface runoff (Q) and evapotranspiration (ET) is critical for understanding water availability. The Budyko framework suggests that this balance is solely a function of aridity. Observed deviations from this framework for individual watersheds, however, can vary significantly, resulting in uncertainty in using the Budyko framework in ungauged catchments and under future climate and land use scenarios. Here, we model the spatial variability in the partitioning of precipitation into Q and ET using a set of climatic, physiographic, and vegetation metrics for 211 near-natural watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. Using a generalized additive model, we found that precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow explained 81.2% of the variability in ω. This ω model applied to the Budyko framework explained 97% of the spatial variability in long-term Q for an independent set of near-natural watersheds. The developed ω model was also used to estimate the entire CONUS surface water balance for both contemporary and mid-21st century conditions. The contemporary CONUS surface water balance compared favorably to more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western US. The Budyko framework using the modeled ω lends itself to an alternative approach for assessing the potential response of catchment water balance to climate change to complement other approaches.

  7. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  8. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  9. The response of surface mass and energy balance of a continental glacier to climate variability, western Qilian Mountains, China

    Science.gov (United States)

    Sun, Weijun; Qin, Xiang; Wang, Yetang; Chen, Jizu; Du, Wentao; Zhang, Tong; Huai, Baojuan

    2017-08-01

    To understand how a continental glacier responds to climate change, it is imperative to quantify the surface energy fluxes and identify factors controlling glacier mass balance using surface energy balance (SEB) model. Light absorbing impurities (LAIs) at the glacial surface can greatly decrease surface albedo and increase glacial melt. An automatic weather station was set up and generated a unique 6-year meteorological dataset for the ablation zone of Laohugou Glacier No. 12. Based on these data, the surface energy budget was calculated and an experiment on the glacial melt process was carried out. The effect of reduced albedo on glacial melting was analyzed. Owing to continuous accumulation of LAIs, the ablation zone had been darkening since 2010. The mean value of surface albedo in melt period (June through September) dropped from 0.52 to 0.43, and the minimum of daily mean value was as small as 0.1. From the records of 2010-2015, keeping the clean ice albedo fixed in the range of 0.3-0.4, LAIs caused an increase of +7.1 to +16 W m-2 of net shortwave radiation and an removal of 1101-2663 mm water equivalent. Calculation with the SEB model showed equivalent increases in glacial melt were obtained by increasing air temperature by 1.3 and 3.2 K, respectively.

  10. Time Scales of the European Surface Air Temperature Variability: The Role of the 7-8 Year Cycle

    Czech Academy of Sciences Publication Activity Database

    Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, S.; Tsonis, A.A.; Paluš, Milan

    2016-01-01

    Roč. 43, č. 2 (2016), s. 902-909 ISSN 0094-8276 R&D Projects: GA MŠk LH14001 Institutional support: RVO:67985807 Keywords : 7-8 year cycle * air temperature variability * annual cycle amplitude * cross-scale interactions * seasonality * time scales Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.253, year: 2016

  11. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections

    DEFF Research Database (Denmark)

    Giha, H A; Staalsoe, T; Dodoo, D

    2000-01-01

    is maintained at low densities. Here, we test the hypothesis that the presence or absence of antibodies against variant antigens on the surface of P. falciparum-infected erythrocytes protect individuals against some infectious challenges and render them susceptible to others. Plasma collected in Daraweesh......, eastern Sudan, before and after the malaria season from individuals who had (susceptible) or did not have malaria (protected) during the season, were tested for reactivity against variant antigens on the surface of nine parasite isolates by flow cytometry. Both protected and susceptible individuals...... susceptible and protected individuals. Together, the results indicate that pre-existing anti-PfEMP1 antibodies can reduce the risk of contracting clinical malaria when challenged by novel parasite clones expressing homologous, but not heterologous variable surface antigens. The results also confirm...

  12. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance

  13. Late Holocene (0-2.4 ka BP) surface water temperature and salinity variability, Feni Drift, NE Atlantic Ocean

    NARCIS (Netherlands)

    Richter, T.O.; Peeters, F.J.C.; van Weering, T.C.E.

    2009-01-01

    Planktonic foraminiferal Mg/Ca ratios and oxygen isotopic compositions of a spliced sediment record from Feni Drift, NE Atlantic Ocean (box core M200309 and piston core ENAM9606) trace late Holocene sea surface temperature (SST) and salinity changes over the past 2400 years. At this location, the

  14. The 30-60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea dur1ing May-September

    Science.gov (United States)

    Mao, Jiangyu; Wang, Ming

    2018-05-01

    This study investigates the structure and propagation of intraseasonal sea surface temperature (SST) variability in the South China Sea (SCS) on the 30-60-day timescale during boreal summer (May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive (negative) SST anomalies accompanied by anomalous northeasterlies (southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux (MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the 30-60-day SST variability in the SCS.

  15. Application of satellite images analysis to assess the variability of the surface thermal heat island distribution in urban areas

    Directory of Open Access Journals (Sweden)

    Fudała Janina

    2018-01-01

    Full Text Available One of the elements of the urban plans for adapting to climate change is to identify the range the urban heat island (UHI. To a relatively rare ground station network air temperature, one of the possible methods to identify this phenomenon in cities is the analysis of satellite images, and in particular the thermal images surface cities in conjunction with the land-use structure. In the publication is presented the application of indirect methods of determining surface characteristics of heat island in the cities of Upper Silesia Agglomeration on the basis of the analysis of the thermal images from the satellite Landsat for the period 1986-2016. It presents ways to interpret these images depending on the needs of determination the areas sensitive to the impact of the (UHI and define the areas where adaptation actions to the climate change should be undertaken.

  16. Application of satellite images analysis to assess the variability of the surface thermal heat island distribution in urban areas

    Science.gov (United States)

    Fudała, Janina; Nádudvari, Ádám; Bronder, Joachim; Fudała, Marta

    2018-01-01

    One of the elements of the urban plans for adapting to climate change is to identify the range the urban heat island (UHI). To a relatively rare ground station network air temperature, one of the possible methods to identify this phenomenon in cities is the analysis of satellite images, and in particular the thermal images surface cities in conjunction with the land-use structure. In the publication is presented the application of indirect methods of determining surface characteristics of heat island in the cities of Upper Silesia Agglomeration on the basis of the analysis of the thermal images from the satellite Landsat for the period 1986-2016. It presents ways to interpret these images depending on the needs of determination the areas sensitive to the impact of the (UHI) and define the areas where adaptation actions to the climate change should be undertaken.

  17. Heterogeneity of soil surface ammonium concentration and other characteristics, related to plant specific variability in a Mediterranean-type ecosystem

    International Nuclear Information System (INIS)

    Cruz, Cristina; Bio, Ana M.F.; Jullioti, Aldo; Tavares, Alice; Dias, Teresa; Martins-Loucao, Maria Amelia

    2008-01-01

    Heterogeneity and dynamics of eight soil surface characteristics essential for plants-ammonium and nitrate concentrations, water content, temperature, pH, organic matter, nitrification and ammonification rates-were studied in a Mediterranean-type ecosystem on four occasions over a year. Soil properties varied seasonally and were influenced by plant species. Nitrate and ammonium were present in the soil at similar concentrations throughout the year. The positive correlation between them at the time of greatest plant development indicates that ammonium is a readily available nitrogen source in Mediterranean-type ecosystems. The results presented here suggest that plant cover significantly affects soil surface characteristics. - In Mediterranean-type ecosystems ammonium is present in the soil throughout the year and its concentration is dependent on plant cover

  18. Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation

    Science.gov (United States)

    Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.

  19. Optimization of operating variables for production of ultra-fine talc in a stirred mill. Specific surface area investigations

    Directory of Open Access Journals (Sweden)

    Toraman Oner Yusuf

    2016-01-01

    Full Text Available Due to its properties such as chemical inertness, softness, whiteness, high thermal conductivity, low electrical conductivity and adsorption properties talc has wide industrial applications in paper, cosmetics, paints, polymer, ceramics, refractory materials and pharmaceutical. The demand for ultra-fine talc is emerging which drives the mineral industry to produce value added products. In this study, it was investigated how certain grinding parameters such as mill speed, ball filling ratio, powder filling ratio and grinding time of dry stirred mill affect grindability of talc ore (d97=127 μm. A series of laboratory experiments using a 24 full factorial design was conducted to determine the optimal operational parameters of a stirred mill in order to minimize the specific surface area. The main and interaction effects on the volume specific surface area (SV, m2.cm−3 of the ground product were evaluated using the Yates analysis. Under the optimal conditions at the stirrer speed of 600 rpm, grinding time of 20 min, sample mass of 5% and ball ratio of 70%, the resulting talc powder had larger volume specific surface area (i.e., 3.48 m2.cm−3 than the starting material (i.e., 1.84 m2.cm−3.

  20. Vertical variability of seawater DMS in the South Pacific Ocean and its implication for atmospheric and surface seawater DMS.

    Science.gov (United States)

    Lee, Gangwoong; Park, Jooyoung; Jang, Yuwoon; Lee, Meehye; Kim, Kyung-Ryul; Oh, Jae-Ryoung; Kim, Dongseon; Yi, Hi-Il; Kim, Tong-Yup

    2010-02-01

    Shipboard measurements of atmospheric dimethylsulfide (DMS) and sea surface water DMS were performed aboard the R/V Onnuri across the South Pacific from Santiago, Chile to Fiji in February 2000. Hydrographic profiles of DMS, dissolved dimethylsulfoniopropionate (DMSP(d)), and particulate DMSP(p) in the upper 200m were obtained at 16 stations along the track. Atmospheric and sea surface water DMS concentrations ranged from 3 to 442pptv and from 0.1 to 19.9nM, respectively; the mean values of 61pptv and 2.1nM, respectively, were comparable to those from previous studies in the South Pacific. The South Pacific Gyre was distinguished by longitudinal-vertical distributions of DMS, DMSP(d), and DMSP(p), which was thought to be associated with the characteristic modification of biological activities that occurs mainly due to significant change in water temperature. The averaged DMS maximum appeared at 40m depth, whereas DMSP(p) and DMSP(d) maxima coincided with that of dissolved oxygen content at 60-80m. The sea-to-air fluxes of DMS were estimated to be 0.4-11.3micromold(-1)m(-2) (mean=2.8micromold(-1)m(-2)). A fairly good correlation between atmospheric DMS and sea-to-air DMS flux indicated that atmospheric DMS concentration was more sensitive to change in physical parameters than its photochemical removal process or surface seawater DMS concentrations.

  1. Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; DeFlorio, Michael J.

    2018-02-01

    Climate modes of variability over the Atlantic and Pacific may be amplified by a positive feedback between sea-surface temperature (SST) and marine boundary layer clouds. However, it is well known that climate models poorly simulate this feedback. Does this deficiency contribute to model-to-model differences in the representation of climate modes of variability? Over both the North Atlantic and Pacific, typical summertime interannual to interdecadal SST variability exhibits horseshoe-like patterns of co-located anomalies of shortwave cloud radiative effect (CRE), low-level cloud fraction, SST, and estimated inversion strength over the subtropics and midlatitudes that are consistent with a positive cloud feedback. During winter over the midlatitudes, this feedback appears to be diminished. Models participating in the Coupled Model Intercomparison Project phase 5 that simulate a weak feedback between subtropical SST and shortwave CRE produce smaller and less realistic amplitudes of summertime SST and CRE variability over the northern oceans compared to models with a stronger feedback. The change in SST amplitude per unit change in CRE amplitude among the models and observations may be understood as the temperature response of the ocean mixed layer to a unit change in radiative flux over the course of a season. These results highlight the importance of boundary layer clouds in interannual to interdecadal atmosphere-ocean variability over the northern oceans during summer. The results also suggest that deficiencies in the simulation of these clouds in coupled climate models contribute to underestimation in their simulation of summer-to-summer SST variability.

  2. Intraseasonal-to-semiannual variability of sea-surface height in the astern, equatorial Indian Ocean and southern Bay of Bengal

    Science.gov (United States)

    Cheng, Xuhua; McCreary, Julian P.; Qiu, Bo; Qi, Yiquan; Du, Yan

    2017-05-01

    Intraseasonal-to-semiannual variability of sea-surface height (SSH) in the eastern, equatorial Indian Ocean (EEIO) and southern Bay of Bengal (BoB) is investigated using altimetric data, and solutions to 1½ layer (first baroclinic mode) and linear, continuously stratified (LCS; multibaroclinic-mode) models. The amplitude and dominant periods of SSH variability differ regionally. Large-amplitude variability is found along the west coast of Sumatra, in a zonal band across the BoB centered along 5°N, east of Sri Lanka, and in the northwestern BoB, respectively. Along the Sumatran west coast, SSH variability peaks at 30-60, 90, and 180 days. Along 5°N and east of Sri Lanka, the 30-60 day variability is dominant. Sensitivity experiments using a nonlinear version of the 1½ layer model forced by realistic winds reproduce the observed patterns of intraseasonal variability in the southern BoB. At 30-60 days, the solutions show that eddies (nonlinear Rossby waves) propagating from the east, rather than local wind forcing, account for most of the variance east of Sri Lanka; furthermore, they demonstrate that the variance is significantly enhanced by the nonlinear transfer of 90-120 day energy into the intraseasonal band of 30-60 days. The LCS solutions show that the first two baroclinic modes explain most of the SSH variance at 90-180 days. The second baroclinic mode dominates the SSH variance at 180 days, a consequence of basin resonance and strong wind forcing.

  3. Peeking Below the Snow Surface to Explore Amundsen Sea Climate Variability and Locate Optimal Ice-Core Sites

    Science.gov (United States)

    Neff, P. D.; Fudge, T. J.; Medley, B.

    2016-12-01

    Observations over recent decades reveal rapid changes in ice shelves and fast-flowing grounded ice along the Amundsen Sea coast of the West Antarctic Ice Sheet (WAIS). Long-term perspectives on this ongoing ice loss are needed to address a central question of Antarctic research: how much and how fast will Antarctic ice-loss raise sea level? Ice cores can provide insight into past variability of the atmospheric (wind) forcing of regional ocean dynamics affecting ice loss. Interannual variability of snow accumulation on coastal ice domes grounded near or within ice shelves reflects local to regional atmospheric circulation near the ice-ocean interface. Records of snow accumulation inferred from shallow ice cores strongly correlate with reanalysis precipitation and pressure fields, but ice cores have not yet been retrieved along the Amundsen Sea coast. High-frequency airborne radar data (NASA Operation IceBridge), however, have been collected over this region and we demonstrate that these data accurately reflect annual stratigraphy in shallow snow and firn (1 to 2 decades of accumulation). This further validates the agreement between radar snow accumulation records and climate reanalysis products. We then explore regional climate controls on local snow accumulation through comparison with gridded reanalysis products, providing a preview of what information longer coastal ice core records may provide with respect to past atmospheric forcing of ocean circulation and WAIS ice loss.

  4. Spatial Variability of Near-surface Soil Moisture for Bioenergy Crops at the Great Lakes Bioenergy Research Center

    Science.gov (United States)

    van Dam, R. L.; Diker, K.; Bhardwaj, A. K.; Hamilton, S. K.

    2009-12-01

    We used time-lapse electrical resistivity imaging (ERI) to monitor spatial and temporal soil moisture variability below ten different potential bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s sustainability research site in Michigan, U.S.A. These crops range from high-diversity, low-input grasses and poplars to low-diversity, high-input corn-soybean-canola rotations. We equipped the 28x40m vegetation plots with permanent 2D resistivity arrays, each consisting of 40 graphite electrodes at 30cm spacing. Other permanent equipment in each plot includes multi-depth temperature and time domain reflectometry (TDR) based moisture sensors, and two tension soil water samplers. The material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. ERI data were collected using a dipole-dipole configuration every four weeks since early May 2009. After removal of bad points, the data were inverted and translated into 2D images of water content using lab-derived petrophysical relationships, including corrections for soil temperature and salinity. The results show significant seasonal variation within and between vegetation plots. We compare our results to high-temporal resolution point-based measurements of soil moisture from TDR probes and present statistical analysis of the variability of soil moisture within and between plots.

  5. Variability of {sup 10}Be and {delta}{sup 18}O in snow pits from Greenland and a surface traverse from Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, A.-M. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Aldahan, A., E-mail: ala.aldahan@geo.uu.se [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Dept. of Geology, United Arab Emirates University, P.O. Box 17551 Al Ain (United Arab Emirates); Possnert, G. [Tandem Laboratory, Uppsala University, P.O. Box 529, 751 20 Uppsala (Sweden); Hansson, M. [Dept. of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm (Sweden); Steen-Larsen, H.C. [Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej, 30,2100 Copenhagen (Denmark); Sturevik Storm, A. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Moerth, C.-M. [Dept. of Geology and Geochemistry, Stockholm University, 106 91 Stockholm (Sweden); Murad, A. [Dept. of Geology, United Arab Emirates University, P.O. Box 17551 Al Ain (United Arab Emirates)

    2013-01-15

    To examine temporal variability of {sup 10}Be in glacial ice, we sampled snow to a depth of 160 cm at the NEEM (North Greenland Eemian Ice Drilling) drilling site in Greenland. The samples span three years between the summers of 2006 and 2009. At the same time, spatial variability of {sup 10}Be in glacial ice was explored through collection of the upper {approx}5 cm of surface snow in Antarctica during part of the Swedish-Japanese traverse from Svea to Syowa station during the austral summer in 2007-2008. The results of the Greenlandic {sup 10}Be snow suggested variable concentrations that apparently do not clearly reflect the seasonal change as indicated by the {delta}{sup 18}O data. The {sup 10}Be concentration variability most likely reflects also effects of aerosol loading and deposition pathways, possibly in combination with post-depositional processes. The Antarctic traverse data expose a negative correlation between {sup 10}Be and {delta}{sup 18}O, while there are weaker but still significant correlations to altitude and distance to the coast (approximated by the distance to the 70th latitude). These relationships indicate that geographical factors, mainly the proximity to the coast, may strongly affect {sup 10}Be concentrations in snow in Queen Maud Land, Antarctica.

  6. Numerical investigation on the effects of variable viscosity and radiation on the MHD flow with heat transfer over an unsteady stretching surface embedded in a porous medium

    International Nuclear Information System (INIS)

    Anne Susan Georgena, S.; Anjali Devi, S.P.

    2011-01-01

    Flow induced by stretching surfaces is often encountered in many industrial disciplines. The applications include extrusion process, wire and fiber coating, polymer processing, foodstuff processing, design of various heat exchangers, and chemical processing equipment, among other applications. Stretching will bring in a unidirectional orientation to the extrudate, consequently the quality of the final product considerably depends on the flow and heat transfer mechanism. The analysis of momentum and thermal transports within the fluid on a stretching surface is important for Boundary Value Problem gaining some fundamental understanding of such processes. In view of these applications, the present work deals with such kind of problem. The effect of radiation on the hydromagnetic (MHD) flow and heat transfer over an unsteady stretching surface with variable viscosity embedded in a porous medium is analyzed. Similarity transformations are used to convert the governing time dependent boundary layer equations for momentum and thermal energy into a set of ordinary differential equations containing magnetic interaction parameter M, unsteadiness parameter A, variable viscosity parameter β, permeability parameter λ, radiation parameter R and Prandtl number Pr. The resulting Nonlinear Ordinary Differential Equations are solved numerically by applying numerical shooting technique together with fourth order Runge-Kutta method. The influence of all the parameters involved in the problem over the velocity and temperature are analyzed and illustrated through graphs. Details the velocity and temperature fields as well as the local skin friction and the local Nusselt number for various values of the parameters of the problem are presented. The influence of the magnetic interaction parameter over the velocity and temperature distribution is more pronounced. There is a significant difference in velocity and temperature due to the increase in variable viscosity parameter and the

  7. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    M. R. van den Broeke

    2011-05-01

    Full Text Available We present the seasonal cycle and interannual variability of the surface energy balance (SEB in the ablation zone of the west Greenland ice sheet, using seven years (September 2003–August 2010 of hourly observations from three automatic weather stations (AWS. The AWS are situated along the 67° N latitude circle at elevations of 490 m a.s.l. (S5, 1020 m a.s.l. (S6 and 1520 m a.s.l. (S9 at distances of 6, 38 and 88 km from the ice sheet margin. The hourly AWS data are fed into a model that calculates all SEB components and melt rate; the model allows for shortwave radiation penetration in ice and time-varying surface momentum roughness. Snow depth is prescribed from albedo and sonic height ranger observations. Modelled and observed surface temperatures for non-melting conditions agree very well, with RMSE's of 0.97–1.26 K. Modelled and observed ice melt rates at the two lowest sites also show very good agreement, both for total cumulative and 10-day cumulated amounts. Melt frequencies and melt rates at the AWS sites are discussed. Although absorbed shortwave radiation is the most important energy source for melt at all three sites, interannual melt variability at the lowest site is driven mainly by variability in the turbulent flux of sensible heat. This is explained by the quasi-constant summer albedo in the lower ablation zone, limiting the influence of the melt-albedo feedback, and the proximity of the snow free tundra, which heats up considerably in summer.

  8. Coherence between interannual variability of sea level with some surface met-ocean parameters at Cochin, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, K.

    Centre, Cochin - 682 014, Kerala, India [ E-mail: srinivas_kantha@rediffmail.com ; srinivas_kantha@yahoo.co.in ] Received 4 October 2001, revised 14 June 2002 The interannual coherence of some surface met-ocean parameters (viz. SST, air temperature....01354, 0.01968 and 0.01428 dyne/cm 2 , respectively. As the numerical values of the observed wind stress are small, the re- siduals (i.e. anomalies) are still smaller. Further, the seasonal signal component in the cross-shore and along-shore wind stress...

  9. Dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations during...

  10. Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors

    Science.gov (United States)

    Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael

    2018-03-01

    Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.

  11. Aging does not affect generalized postural motor learning in response to variable amplitude oscillations of the support surface.

    Science.gov (United States)

    Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B

    2010-08-01

    Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.

  12. Mass Transfer and MHD Effects on Unsteady Porous Stretching Surface Embedded in a Porous Medium With Variable Heat Flux in The Presence of Heat Source

    Directory of Open Access Journals (Sweden)

    G.V. Ramana REDDY

    2013-01-01

    Full Text Available An unsteady two dimensional boundary layer flowof a viscous, incompressible, electrically conducting fluid over aporous stretching surface embedded in a porous medium in thepresence of heat source or sink is studied in chapter 7. Theunsteadiness in the flow and temperature fields is caused by thetime dependence of the stretching velocity and the surface heatflux. The governing partial differential equations aretransformed into a system of ordinary differential equationsusing similarity variables, which is then solved numerically byapplying shooting method using Runge-Kutta method. Thesolution is found to be dependent on the governing parametersincluding the Prandtl number, porous parameter, heat source/sink parameter, suction or injection parameter andunsteadiness parameter. Comparison of numerical results ismade with previously published results under the special cases,and found to be in good agreement. Effects of the Prandtlnumber, porous parameter, heat source /sink parameter, suctionor injection parameter and unsteadiness parameter on the flowand heat transfer are examined.

  13. Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

    Science.gov (United States)

    Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.

    2017-12-01

    The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in minimum and maximum θe, where more complex models

  14. Estimation of Land Surface Temperature for the Quantitative Analysis of Land Cover of Lower Areas of Sindh to Assess the Impacts of Climate Variability

    Science.gov (United States)

    Qaisar, Maha

    2016-07-01

    Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded

  15. Genomic Characterization of Variable Surface Antigens Reveals a Telomere Position Effect as a Prerequisite for RNA Interference-Mediated Silencing in Paramecium tetraurelia

    Science.gov (United States)

    Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut

    2014-01-01

    ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173

  16. Fifteen Years (1993–2007 of Surface Freshwater Storage Variability in the Ganges-Brahmaputra River Basin Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Edward Salameh

    2017-03-01

    Full Text Available Surface water storage is a key component of the terrestrial hydrological and biogeochemical cycles that also plays a major role in water resources management. In this study, surface water storage (SWS variations are estimated at monthly time-scale over 15 years (1993–2007 using a hypsographic approach based on the combination of topographic information from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER and Hydrological Modeling and Analysis Platform (HyMAP-based Global Digital Elevation Models (GDEM and the Global Inundation Extent Multi-Satellite (GIEMS product in the Ganges-Brahmaputra basin. The monthly variations of the surface water storage are in good accordance with precipitation from Global Precipitation Climatology Project (GPCP, river discharges at the outlet of the Ganges and the Brahmaputra, and terrestrial water storage (TWS from the Gravity Recovery And Climate Experiment (GRACE, with correlations higher than 0.85. Surface water storage presents a strong seasonal signal (~496 km3 estimated by GIEMS/ASTER and ~378 km3 by GIEMS/HyMAPs, representing ~51% and ~41% respectively of the total water storage signal and it exhibits a large inter-annual variability with strong negative anomalies during the drought-like conditions of 1994 or strong positive anomalies such as in 1998. This new dataset of SWS is a new, highly valuable source of information for hydrological and climate modeling studies of the Ganges-Brahmaputra river basin.

  17. Remote-Sensing-Based Estimation of Surface Nitrate and Its Variability in the Southern Peninsular Indian Waters

    Directory of Open Access Journals (Sweden)

    R. K. Sarangi

    2011-01-01

    Full Text Available A relationship between sea surface temperature (SST and surface nitrate concentrations has been obtained for the first time based on in situ datasets retrieved from U.S. JGOFS (1991–96 and Indian cruises (2000–2006 in the Arabian Sea, Bay of Bengal and Indian Ocean region around the southern Indian tip. The dataset includes 1537 points. A sigmoid relationship obtained with 2 value 0.912. NOAA-AVHRR pathfinder satellite monthly averaged SST data retrieved from the PODAAC/JPL/NASA archive during July 1999–June 2004. The datasets imported in the ERDAS-Imagine software and SST images generated on monthly and seasonal scales, for latitudes 5–12°N and longitudes 75–85°E. The ocean surface nitrate images retrieved based on the established sigmoid relationship with SST. The nitrate concentrations ranged between 0.01–3.0 μM and categorized into five ranges. The significant seasonal upwelling zone around the southwest coast of India (Kerala coast, Latitude 80.10–9.30°N and Longitude 75.60–76.20°E was identified during July–September 1999–2004 with very high nitrate concentration (~1.00 μM. Low nitrate and nitrate-depleted zones observed during summer (March–May. In the Arabian Sea and northern Indian Ocean, high nitrate concentration (~0.50 μM observed during the southwest monsoon (SWM, whereas the Bay of Bengal was marked with high nitrate (~0.50 μM during the northeast monsoon (NEM. SST was high (~29°C in the Bay of Bengal and low (~26°C in the Arabian Sea and northern Indian Ocean during SWM and vice versa during the NEM. There is a clear inverse relationship between nitrate and SST in the study area during July 1999–June 2004.

  18. Stochastic models and spectra of interannual variability of mean annual sea surface temperature in the North Atlantic

    Science.gov (United States)

    Privalsky, V. E.

    1988-10-01

    Estimates of one- and two-variate autoregressive models of mean annual sea surface temperature (SST) in five Smed squares in the North Atlantic are obtained by analysing time series of SST, 1881-1970. Year-to-year variations of SST are shown to follow the AR model of order one with a regression parameter of 0.5 so that their generalized spectrum decreases monotonically and relatively fast with frequency while the limits of statistical predictability amount up to two years. Two-variate models of SST reveal frequency-dependent time lags up to three years and possess slightly better statistical predictability. A feedback in the system of warm and cold currents is found with a characteristic time scale of about six years, which plays an important role in the system's energy budget.

  19. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: Rates associated with environmental and biotic variables

    Science.gov (United States)

    Thullen, J.S.; Nelson, S.M.; Cade, B.S.; Sartoris, J.J.

    2008-01-01

    Decomposition of senesced culm material of two bulrush species was studied in a surface-flow ammonia-dominated treatment wetland in southern California. Decomposition of the submerged culm material during summer months was relatively rapid (k = 0.037 day-1), but slowed under extended submergence (up to 245 days) and during fall and spring sampling periods (k = 0.009-0.014 day-1). Stepwise regression of seasonal data indicated that final water temperature and abundance of the culm-mining midge, Glyptotendipes, were significantly associated with culm decomposition. Glyptotendipes abundance, in turn, was correlated with water quality parameters such as conductivity and dissolved oxygen and ammonia concentrations. No differences were detected in decomposition rates between the bulrush species, Schoenoplectus californicus and Schoenoplectus acutus.

  20. Palynology of the late Holocene in Disko Bugt, West Greenland: evidence for centennial variability in sea-surface conditions.

    Science.gov (United States)

    Allan, Estelle; de Vernal, Anne; Matthias, Moros; Marie-Michèle, Ouellet-Bernier

    2016-04-01

    The palynological analyses of a sediment core collected in Disko Bay (core 343310; 68° 38,861'N, 53° 49,493'W) provide a dinocyst record of the last 1500 years with 5-30 year time resolution and thus permit reconstruction of changes in surface water, including sea-ice cover, temperature and salinity. Dinocyst assemblages are characterized by high taxonomic diversity (18 taxa) with dominance of Islandinium minutum, Pentapharsodinium dalei, Brigantedinium spp. and Islandinium? cezare and by very high concentrations (>105 cysts.cm-3) leading to calculate fluxes of the order of (>104 cysts.cm-2.years-1). The modern analogue technique (MAT) was applied to dinocyst assemblages to quantitatively reconstruct paleo-sea-surface conditions. The seasonal sea ice cover shows large amplitude variations from 2 to 8 months.yr-1(sea ice coverage >50%), with maxima at 1050-1300 AD, 1400-1500 AD, 1550-1600 AD and 1770-1800 AD, which reflect episodic cooling during the last millennium. In the overall record, sea ice cover and salinity variation are correlated with increase sea ice extent corresponding with decrease salinity and vice versa, which suggests strong linkages between the regional freshwater/meltwater budget and winter sea ice. Relationship between sea ice cover and the North Atlantic Oscillation (NAO) is also possible. The increased sea ice being associated with dominant NAO+ mode can be linked with change of the regional properties of the West Greenland Current, the marked by lower influence of warm and saline Atlantic waters relative to an increase influence of the polar and low salinity in Arctic waters from East Greenland Current under NAO+ situation.

  1. Seasonal variability of benthic ammonium release in the surface sediments of the Gulf of Gdansk (southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Dorota Maksymowska-Brossard

    2001-03-01

    Full Text Available This paper describes the seasonal and spatial variations of diffusive sediment- water ammonium fluxes in the western part of the Gulf of Gdansk (southern Baltic. It assesses the potential environmental controls of these fluxes, such as the inflow of organic matter to bottom sediments and its quality, temperature-induced degradation of organic matter, and the redox potential of sediments. Ammonium fluxes, calculated using Fick's first law, were always in the direction from the sediment into the water column and differed significantly with respect to sediment type. Fluxes were most intensive in sediments with the highest silt-clay fraction located in the deepest parts of the study area. The mean annual diffusive fluxes of ammonium from sediments to near-bottom water were estimated at 5.24 tonnes km-2 year-1 for silty-clays, 1.85 tonnes km-2 year-1 for silty-sands and 1.03 tonnes km-2 year-1 for sandy sediments. There was a high seasonal variation, with the greatest ammonium release in summer and early autumn, when the temperature of near-bottom water was the highest. On the basis of the calculated diffusive ammonium fluxes, we estimated that approximately 2700 tonnes of N-NH4+ are released annually from the surface sediments of the western part of the Gulf of Gdansk, providing a minimum of 10% of the mineral nitrogen essential for primary production in surface waters. Our results are undoubtedly underestimated, as we disregarded advective ammonium fluxes, which in some areas of the Gulf of Gdansk could well be comparable to diffusive fluxes.

  2. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus.

    Science.gov (United States)

    Hu, Qiong-Ying; Fink, Elizabeth; Grant, Chris K; Elder, John H

    2014-01-01

    Heparan sulfate proteoglycans (HSPG) can act as binding receptors for certain laboratory-adapted (TCA) strains of feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV). Heparin, a soluble heparin sulfate (HS), can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS). Heparin also specifically interferes with TCA surface glycoprotein (SU) binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.

  3. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    Full Text Available Heparan sulfate proteoglycans (HSPG can act as binding receptors for certain laboratory-adapted (TCA strains of feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV. Heparin, a soluble heparin sulfate (HS, can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS. Heparin also specifically interferes with TCA surface glycoprotein (SU binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.

  4. Variability of surface and underwater nocturnal spectral irradiance with the presence of clouds in urban and peri-urban wetlands.

    Directory of Open Access Journals (Sweden)

    Jean Secondi

    Full Text Available Artificial light at night (ALAN is an increasing phenomenon worldwide. It causes a wealth of biological and ecological effects that may eventually affect populations and ecosystems. Despite the growing concern about ALAN, little is known about the light levels species are exposed to at night, especially for wetlands and underwater habitats. We determined nocturnal irradiance in urban and peri-urban wetlands above and under water, and assessed the effect of cloud cover on the variability of ALAN across the urban gradient. Even in aquatic habitats, cloud cover could increase irradiance beyond values observed during clear full moon nights. We report a negative relationship between baseline irradiance and the increase in irradiance during overcast nights. According to this result and previous studies, we propose that the change in the variation regime of ALAN between the urban center and rural land at its periphery is a usual feature. We discuss the ecological and evolutionary implications of this spatial variation in the urban and peri-urban environment.

  5. Nonablative skin tightening with a variable depth heating 1310-nm wavelength laser in combination with surface cooling.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene

    2007-11-01

    A near-infrared laser with the ability to target different depths within skin has been developed and evaluated for the application of facial and neck skin tightening in a pilot clinical study. The device consists of a combination of a 1310-nm wavelength and sapphire contact cooling. Cooling temperature and laser pulse duration were varied to target different dermal depths in various subgroups of the subject population. Quantitative changes in various categories characterizing the aging skin employing a comprehensive grading scale as well as subject satisfaction were calculated. A mean improvement of 7.9% (95% CI [confidence interval] 3.6-12.3) in laxity and 10.6% (95% CI 5.8-15.4) in rhytides was determined by quantitative grading at one month after the treatment regimen. These values were 11.0% (5.5-16.5) and 11.7% (5.8-17.7) at 3 months after the treatment regimen. The percent of patients reporting mild or better improvement in laxity of the face and neck was 78% and 61% at one month, and 63% and 61% at 3 months, respectively. The discomfort was minimal. Side effects were limited to short-term erythema and edema. In summary, a variable depth heating laser can achieve skin tightening and wrinkle reduction with high subject satisfaction.

  6. Tidal and atmospheric forcing of the upper ocean in the Gulf of California. I - Sea surface temperature variability

    Science.gov (United States)

    Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.

    1991-01-01

    SST variability in the northern Gulf of California is examined on the basis of findings of two years of satellite infrared imagery (1984-1986). Empirical orthogonal functions of the temporal and spatial SST variance for 20 monthly mean images show that the dominant SST patterns are generated by spatially varying tidal mixing in the presence of seasonal heating and cooling. Atmospheric forcing of the northern gulf appears to occur over large spatial scales. Area-averaged SSTs for the Guaymas Basin, island region, and northern basin exhibit significant fluctuations which are highly correlated. These fluctuations in SST correspond to similar fluctuations in the air temperature which are related to synoptic weather events over the gulf. A regression analysis of the SST relative to the fortnightly tidal range shows that tidal mixing occurs over the sills in the island region as well as on the shallow northern shelf. Mixing over the sills occurs as a result of large breaking internal waves of internal hydraulic jumps which mix over water in the upper 300-500 m.

  7. Application of Response Surface Methodology as an Efficient Approach for Optimization of Operational Variables in Benzene Hydroxylation to Phenol by V/SBA-16 Nanoporous Catalyst

    Directory of Open Access Journals (Sweden)

    Milad Jourshabani

    2016-04-01

    Full Text Available Herein, we prepared a V/SBA-16 catalyst using vanadyl acetylacetonate as a precursor and SBA-16 nanoporous silica as a support via an immobilization technique. The ordered mesoporous structure of catalyst was determined by X-ray diffraction  and transmission electron microscopy techniques , and the catalyst was evaluated in the benzene hydroxylation to phenol with hydrogen peroxide (H2O2 as a green oxidant. The effects of three key factors, namely reaction temperature (°C, H2O2 content (mL and catalyst amount (g at five levels (“1.68, “1, 0, +1, +1.68, and also their interaction on the phenol yield were investigated using response surface methodology combined with central composite design. The high correlation coefficient (R2, i.e., 0.983, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also exhibited that high phenol yield (17.09% was achieved at the optimized values of the operating variables: the reaction temperature of 61 °C, H2O2 content of 1.69 mL and a catalyst amount of 0.1 g. In addition, response surface methodology provides a reliable method for optimizing process variables for benzene hydroxylation to phenol, with the minimum number of experiments.

  8. Variability of soil enzyme activities and vegetation succession following boreal forest surface soil transfer to an artificial hill

    Directory of Open Access Journals (Sweden)

    Maarit Niemi

    2014-08-01

    Full Text Available A landfill site in southern Finland was converted into urban green space by covering it with a layer of fresh forest humus transferred from nearby construction sites. The aim was to develop the 70 m high artificial hill into a recreational area with high biodiversity of flora and fauna. Forest humus was used as a source of organic matter, plant roots, seeds, soil fauna and microorganisms in order to enable rapid regeneration of diverse vegetation and soil biological functions. In this study we report the results of three years of monitoring of soil enzyme activity and plant species compositional patterns. Monthly soil samples were taken each year between June and September from four sites on the hill and from two standing reference forests using three replicate plots. Activities of 10 different enzymes, soil organic matter (SOM content, moisture, pH and temperature of the surface layer were monitored. Abundances of vascular plant species were surveyed on the same four hill sites between late May and early September, three times a season in 2004 and 2005. Although the addition of organic soil considerably increased soil enzyme activities (per dw, the activities at the covered hill sites were far lower than in the reference forests. Temporal changes and differences between sites were analysed in more detail per soil organic matter (SOM in order to reveal differences in the quality of SOM. All the sites had a characteristic enzyme activity pattern and two hill sites showed clear temporal changes. The enzyme activities in uncovered topsoil increased, whereas the activities at the covered Middle site decreased, when compared with other sites at the same time. The different trend between Middle and North sites in enzyme activities may reflect differences in humus material transferred to these sites, but difference in the succession of vegetation affects enzyme activities strongly. Middle yielded higher β-sitosterol content in 2004, as an indication

  9. Effects of radiation and variable viscosity on unsteady MHD flow of a rotating fluid from stretching surface in porous medium

    Directory of Open Access Journals (Sweden)

    A.M. Rashad

    2014-04-01

    Full Text Available This work is focused on the study of unsteady magnetohydrodynamics boundary-layer flow and heat transfer for a viscous laminar incompressible electrically conducting and rotating fluid due to a stretching surface embedded in a saturated porous medium with a temperature-dependent viscosity in the presence of a magnetic field and thermal radiation effects. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. With appropriate transformations, the unsteady MHD boundary layer equations are reduced to local nonsimilarity equations. Numerical solutions of these equations are obtained by using the Runge–Kutta integration scheme as well as the local nonsimilarity method with second order truncation. Comparisons with previously published work have been conducted and the results are found to be in excellent agreement. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity in primary and secondary flows as well as the local skin-friction coefficients and the local Nusselt number are illustrated graphically to show interesting features of Darcy number, viscosity-variation, magnetic field, rotation of the fluid, and conduction radiation parameters.

  10. Natural convection of nanofluid in a wavy cavity in the presence of magnetic field on variable heat surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Javaherdeh, Korosh; Moslemi, Mehdi; Shahbazi, Mona [University of Guilan, Rasht (Iran, Islamic Republic of)

    2017-04-15

    A numerical analysis has been performed to investigate the laminar natural convection heat characteristics in a wavy cavity filled with CuO/water nanofluid. One of the sinusoidal walls (BC) is at the volatile high temperature and the opposite wavy surface is at a stable low temperature and the two other walls are considered flat and insulated while the uniform magnetic field is considered. Performing the analysis, the governing equations are given in terms of the stream function-vorticity formulation. In order to solve the nondimensionalized equations, discretizing with second-order accurate central difference method is performed then the successive under relaxation method with appropriate boundary conditions is considered. To validate the numerical model, various comparisons with previously published studies have been conducted and the results are in a good agreement. The main objective is to survey the effects of the Rayleigh number, Hartmann number, and nanoparticles volume fraction on the fluid flow and heat transfer characteristics. The results are illustrated in contours of stream function, constant temperature, and Nusselt number. The results show that the presence of the magnetic field the local Nusselt number decreases at the hot wall. Moreover, the enhancement in the heat transfer performance increases with an increasing nanoparticle concentration. However, for all values of Rayleigh number, the presence of nanoparticles leads to significant enhancement in heat transfer and the increase of Rayleigh number causes the heat transfer mechanism to change from conduction to convection.

  11. Use of agricultural statistics to verify the interannual variability in land surface models: a case study over France with ISBA-A-gs

    Directory of Open Access Journals (Sweden)

    J.-C. Calvet

    2012-01-01

    Full Text Available In order to verify the interannual variability of the above-ground biomass of herbaceous vegetation simulated by the ISBA-A-gs land surface model, within the SURFEX modelling platform, French agricultural statistics for C3 crops and grasslands were compared with the simulations for the 1994–2008 period. While excellent correlations are obtained for grasslands, representing the interannual variability of crops is more difficult. It is shown that, the Maximum Available soil Water Capacity (MaxAWC has a large influence on the correlation between the model and the agricultural statistics. In particular, high values of MaxAWC tend to reduce the impact of the climate interannual variability on the simulated biomass. Also, high values of MaxAWC allow the simulation of a negative trend in biomass production, in relation to a marked warming trend, of about 0.12 Kyr−1 on average, affecting the daily maximum air temperature during the growing period (April–June. This trend is particularly acute in Northern France. The estimates of MaxAWC for C3 crops and grasslands, currently used in SURFEX, are about 129 mm and do not vary much. Therefore, more accurate grid-cell values of this parameter are needed.

  12. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  13. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  14. A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling

    Science.gov (United States)

    Gomez Martin, J.; MacDonald, S.; Chance, R.; Saiz-Lopez, A.; Carpenter, L.; Plane, J. M.

    2013-12-01

    Reactive iodine compounds (IOx = I + IO) play a significant role in the chemistry of the marine boundary layer, by causing ozone destruction and changing the HOx and NOx partitioning. The HOI and I2 fluxes produced from iodide solutions after reaction with O3 were measured by using the iodine oxide particle size distributions obtained from a differential mobility analyser. The effect of a number of relevant parameters including water temperature, salinity and organic compound concentration on the HOI and I2 fluxes were investigated. The results of these experiments and those reported previously (Carpenter et al., 2013) were then used to produce parameterised expressions for the HOI and I2 fluxes. The scarce concurrent measurements of sea surface iodide and temperature available in the literature were then used to parameterise the iodide concentration as a function of temperature, which enables inclusion in atmospheric models. The adapted expressions were then input into the Tropospheric HAlogen chemistry MOdel (THAMO) to compare with latitudinal MAX-DOAS measurements of IO and IOx performed during the HaloCAST-P cruise in the Eastern Pacific ocean (Mahajan et al., 2012), spanning a wide range of SST, wind speed and O3 mixing ratios. The modelled IO and IOx matches well with the observations when the predicted fluxes are lower, however, there is an over-prediction in the model at low wind speeds. The inorganic iodine flux contributions to IO and IOx are found to be comparable with or larger than the contribution of organoiodine compounds, and therefore its inclusion in atmospheric models is necessary to improve predictions of the influence of halogen chemistry in the marine boundary layer.

  15. Linear and nonlinear winter atmospheric responses to extreme phases of low frequency Pacific sea surface temperature variability

    Science.gov (United States)

    Cao, Dandan; Wu, Qigang; Hu, Aixue; Yao, Yonghong; Liu, Shizuo; Schroeder, Steven R.; Yang, Fucheng

    2018-02-01

    This study examines Northern Hemisphere winter (DJFM) atmospheric responses to opposite strong phases of interdecadal (low frequency, LF) Pacific sea surface temperature (SST) forcing, which resembles El Niño-Southern Oscillation (ENSO) on a longer time scale, in observations and GFDL and CAM4 model simulations. Over the Pacific-North America (PNA) sector, linear observed responses of 500-hPa height (Z500) anomalies resemble the PNA teleconnection pattern, but show a PNA-like nonlinear response because of a westward Z500 shift in the negative (LF-) relative to the positive LF (LF+) phase. Significant extratropical linear responses include a North Atlantic Oscillation (NAO)-like Z500 anomaly, a dipole-like Z500 anomaly over northern Eurasia associated with warming over mid-high latitude Eurasia, and a Southern Annular anomaly pattern associated with warming in southern land areas. Significant nonlinear Z500 responses also include a NAO-like anomaly pattern. Models forced by LF+ and LF- SST anomalies reproduce many aspects of observed linear and nonlinear responses over the Pacific-North America sector, and linear responses over southern land, but not in the North Atlantic-European sector and Eurasia. Both models simulate PNA-like linear responses in the North Pacific-North America region similar to observed, but show larger PNA-like LF+ responses, resulting in a PNA nonlinear response. The nonlinear PNA responses result from both nonlinear western tropical Pacific rainfall changes and extratropical transient eddy feedbacks. With LF tropical Pacific forcing only (LFTP+ and LFTP-, climatological SST elsewhere), CAM4 simulates a significant NAO response to LFTP-, including a linear negative and nonlinear positive NAO response.

  16. The impact of diurnal variability in sea surface temperature on the central Atlantic air-sea CO2 flux

    Directory of Open Access Journals (Sweden)

    M. J. Filipiak

    2009-01-01

    Full Text Available The effect of diurnal variations in sea surface temperature (SST on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST. The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation, Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE. The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST and 31.2 Tg C a−1 (monthly average of ΔSST measurements. Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002 making this is a small contribution to the Atlantic carbon budget.

  17. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans

    Directory of Open Access Journals (Sweden)

    Michael A. Alexander

    2018-01-01

    Full Text Available Global climate models were used to assess changes in the mean, variability and extreme sea surface temperatures (SSTs in northern oceans with a focus on large marine ecosystems (LMEs adjacent to North America, Europe, and the Arctic Ocean. Results were obtained from 26 models in the Community Model Intercomparison Project Phase 5 (CMIP5 archive and 30 simulations from the National Center for Atmospheric Research Large Ensemble Community Project (CESM-LENS. All of the simulations used the observed greenhouse gas concentrations for 1976–2005 and the RCP8.5 “business as usual” scenario for greenhouse gases through the remainder of the 21st century. In general, differences between models are substantially larger than among the simulations in the CESM-LENS, indicating that the SST changes are more strongly affected by model formulation than internal climate variability. The annual SST trends over 1976–2099 in the 18 LMEs examined here are all positive ranging from 0.05 to 0.5°C decade–1. SST changes by the end of the 21st century are primarily due to a positive shift in the mean with only modest changes in the variability in most LMEs, resulting in a substantial increase in warm extremes and decrease in cold extremes. The shift in the mean is so large that in many regions SSTs during 2070–2099 will 'always' be warmer than the 'warmest' year during 1976–2005. The SST trends are generally stronger in summer than in winter, as greenhouse gas heating is integrated over a much shallower climatological mixed layer depth in summer than in winter, which amplifies the seasonal cycle of SST over the 21st century. In the Arctic, the mean SST and its variability increases substantially during summer, when it is ice free, but not during winter when a thin layer of ice reforms and SSTs remain near the freezing point.

  18. EFFECT OF VARIABLE VISCOSITY AND SUCTION/INJECTION ON THERMAL BOUNDARY LAYER OF A NON-NEWTONIAN POWER-LAW FLUIDS PAST A POWER-LAW STRETCHED SURFACE

    Directory of Open Access Journals (Sweden)

    Rania Fathy

    2010-01-01

    Full Text Available The analysis of laminar boundary layer flow and heat transfer of non-Newtonian fluids over a continuous stretched surface with suction or injection has been presented.The velocity and temperature of the sheet were assumed to vary in a power-law form, that is u = U0xm, and Tw(x = T+ Cxb. The viscosity of the fluid is assumed to be inverse linear function of temperature. The resulting governing boundary-layer equations are highly non-linear and coupled form of partial differential equations and they have been solved numerically by using the Runge-Kutta method and Shooting technique. Velocity and temperature distributions as well as the Nusselt number where studied for two thermal boundary conditions: uniform surface temperature (b = 0 and cooled surface temperature (b = -1, for different parameters: variable viscosity parameter qr, temperature exponent b, blowing parameter d and Prandtl number. The obtained results show that the flow and heat transfer characteristics are significantly influenced by these parameters.

  19. Effects of the Distance from a Diffusive Surface on the Objective and Perceptual Evaluation of the Sound Field in a Small Simulated Variable-Acoustics Hall

    Directory of Open Access Journals (Sweden)

    Louena Shtrepi

    2017-02-01

    Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.

  20. Centennial-scale surface hydrology off Portugal during marine isotope stage 3: Insights from planktonic foraminiferal fauna variability

    Science.gov (United States)

    Vautravers, Maryline J.; Shackleton, Nicholas J.

    2006-09-01

    The marine isotopic stage 3 (MIS3) at Ocean Drilling Program (ODP) Site 1060 (Gulf Stream) shows both sharp onset and end of interstadials, the existence of very short lived warm events during stadials, and points to differences in detail between the sea surface temperature (SST) record from the western North Atlantic and the atmospheric temperature record inferred from δ18O in Greenland ice. Investigating MIS3 and obtaining comparable data from other locations appears crucial. The eastern Atlantic provides well-documented records of climate changes. We have selected a core from off Portugal and use it to examine Dansgaard/Oeschger events (D/O) at centennial-scale resolution (139 years on average between two data points). We have obtained a faunal data set for core MD01-2444, 37°N, 10°W, 2600 m water depth and use a group of species (Globigerina bulloides + Globigerinita glutinata) as a proxy of upwelling intensity driven by trade winds intensity changes. We tentatively relate the variation of this group to a North Atlantic Oscillation-like phenomenon (NAO) off Portugal. We observe that it resembles the rainfall index in the Caribbean as recorded at ODP Site 1002 (Cariaco Basin) which traces the Intertropical Convergence Zone (ITCZ) location through changes of terrigenous inputs. The driest intervals (ITZC to the south) at Site 1002 correspond to intervals of increased upwelling in MD01-2444 as well as the driest periods identified during stadials on similar cores in the area. Because the ITZC to the south is consistent with an El Niño-Southern Oscillation (ENSO+) situation, our study suggests a positive correlation between ENSO-like conditions and NAO-like conditions at a millennial timescale. During interstadial intervals when increased wetness over Cariaco is recorded (ITCZ to the north) and the upwelling in MD01-2444 is decreased, we see from both SSTs and faunal tropical indicators that MD01-2444 site is warm. In addition, interstadials are equally warm

  1. Variability in the subtropical-tropical cells and its effect on near-surface temperature of the equatorial Pacific: a model study

    Directory of Open Access Journals (Sweden)

    J. F. Lübbecke

    2008-02-01

    Full Text Available A set of experiments utilizing different implementations of the global ORCA-LIM model with horizontal resolutions of 2°, 0.5° and 0.25° is used to investigate tropical and extra-tropical influences on equatorial Pacific SST variability at interannual to decadal time scales. The model experiments use a bulk forcing methodology building on the global forcing data set for 1958 to 2000 developed by Large and Yeager (2004 that is based on a blend of atmospheric reanalysis data and satellite products. Whereas representation of the mean structure and transports of the (sub- tropical Pacific current fields is much improved with the enhanced horizontal resolution, there is only little difference in the simulation of the interannual variability in the equatorial regime between the 0.5° and 0.25° model versions, with both solutions capturing the observed SST variability in the Niño3-region. The question of remotely forced oceanic contributions to the equatorial variability, in particular, the role of low-frequency changes in the transports of the Subtropical Cells (STCs, is addressed by a sequence of perturbation experiments using different combinations of fluxes. The solutions show the near-surface temperature variability to be governed by wind-driven changes in the Equatorial Undercurrent. The relative contributions of equatorial and off-equatorial atmospheric forcing differ between interannual and longer, (multi- decadal timescales: for the latter there is a significant impact of changes in the equatorward transport of subtropical thermocline water associated with the lower branches of the STCs, related to variations in the off-equatorial trade winds. A conspicuous feature of the STC variability is that the equatorward transports in the interior and along the western boundary partially compensate each other at both decadal and interannual time scales, with the strongest transport extrema occurring during El Niño episodes. The behaviour is

  2. Inter-annual variability of surface ozone at coastal (Dumont d'Urville, 2004–2014 and inland (Concordia, 2007–2014 sites in East Antarctica

    Directory of Open Access Journals (Sweden)

    M. Legrand

    2016-07-01

    Full Text Available Surface ozone has been measured since 2004 at the coastal East Antarctic site of Dumont d'Urville (DDU, and since 2007 at the Concordia station located on the high East Antarctic plateau. This paper discusses long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites. At Concordia, near-surface ozone data were complemented by balloon soundings and compared to similar measurements done at the South Pole. The DDU record is compared to those obtained at the coastal site of Syowa, also located in East Antarctica, as well as the coastal sites of Neumayer and Halley, both located on the coast of the Weddell Sea in West Antarctica. Surface ozone mixing ratios exhibit very similar seasonal cycles at Concordia and the South Pole. However, in summer the diurnal cycle of ozone is different at the two sites with a drop of ozone in the afternoon at Concordia but not at the South Pole. The vertical distribution of ozone above the snow surface also differs. When present, the ozone-rich layer located near the ground is better mixed and deeper at Concordia (up to 400 m than at the South Pole during sunlight hours. These differences are related to different solar radiation and wind regimes encountered at these two inland sites. DDU appears to be the coastal site where the impact of the late winter/spring bromine chemistry is the weakest, but where the impact of elevated ozone levels caused by NOx snow emissions from the high Antarctic plateau is the highest. The highest impact of the bromine chemistry is seen at Halley and Neumayer, and to a lesser extent at Syowa. These three sites are only weakly impacted by the NOx chemistry and the net ozone production occurring on the high Antarctic plateau. The differences in late winter/spring are attributed to the abundance of sea ice offshore from the sites, whereas those in summer are related to the topography of East Antarctica that promotes

  3. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongkang; de Sales, Fernando; Lau, Willliam; Boone, Aaron; Kim, Kyu-Myong; Mechoso, C. R.; Wang , Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah S.; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siefried; Dirmeyer, Paul; Leung, Lai-Yung; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, N. M.; Zhang, Zhengqiu J.

    2016-06-13

    The Sahel climate system had experienced one of the strongest interdecadal climate variabilities and the longest drought on the planet in the twentieth century. Most modeling studies on the decadal variability of the Sahel climate so far have focused on the role of anomalies in either sea surface temperature (SST), land surface processes, or aerosols concentration. The Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedback of SST, land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The WAMME II strategy is to apply observationally based anomaly forcing, i.e., “idealized but realistic” forcing, in simulations by general circulation models’ (GCMs) and regional climate models’ (RCMs) to test the relative impacts of such forcings in producing/amplifying the Sahelian seasonal and decadal climate variability, including the 20th century drought. To test individual ocean’s SST effect, a special approach in the experimental design is taken to avoid undermine its effect. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple-external forcings to the Sahel drought. This paper presents the major results and preliminary findings of the WAMME II SST experiment, including each ocean’s contribution to the global SST effect, as well as comparison of the SST effect with the LULCC effect. The common empirical orthogonal functions and other analyses are applied to assess and comprehend the discrepancies among the models. In general, the WAMME II models have reached a consensus on SST’s major contribution to the great Sahel drought and show that with the maximum possible SST forcing, it can produce up to 60% of the absolute amount of precipitation difference between the 1980s and the 1950s. This paper has 3 also delineated the role of SSTs in

  4. Variability of water content useful in surface along a rainfall gradient Mediterranean; Variabilidad de la disposibilidad hidrica superficial para la vegetacion a lo largo de un gradiente pluviometrico

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Sinoga, J. D.; Martinez-Murillo, J. F.; Gabarron-Galeote, M. A.

    2009-07-01

    A climatic gradient was defined in South of spain with a great decreased of rainfall from West to East (>1,000 mm), which produces changes in vegetation and hydric resources. this study was carried out in five hill slopes under different climatic conditions and their aims were to analyze: the variability of available water along the gradient since 2002 to 2006, the key factors of it and the influence on the vegetal cover. Results showed that clay content had a great influence in the surface available water for plants, which did not decrease in the deerfield sites, where the amount of days with hydric deficient was lower. Relationships between vegetation and soil water were stronger in the more humid field sites, where existed a feedback between both properties. (Author) 4 refs.

  5. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  6. Connecting the surface to near-shore bottom waters in the California Current ecosystem: a study of Northern California interannual to decadal oceanographic variability

    Science.gov (United States)

    Fish, C.; Hill, T. M.; Davis, C. V.; Lipski, D.; Jahncke, J.

    2017-12-01

    Elucidating both surface and bottom water ecosystem impacts of temperature change, acidification, and food web disruption are needed to understand anthropogenic processes in the ocean. The Applied California Current Ecosystem Studies (ACCESS) partnership surveys the California Current within the Greater Farallones and Cordell Bank National Marine Sanctuaries three times annually, sampling water column hydrography and discrete water samples from 0 m and 200 m depth at five stations along three primary transects. The transects span the continental shelf with stations as close as 13 km from the coastline to 65 km. This time series extends from 2004 to 2017, integrating information on climate, productivity, zooplankton abundance, oxygenation, and carbonate chemistry. We focus on the interpretation of the 2012-2017 carbonate chemistry data and present both long term trends over the duration of the time series as well as shorter term variability (e.g., ENSO, `warm blob' conditions) to investigate the region's changing oceanographic conditions. For example, we document oscillations in carbonate chemistry, oxygenation, and foraminiferal abundance in concert with interannual oceanographic variability and seasonal (upwelling) cycles. We concentrate on results from near Cordell Bank that potentially impact deep sea coral ecosystems.

  7. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  8. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface

    Science.gov (United States)

    Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.

    2013-01-01

    Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.

  9. Seasonal variation of meteorological variables and recent surface ablation / accumulation rates on Davies Dome and Whisky Glacier, James Ross Island, Antarctica

    Science.gov (United States)

    Láska, K.; Nývlt, D.; Engel, Z.; Budík, L.

    2012-04-01

    In this study, surface mass balance data of two glaciers on James Ross Island, Antarctica, and its spatial and temporal variations are evaluated using snow ablation stakes, ground-penetrating radar, and dGPS measurements. The investigated glaciers are located on the Ulu Peninsula, northern part of James Ross Island. Davies Dome is an ice dome, which originates on the surface of a flat volcanic mesa at elevations >400 m a.s.l. and terminates with a single 700 m wide outlet in the Whisky Bay. Davies Dome has an area of ~6.5 km2 and lies in the altitude range of 0-514 m a.s.l. Whisky Glacier is a cold-based land-terminating valley glacier surrounded by an extensive moraine ridges made of debris-covered ice. The glacier has an area of ~2.4 km2 and lies in the altitude range of 215-520 m a.s.l. Within several summer austral summers, extensive field programme were carried out on both glaciers including the operation of two automatic weather stations, field mapping and mass balance measurements. Each station was equipped with albedometer CM7B (Kipp-Zonen, Netherlands), air temperature and humidity sensor EMS33 (EMS, Czech Republic), propeller anemometer 05103 (Young, USA), and snow depth sensors (Judd, USA). In the period 2009-2011, high seasonal and interdiurnal variability of incoming solar radiation and near-surface air temperature was found as a result of changes in the circulation patterns and synoptic-scale weather systems moving in the Circumpolar Trough. High ablation and accumulation rates were recorded mainly in the spring and summer seasons (October-February), while negligible changes were found in winter (May-September). The effects of positive degree-day temperatures on the surface ablation rates were examined using a linear regression model. In this approach, near-surface air temperature maps on the glacier surfaces were derived from digital elevation model according to actual temperature lapse rates. Mass balance investigations started in 2006 on Davies

  10. Late Neogene Orbitally-Forced Sea Surface Temperature Variability in the Eastern Equatorial Pacific as Measured by Uk'37 and TEX86

    Science.gov (United States)

    Lawrence, K. T.; Pearson, A.; Castañeda, I. S.; Peterson, L.

    2017-12-01

    Key features of late Neogene climate remain uncertain due to conflicting records derived from different sea surface temperature (SST) proxies. To resolve these disputes, it is necessary to explore both the consistencies and differences between paleotemperature estimates from critical oceanographic regimes. Here, we report orbital-scale climate variability at ODP Site 846 in the Eastern Equatorial Pacific (EEP) in the interval from 5-6 Ma using alkenone and TEX86 temperature estimates. Results from both proxies are very similar in their secular trends and magnitude of long-term temperature change; and spectral analysis demonstrates that the records are coherent and in-phase or nearly in-phase in both the obliquity and precession bands. However, we find that the temperatures reconstructed by TEX86 are consistently offset towards colder values by 2ºC with orbital-scale variations approximately twice the amplitude of the Uk'37 derived estimates. Both temperature records are antiphased - i.e. "colder" - at higher sediment alkenone concentrations, a qualitative indicator of increased glacial productivity. Temperature differences between the proxies are accentuated during glacial intervals in contrasts to modern observations of EEP surface and subsurface temperatures, which show that thermocline temperatures are fairly stable, and thus by analogy, glacial cooling and/or enhanced upwelling should have reduced rather than accentuated temperature gradients in the upper water column. Therefore, arguments that Uk'37 corresponds to temperature variability in the surface, while TEX86 responds to the subsurface, may be too simplistic. Instead, it appears generally true that high-productivity environments, including the EEP, tend to have negative TEX86 anomalies. This may reflect a dual dependence of TEX86 records on both water column temperature and local productivity. Overall, our data suggest that in the EEP and likely in other upwelling zones, paleotemperature data derived

  11. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2016-07-01

    Full Text Available A combined surface and tropospheric ozone climatology and interannual variability study was performed for the first time using co-located ozone photometer measurements (2013–2015 and tropospheric ozone differential absorption lidar measurements (2000–2015 at the Jet Propulsion Laboratory Table Mountain Facility (TMF; elev. 2285 m, in California. The surface time series were investigated both in terms of seasonal and diurnal variability. The observed surface ozone is typical of high-elevation remote sites, with small amplitude of the seasonal and diurnal cycles, and high ozone values, compared to neighboring lower altitude stations representative of urban boundary layer conditions. The ozone mixing ratio ranges from 45 ppbv in the winter morning hours to 65 ppbv in the spring and summer afternoon hours. At the time of the lidar measurements (early night, the seasonal cycle observed at the surface is similar to that observed by lidar between 3.5 and 9 km. Above 9 km, the local tropopause height variation with time and season impacts significantly the ozone lidar observations. The frequent tropopause folds found in the vicinity of TMF (27 % of the time, mostly in winter and spring produce a dual-peak vertical structure in ozone within the fold layer, characterized by higher-than-average values in the bottom half of the fold (12–14 km, and lower-than-averaged values in the top half of the fold (14–18 km. This structure is consistent with the expected origin of the air parcels within the fold, i.e., mid-latitude stratospheric air folding down below the upper tropospheric sub-tropical air. The influence of the tropopause folds extends down to 5 km, increasing the ozone content in the troposphere. No significant signature of interannual variability could be observed on the 2000–2015 de-seasonalized lidar time series, with only a statistically non-significant positive anomaly during the years 2003–2007. Our trend analysis

  12. Spatial variability in surface-water pCO2 and gas exchange in the world's largest semi-enclosed estuarine system: St. Lawrence Estuary (Canada)

    Science.gov (United States)

    Dinauer, Ashley; Mucci, Alfonso

    2017-07-01

    The incomplete spatial coverage of CO2 partial pressure (pCO2) measurements across estuary types represents a significant knowledge gap in current regional- and global-scale estimates of estuarine CO2 emissions. Given the limited research on CO2 dynamics in large estuaries and bay systems, as well as the sources of error in the calculation of pCO2 (carbonic acid dissociation constants, organic alkalinity), estimates of air-sea CO2 fluxes in estuaries are subject to large uncertainties. The Estuary and Gulf of St. Lawrence (EGSL) at the lower limit of the subarctic region in eastern Canada is the world's largest estuarine system, and is characterized by an exceptional richness in environmental diversity. It is among the world's most intensively studied estuaries, yet there are no published data on its surface-water pCO2 distribution. To fill this data gap, a comprehensive dataset was compiled from direct and indirect measurements of carbonate system parameters in the surface waters of the EGSL during the spring or summer of 2003-2016. The calculated surface-water pCO2 ranged from 435 to 765 µatm in the shallow partially mixed upper estuary, 139-578 µatm in the deep stratified lower estuary, and 207-478 µatm along the Laurentian Channel in the Gulf of St. Lawrence. Overall, at the time of sampling, the St. Lawrence Estuary served as a very weak source of CO2 to the atmosphere, with an area-averaged CO2 degassing flux of 0.98 to 2.02 mmol C m-2 d-1 (0.36 to 0.74 mol C m-2 yr-1). A preliminary analysis revealed that respiration (upper estuary), photosynthesis (lower estuary), and temperature (Gulf of St. Lawrence) controlled the spatial variability in surface-water pCO2. Whereas we used the dissociation constants of Cai and Wang (1998) to calculate estuarine pCO2, formulations recommended for best practices in open ocean environments may underestimate pCO2 at low salinities, while those of Millero (2010) may result in overestimates.

  13. Variable domain N-linked glycosylation and negative surface charge are key features of monoclonal ACPA: implications for B-cell selection.

    Science.gov (United States)

    Lloyd, Katy A; Steen, Johanna; Amara, Khaled; Titcombe, Philip J; Israelsson, Lena; Lundström, Susanna L; Zhou, Diana; Zubarev, Roman A; Reed, Evan; Piccoli, Luca; Gabay, Cem; Lanzavecchia, Antonio; Baeten, Dominique; Lundberg, Karin; Mueller, Daniel L; Klareskog, Lars; Malmström, Vivianne; Grönwall, Caroline

    2018-03-07

    Autoreactive B cells have a central role in the pathogenesis of rheumatoid arthritis (RA), and recent findings have proposed that anti-citrullinated protein autoantibodies (ACPA) may be directly pathogenic. Herein, we demonstrate the frequency of variable-region glycosylation in single-cell cloned mAbs. A total of 14 ACPA mAbs were evaluated for predicted N-linked glycosylation motifs in silico, and compared to 452 highly-mutated mAbs from RA patients and controls. Variable region N-linked motifs (N-X-S/T) were strikingly prevalent within ACPA (100%) compared to somatically hypermutated (SHM) RA bone marrow plasma cells (21%), and synovial plasma cells from seropositive (39%) and seronegative RA (7%). When normalized for SHM, ACPA still had significantly higher frequency of N-linked motifs compared to all studied mAbs including highly-mutated HIV broadly-neutralizing and malaria-associated mAbs. The Fab glycans of ACPA-mAbs were highly sialylated, contributed to altered charge, but did not influence antigen binding. The analysis revealed evidence of unusual B-cell selection pressure and SHM-mediated decreased in surface charge and isoelectric point in ACPA. It is still unknown how these distinct features of anti-citrulline immunity may have an impact on pathogenesis. However, it is evident that they offer selective advantages for ACPA+ B cells, possibly also through non-antigen driven mechanisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps

    Science.gov (United States)

    Liu, Yonggang; Weisberg, Robert H.; Vignudelli, Stefano; Mitchum, Gary T.

    2016-04-01

    The Self-Organizing Map (SOM), an unsupervised learning neural network, is employed to extract patterns evinced by the Loop Current (LC) system and to identify regions of sea surface height (SSH) variability in the eastern Gulf of Mexico (GoM) from 23 years (1993-2015) of altimetry data. Spatial patterns are characterized as different LC extensions and different stages in the process of LC eddy shedding. The temporal evolutions and the frequency of occurrences of these patterns are obtained, and the typical trajectories of the LC system progression on the SOM grid are investigated. For an elongated, northwest-extended, or west-positioned LC, it is common for the LC anticyclonic eddy (LCE) to separate and propagate into the western GoM, while an initially separated LCE in close proximity to the west Florida continental slope often reattaches to the LC and develops into an elongated LC, or reduces intensity locally before moving westward as a smaller eddy. Regions of differing SSH variations are also identified using the joint SOM-wavelet analysis. Along the general axis of the LC, SSH exhibits strong variability on time scales of 3 months to 2 years, also with energetic intraseasonal variations, which is consistent with the joint Empirical Orthogonal Function (EOF)-wavelet analysis. In the more peripheral regions, the SSH has a dominant seasonal variation that also projects across the coastal ocean. The SOM, when applied to both space and time domains of the same data, provides a powerful tool for diagnosing ocean processes from such different perspectives.

  15. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring

    Science.gov (United States)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.

    2017-12-01

    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  16. Potential Predictability of the Sea-Surface Temperature Forced Equatorial East Africa Short Rains Interannual Variability in the 20th Century

    Science.gov (United States)

    Bahaga, T. K.; Gizaw, G.; Kucharski, F.; Diro, G. T.

    2014-12-01

    In this article, the predictability of the 20th century sea-surface temperature (SST) forced East African short rains variability is analyzed using observational data and ensembles of long atmospheric general circulation model (AGCM) simulations. To our knowledge, such an analysis for the whole 20th century using a series of AGCM ensemble simulations is carried out here for the first time. The physical mechanisms that govern the influence of SST on East African short rains in the model are also investigated. It is found that there is substantial skill in reproducing the East African short rains variability, given that the SSTs are known. Consistent with previous recent studies, it is found that the Indian Ocean and in particular the western pole of the Indian Ocean dipole (IOD) play a dominant role for the prediction skill, whereas SSTs outside the Indian Ocean play a minor role. The physical mechanism for the influence of the western Indian Ocean on East African rainfall in the model is consistent with previous findings and consists of a gill-type response to a warm (cold) anomaly that induces a westerly(easterly) low-level flow anomaly over equatorial Africa and leads to moisture flux convergence (divergence) over East Africa. On the other hand, a positive El Nino-Southern Oscillation (ENSO) anomaly leads to a spatially non-coherent reducing effect over parts of East Africa, but the relationship is not strong enough to provide any predictive skill in our model. The East African short rains prediction skill is also analyzed within a model-derived potential predictability framework and it is shown that the actual prediction skill is broadly consistent with the model potential prediction skill. Low-frequency variations of the prediction skill are mostly related to SSTs outside the Indian Ocean region and are likely due to an increased interference of ENSO with the Indian Ocean influence on East African short rains after the mid-1970s climate shift.

  17. The impact of inter-annual variability of annual cycle on long-term persistence of surface air temperature in long historical records

    Science.gov (United States)

    Deng, Qimin; Nian, Da; Fu, Zuntao

    2018-02-01

    Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.

  18. Response of planktonic cladocerans (Class: Branchiopoda) to short-term changes in environmental variables in the surface waters of the Bay of Biscay

    Science.gov (United States)

    d'Elbée, Jean; Lalanne, Yann; Castège, Iker; Bru, Noelle; D'Amico, Frank

    2014-08-01

    From January 2001 to December 2008, 73 surface plankton samples and 45 vertical profiles of sea temperature, salinity, dissolved oxygen and pH were collected on a monthly basis from a single sampling station located in the Bay of Biscay (43°37N; 1°43W) (North-East Atlantic). Two types of North Atlantic Oscillation (NAO) indexes were included in the data set and submitted to a Canonical Correspondence Analysis and Spearman non-parametric test. Significant breaks and levels in time series were tested using a data segmentation method. The temperature range varies from 11 °C to 25 °C. It begins to rise from April until August and then decline. Low salinity values occur in mid-spring (36 PSU) in autumn. Dissolved oxygen mean values were around 8 mg/l. In summer, when temperature and salinity are high, surface water layer is always accompanied with a significant deoxygenation, and the process reverses in winter. pH mean values range was 7.78-8.33. Seasonal and inter-annual variations of the two NAO indexes are strongly correlated to one another, but do not correlate with any hydrological or biological variable. Five of the seven cladocerans species which are present in the Bay of Biscay were found in this study. There is a strong pattern in species succession throughout the year: Evadne nordmanni is a vernal species, while Penilia avirostris and Pseudevadne tergestina occur mainly in summer and autumn. Evadne spinifera has a maximum abundance in spring, Podon intermedius in autumn, but they both occur throughout the year. However, for some thirty years, the presence of species has tended to become significantly extended throughout the year. During the 2001-2008 period, there was a noticeable decline and even a disappearance of the categories involved in sexual reproduction as well as those involved in parthenogenesis, in favor of non-breeding individuals.

  19. Interannual to decadal variability of summer sea surface temperature in the Sea of Okhotsk recorded in the shell growth history of Stimpson's hard clams (Mercenaria stimpsoni)

    Science.gov (United States)

    Tanabe, Kazushige; Mimura, Toshihiro; Miyaji, Tsuzumi; Shirai, Kotaro; Kubota, Kaoru; Murakami-Sugihara, Naoko; Schöne, Bernd R.

    2017-10-01

    Sclerochronological and shell stable oxygen isotopic analyses were conducted on live-caught specimens of Stimpson's hard clams, Mercenaria stimpsoni, from the southern Sea of Okhotsk, off northern Hokkaido, Japan. In this region, the main growing season of this species during early ontogeny (below the age of 12 years) lasts from mid-spring to mid-fall at sea surface temperatures (SST) between approximately 10 and 22 °C. Growth cessation begins between late fall and early spring at SST, below approximately 6 °C; however, shell growth was largely limited to the summer season later in life. Counting of annual increments indicated that this species had a relatively long life span of up to 100 years. Annual shell growth rates were high during early ontogeny and declined abruptly afterwards. Mean standardized shell growth indices (SGIs) of long-lived specimens were positively correlated to the mean summer SSTs near the sampling site and in the coastal waters off northern Hokkaido. The SGI chronology of the longest-lived specimen (99 years old) exhibited periodicities of approximately 10 and 5 years during the calendar years 1920-2011, possibly reflecting the quasi-decadal variability of summer SST in the southern Sea of Okhotsk. These findings indicate that M. stimpsoni could serve as an archive to reconstruct past marine climate changes in the Sea of Okhotsk.

  20. Observational evidence of mesoscale variability of the Northern Current (North-Western Mediterranean Sea): a combined study via gliders, HF RADAR, surface drifters, and vessel data

    Science.gov (United States)

    Bellomo, Lucio; Berta, Maristella; Pietro Gasparini, Gian; Griffa, Annalisa; Gatimu Magaldi, Marcello; Marmain, Julien; Molcard, Anne; Vetrano, Anna; Béguery, Laurent; Borghini, Mireno

    2013-04-01

    Results from a combined observational effort put forth in December 2011 are here presented. The focus is on the mesoscale variability of the Northern Current (NC), the branch of the general North-Western Mediterranean cyclonic circulation extending from the Ligurian to the Catalan Sea (Albérola et al., Oceanologica Acta, vol. 18, n. 2, 1995). The study area, located between the Ligurian Sea and the Gulf of Lions, includes the part of French coast between Nice and Toulon, where only a few hydrographic data have been collected in the past. Dynamic instabilities of the NC, observed and reported in literature (Picco et al., Ocean Science, vol. 6, 2010), make this region particularly important, with consequences in the recirculation of the Ligurian Gyre and in the NC intrusions in the Gulf of Lions (Millot and Wald, Oceanologica Acta, vol. 3, n. 4, 1980). This works aims at providing experimental evidence of the effects that mesoscale exerts on the NC dynamics via an innovative and complementary data set. Two Slocum Gliders (a Shallow and a Deep one), both equipped with CTD and dissolved oxygen sensors, sampled the area within 70 km from the coast for about 20 days. The shallow one (200 m) realized six transects describing a "W"-shaped pattern from Nice to Toulon, whereas the deep one (1000 m) performed repeated cross-current sections off Toulon. Concurrent observations were obtained via: a) CTD and both Lowered and Vessel-Mounted ADCP transects obtained during a 5-day oceanographic cruise on board of the Research Vessel Urania; b) repeated deployments of surface drifters; c) a continuously-recording High Frequency (HF) RADAR which measures surface currents off Toulon in a 40 × 25 km2 region with high resolution both in space (2 km) and in time (1 hour). The combined use of data from the shallow glider and the ship-based ADCP measurements reveals the presence of an instability of the offshore front of the NC. Its location is confirmed by high-resolution satellite

  1. West African Monsoon Decadal Variability and Surface-Related Forcings: Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    Science.gov (United States)

    Xue, Yongkang; De Sales, Fernando; Lau, William K-M; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; hide

    2016-01-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The WAMME II strategy is to apply prescribed observationally based anomaly forcing, i.e., idealized but realistic forcing, in simulations by climate models to test the relative impacts of such forcings in producingamplifying the Sahelian seasonal and decadal climate variability, including the great 20th century drought. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple external forcings to the Sahel decadal precipitation anomalies between the 1980s and the 1950s that is used to characterize the Sahel 1980s drought in this study. The WAMME II models have consistently demonstrated that SST is the major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, WAMME II model ensemble mean can produce up to 60 of the precipitation difference between the 1980s and the 1950s. The present paper also delineated the role of SSTs in triggering and maintaining the Sahel drought. The impact of SSTs in individual oceans is also examined and consensus and discrepancies are reported. Among the different ocean basins, the WAMME II models show the consensus that the Indian Ocean SST has the largest impact on the precipitation temporal evolution associated with the ITCZ movement before the WAM onset while the Pacific Ocean SST greatly contributes to the summer WAM drought. This paper also compares the SST effect with the LULCC effect. Results show that with prescribed land forcing the WAMME II model ensemble mean produces about 40 of the precipitation difference between the 1980s and the 1950s, which is less than the SST contribution but still of first order

  2. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    Science.gov (United States)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    despite ozone increases in eastern China. Analysis of the Trajectory-mapped Ozonesonde data set for the Stratosphere and Troposphere (TOST) and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the quasi-biennial oscillation (QBO), the East Asian summer monsoon (EASM), and the sunspot cycle. Our results suggest that the 2-3-, 3-7-, and 11-year periodicities are linked to the QBO, EASM index, and sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.

  3. Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature

    Science.gov (United States)

    Cao, Qing; Hao, Zhenchun; Shao, Quanxi; Hao, Jie; Nyima, Tsring

    2018-02-01

    Precipitation plays an important role in both environment and human society and is a significant factor in many scientific researches such as water resources, agriculture and climate impact studies. The onset and retreat of rainy season are useful features to understand the variability of precipitation under the influence of climate change. In this study, the characteristics of onset and retreat in mainland China are investigated. The multi-scale moving t-test was applied to determine rainy season and K-means cluster analysis was used to divide China into sub-regions to better investigate rainy season features. The possible linkage of changing characteristics of onset and retreat to climate factors were also explored. Results show that: (1) the onset started from middle March in the southeast of China to early June in the northwest and rainy season ended earliest in the northwest and southeast while the central China had the latest retreat; (2) Delayed onset and advanced retreat over time were observed in many parts of China, together with overall stable or increased rainy-season precipitation, would likely lead to higher probability of flooding; (3) The onset (retreat) was associated with the increased (decreased) number of cyclones in eastern China and anticyclone near the South China Sea. Delayed onset, and advanced retreat were likely related to cold and warm sea surface temperature (SST) in the conventional El Niño-Southern Oscillation (ENSO) regions, respectively. These results suggest that predictability of rainy season can be improved through the atmospheric circulation and SST, and help water resources management and agricultural planning.

  4. Characterization of the March 2017 tank 10 surface sample (combination of HTF-10-17-30 AND HTF-10-17-31) and variable depth sample (combination of HTF-10-17-32 and HTF-10-17-33)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-19

    Two surface samples (HTF-10-17-30 and HTF-10-17-31) and two variable depth samples (HTF-10-17-32 and HTF-10-17-33) were collected from SRS Tank 10 during March 2017 and submitted to SRNL for characterization. At SRNL, the two surface samples were combined in one container, the two variable depth samples (VDSs) were combined in another container, and then the two composite samples were each characterized by a series of physical, ionic, radiological, and elemental analysis methods. The surface sample composite was characterized primarily for Tank Farm corrosion control purposes, while the VDS composite was characterized primarily for Tank Closure Cesium Removal (TCCR) purposes.

  5. Surface plasmon resonance analysis shows an IgG-isotype-specific defect in ABO blood group antibody formation in patients with common variable immunodeficiency

    Directory of Open Access Journals (Sweden)

    Michael Bernhard Fischer

    2015-05-01

    Full Text Available Background: Common variable immunodeficiency (CVID is the most common clinically severe primary immunodeficiency and comprises a heterogeneous group of patients with recurrent severe bacterial infections due to the failure to produce IgG antibodies after exposure to infectious agents and immunization. Diagnostic recommendations for antibody failure include assessment of isoagglutinins. We have readdressed this four decades old but still accepted recommendation with up to date methodology.Methods: Anti-A/B IgM- and IgG-antibodies were measured by Diamed-ID Micro Typing, surface plasmon resonance (SPR using the Biacore® device and flow cytometry.Results: When Diamed-ID Micro Typing was used, CVID patients (n=34 showed IgG- and IgM-isoagglutinins that were comparable to healthy volunteers (n=28, while all XLA patients (n=8 had none. Anti-A/B IgM-antibodies were present in more than 2/3 of the CVID patients and showed binding kinetics comparable to anti-A/B IgM-antibodies from healthy individuals. A correlation could be found in CVID patients between levels of anti-A/B IgM-antibodies and levels of serum IgM and PnP-IgM-antibodies. In contrast in CVID patients as a group ABO antibodies were significantly decreased when assessed by SPR, which correlated with levels of switched memory, non-switched memory and naïve B cells, but all CVID patients had low/undetectable anti-A/B IgG-antibodies.Conclusion: These results indicate that conventional isoagglutinin assessment and assessment of anti-A/B IgM antibodies are not suited for the diagnosis of impaired antibody production in CVID. Examination of anti-A/B IgG antibodies by SPR provides a useful method for the diagnosis of IgG antibody failure in all CVID patients studied, thus indicating an important additional rationale to start immunoglobulin replacement therapy early in these patients, before post-infectious sequelae develop.

  6. Spatiotemporal Co-variability of Surface Climate for Renewable Energy across the Contiguous United States: Role of the North Atlantic Subtropical High

    Science.gov (United States)

    Doering, K.; Steinschneider, S.

    2017-12-01

    The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.

  7. Mechanisms of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This article addresses the magnetohydrodynamic (MHD) stagnation point flow of third grade fluid towards a nonlinear stretching sheet. Energy expression is based through involvement of variable thermal conductivity. Heat and mass transfer aspects are described within the frame of double stratification effects. Boundary layer partial differential systems are deduced. Governing systems are then converted into ordinary differential systems by invoking appropriate variables. The transformed expressions are solved through homotopic technique. Impact of embedded variables on velocity, thermal and concentration fields are displayed and argued. Numerical computations are presented to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that larger values of magnetic parameter reduces the velocity field while reverse situation is noticed due to wall thickness variable. Temperature field and local Nusselt number are quite reverse for heat generation/absorption parameter. Moreover qualitative behaviors of concentration field and local Sherwood number are similar for solutal stratification parameter.

  8. Investigation of cavity mode and excitonic transition in an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser structure by variable-temperature micro-photoluminescence, reflectance and photomodulated reflectance

    International Nuclear Information System (INIS)

    Yu, J L; Chen, Y H; Jiang, C Y; Zhang, H Y

    2012-01-01

    Variable-temperature micro-photoluminescence (μ-PL), reflectance (R) and photomodulated reflectance (PR) have been used to study an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser (VCSEL) structure. μ-PL and R spectra have been recorded at different temperatures between 80 K and 300 K By comparing μ-PL with R spectra, both the excitonic transition and cavity mode are clearly identified. The Variable-temperature μ-PL and PR results of the etched sample with the top distributed Bragg reflectors (DBR) being removed further confirmed our identification. Our results demonstrate that variable-temperature μ-PL is a powerful noninvasive tool to measure accurate the quantum well transition and the cavity mode alignment.

  9. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Science.gov (United States)

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  10. Effect of variable viscosity on free flow of non-Newtonian power-law fluids along a vertical surface with thermal stratification

    Directory of Open Access Journals (Sweden)

    Moorthy M.B.K.

    2013-02-01

    Full Text Available The aim of this paper is to investigate the effect of thermal stratification together with variable viscosity on free convection flow of non- Newtonian fluids along a nonisothermal semi infinite vertical plate embedded in a saturated porous medium. The governing equations of continuity, momentum and energy are transformed into nonlinear ordinary differential equations using similarity transformations and then solved by using the Runge-Kutta-Gill method along with shooting technique. Governing parameters for the problem under study are the variable viscosity, thermal stratification parameter, non-Newtonian parameter and the power-law index parameter.The velocity and temperature distributions are presented and discussed. The Nusselt number is also derived and discussed numerically.

  11. Introduction to Special Section on Recent Advances in the Study of Optical Variability in the Near-Surface and Upper Ocean

    Science.gov (United States)

    2012-06-30

    direction, relative and specific humidity, air temperature, fast response water vapor , CO2, and temperature sensors for heat flux measure- ments, longwave ...Ocean Water , 285 pp., Am. Insti. of Phys., New York. Siegel, D. A., and T. D. Dickey (1986), Variability of net longwave radi- ation over the eastern...clear waters ), because these effects are often characterized by the presence of light pulses of very high amplitude and short duration [Dera and

  12. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects.

    Science.gov (United States)

    Henry, E J; Smith, J E

    2002-06-01

    Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 x 1.53 x 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of approximately 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source. Upon reaching the capillary fringe, the drainage front caused a localized depression of the capillary fringe below the point source because the air-entry pressure decreased in proportion to the decrease in surface tension caused by the surfactant. Eventually, a new capillary fringe height was established. The height of the depressed capillary fringe was proportional to height of the initial capillary fringe multiplied by the relative surface tension of the surfactant solution. The horizontal transport of surfactant in the depressed capillary fringe, driven primarily by the ambient groundwater flow, caused the propagation of a wedge-shaped drying front in the downgradient direction. Comparison of dye transport during the surfactant experiment to dye transport in an experiment without surfactant indicated that because surfactant-induced drainage decreased the

  13. Quantification of variable functional-group densities of mixed-silane monolayers on surfaces via a dual-mode fluorescence and XPS label.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Streeck, Cornelia; Ray, Santanu; Nutsch, Andreas; Shard, Alex; Beckhoff, Burkhard; Unger, Wolfgang E S; Rurack, Knut

    2015-03-03

    The preparation of aminated monolayers with a controlled density of functional groups on silica surfaces through a simple vapor deposition process employing different ratios of two suitable monoalkoxysilanes, (3-aminopropyl)diisopropylethoxysilane (APDIPES) and (3-cyanopropyl)dimethylmethoxysilane (CPDMMS), and advances in the reliable quantification of such tailored surfaces are presented here. The one-step codeposition process was carried out with binary silane mixtures, rendering possible the control over a wide range of densities in a single step. In particular, APDIPES constitutes the functional silane and CPDMMS the inert component. The procedure requires only small amounts of silanes, several ratios can be produced in a single batch, the deposition can be carried out within a few hours and a dry atmosphere can easily be employed, limiting self-condensation of the silanes. Characterization of the ratio of silanes actually bound to the surface can then be performed in a facile manner through contact angle measurements using the Cassie equation. The reliable estimation of the number of surface functional groups was approached with a dual-mode BODIPY-type fluorescence label, which allows quantification by fluorescence and XPS on one and the same sample. We found that fluorescence and XPS signals correlate over at least 1 order of magnitude, allowing for a direct linking of quantitative fluorescence analysis to XPS quantification. Employment of synchrotron-based methods (XPS; reference-free total reflection X-ray fluorescence, TXRF) made the traceable quantification of surface functional groups possible, providing an absolute reference for quantitative fluorescence measurements through a traceable measurement chain.

  14. Linking Land Use Changes to Surface Water Quality Variability in Lake Victoria: Some Insights From Remote Sensing (GC41B-1101)

    Science.gov (United States)

    Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan

    2016-01-01

    Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.

  15. Characterization of surface layers on individual marine CaCO3 particles, using "variable energy" electron probe microanalysis (poster)

    OpenAIRE

    Aerts, K.; Godoi, R.; Van Grieken, R.

    2002-01-01

    The ocean constitutes a large sink for anthropogenic CO2, and thus plays a significant role in the global biogeochemical cycle of carbon and its perturbations. There remain, however, large uncertainties concerning the uptake of anthropogenic carbon by the ocean, mainly due to insufficient knowledge of processes controlling the pCO2 in surface waters. Most of the previous research efforts have been concentrated on the study of CO2 exchange at the air-sea interface due to temperature effects re...

  16. Near-surface distribution of radium in the Gulf of Mexico and Caribbean Sea: temporal and spatial variability and hydrographic relationships

    International Nuclear Information System (INIS)

    Reid, D.F.

    1979-01-01

    Only a few radium measurements have been made in the near-surface (0-600m) Gulf of Mexico and Caribbean Sea. Published 228 Ra data from 1968 and 1973 reveal a significant increase of 228 Ra activity in the near-surface Gulf of Mexico. The increase has been attributed to factors affecting the water prior to its entry into the Caribbean-Gulf system. It has been proposed that 228 Ra can be used to study thermocline mixing rates, but few detailed studies have been made to test the validity of this hypothesis. Physical oceanographic evidence indicates that vertical mixing significantly impacts the upper 100 to 150 meters of the water column in the Gulf of Mexico. This dissertation reports and discusses the results of 123 measurements of the 228 Ra: 226 Ra activity ratio (radium activity ratio), and 73 measurements of 226 Ra in the 1975-1976 near-surface water columns of the Gulf of Mexico and Caribbean Sea. 228 Ra activities are calculated from the activity ratio and 226 Ra data

  17. Pre-bomb {Delta}{sup 14}C variability and the Suess Effect in Cariaco Basin Surface Waters as Recorded in Hermatypic Corals

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T; Cole, J; Southon, J

    2004-10-28

    The {Delta}{sup 14}C content of surface waters in and around the Cariaco Basin were reconstructed from {sup 14}C measurements on sub-annually sampled coral skeletal material. During the late 1930s - early 1940s surface waters within and outside of the Cariaco Basin are similar. Within the Cariaco Basin at Islas Tortugas coral {Delta}{sup 14}C averages -51.9 {+-}3.3 {per_thousand}. Corals collected outside of the basin at Boca de Medio and Los Testigos have {Delta}{sup 14}C values of -53.4 {+-} 3.3 {per_thousand} and -54.3 {+-} 2.6 respectively. Additional {sup 14}C analyses on the Isla Tortugas coral document an {approx} 11 {per_thousand} decrease between {approx}1905 (-40.9 {+-}4.5 {per_thousand}) and {approx}1940. The implied Suess Effect trend (-3 {per_thousand}/decade) is nearly as large as that observed in the atmosphere over the same time period. If we assume that there is little to no fossil fuel {sup 14}CO{sub 2} signature in Cariaco surface waters in {approx}1905, the waters have an equivalent reservoir age of {approx}312 years.

  18. Variability Bugs:

    DEFF Research Database (Denmark)

    Melo, Jean

    Many modern software systems are highly configurable. They embrace variability to increase adaptability and to lower cost. To implement configurable software, developers often use the C preprocessor (CPP), which is a well-known technique, mainly in industry, to deal with variability in code....... Although many researchers suggest that preprocessor-based variability amplifies maintenance problems, there is little to no hard evidence on how actually variability affects programs and programmers. Specifically, how does variability affect programmers during maintenance tasks (bug finding in particular...... be exploited. Variability bugs are not confined to any particular type of bug, error-prone feature, or location. In addition to introducing an exponential number of program variants, variability increases the complexity of bugs due to unintended feature interactions, hidden features, combinations of layers...

  19. Contribution of seasonal sub-Antarctic surface water variability to millennial-scale changes in atmospheric CO2 over the last deglaciation and Marine Isotope Stage 3

    Science.gov (United States)

    Gottschalk, Julia; Skinner, Luke C.; Waelbroeck, Claire

    2015-02-01

    The Southern Ocean is thought to have played a key role in past atmospheric carbon dioxide (CO2,atm) changes. Three main factors are understood to control the Southern Ocean's influence on CO2,atm, via their impact on surface ocean pCO2 and therefore regional ocean-atmosphere CO2 fluxes: 1) the efficiency of air-sea gas exchange, which may be attenuated by seasonal- or annual sea-ice coverage or the development of a shallow pycnocline; 2) the supply of CO2-rich water masses from the sub-surface and the deep ocean, which is associated with turbulent mixing and surface buoyancy- and/or wind forcing; and 3) biological carbon fixation, which depends on nutrient availability and is therefore influenced by dust deposition and/or upwelling. In order to investigate the possible contributions of these processes to millennial-scale CO2,atm variations during the last glacial and deglacial periods, we make use of planktonic foraminifer census counts and stable oxygen- and carbon isotope measurements in the planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma (sinistral) from marine sediment core MD07-3076Q in the sub-Antarctic Atlantic. These data are interpreted on the basis of a comparison of core-top and modern seawater isotope data, which permits an assessment of the seasonal biases and geochemical controls on the stable isotopic compositions of G. bulloides and N. pachyderma (s.). Based on a comparison of our down-core results with similar data from the Southeast Atlantic (Cape Basin) we infer past basin-wide changes in the surface hydrography of the sub-Antarctic Atlantic. We find that millennial-scale rises in CO2,atm over the last 70 ka are consistently linked with evidence for increased spring upwelling, and enhanced summer air-sea exchange in the sub-Antarctic Atlantic. Parallel evidence for increased summer export production would suggest that seasonal changes in upwelling and air-sea exchange exerted a dominant influence on surface pCO2 in

  20. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line.

    Science.gov (United States)

    Jackson, Petra; Kling, Kirsten; Jensen, Keld Alstrup; Clausen, Per Axel; Madsen, Anne Mette; Wallin, Håkan; Vogel, Ulla

    2015-03-01

    Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured Nanomaterials (WPMN) (NM-401, NM-402, and NM-403), materials (NRCWE-026 and MWCNT-XNRI-7), and three sets of surface-modified MWCNT grouped by physical characteristics (thin, thick, and short I-III, respectively). Each Groups I-III included pristine, hydroxylated and carboxylated MWCNT. Group III also included an amino-functionalized MWCNT. The level of surface functionalization of the MWCNT was low. The level and type of elemental impurities of the MWCNT varied by <2% of the weight, with exceptions. Based on dynamic light scattering data, the MWCNT were well-dispersed in stock dispersion of nanopure water with 2% serum, but agglomerated and sedimented during exposure. FE1-Muta(TM) Mouse lung epithelial cells were exposed for 24 hr. The levels of DNA strand breaks (SB) were evaluated using the comet assay, a screening assay suitable for genotoxicity testing of nanomaterials. Exposure to MWCNT (12.5-200 µg/ml) did not induce significant cytotoxicity (viability above 92%). Cell proliferation was reduced in highest doses of some MWCNT after 24 hr, and was associated with generation of reactive oxygen species and high surface area. Increased levels of DNA SB were only observed for Group II consisting of MWCNT with large diameters and high Fe2 O3 and Ni content. Significantly, increased levels of SB were only observed at 200 µg/ml of MWCNT-042. Overall, the MWCNT were not cytotoxic and weakly genotoxic after 24 hr exposure to doses up to 200 µg/ml. © 2014 Wiley Periodicals, Inc.

  1. Heat and Mass Transfer in a Thin Liquid Film over an Unsteady Stretching Surface in the Presence of Thermosolutal Capillarity and Variable Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available The heat and mass transfer characteristics of a liquid film which contain thermosolutal capillarity and a variable magnetic field over an unsteady stretching sheet have been investigated. The governing equations for momentum, energy, and concentration are established and transformed to a set of coupled ordinary equations with the aid of similarity transformation. The analytical solutions are obtained using the double-parameter transformation perturbation expansion method. The effects of various relevant parameters such as unsteady parameter, Prandtl number, Schmidt number, thermocapillary number, and solutal capillary number on the velocity, temperature, and concentration fields are discussed and presented graphically. Results show that increasing values of thermocapillary number and solutal capillary number both lead to a decrease in the temperature and concentration fields. Furthermore, the influences of thermocapillary number on various fields are more remarkable in comparison to the solutal capillary number.

  2. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2017-10-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  3. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  4. Technical Note: A novel approach to estimation of time-variable surface sources and sinks of carbon dioxide using empirical orthogonal functions and the Kalman filter

    Directory of Open Access Journals (Sweden)

    R. Zhuravlev

    2011-10-01

    Full Text Available In this work we propose an approach to solving a source estimation problem based on representation of carbon dioxide surface emissions as a linear combination of a finite number of pre-computed empirical orthogonal functions (EOFs. We used National Institute for Environmental Studies (NIES transport model for computing response functions and Kalman filter for estimating carbon dioxide emissions. Our approach produces results similar to these of other models participating in the TransCom3 experiment.

    Using the EOFs we can estimate surface fluxes at higher spatial resolution, while keeping the dimensionality of the problem comparable with that in the regions approach. This also allows us to avoid potentially artificial sharp gradients in the fluxes in between pre-defined regions. EOF results generally match observations more closely given the same error structure as the traditional method.

    Additionally, the proposed approach does not require additional effort of defining independent self-contained emission regions.

  5. Spatio-Temporal Variability of Dissolved Metals in the Surface Waters of an Agroforestry Catchment with Low Levels of Anthropogenic Activity

    Science.gov (United States)

    Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2017-12-01

    Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.

  6. Pulsating variables

    International Nuclear Information System (INIS)

    1989-01-01

    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  7. TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere

    Directory of Open Access Journals (Sweden)

    P. I. Palmer

    2011-12-01

    Full Text Available A chemistry-transport model (CTM intercomparison experiment (TransCom-CH4 has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. All but one model transports were driven by reanalysis products from 3 different meteorological agencies. The transport and removal of CH4 in six different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6 was simulated to check the interhemispheric transport, radon (222Rn to check the subgrid scale transport, and methyl chloroform (CH3CCl3 to check the chemical removal by the tropospheric hydroxyl radical (OH. The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations (IAVs and interhemispheric (IH gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. An average IH exchange time of 1.39 ± 0.18 yr is derived from SF6 time series. Sensitivity simulations suggest that the estimated trends in exchange time, over the period of 1996–2007, are caused by a change of SF6 emissions towards the tropics. Using six sets of emission scenarios, we show that the decadal average CH4 growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. Up to

  8. Possible biomedical applications and limitations of a variable-force centrifuge on the lunar surface: A research tool and an enabling resource

    Science.gov (United States)

    Cowing, Keith L.

    1992-01-01

    Centrifuges will continue to serve as a valuable research tool in gaining an understanding of the biological significance of the inertial acceleration due to gravity. Space- and possibly lunar-based centrifuges will play a significant and enabling role with regard to the human component of future lunar and martian exploration, both as a means of accessing potential health and performance risks and as a means of alleviating these risks. Lunar-based centrifuges could be particularly useful as part of a program of physiologic countermeasures designed to alleviate the physical deconditioning that may result from prolonged exposure to a 1/6-g environment. Centrifuges on the lunar surface could also be used as part of a high-fidelity simulation of a trip to Mars. Other uses could include crew readaptation to 1 g, waste separation, materials processing, optical mirror production in situ on the Moon, and laboratory specimen separation.

  9. Role of Slip Velocity in a Magneto-Micropolar Fluid Flow from a Radiative Surface with Variable Permeability: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Sharma B.K.

    2017-08-01

    Full Text Available An analysis is presented to describe the hydromagnetic mixed convection flow of an electrically conducting micropolar fluid past a vertical plate through a porous medium with radiation and slip flow regime. A uniform magnetic field has been considered in the study which absorbs the micropolar fluid with a varying suction velocity and acts perpendicular to the porous surface of the above plate. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, micro-rotation, concentration and temperature profiles, the skin-friction coefficient, the couple stress coefficient, the rate of heat and mass transfers at the wall for different material parameters.

  10. Cognitive Variability

    Science.gov (United States)

    Siegler, Robert S.

    2007-01-01

    Children's thinking is highly variable at every level of analysis, from neural and associative levels to the level of strategies, theories, and other aspects of high-level cognition. This variability exists within people as well as between them; individual children often rely on different strategies or representations on closely related problems…

  11. Task-specific noise exposure during manual concrete surface grinding in enclosed areas-influence of operation variables and dust control methods.

    Science.gov (United States)

    Akbar-Khanzadeh, Farhang; Ames, April L; Milz, Sheryl A; Akbar-Khanzadeh, Mahboubeh

    2013-01-01

    Noise exposure is a distinct hazard during hand-held concrete grinding activities, and its assessment is challenging because of the many variables involved. Noise dosimeters were used to examine the extent of personal noise exposure while concrete grinding was performed with a variety of grinder sizes, types, accessories, and available dust control methods. Noise monitoring was conducted in an enclosed area covering 52 task-specific grinding sessions lasting from 6 to 72 minutes. Noise levels, either in minute average noise level (Lavg, dBA) or in minute peak (dBC), during concrete grinding were significantly (P noise levels (98.7 ± 2.8) than 5-inch (96.3 ± 3.2) or 4-inch (95.3 ± 3.5) cup wheels. The minute peak noise levels (dBC) during grinding was 113 ± 5.2 ranging from 104 to 153. The minute peak noise levels during uncontrolled grinding (119 ± 10.2) were significantly higher than those during wet-grinding (115 ± 4.5) and LEV-grinding (112 ± 3.4). A 6-inch grinding cup wheel generated significantly higher minute peak noise levels (115 ± 5.3) than 5-inch (112 ± 4.5) or 4-inch (111 ± 5.4) cup wheels. Assuming an 8-hour work shift, the results indicated that noise exposure levels during concrete grinding in enclosed areas exceeded the recommended permissible exposure limits and workers should be protected by engineering control methods, safe work practices, and/or personal protective devices.

  12. Attribution of the variability of typhoon landfalls in China coasts to the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-western Pacific

    Science.gov (United States)

    Yang, L.; Chen, S.; Wang, C.; Wang, D.; Wang, X.

    2017-12-01

    The typhoon (TY) landfall activity along China coasts during July-August-September (JAS) shows significant interdecadal variations during 1965-2010. Three typical episodes for TY landfall activities in JAS along the China coasts during 1965-2010 can be identified, with more TY landfall during 1965-1978 (period I) and 1998-2010 (period III), and less during 1982-1995 (period II). We found that the interdcadal variations might be related to the combined effects of the Pacific Decadal Oscillation (PDO) phase change and the sea surface temperature (SST) variation in the tropical Indian Ocean and western Pacific (IO-WP). During negative PDO phase of periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP) inducing easterly flow at its north, favoring TY landfall along eastern China coast. Due to Gill-pattern responses, warm SST anomalies over tropical IO-WP induce an anomalous anticyclonic circulation in the WNP, with southeasterly wind dominating in the northern SCS and WNP (10o-20o N), which favors TY reaching along southern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TY landfall during period III than that of period I, which shows SST cooling in tropical IO-WP.

  13. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    Science.gov (United States)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  14. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  15. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow through pump and other instruments from NOAA Ship Gordon Gunter in the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0157389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow...

  16. Chlorophyll a, temperature, salinity and other variables collected from surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157812)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains chlorophyll a, temperature, salinity and other variables collected from surface underway observations during the East Coast Ocean...

  17. Sea surface temperature variability in the Gulf of Mexico from 1734-2008 CE: A reconstruction using cross-dated Sr/Ca records from the coral Siderastrea siderea

    Science.gov (United States)

    DeLong, K. L.; Flannery, J. A.; Quinn, T. M.; Maupin, C. R.; Lin, K.; Shen, C.

    2013-12-01

    Sea surface temperature (SST) variability in the Gulf of Mexico impacts climate in Central and North America because the Gulf is a major source of moisture and is a source region for the Gulf Stream, which transports ocean heat northward. Here we use skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42'N, 82°48'W) to develop 274 years of monthly-resolved SST variations. The cross-dated chronology, determined by counting annual density bands and correlating Sr/Ca variations, is verified by four replicated high precision 230Th dates (×1.7-37 years, 2σ). Calibration and verification of our replicated coral Sr/Ca-SST reconstruction with Dry Tortugas SST (r = 0.98 and 0.55 for monthly and 36-month smoothed, respectively; 1992-2008 CE) and Key West, Florida surface air temperature (1895-2008 CE) measurements reveals similar covariance (r = 0.96 and 0.56 for monthly and 36-month smoothed, respectively). The absolute coral SST reconstruction is consistent with SST recorded at the Dry Tortugas lighthouse from 1879-1907 CE indicating that this coral Sr/Ca-SST relationship is stable on centennial time scales. The Sr/Ca-SST reconstruction reveals ~2.0°C interannual variability, ~1.5°C decadal fluctuations, and a 0.7°C warming trend for the past 274 years. Secular variability in our reconstruction is similar to approximately decadally resolved planktic foraminifer Mg/Ca records from the northern Gulf of Mexico. The coral Sr/Ca-SST reconstruction reveals colder decades (~1.5°C) suggesting a reduction in moisture and ocean heat flux from the Gulf of Mexico. We find winter extremes are more variable than summer extremes (×2.2°C vs. ×1.6°C, 2σ) with a stronger warming trend (1°C) in the summers suggesting continued warming may increase coral bleaching.

  18. Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination.

    Science.gov (United States)

    Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R

    2005-08-31

    A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.

  19. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  20. Modeling Carbon Sequestration over the Large-Scale Amazon Basin, Aided by Satellite Observations. Part I: Wet- and Dry-Season Surface Radiation Budget Flux and Precipitation Variability Based on GOES Retrievals.

    Science.gov (United States)

    Gu, Jiujing; Smith, Eric A.; Cooper, Harry J.; Grose, Andrew; Liu, Guosheng; Merritt, James D.; Waterloo, Maarten J.; de Araújo, Alessandro C.; Nobre, Antonio D.; Manzi, Antonio O.; Marengo, Jose; de Oliveira, Paulo J.; von Randow, Celso; Norman, John; Silva Dias, Pedro

    2004-06-01

    In this first part of a two-part investigation, large-scale Geostationary Operational Environmental Satellite (GOES) analyses over the Amazônia region have been carried out for March and October of 1999 to provide detailed information on surface radiation budget (SRB) and precipitation variability. SRB fluxes and rainfall are the two foremost cloud-modulated control variables that affect land surface processes, and they require specification at space time resolutions concomitant with the changing cloud field to represent adequately the complex coupling of energy, water, and carbon budgets. These processes ultimately determine the relative variations in carbon sequestration and carbon dioxide release within a forest ecosystem. SRB and precipitation retrieval algorithms using GOES imager measurements are used to retrieve surface downward radiation and surface rain rates at high space time resolutions for large-scale carbon budget modeling applications in conjunction with the Large-Scale Biosphere Atmosphere Experiment in Amazônia. To validate the retrieval algorithms, instantaneous estimates of SRB fluxes and rain rates over 8 km × 8 km areas were compared with 30-min-averaged surface measurements obtained from tower sites located near Ji-Paraná and Manaus in the states of Rondônia and Amazonas, respectively. Because of large aerosol concentrations originating from biomass burning during the dry season (i.e., September and October for purposes of this analysis), an aerosol index from the Total Ozone Mapping Spectrometer is used in the solar radiation retrieval algorithm. The validation comparisons indicate that bias errors for incoming total solar, photosynthetically active radiation (PAR), and infrared flux retrievals are under 4%, 6%, and 3% of the mean values, respectively. Precision errors at the analyzed space time scales are on the order of 20%, 20%, and 5%. The visible and infrared satellite measurements used for precipitation retrieval do not directly

  1. Delta Scuti variables. Lecture 6

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    The class of variables near or on the upper main sequence, the delta Scuti variables, are not only the usual ones about the masses, radii, and luminosities, but also the age, rotation, element diffusion to change the surface layer composition, the occurance of convection and the presence of radial and nonradial pulsation modes

  2. Variabilidade espacial de propriedades de Latossolo e da produção de café em diferentes superfícies geomórficas Spatial variability of Latosol properties in different geomorphic surfaces of coffee cultivation

    Directory of Open Access Journals (Sweden)

    Rodrigo B. Sanchez

    2005-12-01

    Full Text Available Com o objetivo de avaliar a variabilidade espacial de propriedades do solo e produção de café em diferentes Superfícies Geomórficas (SG na região do Alto Paranaíba, MG, instalaram-se duas malhas de 200 x 850 m com intervalos regulares de 50 m, com 68 pontos amostrais cada uma, sob cultivo de café. As amostras de solo foram coletadas na profundidade de 0-0,20 m, nos pontos de intercessão dessas malhas. A produção de café foi avaliada em duas colheitas de grãos em coco das plantas mais próximas da intercessão de linhas das malhas. Calcularam-se as estatísticas descritivas e realizou-se a análise geoestatística de propriedades do solo e produção da cultura de café. As propriedades químicas e granulométricas de solos intensamente manejados, possuem dependência do relevo, mesmo de pequena expressão. A produção de café apresentou dependência espacial em ambas as superfícies e maior variabilidade na SG II. Os limites entre as superfícies geomórficas podem representar limites de locais específicos de manejo.With the objective to evaluate the spatial variability of the soil properties and coffee production in different geomorphic surfaces (GS in the region of the high Paranaíba, MG, two regular grids of 200 x 850 m with intervals of 50 m were installed with 68 sampling points under coffee crop. The soil samples were collected at 0-0.20 m depth at the intersection points of these grids. The coffee production was evaluated in plants closer to the intersection of the grid point. Descriptive statistics and geostatistics analysis of the soil properties and production of coffee crop were performed. The chemical and textural properties of soil intensely managed possess dependence of the relief, even for small expression. The coffee production presented spatial dependence in both surfaces and largest variability in GS II. The limits between the geomorphic surfaces can represent limits of specific places of management.

  3. Variable Surface Area Thermal Radiator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to increased complexity of spacecraft and longer expected life, more sophisticated and complex thermal management schemes are needed that will be capable of...

  4. Sea Surface Variability in the Aegean Sea.

    Directory of Open Access Journals (Sweden)

    Şeniz Uçkaç

    2015-12-01

    Full Text Available Ege Denizi’nde yüzey suyu değişimleri. Ege Denizi’nde fiziksel parametreler iklimsel değişimler, tatlısu girdileri ve su döngüsü gibi faktörlere bağlı olarak yer ve zamana göre değişim göstermektedir. Farklı su kütleleri, özellikle Çanakkale boğazından gelen soğuk Karadeniz suyu ve güney kısımdan girmekte olan Levanten suyu Ege Denizi su özelliklerinin karmaşık yapısına katkıda bulunmaktadır. Bu çalışmada Ege Denizi yüzey suyu sirkülasyonu ve fiziksel özelliklerinin değişimi yerinde ölçümler kullanılarak 1986-1994 periyodunda incelenmiştir. Yüzey verisi analizleri yüksek tuzluluk ve yoğunluk değerlerinin ilk olarak Kuzey Ege’de oluştuğunu göstermektedir

  5. Variable surface properties of PTFE foils

    Czech Academy of Sciences Publication Activity Database

    Švorčík, V.; Reznickova, A.; Kolská, Z.; Slepička, P.; Hnatowicz, Vladimír

    -, č. 133 (2010), s. 1-6 ISSN 1618-7229 R&D Projects: GA ČR GA106/09/0125; GA MŠk(CZ) LC06041; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : POLYTETRAFLUOROETHYLENE * PROLIFERATION * NANOLAYERS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.574, year: 2010

  6. A reconstruction of sea surface temperature variability in the southeastern Gulf of Mexico from 1734 to 2008 C.E. using cross-dated Sr/Ca records from the coral Siderastrea siderea

    Science.gov (United States)

    DeLong, Kristine L.; Maupin, Christopher R.; Flannery, Jennifer A.; Quinn, Terrence M.; Shen, CC

    2014-01-01

    This study uses skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42′N, 82°48′W) to reconstruct monthly sea surface temperature (SST) variations from 1734 to 2008 Common Era (C.E.). Calibration and verification of the replicated coral Sr/Ca-SST reconstruction with local, regional, and historical temperature records reveals that this proxy-temperature relationship is stable back to 1879 C.E. The coral SST reconstruction contains robust interannual (~2.0°C) and multidecadal variability (~1.5°C) for the past 274 years, the latter of which does not covary with the Atlantic Multidecadal Oscillation. Winter SST extremes are more variable than summer SST extremes (±2.2°C versus ±1.6°C, 2σ) suggesting that Loop Current transport in the winter dominates variability on interannual and longer time scales. Summer SST maxima are increasing (+1.0°C for 274 years, σMC = ±0.5°C, 2σ), whereas winter SST minima contain no significant trend. Colder decades (~1.5°C) during the Little Ice Age (LIA) do not coincide with decades of sunspot minima. The coral SST reconstruction contains similar variability to temperature reconstructions from the northern Gulf of Mexico (planktic foraminifer Mg/Ca) and the Caribbean Sea (coral Sr/Ca) suggesting areal reductions in the Western Hemisphere Warm Pool during the LIA. Mean summer coral SST extremes post-1985 C.E. (29.9°C) exceeds the long-term summer average (29.2°C for 1734–2008 C.E.), yet the warming trend after 1985 C.E. (0.04°C for 24 years, σMC = ±0.5, 2σ) is not significant, whereas Caribbean coral Sr/Ca studies contain a warming trend for this interval.

  7. Complex variables

    CERN Document Server

    Flanigan, Francis J

    2010-01-01

    A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: ""A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation."" Not so here-Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion

  8. SU-F-J-22: Lung VolumeVariability Assessed by Bh-CBCT in 3D Surface Image Guided Deep InspirationBreath Hold (DIBH) Radiotherapy for Left-Sided Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A; Stanley, D; Papanikolaou, N; Crownover, R [University of Texas Health Science Center San Antonio, San Antonio, TX (United States)

    2016-06-15

    Purpose: With the increasing use of DIBH techniques for left-sided breast cancer, 3D surface-image guided DIBH techniques have improved patient setup and facilitated DIBH radiation delivery. However, quantification of the daily separation between the heart and left breast still presents a challenge. One method of assuring separation is to ensure consistent left lung filling. With this in mind, the aim of this study is to retrospectively quantify left lung volume from weekly breath hold-CBCTs (bh-CBCT) of left-sided breast patients treated using a 3D surface imaging system. Methods: Ten patients (n=10) previously treated to the left breast using the C-Rad CatalystHD system (C-RAD AG, Uppsala Sweden) were evaluated. Patients were positioned with CatalystHD and with bh-CBCT. bh-CBCTs were acquired at the validation date, first day of treatment and at subsequent weekly intervals. Total treatment courses spanned from 3 to 5 weeks. bh-CBCT images were exported to VelocityAI and the left lung volume was segmented. Volumes were recorded and analyzed. Results: A total of 41 bh-CBCTs were contoured in VelocityAI for the 10 patients. The mean left lung volume for all patients was 1657±295cc based on validation bh-CBCT. With the subsequent lung volumes normalized to the validation lung volume, the mean relative ratios for all patients were 1.02±0.11, 0.97±0.14, 0.98±0.11, 1.02±0.01, and 0.96±0.02 for week 1, 2, 3, 4, and 5, respectively. Overall, the mean left lung volume change was ≤4.0% over a 5-week course; however left lung volume variations of up to 28% were noted in a select patient. Conclusion: With the use of the C-RAD CatalystHD system, the mean lung volume variability over a 5-week course of DIBH treatments was ≤4.0%. By minimizing left lung volume variability, heart to left breast separation maybe more consistently maintained. AN Gutierrez has a research grant from C-RAD AG.

  9. Seasonal variability of iodine and selenium in surface and groundwater as a factor that may contribute to iodine isotope balance in the thyroid gland and its irradiation in case of radioiodine contamination during accidents at the NPP

    Science.gov (United States)

    Korobova, Elena; Kolmykova, Lyudmila; Ryzhenko, Boris; Berezkin, Viktor; Saraeva, Anastasia

    2016-04-01

    Radioiodine release to the environment during the accident at the Chernobyl NPP led to the increased risk of the thyroid cancer cases within the contaminated areas, the effect being aggravated in conditions of stable iodine and selenium deficiency in local food chains. Although the drinking water iodine is usually believed to contribute not more than 10% to local diet, our estimations accounting of water content in other products and several regional studies (e.g. India and Australia) proved its portion to be at least twice as much. As radioiodine isotopes are short-lived, their absorption depends greatly on stable iodine and selenium sufficiency in thyroid gland in the first few days of contamination and seasonal variation of stable iodine and selenium in local sources of drinking water may be significant as modifying the resulting thyroid irradiation in different seasons of the year. The main goal of the study was to evaluate seasonal variation of levels of iodine and selenium in natural waters of the Bryansk region as a possible factor affecting the radioiodine intake by thyroid gland of animals and humans in case of radioiodine contamination during the accident. Seasonal I and Se concentration was measured in the years of 2014 and 2015 at 14 test points characterizing surface (river and lake) and drinking groundwater. Obtained data proved considerable seasonal variation of I and Se concentration in natural waters (3,7-8,1 μg/l and 0,04-0,4 μg/l respectively) related to physico-chemical water parameters, such as pH, Eh and fluctuations in concentration of dissolved organic matter. The widest I and Se seasonal variability was observed in surface and well waters, maximum I level being found in autumn at the end of vegetation period characterized by active I leaching from the decomposed organic residues by long lasting precipitations. The content of selenium in the surface waters during summer-autumn (0,06-0,3 μg/l) was higher than in spring (0,04-0,05

  10. Soil water content temporal-spatial variability of the surface layer of a Loess Plateau hillside in China Variabilidade temporal e espacial da umidade do solo na camada superficial de uma encosta do "Loess Plateau" na China

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2008-01-01

    Full Text Available Surface soil moisture exhibits an important variability in terms of spatial and temporal domains, which may result in critical uncertainties for agricultural water management. The purposes of this study were (i to characterize the temporal dynamics and stability of the spatial variability of the surface 0-6 cm soil water content θon a hill-slope; (ii to investigate issues related to soil moisture conditions including dominating factors on soil moisture and to the estimation of the mean θ. During a period of more than one month θwas measured on thirteen days by Frequency Domain Reflectometry using a 10 x 10 m grid of measurement points covering a 60 x 280 m domain within a hill-slope of the Loess Plateau in China. Soil water content exhibited a moderate variability for each measurement date, and the correlation length (l for θranged from 8.4 to 27.7 m. With the soil becoming drier, l decreased, the CV% and the sampling number for accurate mean θestimation increased. Aspect, elevation, organic matter content, clay content, and bulk density were the main influencing factors, whose extent of influence weakened with decreasing θ. Based on time stability analysis and on the correlation of mean relative difference of θwith the relative difference of dominating factors, mean q values were well estimated, with a better accuracy under wetter conditions.A umidade da camada superficial do solo apresenta uma variabilidade importante nos domínios espacial e temporal, que pode levar a incertezas críticas para o manejo agrícola da água. Os objetivos deste estudo incluíram: (i a caracterização da dinâmica temporal e da estabilidade da variabilidade espacial da umidade θda camada 0-6 cm em uma encosta em declive; (ii investigação de parâmetros ligados às condições de umidade, incluindo fatores dominantes da umidade na estimativa de um valor médio de q. Durante um período de mais de um mês, q foi medida em 13 dias com auxílio da t

  11. Surfing wave climate variability

    Science.gov (United States)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  12. Several real variables

    CERN Document Server

    Kantorovitz, Shmuel

    2016-01-01

    This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

  13. Biological Sampling Variability Study

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-08

    There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus was used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65

  14. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability

    Directory of Open Access Journals (Sweden)

    W. Xu

    2018-01-01

    summertime ozone measured at WLG shows no significant trend despite ozone increases in eastern China. Analysis of the Trajectory-mapped Ozonesonde data set for the Stratosphere and Troposphere (TOST and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the quasi-biennial oscillation (QBO, the East Asian summer monsoon (EASM, and the sunspot cycle. Our results suggest that the 2–3-, 3–7-, and 11-year periodicities are linked to the QBO, EASM index, and sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.

  15. Combining the effect of crops surface albedo variability on the radiative forcing together with crop GHG budgets calculated from in situ flux measurements in a life cycle assessment approach: methodology and results

    Science.gov (United States)

    Ceschia, E.; Ferlicoq, M.; Brut, A.; Tallec, T.

    2013-12-01

    The carbon and GHG budgets (GHGB) of the 2 crop sites with contrasted management located in South West France was estimated over a complete rotation by combining a classical LCA approach with on site CO2 flux measurements. At both sites, carbon inputs (organic fertilization, seeds), carbon exports (harvest) and net ecosystem production (NEP), measured with the eddy covariance technique, were estimated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analyzed for all site-years, and the effect of management on NECB was assessed. To account for GHG fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHGB for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines or and CH4 emissions were assumed to be negligible. Albedo was calculated continuously using the short wave incident and reflected radiation measurements in the field from CNR1 sensors. Rapid changes in surface albedo typical from those ecosystems and resulting from management and crop phenology were analysed. The annual radiative forcing for each plot was estimated by calculating the difference between a mean annual albedo for each crop and a reference bare soil albedo value calculated over 5 years for each plot. To finalize the radiative forcing calculation, the method developed by Muñoz et al (2010) using up and down atmospheric transmittance had to be corrected so it would only account for up-going atmospheric transmittance. Annual differences in radiative forcing between crops were then converted in g C equivalent m-2 in order to add this effect to the GHG budget of each crop within a rotation. This methodology could be applied to all ICOS/NEON cropland sites. We found that the differences in radiative

  16. The Variability of Seasonality.

    Science.gov (United States)

    Pezzulli, S.; Stephenson, D. B.; Hannachi, A.

    2005-01-01

    Seasons are the complex nonlinear response of the physical climate system to regular annual solar forcing. There is no a priori reason why they should remain fixed/invariant from year to year, as is often assumed in climate studies when extracting the seasonal component. The widely used econometric variant of Census Method II Seasonal Adjustment Program (X-11), which allows for year-to-year variations in seasonal shape, is shown here to have some advantages for diagnosing climate variability. The X-11 procedure is applied to the monthly mean Niño-3.4 sea surface temperature (SST) index and global gridded NCEP-NCAR reanalyses of 2-m surface air temperature. The resulting seasonal component shows statistically significant interannual variations over many parts of the globe. By taking these variations in seasonality into account, it is shown that one can define less ambiguous ENSO indices. Furthermore, using the X-11 seasonal adjustment approach, it is shown that the three cold ENSO episodes after 1998 are due to an increase in amplitude of seasonality rather than being three distinct La Niña events. Globally, variations in the seasonal component represent a substantial fraction of the year-to-year variability in monthly mean temperatures. In addition, strong teleconnections can be discerned between the magnitude of seasonal variations across the globe. It might be possible to exploit such relationships to improve the skill of seasonal climate forecasts.

  17. Sazonalidade de variáveis biofísicas em regiões semiáridas pelo emprego do sensoriamento remoto Biophysics variables seasonality on surface in semiarid regions by using remote sensing

    Directory of Open Access Journals (Sweden)

    Joseilson O. Rodrigues

    2009-09-01

    Full Text Available Para investigar alterações no albedo, no Índice de Vegetação por Diferença Normalizada (NDVI, no saldo de radiação e no fluxo de calor no solo, em decorrência do regime pluviométrico no semiárido cearense, desenvolveu-se um estudo na bacia do Rio Trussu - Ceará, empregando-se sensoriamento remoto. Foram utilizadas duas imagens Landsat 7 ETM+, datadas de 25-10-2000 e 24-7-2001, sendo as variáveis estimadas pelo emprego do algoritmo SEBAL (Surface Energy Balance Algorithms for Land. Os resultados mostraram que as variáveis investigadas apresentaram alterações entre as duas estações, sendo os maiores valores de albedo registrados na estação seca. O NDVI apresentou maior sensibilidade ao regime hídrico, mostrando alto potencial de recuperação da vegetação ao efeito da precipitação. As margens do Rio Trussu apresentaram NDVI superior a 0,39, sendo indicativo de preservação da mata ciliar. A vegetação da bacia mostrou alto poder resiliente expresso pelo incremento nos valores de NDVI para o ano de 2001. A estação chuvosa exerceu também influência marcante sobre o saldo de radiação e fluxo de calor no solo, confirmando o efeito da estação climática na modificação do balanço de energia sobre a bacia.To investigate the rainfall regime effects over the albedo, NDVI (normalized difference vegetation index, net radiation and soil heat flux in a semiarid region (Northeast of Brazil, a study in the Trussu watershed was developed by using remote sensing. The study focuses on two images (Landsat 7 ETM+ provided by Instituto Nacional de Pesquisas Espaciais (INPE, from October 25, 2000 and July 24, 2001, each of them having a different rainfall regime (dry and wet seasons. The images were analyzed by using the SEBAL algorithm (surface energy balance algorithm for land. The results showed that the amount of rainfall affected the investigated variables, and the highest values of albedo were registered during the dry season

  18. External bulb variable volume maser

    Science.gov (United States)

    Reinhardt, V. S.; Cervenka, P. O. (Inventor)

    1978-01-01

    A maser functioning as a frequency standard stable to one part in 10 to the 14th power includes a variable volume, constant surface area storage bulb having a fixed volume portion located in a resonant cavity from which the frequency standard is derived. A variable volume portion of the bulb, exterior to the resonant cavity, has a maximum volume on the same order of magnitude as the fixed volume bulb portion. The cavity has a length to radius ratio of at least 3:1 so that the operation is attained without the need for a feedback loop. A baffle plate, between the fixed and variable volume bulb portions, includes apertures for enabling hydrogen atoms to pass between the two bulb portions and is an electromagnetic shield that prevents coupling of the electromagnetic field of the cavity into the variable volume bulb portion.

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in 2008 (NODC Accession 0109930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109930 includes biological, chemical, meteorological, physical and underway - surface data collected from NOAA Ship RONALD H. BROWN in the North...

  20. Salinity and other variables collected from Surface underway observations using not applicable and other instruments from unknown platforms in various oceans and seas World-Wide from 1965-01-01 to 1994-12-31 (NCEI Accession 0157055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157055 includes Surface underway, chemical and physical data collected from unknown platforms in the Arctic Ocean, Barents Sea, Bay of Biscay, Indian...

  1. Generalized instrumental variable models

    OpenAIRE

    Andrew Chesher; Adam Rosen

    2014-01-01

    This paper develops characterizations of identified sets of structures and structural features for complete and incomplete models involving continuous or discrete variables. Multiple values of unobserved variables can be associated with particular combinations of observed variables. This can arise when there are multiple sources of heterogeneity, censored or discrete endogenous variables, or inequality restrictions on functions of observed and unobserved variables. The models g...

  2. The effects of thermal radiation and viscous dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a porous medium with variable surface conditions

    Directory of Open Access Journals (Sweden)

    Kishore P.M.

    2012-01-01

    Full Text Available This investigation is undertaken to study the hydromagnetic flow of a viscous incompressible fluid past an oscillating vertical plate embedded in a porous medium with radiation, viscous dissipation and variable heat and mass diffusion. Governing equations are solved by unconditionally stable explicit finite difference method of DuFort - Frankel’s type for concentration, temperature, vertical velocity field and skin - friction and they are presented graphically for different values of physical parameters involved. It is observed that plate oscillation, variable mass diffusion, radiation, viscous dissipation and porous medium affect the flow pattern significantly.

  3. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  4. Classifying variability modeling techniques

    NARCIS (Netherlands)

    Sinnema, Marco; Deelstra, Sybren

    Variability modeling is important for managing variability in software product families, especially during product derivation. In the past few years, several variability modeling techniques have been developed, each using its own concepts to model the variability provided by a product family. The

  5. Entropy as a collective variable

    Science.gov (United States)

    Parrinello, Michele

    Sampling complex free energy surfaces that exhibit long lived metastable states separated by kinetic bottlenecks is one of the most pressing issues in the atomistic simulations of matter. Not surprisingly many solutions to this problem have been suggested. Many of them are based on the identification of appropriate collective variables that span the manifold of the slow varying modes of the system. While much effort has been put in devising and even constructing on the fly appropriate collective variables there is still a cogent need of introducing simple, generic, physically transparent, and yet effective collective variables. Motivated by the physical observation that in many case transitions between one metastable state and another result from a trade off between enthalpy and entropy we introduce appropriate collective variables that are able to represent in a simple way these two physical properties. We use these variables in the context of the recently introduced variationally enhanced sampling and apply it them with success to the simulation of crystallization from the liquid and to conformational transitions in protein. Department of Chemistry and Applied Biosciences, ETH Zurich, and Facolta' di Informatica, Istituto di Scienze Computazionali, Universita' della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland.

  6. Laser-surface interactions

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    This book is about the interaction of laser radiation with various surfaces at variable parameters of radiation. As a basic principle of classification we chose the energetic or intensity level of interaction of laser radiation with the surfaces. These two characteristics of laser radiation are the most important parameters defining entire spectrum of the processes occurring on the surfaces during interaction with electromagnetic waves. This is a first book containing a whole spectrum of the laser-surface interactions distinguished by the ranges of used laser intensity. It combines the surface response starting from extremely weak laser intensities (~1 W cm-2) up to the relativistic intensities (~1020 W cm-2 and higher). The book provides the basic information about lasers and acquaints the reader with both common applications of laser-surface interactions (laser-related printers, scanners, barcode readers, discs, material processing, military, holography, medicine, etc) and unusual uses of the processes on t...

  7. Integral analysis of cavity pressurization in a fuel rod during an ULOF driven TOP with inclusion of surface tension effects on froth gas bubbles and variable cavity conditions due to fuel melting and ejection

    International Nuclear Information System (INIS)

    Royl, P.

    1984-02-01

    The transient cavity pressurization in an ULOF driven TOP excursion has been analyzed for the SPX-1 reactor with an equation of state that allows to simulate the contribution of small froth gas bubbles to the pressure build-up in a fuel pin with inclusion of restraints from surface tension. Calculations were performed for various bubble parameters. Estimates are made for effective gas availabilities at fuel melting which can be used in a cavity model with an ideal gas equation to arrive at similar pressure transients

  8. Common Variable Immunodeficiency (CVID)

    Science.gov (United States)

    ... facebook share with twitter share with linkedin Common Variable Immunodeficiency (CVID) Primary Immune Deficiency Diseases (PIDDs) Primary ... PIDDs Genetics & Inheritance Talking to Your Doctor Common variable immunodeficiency (CVID) is characterized by low levels of ...

  9. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  10. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  11. Performance Tests of Snow-Related Variables Over the Tibetan Plateau and Himalayas Using a New Version of NASA GEOS-5 Land Surface Model that Includes the Snow Darkening Effect

    Science.gov (United States)

    Yasunari, Tppei J.; Lau, K.-U.; Koster, Randal D.; Suarez, Max; Mahanama, Sarith; Dasilva, Arlindo M.; Colarco, Peter R.

    2011-01-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GO CART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3 ; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [Ion.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1

  12. Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor.

    Science.gov (United States)

    Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L

    2011-06-01

    The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of (3)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p nuclear waste site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Performance tests of snow-related variables over the Tibetan Plateau and Himalayas using a new version of NASA GEOS-5 land surface model that includes the snow darkening effect

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; da Silva, A.; Colarco, P. R.

    2011-12-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [lon.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1) was

  14. ISLSCP II Sea Surface Temperature

    Data.gov (United States)

    National Aeronautics and Space Administration — Sea surface temperature (SST) is an important indicator of the state of the earth climate system as well as a key variable in the coupling between the atmosphere and...

  15. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Science.gov (United States)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  16. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Directory of Open Access Journals (Sweden)

    C. Beer

    2018-03-01

    Full Text Available Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i when taking into account future changes in short-term variability of meteorological variables and (ii when representing dynamic snow and lichen and bryophyte functions in land surface models.

  17. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  18. Pilot Preferences on Displayed Aircraft Control Variables

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  19. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration, data mining and crowd source techniques: A Final Report on the very variable surface of Mars

    Science.gov (United States)

    Muller, Jan-Peter; Sidiropoulos, Panagiotis; Tao, Yu; Putri, Kiky; Campbell, Jacqueline; Xiong, Si-Ting; Gwinner, Klaus; Willner, Konrad; Fanara, Lida; Waehlisch, Marita; Walter, Sebastian; Schreiner, Bjoern; Steikert, Ralf; Ivanov, Anton; Cantini, Federico; Wardlaw, Jessica; Sprinks, James; Houghton, Robert; Kim, Jung-Rack

    2017-04-01

    There has been a revolution in 3D surface imaging of Mars over the last 12 years with systematic stereoscopy from HRSC. Digital Terrain Models (DTMs) and OrthoRectified Images (ORIs) have been produced for almost 50% of the Martian surface. DLR, together with the HRSC science team, produced 3D HRSC mosaic products for large regions comprising around 100 individual strips per region (MC-11E/W). UCL processed full coverage of DTMs over the South Polar Residual Cap (SPRC) and started work on the North Polar Layered Deposits (NPLD). The iMars project has been exploiting this unique set of 3D products as a basemap to co-register NASA imagery going back to the 1970s. UCL have developed an automated processing chain for CTX and HiRISE 3D processing to densify the global HRSC dataset with DTMs down to 18m and 75cm respectively using a modification of the open source NASA Ames Stereo Pipeline [1]. 1542 CTX DTMs + ORIs were processed using the Microsoft Azure® cloud and an in-house linux cluster. It is planned to process around 10% of the total HiRISE stereo-DTMs before the end of the project. A fully Automated Co-Registration and Orthorectification (ACRO) system has been developed at UCL and applied to the production of around some 15,000 NASA images. These were co-registered co-registered to a HRSC pixel (typically 12.5m/pixel) and orthorectified to HRSC DTMs of 50-150m spacing [2] over MC-11E/W. All of these new products images are viewable through an OGC-compliant webGIS developed at FUB,. This includes tools for viewing temporal sequences of co-registered ORIs over the same area [3]. Corresponding MARSIS and SHARAD data can be viewed through a QGIS plugin made publicly available [4]. An automated data mining system has been developed at UCL [5] for change detection to search and classify features in images going back to Viking Orbiter of IFoV ≤100m. In parallel, a citizen science project at Nottingham University [6] has defined training samples for classification of

  20. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast

    Science.gov (United States)

    Yang, Lei; Chen, Sheng; Wang, Chunzai; Wang, Dongxiao; Wang, Xin

    2017-12-01

    The landfall activity of typhoons (TYs) along the coast of China during July-August-September (JAS) shows significant interdecadal variation during 1965-2010. We identify three sub-periods of TY landfall activity in JAS along the China coast in this period, with more TY landfall during 1965-1978 (Period I) and 1998-2010 (Period III), and less during 1982-1995 (Period II). We find that the interdecadal variation might be related to the combined effects of Pacific Decadal Oscillation (PDO) phase changes and sea surface temperature (SST) variation in the tropical Indian Ocean and Western Pacific (IO-WP). During the negative PDO phase in Periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP), inducing easterly flow in its northern part, which favors TY landfall along the eastern China coast. Warm SST anomalies over the tropical IO-WP during Period III induce an anomalous anticyclonic circulation in the WNP through both the Gill-pattern response to the warm SST in the tropical IO and the anomalous meridional circulation induced by the warm SST in the tropical WNP. As a result, the northern South China Sea and WNP (10°-20° N) are dominated by southeasterly flow, which favors TYs making landfall on both the southern and eastern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TYs making landfall along the China coast during Period III than during Period I, which shows cool SST anomalies in the tropical IO-WP.

  1. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    Science.gov (United States)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    effect that the revised parameterization will have on GCM simulations of climate variability and change. Best, M. J. et al. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. Egea, G., Verhoef, A., Vidale, P.L. (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agricultural and Forest Meteorology, 151 (10), 1370-1384.

  2. Understanding Brown Dwarf Variability

    Science.gov (United States)

    Marley, Mark S.

    2013-01-01

    Surveys of brown dwarf variability continue to find that roughly half of all brown dwarfs are variable. While variability is observed amongst all types of brown dwarfs, amplitudes are typically greatest for L-T transition objects. In my talk I will discuss the possible physical mechanisms that are responsible for the observed variability. I will particularly focus on comparing and contrasting the effects of changes in atmospheric thermal profile and cloud opacity. The two different mechanisms will produce different variability signatures and I will discuss the extent to which the current datasets constrain both mechanisms. By combining constraints from studies of variability with existing spectral and photometric datasets we can begin to construct and test self-consistent models of brown dwarf atmospheres. These models not only aid in the interpretation of existing objects but also inform studies of directly imaged giant planets.

  3. Ultrasonic variables affecting inspection

    International Nuclear Information System (INIS)

    Lautzenheiser, C.E.; Whiting, A.R.; McElroy, J.T.

    1977-01-01

    There are many variables which affect the detection of the effects and reproducibility of results when utilizing ultrasonic techniques. The most important variable is the procedure, as this document specifies, to a great extent, the controls that are exercised over the other variables. The most important variable is personnel with regards to training, qualification, integrity, data recording, and data analysis. Although the data is very limited, these data indicate that, if the procedure is carefully controlled, reliability of defect detection and reproducibility of results are both approximately 90 percent for reliability of detection, this applies to relatively small defects as reliability increases substantially as defect size increases above the recording limit. (author)

  4. The nebular variables

    CERN Document Server

    Glasby, John S

    1974-01-01

    The Nebular Variables focuses on the nebular variables and their characteristics. Discussions are organized by type of nebular variable, namely, RW Aurigae stars, T Orionis stars, T Tauri stars, and peculiar nebular objects. Topics range from light variations of the stars to their spectroscopic and physical characteristics, spatial distribution, interaction with nebulosity, and evolutionary features. This volume is divided into four sections and consists of 25 chapters, the first of which provides general information on nebular variables, including their stellar associations and their classifi

  5. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  6. VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew; Xu, Ren-Kou

    2016-09-19

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.

  7. Links between annual, Milankovitch and continuum temperature variability.

    Science.gov (United States)

    Huybers, Peter; Curry, William

    2006-05-18

    Climate variability exists at all timescales-and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling. But although specific modes of interannual variability are relatively well understood, the general controls on continuum variability are uncertain and usually described as purely stochastic processes. Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period (23,000- and 41,000-year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.

  8. Rumble surfaces

    CSIR Research Space (South Africa)

    National Institute for Transport and Road

    1977-01-01

    Full Text Available Rumble surfaces are intermittent short lengths of coarse-textured road surfacings on which vehicle tyres produce a rumbling sound. used in conjunction with appropriate roadsigns and markings, they can reduce accidents on rural roads by alerting...

  9. Software variability management

    NARCIS (Netherlands)

    Bosch, J; Nord, RL

    2004-01-01

    During recent years, the amount of variability that has to be supported by a software artefact is growing considerably and its management is evolving into a major challenge during development, usage, and evolution of software artefacts. Successful management of variability in software leads to

  10. Variability: A Pernicious Hypothesis.

    Science.gov (United States)

    Noddings, Nel

    1992-01-01

    The hypothesis of greater male variability in test results is discussed in its historical context, and reasons feminists have objected to the hypothesis are considered. The hypothesis acquires political importance if it is considered that variability results from biological, rather than cultural, differences. (SLD)

  11. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  12. Interdependence Among Organizational Variables

    Science.gov (United States)

    Knowles, M. C.

    1975-01-01

    The interrelationship between a set of organizational variables was investigated at 14 work organizations within a company. The variables were production, quality, costs, job satisfaction of operatives, job satisfaction of supervisors, work anxiety, accidents, absence, labor turnover, and industrial unrest. (Author)

  13. Collective variables and dissipation

    International Nuclear Information System (INIS)

    Balian, R.

    1984-09-01

    This is an introduction to some basic concepts of non-equilibrium statistical mechanics. We emph