WorldWideScience

Sample records for neuroprotection nonmotor symptom

  1. Melatoninergic System in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms

    Directory of Open Access Journals (Sweden)

    Josiel Mileno Mack

    2016-01-01

    Full Text Available Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson’s disease (PD. The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.

  2. [Non-motor symptoms of Parkinson's disease

    NARCIS (Netherlands)

    Weerkamp, N.J.; Nijhof, A.; Tissingh, G.

    2012-01-01

    Parkinson's disease has traditionally been viewed as a disease with only motor features. Nowadays, a wide variety of non-motor symptoms and signs are also recognised as being characteristic of the disease. Non-motor symptoms, most importantly autonomic dysfunction, neuropsychiatric symptoms and

  3. Nonmotor symptoms in genetic Parkinson disease

    DEFF Research Database (Denmark)

    Kasten, Meike; Kertelge, Lena; Brüggemann, Norbert

    2010-01-01

    To review current knowledge on nonmotor symptoms (NMS), particularly psychiatric features, in genetic Parkinson disease (PD) and to provide original data for genetic and idiopathic PD.......To review current knowledge on nonmotor symptoms (NMS), particularly psychiatric features, in genetic Parkinson disease (PD) and to provide original data for genetic and idiopathic PD....

  4. Nonmotor Symptoms in a Malaysian Parkinson’s Disease Population

    Directory of Open Access Journals (Sweden)

    Shahrul Azmin

    2014-01-01

    Full Text Available Background. The nonmotor symptoms are important determinants of health and quality of life in Parkinson’s disease but are not well recognized and addressed in clinical practice. This study was conducted to determine the prevalence of nonmotor symptoms and their impact on quality of life in patients with Parkinson’s disease. Methods. This was a cross-sectional study among patients with idiopathic Parkinson’s disease. Exclusion criteria were a Mini Mental State Examination score of <21/30. Prevalence of nonmotor symptoms was determined using the NMSQuest. The severity of nonmotor symptoms and the quality of life were assessed using validated disease-specific questionnaires (PDQ-39 and NMSS. Results. A total of 113 patients consisting of 60 males and 53 females were recruited. The median duration of illness was 5.0 (2.0–8.0 years. The prevalence rate of nonmotor symptoms in our cohort was 97.3%. The most common reported nonmotor symptom in our cohort was gastrointestinal (76.1%. We found that the severity of the nonmotor symptoms was associated with poorer quality of life scores (rs: 0.727, P<0.001. Conclusions. Nonmotor symptoms were highly prevalent in our patients with Parkinson’s disease and adversely affected the quality of life of our patients. In contrast to western studies, the most common nonmotor symptom is gastrointestinal. The possibility of an Asian diet playing a role in this observation requires further study.

  5. Nonmotor symptoms in patients with Parkinson disease

    Science.gov (United States)

    Zhang, Tie-mei; Yu, Shu-yang; Guo, Peng; Du, Yang; Hu, Yang; Piao, Ying-shan; Zuo, Li-jun; Lian, Teng-hong; Wang, Rui-dan; Yu, Qiu-jin; Jin, Zhao; Zhang, Wei

    2016-01-01

    Abstract Parkinson disease (PD) is usually accompanied by numerous nonmotor symptoms (NMS), such as neuropsychiatric symptoms, sleep disorders, autonomic dysfunctions, and sensory disturbances. However, it is not clear that the factors influencing the occurrence of NMS and its sequence with motor symptoms (MS). We conducted comprehensive assessments of NMS by using 13 scales in 1119 PD patients. A total of 70.8% PD patients present NMS. Olfactory dysfunction tends to occur in PD patients with older age, more severe depression, sleep problems, and autonomic dysfunctions. Older patients are more likely to have olfactory dysfunction before MS than younger patients. Rapid eye movement behavior disorder is more prone to happen in patients with older age, older onset age, more severe depression, sleep problems, and autonomic dysfunctions. Patients with rapid eye movement behavior disorder before MS are older in onset age than after group. Olfactory dysfunction, constipation, rapid eye movement behavior disorder, and depression, as early warning NMSs of PD, connected to each other. There is a clinical heterogeneity that older patients are more likely to have NMS before MS, while younger patients are opposite. PMID:27977578

  6. Nonmotor symptoms in a malaysian Parkinson's disease population.

    Science.gov (United States)

    Azmin, Shahrul; Khairul Anuar, Abdul Manaf; Tan, Hui Jan; Nafisah, Wan Yahya; Raymond, Azman Ali; Hanita, Othman; Shah, Shamsul Azhar; Norlinah, Mohamed Ibrahim

    2014-01-01

    Background. The nonmotor symptoms are important determinants of health and quality of life in Parkinson's disease but are not well recognized and addressed in clinical practice. This study was conducted to determine the prevalence of nonmotor symptoms and their impact on quality of life in patients with Parkinson's disease. Methods. This was a cross-sectional study among patients with idiopathic Parkinson's disease. Exclusion criteria were a Mini Mental State Examination score of diet playing a role in this observation requires further study.

  7. Non-Motor Symptoms of Parkinson's Disease: Diagnosis and ...

    African Journals Online (AJOL)

    Non-motor symptoms (NMS) of Parkinson's disease (PD) are a key determinant of health, quality of life (QoL) and societal cost of PD. They are often less appreciated than motor symptoms but are important sources of disability for manyPDpatients. Literature search was performed using the reference databases Medline, ...

  8. Non-Motor Symptoms of Parkinson's Disease: Diagnosis and ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... Log in or Register to get access to full text downloads. ... Abstract. Non-motor symptoms (NMS) of Parkinson's disease (PD) are a key ... Papers discovered by this search were. reviewed, as were references cited therein.

  9. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Science.gov (United States)

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  10. Non-motor symptoms in Parkinson's disease

    NARCIS (Netherlands)

    Verbaan, Dagmar

    2009-01-01

    The thesis “Non-motor symptoms in Parkinson’s disease” is part of the PROPARK study, a longitudinal cohort study of approximately 400 patients with Parkinson’s disease (PD), who are profiled on genotype, phenotype, disability, and global outcomes of health, using valid and reliable assessment

  11. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

    Science.gov (United States)

    Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

    2017-01-01

    Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

  12. Impact of Nonmotor Symptoms on Disability in Patients with Parkinson's Disease

    Science.gov (United States)

    Raggi, Alberto; Leonardi, Matilde; Carella, Francesco; Soliveri, Paola; Albanese, Alberto; Romito, Luigi M.

    2011-01-01

    Patients with Parkinson's disease have nonmotor symptoms (NMS) that, although poorly considered, have an impact on their quality of life. In contrast, the effect on disability is not systematically evaluated. Adult patients were consecutively enrolled and administered the Non-Motor Symptoms Questionnaire and the WHO Disability Assessment Schedule.…

  13. Characteristics of Nonmotor Symptoms in Progressive Supranuclear Palsy

    Directory of Open Access Journals (Sweden)

    Ruwei Ou

    2016-01-01

    Full Text Available Objectives. To explore the clinical correlates of nonmotor symptoms (NMS in progressive supranuclear palsy (PSP and their differences from healthy controls and patients with Parkinson’s disease (PD. Methods. Twenty-seven PSP patients, 27 age- and gender-matched healthy controls (HC, and 27 age- and gender-matched PD patients were included for this case-control study. NMS were assessed using the Nonmotor Symptoms Scale (NMSS, including 9 domains. Results. All PSP patients reported NMS. The frequency and severity of “sleep/fatigue,” “mood/apathy,” “attention/memory,” “gastrointestinal,” “sexual dysfunction,” and “miscellaneous” domains in PSP group were significantly higher than those in HC group (P<0.05. The frequency of “mood/apathy,” “attention/memory,” and “sexual dysfunction” domains and the severity of “attention/memory” and “gastrointestinal” domains in PSP group were significantly higher than those in PD group (P<0.05. The “attention/memory” domain in PSP had a significant but weak-to-moderate correlation with age (R=0.387, P=0.046 and onset age (R=0.406, P=0.036. Conclusions. NMS are common in PSP patients. Patients with PSP seem to be subjected to more frequent and severe specific NMS compared to healthy aging subjects and PD patients. Older PSP patients and late-onset patients are likely to be subjected to cognitive decline.

  14. Nonmotor symptoms in patients suffering from motor neuron diseases

    Directory of Open Access Journals (Sweden)

    Rene Günther

    2016-07-01

    Full Text Available Background: The recently postulated disease spreading hypothesis has gained much attention, especially for Parkinson’s disease (PD. The various nonmotor symptoms (NMS in neurodegenerative diseases would be much better explained by this hypothesis than by the degeneration of disease-specific cell populations. Motor neuron disease (MND is primarily known as a group of diseases with a selective loss of motor function. Recent evidence, however, suggests disease spreading into nonmotor brain regions also in MND. The aim of this study was to comprehensively detect NMS in patients suffering from MND.Methods: We used a self-rating questionnaire including 30 different items of gastrointestinal, autonomic, neuropsychiatric and sleep complaints (NMSQuest which is an established tool in PD patients. 90 MND patients were included and compared to 96 controls.Results: In total, MND patients reported significantly higher NMS scores (median: 7 points in comparison to controls (median: 4 points. Dribbling, impaired taste/smelling, impaired swallowing, weight loss, loss of interest, sad/blues, falling and insomnia were significantly more prevalent in MND patients compared to controls. Interestingly excessive sweating was more reported in the MND group. Correlation analysis revealed an increase of total NMS score with disease progression.Conclusions: NMS in MND patients seemed to increase with disease progression which would fit with the recently postulated disease spreading hypothesis. The total NMS score in the MND group significantly exceeded the score for the control group, but only 8 of the 30 single complaints of the NMSQuest were significantly more often reported by MND patients. Dribbling, impaired swallowing, weight loss and falling could primarily be connected to motor neuron degeneration and declared as motor symptoms in MND.

  15. MDS-UPDRS to assess non-motor symptoms after STN DBS for Parkinson's disease.

    Science.gov (United States)

    Jafari, Nickey; Pahwa, Rajesh; Nazzaro, Jules M; Arnold, Paul M; Lyons, Kelly E

    2016-01-01

    To determine if the non-motor sections of the Movement Disorder Society's (MDS) version of the Unified Parkinson's Disease Rating Scale (UPDRS) could supplement the original UPDRS as a patient completed assessment of changes in non-motor symptoms in Parkinson's disease (PD) patients after bilateral subthalamic nucleus (STN) deep brain stimulation (DBS). Thirty PD patients who underwent bilateral STN DBS were assessed using the total UPDRS and the non-motor sections of the MDS-UPDRS prior to surgery and one year following surgery. This study focuses on non-motor symptoms as assessed by Part I of the UPDRS and Part 1A and 1B of the MDS-UPDRS. One year following surgery, no individual non-motor symptoms or the total mentation score of the UPDRS were significantly changed. In comparison, the MDS-UPDRS showed significant improvements in sleep and urinary problems and a trend towards improvement in anxiety, constipation, daytime sleepiness, fatigue and pain. This study provides evidence that the MDS-UPDRS non-motor sections, when completed by the patients, can supplement the original version of the UPDRS as an effective method of measuring changes in non-motor symptoms after DBS. It also reinforces the benefits of bilateral STN DBS on non-motor symptoms of PD.

  16. Neuropathology and Neurochemistry of Nonmotor Symptoms in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Isidro Ferrer

    2011-01-01

    Full Text Available Parkinson disease (PD is no longer considered a complex motor disorder characterized by Parkinsonism but rather a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment, and psychiatric symptoms. Many of these alterations appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a close relation between motor symptoms and the presence of Lewy bodies (LBs and neurites filled with abnormal -synuclein, other neurological alterations are independent of the amount of -synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. Involvement of the cerebral cortex that may lead to altered behaviour and cognition are related to several convergent factors such as (a abnormal -synuclein and other proteins at the synapses, rather than LBs and neurites, (b impaired dopaminergic, noradrenergic, cholinergic and serotoninergic cortical innervation, and (c altered neuronal function resulting from reduced energy production and increased energy demands. These alterations appear at early stages of the disease and may precede by years the appearance of cell loss and cortical atrophy.

  17. Nonmotor symptoms in Parkinson's disease: classification and management

    Directory of Open Access Journals (Sweden)

    Erro R

    2015-01-01

    Full Text Available Roberto Erro,1,2 Gabriella Santangelo,3,4 Paolo Barone,5 Carmine Vitale4,6 1Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; 2Dipartimento di Scienze Neurologiche e del Movimento, Università di Verona, Verona, Italy; 3Neuropsychology Laboratory, Department of Psychology, Second University of Naples, Caserta, Italy; 4IDC Hermitage – Capodimonte, Naples, Italy; 5University of Salerno, Center for Neurodegenerative diseases – CEMAND, Salerno, Italy; 6University of Naples "Parthenope," Department of Motor Sciences, Naples, Italy Abstract: Despite the emphasis on the motor phenotype of Parkinson's disease (PD, it has been increasingly recognized that PD patients experience several nonmotor symptoms (NMS, which have even greater significance when assessed by quality-of-life measures and institutionalization rates. The burden of NMS tends to increase with age and disease severity and, in the very advanced stage of disease, NMS such as urinary problems, drooling, somnolence, psychosis, and dementia dominate the clinical phenotype. Moreover, the dopaminergic treatment used for the motor symptoms of PD can arise or worsen a number of NMS, including orthostatic hypotension, nausea, sleep disturbances, hallucinations, or impulsive compulsive behaviors. Here we review the most common NMS of PD with a focus on their pharmacological management. Keywords: disease management, PD, NMS

  18. TREATMENT AND REHABILITATION IN NON-MOTOR SYMPTOMS OF PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Gabriela Dogaru

    2015-12-01

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disease. The cardinal clinical features of PD are motor and include bradykinesia, rigidity, and resting tremor with an asymmetric pattern. Apart from these, various nonmotor symptoms (NMS also occur in PD and constitute a major clinical symptoms. NMS can present at any stage of the disease including early and pre-motor phase of PD. Management of PD requires recognition of both motor and nonmotor symptoms as well as an understanding of the relationship between these symptoms and how they can be affected by treatments for PD. Therapy should be individualized for each patient, as treatments for the motor symptoms of PD can improve some nonmotor symptoms while they can worsen others. Some non-motor symptoms, including depression, constipation, pain, genitourinary problems, and sleep disorders, can be improved with antiparkinsonian drugs . Other non-motor symptoms can be more refractory and need the introduction of novel non-dopaminergic drugs in association with rehabilitation programs . In the future, development of treatments that can slow or prevent the progression of Parkinson's disease and its multicentric neurodegeneration are the best hope of ameliorating non-motor symptoms

  19. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Institute of Scientific and Technical Information of China (English)

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  20. Assessment of Early Stage Non-Motor Symptoms in Parkinson’sDisease

    Directory of Open Access Journals (Sweden)

    Haluk Gümüş

    2013-09-01

    Full Text Available OBJECTIVE: In this study, our purpose is, in the early stage of PD, examining the frequency of occurrence of non-motor symptoms and discussing the effects of morbidity of disease. METHODS: Selcuk University, Meram Faculty of Medicine, Neurology outpatient clinic in the study, which is followed by the United Kingdom Brain Bank criteria for Parkinson's Disease Parkinson's Disease diagnosis and clinical staging according to Hoehn Yahr stages 1 and 2 of the 80 patients were studied. RESULTS: Cases, an increase in UPDRS scores were significantly higher non-motor symptoms. CONCLUSION: Non-motor symptoms in Parkinson's disease can often go unnoticed. Symptomatic treatment is an important part of the success. Therefore, PH and the non-motor symptoms, early detection is important to treat them in accordance with

  1. Effects of sleep disorders on the non-motor symptoms of Parkinson disease.

    Science.gov (United States)

    Neikrug, Ariel B; Maglione, Jeanne E; Liu, Lianqi; Natarajan, Loki; Avanzino, Julie A; Corey-Bloom, Jody; Palmer, Barton W; Loredo, Jose S; Ancoli-Israel, Sonia

    2013-11-15

    To evaluate the impact of sleep disorders on non-motor symptoms in patients with Parkinson disease (PD). This was a cross-sectional study. Patients with PD were evaluated for obstructive sleep apnea (OSA), restless legs syndrome (RLS), periodic limb movement syndrome (PLMS), and REM sleep behavior disorder (RBD). Cognition was assessed with the Montreal Cognitive Assessment and patients completed self-reported questionnaires assessing non-motor symptoms including depressive symptoms, fatigue, sleep complaints, daytime sleepiness, and quality of life. Sleep laboratory. 86 patients with PD (mean age = 67.4 ± 8.8 years; range: 47-89; 29 women). N/A. Having sleep disorders was a predictor of overall non-motor symptoms in PD (R(2) = 0.33, p sleep disorder significantly predicted sleep complaints (ΔR(2) = 0.13, p = 0.006), depressive symptoms (ΔR(2) = 0.01, p = 0.03), fatigue (ΔR(2) = 0.12, p = 0.007), poor quality of life (ΔR(2) = 0.13, p = 0.002), and cognitive decline (ΔR(2) = 0.09, p = 0.036). Additionally, increasing number of sleep disorders (0, 1, or ≥ 2 sleep disorders) was a significant contributor to non-motor symptom impairment (R(2) = 0.28, p sleep disorders predicted more non-motor symptoms including increased sleep complaints, more depressive symptoms, lower quality of life, poorer cognition, and more fatigue. RBD and RLS were factors of overall increased non-motor symptoms, but OSA was not.

  2. Non-motor symptoms in patients with Parkinson's disease - correlations with inflammatory cytokines in serum.

    Directory of Open Access Journals (Sweden)

    Daniel Lindqvist

    Full Text Available BACKGROUND: Parkinson's Disease (PD is the second most common neurodegenerative disorder of the central nervous system. Motor symptoms are the focus of pharmacotherapy, yet non-motor features of the disease (e.g. fatigue, mood disturbances, sleep disturbances and symptoms of anxiety are both common and disabling for the patient. The pathophysiological mechanisms behind the non-motor symptoms in PD are yet to be untangled. The main objective of this study was to investigate associations between pro-inflammatory substances and non-motor symptoms in patients with PD. METHODS AND MATERIALS: We measured C-reactive protein, interleukin (IL-6, soluble IL-2 receptor (sIL-2R and tumor necrosis factor-α (TNF-α in blood samples from PD patients (n=86 and healthy controls (n=40. Symptoms of fatigue, depression, anxiety and sleeping difficulties were assessed using the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT, the Hospital Anxiety and Depression Scale (HAD, and the Scales for Outcome in PD-Sleep Scale respectively. RESULTS: IL-6 was significantly higher in PD patients than in healthy controls. Compared to healthy controls, PD patients displayed significantly higher mean scores on HAD and lower scores on FACIT, thus indicating more severe symptoms as measured with these scales. Within the PD sample, high levels of both sIL-2R and TNF-α were significantly associated with more severe symptoms assessed by means of FACIT and HAD (depression and anxiety subscales. SIL-2-R levels were able to significantly predict FACIT and HAD scores after the effects of age, gender, anti-parkinsonian medications, and severity of motor symptoms were controlled for. DISCUSSION: We suggest that non-motor symptoms in PD patients, such as fatigue and depressive symptoms, might be generated via inflammatory mechanisms. This knowledge might contribute to the development of novel treatment options in PD, specifically targeting non-motor symptoms.

  3. Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity.

    Science.gov (United States)

    Taylor, Tonya N; Caudle, W Michael; Shepherd, Kennie R; Noorian, AliReza; Jackson, Chad R; Iuvone, P Michael; Weinshenker, David; Greene, James G; Miller, Gary W

    2009-06-24

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression. Previously, we have shown that mice with a 95% genetic reduction in vesicular monoamine transporter expression (VMAT2-deficient, VMAT2 LO) display progressive loss of striatal dopamine, L-DOPA-responsive motor deficits, alpha-synuclein accumulation, and nigral dopaminergic cell loss. We hypothesized that since these animals exhibit deficits in other monoamine systems (norepinephrine and serotonin), which are known to regulate some of these behaviors, the VMAT2-deficient mice may display some of the nonmotor symptoms associated with PD. Here we report that the VMAT2-deficient mice demonstrate progressive deficits in olfactory discrimination, delayed gastric emptying, altered sleep latency, anxiety-like behavior, and age-dependent depressive behavior. These results suggest that the VMAT2-deficient mice may be a useful model of the nonmotor symptoms of PD. Furthermore, monoamine dysfunction may contribute to many of the nonmotor symptoms of PD, and interventions aimed at restoring monoamine function may be beneficial in treating the disease.

  4. Motor and non-motor symptoms in old-age onset Parkinson's disease patients.

    Science.gov (United States)

    Mendonça, Marcelo D; Lampreia, Tania; Miguel, Rita; Caetano, André; Barbosa, Raquel; Bugalho, Paulo

    2017-07-01

    Advancing age is a well-known risk factor for Parkinson's disease (PD). With population ageing it is expected that the total number of patients with PD onset at oldage increases. Information on the motor but particularly on non-motor phenotype of this late-onset population is lacking. We recruited 24 patients with PD onset at or over 75 years. Each patient was matched with 1 control patient with PD onset between the ages of 40 and 65 and matched for disease duration. Both groups were assessed with the UPDRS, the Non-motor symptoms scale (NMSS) and other scales to assess non-motor symptoms. Groups were compared with conditional logistic regression analysis. Old-age onset PD was, on average, 80 years at the time of PD onset while middle-age onset were 59. Disease duration was approximately 5 years in both groups. While no difference was observed in the total UPDRS-III scores, old-age onset PD was associated with higher axial symptoms (7.42 vs. 4.63, p = 0.011) and a higher frequency of dementia (7/24 vs. 0/24, p = 0.009). While no difference in the total number of non-motor symptoms was observed (6.79 vs. 6.22, p = 0.310), old-age onset patients had a higher prevalence of gastrointestinal symptoms (20/24 vs. 12/24, p = 0.037). For the same disease duration, older age onset is associated with worse axial motor dysfunction and dementia in PD patients. Beside gastrointestinal symptoms, non-motor symptoms are not associated with age.

  5. Study of an integrated non-motor symptoms questionnaire for Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    YU Bo; XIAO Zhi-ying; LI Jia-zhen; YUAN Jing; LIU Yi-ming

    2010-01-01

    Background Although the validity of non-motor symptoms screening questionnaire (NMSQuest) for Parkinson's disease has been verified in several recent researches, the specificity of the questionnaire is still in doubt. This study aimed to compare the non-motor symptoms (NMS) in Parkinson's disease (PD) with a medically ill control group.Methods In this study, the first comprehensive clinic-based NMS screening questionnaire for PD developed by the Parkinson's Disease Non-Motor Group (PDNMG) was used. Data from 90 PD patients and 270 sex-and age-matched control subjects, including stroke (n=90), heart disease (n=90) and diabetes (n=90) were analyzed.Results Compared with control group, NMS was more common in PD; on an average, most PD patients reported more than 12 non-motor items. There was a correlation of total NMS score in PD patients with Hoehn & Yahr Staging, but not with age, sex distribution, disease duration, or age at disease onset. Additionally, depression, constipation and impaired olfaction which occurred prior to the motor symptoms of PD were reported in this study.Conclusions NMS are more common in PD patients. There are some NMS that occurred at the preclinical stage of PD and might predict the onset of motor symptoms of PD patients.

  6. Impacts of dance on non-motor symptoms, participation, and quality of life in Parkinson disease and healthy older adults

    Science.gov (United States)

    McNeely, ME; Duncan, RP; Earhart, GM

    2015-01-01

    Evidence indicates exercise is beneficial for motor and non-motor function in older adults and people with chronic diseases including Parkinson disease (PD). Dance may be a relevant form of exercise in PD and older adults due to social factors and accessibility. People with PD experience motor and non-motor symptoms, but treatments, interventions, and assessments often focus more on motor symptoms. Similar non-motor symptoms also occur in older adults. While it is well-known that dance may improve motor outcomes, it is less clear how dance affects non-motor symptoms. This review aims to describe the effects of dance interventions on non-motor symptoms in older adults and PD, highlights limitations of the literature, and identifies opportunities for future research. Overall, intervention parameters, study designs, and outcome measures differ widely, limiting comparisons across studies. Results are mixed in both populations, but evidence supports the potential for dance to improve mood, cognition, and quality of life in PD and healthy older adults. Participation and non-motor symptoms like sleep disturbances, pain, and fatigue have not been measured in older adults. Additional well-designed studies comparing dance and exercise interventions are needed to clarify the effects of dance on non-motor function and establish recommendations for these populations. PMID:26318265

  7. Tai Chi Exercise to Improve Non-Motor Symptoms of Parkinson's Disease.

    Science.gov (United States)

    Nocera, Joe R; Amano, Shinichi; Vallabhajosula, Srikant; Hass, Chris J

    2013-08-20

    A substantial number of individuals with Parkinson's disease exhibit debilitating non-motor symptoms that decrease quality of life. To date, few treatment options exist for the non-motor symptomatology related to Parkinson's disease. The goal of this pilot investigation was to determine the effects of Tai Chi exercise on the non-motor symptomology in Parkinson's disease. Twenty-one individuals with Parkinson's disease were enrolled in a Tai Chi intervention (n=15) or a noncontact control group (n=6). Participants assigned to Tai Chi participated in 60-minute Tai Chi sessions three times per week, for 16 weeks. Pre and post measures included indices of cognitive-executive function including visuomotor tracking and attention, selective attention, working memory, inhibition, processing speed and task switching. Additionally, all participants were evaluated on the Parkinson's disease Questionnaire-39 and Tinetti's Falls Efficacy Scale. Results indicated that the Tai Chi training group had significantly better scores following the intervention than the control group on the Parkinson's disease Questionnaire-39 total score as well as the emotional well-being sub score. Trends for improvement were noted for the Tai Chi group on Digits Backwards, Tinetti's Falls Efficacy Scale, and the activities of daily living and communication sub scores of the Parkinson's disease Questionnaire-39. This research provides initial data that supports future studies to definitively establish efficacy of Tai Chi to improve non-motor features of Parkinson's disease.

  8. Effect of Deep Brain Stimulation on Parkinson's Nonmotor Symptoms following Unilateral DBS: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Nelson Hwynn

    2011-01-01

    Full Text Available Parkinson’s disease (PD management has traditionally focused largely on motor symptoms. Deep brain stimulation (DBS of the subthalamic nucleus (STN and globus pallidus internus (GPi are effective treatments for motor symptoms. Nonmotor symptoms (NMSs may also profoundly affect the quality of life. The purpose of this pilot study was to evaluate NMS changes pre- and post-DBS utilizing two recently developed questionnaires. Methods. NMS-Q (questionnaire and NMS-S (scale were administered to PD patients before/after unilateral DBS (STN/GPi targets. Results. Ten PD patients (9 STN implants, 1 GPi implant were included. The three most frequent NMS symptoms identified utilizing NMS-Q in pre-surgical patients were gastrointestinal (100%, sleep (100%, and urinary (90%. NMS sleep subscore significantly decreased (−1.6 points ± 1.8, =0.03. The three most frequent NMS symptoms identified in pre-surgical patients using NMS-S were gastrointestinal (90%, mood (80%, and cardiovascular (80%. The largest mean decrease of NMS scores was seen in miscellaneous symptoms (pain, anosmia, weight change, and sweating (−7 points ± 8.7, and cardiovascular/falls (−1.9, =0.02. Conclusion. Non-motor symptoms improved on two separate questionnaires following unilateral DBS for PD. Future studies are needed to confirm these findings and determine their clinical significance as well as to examine the strengths/weaknesses of each questionnaire/scale.

  9. Non-motor symptoms and the quality of life in multiple system atrophy with different subtypes.

    Science.gov (United States)

    Zhang, LingYu; Cao, Bei; Ou, RuWei; Wei, Qian-Qian; Zhao, Bi; Yang, Jing; Wu, Ying; Shang, HuiFang

    2017-02-01

    The differences in non-motor symptoms (NMS) and quality of life (QOL) between MSA patients with different subtypes remain unknown, so do the determinants of poor QOL in both subtypes. A total of 172 MSA patients were enrolled in the study. NMS of patients with MSA were assessed using the non-motor symptoms scale (NMSS) and Parkinson's Disease Questionnaire-39 item version (PDQ-39) was used to evaluate the QOL of patients with MSA. The most prevalent NMS domain was urinary (91.3%) in both subtypes. The mood/apathy domain was more severe in MSA-P than MSA-C patients (P sleep/fatigue symptoms and gastrointestinal symptoms were determinants of poor QOL in MSA-P patients. While in MSA-C patients, longer disease duration, disease severity and mood/apathy symptoms were determinants of poor QOL. NMS are more severe and prevalent in MSA-P patients, especially for mood/apathy and gastrointestinal symptoms. There is a close relationship between NMS and QOL in both MSA subtypes. Disease severity, longer disease duration and severe NMS are determinants of poor QOL in MSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In patient's with Parkinson disease, autonomic symptoms are frequent and associated with other non-motor symptoms.

    Science.gov (United States)

    Arnao, Valentina; Cinturino, Antonio; Valentino, Francesca; Perini, Valentina; Mastrilli, Sergio; Bellavia, Gabriele; Savettieri, Giovanni; Realmuto, Sabrina; D'Amelio, Marco

    2015-10-01

    Autonomic symptoms and sleep disorders are common non-motor symptoms of Parkinson disease (PD), which are correlated with poor quality of life for patients. To assess the frequency of autonomic symptoms in a consecutive series of PD patients and to correlate them with other motor and non-motor symptoms. All consecutive non-demented PD patients who underwent an extensive evaluation including Hoehn and Yahr staging, Unified Parkinson's Disease Rating Scale, Beck's Depression Inventory, Neuropsychiatric Inventory, PDQ-39 Scale, the Parkinson's diseases Sleep Scale, the Epworth Sleepiness Scale and SCOPA-AUT scale were enrolled. Comorbidity has been also considered. Supine to standing position blood pressure and cardiac frequency changes were also measured. 135 PD patients were included (mean age at interview 67.7; mean disease duration: 5.3 years). Patients were stratified according to mean SCOPA-AUT scale score (13.1). Those with higher SCOPA-AUT scale score were significantly older, had longer disease duration, worse disease stage, worse quality of sleep, were more severely affected, and were also taking a higher dosage of levodopa. At multivariate analysis, older age, longer disease duration, and worse quality of sleep were independently associated with higher SCOPA-AUT scale scores. Our results remark the role of autonomic symptoms in PD. In our patient population, characterized by mild to moderate disease severity, most of the patients complained of autonomic nervous system involvement (84%). A significant association between autonomic symptoms and sleep disorders was also observed.

  11. Life-space mobility in Parkinson's disease: Associations with motor and non-motor symptoms.

    Science.gov (United States)

    Rantakokko, Merja; Iwarsson, Susanne; Slaug, Björn; Nilsson, Maria H

    2018-04-10

    To describe life-space mobility and explore associations of motor and non-motor symptoms with life-space mobility in people with Parkinson's disease (PD). 164 community-dwelling persons with PD (mean age 71.6 years, 64.6% men) received a postal survey and a subsequent home visit. Motor assessments included perceived walking difficulties (Walk-12G), mobility (Timed Up and Go test), motor symptoms (UPDRS-III) and freezing of gait (item 3, FOG-Qsa). Non-motor symptoms included depressive symptoms (GDS-15), pain, fatigue (NHP-EN) and global cognition (MoCA). Life-space mobility was assessed with the life-space assessment (LSA). Calculations included composite score (range 0-120; higher indicating better life-space mobility), independent life-space (range 0-5), assisted life-space (range 0-5), and maximal life-space (range 0-5). Associations were analyzed with linear regression models, adjusted for age, sex, and PD severity (Hoehn and Yahr). Mean life-space mobility score was 72.3 (SD 28.8). Almost all participants (90 %) reached the highest life-space level (beyond town). Half of these reached this level independently, while one-third were unable to move outside their bedroom without assistive devices or personal help. When adjusted for confounders, depressive symptoms, pain, and perceived walking difficulties was negatively associated with life-space mobility. In the multivariable model, only perceived walking difficulties was associated with life-space mobility. Our findings indicate that perceived walking difficulties should be targeted to maintain or improve life-space mobility in people with PD. Depressive symptoms and pain may also merit consideration. More research is needed to elucidate the role of environmental and personal factors for life-space mobility in PD.

  12. Nonmotor Symptoms Groups in Parkinson's Disease Patients: Results of a Pilot, Exploratory Study

    Directory of Open Access Journals (Sweden)

    Santiago Perez Lloret

    2011-01-01

    Full Text Available Nonmotor symptoms (NMS like neuropsychiatric symptoms, sleep disturbances or autonomic symptoms are a common feature of Parkinson's disease (PD. To explore the existence of groups of NMS and to relate them to PD characteristics, 71 idiopathic non-demented PD out-patients were recruited. Sleep was evaluated by the PD Sleep Scale (PDSS. Several neuropsychiatric, gastrointestinal and urogenital symptoms were obtained from the NMSQuest. Sialorrhea or dysphagia severity was obtained from the Unified PD Rating Scale activities of daily living section. MADRS depression scale was also administered. Exploratory factor analysis revealed the presence of 5 factors, explaining 70% of variance. The first factor included PDSS measurement of sleep quality, nocturnal restlessness, off-related problems and daytime somnolence; the second factor included nocturia (PDSS and nocturnal activity; the third one included gastrointestinal and genitourinary symptoms; the forth one included nocturnal psychosis (PDSS, sialorrhea and dysphagia (UPDRS; and the last one included the MADRS score as well as neuropsychiatric symptoms. Sleep disorders correlated with presence of wearing-off, nocturia with age >69 years, and nocturnal psychosis with levodopa equivalent dose or UPDRS II score. Neuropsychiatric symptoms correlated with UPDRS II+III score and non-tricyclic antidepressants. These results support the occurrence of significant NMS grouping in PD patients.

  13. Non-Motor Symptoms in Patients Suffering from Motor Neuron Diseases.

    Science.gov (United States)

    Günther, René; Richter, Nicole; Sauerbier, Anna; Chaudhuri, Kallol Ray; Martinez-Martin, Pablo; Storch, Alexander; Hermann, Andreas

    2016-01-01

    The recently postulated "disease spreading hypothesis" has gained much attention, especially for Parkinson's disease (PD). The various non-motor symptoms (NMS) in neurodegenerative diseases would be much better explained by this hypothesis than by the degeneration of disease-specific cell populations. Motor neuron disease (MND) is primarily known as a group of diseases with a selective loss of motor function. However, recent evidence suggests disease spreading into non-motor brain regions also in MND. The aim of this study was to comprehensively detect NMS in patients suffering from MND. We used a self-rating questionnaire including 30 different items of gastrointestinal, autonomic, neuropsychiatric, and sleep complaints [NMS questionnaire (NMSQuest)], which is an established tool in PD patients. 90 MND patients were included and compared to 96 controls. In total, MND patients reported significantly higher NMS scores (median: 7 points) in comparison to controls (median: 4 points). Dribbling, impaired taste/smelling, impaired swallowing, weight loss, loss of interest, sad/blues, falling, and insomnia were significantly more prevalent in MND patients compared to controls. Interestingly, excessive sweating was more reported in the MND group. Correlation analysis revealed an increase of total NMS score with disease progression. NMS in MND patients seemed to increase with disease progression, which would fit with the recently postulated "disease spreading hypothesis." The total NMS score in the MND group significantly exceeded the score for the control group, but only 8 of the 30 single complaints of the NMSQuest were significantly more often reported by MND patients. Dribbling, impaired swallowing, weight loss, and falling could primarily be connected to motor neuron degeneration and declared as motor symptoms in MND.

  14. Differentiating non-motor symptoms in Parkinson's disease from controls and hemifacial spasm.

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yong

    Full Text Available BACKGROUND AND AIMS: Non-motor symptoms (NMS are important manifestations of Parkinson's disease (PD that reduce patients' health-related quality of life. Some NMS may also be caused by age-related changes, or manifested as a psychological reaction to a chronic neurological condition. This case-control study compared the NMS burden among PD patients, healthy controls and hemifacial spasm (HFS patients. In addition, we determined the NMS that discriminated between PD and non-PD subjects. METHODS: 425 subjects were recruited from a tertiary hospital in Singapore (200 PD patients, 150 healthy controls and 75 HFS patients. NMS burden in subjects was measured using the Non-Motor Symptoms Scale (NMSS. RESULTS: NMSS total score was significantly higher in PD patients (37.9±2.6 compared to healthy controls (11.2±0.9 (p<0.0001 and HFS patients (18.0±2.1 (p<0.0001. In addition, NMSS total score was significantly higher in HFS patients compared to healthy controls (p = 0.003. PD patients experienced a higher NMS burden than healthy controls in all domains, and a higher NMS burden than HFS patients in all but attention/memory and urinary domains. NMS burden for HFS and healthy controls differed only in the sleep/fatigue and urinary domains. Using stepwise logistic regression, problems of 'constipation', 'restless legs', 'dribbling saliva', 'altered interest in sex' and 'change in taste or smell' were found to have significant discriminative power in differentiating between PD patients and healthy controls and between PD patients and HFS patients. CONCLUSION: PD patients experienced a greater overall NMS burden compared to both healthy controls and HFS patients. HFS patients demonstrated a higher NMS burden than controls, and some NMS may be common to chronic neurological conditions while others are more specific to PD. Differentiating patients using NMS domains may help refine the clinical management of NMS in PD patients.

  15. The Frequency of Nonmotor Symptoms among Advanced Parkinson Patients May Depend on Instrument Used for Assessment

    Directory of Open Access Journals (Sweden)

    Nelson Hwynn

    2011-01-01

    Full Text Available Background. Nonmotor symptoms (NMS of Parkinson's disease (PD may be more debilitating than motor symptoms. The purpose of this study was to determine the frequency and corecognition of NMS among our advanced PD cohort (patients considered for deep brain stimulation (DBS and caregivers. Methods. NMS-Questionnaire (NMS-Q, a self-administered screening questionnaire, and NMS Assessment-Scale (NMS-S, a clinician-administered scale, were administered to PD patients and caregivers. Results. We enrolled 33 PD patients (23 males, 10 females and caregivers. The most frequent NMS among patients using NMS-Q were gastrointestinal (87.9%, sleep (84.9%, and urinary (72.7%, while the most frequent symptoms using NMS-S were sleep (90.9%, gastrointestinal (75.8%, and mood (75.8%. Patient/caregiver scoring correlations for NMS-Q and NMS-S were 0.670 (<0.0001 and 0.527 (=0.0016, respectively. Conclusion The frequency of NMS among advanced PD patients and correlation between patients and caregivers varied with the instrument used. The overall correlation between patient and caregiver was greater with NMS-Q than NMS-S.

  16. Adaptation and psychometric properties of the Italian version of the Non-Motor Symptoms Questionnaire for Parkinson's disease.

    Science.gov (United States)

    Cova, I; Di Battista, M E; Vanacore, N; Papi, C P; Alampi, G; Rubino, A; Valente, M; Meco, G; Contri, P; Di Pucchio, A; Lacorte, E; Priori, A; Mariani, C; Pomati, S

    2017-04-01

    Although non-motor symptoms (NMS) of Parkinson's disease (PD) are very common also in early stages of the disease, they are still under-recognized. Screening tools for non-motor symptoms, such as non-motor symptoms questionnaire (NMSQuest), help clinicians to recognize NMS and to evaluate if patients could require further assessment or specific treatments. To validate an adapted Italian version of NMSQuest and study its psychometric properties, Italian PD patients self-completed Italian NMSQuest, and then underwent a standard clinical evaluation including motor assessment (by Hoehn and Yahr staging, unified Parkinson's disease rating scale part III) and non-motor assessment (by Montreal cognitive assessment, Beck depression inventory, neuropsychiatric inventory, Epworth sleepiness scale, scale for outcomes in Parkinson's disease-Autonomic and movement disorder society-sponsored revision of the unified Parkinson's disease rating scale part I). Somatic comorbidities were quantified using the modified cumulative illness rating scale (CIRS). Seventy-one subjects were assessed (mean age years 69.8 ± 9.6 SD; 31% women; mean duration of disease 6.3 ± 4.6 years; H&Y median 2). Italian NMSQuest showed adequate satisfactory clinimetrics in terms of data quality, precision, acceptability, internal consistency and reliability. A significant correlation was found between NMSQuest and most of non-motor assessment scales, while no significant correlation appeared with motor severity as well as with age of patients, disease duration, levodopa equivalent daily dose, L-DOPA/dopamine agonists assumption and CIRS total score. The Italian version of the NMSQuest resulted as a reliable instrument for screening NMS in Italian PD patients.

  17. Deep Brain Stimulation in Parkinson’s Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms

    Directory of Open Access Journals (Sweden)

    Dustin Anderson

    2017-01-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative condition characterized by bradykinesia, tremor, rigidity, and postural instability (PI, in addition to numerous nonmotor manifestations. Many pharmacological therapies now exist to successfully treat PD motor symptoms; however, as the disease progresses, it often becomes challenging to treat with medications alone. Deep brain stimulation (DBS has become a crucial player in PD treatment, particularly for patients who have disabling motor complications from medical treatment. Well-established DBS targets include the subthalamic nucleus (STN, the globus pallidus pars interna (GPi, and to a lesser degree the ventral intermediate nucleus (VIM of the thalamus. Studies of alternative DBS targets for PD are ongoing, the majority of which have shown some clinical benefit; however, more carefully designed and controlled studies are needed. In the present review, we discuss the role of these new and emerging DBS targets in treating refractory axial motor symptoms and other motor and nonmotor symptoms (NMS.

  18. Complementary and Alternative Medicine and Exercise in Nonmotor Symptoms of Parkinson's Disease.

    Science.gov (United States)

    Subramanian, Indu

    2017-01-01

    The use of complementary and alternative medicine (CAM) therapy in nonmotor symptoms (NMS) for Parkinson disease (PD) is growing worldwide. Well-performed, systematic evidence-based research is largely lacking in this area and many studies include various forms of CAM with small patient numbers and a lack of standardization of the approaches studied. Taichi, Qigong, dance, yoga, mindfulness, acupuncture, and other CAM therapies are reviewed and there is some evidence for the following: Taichi in sleep and PDQ39; dance in cognition, apathy, and a mild trend to improved fatigue; yoga in PDQ39; and acupuncture in depression, PDQ39, and sleep. Exercise including occupational therapy (OT) and physical therapy (PT) has been studied in motor symptoms of PD and balance but only with small studies with a mounting evidence base for use of exercise in NMS of PD including PDQ39, sleep, fatigue, depression, and some subsets of cognition. Studies of OT and PT largely show some benefit to depression, apathy, and anxiety. Sustainability of an improvement has not been shown given short duration of follow up. Finding optimal control groups and blind for these interventions is also an issue. This is a very important area of study since patients want to be self-empowered and they want guidance on which form of exercise is the best. Additionally, evidence for PT and OT in NMS would give added weight to get these interventions covered through medical insurance. © 2017 Elsevier Inc. All rights reserved.

  19. Correlations between abnormal iron metabolism and non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Xu, Wu; Zhi, Yan; Yuan, Yongsheng; Zhang, Bingfeng; Shen, Yuting; Zhang, Hui; Zhang, Kezhong; Xu, Yun

    2018-07-01

    Despite a growing body of evidence suggests that abnormal iron metabolism plays an important role in the pathogenesis of Parkinson's disease (PD), few studies explored its role in non-motor symptoms (NMS) of PD. The present study aimed to investigate the relationship between abnormal iron metabolism and NMS of PD. Seventy PD patients and 64 healthy controls were consecutively recruited to compare serum iron, ceruloplasmin, ferritin, and transferrin levels. We evaluated five classic NMS, including depression, anxiety, pain, sleep disorder, and autonomic dysfunction in PD patients using the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the short form of the McGill Pain Questionnaire, the Pittsburgh Sleep Quality Index and the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms, respectively. Hierarchical multiple regression analysis was used to investigate the correlations between abnormal iron metabolism and NMS. No differences in serum ceruloplasmin and ferritin levels were examined between PD patients and healthy controls, but we observed significantly decreased serum iron levels and increased serum transferrin levels in PD patients in comparison with healthy controls. After eliminating confounding factors, HAMD scores and HAMA scores were both negatively correlated with serum iron levels and positively correlated with serum transferrin levels. In summary, abnormal iron metabolism might play a crucial role in the pathogenesis of depression and anxiety in PD. Serums levels of iron and transferrin could be peripheral markers for depression and anxiety in PD.

  20. The effects of transdermal rotigotine on non-motor symptoms of Parkinson's disease: a multicentre, observational, retrospective, post-marketing study.

    Science.gov (United States)

    Valldeoriola, Francesc; Salvador, Antonio; Gómez-Arguelles, José Maria; Marey, José; Moya, Miguel; Ayuga, Ángel; Ramírez, Francisco

    2018-04-01

    This study evaluated the effect of ≥6 months of transdermal rotigotine on non-motor and motor symptoms of patients with advanced Parkinson's disease. The study was conducted in Spain between September 2011 and December 2012 (ClinicalTrials.gov: NCT01504529). The primary efficacy variable was the change from baseline in non-motor symptoms, as assessed by changes in Parkinson's Disease Non-Motor Symptoms Questionnaire total scores at 6 months. Secondary endpoints included the assessment of motor symptoms by Unified Parkinson's Disease Rating Scale III scores. Data from 378 patients (mean age: 70.2 years; 56.9% male) with Parkinson's disease receiving rotigotine from were collected. Mean disease duration was 6.1 years, and mean rotigotine treatment duration was 45.6 months. Rotigotine reduced non-motor symptoms by 14.6% (mean change from baseline in Parkinson's Disease Non-Motor Symptoms Questionnaire: -1.5 ± 3.4; p < 0.0001). The majority of patients (58.2%) had improved non-motor symptoms at 6 months. Comparing the baseline versus study end, fewer patients experienced events in the urinary (78.6% vs. 73.3%; p = 0.0066), sleep (82.8% vs. 72.8%; p < 0.0001) and mood/cognition (77.3% vs. 66.4%; p < 0.0001) domains of the Parkinson's Disease Non-Motor Symptoms Questionnaire. Mean motor symptoms were reduced from baseline by 8.0% (mean change from baseline in Unified Parkinson's Disease Rating Scale III: -2.6 ± 8.0; p < 0.0001). In clinical practice in Spain, rotigotine may be an effective treatment to reduce the non-motor and motor symptoms in patients with advanced Parkinson's disease.

  1. Relationship between pain and motor and non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Defazio, G; Antonini, A; Tinazzi, M; Gigante, A F; Pietracupa, S; Pellicciari, R; Bloise, M; Bacchin, R; Marcante, A; Fabbrini, G; Berardelli, A

    2017-07-01

    Although female gender, depressive symptoms and medical conditions predisposing to pain are more common in patients with Parkinson's disease (PD) with pain, no study has yet explored the relationship between pain and other non-motor symptoms (NMS). A total of 321 consecutive patients with PD [190 men/131 women aged 68.3 (SD 9.2) years] attending four Italian movement disorder clinics were studied. Demographic/clinical data were obtained by a standardized interview and the NMS scale. The association of pain with motor and NMS was assessed by multivariable logistic regression models. At the time of the study, 180 patients with PD (56%) reported chronic pain that, in most cases, was described as being muscular or arthralgic pain. Pain preceded the onset of motor signs in 36/180 patients. In the main-effect model, factors independently associated with pain were female sex [odds ratio (OR), 2.1; P = 0.01], medical conditions predisposing to pain (OR, 2.9; P motor complications (OR, 4.7; P = 0.04) and NMS belonging to the sleep/fatigue (OR, 1.6; P = 0.04) and mood/cognition (OR, 1.6; P = 0.03) domains. Most explanatory variables in the multivariable analysis were similarly distributed in patients in whom pain may have been related to PD or to a cause other than PD. We confirm that pain in PD is more frequent in women and in subjects with medical conditions predisposing to painful symptoms. Moreover, this strengthens the association between pain and motor severity measures and NMS domains, particularly sleep and mood disturbances. © 2017 EAN.

  2. Comparison of the Efficacy of Different Drugs on Non-Motor Symptoms of Parkinson's Disease: a Network Meta-Analysis.

    Science.gov (United States)

    Li, Bao-Dong; Cui, Jing-Jun; Song, Jia; Qi, Ce; Ma, Pei-Feng; Wang, Ya-Rong; Bai, Jing

    2018-01-01

    A network meta-analysis is used to compare the efficacy of ropinirole, rasagiline, rotigotine, entacapone, apomorphine, pramipexole, sumanirole, bromocriptine, piribedil and levodopa, with placebo as a control, for non-motor symptoms in Parkinson's disease (PD). PubMed, Embase and the Cochrane Library were searched from their establishment dates up to January 2017 for randomized controlled trials (RCTs) investigating the efficacy of the above ten drugs on the non-motor symptoms of PD. A network meta-analysis combined the evidence from direct comparisons and indirect comparisons and evaluated the pooled weighted mean difference (WMD) values and surfaces under the cumulative ranking curves (SUCRA). The network meta-analysis included 21 RCTs. The analysis results indicated that, using the United Parkinson's Disease Rating Scale (UPDRS) III, the efficacies of placebo, ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole and levodopa in treating PD were lower than that of apomorphine (WMD = -10.90, 95% CI = -16.12∼-5.48; WMD = -11.85, 95% CI = -17.31∼-6.16; WMD = -11.15, 95% CI = -16.64∼-5.04; WMD = -11.70, 95% CI = -16.98∼-5.60; WMD = -11.04, 95% CI = -16.97∼-5.34; WMD = -13.27, 95% CI = -19.22∼-7.40; WMD = -10.25, 95% CI = -15.66∼-4.32; and WMD = -11.60, 95% CI = -17.89∼-5.57, respectively). Treatment with ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole, bromocriptine, piribedil or levodopa, with placebo as a control, on PD exhibited no significant differences on PD symptoms when the UPDRS II was used for evaluation. Moreover, using the UPDRS III, the SUCRA values indicated that a pomorphine had the best efficacy on the non-motor symptoms of PD (99.0%). Using the UPDRS II, the SUCRA values for ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole, bromocriptine, piribedil and levodopa treatments, with placebo as a control, indicated that bromocriptine showed the best efficacy on the non-motor

  3. Parkinson Disease: The Relationship Between Non-motor Symptoms and Motor Phenotype.

    Science.gov (United States)

    Ba, Fang; Obaid, Mona; Wieler, Marguerite; Camicioli, Richard; Martin, W R Wayne

    2016-03-01

    Parkinson disease (PD) presents with motor and non-motor symptoms (NMS). The NMS often precede the onset of motor symptoms, but may progress throughout the disease course. Tremor dominant, postural instability gait difficulty (PIGD), and indeterminate phenotypes can be distinguished using Unified PD Rating scales (UPDRS-III). We hypothesized that the PIGD phenotype would be more likely to develop NMS, and that the non-dopamine-responsive axial signs would correlate with NMS severity. We conducted a retrospective cross-sectional chart review to assess the relationship between NMS and PD motor phenotypes. PD patients were administered the NMS Questionnaire, the UPDRS-III, and the Mini-Mental State Examination score. The relationship between NMS burden and PD subtypes was examined using linear regression models. The prevalence of each NMS among difference PD motor subtypes was analyzed using chi-square test. PD patients with more advanced disease based on their UPDRS-III had higher NMS Questionnaire scores. The axial component of UPDRS-III correlated with higher NMS. There was no correlation between NMS and tremor scores. There was a significant correlation between PIGD score and higher NMS burden. PIGD group had higher prevalence in most NMS domains when compared with tremor dominant and indeterminate groups independent of disease duration and severity. NMS profile and severity vary according to motor phenotype. We conclude that in the PD population, patients with a PIGD phenotype who have more axial involvement, associated with advanced disease and poor motor response, have a higher risk for a higher NMS burden.

  4. The impact of physical activity on non-motor symptoms in Parkinson’s disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Melanie Elizabeth Cusso

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a neurological disorder that is associated with both motor and non-motor symptoms. The management of PD is primarily via pharmaceutical treatment, however non-pharmaceutical interventions have become increasingly recognised in the management of motor and non-motor symptoms (NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th to 22th of June 2016 from Pubmed, Web of Science, Medline, Ovid, SportsDiscuss and Scopus using the MeSH search terms ‘Parkinson’s’, ‘Parkinson’ and ‘Parkinsonism’ in conjunction with ‘exercise’, ‘physical activity’, ‘physiotherapy’, ‘occupational therapy’, ‘physical therapy’, ‘rehabilitation’, ‘dance’ and ‘martial arts’. Twenty studies matched inclusion criteria of having ten or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration’s tool for assessing risk of bias. Comparability of the various intervention methods however was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease

  5. Nonmotor symptoms and Parkinson disease in United States farmers and spouses.

    Directory of Open Access Journals (Sweden)

    Srishti Shrestha

    Full Text Available Few studies have evaluated the presence of multiple nonmotor symptoms (NMS in relation to Parkinson disease (PD. Therefore, we examined cross-sectional associations between individual and multiple NMS and PD in the Agricultural Health Study.20,473 male farmers and 16,259 female spouses provided information on six NMS (reduced sense of smell, dream-enacting behavior, daytime sleepiness, infrequent bowel movement, depression, and anxiety in the cohort's 2013-2015 follow-up survey. 191 men and 68 women reported physician-diagnosed PD. We estimated odds ratios (ORs and 95% confidence intervals (CIs using multivariable logistic regression models separately by sex.NMS were each associated with PD, with the strongest association for reduced sense of smell in men and dream-enacting behavior in women. The number of NMS showed a strong dose-response relationship with PD, particularly in men. ORs were 5.5 (95% CI 3.4-8.8 for one, 17 (95% CI 10.4-28.0 for two, and 53.4 (95% CI 33.2-86.1 for three or more NMS in men; the corresponding ORs were 4.6 (95% CI 2.3-9.5, 6.7 (95% CI 2.9-15.6, and 23.6 (95% CI 10.7-52.4 in women (PNMS-interaction-with-sex = 0.07.The number of NMS was associated with PD in a dose-response manner and the association appeared stronger in men than in women. These findings should be further investigated in population-based prospective studies.

  6. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice.

    Science.gov (United States)

    Fortuna, Juliana T S; Gralle, Matthias; Beckman, Danielle; Neves, Fernanda S; Diniz, Luan P; Frost, Paula S; Barros-Aragão, Fernanda; Santos, Luís E; Gonçalves, Rafaella A; Romão, Luciana; Zamberlan, Daniele C; Soares, Felix A A; Braga, Carolina; Foguel, Debora; Gomes, Flávia C A; De Felice, Fernanda G; Ferreira, Sergio T; Clarke, Julia R; Figueiredo, Cláudia P

    2017-08-30

    Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening. Copyright © 2017 Elsevier B.V. All

  7. Non-motor Symptoms In Patients With Hereditary Spastic Paraplegia Caused By Spg4 Mutations.

    OpenAIRE

    Servelhere, K R; Faber, I; Saute, J A M; Moscovich, M; D'Abreu, A; Jardim, L B; Teive, H A G; Lopes-Cendes, I; Franca, M C

    2016-01-01

    Non-motor manifestations are frequently overlooked in degenerative disorders and little is known about their frequency and clinical relevance in SPG4 hereditary spastic paraplegia (SPG4-HSP). Thirty patients with SPG4-HSP and 30 healthy controls answered the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, Brief Pain Inventory and Beck Depression Inventory. Student's t test was used to compare groups and linear regression was used to assess correlations. Patients had higher fatigue sc...

  8. Premotor and non-motor features of Parkinson’s disease

    Science.gov (United States)

    Goldman, Jennifer G.; Postuma, Ron

    2014-01-01

    Purpose of review This review highlights recent advances in premotor and non-motor features in Parkinson’s disease, focusing on these issues in the context of prodromal and early stage Parkinson’s disease. Recent findings While Parkinson’s disease patients experience a wide range of non-motor symptoms throughout the disease course, studies demonstrate that non-motor features are not solely a late manifestation. Indeed, disturbances of smell, sleep, mood, and gastrointestinal function may herald Parkinson’s disease or related synucleinopathies and precede these neurodegenerative conditions by 5 or more years. In addition, other non-motor symptoms such as cognitive impairment are now recognized in incident or de novo Parkinson’s disease cohorts. Many of these non-motor features reflect disturbances in non-dopaminergic systems and early involvement of peripheral and central nervous systems including olfactory, enteric, and brainstem neurons as in Braak’s proposed pathological staging of Parkinson’s disease. Current research focuses on identifying potential biomarkers that may detect persons at risk for Parkinson’s disease and permit early intervention with neuroprotective or disease-modifying therapeutics. Summary Recent studies provide new insights on the frequency, pathophysiology, and importance of non-motor features in Parkinson’s disease as well as the recognition that these non-motor symptoms occur in premotor, early, and later phases of Parkinson’s disease. PMID:24978368

  9. Body weight and food intake in Parkinson's disease. A review of the association to non-motor symptoms.

    Science.gov (United States)

    Aiello, Marilena; Eleopra, Roberto; Rumiati, Raffella I

    2015-01-01

    Research on eating behaviours has extensively highlighted that cognitive systems interact with the metabolic system in driving food intake and in influencing body weight regulation. Parkinson's disease is a good model for studying these complex interactions since alterations in both body weight and cognitive domains have been frequently reported among these patients. Interestingly, even if different non-motor symptoms may characterize the course of the disease, their contribution to weight and food preference has been poorly investigated. This review describes body weight alterations and eating habits in patients with Parkinson's disease, including those who underwent deep brain stimulation surgery. In particular, the review considers the link between non-motor symptoms, affecting sensory perception, cognition, mood and motivation, and food intake and weight alterations. The take home message is twofold. First, we recommend a comprehensive approach in order to develop effective strategies in the management of patients' weight. Second, we also suggest that investigating this issue in patients with Parkinson's disease may provide some useful information about the mechanisms underlying food and weight regulation in healthy subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Motor and non-motor symptoms of Parkinson's disease and their impact on quality of life and on different clinical subgroups.

    Science.gov (United States)

    Berganzo, K; Tijero, B; González-Eizaguirre, A; Somme, J; Lezcano, E; Gabilondo, I; Fernandez, M; Zarranz, J J; Gómez-Esteban, J C

    The aim of the present study is to analyse the influence that motor and non-motor symptoms have on the quality of life (QoL) of patients with Parkinson's disease (PD), and to study the relationship between the two types of symptoms. This cross-sectional study included 103 patients with PD (55 men and 48 women). Quality of life was measured on the PDQ-39 scale. The UPDRS scale (I-IV) was also used, and different items were grouped to analyse the presence of tremor, rigidity, bradykinesia, and axial symptoms. The non-motor symptoms scale (NMSS) was administered to assess non-motor symptoms. We performed correlation analyses between different scales to analyse the influence of motor and non-motor symptoms on QoL. Correlations were observed between the PDQ-39 summary index (PDQ39_SI) and the NMSS (correlation coefficient [cc], 0.56; pde Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Practice Parameter: treatment of nonmotor symptoms of Parkinson disease: report of the Quality Standards Subcommittee of the American Academy of Neurology.

    Science.gov (United States)

    Zesiewicz, T A; Sullivan, K L; Arnulf, I; Chaudhuri, K R; Morgan, J C; Gronseth, G S; Miyasaki, J; Iverson, D J; Weiner, W J

    2010-03-16

    Nonmotor symptoms (sleep dysfunction, sensory symptoms, autonomic dysfunction, mood disorders, and cognitive abnormalities) in Parkinson disease (PD) are a major cause of morbidity, yet are often underrecognized. This evidence-based practice parameter evaluates treatment options for the nonmotor symptoms of PD. Articles pertaining to cognitive and mood dysfunction in PD, as well as treatment of sialorrhea with botulinum toxin, were previously reviewed as part of American Academy of Neurology practice parameters and were not included here. A literature search of MEDLINE, EMBASE, and Science Citation Index was performed to identify clinical trials in patients with nonmotor symptoms of PD published between 1966 and August 2008. Articles were classified according to a 4-tiered level of evidence scheme and recommendations were based on the level of evidence. Sildenafil citrate (50 mg) may be considered to treat erectile dysfunction in patients with Parkinson disease (PD) (Level C). Macrogol (polyethylene glycol) may be considered to treat constipation in patients with PD (Level C). The use of levodopa/carbidopa probably decreases the frequency of spontaneous nighttime leg movements, and should be considered to treat periodic limb movements of sleep in patients with PD (Level B). There is insufficient evidence to support or refute specific treatments for urinary incontinence, orthostatic hypotension, and anxiety (Level U). Future research should include concerted and interdisciplinary efforts toward finding treatments for nonmotor symptoms of PD.

  12. Association of coffee consumption and non-motor symptoms in drug-naïve, early-stage Parkinson's disease.

    Science.gov (United States)

    Cho, Bang-Hoon; Choi, Seong-Min; Kim, Joon-Tae; Kim, Byeong C

    2018-02-09

    Coffee consumption has an inverse association with the risk of Parkinson's disease (PD). The aim of this study was to investigate the association between coffee consumption and non-motor symptoms (NMSs) in patients with PD. In this cross-sectional study, we included 196 early-stage, treatment-naïve PD patients. Coffee consumption history was obtained via semi-structured interviews. NMSs were assessed using the Non-Motor Symptom assessment scale (NMSS). Of the 196 patients with PD, 136 (69.3%) were categorized as coffee drinkers and 60 (30.6%) were non-drinkers. Coffee drinkers were younger, predominantly male, were younger in age at symptom onset, had lower Unified Parkinson's Disease Rating Scale motor and Beck Depression Inventory scores, and higher Mini-Mental State Examination scores than non-coffee drinkers. After adjustment, coffee drinking was significantly inversely associated with the prevalence of lack of motivation, anhedonia, and lack of pleasure, which were less frequent in coffee drinkers. Total NMSS scores were lower in coffee drinkers than in non-drinkers (p = 0.047). In particular, coffee drinking was significantly associated with a reduced severity of the mood/cognition domain of NMSS (p = 0.003). After correcting for multiple testing, there were no significant differences in the prevalence of NMSs, but there were significant differences in the severity of NMSs between coffee drinkers and non-drinkers. There is a negative association between coffee consumption and the severity of the mood/cognition domain of NMSS in patients with PD. Clinicians should consider the history of coffee consumption in the assessment of NMSs in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Research Progress of Non-motor Symptoms of Parkinson Disease%帕金森病非运动症状研究进展

    Institute of Scientific and Technical Information of China (English)

    包华; 郑晓明; 王瑾

    2013-01-01

    目前对帕金森病(PD)的研究多集中在运动症状,对非运动症状的诊断及治疗尚处于较低水平.非运动症状种类繁多,包括睡眠障碍、神经精神症状、自主神经系统症状、消化道症状、感觉障碍等.这些症状可与PD的运动症状并行,也可先于或者晚于运动症状;可随运动症状波动,也可与之无关.今后的PD研究应集中在阐明非运动症状的病理生理机制和探索治疗策略上.%At present, studies of Parkinson disease are mostly focused on motor symptoms,while the diagnosis and treatment of non-motor symptoms is still at a relatively low level. The various non-motor symptoms include sleep disorder, neuropsychiatric symptoms, autonomic nervous system symptoms, gastrointestinal symptoms, and sensory disturbance etc. . These symptoms may occur before, during or after the motor symptoms, which may fluctuate together with or be irrelevant to the motor symptoms. Future PD studies should be focused on the pathophysiological mechanisms of non-motor symptoms and exploration of the therapies.

  14. The impact of high intensity physical training on motor and non-motor symptoms in patients with Parkinson's disease (PIP)

    DEFF Research Database (Denmark)

    Morberg, Bo M; Jensen, Joakim; Bode, Matthias

    2014-01-01

    BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease caused by loss of dopaminergic nigrostriatal neurons. Several studies have investigated various physical interventions on PD. The effects of a high intensity exercise program with focus on resistance; cardio; equilibrium......; and flexibility training have not been evaluated previously. OBJECTIVE: The aim of this study was to investigate the effects of a complex, high intensity physical training program, with a long duration, on motor and non-motor symptoms in patients with PD. METHOD: 24 patients with PD Hoehn and Yahr stage 1-3 were...... non-randomly allocated to an intervention group (n = 12) and a control group (n = 12). The intervention group underwent 32 weeks of high intensity personalized physical training twice a week, with an optional extra training session once a week. The control group received general recommendations...

  15. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions

    Directory of Open Access Journals (Sweden)

    Alessandra eBonito Oliva

    2014-08-01

    Full Text Available Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson’s disease (PD. These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to prevent the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual

  16. Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Dafsari, Haidar Salimi; Weiß, Luisa; Silverdale, Monty; Rizos, Alexandra; Reddy, Prashanth; Ashkan, Keyoumars; Evans, Julian; Reker, Paul; Petry-Schmelzer, Jan Niklas; Samuel, Michael; Visser-Vandewalle, Veerle; Antonini, Angelo; Martinez-Martin, Pablo; Ray-Chaudhuri, K; Timmermann, Lars

    2018-02-24

    Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in advanced Parkinson's disease (PD). However, considerable inter-individual variability has been observed for QoL outcome. We hypothesized that demographic and preoperative NMS characteristics can predict postoperative QoL outcome. In this ongoing, prospective, multicenter study (Cologne, Manchester, London) including 88 patients, we collected the following scales preoperatively and on follow-up 6 months postoperatively: PDQuestionnaire-8 (PDQ-8), NMSScale (NMSS), NMSQuestionnaire (NMSQ), Scales for Outcomes in PD (SCOPA)-motor examination, -complications, and -activities of daily living, levodopa equivalent daily dose. We dichotomized patients into "QoL responders"/"non-responders" and screened for factors associated with QoL improvement with (1) Spearman-correlations between baseline test scores and QoL improvement, (2) step-wise linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions using aforementioned "responders/non-responders" as dependent variable. All outcomes improved significantly on follow-up. However, approximately 44% of patients were categorized as "QoL non-responders". Spearman-correlations, linear and logistic regression analyses were significant for NMSS and NMSQ but not for SCOPA-motor examination. Post-hoc, we identified specific NMS (flat moods, difficulties experiencing pleasure, pain, bladder voiding) as significant contributors to QoL outcome. Our results provide evidence that QoL improvement after STN-DBS depends on preoperative NMS characteristics. These findings are important in the advising and selection of individuals for DBS therapy. Future studies investigating motor and non-motor PD clusters may enable stratifying QoL outcomes and help predict patients' individual prospects of benefiting from DBS. Copyright © 2018. Published by Elsevier

  17. Non-motor symptoms in patients with hereditary spastic paraplegia caused by SPG4 mutations.

    Science.gov (United States)

    Servelhere, K R; Faber, I; Saute, J A M; Moscovich, M; D'Abreu, A; Jardim, L B; Teive, H A G; Lopes-Cendes, I; Franca, M C

    2016-02-01

    Non-motor manifestations are frequently overlooked in degenerative disorders and little is known about their frequency and clinical relevance in SPG4 hereditary spastic paraplegia (SPG4-HSP). Thirty patients with SPG4-HSP and 30 healthy controls answered the Modified Fatigue Impact Scale, Epworth Sleepiness Scale, Brief Pain Inventory and Beck Depression Inventory. Student's t test was used to compare groups and linear regression was used to assess correlations. Patients had higher fatigue scores than controls (31.0 ± 16.5 vs. 14.5 ± 16.0, P = 0.002) as well as pain (3.4 ± 2.7 vs. 1.0 ± 1.6, P = 0.001) and depression (12.7 ± 8.9 vs. 4.4 ± 3.8, P depression and possibly with disease severity (P = 0.008 and 0.07, respectively). Fatigue, pain and depression are frequent and often severe manifestations in patients with SPG4-HSP. © 2016 EAN.

  18. Combined rasagiline and antidepressant use in Parkinson disease in the ADAGIO study: effects on nonmotor symptoms and tolerability.

    Science.gov (United States)

    Smith, Kara M; Eyal, Eli; Weintraub, Daniel

    2015-01-01

    Depression, cognitive impairment, and other nonmotor symptoms (NMSs) are common early in Parkinson disease (PD) and may be in part due to disease-related dopamine deficiency. Many patients with PD are treated with antidepressants for NMSs, and the effect of the combination of PD medications that enhance dopamine neurotransmission and antidepressants on NMSs has not been studied. We report the effects of the addition of a monoamine oxidase B inhibitor, rasagiline, to antidepressant treatment in PD. To evaluate the effect of rasagiline on depression, cognition, and other PD NMSs in patients taking an antidepressant in the Attenuation of Disease Progression With Azilect Given Once Daily (ADAGIO) study. The ADAGIO study was a double-blind, placebo-controlled, delayed-start trial of rasagiline in de novo PD. In this exploratory post hoc analysis, we analyzed patients taking an antidepressant during the 36-week phase 1 period, in which patients were randomized to rasagiline (1 or 2 mg/d) or placebo. We evaluated the change in NMSs in patients taking an antidepressant and rasagiline compared with those taking placebo. The NMSs were assessed by Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale Nonmotor Experiences of Daily Living, the original Unified Parkinson's Disease Rating Scale, and the Parkinson Fatigue Scale. A total of 191 of the 1174 patients (16.3%) were treated with antidepressants during phase 1 and provided efficacy data. Depression and cognition scores revealed significantly less worsening in the rasagiline group compared with the placebo group (differences in Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale item-adjusted means [SEs], -0.19 [0.10], P = .048, and -0.20 [0.05], P rasagiline group compared with placebo. There was a nonsignificant trend toward less worsening in apathy and no significant between-group differences in anxiety or sleep. The effect on

  19. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson′s Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Wang

    2015-01-01

    Full Text Available Objective: This review examines the evidence that deep brain stimulation (DBS has extensive impact on nonmotor symptoms (NMSs of patients with Parkinson′s disease (PD. Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi, subthalamic nucleus (STN, and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.

  20. Non-Motor Symptom Burdens Are Not Associated with Iron Accumulation in Early Parkinson's Disease: a Quantitative Susceptibility Mapping Study.

    Science.gov (United States)

    Shin, Chaewon; Lee, Seon; Lee, Jee Young; Rhim, Jung Hyo; Park, Sun Won

    2018-03-26

    Quantitative susceptibility mapping (QSM) has been used to measure iron accumulation in the deep nuclei of patients with Parkinson's disease (PD). This study examined the relationship between non-motor symptoms (NMSs) and iron accumulation in the deep nuclei of patients with PD. The QSM data were acquired from 3-Tesla magnetic resonance imaging (MRI) in 29 patients with early PD and 19 normal controls. The Korean version of the NMS scale (K-NMSS) was used for evaluation of NMSs in patients. The patients were divided into high NMS and low NMS groups. The region-of-interest analyses were performed in the following deep nuclei: red nucleus, substantia nigra pars compacta, substantia nigra pars reticulata, dentate nucleus, globus pallidus, putamen, and head of the caudate nucleus. Thirteen patients had high NMS scores (total K-NMSS score, mean = 32.1), and 16 had low NMS scores (10.6). The QSM values in the deep were not different among the patients with high NMS scores, low NMS scores, and controls. The QSM values were not correlated linearly with K-NMSS total score after adjusting the age at acquisition of brain MRI. The study demonstrated that the NMS burdens are not associated with iron accumulation in the deep nuclei of patients with PD. These results suggest that future neuroimaging studies on the pathology of NMSs in PD should use more specific and detailed clinical tools and recruit PD patients with severe NMSs. © 2018 The Korean Academy of Medical Sciences.

  1. Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study.

    Science.gov (United States)

    Lotan, Itay; Treves, Therese A; Roditi, Yaniv; Djaldetti, Ruth

    2014-01-01

    The use of cannabis as a therapeutic agent for various medical conditions has been well documented. However, clinical trials in patients with Parkinson disease (PD) have yielded conflicting results. The aim of the present open-label observational study was to assess the clinical effect of cannabis on motor and non-motor symptoms of PD. Twenty-two patients with PD attending the motor disorder clinic of a tertiary medical center in 2011 to 2012 were evaluated at baseline and 30 minutes after smoking cannabis using the following battery: Unified Parkinson Disease Rating Scale, visual analog scale, present pain intensity scale, Short-Form McGill Pain Questionnaire, as well as Medical Cannabis Survey National Drug and Alcohol Research Center Questionnaire. Mean (SD) total score on the motor Unified Parkinson Disease Rating Scale score improved significantly from 33.1 (13.8) at baseline to 23.2 (10.5) after cannabis consumption (t = 5.9; P effects of the drug were observed. The study suggests that cannabis might have a place in the therapeutic armamentarium of PD. Larger, controlled studies are needed to verify the results.

  2. Parkinson’s Disease Severity at 3 Years Can Be Predicted from Non-Motor Symptoms at Baseline

    Directory of Open Access Journals (Sweden)

    Alba Ayala

    2017-10-01

    Full Text Available ObjectiveThe aim of this study is to present a predictive model of Parkinson’s disease (PD global severity, measured with the Clinical Impression of Severity Index for Parkinson’s Disease (CISI-PD.MethodsThis is an observational, longitudinal study with annual follow-up assessments over 3 years (four time points. A multilevel analysis and multiple imputation techniques were performed to generate a predictive model that estimates changes in the CISI-PD at 1, 2, and 3 years.ResultsThe clinical state of patients (CISI-PD significantly worsened in the 3-year follow-up. However, this change was of small magnitude (effect size: 0.44. The following baseline variables were significant predictors of the global severity change: baseline global severity of disease, levodopa equivalent dose, depression and anxiety symptoms, autonomic dysfunction, and cognitive state. The goodness-of-fit of the model was adequate, and the sensitive analysis showed that the data imputation method applied was suitable.ConclusionDisease progression depends more on the individual’s baseline characteristics than on the 3-year time period. Results may contribute to a better understanding of the evolution of PD including the non-motor manifestations of the disease.

  3. Influence of Deep Breathing on Heart Rate Variability in Parkinson's Disease: Co-relation with Severity of Disease and Non-Motor Symptom Scale Score.

    Science.gov (United States)

    Bidikar, Mukta Pritam; Jagtap, Gayatri J; Chakor, Rahul T

    2014-07-01

    Dysautonomia and non-motor symptoms (NMS) in Parkinson's disease (PD) are frequent, disabling and reduce quality of life of patient. There is a paucity of studies on autonomic dysfunction in PD in Indian population. The study aimed to evaluate autonomic dysfunction in PD patients and co-relate the findings with severity of PD and Non-Motor Symptoms Scale (NMSS) score. We evaluated autonomic function in 30 diagnosed patients of PD (age 55-70 years) and 30 healthy age-matched controls by 3 min deep breathing test (DBT). NMSS was used to identify non-motor symptoms and Hoehn and Yahr (HY) Scale to grade severity of PD. The DBT findings were co-related with severity of PD (HY staging) and NMSS score. DBT was found to be abnormal in 40% while it was on borderline in 33.3% of PD patients. There was a statistically significant difference (psymptom. A negative co-relation was found between results of deep breathing test and clinical severity of disease and NMSS score. Abnormalities of autonomic function and NMS were integral and present across all the stages of PD patients. Early recognition and treatment of these may decrease morbidity and improve quality of life of PD patients.

  4. Nonmotor Features in Atypical Parkinsonism.

    Science.gov (United States)

    Bhatia, Kailash P; Stamelou, Maria

    2017-01-01

    Atypical parkinsonism (AP) comprises mainly multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which are distinct pathological entities, presenting with a wide phenotypic spectrum. The classic syndromes are now called MSA-parkinsonism (MSA-P), MSA-cerebellar type (MSA-C), Richardson's syndrome, and corticobasal syndrome. Nonmotor features in AP have been recognized almost since the initial description of these disorders; however, research has been limited. Autonomic dysfunction is the most prominent nonmotor feature of MSA, but also gastrointestinal symptoms, sleep dysfunction, and pain, can be a feature. In PSP and CBD, the most prominent nonmotor symptoms comprise those deriving from the cognitive/neuropsychiatric domain. Apart from assisting the clinician in the differential diagnosis with Parkinson's disease, nonmotor features in AP have a big impact on quality of life and prognosis of AP and their treatment poses a major challenge for clinicians. © 2017 Elsevier Inc. All rights reserved.

  5. Comparison of the Efficacy of Different Drugs on Non-Motor Symptoms of Parkinson’s Disease: a Network Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Bao-Dong Li

    2018-01-01

    Full Text Available Background/Aims: A network meta-analysis is used to compare the efficacy of ropinirole, rasagiline, rotigotine, entacapone, apomorphine, pramipexole, sumanirole, bromocriptine, piribedil and levodopa, with placebo as a control, for non-motor symptoms in Parkinson’s disease (PD. Methods: PubMed, Embase and the Cochrane Library were searched from their establishment dates up to January 2017 for randomized controlled trials (RCTs investigating the efficacy of the above ten drugs on the non-motor symptoms of PD. A network meta-analysis combined the evidence from direct comparisons and indirect comparisons and evaluated the pooled weighted mean difference (WMD values and surfaces under the cumulative ranking curves (SUCRA. The network meta-analysis included 21 RCTs. Results: The analysis results indicated that, using the United Parkinson’s Disease Rating Scale (UPDRS III, the efficacies of placebo, ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole and levodopa in treating PD were lower than that of apomorphine (WMD = -10.90, 95% CI = -16.12∼-5.48; WMD = -11.85, 95% CI = -17.31∼-6.16; WMD = -11.15, 95% CI = -16.64∼-5.04; WMD = -11.70, 95% CI = -16.98∼-5.60; WMD = -11.04, 95% CI = -16.97∼-5.34; WMD = -13.27, 95% CI = -19.22∼-7.40; WMD = -10.25, 95% CI = -15.66∼-4.32; and WMD = -11.60, 95% CI = -17.89∼-5.57, respectively. Treatment with ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole, bromocriptine, piribedil or levodopa, with placebo as a control, on PD exhibited no significant differences on PD symptoms when the UPDRS II was used for evaluation. Moreover, using the UPDRS III, the SUCRA values indicated that a pomorphine had the best efficacy on the non-motor symptoms of PD (99.0%. Using the UPDRS II, the SUCRA values for ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole, bromocriptine, piribedil and levodopa treatments, with placebo as a control, indicated that

  6. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson's disease: the PPMI cohort.

    Science.gov (United States)

    Simuni, Tanya; Caspell-Garcia, Chelsea; Coffey, Christopher S; Weintraub, Daniel; Mollenhauer, Brit; Lasch, Shirley; Tanner, Caroline M; Jennings, Danna; Kieburtz, Karl; Chahine, Lana M; Marek, Kenneth

    2018-01-01

    To examine the baseline prevalence and longitudinal evolution in non-motor symptoms (NMS) in a prospective cohort of, at baseline, patients with de novo Parkinson's disease (PD) compared with healthy controls (HC). Parkinson's Progression Markers Initiative (PPMI) is a longitudinal, ongoing, controlled study of de novo PD participants and HC. NMS were rated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I score and other validated NMS scales at baseline and after 2 years. Biological variables included cerebrospinal fluid (CSF) markers and dopamine transporter imaging. 423 PD subjects and 196 HC were enrolled and followed for 2 years. MDS-UPDRS Part I total mean (SD) scores increased from baseline 5.6 (4.1) to 7.7 (5.0) at year 2 in PD subjects (pbaseline NMS score was associated with female sex (p=0.008), higher baseline MDS-UPDRS Part II scores (pbaseline. There was no association with the dose or class of dopaminergic therapy. This study of NMS in early PD identified clinical and biological variables associated with both baseline burden and predictors of progression. The association of a greater longitudinal increase in NMS with lower baseline Aβ1-42 level is an important finding that will have to be replicated in other cohorts. ClinicalTrials.gov identifier: NCT01141023. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Clinical Study on Acupuncture Treatment for Parkinson's Non-motor Symptoms%针灸治疗帕金森病非运动症状的临床研究

    Institute of Scientific and Technical Information of China (English)

    陈新新; 张世正; 宋成城; 林菲菲; 黄建平

    2018-01-01

    帕金森病(Parkinson Disease,PD)是一种由α-突触核蛋白病变导致的神经退化疾病,全球约八百万的患者深受影响,表现为一系列进行性的运动与非运动症状.现随着对PD的认知逐步加深,静止性震颤为主的运动症状并不是PD唯一表现,许多非运动症状如自主神经症状、精神症状、感觉异常等也是PD重要的临床表现.并且可以早于非运动症状出现,非运动症状对患者生活的影响往往不亚于运动症状,其复杂多变的临床症候群远比运动症状要复杂得多,其临床治疗也更加棘手,而传统的抗PD药物如左旋多巴等往往收效甚微.目前临床研究中,针灸治疗PD非运动症状上有一定的效果,这对于扩展治疗PD的途径有很大的帮助.%Parkinson disease (PD) is a neurodegenerative disorder resulting from alpha-synuclein lesions, which affects about eight million patients over the world. PD is manifested in progressive motor and non-motor symptoms. With understanding of PD gradually deepened, motor symptoms mainly manifested in resting tremor are not the only manifestations of PD. Clinically many non-motor symptoms such as autonomic nervous symptoms, mental symptoms and paresthesia are also the important manifestations of PD and can appear earlier than motor symptoms. The effect of the non-motor symptoms on the patients' life is often not less than that of the motor symptoms. Clinically the changeable non-motor symptoms are far more complex and more difficult to treat than the motor symptoms. Conventional anti-PD drugs such as levodopa have little effect on the non-motor symptoms. Present clinical studies have showed that acupuncture has a certain therapeutic effect on the non-motor symptoms of PD. This provides important help for expanding the way to treat PD.

  8. Do cognition and other non-motor symptoms decline similarly among patients with Parkinson's disease motor subtypes? Findings from a 5-year prospective study.

    Science.gov (United States)

    Arie, L; Herman, Talia; Shema-Shiratzky, S; Giladi, N; Hausdorff, J M

    2017-10-01

    Among patients with Parkinson's disease (PD), a wide range of motor and non-motor symptoms (NMS) are evident. PD is often divided into tremor dominant (TD) and postural instability gait difficulty (PIGD) motor subtypes. We evaluated the effect of disease duration and aimed to characterize whether there are differences in the deterioration of cognitive function and other NMS between the PIGD and TD subtypes. Sixty-three subjects were re-evaluated at the follow-up visit about 5 years after baseline examination. Cognitive function and other NMS were assessed. At follow-up, the PIGD and TD groups were similar with respect to medications, comorbidities and disease-related symptoms. There was a significant time effect for all measures, indicating deterioration and worsening in both groups. However, cognitive scores, particularly those related to executive function, became significantly worse in the PIGD with a more moderate decrease in the TD group. For example, the computerized global cognitive score declined in the PIGD group from 94.21 ± 11.88 to 83.91 ± 13.76, p motor-cognitive catch game (p = 0.008). In contrast, several NMS including depression, health-related quality of life and fear of falling deteriorated in parallel in both subtypes, with no interaction effect. The present findings highlight the difference in the natural history of the disease between the two PD "motor" subtypes. While the PIGD group demonstrated a significant cognitive decline, especially in executive functions, a more favorable course was observed in the TD subtype. This behavior was not seen in regards to the other NMS.

  9. Patient-Reported Needs, Non-Motor Symptoms, and Quality of Life in Essential Tremor and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Sarah K. Lageman

    2014-06-01

    Full Text Available Background: Non‐motor symptoms, quality of life, service needs, and barriers to care of individuals with movement disorders are not well explored. This study assessed these domains within a sample of individuals with essential tremor (ET and Parkinson's disease (PD.Methods: A survey exploring symptoms, needs, and barriers to care was disseminated to a convenience sample (N = 96 of individuals with a primary diagnosis of ET (N = 19 or PD (N = 77. Results: Similarities in overall quality of life and impact on daily functioning were found across individuals with ET and PD. Noteworthy differences included endorsement of different types of service needs and utilization patterns and fewer non‐motor symptoms reported among those with ET (M = 6.1, SD = 2.4 than those with PD (M = 10.4, SD = 3.4. Non‐motor symptoms significantly impacted movement disorder‐related quality of life for both diagnostic groups, but this relationship was stronger for individuals with ET, t(12 = 3.69, p = 0.003, β = 0.73 than with PD, t(56 = 4.00, p<0.001, β = 0.47. Individuals with ET also reported higher rates of stigma (31.6% vs. 7.8% and greater impact of non‐motor symptoms on emotional well‐being, R2 = 0.37, F(1, 13 = 7.17, p = 0.020. Discussion: This is the first study to describe and compare the needs, barriers to care, and impact on quality of life of two distinct movement disorder groups. Our results support the recent efforts of the field to identify interventions to address the non‐motor symptoms of movement disorders and indicate need for greater appreciation of the specific differences in symptoms and quality of life experienced across movement disorder diagnoses.

  10. Weight Change Is a Characteristic Non-Motor Symptom in Drug-Naïve Parkinson's Disease Patients with Non-Tremor Dominant Subtype: A Nation-Wide Observational Study.

    Directory of Open Access Journals (Sweden)

    Jun Kyu Mun

    Full Text Available Despite the clinical impact of non-motor symptoms (NMS in Parkinson's disease (PD, the characteristic NMS in relation to the motor subtypes of PD is not well elucidated. In this study, we enrolled drug-naïve PD patients and compared NMS between PD subtypes. We enrolled 136 drug-naïve, early PD patients and 50 normal controls. All the enrolled PD patients were divided into tremor dominant (TD and non-tremor dominant (NTD subtypes. The Non-Motor Symptom Scale and scales for each NMS were completed. We compared NMS and the relationship of NMS with quality of life between normal controls and PD patients, and between the PD subtypes. Comparing with normal controls, PD patients complained of more NMS, especially mood/cognitive symptoms, gastrointestinal symptoms, unexplained pain, weight change, and change in taste or smell. Between the PD subtypes, the NTD subtype showed higher total NMS scale score and sub-score about weight change. Weight change was the characteristic NMS related to NTD subtype even after controlled other variables with logistic regression analysis. Even from the early stage, PD patients suffer from various NMS regardless of dopaminergic medication. Among the various NMS, weight change is the characteristic NMS associated with NTD subtype in PD patients.

  11. Weight Change Is a Characteristic Non-Motor Symptom in Drug-Naïve Parkinson's Disease Patients with Non-Tremor Dominant Subtype: A Nation-Wide Observational Study.

    Science.gov (United States)

    Mun, Jun Kyu; Youn, Jinyoung; Cho, Jin Whan; Oh, Eung-Seok; Kim, Ji Sun; Park, Suyeon; Jang, Wooyoung; Park, Jin Se; Koh, Seong-Beom; Lee, Jae Hyeok; Park, Hee Kyung; Kim, Han-Joon; Jeon, Beom S; Shin, Hae-Won; Choi, Sun-Ah; Kim, Sang Jin; Choi, Seong-Min; Park, Ji-Yun; Kim, Ji Young; Chung, Sun Ju; Lee, Chong Sik; Ahn, Tae-Beom; Kim, Won Chan; Kim, Hyun Sook; Cheon, Sang Myung; Kim, Jae Woo; Kim, Hee-Tae; Lee, Jee-Young; Kim, Ji Sun; Kim, Eun-Joo; Kim, Jong-Min; Lee, Kwang Soo; Kim, Joong-Seok; Kim, Min-Jeong; Baik, Jong Sam; Park, Ki-Jong; Kim, Hee Jin; Park, Mee Young; Kang, Ji Hoon; Song, Sook Kun; Kim, Yong Duk; Yun, Ji Young; Lee, Ho-Won; Song, In-Uk; Sohn, Young H; Lee, Phil Hyu; Park, Jeong-Ho; Oh, Hyung Geun; Park, Kun Woo; Kwon, Do-Young

    2016-01-01

    Despite the clinical impact of non-motor symptoms (NMS) in Parkinson's disease (PD), the characteristic NMS in relation to the motor subtypes of PD is not well elucidated. In this study, we enrolled drug-naïve PD patients and compared NMS between PD subtypes. We enrolled 136 drug-naïve, early PD patients and 50 normal controls. All the enrolled PD patients were divided into tremor dominant (TD) and non-tremor dominant (NTD) subtypes. The Non-Motor Symptom Scale and scales for each NMS were completed. We compared NMS and the relationship of NMS with quality of life between normal controls and PD patients, and between the PD subtypes. Comparing with normal controls, PD patients complained of more NMS, especially mood/cognitive symptoms, gastrointestinal symptoms, unexplained pain, weight change, and change in taste or smell. Between the PD subtypes, the NTD subtype showed higher total NMS scale score and sub-score about weight change. Weight change was the characteristic NMS related to NTD subtype even after controlled other variables with logistic regression analysis. Even from the early stage, PD patients suffer from various NMS regardless of dopaminergic medication. Among the various NMS, weight change is the characteristic NMS associated with NTD subtype in PD patients.

  12. 帕金森氏病相关非运动症状的研究进展%Progression of non-motor symptoms in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    单煜恒; 路美

    2017-01-01

    Parkinson's disease (PD) is one of common neurological degenerative diseases.Traditional research focused more on the syndromes of movement disorder in PD,such as static tremor,muscular rigidity,movement retardation and postural balance abnormality.Nowadays,highlights have shifted to non-motor symptoms (NMS),including psychosis,cognitive impairment,sleep behavior disorder,olfactory dysfunction and autonomic dysfunction.These NMSs are of high incidence,therapy-resistance and lower quality of life.A large number of basic and clinical studies about NMS at home and abroad have increased dramatically over the last decade.However,the diagnosis or treatment principles of this disease are relatively deficient.It is our aim to review these articles,bring them into focus,expand the knowledge of NMS and consequently develop therapeutic strategies for PD patients.%帕金森氏病是常见的神经系统变性疾病之一.传统研究更多关注于此病的运动症状,诸如静止性震颤、肌肉强直、运动迟缓及姿势平衡异常.近年来,关注的焦点转移至非运动症状.帕金森氏病相关的非运动症状包括有精神疾病、认知功能障碍、睡眠障碍、嗅觉障碍及自主神经功能障碍等等.这些非运动症状具有发生率高、控制效果差、降低患者生活质量等诸多特点.尽管国内外针对这一系列症状已开展大量基础及临床研究,但是此病无论是诊断标准还是治疗原则都相对欠缺.本文检索并综述近几年帕金森氏病相关的非运动症状的相关文献,旨在加深对这一疾病认识并探索今后研究方向.

  13. Nonmotor fluctuations: phenotypes, pathophysiology, management, and open issues.

    Science.gov (United States)

    Classen, Joseph; Koschel, Jiri; Oehlwein, Christian; Seppi, Klaus; Urban, Peter; Winkler, Christian; Wüllner, Ullrich; Storch, Alexander

    2017-08-01

    Parkinson's disease (PD) is a neurodegenerative multisystem disorder characterized by progressive motor symptoms such as bradykinesia, tremor and muscle rigidity. Over the course of the disease, numerous non-motor symptoms, sometimes preceding the onset of motor symptoms, significantly impair patients' quality of life. The significance of non-motor symptoms may outweigh the burden through progressive motor incapacity, especially in later stages of the disease. The advanced stage of the disease is characterized by motor complications such as fluctuations and dyskinesias induced by the long-term application of levodopa therapy. In recent years, it became evident that various non-motor symptoms such as psychiatric symptoms, fatigue and pain also show fluctuations after chronic levodopa therapy (named non-motor fluctuations or NMFs). Although NMFs have moved into the focus of interest, current national guidelines on the treatment of PD may refer to non-motor symptoms and their management, but do not mention NMF, and do not contain recommendations on their management. The present article summarizes major issues related to NMF including clinical phenomenology and pathophysiology, and outlines a number of open issues and topics for future research.

  14. Non-Motor Features in Parkinson's Disease Patients Attending ...

    African Journals Online (AJOL)

    Background: The clinical course of Parkinson's disease (PD) is not limited to motor symptoms (tremor, bradykinesia, rigidity, gait problems and imbalance). A variety of non-motor symptoms (NMS) such as psychiatric, gastrointestinal, cognitive, sudomotor, autonomic, sleep and sensory disorders which occur commonly are ...

  15. Are we missing non-motor seizures in Parkinson's disease? Two case reports.

    Science.gov (United States)

    Son, Andre Y; Cucca, Alberto; Agarwal, Shashank; Liu, Anli; Di Rocco, Alessandro; Biagioni, Milton C

    2017-01-01

    Parkinson's disease (PD) is predominantly recognized for its motor symptoms, but patients struggle from a morbid and heterogeneous collection of non-motor symptoms (NMS-PD) that can affect their quality of life even more. NMS-PD is a rather generalized term and the heterogeneity and non-specific nature of many symptoms poses a clinical challenge when a PD patient presents with non-motor complaints that may not be NMS-PD. We report two patients with idiopathic PD who presented with acute episodes of cognitive changes. Structural brain images, cardiovascular and laboratory assessment were unremarkable. Both patients experienced a considerable delay before receiving an epilepsy-evaluation, at which point electroencephalogram abnormalities supported the diagnosis of focal non-motor seizures with alteration of awareness. Antiepileptic therapy was implemented and was effective in both cases. Diagnosing non-motor seizures can be challenging. However, PD patients pose an even greater challenge given their eclectic non-motor clinical manifestations and other disease-related complications that could confound and mislead adequate clinical interpretation. Our two cases provide examples of non-motor seizures that may mimic non-motor symptoms of PD. Treating physicians should always consider other possible causes of non-motor symptoms that may coexist in PD patients. Epilepsy work-up should be contemplated in the differential of acute changes in cognition, behavior, or alertness.

  16. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms.

    Science.gov (United States)

    de Rus Jacquet, Aurélie; Tambe, Mitali Arun; Ma, Sin Ying; McCabe, George P; Vest, Jay Hansford C; Rochet, Jean-Christophe

    2017-07-12

    Parkinson's disease (PD) is a multifactorial neurodegenerative disorder affecting 5% of the population over the age of 85 years. Current treatments primarily involve dopamine replacement therapy, which leads to temporary relief of motor symptoms but fails to slow the underlying neurodegeneration. Thus, there is a need for safe PD therapies with neuroprotective activity. In this study, we analyzed contemporary herbal medicinal practices used by members of the Pikuni-Blackfeet tribe from Western Montana to treat PD-related symptoms, in an effort to identify medicinal plants that are affordable to traditional communities and accessible to larger populations. The aims of this study were to (i) identify medicinal plants used by the Pikuni-Blackfeet tribe to treat individuals with symptoms related to PD or other CNS disorders, and (ii) characterize a subset of the identified plants in terms of antioxidant and neuroprotective activities in cellular models of PD. Interviews of healers and local people were carried out on the Blackfeet Indian reservation. Plant samples were collected, and water extracts were produced for subsequent analysis. A subset of botanical extracts was tested for the ability to induce activation of the Nrf2-mediated transcriptional response and to protect against neurotoxicity elicited by the PD-related toxins rotenone and paraquat. The ethnopharmacological interviews resulted in the documentation of 26 medicinal plants used to treat various ailments and diseases, including symptoms related to PD. Seven botanical extracts (out of a total of 10 extracts tested) showed activation of Nrf2-mediated transcriptional activity in primary cortical astrocytes. Extracts prepared from Allium sativum cloves, Trifolium pratense flowers, and Amelanchier arborea berries exhibited neuroprotective activity against toxicity elicited by rotenone, whereas only the extracts prepared from Allium sativum and Amelanchier arborea alleviated PQ-induced dopaminergic cell death

  17. Cross-Cultural Differences of the Non-Motor Symptoms Studied by the Traditional Chinese Version of the International Parkinson and Movement Disorder Society- Unified Parkinson's Disease Rating Scale.

    Science.gov (United States)

    Yu, Rwei-Ling; Wu, Ruey-Meei; Chan, Anne Y Y; Mok, Vincent; Wu, Yih-Ru; Tilley, Barbara C; Luo, Sheng; Wang, Lu; LaPelle, Nancy R; Stebbins, Glenn T; Goetz, Christopher G

    2017-01-01

    Given the importance of ethnic differences in the evaluation of various aspects of symptoms in patients with Parkinson's disease (PD), we present the formal procedure for completing the traditional Chinese translation of the International and Parkinson and Movement Disorder Society/UPDRS (MDS-UPDRS) and highlight the discrepancy in nonmotor symptoms (NMS) between patients in Eastern and Western countries. A total of 350 native Chinese-speaking PD patients were recruited from multiple hospitals in Eastern countries; they completed the MDS-UPDRS. The translation process was executed and factor analysis was performed to determine the structure of the scale. Chi-squared and t tests were used to compare frequency and severity of PD symptoms between the Chinese-speaking and English-speaking groups (n = 876). NMS and motor symptoms were more severe in the Western population (Part I: t (1205) = 5.36, P < 0.0001; and Part III: t (1205) = 7.64, P < 0.0001); however, the prevalence of cognitive dysfunction and impairments in activities of daily living were more frequent in the Eastern patients. The comparative fit index was 0.93 or greater, and the exploratory factor analysis revealed compatible results between the translated scale and the original version. The traditional Chinese version of the MDS-UPDRS can be designated as an official translation of the original scale, and it is now available for use. Moreover, NMS in PD constitute a major issue worldwide, and the pattern of NMS among the Chinese population is more marked in terms of cognition-based symptoms and activities of daily living.

  18. Characteristic Motor and Nonmotor Symptoms Related to Quality of Life in Drug-Naïve Patients with Late-Onset Parkinson Disease.

    Science.gov (United States)

    Park, Hea Ree; Youn, Jinyoung; Cho, Jin Whan; Oh, Eung-Seok; Kim, Ji Sun; Park, Suyeon; Jang, Wooyoung; Park, Jin Se

    2018-01-01

    Unlike young-onset Parkinson disease (YOPD), characteristics of late-onset PD (LOPD) have not yet been clearly elucidated. We investigated characteristic features and symptoms related to quality of life (QoL) in LOPD patients. We recruited drug-naïve, early PD patients. The patient cohort was divided into 3 subgroups based on patient age at onset (AAO): the YOPD group (AAO patients, 26 were in the YOPD group, 74 in the MOPD group, and 32 in the LOPD group. Among parkinsonian symptoms, patients in the LOPD group had a lower score on the Korean version of the Montreal Cognitive Assessment than the other groups. Logistic regression analysis showed genitourinary symptoms were related to the LOPD group. Linear regression analysis showed both MS and NMS were correlated with QoL in the MOPD group, but only NMS were correlated with QoL in the LOPD group. Particularly, anxiety and fatigue affected QoL in the LOPD group. LOPD patients showed different characteristic clinical features, and different symptoms were related with QoL for LOPD than YOPD and MOPD patients. © 2018 S. Karger AG, Basel.

  19. Effect of Pharmacist-Led Interventions on (Non)Motor Symptoms, Medication-Related Problems, and Quality of Life in Parkinson Disease Patients: A Pilot Study

    NARCIS (Netherlands)

    Stuijt, C.; Karapinar-Carkit, F.; Bemt, B.J. van den; Laar, T. van

    2018-01-01

    INTRODUCTION: Patients with Parkinson disease (PD) use multiple drugs. This pill burden with consequent poor adherence may cause worsening of motor symptoms and drug-related problems. Therefore, a multifaceted pharmacist-led intervention program was designed to improve adherence, motor-functioning,

  20. Striatal Dopamine Depletion Patterns and Early Non-Motor Burden in Parkinsons Disease.

    Directory of Open Access Journals (Sweden)

    Su Jin Chung

    Full Text Available The mechanism underlying non-motor symptoms in Parkinson's disease has not yet been elucidated. In this study, we hypothesized that Parkinson patients with more non-motor symptoms have a different pattern of striatal dopamine depletion, particularly in areas other than the sensorimotor striatum, compared to those with fewer non-motor symptoms.We conducted a prospective survey of the degree of non-motor symptoms (using the Korean version of the Non-Motor Symptoms Scale; K-NMSS in 151 patients with early-stage Parkinson's disease who had undergone a dopamine transporter PET scan as an initial diagnostic procedure. We classified the patients into two groups; high non-motor patients (HNM-PD; K-NMSS score ≥ 41 and low non-motor patients (LNM-PD.Patients in the HNM-PD group (n = 71 were older, had longer symptom duration, exhibited more severe motor deficits, and had been prescribed higher levodopa-equivalent doses at follow-up than those in the LNM-PD group. However, dopamine transporter binding to the striatal sub-regions and inter-sub-regional binding ratios were comparable between the two groups. A general linear model showed that the HNM-PD group had significantly more severe motor deficits than the LNM-PD group after controlling for age, gender, symptom duration, and dopamine transporter binding to the sensorimotor striatum.This study demonstrated that the pattern of striatal dopamine depletion does not contribute to early non-motor burden in Parkinson's disease. Our results suggest that LNM-PD patients may have a more benign course of motor symptom progression than HNM-PD patients.

  1. Non-Motor Symptoms of Parkinson’s Disease and Their Impact on Quality of Life in a Cohort of Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Houyam Tibar

    2018-04-01

    Full Text Available BackgroundNon-motor symptoms (NMSs are a real burden in Parkinson’s disease (PD. They may appear in early pre-symptomatic stage as well as throughout the disease course. However, their relationship with the deterioration of the patient’s quality of life (QoL is still under debate. This study aimed to investigate the prevalence of NMSs and their impact on the QoL in a cohort of Moroccan patients.MethodsWe carried out a cross-transactional study, where a total of 117 patients were submitted to a structured clinical interview and examination investigating motor and NMSs based on common and conventional scales. Motor symptoms were assessed by the UPDRS I–VI during ON condition. The NMSs were evaluated with common scales and their relationship with the QoL was investigated.ResultsThe mean patient’s age was 60.77 ± 11.36 years old, and the median disease duration was 6 years [2.5–9.5]. Motor’s phenotype subtypes were the mixed form in 40.2% of patients, akinetic-rigid in 20.5% and a tremor-dominant form in 39.3%. The median Hoehn and Yahr staging was 2 [1–2.5]. Regarding NMSs, the most common were urinary dysfunctions (82.6%, sleep (80.6%, and gastrointestinal (80% disorders. Other autonomic dysfunctions were also frequent: thermoregulatory dysfunctions 58.6%, cardiovascular troubles 50.9%, and sexual dysfunctions 47.9%. Depression was present in 47.9% and fatigue symptoms in 23.1%. The median score of SCOPA-AUT was 14 [7.75–21.80]. The median PD questionnaire 39-score index (PDQ39-SI was 23.22% and the most affected dimension was “mobility.” Univariate and multivariate analyses showed that the SCOPA-AUT score impacted the QoL (p = 0.001, especially the gastrointestinal (p = 0.007, and cardiovascular (p = 0.049 dimensions.ConclusionOur data show that all patients have presented at least one NMS. Autonomic and sleep disorders were the most frequent, and in contrast to other studies, digestive and cardiovascular

  2. Change in Non-Motor Symptoms in Parkinson's Disease and Essential Tremor Patients: A One-year Follow-up Study

    Directory of Open Access Journals (Sweden)

    Maurizio Giorelli

    2014-04-01

    Full Text Available Background: Non‐motor symptoms (NMS in Parkinson's disease (PD differ from those in essential tremor (ET, even before a definitive diagnosis is made. It is not clear whether patient's knowledge of the diagnosis and treatment influence their subsequent reporting of NMS.Methods: 1 year after a clinical and instrumental diagnosis, we compared the motor impairment (Movement Disorders Society (MDS‐Unified Parkinson's Disease Rating Scale‐III and non‐motor symptoms (NMSQuest in PD (n = 31 and ET (n = 21 patients.Results: PD patients reported more NMS than did the ET patients (p = 0.002. When compared to their baseline report, at follow‐up, PD patients reported less nocturia (p = 0.02, sadness (p = 0.01, insomnia (p = 0.02, and restless legs (p = 0.04 and more nausea (p = 0.024, unexplained pain (p = 0.03, weight change (p = 0.009, and daytime sleepiness (p = 0.03. When compared to their baseline report, ET patients reported less loss of interest (p = 0.03, anxiety (p = 0.006, and insomnia (p = 0.02. Differences in reported weight change (p<0.0001 and anxiety (p = 0.001 between PD and ET patients were related to pharmacological side effects or to a reduction in the ET individuals. Discussion: The reporting of NMS is influenced by subjective factors, and might vary with the patient's knowledge of the diagnosis or the effectiveness of treatment.

  3. Non-motor symptoms of Parkinson's disease

    National Research Council Canada - National Science Library

    Chaudhuri, K. Ray

    2009-01-01

    ... dysfunction of Parkinson's disease 95 Daisy L. Whitehead and Richard. G. Brown 9 Depression, anxiety and apathy in Parkinson's disease 107 David A. Gallagher and Anette Schrag 10 Dementia in Pa...

  4. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  5. Cross-sectional and longitudinal associations of motor fluctuations and non-motor predominance with cerebrospinal τ and Aβ as well as dementia-risk in Parkinson's disease.

    Science.gov (United States)

    Modreanu, Raluca; Cerquera, Sonia Catalina; Martí, María José; Ríos, José; Sánchez-Gómez, Almudena; Cámara, Ana; Fernández, Manel; Compta, Yaroslau

    2017-02-15

    Experimental, neuropathological and cerebrospinal fluid (CSF) studies support τ and amyloid-β (Aβ) relevance in Parkinson's disease (PD) related dementia. Lesser motor fluctuations (MFs) and non-motor features have also been related to PD-dementia. Yet, little is known about the association of MFs and non-motor symptoms with CSF τ and Aβ in PD. We hypothesized that lesser MFs and non-motor predominance are related to these CSF markers and dementia-risk in PD. We studied 58 PD patients (dementia at baseline, n=21; dementia at 18-months, n=35) in whom CSF Aβ and τ had been determined with ELISA techniques. MFs and a number of non-motor symptoms (apathy, anxiety, irritability, depression, visual hallucinations, spatial disorientation, memory complaints) over disease course were dichotomized as absent-mild vs. moderate-severe by retrospective clinical chart review blind to CSF findings. Non-motor predominance was defined as ≥3 non-motor symptoms (after the cohort-median of non-motor symptoms per patient) with ≥2 being moderate-severe and ≥1 having been present from onset, with all these being more disabling overall than motor features. Cross-sectionally, CSF biomarkers were non-parametrically compared according to dichotomized MFs and non-motor predominance. Longitudinally, dementia was the outcome (dependent variable), CSF markers, MFs and non-motor predominance were the predictors (independent variables), and potential modifiers as age, sex, and memory complaints were the covariates in binary regression models. Absent-mild MFs were associated with higher CSF τ markers and shorter time-to-dementia, while non-motor predominance and decreasing CSF Aβ independently increased longitudinal dementia-risk. In summary, absent-mild MFs, non-motor predominance and CSF τ and Aβ might define endophenotypes related to the timing or risk of dementia in PD. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  7. The Non-motor Features of Essential Tremor: A Primary Disease Feature or Just a Secondary Phenomenon?

    Directory of Open Access Journals (Sweden)

    Ketan Jhunjhunwala

    2014-08-01

    Full Text Available Essential tremor (ET is a pathologically heterogeneous neurodegenerative disorder with both motor and increasingly recognized non-motor features. It is debated whether the non-motor manifestations in ET result from widespread neurodegeneration or are merely secondary to impaired motor functions and decreased quality of life due to tremor. It is important to review these features to determine how to best treat the non-motor symptoms of patients and to understand the basic pathophysiology of the disease and develop appropriate pharmacotherapies. In this review, retrospective and prospective clinical studies were critically analyzed to identify possible correlations between the severities of non-motor features and tremor. We speculated that if such a correlation existed, the non-motor features were likely to be secondary to tremor. According to the current literature, the deficits in executive function, attention, concentration, and memory often observed in ET are likely to be a primary manifestation of the disease. It has also been documented that patients with ET often exhibit characteristic personality traits. However, it remains to be determined whether the other non-motor features often seen in ET, such as anxiety, depression, and sleep disturbances are primary or secondary to motor manifestations of ET and subsequent poor quality of life. Finally, there is evidence that patients with ET can also have impaired color vision, disturbances of olfaction, and hearing impairments, though there are few studies in these areas. Further investigations of large cohorts of patients with ET are required to understand the prevalence, nature, and true significance of the non-motor features in ET.

  8. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes.

    Science.gov (United States)

    Julienne, Hannah; Buhl, Edgar; Leslie, David S; Hodge, James J L

    2017-08-01

    Parkinson's disease (PD) is more commonly associated with its motor symptoms and the related degeneration of dopamine (DA) neurons. However, it is becoming increasingly clear that PD patients also display a wide range of non-motor symptoms, including memory deficits and disruptions of their sleep-wake cycles. These have a large impact on their quality of life, and often precede the onset of motor symptoms, but their etiology is poorly understood. The fruit fly Drosophila has already been successfully used to model PD, and has been used extensively to study relevant non-motor behaviours in other contexts, but little attention has yet been paid to modelling non-motor symptoms of PD in this genetically tractable organism. We examined memory performance and circadian rhythms in flies with loss-of-function mutations in two PD genes: PINK1 and parkin. We found learning and memory abnormalities in both mutant genotypes, as well as a weakening of circadian rhythms that is underpinned by electrophysiological changes in clock neurons. Our study paves the way for further work that may help us understand the mechanisms underlying these neglected aspects of PD, thus identifying new targets for treatments to address these non-motor problems specifically and perhaps even to halt disease progression in its prodromal phase. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives

    Directory of Open Access Journals (Sweden)

    Sumit Sarkar

    2016-06-01

    Full Text Available Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway and depositions of cytoplasmic fibrillary inclusions (Lewy bodies which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia, poor balance, and difficulty in walking (Parkinsonian gait. In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology.

  10. Evaluating the economic benefits of nonmotorized transportation : case studies and methods for the nonmotorized transportation pilot program communities.

    Science.gov (United States)

    2015-03-01

    This report examines potential methods for evaluating the economic benefits from nonmotorized transportation investments. The variety of potential economic benefits of bicycle and pedestrian infrastructure and programming investments discussed includ...

  11. Management of non-motor complications in Parkinson's disease.

    Science.gov (United States)

    Fujimoto, Ken-ichi

    2009-08-01

    This paper summarizes the methods we devised for the treatment of psychosis, orthostatic hypotension, and mood disorders among the various non-motor complications of Parkinson's disease. Psychosis may not manifest when a patient believes in his/her delusions. If left untreated over a prolonged period, however, the delusions progress to paranoia that is very difficult to cure. Accordingly, enquiries should be made during routine examinations to detect the presence of psychosis and facilitate early discovery. Atypical antipsychotics are used when psychosis does not improve after reducing the doses of antiparkinson drugs. We achieved favorable results by using mianserin hydrochloride prior to this step, with efficacy being observed for hallucinations and mild delusions that often manifested at night. This drug does not act as a dopamine receptor blocker, so it has the advantage of not aggravating motor symptoms. With this therapy, it is also possible to improve motor symptoms without inducing psychosis by reducing the doses of antiparkinson drugs and locally stimulating the motor loop by deep brain stimulation of the subthalamic nucleus. We previously introduced leg-holding exercises for the treatment of orthostatic hypotension, through which blood pooled in the veins is returned to the systemic circulation by holding the knees. This can be done easily and is free of adverse reactions. Mood disorders are difficult to cope with in patients with Parkinson's disease, but may be treated by selecting an appropriate dopamine agonist while giving consideration to affinity for the dopamine D3 receptor. However, treatment becomes complicated when the dopamine receptor is overstimulated. Here we report on cases of successfully treated pathological gambling and dopamine dysregulation syndrome, which are considered difficult to manage. The solution may differ depending on a patient's environment, and it is not easy to prescribe therapy based on evidence-based medicine. The best

  12. c-Abl inhibitors enable insights into the pathophysiology and neuroprotection in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Dan Lindholm

    2016-10-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder causing movement disabilities and several non-motor symptoms in afflicted patients. Recent studies in animal models of PD and analyses of brain specimen from PD patients revealed an increase in the level and activity of the non-receptor tyrosine kinase Abelson (c-Abl in dopaminergic neurons with phosphorylation of protein substrates, such as α-synuclein and the E3 ubiquitin ligase, Parkin. Most significantly inhibition of c-Abl kinase activity by small molecular compounds used in the clinic to treat human leukemia have shown promising neuroprotective effects in cell and animal models of PD. This has raised hope that similar beneficial outcome may also be observed in the treatment of PD patients by using c-Abl inhibitors. Here we highlight the background for the current optimism, reviewing c-Abl and its relationship to pathophysiological pathways prevailing in PD, as well as discussing issues related to the pharmacology and safety of current c-Abl inhibitors. Clearly more rigorously controlled and well-designed trials are needed before the c-Abl inhibitors can be used in the neuroclinic to possibly benefit an increasing number of PD patients.

  13. Metabolic Syndrome and Neuroprotection

    Directory of Open Access Journals (Sweden)

    Melisa Etchegoyen

    2018-04-01

    Full Text Available Introduction: Over the years the prevalence of metabolic syndrome (MetS has drastically increased in developing countries as a major byproduct of industrialization. Many factors, such as the consumption of high-calorie diets and a sedentary lifestyle, bolster the spread of this disorder. Undoubtedly, the massive and still increasing incidence of MetS places this epidemic as an important public health issue. Hereon we revisit another outlook of MetS beyond its classical association with cardiovascular disease (CVD and Diabetes Mellitus Type 2 (DM2, for MetS also poses a risk factor for the nervous tissue and threatens neuronal function. First, we revise a few essential concepts of MetS pathophysiology. Second, we explore some neuroprotective approaches in MetS pertaining brain hypoxia. The articles chosen for this review range from the years 1989 until 2017; the selection criteria was based on those providing data and exploratory information on MetS as well as those that studied innovative therapeutic approaches.Pathophysiology: The characteristically impaired metabolic pathways of MetS lead to hyperglycemia, insulin resistance (IR, inflammation, and hypoxia, all closely associated with an overall pro-oxidative status. Oxidative stress is well-known to cause the wreckage of cellular structures and tissue architecture. Alteration of the redox homeostasis and oxidative stress alter the macromolecular array of DNA, lipids, and proteins, in turn disrupting the biochemical pathways necessary for normal cell function.Neuroprotection: Different neuroprotective strategies are discussed involving lifestyle changes, medication aimed to mitigate MetS cardinal symptoms, and treatments targeted toward reducing oxidative stress. It is well-known that the routine practice of physical exercise, aerobic activity in particular, and a complete and well-balanced nutrition are key factors to prevent MetS. Nevertheless, pharmacological control of MetS as a whole and

  14. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    Science.gov (United States)

    Jesús, Silvia; Huertas, Ismael; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson's disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  15. GBA Variants Influence Motor and Non-Motor Features of Parkinson’s Disease

    Science.gov (United States)

    Jesús, Silvia; Huertas, Ismael; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson’s disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson’s patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants. PMID:28030538

  16. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Silvia Jesús

    Full Text Available The presence of mutations in glucocerebrosidase (GBA gene is a known factor increasing the risk of developing Parkinson's disease (PD. Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021, earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013, as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  17. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease.

    Science.gov (United States)

    Lelos, M J; Morgan, R J; Kelly, C M; Torres, E M; Rosser, A E; Dunnett, S B

    2016-04-01

    Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. [Neuroprotective effects of curcumin].

    Science.gov (United States)

    Li, Yong; Wang, Pengwen

    2009-12-01

    Traditionally, turmeric has been put to use as a food additive and herbal medicine in Asia. Curcumin is an active principle of the perennial herb curcuma longa (commonly known as turmeric). Recent evidence suggests that curcumin has activities with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and antiprotein-aggregate activities. In the current review, we provide the newly evidence for the potential role of curcumin in the neuroprotective effects of neurodegenerative diseases like Alzheimer's disease (AD).

  19. Neuroprotection in glaucoma

    Directory of Open Access Journals (Sweden)

    Azadeh Doozandeh

    2016-01-01

    Full Text Available Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice.

  20. Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice

    OpenAIRE

    Murakami, Shinki; Miyazaki, Ikuko; Sogawa, Norio; Miyoshi, Ko; Asanuma, Masato

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT express...

  1. Neuroprotection of Sex Steroids

    Science.gov (United States)

    Liu, Mingyue; Kelley, Melissa H.; Herson, Paco S.; Hurn, Patricia D.

    2011-01-01

    Sex steroids are essential for reproduction and development in animals and humans, and sex steroids also play an important role in neuroprotection following brain injury. New data indicate that sex-specific responses to brain injury occur at the cellular and molecular levels. This review summarizes the current understanding of neuroprotection by sex steroids, particularly estrogen, androgen, and progesterone, based on both in vitro and in vivo studies. Better understanding of the role of sex steroids under physiological and pathological conditions will help us to develop novel effective therapeutic strategies for brain injury. PMID:20595940

  2. Intact Acquisition and Short-Term Retention of Non-Motor Procedural Learning in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Muriel T N Panouillères

    Full Text Available Procedural learning is a form of memory where people implicitly acquire a skill through repeated practice. People with Parkinson's disease (PD have been found to acquire motor adaptation, a form of motor procedural learning, similarly to healthy older adults but they have deficits in long-term retention. A similar pattern of normal learning on initial exposure with a deficit in retention seen on subsequent days has also been seen in mirror-reading, a form of non-motor procedural learning. It is a well-studied fact that disrupting sleep will impair the consolidation of procedural memories. Given the prevalence of sleep disturbances in PD, the lack of retention on following days seen in these studies could simply be a side effect of this well-known symptom of PD. Because of this, we wondered whether people with PD would present with deficits in the short-term retention of a non-motor procedural learning task, when the test of retention was done the same day as the initial exposure. The aim of the present study was then to investigate acquisition and retention in the immediate short term of cognitive procedural learning using the mirror-reading task in people with PD. This task involved two conditions: one where triads of mirror-inverted words were always new that allowed assessing the learning of mirror-reading skill and another one where some of the triads were presented repeatedly during the experiment that allowed assessing the word-specific learning. People with PD both ON and OFF their normal medication were compared to healthy older adults and young adults. Participants were re-tested 50 minutes break after initial exposure to probe for short-term retention. The results of this study show that all groups of participants acquired and retained the two skills (mirror-reading and word-specific similarly. These results suggest that neither healthy ageing nor the degeneration within the basal ganglia that occurs in PD does affect the mechanisms

  3. Relationship between the non-motor items of the MDS-UPDRS and Quality of Life in patients with Parkinson's disease.

    Science.gov (United States)

    Skorvanek, Matej; Rosenberger, Jaroslav; Minar, Michal; Grofik, Milan; Han, Vladimir; Groothoff, Johan W; Valkovic, Peter; Gdovinova, Zuzana; van Dijk, Jitse P

    2015-01-01

    The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is a newly developed comprehensive tool to assess Parkinson's disease (PD), which covers a wider range of non-motor PD manifestations than the original UPDRS scale. The aim of this study was to assess the relationship between the MDS-UPDRS and Quality of Life (QoL) and to analyze the relationship between individual MDS-UPDRS non-motor items and QoL. A total of 291 PD patients were examined in a multicenter Slovak study. Patients were assessed by the MDS-UPDRS, HY scale and PDQ39. Data were analyzed using the multiple regression analyses. The mean participant age was 68.0 ± 9.0 years, 53.5% were men, mean disease duration was 8.3 ± 5.3 years and mean HY was 2.7 ± 1.0. In a multiple regression analysis model the PDQ39 summary index was related to MDS-UPDRS parts II, I and IV respectively, but not to part III. Individual MDS-UPDRS non-motor items related to the PDQ39 summary index in the summary group and in the non-fluctuating patients subgroup were pain, fatigue and features of dopamine dysregulation syndrome (DDS). In the fluctuating PD patient subgroup, PDQ39 was related to pain and Depressed mood items. Other MDS-UPDRS non-motor items e.g. Anxious mood, Apathy, Cognitive impairment, Hallucinations and psychosis, Sleep problems, Daytime sleepiness and Urinary problems were related to some PDQ39 domains. The overall burden of NMS in PD is more important in terms of QoL than motor symptoms. Individual MDS-UPDRS non-motor items related to worse QoL are especially pain and other sensations, fatigue and features of DDS. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts.

    Science.gov (United States)

    Dafsari, Haidar Salimi; Petry-Schmelzer, Jan Niklas; Ray-Chaudhuri, K; Ashkan, Keyoumars; Weis, Luca; Dembek, Till A; Samuel, Michael; Rizos, Alexandra; Silverdale, Monty; Barbe, Michael T; Fink, Gereon R; Evans, Julian; Martinez-Martin, Pablo; Antonini, Angelo; Visser-Vandewalle, Veerle; Timmermann, Lars

    2018-03-16

    Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. To investigate the impact of active contact location on NMS in STN-DBS in PD. In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables. NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores. Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes. Copyright © 2018. Published by Elsevier Inc.

  5. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  6. Neuropsychiatric symptoms in patients with thymomaassociated and ...

    African Journals Online (AJOL)

    Background. Around 10 - 15% of patients with myasthenia gravis (MG) have a thymoma, and non-motor symptoms are more frequent in these patients. We hypothesised that neuropsychiatric symptoms would also be more frequent. Methods. A cross-sectional study of 30 consecutive MG patients attending a clinic at Groote ...

  7. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  8. Neuroprotection in glaucoma

    Science.gov (United States)

    Vasudevan, Sushil K; Gupta, Viney; Crowston, Jonathan G

    2011-01-01

    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications. PMID:21150020

  9. The influence of age and gender on motor and non-motor features of early Parkinson's disease: initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort.

    Science.gov (United States)

    Szewczyk-Krolikowski, Konrad; Tomlinson, Paul; Nithi, Kannan; Wade-Martins, Richard; Talbot, Kevin; Ben-Shlomo, Yoav; Hu, Michele T M

    2014-01-01

    Identifying factors influencing phenotypic heterogeneity in Parkinson's Disease is crucial for understanding variability in disease severity and progression. Age and gender are two most basic epidemiological characteristics, yet their effect on expression of PD symptoms is not fully defined. We aimed to delineate effects of age and gender on the phenotype in an incident cohort of PD patients and healthy controls from the Oxford Parkinson Disease Centre (OPDC). Clinical features, including demographic and medical characteristics and non-motor and motor symptoms, were analyzed in a group of PD patients within 3 years of diagnosis and a group of healthy controls from the OPDC cohort. Disease features were stratified according to age and compared between genders, controlling for effects of common covariates. 490 PD patients and 176 healthy controls were analyzed. Stratification by age showed increased disease severity with age on motor scales. Some non-motor features showed similar trend, including cognition and autonomic features. Comparison across genders highlighted a pattern of increased severity and greater symptom symmetricality in the face, neck and arms in men with women having more postural problems. Amongst the non-motor symptoms, men had more cognitive impairment, greater rate of REM behavior disorder (RBD), more orthostatic hypotension and sexual dysfunction. Age in PD is a strong factor contributing to disease severity even after controlling for the effect of disease duration. Gender-related motor phenotype can be defined by a vertical split into more symmetrical upper-body disease in men and disease dominated by postural symptoms in women. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Neuroprotection in Preterm Infants

    Directory of Open Access Journals (Sweden)

    R. Berger

    2015-01-01

    Full Text Available Preterm infants born before the 30th week of pregnancy are especially at risk of perinatal brain damage which is usually a result of cerebral ischemia or an ascending intrauterine infection. Prevention of preterm birth and early intervention given signs of imminent intrauterine infection can reduce the incidence of perinatal cerebral injury. It has been shown that administering magnesium intravenously to women at imminent risk of a preterm birth leads to a significant reduction in the likelihood of the infant developing cerebral palsy and motor skill dysfunction. It has also been demonstrated that delayed clamping of the umbilical cord after birth reduces the rate of brain hemorrhage among preterm infants by up to 50%. In addition, mesenchymal stem cells seem to have significant neuroprotective potential in animal experiments, as they increase the rate of regeneration of the damaged cerebral area. Clinical tests of these types of therapeutic intervention measures appear to be imminent. In the last trimester of pregnancy, the serum concentrations of estradiol and progesterone increase significantly. Preterm infants are removed abruptly from this estradiol and progesterone rich environment. It has been demonstrated in animal experiments that estradiol and progesterone protect the immature brain from hypoxic-ischemic lesions. However, this neuroprotective strategy has unfortunately not yet been subject to sufficient clinical investigation.

  11. Phenobarbital Augments Hypothermic Neuroprotection

    Science.gov (United States)

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, pphenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  12. Developing a Rubric and Best Practices for Conducting Counts of Non-Motorized Transportation Users

    Science.gov (United States)

    2016-01-01

    Over the past five years non-motorized modes of transportation have become ever more prevalent on Utahs roadways. Historically, these modes have not been included in traffic counts nor are they accurately represented in the long range planning mod...

  13. Alternatives for providing a safe passage for non-motorized traffic across an existing highway bridge.

    Science.gov (United States)

    2015-08-31

    Non-motorized transportation increases mobility choices, relieves congestion, promotes local economy, reduces greenhouse gas emission, promotes a healthy lifestyle, and improves quality of life. Recently, there is an emphasis on developing integrated...

  14. Bike-Ped Portal : development of an online nonmotorized traffic count archive.

    Science.gov (United States)

    2017-05-01

    Robust bicycle and pedestrian data on a national scale would serve numerous purposes. Access to a centralized nonmotorized traffic count : archive can open the door for innovation through research, design and planning; provide safety researchers with...

  15. Nonmotorized transportation pilot program : continued progress in developing walking and bicycling networks - May 2014

    Science.gov (United States)

    2014-05-01

    In 2005, the United States Congress directed the Federal Highway Administration (FHWA) to develop the Nonmotorized Transportation Pilot Program (NTPP). The program provided over $25 million in contract authority to four pilot communities (Columbia, M...

  16. Non-Motor Correlates of Smoking Habits in de Novo Parkinson's Disease.

    Science.gov (United States)

    Moccia, Marcello; Mollenhauer, Brit; Erro, Roberto; Picillo, Marina; Palladino, Raffaele; Barone, Paolo

    2015-01-01

    Parkinson's disease (PD) subjects are less likely to ever smoke and are more prone to quit smoking, as compared to controls. Therefore, smoking habits can be considered part of the non-motor phenotype, preceding the onset of motor PD by several years. To explore non-motor symptom (NMS) correlates of smoking habits in de novo PD. This cross-sectional study included 281 newly diagnosed, drug-naïve PD subjects, recruited in Naples (Italy) and in Kassel (Germany). All subjects completed the NMS Questionnaire (NMSQ), and were investigated for smoking status (never, current and former smokers) and intensity (pack-years). 140 PD subjects never smoked, 20 currently smoked, and 121 had quit smoking before PD diagnosis. NMSQ total score did not associate with smoking status, but with smoking intensity (p = 0.028; coefficient = 0.088). A multinomial logistic regression stepwise model presenting never smoking as reference, selected as NMSQ correlates of current smoking: sex difficulties (p = 0.002; OR = 5.254), daytime sleepiness (p = 0.046; OR = 0.085), insomnia (p = 0.025; OR = 0.135), and vivid dreams (p = 0.040; OR = 3.110); and of former smoking: swallowing (p = 0.013; OR = 0.311), nausea (p = 0.027; OR = 7.157), unexplained pains (p = 0.002; OR = 3.409), forgetfulness (p = 0.005; OR = 2.592), sex interest (p = 0.007; OR = 0.221), sex difficulties (p = 0.038; OR = 4.215), and daytime sleepiness (p = 0.05; OR = 0.372). An ordinal logistic regression stepwise model selected as NMSQ correlates of smoking intensity: nocturnal restlessness (p = 0.027; coefficient = 0.974), and leg swelling (p = 0.004; coefficient = 1.305). Certain NMSs are associated with different smoking status and intensity, suggesting a variety of adaptive mechanisms to cigarette smoking.

  17. Neuroprotective therapies for glaucoma

    Directory of Open Access Journals (Sweden)

    Song W

    2015-03-01

    Full Text Available Wei Song, Ping Huang, Chun Zhang Department of Ophthalmology, Peking University Third Hospital, Beijing, People’s Republic of China Abstract: Glaucoma is the second leading cause for blindness worldwide. It is mainly caused by glaucomatous optic neuropathy (GON characterized by retinal ganglion cell loss, which leads to visual field defect and blindness. Up to now, the main purpose of antiglaucomatous therapies has been to lower intraocular pressure (IOP through surgeries and medications. However, it has been found that progressive GON is still present in some patients with effective IOP decrease. Therefore, risk factors other than IOP elevation, like neurotrophin deprivation and excitotoxicity, contribute to progressive GON. Novel approaches of neuroprotection may be more effective for preserving the function of the optic nerve. Keywords: glaucoma, glaucomatous optic neuropathy, retinal ganglion cells, neuro­protection

  18. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Sridhar TS

    2009-07-01

    Full Text Available Abstract Background Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Results Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Conclusion Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of Parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses.

  19. Neuroprotection by flavonoids

    Directory of Open Access Journals (Sweden)

    Dajas F.

    2003-01-01

    Full Text Available The high morbidity, high socioeconomic costs and lack of specific treatments are key factors that define the relevance of brain pathology for human health and the importance of research on neuronal protective agents. Epidemiological studies have shown beneficial effects of flavonoids on arteriosclerosis-related pathology in general and neurodegeneration in particular. Flavonoids can protect the brain by their ability to modulate intracellular signals promoting cellular survival. Quercetin and structurally related flavonoids (myricetin, fisetin, luteolin showed a marked cytoprotective capacity in in vitro experimental conditions in models of predominantly apoptotic death such as that induced by medium concentrations (200 µM of H2O2 added to PC12 cells in culture. Nevertheless, quercetin did not protect substantia nigra neurons in vivo from an oxidative insult (6-hydroxydopamine, probably due to difficulties in crossing the blood-brain barrier. On the other hand, treatment of permanent focal ischemia with a lecithin/quercetin preparation decreased lesion volume, showing that preparations that help to cross the blood-brain barrier may be critical for the expression of the effects of flavonoids on the brain. The hypothesis is advanced that a group of quercetin-related flavonoids could become lead molecules for the development of neuroprotective compounds with multitarget anti-ischemic effects.

  20. The relevance of pre-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Visanji, Naomi; Marras, Connie

    2015-10-01

    Parkinson's disease (PD) has a wide range of non-motor symptoms including; constipation, sleep disturbance, deficits in vision and olfaction, mood disorders and cardiac autonomic dysfunction. Several of these non-motor symptoms can manifest prior to the onset of motor symptoms. Recognizing these pre-motor symptoms may enable early diagnosis of PD. Currently, no single pre-motor symptom is able to predict the development of PD with 100% sensitivity or specificity. Ongoing studies in several independent at-risk cohorts should reveal the potential of combinations of pre-motor symptoms and multi-stage screening strategies to identify individuals at increased risk of PD. PD progression may be governed by a prion-like spread of a-syn throughout the nervous system. Identifying individuals at the earliest stage will likely be critical to preventing the pathological progression of PD, highlighting the relevance of pre-motor symptoms in the future treatment of the disease.

  1. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Science.gov (United States)

    2010-07-01

    ... practicable, conflicts between motorized and non-motorized rivercraft users and between both types of...-motorized rivercraft may be permitted subject to restrictions on size, type of craft, numbers, duration... Service where such activity may be permitted subject to restrictions on size, type of craft, numbers...

  2. The Relationship Between Fatigue and Other Non-Motor Symptoms in Parkinson's Disease in Chinese Population

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2017-09-01

    Result: Patients with fatigue in PD had higher levels in domain 2 (sleep disorders (p  4. Among the patients with fatigue, the severity of fatigue in PD patients was related to sleep and affective disorders. Of the disorders, excessive daytime sleepiness, anxiety and depression were particularly linked to fatigue in PD.

  3. Research on the Method of Setting Waiting Area for Non-motor Vehicle at Signal Control Intersection

    Directory of Open Access Journals (Sweden)

    Wang Yun Xia

    2018-01-01

    Full Text Available Electric bicycle has become an indispensable important component of the transportation system. The fact is that traffic organization and channelizing design of signal control intersection is not intensive, which cannot adapt to the current traffic demand of non-motor vehicle, such as unclear traffic rules and poor visibility, thus the traffic safety of non-motor vehicle is not optimistic. Therefore, it is necessary to study on traffic organization method based on the demand of non-motor vehicle, which can provide certain theoretical basis for traffic administrative department to make policy and traffic design. This article focuses on the method of setting waiting area for non-motor vehicle at signal control intersection, including the advantages, disadvantages and the applicable conditions.

  4. The impact of non-motor manifestations of Parkinson's disease on partners: understanding and application of chronic sorrow theory.

    Science.gov (United States)

    Mercer, Christine J

    2015-09-01

    Parkinson's disease (PD) can cause many emotions, including grief and a sense of isolation for both the person with PD (referred to as Parkinsonian) and their partner. Such ongoing grief and emotional turmoil can be termed chronic sorrow. The aim of this research is to present accounts of partners' perspectives, analysed in the context of chronic sorrow theory, to offer health professionals an insight into the impact of non-motor PD symptoms on partners. A group of partners of Parkinsonians provided the data through individual stories. These stories were subjected to thematic analysis, using a seven-step process leading to the establishment of themes. Caregiver burden and chronic sorrow is not related to providing physical care, but the emotional care of attempting to minimise the effect of PD, coping with disturbance to sleep, and helping the Parkinsonian to maintain as much independence as possible. Contributors to this article found chronic sorrow theory provided a framework for understanding their emotions. Sharing their experiences with others provided an opportunity to be heard, and enabled them to make sense of individual situations. Chronic sorrow theory provides a useful framework for both partners of Parkinsonians in understanding their emotional responses, and for health professionals in considering the challenges partners face in coping with living with a person with PD.

  5. MUSIC CUED EXERCISES FOR MOTOR AND NON-MOTOR SIGNS IN PEOPLE WITH DEMENTIA: PROTOCOL FOR A SYSTEMATIC REVIEW

    OpenAIRE

    Yasmine S Gomaa; Salah A Sawan; Joanne E Wittwer; Meg E Morris

    2017-01-01

    Background: Movement disorders and non-motor problems such as cognitive decline, anxiety, depression and behavioural problems, are common in people with dementia and can progress over time. Exercise coupled with music is a promising form of therapy designed to improve both the motor and non-motor manifestations of this debilitating neurological condition. Objectives: To present a protocol for a systematic review and critical analysis of the literature to answer the following questions: ...

  6. Neuroprotective properties of GLP-1

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Burcelin, Remy; Nathanson, Esther

    2011-01-01

    emptying. Furthermore, data are beginning to emerge that indicate a potential role for GLP-1 in neuroprotection. The increased risk of Alzheimer's disease, Parkinson's disease and stroke in people with type 2 diabetes suggests that shared mechanisms/pathways of cell death, possibly related to insulin...... path towards cellular dysfunction and death. This article summarizes the evidence for neuronal activity of GLP-1 and examines the limited data that currently exist on the therapeutic potential of GLP-1 in specific neurological and neurodegenerative conditions, namely Alzheimer's disease, Parkinson...

  7. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    Science.gov (United States)

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  8. Non-motor fluctuations in Parkinson's disease: prevalence, characteristics and management in a large cohort of parkinsonian outpatients.

    Science.gov (United States)

    Brun, Lucile; Lefaucheur, Romain; Fetter, Damien; Derrey, Stéphane; Borden, Alaina; Wallon, David; Bourre, Bertrand; Maltête, David

    2014-12-01

    To describe demographic and clinical characteristics in a group of Parkinson's disease (PD) patients with non-motor fluctuations (NMF) and to evaluate the management of medications proposed to treat NMF. Three hundred and three PD patients (mean age, 66 ± 10.3 years; mean disease duration, 10.1 ± 6.5 years) were enrolled. Each patient was interviewed in a non-directed fashion about the main NMF manifestations, i.e. dysautonomic, mental, and sensory symptoms. Both groups of patients with and without NMF were compared. Dysautonomia, motor fluctuations, age, disease duration, and LEDD were included in a multiple regression to determine which were predictive of NMF. NMF were found in 57 (19%) patients, mean age 65 ± 10.1 years, mean age at onset of PD 53.7 ± 10.9 years, mean disease duration 12.5 ± 6.9 years. NMF occurred on average 9.8 ± 7.7 years after the onset of PD. Fifty patients (86%) with NMF had also MF and 10 (21%) had PDD. Twenty-five (44%) patients suffered from sensory, 28 (49%) from autonomic and 25 (44%) from neuropsychiatric symptoms. Both disease and L-Dopa treatment durations, and LEDD were significantly higher in NMF patient's group. Motor fluctuations (p = 0.0016) and presence of dysautonomia (p = 0.007) were found to be two independent predictors of NMF. The development of new instruments to assess NMF is crucial for optimized management of advanced PD. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Neuroprotection for treatment of glaucoma in adults.

    Science.gov (United States)

    Sena, Dayse F; Lindsley, Kristina

    2017-01-25

    . Further clinical research is needed to determine whether neuroprotective agents may be beneficial for individuals with OAG. Such research should focus on outcomes important to patients, such as preservation of vision, and how these outcomes relate to cell death and optic nerve damage. As OAG is a chronic, progressive disease with variability in symptoms, RCTs designed to measure the effectiveness of neuroprotective agents require a long-term follow-up of five years or longer to detect clinically meaningful effects.

  10. Unconventional neurotransmitters, neurodegeneration and neuroprotection

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2009-01-01

    Full Text Available Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

  11. Non-motor signs in Parkinson’s disease: a review

    Directory of Open Access Journals (Sweden)

    Renato P. Munhoz

    2015-05-01

    Full Text Available During the past decade the view of Parkinson’s disease (PD as a motor disorder has changed significantly and currently it is recognized as a multisystem process with diverse non-motor signs (NMS. In addition to been extremely common, these NMS play a major role in undermining functionality and quality of life. On the other hand, NMS are under recognized by physicians and neglected by patients. Here, we review the most common NMS in PD, including cognitive, psychiatric, sleep, metabolic, and sensory disturbances, discuss the current knowledge from biological, epidemiological, clinical, and prognostic standpoints, highlighting the need for early recognition and management.

  12. Motor and non-motor features of Parkinson's disease in LRRK2 G2019S carriers versus matched controls.

    Science.gov (United States)

    Gunzler, Steven A; Riley, David E; Chen, Shu G; Tatsuoka, Curtis M; Johnson, William M; Mieyal, John J; Walter, Ellen M; Whitney, Christina M; Feng, I Jung; Owusu-Dapaah, Harry; Mittal, Shivam O; Wilson-Delfosse, Amy L

    2018-05-15

    LRRK2 G2019S mutation carriers with Parkinson's disease (PD) have been generally indistinguishable from those with idiopathic PD, with the exception of variable differences in some motor and non-motor domains, including cognition, gait, and balance. LRRK2 G2019S is amongst the most common genetic etiologies for PD, particularly in Ashkenazi Jewish (AJ) populations. This cross-sectional data collection study sought to clarify the phenotype of LRRK2 G2019S mutation carriers with PD. Primary endpoints were the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive Assessment (MoCA). Other motor and non-motor data were also assessed. The Mann-Whitney U Test was utilized to compare LRRK2 G2019S carriers with PD (LRRK2+) with non-carrier PD controls who were matched for age, gender, education, and PD duration. Survival analyses and log rank tests were utilized to compare interval from onset of PD to development of motor and non-motor complications. We screened 251 subjects and 231 completed the study, of whom 9 were LRRK2+, including 7 AJ subjects. 22.73% of AJ subjects with a family history of PD (FH) and 12.96% of AJ subjects without a FH were LRRK2+. There were no significant differences between the 9 LRRK2+ subjects and 19 matched PD controls in MDS-UPDRS, MoCA, or other motor and non-motor endpoints. Prevalence of the LRRK2 G2019S mutation in AJ and non-AJ subjects in our study population in Cleveland, Ohio was comparable to other clinical studies. There were no significant motor or non-motor differences between LRRK2+ PD and matched PD controls. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Injuries and helmet use related to non-motorized wheeled activities among pediatric patients.

    Science.gov (United States)

    Lindsay, H; Brussoni, M

    2014-07-01

    Patients presenting to emergency departments (ED) for injuries resulting from recreational activities represent a unique source of information on important directions for injury prevention efforts. We describe the epidemiology of non-motorized wheeled activity-related injury in pediatric patients presenting to Canadian EDs as well as patients' helmet use. Data for the years 2004 to 2009 were abstracted from the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP), a national ED injury surveillance program in fifteen hospitals. Most of the 28 618 children aged 1 to 16 years injured during non-motorized wheeled activities were injured while cycling, followed by skateboarding. Most injuries occurred among boys. Children injured on scooters tended to be younger whereas skateboarders were the oldest. On average, the number of all injuries decreased by 6% over the time period. Falls were the most common mechanism of injury; 8.3% of patients had head injuries, which were seen more often among cyclists than other wheeled-activity users. Helmet use was greatest among cyclists (62.2%) and lowest among skateboarders (32.9%). Injured patients presenting to EDs in jurisdictions with legislation mandating helmet use had 2.12 greater odds of helmet use and 0.86 lesser odds of head injury compared with those presenting in jurisdictions without helmet laws. These results provide further evidence that legislation mandating helmet use may be an effective way of reducing injury among all wheeled-activity users. The small number of patients who presented with helmet use and protective gear (59.4% overall) suggests that this remains an area for intervention.

  14. Microglia and neuroprotection: implications for Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J

    2005-04-01

    The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.

  15. The Neuroprotection Effect of Oxygen Therapy: A Systematic Review ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... investigating the neuroprotective effect of oxygen, but the outcomes as well as ...... Neuroprotective gases – Fantasy or reality for clinical use? Prog .... of oxygen on brain tissue oxygen tension in children with severe traumatic ...

  16. Who Can Diagnose Parkinson's Disease First? Role of Pre-motor Symptoms.

    Science.gov (United States)

    Rodríguez-Violante, Mayela; Zerón-Martínez, Rosalía; Cervantes-Arriaga, Amin; Corona, Teresa

    2017-04-01

    In 1817, James Parkinson described the disease which bears his name. The disease was defined as a neurological syndrome characterized by tremor, rigidity, and slowness of movements. Almost one hundred years later, degeneration of neurons in the substantia nigra and low levels of dopamine were identified as the putative cause of the disease, thus the disease remained as a pure neurological disorder. In the late 1990s, non-motor symptoms of the disease began to gain interest because of their clinical relevance, as well as for their potential role in broadening the understanding of the pathophysiological mechanisms involved. In the last decade, focus has shifted to the pre-motor symptoms, those non-motor symptoms that present years before the motor onset of the disease. The main premotor symptoms include rapid eye movement sleep behavior disorder, hyposmia, constipation and depression. Subjects with these symptoms usually are not initially seen by a neurologist, and by the time they are consulted neuronal loss in the substantia nigra is over 50%. This review summarizes the overall relevance of non-motor symptoms, their frequency and their pathophysiological implications. Also, the importance of pre-motor symptoms, and the role of specialists other than neurologists in diagnosing subjects with Parkinson's disease is discussed. Two hundred years after the first description of the disease, it is now evident that Parkinson's disease is a systemic disease and a multispecialty team approach is mandatory. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  17. Wine polyphenols: potential agents in neuroprotection.

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  18. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  19. Wine Polyphenols: Potential Agents in Neuroprotection

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  20. Male/female differences in neuroprotection and neuromodulation of brain dopamine.

    Directory of Open Access Journals (Sweden)

    Mélanie eBourque

    2011-09-01

    Full Text Available The existence of a sex difference in Parkinson’s disease is observed in several variables, including susceptibility of the disease, age at onset and symptoms. These differences between men and women represent a significant characteristic of Parkinson’s disease which suggests that estrogens may exert beneficial effects against the development and the progression of the disease. This paper reviews the neuroprotective and neuromodulator effect of 17β-estradiol and progesterone as compared to androgens in the nigrostriatal dopaminergic system of both female and male rodents. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mice model of Parkinson’s disease and methamphetamine toxicity faithfully reproduce the sex differences of Parkinson’s disease in that endogenous estrogen levels appear to influence the vulnerability to toxins targeting the nigrostriatal dopaminergic system. Exogenous 17β-estradiol and/or progesterone treatments show neuroprotective properties against nigrostriatal dopaminergic toxins while androgens fail to induce beneficial effect. Sex steroids treatments show males and females difference in their neuroprotective action against methamphetamine toxicity. Nigrostriatal dopaminergic structure and function, as well as the distribution of estrogen receptors, show sex difference and may influence the susceptibility to the toxins and the response to sex steroids. Genomic and non-genomic actions of 17β-estradiol converge to promote survival factors and the presence of both estrogen receptors α and β are critical to 17β-estradiol neuroprotective action against MPTP toxicity.

  1. Neuroprotective effect of paeonol against isofluraneinduced ...

    African Journals Online (AJOL)

    Purpose: To investigate whether paeonol affords neuroprotection against isoflurane-induced neurotoxicity. Methods: Separate groups of neonatal rat pups were administered paeonol (20, 40 or 80 mg/kg) from post-natal day 3 (P3) to post-natal day 15. On post-natal day 7, the pups were exposed to 6 h of isoflurane (0.75 ...

  2. Proliferative Activity and Neuroprotective Effect of Ligustrazene ...

    African Journals Online (AJOL)

    Proliferative Activity and Neuroprotective Effect of. Ligustrazene Derivative by Irritation of Vascular. Endothelial Growth Factor Expression in Middle Cerebral. Artery Occlusion Rats. Zhang Huazheng1, Wang Penglong2, Ren Liwei1, Wang Xiaobo2, Li Guoliang2,. Wang Mina1, Chu Fuhao2, Gong Yan2, Xu Bing2, Bi Siling1, ...

  3. Safety Impacts of Push-Button and Countdown Timer on Nonmotorized Traffic at Intersections

    Directory of Open Access Journals (Sweden)

    Bei Zhou

    2014-01-01

    Full Text Available This paper applies the random parameters negative binominal model to investigate safety impacts of push-button and countdown timer on pedestrians and cyclists at urban intersections. To account for possible unobserved heterogeneity which could vary from one intersection to another, random parameters model is introduced. A simulation-based maximum likelihood method using Halton draws is applied to estimate the maximum likelihood of random parameters in the model. Dataset containing pedestrians’ and cyclists’ crash data of 1,001 intersections from Chicago is utilized to establish the statistical relationship between crash frequencies and potential impact factors. LIMDEP (Version 9.0 statistical package is utilized for modeling. The parameter estimation results indicate that existence of push-button and countdown timer could significantly reduce crash frequencies of pedestrians and cyclists at intersections. Increasing number of through traffic lanes, left turn lanes, and ratio of major direction AADT to minor direction AADT, tend to increase crash frequencies. Annual average daily left turn traffic has a negative impact on pedestrians’ safety, but its impact on cyclists’ crash frequency is statistically insignificant at 90% confidence level. The results of current study could provide important insights for nonmotorized traffic safety improvement projects in both planning and operational levels.

  4. Novel Neuroprotective Strategies in Ischemic Retinal Lesions

    Directory of Open Access Journals (Sweden)

    Robert Gabriel

    2010-02-01

    Full Text Available Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i urocortin 2; (ii a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv a novel poly(ADP-ribose polymerase inhibitor (HO3089. The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques.

  5. Putative neuroprotective agents in neuropsychiatric disorders.

    Science.gov (United States)

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Wine Polyphenols: Potential Agents in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2012-01-01

    Full Text Available There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson’s or Alzheimer’s diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  7. ASTROCYTES IN THE NEUROPROTECTION AFTER BRAIN STROKE

    Directory of Open Access Journals (Sweden)

    Gloria Patricia Cardona Gomez

    2015-03-01

    Full Text Available Astrocytes are specialized glial cells of the nervous system, which have multiple homeostatic functions for the survival and maintenance of the neurovascular unit. It has been shown that astrocytes have critical role in the dynamics pro survival conferring neuroprotective, angiogenic, immunomodulatory, neurogenic, antioxidants and regulatory synapse functions (Shen et al 2012; Gimsa et al 2013; Proschel et al 2014; making them excellent candidates as the source of neuroprotection and neurorestauration of tissue affected by events ischemia and / or reperfusion. However, these cells also may be involved in negative responses such as reactive astrocytes and glial scar under chronic excitotoxic responses generated by these events. To know what are the key points in the pro and anti-survival responses of astrocytes, would allow use them as targets in cellular therapies. This review has aim to study the mechanisms for neuroprotection in these cells (Posada-Duque et al submitted, which would make them targets of cell therapy, through of inducing regeneration, such as vehicle for corrective molecular systems and trigger endogenous cellular events that can recover the tissue homeostasis, which is lost after progressive damage.

  8. Descriptive symptom terminology used by Parkinson’s patients and caregivers

    Directory of Open Access Journals (Sweden)

    Mursaleen LR

    2017-11-01

    Full Text Available Leah R Mursaleen,1,2 Jon A Stamford,1,2 Tim Butterfield,2 Gaynor Edwards,2,3 Penny Kustow,2 Paul A Kustow,2 Simon Griffith,2 Gilly M K Dudgeon,2 Mike G Dudgeon2 1The Cure Parkinson’s Trust, London UK, 2Parkinson’s Movement, London, UK, 3Spotlight YOPD, Rye, UK Background: The ability to accurately describe symptoms is a critical facet of patient–physician interaction and represents both a conduit and a barrier to diagnosis and treatment.Objective: The objective of this study was to discuss the range and breadth of symptom description to provide insights into symptom complexity, patient interest and understanding, as well as possible communication barriers between the patient and the physician.Patients and methods: Using a synthesis of information from an online survey of 407 people with Parkinson’s and a focus group of 7 people with Parkinson’s and 3 care partners, we examined the descriptors used by patients and carers to describe a range of motor and nonmotor symptoms in Parkinson’s disease.Results: We found that patient descriptors were more extensive generally for nonmotor than motor symptoms, and that the terminology used to describe neuropsychiatric symptoms was particularly detailed and extensive.Conclusion: Since many nonmotor symptoms are not visible and require interrogation by physicians and articulation by patients, these are areas of particular vulnerability in the patient–physician communication loop. Keywords: Parkinson’s disease, symptoms, communication, cognition, symptom language, symptom terminology, symptom descriptors, neuropsychiatric terms

  9. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    Science.gov (United States)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  10. Among Early Appearing Non-Motor Signs of Parkinson’s Disease, Alteration of Olfaction but Not Electroencephalographic Spectrum Correlates with Motor Function

    Directory of Open Access Journals (Sweden)

    Vitalii V. Cozac

    2017-10-01

    Full Text Available Olfactory decline is a frequent and early non-motor symptom in Parkinson’s disease (PD, which is increasingly used for diagnostic purposes. Another early appearing sign of PD consists in electroencephalographic (EEG alterations. The combination of olfactory and EEG assessment may improve the identification of patients with early stages of PD. We hypothesized that olfactory capacity would be correlated with EEG alterations and motor and cognitive impairment in PD patients. To the best of our knowledge, the mutual influence of both markers of PD—olfactory decrease and EEG changes—was not studied before. We assessed the function of odor identification using olfactory “Screening 12 Test” (“Sniffin’ Sticks®”, between two samples: patients with PD and healthy controls (HC. We analyzed correlations between the olfactory function and demographical parameters, Unified Parkinson’s Disease Rating Scale (UPDRS-III, cognitive task performance, and spectral alpha/theta ratio (α/θ. In addition, we used receiver operating characteristic-curve analysis to check the classification capacity (PD vs HC of olfactory function, α/θ, and a combined marker (olfaction and α/θ. Olfactory capacity was significantly decreased in PD patients, and correlated with age, disease duration, UPDRS-III, and with items of UPDRS-III related to gait and axial rigidity. In HC, olfaction correlated with age only. No correlation with α/θ was identified in both samples. Combined marker showed the largest area under the curve. In addition to EEG, the assessment of olfactory function may be a useful tool in the early characterization and follow-up of PD.

  11. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  12. TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Ricardo Ramírez-Barrantes

    2016-01-01

    Full Text Available Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1 expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.

  13. Phenoxybenzamine Is Neuroprotective in a Rat Model of Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Thomas F. Rau

    2014-01-01

    Full Text Available Phenoxybenzamine (PBZ is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI. While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD. Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 µM–1 mM and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.

  14. Final Report Phase I Study to Characterize the Market Potential for Non-Motorized Travel

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [ORNL; Reuscher, Tim [Macrosys; Wilson, Daniel W [ORNL; Schmoyer, Richard L [ORNL

    2012-06-01

    The idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine detail not only about individual travel, but also on transportation and neighborhood infrastructure. In an attempt to characterize the 'market' potential for NMT, the Office of Planning, Federal Highway Administration (FHWA) funded the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) to conduct a study. The objectives of this effort were to identify factors that influence communities to walk and bike and to examine why, or why not, travelers walk and bike in their communities. This study relied on information collected under the 2009 National Household Travel Survey (NHTS) as the major source of data, and was supplemented with data from the American Community Survey (ACS), educational survey, health, employment, and others. Initial statistical screening methods were applied to sort through over 400 potential predictor variables, and examined with various measures (e.g., walk trip per person, walk mileage per person, bike trip per person, bike mileage per person) as the dependent variables. The best geographic level of detail used in the modeling for this study was determined to be the Census block group level for walking and Census tract level for biking. The need for additional supplemental private data (i.e., Walk Scores and Nielsen employment data), and geospatial information that reflects land use and physical environments, became evident after an examination of findings from the initial screening models. To be feasible, in terms of costs and time, the geographic scale of the study region was scaled down to nine selected NHTS add-on regions. These regions were chosen based on various criteria including transit

  15. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence.

    Science.gov (United States)

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-30

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.

  16. Clinical trials for neuroprotection in ALS.

    Science.gov (United States)

    Siciliano, G; Carlesi, C; Pasquali, L; Piazza, S; Pietracupa, S; Fornai, F; Ruggieri, S; Murri, L

    2010-07-01

    Owing to uncertainty on the pathogenic mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) riluzole remains the only available therapy, with only marginal effects on disease survival. Here we review some of the recent advances in the search for disease-modifying drugs for ALS based on their putative neuroprotective effetcs. A number of more or less established agents have recently been investigated also in ALS for their potential role in neuroprotection and relying on antiglutamatergic, antioxidant or antiapoptotic strategies. Among them Talampanel, beta-lactam antibiotics, Coenzyme Q10, and minocycline have been investigated. Progress has also been made in exploiting growth factors for the treatment of ALS, partly due to advances in developing effective delivery systems to the central nervous system. A number of new therapies have also been identified, including a novel class of compounds, such as heat-shock protein co-inducers, which upregulate cell stress responses, and agents promoting autophagy and mitochondriogenesis, such as lithium and rapamycin. More recently, alterations of mRNA processing were described as a pathogenic mechanism in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations. This knowledge is expected to improve our understanding of the pathogenetic mechanism in ALS and developing more effective therapies.

  17. Nutraceutical Antioxidants as Novel Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Linseman

    2010-11-01

    Full Text Available A variety of antioxidant compounds derived from natural products (nutraceuticals have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1 flavonoid polyphenols like epigallocatechin 3-gallate (EGCG from green tea and quercetin from apples; (2 non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3 phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4 organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2 transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

  18. General anesthetics in children: neurotoxic or neuroprotective?

    Directory of Open Access Journals (Sweden)

    Jéssica Farias Rebouças

    2017-02-01

    Full Text Available Introduction: general anesthetics are involved in neuroprotection in adults after ischemic events and cognitive impairment, thus, they also may be associated with learning disorders in children exposed to them before three years of age. Objective: Describe about the neurotoxic effects of general anesthetics in experimental animals and children. Method: This is a systematic review, performed from search in databases and on PubMed using the keywords "neurotoxicity" and "general anesthetics," and "general anesthetics," "neurotoxicity", "children", "young child "and" pediatric ". Results: The search resulted in 185 articles. Out of these, 78 met our inclusion criteria. We found that there was a significant evidence of neurotoxicity induced by general anesthetics in experimental animals that were just born, resulting in late and permanent cognitive deficits. This effect was associated with multiple exposures, exposure length of time and combination of drugs. However, some studies found cognitive impairment after a single exposure to anesthetic. Conclusion: There is insufficient evidence to state that general anesthetics are neurotoxic and have the potential to trigger learning and behavior disabilities in children. However, we suggest caution in indicating surgery in children under three years old, analyzing risk-benefit and inserting the family in the decision process.   Keywords: Neurotoxicity; Neuroprotection; Cognitive Impairment; Children; General Anesthesics

  19. Finger taps and constipation are closely related to symptoms of overactive bladder in male patients with Parkinson's disease.

    Science.gov (United States)

    Tsujimura, Akira; Yamamoto, Yoichi; Sakoda, Saburo; Okuda, Hidenobu; Yamamoto, Keisuke; Fukuhara, Shinichiro; Yoshioka, Iwao; Kiuchi, Hiroshi; Takao, Tetsuya; Miyagawa, Yasushi; Nonomura, Norio

    2014-01-01

    To assess which motor and non-motor symptoms are closely related to overactive bladder severity in male patients with Parkinson's disease. A total of 160 male patients (mean age 71.4 ± 8.2 years) diagnosed with Parkinson's disease were included in the present study at Osaka University and affiliated hospitals. The severity of Parkinson's disease was classified as stage 3, 4 or 5 based on the Hoehn and Yahr staging system. Disease duration was 8.9 ± 5.1 years. Age, seven items from the Unified Parkinson's Disease Rating Scale motor section part III and three non-motor symptoms were assessed by multivariate analysis for their impact on the overactive bladder symptom score, a specific questionnaire for overactive bladder. Overactive bladder symptom score was significantly higher in the group with severe motor symptoms related to finger taps and gait than in the group with mild motor symptoms related to these two factors. Furthermore, overactive bladder symptom score of patients with erectile dysfunction and constipation was significantly higher than that in patients without these symptoms. Multivariate analysis identified only finger taps and constipation as factors independently associated with overactive bladder symptom score. Although a study on a larger scale is required to further assess the association of Parkinson's disease symptoms with overactive bladder symptom score, information on finger taps and severity of constipation should be obtained when assessing urological patients with Parkinson's disease. © 2013 The Japanese Urological Association.

  20. Refocusing Neuroprotection in Cerebral Reperfusion Era: New Challenges and Strategies

    Directory of Open Access Journals (Sweden)

    Xiao-Yi Xiong

    2018-04-01

    Full Text Available Pathophysiological processes of stroke have revealed that the damaged brain should be considered as an integral structure to be protected. However, promising neuroprotective drugs have failed when translated to clinical trials. In this review, we evaluated previous studies of neuroprotection and found that unsound patient selection and evaluation methods, single-target treatments, etc., without cerebral revascularization may be major reasons of failed neuroprotective strategies. Fortunately, this may be reversed by recent advances that provide increased revascularization with increased availability of endovascular procedures. However, the current improved effects of endovascular therapy are not able to match to the higher rate of revascularization, which may be ascribed to cerebral ischemia/reperfusion injury and lacking of neuroprotection. Accordingly, we suggest various research strategies to improve the lower therapeutic efficacy for ischemic stroke treatment: (1 multitarget neuroprotectant combinative therapy (cocktail therapy should be investigated and performed based on revascularization; (2 and more efforts should be dedicated to shifting research emphasis to establish recirculation, increasing functional collateral circulation and elucidating brain–blood barrier damage mechanisms to reduce hemorrhagic transformation. Therefore, we propose that a comprehensive neuroprotective strategy before and after the endovascular treatment may speed progress toward improving neuroprotection after stroke to protect against brain injury.

  1. Brain aromatase: roles in reproduction and neuroprotection.

    Science.gov (United States)

    Roselli, Charles F

    2007-01-01

    It is well established that aromatization constitutes an essential part of testosterone's signaling pathway in brain and that estrogen metabolites, often together with testosterone, organize and activate masculine neural circuits. This paper summarizes the current understanding regarding the distribution, regulation and function of brain aromatase in mammals. Data from our laboratory are presented that highlight the important function of aromatase in the regulation of androgen feedback sensitivity in non-human primates and the possible role that aromatase plays in determining the brain structure and sexual partner preferences of rams. In addition, new data is presented indicating that the capacity for aromatization in cortical astrocytes is associated with cell survival and may be important for neuroprotection. It is anticipated that a better appreciation of the physiological and pathophysiological functions of aromatase will lead to important clinical insights.

  2. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    Science.gov (United States)

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  3. The emerging role of retromer in neuroprotection.

    Science.gov (United States)

    McMillan, Kirsty J; Korswagen, Hendrick C; Cullen, Peter J

    2017-08-01

    Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Anesthetic Preconditioning as Endogenous Neuroprotection in Glaucoma

    Directory of Open Access Journals (Sweden)

    Tsung-Han Chou

    2018-01-01

    Full Text Available Blindness in glaucoma is the result of death of Retinal Ganglion Cells (RGCs and their axons. RGC death is generally preceded by a stage of reversible dysfunction and structural remodeling. Current treatments aimed at reducing intraocular pressure (IOP are ineffective or incompletely effective in management of the disease. IOP-independent neuroprotection or neuroprotection as adjuvant to IOP lowering in glaucoma remains a challenge as effective agents without side effects have not been identified yet. We show in DBA/2J mice with spontaneous IOP elevation and glaucoma that the lifespan of functional RGCs can be extended by preconditioning RGCs with retrobulbar lidocaine in one eye at four months of age that temporary blocks RGC axonal transport. The contralateral, PBS-injected eye served as control. Lidocaine-induced impairment of axonal transport to superior colliculi was assessed by intravitreal injection of cholera toxin B. Long-term (nine months effect of lidocaine were assessed on RGC electrical responsiveness (PERG, IOP, expression of relevant protein (BDNF, TrkB, PSD95, GFAP, Synaptophysin, and GAPDH and RGC density. While lidocaine treatment did not alter the age-related increase of IOP, TrkB expression was elevated, GFAP expression was decreased, RGC survival was improved by 35%, and PERG function was preserved. Results suggest that the lifespan of functional RGCs in mouse glaucoma can be extended by preconditioning RGCs in early stages of the disease using a minimally invasive treatment with retrobulbar lidocaine, a common ophthalmologic procedure. Lidocaine is inexpensive, safe and is approved by Food and Drug Administration (FDA to be administered intravenously.

  5. Report to the U.S. Congress on the Outcomes of the Nonmotorized Transportation Pilot Program SAFETEA-LU Section 1807

    Science.gov (United States)

    2012-04-30

    Section 1807 of the Safe, Accountable, Flexible Efficient Transportation Equity Act: A Legacy for Users : (SAFETEA-LU) P.L. 109-59 established the Nonmotorized Transportation Pilot Program (NTPP) in : August 2005. Over the span of 4 years, the NTPP p...

  6. Relationship between the non-motor items of the MDS-UPDRS and Quality of Life in patients with Parkinson's disease

    NARCIS (Netherlands)

    Skorvanek, Matej; Rosenberger, Jaroslav; Minar, Michal; Grofik, Milan; Han, Vladimir; Groothoff, Johan W.; Valkovic, Peter; Gdovinova, Zuzana; van Dijk, Jitse P.

    2015-01-01

    The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is a newly developed comprehensive tool to assess Parkinson's disease (PD), which covers a wider range of non-motor PD manifestations than the original UPDRS scale. The aim of this study was to assess the relationship

  7. A comparison of the neuroprotective efficacy of individual oxime (HI-6) and combinations of oximes (HI-6+trimedoxime, HI-6+K203) in soman-poisoned rats.

    Science.gov (United States)

    Kassa, Jiri; Karasova, Jana Zdarova; Tesarova, Sandra

    2011-07-01

    The ability of two combinations of oximes (HI-6+trimedoxime, HI-6+K203) to reduce soman-induced acute neurotoxic signs and symptoms was compared with the neuroprotective efficacy of the oxime HI-6 alone, using a functional observational battery. Soman-induced neurotoxicity and the neuroprotective effects of HI-6 alone and HI-6 combined with trimedoxime or K203 in rats poisoned with soman at a sublethal dose (90 μg/kg intramuscularly, i.m.; 80% of LD₅₀ value) were monitored by the functional observational battery at 24 hours following soman administration. The results indicate that both tested oxime mixtures combined with atropine were able to allow soman-poisoned rats to survive 24 hours following soman challenge, while 4 nontreated soman-poisoned rats and 1 soman-poisoned rat treated with oxime HI-6 alone combined with atropine died within 24 hours following soman poisoning. While the oxime HI-6 alone combined with atropine treatment was able to eliminate a few soman-induced neurotoxic signs and symptoms, both oxime mixtures showed higher neuroprotective efficacy in soman-poisoned rats. Especially, the combination of HI-6 with trimedoxime was able to eliminate most soman-induced neurotoxic signs and symptoms and markedly reduce acute neurotoxicity of soman in rats. Thus, both tested mixtures of oximes combined with atropine were able to increase the neuroprotective effectiveness of antidotal treatment of acute soman poisonings, compared to the individual oxime.

  8. The Promise of Neuroprotective Agents in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Judith ePotashkin

    2011-11-01

    Full Text Available Parkinson’s Disease is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.

  9. Neuroprotection against oxidative stress by serum from heat acclimated rats.

    Science.gov (United States)

    Beit-Yannai, E; Trembovler, V; Horowitz, M; Lazarovici, P; Kohen, R; Shohami, E

    1998-09-25

    Exposure of PC12 cells, to 1% serum derived from normothermic (CON) rats resulted in 79% cell death. Sister cultures treated with 1% serum derived from heat acclimated (ACC) rats, were neuroprotected and expressed a significant reduction in cell death. In PC12 cells exposed to a free radical generator causing an oxidative stress, 90% cell death was measured in CON serum treated cultures, while ACC serum treated cultures were neuroprotected. Xanthine oxidase activity and uric acid (UA) levels were lower in ACC serum compared to CON. Addition of UA to both sera abolished the difference in cell viability, and toxicity of ACC serum reached that of CON. These findings suggest a causal relationship between the lower levels of UA in ACC and the neuroprotective effect observed. The present study proposes heat acclimation as an experimental and/or clinical tool for the achievement of neuroprotection.

  10. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    National Research Council Canada - National Science Library

    Rosner, Mordechai

    2001-01-01

    .... It is not possible to prevent all these injuries and there is no treatment. This study was designed to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods...

  11. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    Science.gov (United States)

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence

    OpenAIRE

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-01

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on m...

  13. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    Science.gov (United States)

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  14. Neuroprotective potential of high-dose biotin.

    Science.gov (United States)

    McCarty, Mark F; DiNicolantonio, James J

    2017-11-01

    A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain

  15. Self-Reported Symptoms of Parkinson's Disease by Sex and Disease Duration.

    Science.gov (United States)

    Shin, Ju Young; Pohlig, Ryan T; Habermann, Barbara

    2017-11-01

    Parkinson's disease (PD) is a neurodegenerative disease with a wide range of symptom presentations. The purpose of this research was to compare self-reported motor and non-motor symptoms of PD by sex and disease duration. This study was a cross-sectional descriptive survey in community-dwelling people with PD. A total of 141 participants (64.6% response rate; 59.6% men; M age = 69.7 years) were included. Males reported more rigidity, speech problems, sexual dysfunction, memory problems, and socializing problems than females. The number of motor symptoms in three groups divided by increments of 5 years was significantly increased. Postural instability, freezing, off periods, dyskinesia, speech problems, and hallucinations/psychosis were significantly increased as the disease duration increased. Thorough assessment of motor and non-motor symptoms could decrease the risk of inadequate symptom management. Provision of information regarding PD symptoms at each stage may help people with PD and their caregivers in planning their future care and life.

  16. Electrical stimulation and tinnitus: neuroplasticity, neuromodulation, neuroprotection.

    Science.gov (United States)

    Abraham, Shulman; Barbara, Goldstein; Arnold, Strashun

    2013-01-01

    Neuroplasticity (NPL), neuromodulation (NM), and neuroprotection (NPT) are ongoing biophysiological processes that are linked together in sensory systems, the goal being the maintenance of a homeostasis of normal sensory function in the central nervous system. It is hypothesized that when the balance between excitatory - inhibitory action is broken in sensory systems, predominantly due to neuromodulatory activity with reduced induced inhibition and excitation predominates, sensory circuits become plastic with adaptation at synaptic levels to environmental inputs(1). Tinnitus an aberrant auditory sensation, for all clinical types, is clinically considered to reflect a failure of NPL, NM, and NPT to maintain normal auditory function at synaptic levels in sensory cortex and projected to downstream levels in the central auditory system in brain and sensorineural elements in ear. Clinically, the tinnitus sensation becomes behaviorally manifest with varying degrees of annoyance, reflecting a principle of sensory physiology that each sensation has components, i.e. sensory, affect/behavior, psychomotor and memory. Modalities of tinnitus therapies, eg instrumentation, pharmacology, surgery, target a particular component of tinnitus, with resultant activation of neuromodulators at multiple neuromodulatory centers in brain and ear. Effective neuromodulation at sensory neuronal synaptic levels results in NPL in sensory cortex, NPT and tinnitus relief. Functional brain imaging, metabolic (PET brain) and electrophysiology quantitative electroencephalography (QEEG) data in a cochlear implant soft failure patient demonstrates what is clinically considered to reflect NPL, NM, NPT. The reader is provided with a rationale for tinnitus diagnosis and treatment, with a focus on ES, reflecting the biology underlying NPL, NM, NPT.

  17. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  18. Glaucoma Symptoms

    Science.gov (United States)

    ... up You can help find a cure for glaucoma Give now Signs & Symptoms The most common types ... have completely different symptoms. Symptoms of Open-Angle Glaucoma Most people who develop open-angle glaucoma don’ ...

  19. Neurodegeneration and Neuroprotection in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Abdullah S. Alhomida

    2013-01-01

    Full Text Available Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.

  20. Medical management of Parkinson's disease: focus on neuroprotection.

    Science.gov (United States)

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-06-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson's disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.

  1. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  2. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review

    Directory of Open Access Journals (Sweden)

    Kandhasamy Sowndhararajan

    2018-06-01

    Full Text Available Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb. In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.

  3. Neuroprotection for Stroke: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Christoph Kleinschnitz

    2012-09-01

    Full Text Available Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.

  4. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas

    2012-07-01

    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  5. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  6. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats.

    Science.gov (United States)

    Suk, Kyoungho; Kim, Sun Yeou; Leem, Kanghyun; Kim, Young Ock; Park, Sun Young; Hur, Jinyoung; Baek, Jihwoon; Lee, Kang Jin; Zheng, Hu Zhan; Kim, Hocheol

    2002-04-21

    In traditional Oriental medicine, Uncaria rhynchophylla has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Thus, in the current study, we evaluated neuroprotective effects of U. rhynchophylla after transient global ischemia using 4-vessel occlusion model in rats. Methanol extract of U. rhynchophylla administered intraperitoneally (100-1000 mg/kg at 0 and 90 min after reperfusion) significantly protected hippocampal CA1 neurons against 10 min transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in U. rhynchophylla-treated rats compared to saline-treated animals. In U. rhynchophylla-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 hr after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, U. rhynchophylla extract inhibited TNF-alpha and nitric oxide production in BV-2 mouse microglial cells in vitro. These anti-inflammatory actions of U. rhynchophylla extract may contribute to its neuroprotective effects.

  7. Nonmotorized recreation and motorized recreation in shrub-steppe habitats affects behavior and reproduction of golden eagles (Aquila chrysaetos).

    Science.gov (United States)

    Spaul, Robert J; Heath, Julie A

    2016-11-01

    Different forms of outdoor recreation have different spatiotemporal activity patterns that may have interactive or cumulative effects on wildlife through human disturbance, physical habitat change, or both. In western North America, shrub-steppe habitats near urban areas are popular sites for motorized recreation and nonmotorized recreation and can provide important habitat for protected species, including golden eagles. Our objective was to determine whether recreation use (i.e., number of recreationists) or recreation features (e.g., trails or campsites) predicted golden eagle territory occupancy, egg-laying, or the probability a breeding attempt resulted in ≥1 offspring (nest survival). We monitored egg-laying, hatching and fledging success, eagle behavior, and recreation activity within 23 eagle territories near Boise, Idaho, USA. Territories with more off-road vehicle (ORV) use were less likely to be occupied than territories with less ORV use (β = -1.6, 85% CI: -2.8 to -0.8). At occupied territories, early season pedestrian use (β = -1.6, 85% CI: -3.8 to -0.2) and other nonmotorized use (β = -3.6, 85% CI: -10.7 to -0.3) reduced the probability of egg-laying. At territories where eagles laid eggs, short, interval-specific peaks in ORV use were associated with decreased nest survival (β = -0.5, 85% CI: -0.8 to -0.2). Pedestrians, who often arrived near eagle nests via motorized vehicles, were associated with reduced nest attendance (β = -11.9, 85% CI: -19.2 to -4.5), an important predictor of nest survival. Multiple forms of recreation may have cumulative effects on local populations by reducing occupancy at otherwise suitable territories, decreasing breeding attempts, and causing nesting failure. Seasonal no-stopping zones for motorized vehicles may be an alternative to trail closures for managing disturbance. This study demonstrates the importance of considering human disturbance across different parts of the annual cycle, particularly where

  8. The Impact of Carsharing on Public Transit and Non-Motorized Travel: An Exploration of North American Carsharing Survey Data

    Directory of Open Access Journals (Sweden)

    Susan Shaheen

    2011-11-01

    Full Text Available By July 2011, North American carsharing had grown to an industry of nearly 640,000 members since its inception on the continent more than 15 years ago. Carsharing engenders changes in member travel patterns both towards and away from public transit and non-motorized modes. This study, which builds on the work of two previous studies, evaluates this shift in travel based on a 6281 respondent survey completed in late-2008 by members of major North American carsharing organizations. Across the entire sample, the results showed an overall decline in public transit use that was statistically significant, as 589 carsharing members reduced rail use and 828 reduced bus use, while 494 increased rail use and 732 increased bus use. Thus for every five members that use rail less, four members use rail more, and for every 10 members that ride a bus less, almost nine members ride the bus more. The people increasing and decreasing their transit use are fundamentally different in terms of how carsharing impacts their travel environment. This reduction, however, is also not uniform across all organizations; it is primarily driven by a minority (three of eleven of participating organizations. At the same time, members exhibited a statistically significant increase in travel by walking, bicycling, and carpooling. Across the sample, 756 members increased walking versus a 568 decrease, 628 increased bicycling versus a 235 decrease, and 289 increased carpooling versus a decrease of 99  study participants. The authors found that 970 members reduced their auto commuting to work, while 234 increased it. Interestingly, when these shifts are combined across modes, more people increased their overall public transit and non-motorized modal use after joining carsharing than decreased it. Data collected on the commute distance of respondents found that carsharing members tend to have shorter commutes than most people living in the same zip code. The analysis also evaluates

  9. Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

    Science.gov (United States)

    Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H

    2015-06-01

    To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Science.gov (United States)

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  11. Using lithium as a neuroprotective agent in patients with cancer

    Directory of Open Access Journals (Sweden)

    Khasraw Mustafa

    2012-11-01

    Full Text Available Abstract Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect. This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.

  12. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    cell death induced by OGD. The newer anticonvulsants carbamazepine, felbamate, lamotrigine, tiagabine, and oxcarbazepine also had significant neuroprotective effects, but gabapentin, valproic acid (10 mM), levetiracetam and retigabine were not neuroprotective at a concentration up to 300 micro...

  13. Melatonin-Based Therapeutics for Neuroprotection in Stroke

    Directory of Open Access Journals (Sweden)

    Cesar V. Borlongan

    2013-04-01

    Full Text Available The present review paper supports the approach to deliver melatonin and to target melatonin receptors for neuroprotection in stroke. We discuss laboratory evidence demonstrating neuroprotective effects of exogenous melatonin treatment and transplantation of melatonin-secreting cells in stroke. In addition, we describe a novel mechanism of action underlying the therapeutic benefits of stem cell therapy in stroke, implicating the role of melatonin receptors. As we envision the clinical entry of melatonin-based therapeutics, we discuss translational experiments that warrant consideration to reveal an optimal melatonin treatment strategy that is safe and effective for human application.

  14. An Analysis of US Emergency Department Visits From Falls From Skiing, Snowboarding, Skateboarding, Roller-Skating, and Using Nonmotorized Scooters.

    Science.gov (United States)

    Nathanson, Brian H; Ribeiro, Kara; Henneman, Philip L

    2016-07-01

    We analyzed the US incidence of emergency department (ED) visits and hospitalizations for falls from skiing, snowboarding, skateboarding, roller-skating, and nonmotorized scooters in 2011. The outcome was hospital admission from the ED. The primary analysis compared pediatric patients aged 1 to 17 years to adults aged 18 to 44 years. The analysis used ICD-9 E-codes E885.0 to E885.4 using discharge data from the Nationwide Emergency Department Sample, Healthcare Cost and Utilization Project, Agency for Healthcare Research and Quality. Approximately 214 000 ED visits met study criteria. Skiing injuries had the highest percentage of hospitalizations (3.30% in pediatric patients and 6.65% in adults 18-44 years old). Skateboard and snowboard injuries were more likely to require hospitalization than roller skating injuries in pediatric patients (odds ratio = 2.42; 95% CI = 2.14-2.75 and odds ratio = 1.83; 95% CI =1.55-2.15, respectively). In contrast, skateboard and snowboard injuries were less severe than roller-skating injuries in adults. © The Author(s) 2015.

  15. Meta-analysis of early nonmotor features and risk factors for Parkinson disease.

    Science.gov (United States)

    Noyce, Alastair J; Bestwick, Jonathan P; Silveira-Moriyama, Laura; Hawkes, Christopher H; Giovannoni, Gavin; Lees, Andrew J; Schrag, Anette

    2012-12-01

    To evaluate the association between diagnosis of Parkinson disease (PD) and risk factors or early symptoms amenable to population-based screening. A systematic review and meta-analysis of risk factors for PD. The strongest associations with later diagnosis of PD were found for having a first-degree or any relative with PD (odds ratio [OR], 3.23; 95% confidence interval [CI], 2.65-3.93 and OR, 4.45; 95% CI, 3.39-5.83) or any relative with tremor (OR, 2.74; 95% CI, 2.10-3.57), constipation (relative risk [RR], 2.34; 95% CI, 1.55-3.53), or lack of smoking history (current vs never: RR, 0.44; 95% CI, 0.39-0.50), each at least doubling the risk of PD. Further positive significant associations were found for history of anxiety or depression, pesticide exposure, head injury, rural living, beta-blockers, farming occupation, and well-water drinking, and negative significant associations were found for coffee drinking, hypertension, nonsteroidal anti-inflammatory drugs, calcium channel blockers, and alcohol, but not for diabetes mellitus, cancer, oral contraceptive pill use, surgical menopause, hormone replacement therapy, statins, acetaminophen/paracetamol, aspirin, tea drinking, history of general anesthesia, or gastric ulcers. In the systematic review, additional associations included negative associations with raised serum urate, and single studies or studies with conflicting results. The strongest risk factors associated with later PD diagnosis are having a family history of PD or tremor, a history of constipation, and lack of smoking history. Further factors also but less strongly contribute to risk of PD diagnosis or, as some premotor symptoms, require further standardized studies to demonstrate the magnitude of risk associated with them. Copyright © 2012 American Neurological Association.

  16. Neuroprotective Effects against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Ann D. Liebert

    2016-01-01

    Full Text Available Postoperative cognitive dysfunction (POCD is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.

  17. Getting to NO Alzheimer’s Disease: Neuroprotection versus Neurotoxicity Mediated by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Rachelle Balez

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder involving the loss of neurons in the brain which leads to progressive memory loss and behavioral changes. To date, there are only limited medications for AD and no known cure. Nitric oxide (NO has long been considered part of the neurotoxic insult caused by neuroinflammation in the Alzheimer’s brain. However, focusing on early developments, prior to the appearance of cognitive symptoms, is changing that perception. This has highlighted a compensatory, neuroprotective role for NO that protects synapses by increasing neuronal excitability. A potential mechanism for augmentation of excitability by NO is via modulation of voltage-gated potassium channel activity (Kv7 and Kv2. Identification of the ionic mechanisms and signaling pathways that mediate this protection is an important next step for the field. Harnessing the protective role of NO and related signaling pathways could provide a therapeutic avenue that prevents synapse loss early in disease.

  18. Neuroprotective potential of Citrullus lanatus seed extract and ...

    African Journals Online (AJOL)

    Mercury chloride toxicity continues to be relevant in the advent of increased interest in mining activity in Nigeria. The neuroprotective potential of Citrullus lanatus seed extract (CLSE) (Watermelon seed) and vitamin E (VIT E) on mercury chloride intoxication on the frontal cerebral cortex of male rats was investigated.

  19. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  20. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools.

    Science.gov (United States)

    Nafissi, Nafiseh; Foldvari, Marianna

    2015-01-01

    Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.

  1. Multiple sclerosis: Neuroprotective alliance of estrogen-progesterone and gender

    NARCIS (Netherlands)

    Kipp, M.; Amor, S.; Kraut, R.; Beyer, C.

    2012-01-01

    The potential of 17β-estradiol and progesterone as neuroprotective factors is well-recognized. Persuasive data comes from in vitro and animal models reflecting a wide range of CNS disorders. These studies have endeavored to translate findings into human therapies. Nonetheless, few human studies show

  2. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    With sufficient research and clinical trials in future, this could prove to be successful in treatment or management of autism as a neurodevelopmental disorder recently related to PA neurotoxicity. Keywords: Propionic acid, creatine, SH-SY5Y, comet assay, DNA fragmentation assay, apoptosis, neuroprotection. African Journal ...

  3. Neuroprotective effects of α-lipoic acid against hypoxic– ischemic ...

    African Journals Online (AJOL)

    Purpose: To explore the neuroprotective efficacy of α-lipoic acid (ALA) against hypoxic-ischemic encephalopathy (HIE) in neonatal rats. Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: group I received saline; group II (HI) underwent unilateral carotid artery ligation and hypoxia (92 % N2 ...

  4. Putative neuroprotective actions of N-acyl-ethanolamines

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Moesgaard, B.; Petersen, G.

    2002-01-01

    when other phospholipids are subjected to rapid degradation. This is an important biosynthetic aspect of NAPE and NAE, as NAEs may be neuroprotective by a number of different mechanisms involving both receptor activation and non-receptor-mediated effects, e.g. by binding to cannabinoid receptors...

  5. Neuroprotective effects of Ellagic acid on Neonatal Hypoxic Brain ...

    African Journals Online (AJOL)

    Purpose: To investigate if ellagic acid exerts neuroprotective effects in hypoxic ischemic (HI) brain injury by inhibiting apoptosis and inflammatory responses. Methods: Separate groups of rat pups from post-natal day 4 (D4) were administered with ellagic acid (10, 20 or 40 mg/kg body weight) orally till post- natal day 10 ...

  6. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    edoja

    2013-07-31

    Jul 31, 2013 ... Full Length Research Paper. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afaf El-Ansary*, Ghada Abu-Shmais and Abeer Al-Dbass. Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Zip code 11495, Riyadh, ...

  7. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    Science.gov (United States)

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  8. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cristina Hernández

    2016-01-01

    Full Text Available Diabetic retinopathy (DR is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF, the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.

  9. NEUROPROTECTIVE THERAPIES IN GLAUCOMA: II. GENETIC NANOTECHNOLOGY TOOLS

    Directory of Open Access Journals (Sweden)

    Nafiseh eNafissi

    2015-10-01

    Full Text Available Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The field of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.

  10. The Neuroprotective Effect Of Electro-Acupuncture Against Ischemic ...

    African Journals Online (AJOL)

    The Neuroprotective Effect Of Electro-Acupuncture Against Ischemic Stroke In Animal Model: A Review. ... Conclusion: An awareness of the benefits of acupuncture might lead more patients into accepting acupuncture therapy for the management of patients with ischemic stroke and patients with high risk of ischemic stroke.

  11. Neuroprotective effect corilagin in spinal cord injury rat model by ...

    African Journals Online (AJOL)

    Background: Neurological functions get altered in a patient suffering from spinal cord injury (SCI). Present study evaluates the neuroprotective effect of corilagin in spinal cord injury rats by inhibiting nuclear factor-kappa B (NF-κB), inflammatory mediators and apoptosis. Materials and method: Spinal cord injury was ...

  12. Neuroprotective effect of Terminalia chebula extracts and ellagic ...

    African Journals Online (AJOL)

    Background: Alzheimer's disease (AD) is one of the common neurodegenerative disorders among elderly. The purpose of this study was to determine the neuroprotective effect and mechanisms of action underlying the Terminalia chebula extracts and ellagic acid by using beta-amyloid25-35 (Aβ25-35)-induced cell toxicity ...

  13. Melatonin for women in pregnancy for neuroprotection of the fetus.

    Science.gov (United States)

    Wilkinson, Dominic; Shepherd, Emily; Wallace, Euan M

    2016-03-29

    Melatonin is an antioxidant with anti-inflammatory and anti-apoptotic effects. Animal studies have supported a fetal neuroprotective role for melatonin when administered maternally. It is important to assess whether melatonin, given to the mother, can reduce the risk of neurosensory disabilities (including cerebral palsy) and death, associated with fetal brain injury, for the preterm or term compromised fetus. To assess the effects of melatonin when used for neuroprotection of the fetus. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2016). We planned to include randomised controlled trials and quasi-randomised controlled trials comparing melatonin given to women in pregnancy (regardless of the route, timing, dose and duration of administration) for fetal neuroprotection with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of melatonin. Two review authors planned to independently assess trial eligibility, trial quality and extract the data. We found no randomised trials for inclusion in this review. One study is ongoing. As we did not identify any randomised trials for inclusion in this review, we are unable to comment on implications for practice at this stage.Although evidence from animals studies has supported a fetal neuroprotective role for melatonin when administered to the mother during pregnancy, no trials assessing melatonin for fetal neuroprotection in pregnant women have been completed to date. However, there is currently one ongoing randomised controlled trial (with an estimated enrolment target of 60 pregnant women) which examines the dose of melatonin, administered to women at risk of imminent very preterm birth (less than 28 weeks' gestation) required to reduce brain damage in the white matter of the babies that were born very preterm.Further high-quality research is needed and research

  14. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.

    Science.gov (United States)

    Nadal, Xavier; Del Río, Carmen; Casano, Salvatore; Palomares, Belén; Ferreiro-Vera, Carlos; Navarrete, Carmen; Sánchez-Carnerero, Carolina; Cantarero, Irene; Bellido, Maria Luz; Meyer, Stefan; Morello, Gaetano; Appendino, Giovanni; Muñoz, Eduardo

    2017-12-01

    Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ 9 -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ 9 -tetahydrocannabinol acid (Δ 9 -THCA) is largely unknown, despite its occurrence in different Cannabis preparations. Here we have assessed possible neuroprotective actions of Δ 9 -THCA through modulation of PPARγ pathways. The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ 9 -THCA on mitochondrial biogenesis and PPARγ coactivator 1-α expression was investigated in Neuro-2a (N2a) cells. The neuroprotective effect was analysed in STHdh Q111/Q111 cells expressing a mutated form of the huntingtin protein and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). The in vivo neuroprotective activity of Δ 9 -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NPA). Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ 9 -THCA increased mitochondrial mass in neuroblastoma N2a cells and prevented cytotoxicity induced by serum deprivation in STHdh Q111/Q111 cells and by mutHtt-q94 in N2a cells. Δ 9 -THCA, through a PPARγ-dependent pathway, was neuroprotective in mice treated with 3-NPA, improving motor deficits and preventing striatal degeneration. In addition, Δ 9 -THCA attenuated microgliosis, astrogliosis and up-regulation of proinflammatory markers induced by 3-NPA. Δ 9 -THCA shows potent neuroprotective activity, which is worth considering for the treatment of Huntington's disease and possibly other neurodegenerative and neuroinflammatory diseases. © 2017 The British Pharmacological Society.

  15. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality.

    Science.gov (United States)

    Ishida, Kazuyoshi; Berger, Miles; Nadler, Jacob; Warner, David S

    2014-01-01

    Anesthetics have been studied for nearly fifty years as potential neuroprotective compounds in both perioperative and resuscitation medicine. Although anesthetics present pharmacologic properties consistent with preservation of brain viability in the context of an ischemic insult, no anesthetic has been proven efficacious for neuroprotection in humans. After such effort, it could be concluded that anesthetics are simply not neuroprotective in humans. Moreover, pharmacologic neuroprotection with non-anesthetic drugs has also repeatedly failed to be demonstrated in human acute brain injury. Recent focus has been on rectification of promising preclinical neuroprotection data and subsequent failed clinical trials. This has led to consensus guidelines for the process of transferring purported therapeutics from bench to bedside. In this review we first examined the history of anesthetic neuroprotection research. Then, a systematic review was performed to identify major clinical trials of anesthetic neuroprotection. Both the preclinical neuroprotection portfolio cited to justify a clinical trial and the design and conduct of that clinical trial were evaluated using modern standards that include the Stroke Therapy Academic Industry Roundtable (STAIR) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. In publications intended to define anesthetic neuroprotection, we found overall poor quality of both preclinical efficacy analysis portfolios and clinical trial designs and conduct. Hence, using current translational research standards, it was not possible to conclude from existing data whether anesthetics ameliorate perioperative ischemic brain injury. Incorporation of advances in translational neuroprotection research conduct may provide a basis for more definitive and potentially successful clinical trials of anesthetics as neuroprotectants.

  16. Rasagiline for dysexecutive symptoms during wearing-off in Parkinson's disease: a pilot study.

    Science.gov (United States)

    Rinaldi, Domiziana; Assogna, Francesca; Sforza, Michela; Tagliente, Stefania; Pontieri, Francesco E

    2018-01-01

    Wearing-off refers to the predictable worsening of motor and sometimes non-motor symptoms of Parkinson's disease occurring at the end of levodopa dose that improves with the next drug dose. Here, we investigated the efficacy of rasagiline on executive functions at the end of levodopa dose in patients displaying symptoms of wearing-off. Rasagiline was well-tolerated and produced a significant improvement at the Frontal Assessment Battery, together with improvement of motor symptoms at the end of levodopa dose. These results suggest that treatment of motor symptoms of wearing-off with rasagiline may be accompanied by improvement of executive functions, and further support the need for optimizing dopamine replacement therapy in fluctuating Parkinson's disease patients.

  17. Parkinson's Disease Videos

    Medline Plus

    Full Text Available ... With Non-Motor Symptoms What Are the Neuroprotective Benefits of Exercise for PD Patients? Are There Any ... todos los presentadores What Are the Risks and Benefits of DBS Surgery? CareMAP: Managing Caregiver Stress CareMAP: ...

  18. Multiple factors, including non-motor impairments, influence decision making with regard to exercise participation in Parkinson's disease: a qualitative enquiry.

    Science.gov (United States)

    O'Brien, Christine; Clemson, Lindy; Canning, Colleen G

    2016-01-01

    To explore how the meaning of exercise and other factors interact and influence the exercise behaviour of individuals with Parkinson's disease (PD) enrolled in a 6-month minimally supervised exercise program to prevent falls, regardless of whether they completed the prescribed exercise or not. This qualitative study utilised in-depth semi-structured interviews analysed using grounded theory methodology. Four main themes were constructed from the data: adapting to change and loss, the influence of others, making sense of the exercise experience and hope for a more active future. Participation in the PD-specific physiotherapy program involving group exercise provided an opportunity for participants to reframe their identity of their "active" self. Three new influences on exercise participation were identified and explored: non-motor impairments of apathy and fatigue, the belief in a finite energy quota, and the importance of feedback. A model was developed incorporating the themes and influences to explain decision-making for exercise participation in this group. Complex and interacting issues, including non-motor impairments, need to be considered in order to enhance the development and ongoing implementation of effective exercise programmes for people with PD. Exercise participation can assist individuals to reframe their identity as they are faced with losses associated with Parkinson's disease and ageing. Non-motor impairments of apathy and fatigue may influence exercise participation in people with Parkinson's disease. Particular attention needs to be paid to the provision of feedback in exercise programs for people with Parkinson's disease as it important for their decision-making about continuing exercise.

  19. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    International Nuclear Information System (INIS)

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory D.; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-01-01

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.

  20. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.

    Science.gov (United States)

    Khalil, Wagdy K B; Assaf, Naglaa; ElShebiney, Shaimaa A; Salem, Neveen A

    2015-01-01

    Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress. Exposure of animals to rotenone induces a range of responses characteristic of PD, including reactive oxygen species production and dopaminergic cell death. Although l-dopa is the drug of choice for improving core symptoms of PD, it is associated with involuntary movements. The current study was directed to evaluate the neuroprotective effect of bee venom acupuncture therapy (BVA) against rotenone-induced oxidative stress, neuroinflammation, and apoptosis in PD mouse model. Forty male Swiss mice were divided into four groups: (1) received saline solution orally and served as normal control, (2) received rotenone (1.5 mg/kg, s.c. every other day for 6 doses), (3) received rotenone concomitantly with l-dopa (25 mg/kg, daily, p.o. for 6 days), and finally (4) received rotenone concomitantly with BVA (0.02 ml once every 3 days for two weeks). Rotenone-treated mice showed impairment in locomotor behavior and a significant reduction in brain dopamine, serotonin, norepinephrine, GSH levels, and paraoxonase activity, whereas a significant increase was observed in brain malondialdehyde, tumor necrosis factor-α, interleukin-β levels besides DNA damage, and over-expression of caspase-3, Bax, and Bcl-2 genes. Significant improvement of the aforementioned parameters was demonstrated after BVA compared to l-dopa therapy. In conclusion, bee venom normalized all the neuroinflammatory and apoptotic markers and restored brain neurochemistry after rotenone injury. Therefore, BVA is a promising neuroprotective therapy for PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    Science.gov (United States)

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  2. Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367.

    Science.gov (United States)

    Song, Ji Hoon; Lee, Changyeol; Lee, Dahae; Kim, Soonok; Bang, Sunghee; Shin, Myoung-Sook; Lee, Jun; Kang, Ki Sung; Shim, Sang Hee

    2018-05-23

    Colletotrichum sp. JS-0367 was isolated from Morus alba (mulberry), identified, and cultured on a large scale for chemical investigation. One new anthraquinone (1) and three known anthraquinones (2-4) were isolated and identified using spectroscopic methods including 1D/2D-NMR and HRESIMS. Although the neuroprotective effects of some anthraquinones have been reported, the biological activities of the four anthraquinones isolated in this study have not been reported. Therefore, the neuroprotective effects of these compounds were determined against murine hippocampal HT22 cell death induced by glutamate. Compound 4, evariquinone, showed strong protective effects against HT22 cell death induced by glutamate by the inhibition of intracellular ROS accumulation and Ca 2+ influx triggered by glutamate. Immunoblot analysis revealed that compound 4 reduced the phosphorylation of MAPKs (JNK, ERK1/2, and p38) induced by glutamate. Furthermore, compound 4 strongly attenuated glutamate-mediated apoptotic cell death.

  3. Neuroprotective effects of Resveratrol in Alzheimer Disease Pathology

    Directory of Open Access Journals (Sweden)

    Shraddha D Rege

    2014-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4’-trihydroxy-trans-stilbene when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogues aimed at increasing bioavailability in plasma is also discussed.

  4. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Haijian Wu

    2015-09-01

    Full Text Available Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases.

  5. [Similarity of cycloprolylglycine to piracetam in antihypoxic and neuroprotective effects].

    Science.gov (United States)

    Kolisnikova, K N; Gudasheva, T A; Nazarova, G A; Antipov, T A; Voronina, T A; Seredenin, S B

    2012-01-01

    The antihypoxic activity of the endogenous cyclic dipeptide cycloprolylglycine (CPG) has been studied on a model of normobaric hypoxia with hypercapnia and its neuroprotective activity has been studied on a model of human neuroblastoma SH-SY5Y cell damage by 6-hydroxydopamine. It is established that CPG exhibits the antihypoxic activity at doses of 0.5 and 1.0 mg/kg (i.p.) on outbred and BALB/c mice, but not on C57B1/6 mice. The neuroprotective activity of CPG was detected in 10(-5) - 10(-8) M concentration range only when the treatment was carried out 24h before toxin introduction. The obtained data confirm the hypothesis that piracetam is a mimetic of the endogenous CPG neuropeptide.

  6. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    OpenAIRE

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2011-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidan...

  7. Targeted proteins involved in the neuroprotective effects of lithium citrate

    OpenAIRE

    I. Yu. Torshin; O. A. Gromova; L. A. Mayorova; A. Yu. Volkov

    2017-01-01

    Preparations based on organic lithium salts are promising neuroprotective agents that are effective just in the micromolar concentration range and, at the same time, have high safety (Toxicity Class V).Objective: to elucidate more detailed mechanisms responsible for the biological and pharmacological effects of lithium citrate, by analyzing the possible interactions of lithium ion with human proteome proteins that are also represented in the rat proteome.Material and methods. The targets of l...

  8. Neuroprotective 2-(2-phenylethyl)chromones of Imperata cylindrica.

    Science.gov (United States)

    Yoon, Jeong Seon; Lee, Mi Kyeong; Sung, Sang Hyun; Kim, Young Choong

    2006-02-01

    Bioactivity-guided fractionation of the methanolic extract of the rhizomes of Imperata cylindrica afforded a new compound, 5-hydroxy-2-(2-phenylethyl)chromone (1), together with three known compounds, 5-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]chromone (2), flidersiachromone (3), and 5-hydroxy-2-styrylchromone (4). Among these four compounds, 1 and 2 showed significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultures of rat cortical cells.

  9. Stem Cell-Based Neuroprotective and Neurorestorative Strategies

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hung

    2010-05-01

    Full Text Available Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS, reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.

  10. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke.

    Science.gov (United States)

    Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa; Obenaus, Andre; Bazan, Nicolas G

    2014-03-15

    Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo. Animals received neurobehavioral examination (composite neuroscore, rota-rod, beam walking and Y maze tests) followed by ex vivo magnetic resonance imaging and histopathology at 3 weeks. DHA improved composite neurologic score beginning on day 1 by 20%, which persisted throughout weeks 1-3 by 24-41% compared to the saline-treated group. DHA prolonged the latency in rota-rod on weeks 2-3 by 162-178%, enhanced balance performance in the beam walking test on weeks 1 and 2 by 42-51%, and decreased the number of entries in the Y maze test by 51% and spontaneous alteration by 53% on week 2 compared to the saline-treated group. DHA treatment reduced tissue loss (computed from T2-weighted images) by 24% and total and cortical infarct volumes by 46% and 54% compared to the saline-treated group. These results show that DHA confers enduring ischemic neuroprotection. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    International Nuclear Information System (INIS)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-01-01

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH 2 -RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27 Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27 Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27 Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin

  12. Neuroprotection and its molecular mechanism following spinal cord injury☆

    Science.gov (United States)

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  13. Molecular Basis for Certain Neuroprotective Effects of Thyroid Hormone

    Directory of Open Access Journals (Sweden)

    Paul eDavis

    2011-10-01

    Full Text Available The pathophysiology of brain damage that is common to ischemia-reperfusion inury and brain trauma includes disordered neuronal and glial cell energetics, intracellular acidosis, calcium toxicity, extracellular excitotoxic glutamate accumulation and dysfunction of the cytoskeleton and endoplasmic reticulum. Thyroid hormone isoforms, 3, 5, 3'-triiodo-L-thyronine (T3 and L-thyroxine (T4, have nongenomic and genomic actions that are relevant to repair of certain features of the pathophysiology of brain damage. Thyroid hormone can nongenomically repair intracullar H+ accumulation by stimulation of the Na+/H+ exchanger and can support desirably low [Ca2+]i.c. by activation of plasma membrane Ca2+-ATPase. Thyroid hormone nongenomically stimulates astrocyte glutamate uptake, an action that protects both glial cells and neurons. The hormone supports the integrity of the cytoskeleton by its effect on actin. Several proteins linked to thyroid hormone action are also neuroprotective. For example, the hormone stimulates expression of the seladin-1 gene whose gene product is anti-apoptotic and is potentially protection in the setting of neurodegeneration. Transthyretin (TTR is a serum transport protein for T4 that is important to blood-brain barrier transfer of the hormone and TTR has also been found to be neuroprotective in the setting of ischemia. Finally, the interesting thyronamine derivatives of T4 have been shown to protect against ischemic brain damage through their ability to induce hypothermia in the intact organism. Thus, thyroid hromone or hormone derivatives have experimental promise as neuroprotective agents.

  14. Neuroprotective effects of female sex steroids in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Drača Sanja

    2013-03-01

    Full Text Available The central and peripheral nervous system are important targets of sex steroids. Sex steroids affect the brain development and differentiation, and influence neuronal functions. Recent evidence emphasizes a striking sex-linked difference in brain damage after experimental stroke, as well as the efficacy of hormones in treating cerebral stroke injury. Several different models of cerebral ischemia have been utilized for hormone neuroprotection studies, including transient or permanent middle cerebral artery occlusion, transient global ischemia, and transient forebrain ischemia. Extensive experimental studies have shown that female sex steroids such as progesterone and 176-estradiol exert neuroprotective effects in the experimental models of stroke, although deleterious effects have also been reported. Also, a significance of numerous factors, including gender and age of experimental animals, localization of brain lesion, duration of ischemia and precise dose of steroids has been pointed out. There are multiple potential mechanisms that might be invoked to explain the beneficial effects of female sex steroids in brain injury, involving neuroprotection, anti-inflammatory properties, effects on vasculature and altered transcriptional regulation. A several clinical trials on the effects of sex hormones to traumatic brain injury have been performed, suggesting that hormone therapy may represent a new therapeutic tool to combat certain diseases, such as traumatic brain injury. Further basic science studies and randomized clinical trials are necessary to reveal a potential application of these molecules as a new therapeutic strategy.

  15. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  16. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke

    DEFF Research Database (Denmark)

    Clausen, Bettina Hjelm; Lambertsen, Kate Lykke; Dagnæs-Hansen, Frederik

    2016-01-01

    ), a known neuroprotectant in stroke, can promote neuroprotection, by modulating the detrimental inflammatory response in the tissue at risk. We show by the use of IL-1Ra-overexpressing and IL-1Ra-deficient mice that IL-1Ra is neuroprotective in stroke. Characterization of the cellular and spatiotemporal...... irradiated mice with IL-1Ra-producing bone marrow cells is associated with neuroprotection and recruitment of IL-1Ra-producing leukocytes after stroke. Neuroprotection is also achieved by therapeutic injection of IL-1Ra-producing bone marrow cells 30 min after stroke onset, additionally improving...... by demonstration of IL-1Ra-producing cells in the human cortex early after ischemic stroke. Taken together, our results attribute distinct neuroprotective or neurotoxic functions to segregated subsets of microglia and suggest that treatment strategies increasing the production of IL-1Ra by infiltrating leukocytes...

  17. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    Science.gov (United States)

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID

  18. Plague Symptoms

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Plague Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Plague Home Ecology & Transmission Symptoms Diagnosis & Treatment Maps & Statistics ...

  19. Recognizing Symptoms

    Science.gov (United States)

    ... helpful, please consider supporting IFFGD with a small tax- deductible donation. Make Donation Signs and Symptoms Overview ... arises requiring an expert’s care. © Copyright 1998-2018 International Foundation for Functional Gastrointestinal Disorders, Inc. (IFFGD). All ...

  20. Rotavirus Symptoms

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Rotavirus Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Rotavirus Home About Rotavirus Symptoms Transmission Treatment Photos Vaccination ...

  1. Neuroprotection and secondary damage following spinal cord injury: concepts and methods.

    Science.gov (United States)

    Hilton, Brett J; Moulson, Aaron J; Tetzlaff, Wolfram

    2017-06-23

    Neuroprotection refers to the attenuation of pathophysiological processes triggered by acute injury to minimize secondary damage. The development of neuroprotective treatments represents a major goal in the field of spinal cord injury (SCI) research. In this review, we discuss the strengths and limitations of the methodologies employed to assess secondary damage and neuroprotection in preclinical models of traumatic SCI. We also discuss modelling issues and how new tools might be exploited to study secondary damage and neuroprotection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Progression of motor symptoms in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Ruiping Xia; Zhi-Hong Mao

    2012-01-01

    Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is clinically manifested by a triad of cardinal motor symptoms - rigidity,bradykinesia and tremor - due to loss of dopaminergic neurons.The motor symptoms of PD become progressively worse as the disease advances.PD is also a heterogeneous disease since rigidity and bradykinesia are the major complaints in some patients whereas tremor is predominant in others.In recent years,many studies have investigated the progression of the hallmark symptoms over time,and the cardinal motor symptoms have different rates of progression,with the disease usually progressing faster in patients with rigidity and bradykinesia than in those with predominant tremor.The current treatment regime of dopamine-replacement therapy improves motor symptoms and alleviates disability.Increasing the dosage of dopaminergic medication is commonly used to combat the worsenirtg symptoms.However,the drug-induced involuntary body movements and motor comphcations can significantly contribute to overall disability.Further,none of the currently-available therapies can slow or halt the disease progression.Significant research efforts have been directed towards developing neuroprotective or disease-modifying agents that are intended to slow the progression.In this article,the most recent clinical studies investigating disease progression and current progress on the development of disease-modifying drug trials are reviewed.

  3. In Vitro Screening of Three Indian Medicinal Plants for Their Phytochemicals, Anticholinesterase, Antiglucosidase, Antioxidant, and Neuroprotective Effects.

    Science.gov (United States)

    Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha; Amooru Gangaiah, Damu

    2017-01-01

    Cooccurrence of Diabetes Mellitus and Alzheimer's disease in elder people prompts scientists to develop multitarget agents that combat causes and symptoms of both diseases simultaneously. In line with this modern paradigm and as a follow-up to our previous studies, the present study is designed to investigate the crude methanolic extracts and subsequent CHCl 3 , n -BuOH, and H 2 O fractions of Acalypha alnifolia , Pavetta indica, and Ochna obtusata for their inhibitory activities towards specific targets involved in AD and DM, namely, acetylcholinesterase, butyrylcholinesterase, and α -glucosidase ( α -Glc). The methanolic extract and its derived chloroform fractions exhibited remarkable inhibitory capacities with IC 50 values being found at the μ g/mL level. Further studies on most active chloroform fractions presented a prominent ability to scavenge DPPH and ABTS reactive species and highest neuroprotective effect against H 2 O 2 induced cell injury. Phytochemical analysis showed a large amount of phenolics, flavonoids, and terpenoids in active fractions. In conclusion, A. alnifolia , P. indica, and O. obtusata could be promising sources for the treatment of AD and DM since these fractions induced significant anticholinesterase, antidiabetic, antioxidant, and neuroprotection effects attributable to phenolic, flavonoid, and terpenoid contents and encourage further studies for development of multifunctional therapeutic agent for AD and DM dual therapy.

  4. [Neuroprotective subthalamotomy in Parkinson's disease. The role of magnetic resonance-guided focused ultrasound in early surgery].

    Science.gov (United States)

    Guridi, Jorge; Marigil, Miguel; Becerra, Victoria; Parras, Olga

    Subthalamic nucleus hyperactivity in Parkinson's disease may be a very early phenomenon. Its start is not well known, and it may occur during the pre-symptomatic disease stage. Glutamatergic hyperactivity may be neurotoxic over the substantia nigra compacta dopaminergic neurons. If this occurred, the excitatory neurotransmitter, glutamate, should affect the neurons that maintain a high turnover as a compensatory mechanism. Would a subthalamic nucleus lesion decrease this hyperactivity and thus be considered as a neuroprotective mechanism for dopaminergic neurons? The authors hypothesise about the possibility to perform surgery on a subthalamic nucleus lesion at a very early stage in order to avoid the neurotoxic glutamatergic effect over the dopaminergic neurons, and therefore be considered as a neuroprotective surgery able to alter the progress of the disease during early motor symptoms. In this regard, magnetic resonance-guided focused ultrasound techniques open a new window in the stereotactic armamentarium. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Focal ischemia of the brain after neuroprotected carotid artery stenting.

    Science.gov (United States)

    Schlüter, Michael; Tübler, Thilo; Steffens, Johann C; Mathey, Detlef G; Schofer, Joachim

    2003-09-17

    This study sought to assess the incidence of cerebral ischemia in nonselected patients undergoing neuroprotected carotid angioplasty and stenting (CAS) without preceding multiple-vessel diagnostic angiography. Protection devices to prevent distal embolization during CAS are presently under clinical investigation. Diffusion-weighted magnetic resonance imaging (MRI) visualizes recent ischemia of the brain and may aid in assessing the efficacy of protection devices. Elective CAS was performed in 42 consecutive patients (15 female, 27 male; mean age, 67 +/- 9 years) using six different types of cerebral protection systems. All patients underwent MRI of the brain before and after a total of 44 interventions. Placement and retrieval of the devices and stent deployment was achieved in all procedures. New ischemic foci were seen on postinterventional MRI in 10 cases (22.7%). One patient had sustained a major stroke, whereas no adverse neurological sequelae were associated with the other nine procedures. In the latter, one to three foci (maximum area 43.0 mm(2)) were detected in cerebral regions subtended by the ipsilateral carotid artery in eight cases and by the contralateral carotid artery in one case. In the stroke patient, 12 ischemic foci (maximum area 84.5 mm(2)) were exclusively located in the contralateral hemisphere. Follow-up MRI at 4.1 months (median, n = 7) identified residuals of cerebral ischemia only in this patient. Neuroprotected CAS is associated in about 25% of cases with predominantly silent cerebral ischemia. Our findings suggest manipulation of endoluminal equipment in the supraaortic vessels to be a major risk factor for cerebral embolism during neuroprotected CAS.

  6. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat!

    Science.gov (United States)

    Virmani, Ashraf; Pinto, Luigi; Binienda, Zbigniew; Ali, Syed

    2013-10-01

    Diet in human health is no longer simple nutrition, but in light of recent research, especially nutrigenomics, it is linked via evolution and genetics to cell health status capable of modulating apoptosis, detoxification, and appropriate gene response. Nutritional deficiency and disease especially lack of vitamins and minerals is well known, but more recently, epidemiological studies suggest a role of fruits and vegetables, as well as essential fatty acids and even red wine (French paradox), in protection against disease. In the early 1990s, various research groups started considering the use of antioxidants (e.g., melatonin, resveratrol, green tea, lipoic acid) and metabolic compounds (e.g., nicotinamide, acetyl-L-carnitine, creatine, coenzyme Q10) as possible candidates in neuroprotection. They were of course considered on par with snake oil salesman (women) at the time. The positive actions of nutritional supplements, minerals, and plant extracts in disease prevention are now mainstream and commercial health claims being made are subject to regulation in most countries. Apart from efficacy and finding, the right dosages, the safety, and especially the level of purification and lack of contamination are all issues that are important as their use becomes widespread. From the mechanistic point of view, most of the time these substances replenish the body's deficiency and restore normal function. However, they also exert actions that are not sensu stricto nutritive and could be considered pharmacological especially that, at times, higher intake than recommended (RDA) is needed to see these effects. Free radicals and neuroinflammation processes underlie many neurodegenerative conditions, even Parkinson's disease and Alzheimer's disease. Curcumin, carotenoids, acetyl-L-carnitine, coenzyme Q10, vitamin D, and polyphenols and other nutraceuticals have the potential to target multiple pathways in these conditions. In summary, augmenting neuroprotective pathways using

  7. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  8. A New Triterpene from Buddleja lindleyana with Neuroprotective Effect

    Directory of Open Access Journals (Sweden)

    Ya-Shuo Ren

    2017-07-01

    Full Text Available In the phytochemical investigation of Buddleja lindleyana , a new 3-acetyl substituted triterpene, 13, 28-epoxy-23-hydroxy-3β-acetoxy-olean-11-ene (1, together with four same skeleton type known compounds (2-5 were isolated. The structure of 1 was elucidated by means of extensive spectroscopic analysis. Their neuroprotective effect against 1-methyl-4 -phenylpyridinium ion-induced (MPP +-induced neurotoxicity in SH-SY5Y cells were evaluated. The structure activity relationship of compounds 1-5 has been discussed preliminarily.

  9. Ketogenic Diet Provides Neuroprotective Effects against Ischemic Stroke Neuronal Damages

    Directory of Open Access Journals (Sweden)

    Sheida Shaafi

    2014-12-01

    Full Text Available Ischemic stroke is a leading cause of death and disability in the world. Many mechanisms contribute in cell death in ischemic stroke. Ketogenic diet which has been successfully used in the drug-resistant epilepsy has been shown to be effective in many other neurologic disorders. The mechanisms underlying of its effects are not well studied, but it seems that its neuroprotective ability is mediated at least through alleviation of excitotoxicity, oxidative stress and apoptosis events. On the basis of these mechanisms, it is postulated that ketogenic diet could provide benefits to treatment of cerebral ischemic injuries.

  10. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    Science.gov (United States)

    2016-06-01

    Nissl , Fluoro-jade C (FJ), NeuN and heat shock protein 70-72 (HSP). Nissl , FJ and NeuN stains were used to assess neuroprotection. HSP was used to...days after SE. The brains were removed and sectioned on a vibratome (50µm) throughout the dorsal hippocampus. Sections were stained for Nissl ...2.5mg/kg (n=2). Nissl - stained sections from the left hemisphere of each brain were evaluated for damage and scored using the following scale: 1

  11. Norovirus Symptoms

    Science.gov (United States)

    ... many times a day. This can lead to dehydration, especially in young children, older adults, and people with other illnesses. Symptoms of dehydration— decrease in urination dry mouth and throat feeling dizzy when standing up Children who are dehydrated may cry with few or ...

  12. Neuroprotection in Parkinson's disease: A systematic review of the preclinical data

    NARCIS (Netherlands)

    Douna, H.; Bavelaar, B.M.; Pellikaan, H.; Olivier, B.; Pieters, T.

    2012-01-01

    Aim: This study aimed to systematically review the preclinical data of neuroprotective agents for Parkinson's disease (PD) to support the translation of these compounds. Methods: The study consisted of two phases. In phase I, Pubmed and Scopus were systematically searched for neuroprotective agents

  13. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus

    NARCIS (Netherlands)

    Doyle, Lex W.; Crowther, Caroline A.; Middleton, Philippa; Marret, Stephane; Rouse, Dwight

    2009-01-01

    Background Epidemiological and basic science evidence suggests that magnesium sulphate before birth may be neuroprotective for the fetus. Objectives To assess the effects of magnesium sulphate as a neuroprotective agent when given to women considered at risk of preterm birth. Search strategy We

  14. Neuroprotection as initial therapy in acute stroke - Third report of an Ad Hoc Consensus Group Meeting

    NARCIS (Netherlands)

    Bogousslavsky, J; De Keyser, J; Diener, HC; Fieschi, C; Hacke, W; Kaste, M; Orgogozo, JM; Pulsinelli, W; Wahlgren, NG

    1998-01-01

    Although a considerable body of scientific data is now available on neuroprotection in acute ischaemic stroke, this field is not yet established in clinical practice. At its third meeting, the European Ad Hoc Consensus Group considered the potential for neuroprotection in acute stroke and the

  15. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  16. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  17. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  18. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    Science.gov (United States)

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  19. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease.

    Science.gov (United States)

    Curry, Daniel W; Stutz, Bernardo; Andrews, Zane B; Elsworth, John D

    2018-03-26

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.

  20. Neuroprotective effects of testosterone treatment in men with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Florian Kurth

    2014-01-01

    Full Text Available Multiple sclerosis (MS is an inflammatory and neurodegenerative disease of the central nervous system. While current medication reduces relapses and inflammatory activity, it has only a modest effect on long-term disability and gray matter atrophy. Here, we have characterized the potential neuroprotective effects of testosterone on cerebral gray matter in a pilot clinical trial. Ten men with relapsing–remitting MS were included in this open-label phase II trial. Subjects were observed without treatment for 6 months, followed by testosterone treatment for another 12 months. Focal gray matter loss as a marker for neurodegeneration was assessed using voxel-based morphometry. During the non-treatment phase, significant voxel-wise gray matter decreases were widespread (p≤ 0.05 corrected. However, during testosterone treatment, gray matter loss was no longer evident. In fact, a significant gray matter increase in the right frontal cortex was observed (p≤ 0.05 corrected. These observations support the potential of testosterone treatment to stall (and perhaps even reverse neurodegeneration associated with MS. Furthermore, they warrant the investigation of testosterone's neuroprotective effects in larger, placebo controlled MS trials as well as in other neurodegenerative diseases. This is the first report of gray matter increase as the result of treatment in MS.

  1. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  2. Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Edward C. Lauterbach

    2013-11-01

    Full Text Available Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc. are commonly prescribed to treat Huntington’s disease (HD. In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium, histone acetylation (lithium, valproate, lamotrigine, miR-222 (lithium-plus-valproate, mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin, neurogenesis (lithium, valproate, fluoxetine, sertraline, and BDNF (lithium, valproate, sertraline and downregulated AP-1 DNA binding (lithium, p53 (lithium, huntingtin aggregation (antipsychotics, lithium, and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin. In HD live mouse models, delayed disease onset (nortriptyline, melatonin, striatal preservation (haloperidol, tetrabenazine, lithium, sertraline, memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine, motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine, and extended survival (lithium, valproate, sertraline, melatonin have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan and downregulated histone deacetylase (HDAC; valproate await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3 suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine.

  3. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke

    Science.gov (United States)

    Liu, Zhongwu; Chopp, Michael

    2015-01-01

    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  4. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  5. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection.

    Science.gov (United States)

    Prasad, Shiv S; Russell, Marsha; Nowakowska, Margeryta; Williams, Andrew; Yauk, Carole

    2012-06-01

    Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways

  6. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Stefanie Endesfelder

    2017-01-01

    Full Text Available Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6 corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC, promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1, down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB, reduced pro-apoptotic effectors (poly (ADP-ribose polymerase-1 (PARP-1, apoptosis inducing factor (AIF, and caspase-3, and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP 2, and inhibitor of metalloproteinase (TIMP 1/2. Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  7. Pharmacological preconditioning with GYKI 52466: a prophylactic approach to neuroprotection

    Directory of Open Access Journals (Sweden)

    Chelsea S Goulton

    2010-08-01

    Full Text Available Some toxins and drugs can trigger lasting neuroprotective mechanisms that enable neurons to resist a subsequent severe insult. This ‘pharmacological preconditioning’ has far-reaching implications for conditions in which blood flow to the brain is interrupted. We have previously shown that in vitro preconditioning with the AMPA receptor antagonist GYKI 52466 induces tolerance to kainic acid (KA toxicity in hippocampus. This effect persists well after washout of the drug and may be mediated via inverse agonism of G protein linked receptors. Given the amplifying nature of metabotropic modulation, we hypothesised that GYKI 52466 may be effective in reducing seizure severity at doses well below those normally associated with adverse side effects. Here we report that pharmacological preconditioning with low-dose GYKI imparts a significant protection against KA-induced seizures in vivo. GYKI (3 mg/kg, s.c., 90 to 180 min. prior to high-dose KA, markedly reduced seizure scores, virtually abolished all level 3 and level 4 seizures, and completely suppressed KA-induced hippocampal cFOS expression. In addition, preconditioned animals exhibited significant reductions in high frequency/high amplitude spiking and ECoG power in the delta, theta, alpha and beta bands during KA. Adverse behaviours often associated with higher doses of GYKI were not evident during preconditioning. The fact that GYKI is effective at doses well-below, and at pre-administration intervals well-beyond previous studies, suggests that a classical blockade of ionotropic AMPA receptors does not underlie anticonvulsant effects. Low-dose GYKI preconditioning may represent a novel, prophylactic strategy for neuroprotection in a field almost completely devoid of effective pharmaceuticals.

  8. Effects of dimethyl fumarate on neuroprotection and immunomodulation

    Directory of Open Access Journals (Sweden)

    Albrecht Philipp

    2012-07-01

    Full Text Available Abstract Background Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate is a promising novel oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. These effects are presumed to originate from a combination of immunomodulatory and neuroprotective mechanisms. We aimed to clarify whether neuroprotective concentrations of dimethyl fumarate have immunomodulatory effects. Findings We determined time- and concentration-dependent effects of dimethyl fumarate and its metabolite monomethyl fumarate on viability in a model of endogenous neuronal oxidative stress and clarified the mechanism of action by quantitating cellular glutathione content and recycling, nuclear translocation of transcription factors, and the expression of antioxidant genes. We compared this with changes in the cytokine profiles released by stimulated splenocytes measured by ELISPOT technology and analyzed the interactions between neuronal and immune cells and neuronal function and viability in cell death assays and multi-electrode arrays. Our observations show that dimethyl fumarate causes short-lived oxidative stress, which leads to increased levels and nuclear localization of the transcription factor nuclear factor erythroid 2-related factor 2 and a subsequent increase in glutathione synthesis and recycling in neuronal cells. Concentrations that were cytoprotective in neuronal cells had no negative effects on viability of splenocytes but suppressed the production of proinflammatory cytokines in cultures from C57BL/6 and SJL mice and had no effects on neuronal activity in multi-electrode arrays. Conclusions These results suggest that immunomodulatory concentrations of dimethyl fumarate can reduce oxidative stress without altering neuronal network activity.

  9. Altered network communication following a neuroprotective drug treatment.

    Directory of Open Access Journals (Sweden)

    Kathleen Vincent

    Full Text Available Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious conditions. While cell protection under preconditioning is well established, this paper investigates the influence of neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic, on synaptic communication across a broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to 4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours following drug washout, however, the density of functional connections increased, while path length decreased and clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout, suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for information processing in brain systems. The observed relationship between density, path length, and clustering coefficient is captured by a phenomenological model where connections are added randomly within a spatially-embedded network. Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in traditional viability studies and present the first investigation of functional networks under neuroprotective preconditioning.

  10. Meta-Analysis of Creatine for Neuroprotection Against Parkinson's Disease.

    Science.gov (United States)

    Attia; Ahmed, Hussien; Gadelkarim, Mohamed; Morsi, Mahmoud; Awad, Kamal; Elnenny, Mohamed; Ghanem, Esraa; El-Jaafary, Shaimaa; Negida, Ahmed

    2017-01-01

    Creatine is an antioxidant agent that showed neuroprotective effects in animal models of Parkinson's disease (PD). Creatine was selected by the National Institute of Neurological Disorders and Stroke as a possible disease modifying agent for Parkinson's disease. Therefore, many clinical trials evaluated the efficacy of creatine for patients with PD. The aim of this systematic review and meta-analysis is to synthesize evidence from published randomized controlled trials (RCTs) about the efficacy of Creatine for patients with PD. We followed PRISMA statement guidelines during the preparation of this systematic review and meta-analysis. A computer literature search for PubMed, EBSCO, web of science and Ovid Midline was carried out. We included RCTs comparing creatine with placebo in terms of motor functions and quality of life. Outcomes of total Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS I, UPDRS II, and UPDRS III were pooled as mean difference (MD) between two groups from baseline to the endpoint. Statistical heterogeneity was assessed by visual inspection of the forest plot and measured by chi-square and I square tests. Three RCTs (n=1935) were included in this study. The overall effect did not favor either of the two groups in terms of: UPDRS total score (MD 1.07, 95% CI [3.38 to 1.25], UPDRS III (MD 0.62, 95% CI [2.27 to 1.02]), UPDRS II (MD 0.03, 95% CI [0.81 to 0.86], or UPDRS I (MD 0.03, 95% CI [0.33 to 0.28]). Current evidence does not support the use of creatine for neuroprotection against PD. Future well-designed, randomized controlled trials are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    Science.gov (United States)

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  12. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    Directory of Open Access Journals (Sweden)

    Murat Sahin

    2015-01-01

    Full Text Available The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  13. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research July 2015; 14 (7): 1191-1197 ... Abstract. Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGF- ... catecholamines, reduces levels of dopamine and.

  14. Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Zhang

    2018-01-01

    Full Text Available Intravenous stem cell transplantation initiates neuroprotection related to the secretion of trophic factor. Borneol, a potential herbal neuroprotective agent, is a penetration enhancer. Here, we aimed to investigate whether they have additive neuroprotective effect on cerebral ischemia. Borneol was given to mice by gavage 3 days before middle cerebral artery occlusion (MCAO induction until the day when the mice were sacrificed. Mesenchymal stem cells (MSCs were intravenously injected at 24 h after MCAO induction. Neurological deficits, infarct volume, cell death, and neurogenesis were evaluated. Combined use of MSCs and borneol could more effectively reduce infarction volume and cell apoptosis, enhance neurogenesis, and improve the functional recovery than that of MSCs alone. The findings showed that combined use of borneol and stem cells provided additive neuroprotective effect on cerebral ischemia. However, the supposed effect of borneol on the improved MSC penetration still needs further direct evidence.

  15. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys.

    Directory of Open Access Journals (Sweden)

    Sachiko Ohshima-Hosoyama

    Full Text Available Glial cell line derived neurotrophic factor (GDNF is a neurotrophic factor that has neuroprotective effects in animal models of Parkinson's disease (PD and has been proposed as a PD therapy. GDNF does not cross the blood brain barrier (BBB, and requires direct intracerebral delivery to be effective. Trojan horse technology, in which GDNF is coupled to a monoclonal antibody (mAb against the human insulin receptor (HIR, has been proposed to allow GDNF BBB transport (ArmaGen Technologies Inc.. In this study we tested the feasibility of HIRMAb-GDNF to induce neuroprotection in parkinsonian monkeys, as well as its tolerability and safety. Adult rhesus macaques were assessed throughout the study with a clinical rating scale, a computerized fine motor skills task and general health evaluations. Following baseline measurements, the animals received a unilateral intracarotid artery MPTP injection. Seven days later the animals were evaluated, matched according to disability and blindly assigned to receive twice a week i.v. treatments (vehicle, 1 or 5 mg/kg HIRmAb-GDNF for a period of three months. HIRmAb-GDNF did not improve parkinsonian motor symptoms and induced a dose-dependent hypersensitivity reaction. Quantification of dopaminergic striatal optical density and stereological nigral cell counts did not demonstrate differences between treatment groups. Focal pancreatic acinar to ductular metaplasia (ADM was noted in four of seven animals treated with 1 mg/kg HIRmAb-GDNF; two of four with ADM also had focal pancreatic intraepithelial neoplasia 1B (PanIN-1B lesions. Minimal to mild, focal to multifocal, nonsuppurative myocarditis was noted in all animals in the 5 mg/kg treatment group. Our results demonstrate that HIRmAb-GDNF dosing in a monkey model of PD is not an effective neuroprotective strategy and may present serious health risks that should be considered when planning future use of the IR antibody as a carrier, or of any systemic treatment of a

  16. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age

    OpenAIRE

    Saraulli, Daniele; Costanzi, Marco; Mastrorilli, Valentina; Farioli-Vecchioli, Stefano

    2017-01-01

    Background The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on ...

  17. Fatty Acid Methyl Esters and Solutol HS 15 Confer Neuroprotection After Focal and Global Cerebral Ischemia

    OpenAIRE

    Lin, Hung Wen; Saul, Isabel; Gresia, Victoria L.; Neumann, Jake T.; Dave, Kunjan R.; Perez-Pinzon, Miguel A.

    2013-01-01

    We previously showed that palmitic methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Soluto...

  18. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study.

    Science.gov (United States)

    Rule, R R; Suhy, J; Schuff, N; Gelinas, D F; Miller, R G; Weiner, M W

    2004-09-01

    After replication of previous findings we aimed to: 1) determine if previously reported (1)H MRSI differences between ALS patients and control subjects are limited to the motor cortex; and 2) determine the longitudinal metabolic changes corresponding to varying levels of diagnostic certainty. Twenty-one patients with possible/suspected ALS, 24 patients with probable/definite ALS and 17 control subjects underwent multislice (1)H MRSI co-registered with tissue-segmented MRI to obtain concentrations of the brain metabolites N-acetylaspartate (NAA), creatine, and choline in the left and right motor cortex and in gray matter and white matter of non-motor regions in the brain. In the more affected hemisphere, reductions in the ratios, NAA/Cho and NAA/Cre+Cho were observed both within (12.6% and 9.5% respectively) and outside (9.2% and 7.3% respectively) the motor cortex in probable/definite ALS. However, these reductions were significantly greater within the motor cortex (PNAA/Cho and PNAA/Cre+Cho). Longitudinal changes in NAA were observed at three months within the motor cortex of both possible/suspected ALS patients (PNAA ratios are reduced in the motor cortex and outside the motor cortex in ALS, suggesting widespread neuronal injury. Longitudinal changes of NAA are not reliable, suggesting that NAA may not be a useful surrogate marker for treatment trials.

  19. Neuroprotective effect of bilberry extract in a murine model of photo-stressed retina.

    Directory of Open Access Journals (Sweden)

    Hideto Osada

    Full Text Available Excessive exposure to light promotes degenerative and blinding retinal diseases such as age-related macular degeneration and retinitis pigmentosa. However, the underlying mechanisms of photo-induced retinal degeneration are not fully understood, and a generalizable preventive intervention has not been proposed. Bilberry extract is an antioxidant-rich supplement that ameliorates ocular symptoms. However, its effects on photo-stressed retinas have not been clarified. In this study, we examined the neuroprotective effects of bilberry extract against photo-stress in murine retinas. Light-induced visual function impairment recorded by scotopic and phototopic electroretinograms showing respective rod and cone photoreceptor function was attenuated by oral administration of bilberry extract through a stomach tube in Balb/c mice (750 mg/kg body weight. Bilberry extract also suppressed photo-induced apoptosis in the photoreceptor cell layer and shortening of the outer segments of rod and cone photoreceptors. Levels of photo-induced reactive oxygen species (ROS, oxidative and endoplasmic reticulum (ER stress markers, as measured by real-time reverse transcriptase polymerase chain reaction, were reduced by bilberry extract treatment. Reduction of ROS by N-acetyl-L-cysteine, a well-known antioxidant also suppressed ER stress. Immunohistochemical analysis of activating transcription factor 4 expression showed the presence of ER stress in the retina, and at least in part, in Müller glial cells. The photo-induced disruption of tight junctions in the retinal pigment epithelium was also attenuated by bilberry extract, repressing an oxidative stress marker, although ER stress markers were not repressed. Our results suggest that bilberry extract attenuates photo-induced apoptosis and visual dysfunction most likely, and at least in part, through ROS reduction, and subsequent ER stress attenuation in the retina. This study can help understand the mechanisms of photo

  20. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    Science.gov (United States)

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.

  1. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1.

    Directory of Open Access Journals (Sweden)

    Ronald A Merrill

    2011-04-01

    Full Text Available Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM targeted form of the protein kinase A (PKA catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1 as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1, inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.

  2. Neuroprotective effects of statins against amyloid β-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Li

    2018-01-01

    Full Text Available A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD. In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ levels by affecting amyloid precursor protein (APP cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.

  3. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    Science.gov (United States)

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    2010-10-01

    Full Text Available A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  5. Quercetin, not caffeine, is a major neuroprotective component in coffee.

    Science.gov (United States)

    Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L

    2016-10-01

    Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  7. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  8. Transthyretin neuroprotection in Alzheimer's disease is dependent on proteolysis.

    Science.gov (United States)

    Silva, Catarina S; Eira, Jessica; Ribeiro, Carlos A; Oliveira, Ângela; Sousa, Mónica M; Cardoso, Isabel; Liz, Márcia A

    2017-11-01

    The deposition of amyloid β peptide (Aβ) in the hippocampus is one of the major hallmarks of Alzheimer's disease, a neurodegenerative disorder characterized by memory loss and cognitive impairment. The modulation of Aβ levels in the brain results from an equilibrium between its production from the amyloid precursor protein and removal by amyloid clearance proteins, which might occur via enzymatic (Aβ-degrading enzymes) or nonenzymatic (binding/transport proteins) reactions. Transthyretin (TTR) is one of the major Aβ-binding proteins acting as a neuroprotector in AD. In addition, TTR cleaves Aβ peptide in vitro. In this work, we show that proteolytically active TTR, and not the inactive form of the protein, impacts on Aβ fibrillogenesis, degrades neuronal-secreted Aβ, and reduces Aβ-induced toxicity in hippocampal neurons. Our data demonstrate that TTR proteolytic activity is required for the neuroprotective effect of the protein constituting a putative novel therapeutic target for AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neuroprotective effect of a new variant of Epo nonhematopoietic against oxidative stress

    Directory of Open Access Journals (Sweden)

    C. Castillo

    2018-04-01

    Full Text Available Human erythropoietin is mainly recognized for its hematopoietic function; however, by binding to its receptor (EpoR, it can activate different signaling pathways as STAT, PI3K, MAPK and RAS to increase cellular differentiation or provide neuroprotective effects, among others. A recombinant human erythropoietin variant with low glycosylation and without hematopoietic effect (EpoL was purified from skimmed goat milk. Recombinant human erythropoietin (Epo was obtained from CHO cell line and used as control to compare EpoL effects. Neuroprotection studies were performed in PC12 cells and rat hippocampal slices. Cells were pretreated during 1 h with EpoL or Epo and exposed to oxidative agents (H2O2 or FCCP; cell viability was assayed at the end of the experiment by the MTT method. Hippocampal slices were exposed to 15 min of oxygen and glucose deprivation (OGD and the neuroprotective drugs EpoL or Epo were incubated for 2 h post-OGD in re-oxygenated medium. Cell cultures stressed with oxidative agents, and pretreated with EpoL, showed neuroprotective effects of 30% at a concentration 10 times lower than that of Epo. Moreover, similar differences were observed in OGD ex vivo assays. Neuroprotection elicited by EpoL was lost when an antibody against EpoR was present, indicating that its effect is EpoR-dependent. In conclusion, our results suggest that EpoL has a more potent neuroprotective profile than Epo against oxidative stress, mediated by activation of EpoR, thus EpoL represents an important target to develop a potential biopharmaceutical to treat different central nervous system pathologies related to oxidative stress such as stroke or neurodegenerative diseases. Keywords: Erythropoietin, Erythropoietin receptor, Neuroprotection, Oxidative stress

  10. Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?

    Science.gov (United States)

    Andrews, R. J.

    1999-01-01

    The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved

  11. Edaravone offers neuroprotection for acute diabetic stroke patients.

    Science.gov (United States)

    Zheng, J; Chen, X

    2016-11-01

    Edaravone, a novel free-radical scavenger, has been shown to alleviate cerebral ischemic injury and protect against vascular endothelial dysfunction. However, the effects of edaravone in acute diabetic stroke patients remain undetermined. A randomized, double-blind, placebo-controlled study was performed to prospectively evaluate the effects of edaravone on acute diabetic stroke patients admitted to our hospital within 24 h of stroke onset. The edaravone group received edaravone (30 mg twice per day) diluted with 100 ml of saline combined with antiplatelet drug aspirin and atorvastatin for 14 days. The non-edaravone group was treated only with 100 ml of saline twice per day combined with aspirin and atorvastatin. Upon admission, and on days 7, 14 post-stroke onset, neurological deficits and activities of daily living were assessed using the National Institutes of Health Stroke Scale (NIHSS) and the Barthel Index (BI), respectively. The occurrence of hemorrhage transformation, pulmonary infection, progressive stroke and epilepsy was also evaluated on day 14 post-treatment. A total of 65 consecutive acute diabetic stroke patients were enrolled, of whom 35 were allocated to the edaravone group and 30 to the non-edaravone group. There was no significant group difference in baseline clinical characteristics, but mean NIHSS scores were lower (60 %), and BI scores were 1.7-fold higher, in edaravone-treated patients vs. controls on day 14. Furthermore, the incidence of hemorrhage transformation, pulmonary infection, progressive stroke and epilepsy was markedly reduced in the edaravone vs. non-edaravone group. Edaravone represents a promising neuroprotectant against cerebral ischemic injury in diabetic patients.

  12. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  13. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  14. Erythropoietin's Beta Common Receptor Mediates Neuroprotection in Spinal Cord Neurons.

    Science.gov (United States)

    Foley, Lisa S; Fullerton, David A; Mares, Joshua; Sungelo, Mitchell; Weyant, Michael J; Cleveland, Joseph C; Reece, T Brett

    2017-12-01

    Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury. The purpose of this study was to examine whether EPO-mediated neuroprotection was dependent on βcR expression. We hypothesized that spinal cord neurons subjected to oxygen-glucose deprivation would mimic SCIR injury in aortic surgery and EPO treatment attenuates this injury in a βcR-dependent fashion. Lentiviral vectors with βcR knockdown sequences were tested on neuron cell cultures. The virus with greatest βcR knockdown was selected. Spinal cord neurons from perinatal wild-type mice were harvested and cultured to maturity. They were treated with knockdown or nonsense virus and transduced cells were selected. Three groups (βcR knockdown virus, nonsense control virus, no virus control; n = 8 each) were subjected to 1 hour of oxygen-glucose deprivation. Viability was assessed. βcR expression was quantified by immunoblot. EPO preserved neuronal viability after oxygen-glucose deprivation (0.82 ± 0.04 versus 0.61 ± 0.01; p neuron preservation was similar in the nonsense virus and control mice (0.82 ± 0.04 versus 0.80 ± 0.05; p = 0.77). EPO neuron preservation was lost in βcR knockdown mice compared with nonsense control mice (0.46 ± 0.03 versus 0.80 ± 0.05; p neuronal loss after oxygen-glucose deprivation in a βcR-dependent fashion. This receptor holds immense clinical promise as a target for pharmacotherapies treating spinal cord ischemic injury. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Yang Yufeng

    2009-09-01

    Full Text Available Abstract Background Parkinson's disease (PD is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN death in the substantia nigra (SN. These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10, and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX. All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD

  16. Morphological functional criteria of neuroprotective therapy efficacy in glaucomatous optic neuropathy

    Directory of Open Access Journals (Sweden)

    Tszin Dan

    2015-01-01

    Full Text Available Electrophysiological tests may be used to detect early glaucomatous changes and glaucoma progression risk and to monitor treatment efficacy. Most important pathogenic aspects of glaucomatous process, pathogenesis and multifactorial nature of glaucomatous optic neuropathy are described. Major triggers of glaucomatous optic neuropathy are mechanical and vascular. Principles of neuroprotective therapy, neuroprotective drugs, and mechanisms of action of direct and indirect neuroprotective agents are presented. IOPcc is a basis for neuroprotective therapy selection and its efficacy monitoring. Amongst neuroprotective drugs, NMDA agonists, antioxidants, peptides, and calcium channel blockers are of special importance. Structural damage and functional deficiency (e.g., visual field loss in glaucoma and the most informative and accurate methods of their detection are characterized. Confocal laser microscopy, optical coherence tomography, and scanning laser polarimetry are compared. These techniques are used to study optic nerve head and retinal nerve fiber layer. They are proposed as diagnostic and monitoring tools for glaucoma, glaucoma suspicion, and ocular hypertension. The most sensitive and specific electrophysiological tests for glaucomatous optic neuropathy are pattern electroretinography, multfocal electroretinography, and multifocal visually evoked potentials. 

  17. Combining neuroprotectants in a model of retinal degeneration: no additive benefit.

    Directory of Open Access Journals (Sweden)

    Fabiana Di Marco

    Full Text Available The central nervous system undergoing degeneration can be stabilized, and in some models can be restored to function, by neuroprotective treatments. Photobiomodulation (PBM and dietary saffron are distinctive as neuroprotectants in that they upregulate protective mechanisms, without causing measurable tissue damage. This study reports a first attempt to combine the actions of PBM and saffron. Our working hypothesis was that the actions of PBM and saffron in protecting retinal photoreceptors, in a rat light damage model, would be additive. Results confirmed the neuroprotective potential of each used separately, but gave no evidence that their effects are additive. Detailed analysis suggests that there is actually a negative interaction between PBM and saffron when given simultaneously, with a consequent reduction of the neuroprotection. Specific testing will be required to understand the mechanisms involved and to establish whether there is clinical potential in combining neuroprotectants, to improve the quality of life of people affected by retinal pathology, such as age-related macular degeneration, the major cause of blindness and visual impairment in older adults.

  18. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection.

    Science.gov (United States)

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M

    2017-02-24

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  19. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection

    Directory of Open Access Journals (Sweden)

    Peter Körtvelyessy

    2017-02-01

    Full Text Available The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  20. Motor and Non-motor Features: Differences between Patients with Isolated Essential Tremor and Patients with Both Essential Tremor and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Apostolia Ghika

    2015-08-01

    Full Text Available Background: Patients with essential tremor (ET who develop Parkinson’s disease (ET->PD may differ with respect to motor features (MFs and non-motor features (NMFs from patients with isolated ET. Few studies have assessed this issue. Methods: In this retrospective chart review, we analyzed data on MFs and NMFs of 175 patients, including 54 ET->PD and 121 ET, actively followed in the Athens University 1st Neurology Department. Results: Significantly more ET->PD than ET patients reported asymmetric tremor at ET onset (68.5% vs. 14.9%, p<0.001.  Significantly more ET than ET->PD patients had head tremor (43.5% vs. 13.2%, p<0.001 and cerebellar signs (41.3% vs. 9.3%, p<0.001. More ET than ET->PD patients reported hearing impairment (65.3% vs. 28.3%, p<0.001 and restless legs syndrome (34.8% vs. 3.7%, p<0.001. Conversely, a larger proportion of ET->PD than ET patients reported rapid eye movement behavior disorder (51.9% vs. 10.0%, p<0.001, constipation (67.9% vs. 36.4%, p<0.001, and olfactory dysfunction (83.3% vs. 36.4%, p<0.001. Discussion: The subset of ET->PD patients may have distinct MFs and NMFs that should be assessed further for the possible predictive value for the emergence of PD.  

  1. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood–Brain Barrier Disruption

    International Nuclear Information System (INIS)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-01-01

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood–brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients—5 acute-phase and 14 scheduled—underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  2. Syntheses of sulfanylphthalimide and xanthine analogues and their evaluation as inhibitors of monoamine oxidase and as antagonists of adenosine receptors / Mietha Magdalena van der Walt

    OpenAIRE

    Van der Walt, Mietha Magdalena

    2013-01-01

    Currently L-DOPA is the drug most commonly used for the treatment of Parkinson’s disease (PD). However, the long-term use of L-DOPA is associated with the development of motor fluctuations and dyskinesias. Treatment mainly addresses the dopaminergic features of the disease and leaves its progressive course unaffected. An optimal treatment would be a combination of both motor and non-motor symptom relief with neuroprotective properties. Two drug targets have attracted the attent...

  3. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    and downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10......Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...

  4. Angiotensin II Type 2 Receptor Agonist Experts Sustained Neuroprotective Effects In Aged Rats

    DEFF Research Database (Denmark)

    Sumners, Colin; Isenberg, Jacob; Harmel, Allison

    2016-01-01

    OBJECTIVE: The renin angiotensin system is a promising target for stroke neuroprotection and therapy through activation of angiotensin type II receptors (AT2R). The selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exhibit neuroprotection and improve stroke outcomes...... in preclinical studies, effects that likely involve neurotropic actions. However, these beneficial actions of C21 have not been demonstrated to occur beyond 1 week post stroke. The objective of this study was to determine if systemic administration of C21 would exert sustained neuroprotective effects in aged...... min), 24 h, and 48 h after stroke. Infarct size was assessed by magnetic resonance imaging at 21 days post MCAO. Animals received blinded neurological exams at 4 h, 24 h, 72 h, 7d, 14d, and 21d post-MCAO. RESULTS: Systemic treatment with C21 after stroke significantly improved neurological function...

  5. Use of a wire extender during neuroprotected vertebral artery angioplasty and stenting.

    Science.gov (United States)

    Lesley, Walter S; Kumar, Ravi; Rangaswamy, Rajesh

    2010-09-01

    The off-label use of an extender wire during vertebral artery stenting and angioplasty with or with neuroprotection has not been previously reported. Retrospective, single-patient, technical report. After monorail balloon angioplasty was performed on a proximal left vertebral artery stenosis, the 190 cm long Accunet neuroprotection filter device was not long enough for delivery of an over-the-wire stent. After mating a 145 cm long, 0.014 inch extension wire to the filter device, a balloon-mounted Liberté stent was implanted with good angiographic and clinical results. The off-label use of an extender wire permits successful over-the-wire stenting on a monorail neuroprotection device for vertebral artery endosurgery.

  6. Neuroprotection in Parkinson's disease: modafinil and Δ9-tetrahydrocannabinol

    NARCIS (Netherlands)

    Vliet, S.A.M. van

    2007-01-01

    In Parkinson's disease (PD) is the output of the basal ganglia irreversibly affected due to degeneration of the neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta. This results in manifestation of symptoms including akinesia, postural instability, rigidity and resting

  7. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    Science.gov (United States)

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. © 2016. Published by The Company of Biologists Ltd.

  9. Neuroprotective effects of riluzole in early phase Parkinson's disease on clinically relevant parameters in the marmoset MPTP model

    NARCIS (Netherlands)

    Verhave, P.S.; Jongsma, M.J.; Berg, R.M. van den; Vanwersch, R.A.P.; Smit, A.B.; Philippens, I.H.C.H.M.

    2012-01-01

    The present study evaluates neuroprotection in a marmoset MPTP (1-methyl-1,2,3,6-tetrahydropyridine) model representing early Parkinson's disease (PD). The anti-glutamatergic compound riluzole is used as a model compound for neuroprotection. The compound is one of the few protective compounds used

  10. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  11. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.

    Science.gov (United States)

    Chen, Xi; Wu, Jun; Lvovskaya, Svetlana; Herndon, Emily; Supnet, Charlene; Bezprozvanny, Ilya

    2011-11-25

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as

  12. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo

    DEFF Research Database (Denmark)

    Erbayraktar, Serhat; Grasso, Giovanni; Sfacteria, Alessandra

    2003-01-01

    Erythropoietin (EPO) is a tissue-protective cytokine preventing vascular spasm, apoptosis, and inflammatory responses. Although best known for its role in hematopoietic lineages, EPO also affects other tissues, including those of the nervous system. Enthusiasm for recombinant human erythropoietin...... importantly, asialoEPO exhibits a broad spectrum of neuroprotective activities, as demonstrated in models of cerebral ischemia, spinal cord compression, and sciatic nerve crush. These data suggest that nonerythropoietic variants of rhEPO can cross the blood-brain barrier and provide neuroprotection....

  13. Neuroprotective properties of a novel, non-haematopoietic agonist of the erythropoietin receptor

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Kiryushko, Dar'Ya; Sonn, Katrin

    2010-01-01

    they are involved in tissue protection. However, the use of erythropoietin as a neuroprotective agent may be hampered by its erythropoietic activity. Therefore, developing non-haematopoietic erythropoietin mimetics is important. Based on the crystal structure of the complex of erythropoietin and its receptor, we...... attenuated seizures, decreased mortality and reduced neurodegeneration in an in vivo model of kainic acid-induced neurotoxicity. In contrast to erythropoietin, Epotris did not stimulate erythropoiesis upon chronic administration. Thus, Epotris is a novel neuroprotective non-haematopoietic erythropoietin...

  14. Neuroprotective Effect and Mechanism of Thiazolidinedione on Dopaminergic Neurons In Vivo and In Vitro in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    2017-01-01

    Full Text Available The aim of the present study was to gain insight into the neuroprotection effects and mechanism of thiazolidinedione pioglitazone in both in vitro and in vivo MPP+/MPTP induced PD models. In vivo experimental results showed that oral treatment of pioglitazone resulted in significant improvements in behavior symptoms damaged by MPTP and increase in the survival of TH positive neurons in the pioglitazone intervention groups. In addition, oral treatment of pioglitazone increased the expression of peroxisome proliferator-activated receptor-γ coactivator of 1α (PGC-1α and increased the number of mitochondria, along with an observed improvement in mitochondrial ultrastructure. From in vitro studies, 2,4-thiazolidinedione resulted in increased levels of molecules regulated function of mitochondria, including PGC-1α, nuclear respiratory factor 1 (NRF1, NRF2, and mitochondria fusion 2 (Mfn2, and inhibited mitochondria fission 1 (Fis1. We show that protein levels of Bcl-2 and ERK were reduced in the MPP+-treated group compared with the control group. This effect was observed to be reversed upon treatment with 2,4-thiazolidinedione, as Bcl-2 and ERK expression levels were increased. We also observed that levels of the apoptotic protein Bax showed opposite changes compared to Bcl-2 and ERK levels. The results from this study confirm that pioglitazone/2,4-thiazolidinedione is able to activate PGC-1α and prevent damage of dopaminergic neurons and restore mitochondria ultrastructure through the regulation of mitochondria function.

  15. Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease.

    Science.gov (United States)

    Le Douaron, Gael; Schmidt, Fanny; Amar, Majid; Kadar, Hanane; Debortoli, Lucila; Latini, Alexandra; Séon-Méniel, Blandine; Ferrié, Laurent; Michel, Patrick Pierre; Touboul, David; Brunelle, Alain; Raisman-Vozari, Rita; Figadère, Bruno

    2015-01-07

    Parkinson disease is a neurodegenerative disorder of aging, characterized by disabling motor symptoms resulting from the loss of midbrain dopaminergic neurons and the decrease of dopamine in the striatum. Current therapies are directed at treating the symptoms but there is presently no cure for the disease. In order to discover neuroprotective compounds with a therapeutical potential, our research team has established original and highly regioselective methods for the synthesis of 2,3-disubstituted 6-aminoquinoxalines. To evaluate the neuroprotective activity of these molecules, we used midbrain cultures and various experimental conditions that promote dopaminergic cell loss. Among a series of 11 molecules, only compound MPAQ (2-methyl-3-phenyl-6-aminoquinoxaline) afforded substantial protection in a paradigm where dopaminergic neurons die spontaneously and progressively as they mature. Prediction of blood-brain barrier permeation by Quantitative Structure-Activity Relationship studies (QSARs) suggested that MPAQ was able to reach the brain parenchyma with sufficient efficacy. HPLC-MS/MS quantification in brain homogenates and MALDI-TOF mass spectrometry imaging on brain tissue sections performed in MPAQ-treated mice allowed us to confirm this prediction and to demonstrate, by MALDI-TOF mass spectrometry imaging, that MPAQ was localized in areas containing vulnerable neurons and/or their terminals. Of interest, MPAQ also rescued dopaminergic neurons, which (i) acquired dependency on the trophic peptide GDNF for their survival or (ii) underwent oxidative stress-mediated insults mediated by catalytically active iron. In summary, MPAQ possesses an interesting pharmacological profile as it penetrates the brain parenchyma and counteracts mechanisms possibly contributive to dopaminergic cell death in Parkinson disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders

    Science.gov (United States)

    Sousa, Teresa; Amaral, Carlos; Andrade, João; Pires, Gabriel; Nunes, Urbano J.; Castelo-Branco, Miguel

    2017-08-01

    imagery with potential for the implementation of multiclass (3) BCIs. Our results are consistent with the notion that frontal alpha synchronization is related with high internal processing demands, changing with the number of alternation levels during imagery. Together, these findings suggest the feasibility of pure visual motion imagery tasks as a strategy to achieve multiclass control systems with potential for BCI and in particular, neurofeedback applications in non-motor (attentional) disorders.

  17. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation

    Science.gov (United States)

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B.; Miguel, Célia; Santos, Cláudia N.

    2013-01-01

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum’s potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits. PMID:26784465

  18. Differential Cannabinoid Receptor Expression during Reactive Gliosis: a Possible Implication for a Nonpsychotropic Neuroprotection

    Directory of Open Access Journals (Sweden)

    Daniele De Filippis

    2009-01-01

    Full Text Available Activated microglia and astrocytes produce a large number of inflammatory and neurotoxic substances in various brain pathologies, above all during neurodegenerative disorders. In the search for new neuroprotective compounds, interest has turned to marijuana derivatives, since in several in vitro, in vivo, and clinical studies, they have shown a great ability to control neuroinflammation.

  19. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease.

    Science.gov (United States)

    Naoi, Makoto; Maruyama, Wakako

    2009-08-01

    Neuroprotective therapy has been proposed for age-related neurodegenerative disorders, including Parkinson's disease. Inhibitors of type B monoamine oxidase (MAOB-Is), rasagiline and (-)deprenyl, are the most promising candidate neuroprotective drugs. Clinical trials of rasagiline in patients with Parkinson's disease suggest that rasagiline may have some disease-modifying effects. Results using animal and cellular models have proved that the MAOB-Is protect neurons by the intervention of 'intrinsic' mitochondrial apoptotic cascade and the induction of prosurvival antiapoptotic Bcl-2 and neurotrophic factors. Rasagiline-related MAOB-Is prevent mitochondrial permeability transition induced by various insults and activation of subsequent apoptotic cascades: cytochrome c release, casapase activation, and condensation and fragmentation of nuclear DNA. MAOB-Is increase transcription of prosurvival genes through activating the nuclear transcription factor-(NF) system. Rasagiline increases the protein and mRNA levels of GDNF in dopaminergic SH-SY5Y cells, whereas (-)deprenyl increases those of BDNF. Systemic administration of (-)deprenyl and rasagiline increases these neurotrophic factors in the cerebrospinal fluid from patients with Parkinson's disease and nonhuman primates. This review presents recent advances in our understanding of the neuroprotection offered by MAOB-Is and possible evaluation of neuroprotective efficacy in clinical samples is discussed.

  20. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    Science.gov (United States)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  1. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    Science.gov (United States)

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  2. Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis

    NARCIS (Netherlands)

    Al-Izki, S.; Pryce, G.; Hankey, D.J.R.; Lidster, K.; von Kutzleben, S.M.; Browne, L.; Clutterbuck, L.; Posada, C.; Chan, A.W.E.; Amor, S.; Perkins, V.; Gerritsen, W.H.; Ummenthum, K.; Peferoen-Baert, R.; van der Valk, P.; Montoya, A.; Joel, S.P.; Garthwaite, J.; Giovannoni, G.; Selwood, D.L.; Baker, D.

    2014-01-01

    Progressive multiple sclerosis is associated with metabolic failure of the axon and excitotoxicity that leads to chronic neurodegeneration. Global sodium-channel blockade causes side effects that can limit its use for neuroprotection in multiple sclerosis. Through selective targeting of drugs to

  3. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, Jens; Zimmer, Jens

    2003-01-01

    The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic interneu......The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic...... interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h......, while muscimol (100-1000 microM) and ATPA (1-3 microM) were without effect. The results demonstrate that direct GABA(A) agonism can mediate neuroprotection in the hippocampus in vitro as previously suggested in vivo....

  4. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that desc......The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting....

  5. The neuroprotective efficacy of MK-801 in focal cerebral ischemia varies with rat strain and vendor.

    Science.gov (United States)

    Oliff, H S; Marek, P; Miyazaki, B; Weber, E

    1996-08-26

    The present study was designed to evaluate whether the neuroprotective efficacy of MK-801 in focal cerebral ischemia was dependent on strain and/or vendor differences. MK-801 (0.12 mg/kg i.v. bolus followed by 0.108 mg/kg/h infusion or 0.60 mg/kg i.v. bolus followed by 0.540 mg/kg/h infusion) or saline was administered just after intraluminal middle cerebral artery occlusion. Administration of 0.540 mg/kg/h MK-801 provided strain/line-dependent neuroprotection in the following rank order: Simonsen Laboratories Sprague-Dawley rats > Simonsen Laboratories Wistar rats > Taconic Laboratories Sprague-Dawley rats. After 0.108 mg/kg/h MK-801 treatment, Simonsen Laboratories Wistar rats were the only strain/line that were significantly neuroprotected. These results indicate that the neuroprotective effect of an experimental drug may be influenced by rat strain and vendor differences.

  6. Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Li, Shizhong; Bock, Elisabeth Marianne; Berezin, Vladimir

    2010-01-01

    of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently...

  7. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan

    2015-01-01

    -reperfusion injury, pretreatment with NPY or (Leu31, Pro34)-NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective...

  8. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation.

    Science.gov (United States)

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B; Miguel, Célia; Santos, Cláudia N

    2013-10-28

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum's potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits.

  9. Insights into the molecular aspects of neuroprotective Bacoside A and Bacopaside I.

    Science.gov (United States)

    Sekhar, Vini C; Viswanathan, Gayathri; Baby, Sabulal

    2018-04-19

    Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of the B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  11. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2014-04-01

    Full Text Available In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  12. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling.

    Science.gov (United States)

    Zhu, Wei; Ding, Yuexia; Kong, Wei; Li, Tuo; Chen, Hongguang

    2018-04-16

    In this study, we explored the neuroprotective effects of docosahexaenoic acid (DHA) in traumatic brain injury (TBI) models. In this study, we first confirmed that DHA was neuroprotective against TBI via the NSS test and Morris water maze experiment. Western blot was conducted to identify the expression of Bax, caspase-3, and Bcl-2. And the cell apoptosis of the TBI models was validated by TUNEL staining. Relationships between nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway-related genes and DHA were explored by RT-PCR and Western blot. Rats of the DHA group performed remarkably better than those of the TBI group in both NSS test and water maze experiment. DHA conspicuously promoted the expression of Bcl-2 and diminished that of cleaved caspase-3 and Bax, indicating the anti-apoptotic role of DHA. Superoxide dismutase (SOD) activity and cortical malondialdehyde content, glutathione peroxidase (GPx) activity were renovated in rats receiving DHA treatment, implying that the neuroprotective influence of DHA was derived from lightening the oxidative stress caused by TBI. Moreover, immunofluorescence and Western blot experiments revealed that DHA facilitated the translocation of Nrf2 to the nucleus. DHA administration also notably increased the expression of the downstream factors NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1(HO-1). DHA exerted neuroprotective influence on the TBI models, potentially through activating the Nrf2- ARE pathway.

  13. Neuroprotective actions of the synthetic estrogen 17alpha-ethynylestradiol in the hippocampus.

    Science.gov (United States)

    Picazo, Ofir; Becerril-Montes, Adriana; Huidobro-Perez, Delia; Garcia-Segura, Luis M

    2010-07-01

    17alpha-ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17beta-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 microg/rat) and high (10-100 microg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 microg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.

  14. The Neuroprotective Disease-Modifying Potential of Psychotropics in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Edward C. Lauterbach

    2012-01-01

    Full Text Available Neuroprotective treatments in Parkinson's disease (PD have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R, although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS, reactive nitrogen species (RNS, apoptosis, inflammation, and trophic factors including GDNF and BDNF.

  15. Neuroprotective effects of ginsenoside Rg1 against oxygen–glucose deprivation in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Qing He

    2014-03-01

    Conclusion: Ginsenoside Rg1 has neuroprotective effect on ischemia–reperfusion injury in cultured hippocampal cells mediated by blocking calcium over-influx into neuronal cells and decreasing the nNOS activity after OGD exposure. We infer that ginsenoside Rg1 may serve as a potential therapeutic agent for cerebral ischemia injury.

  16. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation

    Directory of Open Access Journals (Sweden)

    Andreia Gomes

    2013-10-01

    Full Text Available Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum’s potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits.

  17. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Mustafa Guven

    2015-04-01

    Conclusion:Our results showed that p-coumaric acid is a neuroprotective agent on account of its strong anti-oxidant and anti-apoptotic features. Moreover, p-coumaric acid decreased the focal ischemia. Extra effort should be made to introduce p-coumaric acid as a promising therapeutic agent to be utilized for treatment of human cerebral ischemia in the future.

  18. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice.

    Science.gov (United States)

    Long, Fang-Yi; Shi, Meng-Qi; Zhou, Hong-Jing; Liu, Dong-Ling; Sang, Na; Du, Jun-Rong

    2018-02-05

    Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

    OpenAIRE

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects...

  20. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Hsiao-Chien Ting

    2018-01-01

    Full Text Available Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER stress, glucose metabolism, and synaptic function. The interleukin (IL-1β and tumor necrosis factor (TNF-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.

  1. Neuroprotection without immunomodulation is not sufficient to reduce first relapse severity in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Johansen, Flemming Fryd

    2010-01-01

    at high doses, most likely due to differences in receptor affinities. In order to investigate the effects of neuroprotection and immunomodulation in an animal model of multiple sclerosis, we examined the impact of increasing concentrations of R(+)WIN55,212-2 on the inflammatory profile in CNS during first...

  2. Neuroprotective effects of estrogen in CNS injuries: insights from animal models

    Directory of Open Access Journals (Sweden)

    Raghava N

    2017-07-01

    Full Text Available Narayan Raghava,1 Bhaskar C Das,2 Swapan K Ray1 1Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA; 2Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA Abstract: Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2 is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS injuries such as spinal cord injury (SCI, traumatic brain injury (TBI, and ischemic brain injury (IBI. These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for

  3. Neuroprotective effect of ketamine/xylazine on two rat models of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    M.M. Ferro

    2007-01-01

    Full Text Available There is a great concern in the literature for the development of neuroprotectant drugs to treat Parkinson's disease. Since anesthetic drugs have hyperpolarizing properties, they can possibly act as neuroprotectants. In the present study, we have investigated the neuroprotective effect of a mixture of ketamine (85 mg/kg and xylazine (3 mg/kg (K/X on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP or 6-hydroxydopamine (6-OHDA rat models of Parkinson's disease. The bilateral infusion of MPTP (100 µg/side or 6-OHDA (10 µg/side into the substantia nigra pars compacta of adult male Wistar rats under thiopental anesthesia caused a modest (~67% or severe (~91% loss of tyrosine hydroxylase-immunostained cells, respectively. On the other hand, an apparent neuroprotective effect was observed when the rats were anesthetized with K/X, infused 5 min before surgery. This treatment caused loss of only 33% of the nigral tyrosine hydroxylase-immunostained cells due to the MPTP infusion and 51% due to the 6-OHDA infusion. This neuroprotective effect of K/X was also suggested by a less severe reduction of striatal dopamine levels in animals treated with these neurotoxins. In the working memory version of the Morris water maze task, both MPTP- and 6-OHDA-lesioned animals spent nearly 10 s longer to find the hidden platform in the groups where the neurotoxins were infused under thiopental anesthesia, compared to control animals. This amnestic effect was not observed in rats infused with the neurotoxins under K/X anesthesia. These results suggest that drugs with a pharmacological profile similar to that of K/X may be useful to delay the progression of Parkinson's disease.

  4. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  5. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5

    Directory of Open Access Journals (Sweden)

    Viggiano E

    2016-07-01

    Full Text Available Emanuela Viggiano,1,2 Vincenzo Monda,1 Antonietta Messina,1 Fiorenzo Moscatelli,3 Anna Valenzano,3 Domenico Tafuri,4 Giuseppe Cibelli,3 Bruno De Luca,1 Giovanni Messina,1,3 Marcellino Monda1 1Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Second University of Naples, Naples, 2Department of Medicine, University of Padua, Padua, 3Department of Clinical and Experimental Medicine, University of Foggia, Foggia, 4Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy Abstract: Depression of electrocorticogram propagating over the cortex surface results in cortical spreading depression (CSD, which is probably related to the pathophysiology of stroke, epilepsy, and migraine. However, preconditioning with CSD produces neuroprotection to subsequent ischemic episodes. Such effects require the expression or activation of several genes, including neuroprotective ones. Recently, it has been demonstrated that the expression of the uncoupling proteins (UCPs 2 and 5 is amplified during brain ischemia and their expression exerts a long-term effect upon neuron protection. To evaluate the neuroprotective consequence of CSD, the expression of UCP-5 in the brain cortex was measured following CSD induction. CSD was evoked in four samples of rats, which were sacrificed after 2 hours, 4 hours, 6 hours, and 24 hours. Western blot analyses were carried out to measure UCP-5 concentrations in the prefrontal cortices of both hemispheres, and immunohistochemistry was performed to determine the localization of UCP-5 in the brain cortex. The results showed a significant elevation in UCP-5 expression at 24 hours in all cortical strata. Moreover, UCP-5 was triggered by CSD, indicating that UCP-5 production can have a neuroprotective effect. Keywords: cortical spreading depression, neuroprotective effect, uncoupling protein-5

  6. Glaucoma: Symptoms, Diagnosis & Treatment

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Glaucoma Symptoms, Treatment and Research Past Issues / Spring 2015 ... vision, without any pain. Photo courtesy of NEI Glaucoma Symptoms At first, open-angle glaucoma has no ...

  7. [Study on the chemical composition of triterpenoid from the fruit of Buddleja lindleyana and their neuroprotective activitiy].

    Science.gov (United States)

    Wu, De-Ling; Wang, Yang-Kui; Wang, Xun-Cui; Liu, Jin-Song; Jin, Chuan-Shan; Zhang, Wei

    2011-12-01

    To study the chemical composition of triterpenoid from the fruit of Buddleja lindleyana. The chemical components were isolated by chromatography. The structures were identified by spectral data. The neuroprotective activity of these compounds were evaluated by using MPP+ induced injury in PC12 cells. 3 compounds were separated and identified as oleanane, alpha-L-msnnopyranoside derive (1), 13, 28-epoxy-3beta,23-dihydroxy-11-oleanene (2), 3, 23, 28-trihydroxyolean-11,13 (18)-diene (3). Compounds 1-3 showed obviously neuroprotective activity. The data of compound (1) is reported for the first time. The neuroprotective activities of compounds 1, 2, 3 are reported for the first time.

  8. Mental disturbances in Parkinson's disease and related disorders: the role of excitotoxins.

    Science.gov (United States)

    Obál, Izabella; Majláth, Zsófia; Toldi, József; Vécsei, László

    2014-01-01

    The pathomechanism behind the neurodegenerative process in Parkinson's disease involves damage to the dopaminergic and nondopaminergic systems with dysfunctioning of the dopaminergic-glutamatergic circuitry in the basal ganglional neural processing. Excitotoxicity may contribute markedly to neuronal damage and loss. Beside the cardinal motor signs of the disease, non-motor symptoms, including mental disturbances, are characteristic features of the clinical course. Affective or autonomic changes may precede motor symptoms. Neuroprotective drugs are not yet available. However, new modes of therapy targeting the defective dopaminergic-glutamatergic system might also be effective both for symptomatologic treatment and for neuroprotection. Alterations in the kynurenine pathway have been demonstrated in Parkinson's disease. Preclinical studies suggest that intervention in the kynurenine pathway may result in neuroprotection and additionally alleviate the symptoms through influencing the glutamatergic neurotransmission.

  9. Management of somatic symptoms

    DEFF Research Database (Denmark)

    Schröder, Andreas; Dimsdale, Joel

    2014-01-01

    on the recognition and effective management of patients with excessive and disabling somatic symptoms. The clinical presentation of somatic symptoms is categorized into three groups of patients: those with multiple somatic symptoms, those with health anxiety, and those with conversion disorder. The chapter provides...

  10. Measuring bothersome menopausal symptoms

    DEFF Research Database (Denmark)

    Lund, Kamma Sundgaard; Siersma, Volkert Dirk; Christensen, Karl Bang

    2018-01-01

    BACKGROUND: The experience of menopausal symptoms is common and an adequate patient-reported outcome measure is crucial in studies where women are treated for these symptoms. The aims of this study were to identify a patient-reported outcome measure for bothersome menopausal symptoms and, in the ...

  11. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  12. Understanding medical symptoms

    DEFF Research Database (Denmark)

    Malterud, Kirsti; Guassora, Ann Dorrit Kristiane; Graungaard, Anette Hauskov

    2015-01-01

    is a social and relational phenomenon of containment, and regulating the situation where the symptoms originate implies adjusting containment. Discourse analysis, as presented by Jonathan Potter and Margaret Wetherell, provides a tool to notice the subtle ways in which language orders perceptions and how...... to the bodily messages. Symptom management is then determined by the meaning of a symptom. Dorte E. Gannik’s concept “situational disease” explains how situations can be reviewed not just in terms of their potential to produce signs or symptoms, but also in terms of their capacity to contain symptoms. Disease...

  13. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.

    Science.gov (United States)

    Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Tao, Yi; Leung, Alexander Kai-Man; Efferth, Thomas; Schröder, Sven

    2014-08-08

    The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action. Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2 h or 24 h followed by 2 h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted. Two hours of exposure to 100 µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100 µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR. Due to its neuroprotective properties CRE might be a potential

  14. Effect of magnesium sulfate administration for neuroprotection on latency in women with preterm premature rupture of membranes.

    LENUS (Irish Health Repository)

    Horton, Amanda L

    2015-03-01

    This study aims to evaluate whether magnesium sulfate administration for neuroprotection prolongs latency in women with preterm premature rupture of membranes (PPROM) between 24 and 31(6\\/7) weeks\\' gestation.

  15. Pharmacology of Rasagiline, a New MAO-B Inhibitor Drug for the Treatment of Parkinson’s Disease with Neuroprotective Potential

    Directory of Open Access Journals (Sweden)

    John P.M. Finberg

    2010-07-01

    Full Text Available Rasagiline (Azilect is a highly selective and potent propargylamine inhibitor of monoamine oxidase (MAO type B. Like other similar propargylamine inhibitors, rasagiline binds covalently to the N5 nitrogen of the flavin residue of MAO, resulting in irreversible inactivation of the enzyme. Therapeutic doses of the drug which inhibit brain MAO-B by 95% or more cause minimal inhibition of MAO-A, and do not potentiate the pressor or other pharmacological effects of tyramine. Metabolic conversion of the compound in vivo is by hepatic cytochrome P450-1A2, with generation of 1-aminoindan as the major metabolite. Rasagiline possesses no amphetamine-like properties, by contrast with the related compound selegiline (Deprenyl, Jumex, Eldepryl. Although the exact distribution of MAO isoforms in different neurons and tissues is not known, dopamine behaves largely as a MAO-A substrate in vivo, but following loss of dopaminergic axonal varicosities from the striatum, metabolism by glial MAO-B becomes increasingly important. Following subchronic administration to normal rats, rasagiline increases levels of dopamine in striatal microdialysate, possibly by the build-up of β-phenylethylamine, which is an excellent substrate for MAO-B, and is an effective inhibitor of the plasma membrane dopamine transporter (DAT. Both of these mechanisms may participate in the anti-Parkinsonian effect of rasagiline in humans. Rasagiline possesses neuroprotective properties in a variety of primary neuronal preparations and neuron-like cell lines, which is not due to MAO inhibition. Recent clinical studies have also demonstrated possible neuroprotective properties of the drug in human Parkinsonian patients, as shown by a reduced rate of decline of symptoms over time.

  16. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology

    Directory of Open Access Journals (Sweden)

    Tetsade Piermartiri

    2015-11-01

    Full Text Available α-Linolenic acid (ALA is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB, brain-derived neurotrophic factor (BDNF, a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders.

  17. Comparison of Nootropic and Neuroprotective Features of Aryl-Substituted Analogs of Gamma-Aminobutyric Acid.

    Science.gov (United States)

    Tyurenkov, I N; Borodkina, L E; Bagmetova, V V; Berestovitskaya, V M; Vasil'eva, O S

    2016-02-01

    GABA analogs containing phenyl (phenibut) or para-chlorophenyl (baclofen) substituents demonstrated nootropic activity in a dose of 20 mg/kg: they improved passive avoidance conditioning, decelerated its natural extinction, and exerted antiamnestic effect on the models of amnesia provoked by scopolamine or electroshock. Tolyl-containing GABA analog (tolibut, 20 mg/kg) exhibited antiamnestic activity only on the model of electroshock-induced amnesia. Baclofen and, to a lesser extent, tolibut alleviated seizures provoked by electroshock, i.e. both agents exerted anticonvulsant effect. All examined GABA aryl derivatives demonstrated neuroprotective properties on the maximum electroshock model: they shortened the duration of coma and shortened the period of spontaneous motor activity recovery. In addition, these agents decreased the severity of passive avoidance amnesia and behavioral deficit in the open field test in rats exposed to electroshock. The greatest neuroprotective properties were exhibited by phenyl-containing GABA analog phenibut.

  18. Topiramate as a neuroprotective agent in a rat model of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Firat Narin

    2017-01-01

    Full Text Available Topiramate (TPM is a widely used antiepileptic and antimigraine agent which has been shown to exert neuroprotective effects in various experimental traumatic brain injury and stroke models. However, its utility in spinal cord injury has not been studied extensively. Thus, we evaluated effects of TPM on secondary cellular injury mechanisms in an experimental rat model of traumatic spinal cord injury (SCI. After rat models of thoracic contusive SCI were established by free weight-drop method, TPM (40 mg/kg was given at 12-hour intervals for four times orally. Post TPM treatment, malondialdehyde and protein carbonyl levels were significantly reduced and reduced glutathione levels were increased, while immunoreactivity for endothelial nitric oxide synthase, inducible nitric oxide synthase, and apoptotic peptidase activating factor 1 was diminished in SCI rats. In addition, TPM treatment improved the functional recovery of SCI rats. This study suggests that administration of TPM exerts neuroprotective effects on SCI.

  19. Identification of Potentially Neuroprotective Genes Upregulated by Neurotrophin Treatment of CA3 Neurons in the Injured Brain

    Science.gov (United States)

    Malik, Saafan Z.; Motamedi, Shahab; Royo, Nicolas C.; LeBold, David

    2011-01-01

    Abstract Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI. PMID:21083427

  20. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    Science.gov (United States)

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  1. Neuroprotective effects of the antiparkinson drug Mucuna pruriens.

    Science.gov (United States)

    Manyam, Bala V; Dhanasekaran, Muralikrishnan; Hare, Theodore A

    2004-09-01

    Mucuna pruriens possesses significantly higher antiparkinson activity compared with levodopa in the 6-hydroxydopamine (6-OHDA) lesioned rat model of Parkinson's disease. The present study evaluated the neurorestorative effect of Mucuna pruriens cotyledon powder on the nigrostriatal tract of 6-OHDA lesioned rats. Mucuna pruriens cotyledon powder significantly increased the brain mitochondrial complex-I activity but did not affect the total monoamine oxidase activity (in vitro). Unlike synthetic levodopa treatment, Mucuna pruriens cotyledon powder treatment significantly restored the endogenous levodopa, dopamine, norepinephrine and serotonin content in the substantia nigra. Nicotine adenine dinucleotide (NADH) and coenzyme Q-10, that are shown to have a therapeutic benefit in Parkinson's disease, were present in the Mucuna pruriens cotyledon powder. Earlier studies showed that Mucuna pruriens treatment controls the symptoms of Parkinson's disease. This additional finding of a neurorestorative benefit by Mucuna pruriens cotyledon powder on the degenerating dopaminergic neurons in the substantia nigra may be due to increased complex-I activity and the presence of NADH and coenzyme Q-10. Copyright (c) 2004 John Wiley & Sons, Ltd.

  2. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects.

    Science.gov (United States)

    Ye, Yong; Xing, Haiting; Li, Yue

    2014-01-01

    Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH), decrease of inflammatory cytokines TNF-α and IL-1β in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142-220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The sasanquasaponin took effect through inflammatory alleviation in central tissues. The sasanquasaponin nanocapsules with phaeophorbide have photo responsiveness and neuroprotective effects under the irradiation of red light. This

  3. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity

    DEFF Research Database (Denmark)

    Verma, Pushpa; Augustine, George J; Ammar, Mohamed-Raafet

    2015-01-01

    Evidence has begun to emerge for microRNAs as regulators of synaptic signaling, specifically acting to control postsynaptic responsiveness during synaptic transmission. In this report, we provide evidence that Drosophila melanogaster miR-1000 acts presynaptically to regulate glutamate release at ...... a neuroprotective function in the brains of flies and mice. Drosophila miR-1000 showed activity-dependent expression, which might serve as a mechanism to allow neuronal activity to fine-tune the strength of excitatory synaptic transmission....

  4. Two new compounds from the fruits of Buddleja lindleyana with neuroprotective effect.

    Science.gov (United States)

    Wu, De-Ling; Wang, Yang-Kui; Liu, Jing-Song; Wang, Xun-Cui; Zhang, Wei

    2012-01-01

    Two new triterpenoid glycosides, mimengosides H (1) and I (2), were isolated from the fruits of Buddleja lindleyana Fort. Their structures were determined by extensive spectroscopic methods. Neuroprotective effects of these isolates against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells were evaluated. Pretreatment with compound 1 had potential protective effect in a concentration range from 0.1 to 1 μmol l⁻¹.

  5. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  6. Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    International Nuclear Information System (INIS)

    Gao Bo; Wang Xuejian

    2007-01-01

    The underlying mechanisms of radiated-induced brain injury (RBI) remain incompletely clear. Pathophysiological data indicate that the development of RBI involves complex and dynamic interactions between neurons, glia, and vascular endothelial cells within thecentral nervous system (CNS). Radiated-induced injury in the CNS can be modulated by the therapies directed at altering steps in the cascade of events leading to the clinical expression of normal tissue injury. Some neuroprotective strategies are also addressed in the review. (authors)

  7. Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia.

    Science.gov (United States)

    Zhu, Tingna; Zhan, Lixuan; Liang, Donghai; Hu, Jiaoyue; Lu, Zhiwei; Zhu, Xinyong; Sun, Weiwen; Liu, Liu; Xu, En

    2014-10-01

    Hypoxia administered after transient global cerebral ischemia (tGCI) has been shown to induce neuroprotection in adult rats, but the underlying mechanisms for this protection are unclear. Here, we tested the hypothesis that hypoxic postconditioning (HPC) induces neuroprotection through upregulation of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), and that this involves phosphatidylinositol-3-kinase (PI3K), p38 mitogen-activated protein kinase (p38 MAPK), and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) pathways. The expression of HIF-1α, VEGF, and cleaved caspase-9 were determined by immunohistochemistry and Western blot. As pharmacologic interventions, the HIF-1α inhibitor 2-methoxyestradiol (2ME2), PI3K inhibitor LY294002, p38 MAPK inhibitor SB203580, and MEK inhibitor U0126 were administered before HPC or after tGCI. We found that HPC maintained the higher expression of HIF-1α and VEGF and decreased cleaved caspase-9 levels in CA1 after tGCI. These effects were reversed by 2ME2 administered before HPC, and the neuroprotection of HPC was abolished. LY294002 and SB203580 decreased the expression of HIF-1α and VEGF after HPC, whereas U0126 increased HIF-1α and VEGF after tGCI. These findings suggested that HIF-1α exerts neuroprotection induced by HPC against tGCI through VEGF upregulation and cleaved caspase-9 downregulation, and that the PI3K, p38 MAPK, and MEK pathways are involved in the regulation of HIF-1α and VEGF.

  8. Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia.

    Science.gov (United States)

    Souvenir, Rhonda; Fathali, Nancy; Ostrowski, Robert P; Lekic, Tim; Zhang, John H; Tang, Jiping

    2011-10-01

    Previous studies have shown that erythropoietin (EPO) is neuroprotective in both in vivo and in vitro models of hypoxia ischemia. However these studies hold limited clinical translations because the underlying mechanism remains unclear and the key molecules involved in EPO-induced neuroprotection are still to be determined. This study investigated if tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and its upstream regulator signaling molecule Janus kinase-2 (JAK-2) are critical in EPO-induced neuroprotection. Hypoxia ischemia (HI) was modeled in-vitro by oxygen and glucose deprivation (OGD) and in-vivo by a modified version of Rice-Vannucci model of HI in 10-day-old rat pups. EPO treated cells were exposed to AG490, an inhibitor of JAK-2 or TIMP-1 neutralizing antibody for 2h with OGD. Cell death, phosphorylation of JAK-2 and signal transducers and activators of transcription protein-3 (STAT-3), TIMP-1 expression, and matrix metalloproteinase-9 (MMP-9) activity were measured and compared with normoxic group. Hypoxic ischemic animals were treated one hour following HI and evaluated 48 h after. Our data showed that EPO significantly increased cell survival, associated with increased TIMP-1 activity, phosphorylation of JAK-2 and STAT-3, and decreased MMP-9 activity in vivo and in vitro. EPO's protective effects were reversed by inhibition of JAK-2 or TIMP-1 in both models. We concluded that JAK-2, STAT-3 and TIMP-1 are key mediators of EPO-induced neuroprotection during hypoxia ischemia injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A Systematic Review of Neuroprotective Strategies during Hypovolemia and Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Marius Nistor

    2017-10-01

    Full Text Available Severe trauma constitutes a major cause of death and disability, especially in younger patients. The cerebral autoregulatory capacity only protects the brain to a certain extent in states of hypovolemia; thereafter, neurological deficits and apoptosis occurs. We therefore set out to investigate neuroprotective strategies during haemorrhagic shock. This review was performed in accordance to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Before the start of the search, a review protocol was entered into the PROSPERO database. A systematic literature search of Pubmed, Web of Science and CENTRAL was performed in August 2017. Results were screened and evaluated by two researchers based on a previously prepared inclusion protocol. Risk of bias was determined by use of SYRCLE’s risk of bias tool. The retrieved results were qualitatively analysed. Of 9093 results, 119 were assessed in full-text form, 16 of them ultimately adhered to the inclusion criteria and were qualitatively analyzed. We identified three subsets of results: (1 hypothermia; (2 fluid therapy and/or vasopressors; and (3 other neuroprotective strategies (piracetam, NHE1-inhibition, aprotinin, human mesenchymal stem cells, remote ischemic preconditioning and sevoflurane. Overall, risk of bias according to SYRCLE’s tool was medium; generally, animal experimental models require more rigorous adherence to the reporting of bias-free study design (randomization, etc.. While the individual study results are promising, the retrieved neuroprotective strategies have to be evaluated within the current scientific context—by doing so, it becomes clear that specific promising neuroprotective strategies during states of haemorrhagic shock remain sparse. This important topic therefore requires more in-depth research.

  10. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

    OpenAIRE

    Ayaz, Muhammad; Sadiq, Abdul; Junaid, Muhammad; Ullah, Farhat; Subhan, Fazal; Ahmed, Jawad

    2017-01-01

    The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha pi...

  11. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?

    OpenAIRE

    Masino, Susan A.; Geiger, Jonathan D.

    2008-01-01

    Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in ...

  12. Neuroprotective Potential of Cell-Based Therapies in ALS:From BenchtoBedside

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Serhiy; Syková, Eva

    2017-01-01

    Roč. 11, oct. (2017), s. 591 ISSN 1662-453X R&D Projects: GA ČR GA17-21146S; GA ČR(CZ) GA15-06958S; GA MŠk(CZ) EF15_003/0000419 Institutional support: RVO:68378041 Keywords : stem cells * neurodegeneration * neuroprotection * clinical trials Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 3.566, year: 2016

  13. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling.

    Science.gov (United States)

    Dong, Wenwen; Yang, Bei; Wang, Linlin; Li, Bingxuan; Guo, Xiangshen; Zhang, Miao; Jiang, Zhenfei; Fu, Jingqi; Pi, Jingbo; Guan, Dawei; Zhao, Rui

    2018-05-01

    Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI. Copyright © 2018. Published by Elsevier Inc.

  14. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    OpenAIRE

    Cvetelina Gorinova; Denitsa Aluani; Yordan Yordanov; Magdalena Kondeva-Burdina; Virginia Tzankova; Cvetelina Popova; Krassimira Yoncheva

    2016-01-01

    Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer). Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepa...

  15. Neuroprotective effects of ginsenoside Rg1 against oxygen–glucose deprivation in cultured hippocampal neurons

    OpenAIRE

    He, Qing; Sun, Jianguo; Wang, Qin; Wang, Wei; He, Bin

    2014-01-01

    Background: Ginsenoside Rg1 (Rg1) is believed to be one of the main active principles in ginseng, a traditional Chinese medicine extensively used to enhance stamina and deal with fatigue as well as physical stress. It has been reported that Rg1 performs multiple biological activities, including neuroprotective activity. In this study, we investigated the efficacy of ginsenoside Rg1 on ischemia–reperfusion injury in cultured hippocampal cells and also probed its possible mechanisms. Methods...

  16. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia

    OpenAIRE

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-01-01

    Background The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. Results I...

  17. Overview of Experimental and Clinical Findings regarding the Neuroprotective Effects of Cerebral Ischemic Postconditioning

    OpenAIRE

    Ma, Di; Feng, Liangshu; Deng, Fang; Feng, Jia-Chun

    2017-01-01

    Research on attenuating the structural and functional deficits observed following ischemia-reperfusion has become increasingly focused on the therapeutic potential of ischemic postconditioning. In recent years, various methods and animal models of ischemic postconditioning have been utilized. The results of these numerous studies have indicated that the mechanisms underlying the neuroprotective effects of ischemic postconditioning may involve reductions in the generation of free radicals and ...

  18. Electroacupuncture preconditioning-induced neuroprotection may be mediated by glutamate transporter type 2

    OpenAIRE

    Zhu, Xiaoling; Yin, Jinbo; Li, Liaoliao; Ma, Lei; Tan, Hongying; Deng, Jiao; Chen, Shaoyang; Zuo, Zhiyi

    2013-01-01

    Electroacupuncture has been shown to induce a preconditioning effect in the brain. The mechanisms for this protection are not fully elucidated. We hypothesize that this protection is mediated by excitatory amino acid transporters (EAATs) that have been shown to be neuroprotective. To test this hypothesis, two-month old male Sprague-Dawley rats and EAAT type 3 (EAAT3) knockout mice received or did not receive 30-min electroacupuncture once a day for 5 consecutive days. They were subjected to a...

  19. Neuroprotection and Anti-Epileptogenesis with a Mitochondria-Targeted Antioxidant

    Science.gov (United States)

    2013-12-01

    antiepiletogenic properties of a mitochondrial-targeted antioxidant, SS-31 using the pilocarpine (Pilo) model of status epilepticus (SE), the kindling seizure...project. Aim #1 – Test the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the rat. In this...quantity of drug. KEY RESEARCH ACCOMPLISHMENTS:  Treatment with SS-31 did not delay the onset of status epilepticus in the pilocarpine model  SS

  20. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available BACKGROUND: Mounting evidence shows that urate may become a biomarker of Parkinson's disease (PD diagnosis and prognosis and a neuroprotectant candidate for PD therapy. However, the cellular and molecular mechanisms underlying its neuroprotective actions remain poorly understood. RESULTS: In this study, we showed that urate pretreatment protected dopaminergic cell line (SH-SY5Y and MES23.5 against 6-hydroxydopamine (6-OHDA- and hydrogen peroxide- induced cell damage. Urate was found to be accumulated into SH-SY5Y cells after 30 min treatment. Moreover, urate induced NF-E2-related factor 2 (Nrf2 accumulation by inhibiting its ubiquitinationa and degradation, and also promoted its nuclear translocation; however, it did not modulate Nrf2 mRNA level or Kelch-like ECH-associated protein 1 (Keap1 expression. In addition, urate markedly up-regulated the transcription and protein expression of γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC and heme oxygenase-1 (HO-1, both of which are controlled by Nrf2 activity. Furthermore, Nrf2 knockdown by siRNA abolished the intracellular glutathione augmentation and the protection exerted by urate pretreatment. CONCLUSION: Our findings demonstrated that urate treatment may result in Nrf2-targeted anti-oxidant genes transcription and expression by reducing Nrf2 ubiquitination and degradation and promoting its nuclear translocation, and thus offer neuroprotection on dopaminergic cells against oxidative stresses.

  1. Neuroprotective Effects of Exogenous Activin A on Oxygen-Glucose Deprivation in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Xin Xu

    2011-12-01

    Full Text Available Ischemic cerebrovascular disease is one of the most common causes of death in the World. Exogenous activin A (ActA protects neurons against toxicity and plays a central role in regulating the brain’s response to injury. In the present study, we investigated the mechanisms involved in the neuroprotective effects of ActA in a model of hypoxic-ischemic brain disease. We found that ActA could effectively increase the survival rate of PC12 cells and relieve oxygen-glucose deprivation (OGD damage. To clarify the neuroprotective mechanisms of ActA, the effects of ActA on the ActA/Smad pathway and on the up-regulation of inducible nitric oxide synthase (NOS and superoxide dismutase (SOD were investigated using OGD in PC12 cells. The results showed that ActA could increase the expression of activin receptor IIA (ActRIIA, Smad3 and Smad4 and that 50 ng/mL and 100 ng/mL of ActA could reduce NO levels and increase SOD activity by 78.9% and 79.9%, respectively. These results suggested that the neuroprotective effects of ActA in ischemia could be related to the activation of the ActA/Smad signaling pathway and to its anti-oxidant activities.

  2. Pharmacological preconditioning by milrinone: memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Saklani, Reetu; Jaggi, Amteshwar; Singh, Nirmal

    2010-07-01

    We tested the neuroprotective effect of milrinone, a phosphodiesterase III inhibitor, in pharmacological preconditioning. Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h produced ischemia-reperfusion (I/R) cerebral injury in male Swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using the Morris water maze test, and motor coordination was evaluated using the inclined beam walking test, rota-rod test, and lateral push test. Milrinone (50 microg/kg & 100 microg/kg i.v.) was administered 24 h before surgery in a separate group of animals to induce pharmacological preconditioning. I/R increased cerebral infarct size and impaired memory and motor coordination. Milrinone treatment significantly decreased cerebral infarct size and reversed I/R-induced impairments in memory and motor coordination. This neuroprotective effect was blocked by ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker. These findings indicate that milrinone preconditioning exerts a marked neuroprotective effect on the ischemic brain, putatively due to increased intracellular calcium levels activating calcium-sensitive signal transduction cascades.

  3. ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons.

    Science.gov (United States)

    Leiva-Rodríguez, Tatiana; Romeo-Guitart, David; Marmolejo-Martínez-Artesero, Sara; Herrando-Grabulosa, Mireia; Bosch, Assumpció; Forés, Joaquim; Casas, Caty

    2018-05-24

    Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes.

  4. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  5. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation

    Directory of Open Access Journals (Sweden)

    Youichi Shinozaki

    2017-05-01

    Full Text Available Microglia and astrocytes become reactive following traumatic brain injury (TBI. However, the coordination of this reactivity and its relation to pathophysiology are unclear. Here, we show that microglia transform astrocytes into a neuroprotective phenotype via downregulation of the P2Y1 purinergic receptor. TBI initially caused microglial activation in the injury core, followed by reactive astrogliosis in the peri-injured region and formation of a neuroprotective astrocyte scar. Equivalent changes to astrocytes were observed in vitro after injury. This change in astrocyte phenotype resulted from P2Y1 receptor downregulation, mediated by microglia-derived cytokines. In mice, astrocyte-specific P2Y1 receptor overexpression (Astro-P2Y1OE counteracted scar formation, while astrocyte-specific P2Y1 receptor knockdown (Astro-P2Y1KD facilitated scar formation, suggesting critical roles of P2Y1 receptors in the transformation. Astro-P2Y1OE and Astro-P2Y1KD mice showed increased and reduced neuronal damage, respectively. Altogether, our findings indicate that microglia-astrocyte interaction, involving a purinergic signal, is essential for the formation of neuroprotective astrocytes.

  6. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?

    Science.gov (United States)

    Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta

    2017-01-01

    Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD), Frontotemporal dementia (FTD) and Lewy body dementia (LBD). We will report evidences that the Brain Derived Neurotrophic Factor (BDNF), the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression. PMID:29249935

  7. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?

    Directory of Open Access Journals (Sweden)

    Luisa Benussi

    2017-12-01

    Full Text Available Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD, Frontotemporal dementia (FTD and Lewy body dementia (LBD. We will report evidences that the Brain Derived Neurotrophic Factor (BDNF, the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression.

  8. Preclinical anticonvulsant and neuroprotective profile of 8319, a non-competitive NMDA antagonist

    International Nuclear Information System (INIS)

    Fielding, S.; Wilker, J.C.; Chernack, J.; Ramirez, V.; Wilmot, C.A.; Martin, L.L.; Payack, J.F.; Cornfeldt, M.L.; Rudolphi, K.A.; Rush, D.K.

    1990-01-01

    8319, ((+-)-2-Amino-N-ethyl-alpha-(3-methyl-2-thienyl)benzeneethanamine 2HCl), is a novel compound with the profile of a non-competitive NMDA antagonist. The compound displaced [3H] TCP with high affinity (IC50 = 43 nM), but was inactive at the NMDA, benzodiazepine and GABA sites; in vivo, 8319 showed good efficacy as an anticonvulsant and potential neuroprotective agent. It blocked seizures induced by NMDLA, supramaximal electroshock, pentylenetetrazol (PTZ), picrotoxin, and thiosemicarbazide with ED50's of 1-20 mg/kg ip. As a neuroprotective agent, 8319 (30-100 mg/kg sc) prevented the death of dorsal hippocampal pyramidal cells induced by direct injection of 20 nmol NMDA. At 15 mg/kg ip, the compound was also effective against hippocampal neuronal necrosis induced via bilateral occlusion of the carotid arteries in gerbils. In summary, 8319 is a noncompetitive NMDA antagonist with good anticonvulsant activity and may possess neuroprotective properties useful in the treatment of brain ischemia

  9. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    International Nuclear Information System (INIS)

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-01-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca 2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  10. Catalpol Induces Neuroprotection and Prevents Memory Dysfunction through the Cholinergic System and BDNF

    Directory of Open Access Journals (Sweden)

    Dong Wan

    2013-01-01

    Full Text Available To investigate the role and mechanism of catalpol on neuroprotective effects and memory enhancing effects simultaneously, neuroprotective effects of catalpol were assessed by neurological deficits score, TTC staining, and cerebral blood flow detecting. Morris water maze was employed to investigate its effects on learning and memory and then clarify its possible mechanisms relating the central cholinergic system and BDNF. Edaravone and oxiracetam were used for positive control drugs based on its different action. Results showed that catalpol and edaravone significantly facilitated neurological function recovery, reduced infarction volume, and increased cerebral blood flow in stroke mice. Catalpol and oxiracetam decreased the escape latency significantly and increased the numbers of crossing platform obviously. The levels of ACh, ChAT, and BDNF in catalpol group were increased in a dose-dependent manner, and AChE declined with a U-shaped dose-response curve. Moreover, the levels of muscarinic AChR subtypes M1 and M2 in hippocampus were considerably raised by catalpol. These results demonstrated that catalpol may be useful for neuroprotection and memory enhancement, and the mechanism may be related to the central cholinergic system.

  11. Uric acid demonstrates neuroprotective effect on Parkinson's disease mice through Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Huang, Ting-Ting; Hao, Dong-Lin; Wu, Bo-Na; Mao, Lun-Lin; Zhang, Jin

    2017-12-02

    Uric acid has neuroprotective effect on Parkinson's disease (PD) by inhibiting oxidative damage and neuronal cell death. Our previous study has shown that uric acid protected dopaminergic cell line damage through inhibiting accumulation of NF-E2-related factor 2 (Nrf2). This study aimed to investigate its in vivo neuroprotective effect. PD was induced by MPTP intraperitoneally injection for 7 d in male C57BL/6 mice. Mice were treated with either uric acid (intraperitoneally injection 250 mg/kg) or saline for a total of 13 d. We showed that uric acid improved behavioral performances and cognition of PD mice, increased TH-positive dopaminergic neurons and decreased GFAP-positive astrocytes in substantia nigra (SN). Uric acid increased mRNA and protein expressions of Nrf2 and three Nrf2-responsive genes, including γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC), heme oxygenase-1 (HO-1) and NQO1. Uric acid significantly increased superoxide dismutase (SOD), CAT, glutathione (GSH) levels and decreased malondialdehyde (MDA) level in SN regions of MPTP-treated mice. Uric acid inhibited the hippocampal expression of IL-1β and decreased serum and hippocampus levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). In conclusion, uric acid demonstrates neuroprotective properties for dopaminergic neurons in PD mice through modulation of neuroinflammation and oxidative stress. Copyright © 2017. Published by Elsevier Inc.

  12. The N-terminal, polybasic region is critical for prion protein neuroprotective activity.

    Directory of Open Access Journals (Sweden)

    Jessie A Turnbaugh

    Full Text Available Several lines of evidence suggest that the normal form of the prion protein, PrP(C, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35. To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134 to rescue the phenotype of Tg(F35 mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.

  13. Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons.

    Science.gov (United States)

    Jayaraman, Anusha; Pike, Christian J

    2014-03-25

    Progesterone and other progestagens are used in combination with estrogens for clinical purposes, including contraception and postmenopausal hormone therapy. Progesterone and estrogens have interactive effects in brain, however interactions between synthetic progestagens and 17β-estradiol (E2) in neurons are not well understood. In this study, we investigated the effects of seven clinically relevant progestagens on estrogen receptor (ER) mRNA expression, E2-induced neuroprotection, and E2-induced BDNF mRNA expression. We found that medroxyprogesterone acetate decreased both ERα and ERβ expression and blocked E2-mediated neuroprotection and BDNF expression. Conversely, levonorgestrel and nesterone increased ERα and or ERβ expression, were neuroprotective, and failed to attenuate E2-mediated increases in neuron survival and BDNF expression. Other progestagens tested, including norethindrone, norethindrone acetate, norethynodrel, and norgestimate, had variable effects on the measured endpoints. Our results demonstrate a range of qualitatively different actions of progestagens in cultured neurons, suggesting significant variability in the neural effects of clinically utilized progestagens. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Versatility of 7-Substituted Coumarin Molecules as Antimycobacterial Agents, Neuronal Enzyme Inhibitors and Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Erika Kapp

    2017-09-01

    Full Text Available A medium-throughput screen using Mycobacterium tuberculosis H37Rv was employed to screen an in-house library of structurally diverse compounds for antimycobacterial activity. In this initial screen, eleven 7-substituted coumarin derivatives with confirmed monoamine oxidase-B and cholinesterase inhibitory activities, demonstrated growth inhibition of more than 50% at 50 µM. This prompted further exploration of all the 7-substituted coumarins in our library. Four compounds showed promising MIC99 values of 8.31–29.70 µM and 44.15–57.17 µM on M. tuberculosis H37Rv in independent assays using GAST-Fe and 7H9+OADC media, respectively. These compounds were found to bind to albumin, which may explain the variations in MIC between the two assays. Preliminary data showed that they were able to maintain their activity in fluoroquinolone resistant mycobacteria. Structure-activity relationships indicated that structural modification on position 4 and/or 7 of the coumarin scaffold could direct the selectivity towards either the inhibition of neuronal enzymes or the antimycobacterial effect. Moderate cytotoxicities were observed for these compounds and slight selectivity towards mycobacteria was indicated. Further neuroprotective assays showed significant neuroprotection for selected compounds irrespective of their neuronal enzyme inhibitory properties. These coumarin molecules are thus interesting lead compounds that may provide insight into the design of new antimicrobacterial and neuroprotective agents.

  15. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    Science.gov (United States)

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  16. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro.

    Science.gov (United States)

    Kaneko, Yuji; Pappas, Colleen; Tajiri, Naoki; Borlongan, Cesar V

    2016-10-21

    Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABA A receptor (GABA A R), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABA A R subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABA A R specific agonist). This study provides evidence that oxytocin regulated GABA A R subunits in affording neuroprotection against OGD/R injury.

  17. Estrogen-IGF-1 interactions in neuroprotection: Ischemic Stroke as a case study

    Science.gov (United States)

    Sohrabji, Farida

    2014-01-01

    The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants. PMID:24882635

  18. Neuroprotective Effects of Cannabidiol in Hypoxic Ischemic Insult. The Therapeutic Window in Newborn Mice.

    Science.gov (United States)

    Mohammed, Nagat; Ceprian, Maria; Jimenez, Laura; Pazos, M Ruth; Martínez-Orgado, Jose

    2017-01-01

    A relevant therapeutic time window (TTW) is an important criterion for considering the clinical relevance of a substance preventing newborn hypoxic-ischemic (HI) brain damage. To test the TTW of the neuroprotective effects of cannabidol (CBD), a non-psychoactive cannabinoid in a model of newborn HI brain damage. 9-10 day-old C57BL6 mice underwent a HI insult (10% oxygen for 90 min after left carotid artery electrocoagulation). Then, CBD 1 mg/kg or vehicle were administered s.c. 15 min, or 1, 3, 6, 12, 18 or 24 h after the end of the HI insult. Seven days later brain damage was assessed using T2W Magnetic Resonance Imaging scan (ipsilateral hemisphere volume loss, IVHL) and histological studies: Nissl staining (neuropathological score), TUNEL staining (apoptotic damage) and immunohistochemistry with glial fibrillary acidic protein (astrocyte viability) or ionized calcium binding adaptor molecule (microglial activation). CBD administered up to 18 h after HI reduced IHVL and neuropathological score by 60%, TUNEL+ count by 90% and astrocyte damage by 50%. In addition, CBD blunted the HI-induced increase in microglial population. When CBD administration was delayed 24 h, however, the neuroprotective effect was lost in terms of IHVL, apoptosis or astrogliosis reduction. CBD shows a TTW of 18 h when administered to HI newborn mice, which represents a broader TTW than reported for other neuroprotective treatments including hypothermia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    Science.gov (United States)

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  1. Bumetanide augments the neuroprotective efficacy of phenobarbital plus hypothermia in a neonatal hypoxia-ischemia model

    Science.gov (United States)

    Liu, YiQing; Shangguan, Yu; Barks, John D.E.; Silverstein, Faye S.

    2014-01-01

    The NaKCl cotransporter NKCC1 facilitates intraneuronal chloride accumulation in the developing brain. Bumetanide, a clinically available diuretic, inhibits this chloride transporter, and augments the antiepileptic effects of phenobarbital in neonatal rodents. In a neonatal cerebral hypoxia-ischemia (HI) model, elicited by right carotid ligation, followed by 90 min 8% O2 exposure in 7-day-old(P7) rats, phenobarbital(PB) increases the neuroprotective efficacy of hypothermia. We evaluated whether bumetanide influenced the neuroprotective efficacy of combination treatment with PB and hypothermia(HT). P7 rats underwent HI lesioning; 15 min later, all received PB (30 mg/kg). 10 min later, half received bumetanide (10 mg/kg, PB-HT+BUM) and half received saline (PB-HT+SAL). One hour after HI, all were cooled (30°C, 3h). Contralateral forepaw sensorimotor function and brain damage were evaluated 1 to 4 weeks later. Forepaw functional measures were close to normal in the PB-HT+BUM group, while deficits persisted in PB-HT+SAL controls; there were corresponding reductions in right cerebral hemisphere damage (at P35, % damage: PB-HT+BUM, 21±16 versus 38±20 in controls). These results provide evidence that NKCC1 inhibition amplifies phenobarbital bioactivity in the immature brain, and suggest that co-administration of phenobarbital and bumetanide may represent a clinically feasible therapy to augment the neuroprotective efficacy of therapeutic hypothermia in asphyxiated neonates. PMID:22398701

  2. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats

    Science.gov (United States)

    Pardue, Machelle T.; Phillips, Michael J.; Yin, Hang; Fernandes, Alcides; Cheng, Yian; Chow, Alan Y.; Ball, Sherry L.

    2005-03-01

    Current retinal prosthetics are designed to stimulate existing neural circuits in diseased retinas to create a visual signal. However, implantation of retinal prosthetics may create a neurotrophic environment that also leads to improvements in visual function. Possible sources of increased neuroprotective effects on the retina may arise from electrical activity generated by the prosthetic, mechanical injury due to surgical implantation, and/or presence of a chronic foreign body. This study evaluates these three neuroprotective sources by implanting Royal College of Surgeons (RCS) rats, a model of retinitis pigmentosa, with a subretinal implant at an early stage of photoreceptor degeneration. Treatment groups included rats implanted with active and inactive devices, as well as sham-operated. These groups were compared to unoperated controls. Evaluation of retinal function throughout an 18 week post-implantation period demonstrated transient functional improvements in eyes implanted with an inactive device at 6, 12 and 14 weeks post-implantation. However, the number of photoreceptors located directly over or around the implant or sham incision was significantly increased in eyes implanted with an active or inactive device or sham-operated. These results indicate that in the RCS rat localized neuroprotection of photoreceptors from mechanical injury or a chronic foreign body may provide similar results to subretinal electrical stimulation at the current output evaluated here.

  3. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    Science.gov (United States)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (Ptreatment was less effective, showing an increase only in nuclei density at the central area of lesion (Pretinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  4. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    Science.gov (United States)

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia.

    Science.gov (United States)

    Chen, Zheng-Zhen; Yang, Dan-Dan; Zhao, Zhan; Yan, Hui; Ji, Juan; Sun, Xiu-Lan

    2016-04-01

    Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neuroprotective Role of Nerve Growth Factor in Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Antonio Chiaretti

    2013-06-01

    Full Text Available Hypoxic-ischemic brain injuries (HIBI in childhood are frequently associated with poor clinical and neurological outcome. Unfortunately, there is currently no effective therapy to restore neuronal loss and to determine substantial clinical improvement. Several neurotrophins, such as Nerve Growth Factor (NGF, Brain-Derived Neurotrophic Factor (BDNF, and Glial Derived Neurotrophic Factor (GDNF, play a key role in the development, differentiation, and survival of the neurons of the peripheral and central nervous system. Experimental animal studies demonstrated their neuroprotective role in HIBI, while only a few studies examined the neuroprotective mechanisms in patients with severe HIBI. We report two cases of children with HIBI and prolonged comatose state who showed a significant improvement after intraventricular NGF administration characterized by amelioration of electroencephalogram (EEG and cerebral perfusion at single-photon emission computed tomography (SPECT. The improvement in motor and cognitive functions of these children could be related to the neuroprotective role exerted by NGF in residual viable cholinergic neurons, leading to the restoration of neuronal networks in the damaged brain.

  7. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    2018-02-01

    Full Text Available Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa and document their effects on the blood-brain barrier (BBB permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.

  8. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    Science.gov (United States)

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection.

    Science.gov (United States)

    Lee, Jin-Yeon; Kim, Yu-Jin; Kim, Tae-Youn; Koh, Jae-Young; Kim, Yang-Hee

    2008-10-22

    Ischemic preconditioning (PC) of the brain is a phenomenon by which mild ischemic insults render neurons resistant to subsequent strong insults. Key steps in ischemic PC of the brain include caspase-3 activation and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, but upstream events have not been clearly elucidated. We have tested whether endogenous zinc is required for ischemic PC of the brain in rats. Mild, transient zinc accumulation was observed in certain neurons after ischemic PC. Moreover, intraventricular administration of CaEDTA during ischemic PC abrogated both zinc accumulation and the protective effect against subsequent full ischemia. To elucidate the mechanism of the zinc-triggered PC (Zn PC) effect, cortical cultures were exposed to sublethal levels of zinc, and 18 h later to lethal levels of zinc or NMDA. Zn PC exhibited the characteristic features of ischemic PC, including caspase-3 activation, PARP-1 cleavage, and HSP70 induction, all of which are crucial for subsequent neuroprotection against NMDA or zinc toxicity. HSP70 induction was necessary for protection, as it halted caspase-3 activation before apoptosis. Interestingly, in both Zn PC in vitro and ischemic PC in vivo, p75(NTR) was necessary for neuroprotection. These results suggest that caspase-3 activation during ischemic PC, a necessary event for subsequent neuroprotection, may result from mild zinc accumulation and the consequent p75(NTR) activation in neurons.

  10. Early psychosis symptoms

    International Nuclear Information System (INIS)

    Naqvi, H.A.; Hussain, S.; Islam, M.

    2014-01-01

    Objective: To determine the prodromal symptoms of schizophrenia in the pathways to help-seeking. Study Design: A cross-sectional study. Place and Duration of Study: The Department of Psychiatry, the Aga Khan University, Karachi, from 2008 to 2009. Methodology: A total of 93 patients were interviewed in the pathways to care of schizophrenia. The diagnosis was based on ICD-10 criteria. The pathways to care were assessed through a semi-structured questionnaire. The onset, course and symptoms of psychosis were assessed through Interview for Retrospective Assessment at Age at Onset of Psychosis (IROAS). Results: Fifty five (59%) participants were male while 41% (n=38%) were female. Using IROAS, 108 symptoms were identified as concerning behaviour. Alternatively, 60 (55%) concerning behaviours were reported in the open-ended inquiry of the reasons for help seeking as assessed by the pathways to care questionnaire with a statistically significant difference between most symptoms category. The difference was most pronounced (p < 0.001) for depressed mood (66%), worries (65%), tension (63%), withdrawal/mistrust (54%) and loss of self-confidence (53%). Thought withdrawal (22%) and passivity (15%) were elicited only through structured interview (IROAS). When symptoms were categorized together, about 83% of the subjects presented with affective and non-specific prodromal symptoms. Roughly, 10% of the subjects presented with positive symptoms and 3% presented with the negative symptoms of psychosis. The non-specific, affective symptoms appear to predominate the prodromal phase of the illness. Conclusion: Prodromal symptoms of schizophrenia include non-specific, affective symptoms. Attention needs to be paid on identifying the prodromal symptoms and change in social functioning in order to identify those who are at risk of long term psychosis. (author)

  11. Somatic symptom disorder

    Science.gov (United States)

    ... related disorders; Somatization disorder; Somatiform disorders; Briquet syndrome; Illness anxiety disorder References American Psychiatric Association. Somatic symptom disorder. Diagnostic and Statistical Manual of Mental Disorders . ...

  12. Korean Red Ginseng Extract Attenuates 3-Nitropropionic Acid-Induced Huntington’s-Like Symptoms

    Directory of Open Access Journals (Sweden)

    Minhee Jang

    2013-01-01

    Full Text Available Korean red ginseng (KRG possesses neuroprotective activity. However, the potential neuroprotective value of KRG for the striatal toxicity is largely unknown. We investigated whether KRG extract (KRGE could have a neuroprotective effect in a 3-nitropropionic acid- (3-NP induced (i.p. Huntington’s disease (HD model. KRGE (50, 100, and 250 mg/kg/day, p.o. was administrated 10 days before 3-NP injection (pre-administration, from the same time with 3-NP injection (co-administration, or from the peak point of neurological impairment by 3-NP injection (post-administration. Pre-administration of KRGE produced the greatest neuroprotective effect in this model. Pre-administration of KRGE significantly decreased 3-NP-induced neurological impairment, lethality, lesion area, and neuronal loss in the 3-NP-injected striatum. KRGE attenuated microglial activation and phosphorylation of mitogen-activated protein kinases (MAPKs and nuclear factor-kappa B (NF-κB signal pathway. KRGE also reduced the level of mRNA expression of tumor necrosis factor-alpha, interleukin- (IL- 1β, IL-6, inducible nitric oxide synthase, and OX-42. Interestingly, the intrathecal administration of SB203580 (a p38 inhibitor or PD98059 (an inhibitor of MAPK Kinase, MEK increased the survival rate in the 3-NP-induced HD model. Pre-administration of KRGE may effectively inhibit 3-NP-induced striatal toxicity via the inhibition of the phosphorylation of MAPKs and NF-κB pathways, indicating its therapeutic potential for suppressing Huntington’s-like symptoms.

  13. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Ye Y

    2014-09-01

    Full Text Available Yong Ye, Haiting Xing, Yue Li Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China Abstract: Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH, decrease of inflammatory cytokines TNF-α and IL-1ß in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142–220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The

  14. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice.

    Science.gov (United States)

    Kaur, Harpreet; Kumar, Amit; Jaggi, Amteshwar S; Singh, Nirmal

    2015-07-01

    Cerebral ischemia-reperfusion (I-R) injury is one of the primary causes of ischemic stroke. Ischemic postconditioning (iPoCo) is evolving as an important adaptive technique to contain I-R injury. Some recent studies have shown neuroprotective effects of iPoCo. However, the neuroprotective mechanism of iPoCo is not clear. So, the present study has been undertaken to investigate the possible role of Sirtinol, a selective class III histone deacetylase (HDAC) inhibitor in the neuroprotective mechanism of iPoCo in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was used to produce I-R-induced cerebral injury in Swiss albino mice. iPoCo involving three episodes of 10-s carotid artery occlusion and reperfusion instituted immediately after BCAO just before prolonged reperfusion of 24 h. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using a Morris water maze test. Rotarod test, inclined beam-walking test, and neurologic severity score (NSS) were used to assess motor incoordination. Acetylcholine esterase levels, brain thiobarbituric acid reactive species (TBARS), and glutathione level were also estimated. BCAO for 12 min followed by reperfusion for 24 h produced a significant rise in cerebral infarct size and NSS along with impairment of memory and motor coordination and biochemical alteration (↑acetylcholine esterase, ↓glutathione, and ↑TBARS). iPoCo, involving three episodes of 10-s carotid artery occlusion with intermittent reperfusion of 10 s applied just after ischemic insult of 12 min produced a significant decrease in cerebral infarct size and NSS along with the reversal of I-R-induced impairment of memory and motor coordination. iPoCo-induced neuroprotective effects were significantly abolished by pretreatment with selective SIRT 1 (class III HDAC) blocker Sirtinol (10 mg/kg intraperitoneal). It may be concluded that the neuroprotective effect of iPoCo probably

  15. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Wang Feifei

    2008-08-01

    Full Text Available Abstract Background Parkinson's disease (PD is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one, which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both in vitro and in vivo. 6-hydroxydopamine (6-OHDA, a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses. Results In vitro study showed that edaravone significantly ameliorated the survival of TH-positive neurons in a dose-responsive manner. The number of apoptotic cells and HEt-positive cells significantly decreased, thus indicating that the neuroprotective effects of edaravone might be mediated by anti-apoptotic effects through the suppression of free radicals by edaravone. In vivo study demonstrated that edaravone-administration at 30 minutes after 6-OHDA lesion reduced the number of amphetamine-induced rotations significantly than edaravone-administration at 24 hours. Tyrosine hydroxylase (TH staining of the striatum and substantia nigra pars compacta revealed that edaravone might exert neuroprotective effects on nigrostriatal dopaminergic systems. The neuroprotective effects were prominent when edaravone was administered early and in high concentration. TUNEL, HEt and Iba-1 staining in vivo might demonstrate the involvement of anti-apoptotic, anti

  16. Bell's Palsy Symptoms

    Science.gov (United States)

    ... Stories Español Eye Health / Eye Health A-Z Bell's Palsy Sections What Is Bell's Palsy? Bell's Palsy Symptoms Bell's Palsy Treatment Bell's Palsy Symptoms Leer en Español: Síntomas de la parálisis ...

  17. Symptoms, Diagnosis & Treatment

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Cover Story: Leukemia/Lymphoma Symptoms, Diagnosis & Treatment Past Issues / Summer 2008 Table of Contents For an enhanced version of this page please turn Javascript on. Leukemia Symptoms Frequent infections Fever and chills Anemia Easy ...

  18. Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia.

    Directory of Open Access Journals (Sweden)

    Mei Cui

    Full Text Available Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC or 6 days (E6d HPC. Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC. Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1. An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection.

  19. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    Science.gov (United States)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  20. Tadalafil enhances the neuroprotective effects of ischemic postconditioning in mice, probably in a nitric oxide associated manner.

    Science.gov (United States)

    Gulati, Puja; Singh, Nirmal

    2014-05-01

    This study investigates the modulatory effect of tadalafil, a selective phosphodiesterase (PDE-5) inhibitor, on the neuroprotective effects of ischemic postconditioning (iPoCo) in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion induced cerebral injury. Cerebral infarct size was measured using TTC staining. Memory was assessed using the Morris water maze test. Degree of motor incoordination was evaluated using inclined beam-walking, rota-rod, and lateral push tests. Brain nitrite/nitrate, acetylcholinesterase activity, TBARS, and glutathione levels were also estimated. BCAO followed by reperfusion produced a significant increase in cerebral infarct size, brain nitrite/nitrate and TBARS levels, and acetylcholinesterase activity along with a reduction in glutathione. Marked impairment of memory and motor coordination was also noted. iPoCo consisting of 3 episodes of 10 s carotid artery occlusion and reperfusion instituted immediately after BCAO significantly decreased infarct size, memory impairment, motor incoordination, and altered biochemistry. Pretreatment with tadalafil mimicked the neuroprotective effects of iPoCo. The tadalafil-induced neuroprotective effects were significantly attenuated by l-NAME, a nonselective NOS inhibitor. We concluded that tadalafil mimics the neuroprotective effects of iPoCo, probably through a nitric oxide dependent pathway, and PDE-5 could be a target of interest with respect to the neuroprotective mechanism of iPoCo.

  1. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor

  2. Social Sensations of Symptoms

    DEFF Research Database (Denmark)

    Meinert, Lotte; Whyte, Susan Reynolds

    2017-01-01

    The interpretation of sensations and the recognition of symptoms of a sickness, as well as the movement to seek treatment, have long been recognized in medical anthropology as inherently social processes. Based on cases of HIV and trauma (PTSD) in Uganda, we show that even the first signs....../symptoms; differential recognition of symptoms; and the embodied sociality of treatment....... and sensations of sickness can be radically social. The sensing body can be a ‘social body’ – a family, a couple, a network – a unit that transcends the individual body. In this article we focus on four aspects of the sociality of sensations and symptoms: mode of transmission; the shared experience of sensations...

  3. Flu Symptoms & Complications

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Symptoms & Complications Language: English (US) Español Recommend on ... not everyone with flu will have a fever. Flu Complications Most people who get influenza will recover ...

  4. Prostate Cancer Symptoms

    Science.gov (United States)

    ... Fundraise for PCF: Many vs Cancer Contact Us Prostate Cancer Symptoms and Signs Prostate Cancer Basics Risk Factors ... earlier. So what are the warning signs of prostate cancer? Unfortunately, there usually aren’t any early warning ...

  5. Medically Unexplained Symptoms

    Science.gov (United States)

    ... overview of three specific MUS’s: Chronic Fatigue Syndrome, Fibromyalgia, and Irritable Bowel Syndrome and discusses things you can do to minimize the symptoms and improve your quality of life. It is possible that these syndromes can all ...

  6. Cholera Illness and Symptoms

    Science.gov (United States)

    ... Share Compartir Cholera is an acute, diarrheal illness caused by infection of the intestine with the bacterium Vibrio cholerae and is spread by ingestion of contaminated food or water. The infection is often mild or without symptoms, ...

  7. Premonitory symptoms in migraine

    DEFF Research Database (Denmark)

    Laurell, Katarina; Artto, Ville; Bendtsen, Lars

    2016-01-01

    AIM: To describe the frequency and number of premonitory symptoms (PS) in migraine, the co-occurrence of different PS, and their association with migraine-related factors. METHODS: In this cross-sectional study, a validated questionnaire was sent to Finnish migraine families between 2002 and 2013...... to obtain data on 14 predefined PS, migraine diagnoses, demographic factors, and migraine characteristics. The estimated response rate was 80%. RESULTS: Out of 2714 persons, 2223 were diagnosed with migraine. Among these, 77% reported PS, with a mean number of 3.0 symptoms compared to 30% (p ....5 symptoms (p migraine headaches. Yawning was the most commonly reported symptom (34%) among migraineurs. Females reported PS more frequently than males (81 versus 64%, p 

  8. Gynecological cancer alarm symptoms:

    DEFF Research Database (Denmark)

    Balasubramaniam, Kirubakaran; Ravn, Pernille; dePont Christensen, René

    2016-01-01

    INTRODUCTION: To determine the proportion of patients who were referred to specialist care after reporting gynecological cancer alarm symptoms to their general practitioner. To investigate whether contact with specialist care was associated with lifestyle factors or socioeconomic status. MATERIAL...... and odds ratios (ORs) for associations between specialist care contact, lifestyle factors and socioeconomic status. RESULTS: The study included 25 866 non-pregnant women; 2957 reported the onset of at least one gynecological cancer alarm symptom, and 683 of these (23.1%) reported symptoms to their general......: Educational level influence contact with specialist care among patients with gynecological cancer alarm symptoms. Future studies should investigate inequalities in access to the secondary healthcare system. This article is protected by copyright. All rights reserved....

  9. Neuroprotection trek--the next generation: the measurement is the message.

    Science.gov (United States)

    Andrews, Russell J

    2005-08-01

    Animal trials of many pharmacological neuroprotective agents have been quite successful, whereas trials in humans have been uniformly disappointing. A major difference between laboratory research in animals and clinical research in humans is the amount and/or quality of data obtained. The goal of this presentation is to argue that when clinical studies consist of more valid, objective data--that is, as our measurement capabilities in clinical research become as robust as they are in laboratory research--we are likely to gain new insights into both (1) injury to the nervous system and (2) neuroprotective treatment strategies. Technological advances (in data acquisition and analysis)--often novel even in the laboratory--will be the "scale" that will enable progress in measurement. As examples of such technological advances, two projects initiated at NASA Ames Research Center are cited. The NASA Smart Probe Project, with the goal of combining multiple microsensors and neural networks for real-time tissue identification (e.g., for tumor detection), has recently moved into the clinical realm, with a prototype being used to diagnose breast cancer in women "on the spot". The NASA Nanoelectrode Array Project has fabricated nanoscale devices that can simultaneously monitor electrical activity and neurotransmitter concentrations, while providing electrical stimulation focally and precisely (and potentially in a closed-loop fashion based on the input from the nanosensors). The large amounts of data that such techniques can acquire and analyze--separated spatially and temporally throughout the nervous system, if necessary--will provide insights not only into neuroprotective strategies, but also into the workings of the nervous system itself.

  10. Neuroprotective effects of phytosterol esters against high cholesterol-induced cognitive deficits in aged rat.

    Science.gov (United States)

    Rui, Xu; Wenfang, Li; Jing, Cheng; Meng, Chen; Chengcheng, Ding; Jiqu, Xu; Shuang, Rong

    2017-03-22

    Accumulating epidemiological and experimental studies have confirmed that a high-cholesterol diet is detrimental to cognitive performance in animal models. Phytosterols, a class of naturally occurring structural components in plant foods, have been demonstrated to possess cholesterol-lowering and antioxidant effects. Phytosterol esters (PSE) are esters of phytosterol. The aim of this study was to evaluate the neuroprotective effects of PSE on cognitive deficit induced by a cholesterol-enriched diet in aged rats, and to explore their underlying mechanisms for these effects. Based on their Morris water maze performance, the latencies differed by <1.5 standard deviations (SDs) on days 3-5 of testing, 60 rats were chosen from 12-month-old female Sprague Dawley aged rats and were randomized into three groups, which were fed either a control diet, a high cholesterol diet (HCD) or a high-cholesterol diet supplemented with 2% PSE (HCD + PSE) for 6 months. In our study, we found that PSE treatment maintained the body weight balance, reduced the serum lipid levels, and improved the cognitive performance of aged rats in the Morris water maze test, as evaluated by shortened escape latencies. Importantly, histological and immunohistochemical results in the brain showed that PSE supplementation may have a neuroprotective effect that alleviates neuroinflammation in aged rats. This neuroprotective effect significantly inhibited degeneration, resulting in a significant increase in the number of pyramidal cells and an apparent decrease in the number of astrocytes compared to rats that were fed only a HCD. Furthermore, PSE improved cholinergic activities by restoring the acetylcholine (ACh) content and decreasing acetylcholinesterase (AChE) activity in the cerebral cortex, as well as by elevating choline acetyl transferase (ChAT) activity in the hippocampus and the cerebral cortex. These results suggest that PSE can play a useful role in alleviating cognitive deficit induced by a

  11. Evidence for the role of histaminergic pathways in neuroprotective mechanism of ischemic postconditioning in mice.

    Science.gov (United States)

    Kaur, Indresh; Kumar, Amit; Jaggi, Amteshwar S; Singh, Nirmal

    2017-08-01

    The present study has been designed to investigate the possible role of histaminergic pathway in neuroprotective mechanism of ischemic postconditioning (iPoCo). Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce I/R-induced cerebral injury in National Institutes of Health mice mice. iPoCo involving three episodes of carotid artery occlusion and reperfusion of 10 sec each was instituted immediately after BCAO just before prolonged reperfusion. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using Morris water maze test. Rotarod test, inclined beam-walking test, and neurological severity score (NSS) were performed to assess motor incoordination and sensorimotor abilities. Brain acetylcholine esterase (AChE) activity, brain myeloperoxidase (MPO) activity, brain thiobarbituric acid-reactive species (TBARS), and glutathione level (GSH) were also estimated. BCAO produced a significant rise in cerebral infarct size and NSS along with impairment of memory and motor coordination and biochemical alteration (↑AChE, ↑MPO ↓GSH, and ↑TBARS). iPoCo attenuated the deleterious effect of BCAO on infarct size, memory, NSS, motor coordination, and biochemical markers. Pretreatment of carnosine (a histamine [HA] precursor) potentiated the neuroprotective effects of iPoCo, whereas pretreatment of ketotifen (HA H1 receptor blocker and mast cell stabilizer) abolished the protective effects of iPoCo as well as that of carnosine on iPoCo. It may be concluded that neuroprotective effect of iPoCo probably involves activation of histaminergic pathways. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  12. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

    Science.gov (United States)

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M; Wang, Gelin; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.

  13. Preclinical quantitative MicroPET imaging in evaluation of neuroprotective drug candidates

    International Nuclear Information System (INIS)

    Son, Ji Yeon; Kim, Yu Kyeong; Kim, Ji Sun; Lee, Byung Chul; Kim, Kyeong Min; Choi, Tae Hyun; Cheon, Gi Jeong; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    Using in vivo molecular imaging with microPET/SPECT has been expected to facilitate drug discovery and development. In this study, we applied quantitative microPET to the preclinical evaluation of the effects of two neuroprotective drug candidates to the nigrostriatal dopaminergic neuronal damage. Fifteen SD rats were divided into three groups. The rats of each group were orally administrated one of neuroprotective candidate; NeuProtec (100mg/kg bid) and SureCero (10mg/kg, qd) or normal saline (0.1ml, qd) for 3 weeks. 6-OHDA was sterotactically placed to the right striatum on eighth day after starting while continuing the medication for additional 14 days. [ 124 I]FP-ClT PET scans were obtained using microPET R4 scanner. The behavioral test by amphetamine-induced rotation and the histological examination after thyrosine hydroxylase (TH) immunohistochemical staining were performed. Different uptake in the lesioned striatum among the groups were demonstrated on [ 124 I]FP-CIT PET images. The rats with NeuProtec showed higher binding in the lesion than controls. No differences were observed in SureCere groups. The FP-CIT uptake in the lesioned striatum was well correlated with the % reduction of TH(+) cells (rho =0.73, p=0.025), and also correlated with rotation test (rho =0.79, p=0.001) [ 124 I]FP-CIT animal PET depicted the neuroprotective effects of NeuProtec to the 6-OHDA neurotoxicity in the rat striatum. No demonstrable effect of SureCero might indicate that inadequate dosage was used in this study. MicroPET imaging with small animal could be a great tool in preclinical evaluation of drug efficacy

  14. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies.

    Science.gov (United States)

    Collins, Michael A; Neafsey, Edward J; Mukamal, Kenneth J; Gray, Mary O; Parks, Dale A; Das, Dipak K; Korthuis, Ronald J

    2009-02-01

    In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol

  15. Neuroprotective effect of edaravone in experimental glaucoma model in rats: a immunofluorescence and biochemical analysis

    Directory of Open Access Journals (Sweden)

    Arzu Toruk Aksar

    2015-04-01

    Full Text Available AIM: To evaluate the neuroprotective activity of systemically administered edaravone in early and late stage of experimental glaucoma in rats. METHODS: In this study, 60 Wistar albino rats were used. Experimental glaucoma model was created by injecting hyaluronic acid to the anterior chamber once a week for 6wk in 46 of 60 subjects. Fourteen subjects without any medication were included as control group. Edaravone administered intraperitoneally 3 mg/kg/d to the 15 of 30 subjects starting at the onset of glaucoma induction and also administered intraperitoneally 3 mg/kg/d to the other 15 subjects starting at three weeks after the onset of glaucoma induction. The other 16 subjects who underwent glaucoma induction was administered any therapy. Retinal ganglion cells (RGCs have been marked with dextran tetramethylrhodamine (DTMR retrograde at the end of the sixth week and after 48h, subjects were sacrificed by the method of cardiac perfusion. Alive RGC density was assessed in the whole-mount retina. Whole-mount retinal tissues homogenized and nitric oxide (NO, malondialdehyde (MDA and total antioxidant capacity (TAC values were measured biochemically. RESULTS: RGCs counted with Image-Pro Plus program, in the treatment group were found to be statistically significantly protected, compared to the glaucoma group (Bonferroni, P<0.05. The neuroprotective activity of edaravone was found to be more influential by administration at the start of the glaucoma process. Statistically significant lower NO levels were determined in the glaucoma group comparing treatment groups (Bonferroni, P<0.05. MDA levels were found to be highest in untreated glaucoma group, TAC levels were found to be lower in the glaucoma induction groups than the control group (Bonferroni, P<0.05. CONCLUSION: Systemic administration of Edaravone in experimental glaucoma showed potent neuroprotective activity. The role of oxidative stress causing RGC damage in glaucoma was supported by this

  16. Fetal Neuroprotection by Magnesium Sulfate: From Translational Research to Clinical Application

    Directory of Open Access Journals (Sweden)

    Clément Chollat

    2018-04-01

    Full Text Available Despite improvements in perinatal care, preterm birth still occurs regularly and the associated brain injury and adverse neurological outcomes remain a persistent challenge. Antenatal magnesium sulfate administration is an intervention with demonstrated neuroprotective effects for preterm births before 32 weeks of gestation (WG. Owing to its biological properties, including its action as an N-methyl-d-aspartate receptor blocker and its anti-inflammatory effects, magnesium is a good candidate for neuroprotection. In hypoxia models, including hypoxia-ischemia, inflammation, and excitotoxicity in various species (mice, rats, pigs, magnesium sulfate preconditioning decreased the induced lesions’ sizes and inflammatory cytokine levels, prevented cell death, and improved long-term behavior. In humans, some observational studies have demonstrated reduced risks of cerebral palsy after antenatal magnesium sulfate therapy. Meta-analyses of five randomized controlled trials using magnesium sulfate as a neuroprotectant showed amelioration of cerebral palsy at 2 years. A meta-analysis of individual participant data from these trials showed an equally strong decrease in cerebral palsy and the combined risk of fetal/infant death and cerebral palsy at 2 years. The benefit remained similar regardless of gestational age, cause of prematurity, and total dose received. These data support the use of a minimal dose (e.g., 4 g loading dose ± 1 g/h maintenance dose over 12 h to avoid potential deleterious effects. Antenatal magnesium sulfate is now recommended by the World Health Organization and many pediatric and obstetrical societies, and it is requisite to maximize its administration among women at risk of preterm delivery before 32 WG.

  17. Neuronal Rho GTPase Rac1 elimination confers neuroprotection in a mouse model of permanent ischemic stroke.

    Science.gov (United States)

    Karabiyik, Cansu; Fernandes, Rui; Figueiredo, Francisco Rosário; Socodato, Renato; Brakebusch, Cord; Lambertsen, Kate Lykke; Relvas, João Bettencourt; Santos, Sofia Duque

    2017-09-28

    The Rho GTPase Rac1 is a multifunctional protein involved in distinct pathways ranging from development to pathology. The aim of the present study was to unravel the contribution of neuronal Rac1 in regulating the response to brain injury induced by permanent focal cerebral ischemia (pMCAO). Our results show that pMCAO significantly increased total Rac1 levels in wild type mice, mainly through rising nuclear Rac1, while a reduction in Rac1 activation was observed. Such changes preceded cell death induced by excitotoxic stress. Pharmacological inhibition of Rac1 in primary neuronal cortical cells prevented the increase in oxidative stress induced after overactivation of glutamate receptors. However, this was not sufficient to prevent the associated neuronal cell death. In contrast, RNAi-mediated knock down of Rac1 in primary cortical neurons prevented cell death elicited by glutamate excitotoxicity and decreased the activity of NADPH oxidase. To test whether in vivo down regulation of neuronal Rac1 was neuroprotective after pMCAO, we used tamoxifen-inducible neuron-specific conditional Rac1-knockout mice. We observed a significant 50% decrease in brain infarct volume of knockout mice and a concomitant increase in HIF-1α expression compared to littermate control mice, demonstrating that ablation of Rac1 in neurons is neuroprotective. Transmission electron microscopy performed in the ischemic brain showed that lysosomes in the infarct of Rac1- knockout mice were preserved at similar levels to those of non-infarcted tissue, while littermate mice displayed a decrease in the number of lysosomes, further corroborating the notion that Rac1 ablation in neurons is neuroprotective. Our results demonstrate that Rac1 plays important roles in the ischemic pathological cascade and that modulation of its levels is of therapeutic interest. © 2017 International Society of Neuropathology.

  18. Exercise training attenuates experimental autoimmune encephalomyelitis by peripheral immunomodulation rather than direct neuroprotection.

    Science.gov (United States)

    Einstein, Ofira; Fainstein, Nina; Touloumi, Olga; Lagoudaki, Roza; Hanya, Ester; Grigoriadis, Nikolaos; Katz, Abram; Ben-Hur, Tamir

    2018-01-01

    Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides.

    Science.gov (United States)

    Reglodi, Dora; Renaud, Justine; Tamas, Andrea; Tizabi, Yousef; Socías, Sergio B; Del-Bel, Elaine; Raisman-Vozari, Rita

    2017-08-01

    Parkinson's disease is a progressive neurodegenerative disorder characterized by the degeneration of midbrain nigral dopaminergic neurons. Although its etiology remains unknown, the pathological role of several factors has been highlighted, namely oxidative stress, neuroinflammation, protein misfolding, and mitochondrial dysfunction, in addition to genetic predispositions. The current therapy is mainly symptomatic with l-DOPA aiming to replace dopamine. Novel therapeutic approaches are being investigated with the intention of influencing pathways leading to neuronal death and dysfunction. The present review summarizes three novel approaches, the use of which is promising in pre-clinical studies. Polyphenols have been shown to possess neuroprotective properties on account of their well-established antioxidative and anti-inflammatory actions but also due to their influence on protein misfolding and mitochondrial homeostasis. Within the amazing ancillary effects of antibiotics, their neuroprotective properties against neurodegenerative and neuroinflammatory processes are of great interest for the development of effective therapies against Parkinson's disease. Experimental evidence supports the potential of antibiotics as neuroprotective agents, being useful not only to prevent the formation of toxic α-synuclein oligomers but also to ameliorate mitochondrial dysfunction and neuroinflammation. Neuropeptides offer another approach with their diverse effects in the nervous system. Among them, pituitary adenylate cyclase-activating polypeptide, a member of the secretin/glucagon superfamily, has several advantageous effects in models of neurodegeneration, namely anti-apoptotic, anti-inflammatory and antioxidant actions, the combination of which offers a potent protective effect in dopaminergic neurons. Owing to their pleiotropic modes of action, these novel therapeutic candidates have potential in tackling the multidimensional features of Parkinson's disease. Copyright

  20. Polyelectrolyte-coated nanocapsules containing undecylenic acid: Synthesis, biocompatibility and neuroprotective properties.

    Science.gov (United States)

    Piotrowski, Marek; Jantas, Danuta; Szczepanowicz, Krzysztof; Łukasiewicz, Sylwia; Lasoń, Władysław; Warszyński, Piotr

    2015-11-01

    The main objectives of the present study were to investigate the biocompatibility of polyelectrolyte-coated nanocapsules and to evaluate the neuroprotective action of the nanoencapsulated water-insoluble neuroprotective drug-undecylenic acid (UDA), in vitro. Core-shell nanocapsules were synthesized using nanoemulsification and the layer-by-layer (LbL) technique (by saturation method). The average size of synthesized nanocapsules was around 80 nm and the concentration was 2.5 × 10(10) particles/ml. Their zeta potential values ranged from less than -30 mV for the ones with external polyanion layers through -4 mV for the PEG-ylated layers to more than 30 mV for the polycation layers. Biocompatibility of synthesized nanocarriers was evaluated in the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). The results obtained showed that synthesized nanocapsules coated with PLL and PGA (also PEG-ylated) were non-toxic to SH-SY5Y cells, therefore, they were used as nanocarriers for UDA. Moreover, studies with ROD/FITC-labeled polyelectrolytes demonstrated approximately 20% cellular uptake of synthetized nanocapsules. Further studies showed that nanoencapsulated form of UDA was biocompatible and protected SH-SY5Y cells against the staurosporine-induced damage in lower concentrations than those of the same drug added directly to the culture medium. These data suggest that designed nanocapsules might serve as novel, promising delivery systems for neuroprotective agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fatty acid methyl esters and Solutol HS 15 confer neuroprotection after focal and global cerebral ischemia.

    Science.gov (United States)

    Lin, Hung Wen; Saul, Isabel; Gresia, Victoria L; Neumann, Jake T; Dave, Kunjan R; Perez-Pinzon, Miguel A

    2014-02-01

    We previously showed that palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Solutol HS15, a clinically approved excipient because it possesses similar fatty acid compositions as PAME/SAME. Asphyxial cardiac arrest (ACA, 6 min) was performed 30 min after PAME/SAME treatment (0.02 mg/kg, IV). Solutol HS15 (2 ml/kg, IP) was injected chronically for 14 days (once daily). Histopathology of hippocampal CA1 neurons was assessed 7 days after ACA. For focal ischemia experiments, PAME, SAME, or Solutol HS15 was administered following reperfusion after 2 h of middle cerebral artery occlusion (MCAO). 2,3,5-Triphenyltetrazolium staining of the brain was performed 24 h after MCAO and the infarct volume was quantified. Following ACA, the number of surviving hippocampal neurons was enhanced by PAME-treated (68%), SAME-treated (69%), and Solutol-treated HS15 (68%) rats as compared to ACA only-treated groups. Infarct volume was decreased by PAME (83%), SAME (68%), and Solutol HS15 (78%) as compared to saline (vehicle) in MCAO-treated animals. PAME, SAME, and Solutol HS15 provide robust neuroprotection in both paradigms of ischemia. This may prove therapeutically beneficial since Solutol HS15 is already administered as a solublizing agent to patients. With proper timing and dosage, administration of Solutol HS15 and PAME/SAME can be an effective therapy against cerebral ischemia.

  2. [Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis].

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis.

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia.

    Science.gov (United States)

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-06-10

    The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. In the present study, we systematically investigated expression of HPX in normal rat brain by immunofluorescent staining. The results showed that HPX was mainly expressed in vascular system and neurons, as well as in a small portion of astrocytes adjacent to the vessels in normal rat brain. Further, we determined the role of HPX in the process of focal cerebral ischemic injury and explored the effects of HPX treatment in a rat model of transient focal cerebral ischemia. After 2 h' middle cerebral artery occlusion (MCAO) followed by 24 h' reperfusion, the expression of HPX was increased in the neurons and astrocytes in the penumbra area, as demonstrated by immunohistochemistry and Western blot techniques. Intracerebroventricular injection of HPX at the onset of reperfusion dose-dependently reduced the infarct volumes and improved measurements of neurological function of the rat subjected to transient focal cerebral ischemia. The neuroprotective effects of HPX sustained for up to 7 days after experiments. Our study provides a new insight into the potential neuroprotective role of HPX as a contributing factor of endogenous protective mechanisms against focal cerebral ischemia injury, and HPX might be developed as a potential agent for treatment of ischemic stroke.

  5. Neuroprotective strategies for patients with acute myocardial infarction combined with hypoxic ischemic encephalopathy in the ICU

    Directory of Open Access Journals (Sweden)

    Weiwei Hu

    2017-11-01

    Full Text Available Background: We investigated neuroprotective treatment strategies for patients with acute myocardial infarction (AMI complicated with hypoxic ischemic encephalopathy (HIE in the ICU. Methods: The 83 cases diagnosed with secondary AMI were, for the first time, divided into an observation group (n = 43 and control group (n = 40. All of the patients underwent emergency or elective PCI. Patients in the control group were treated with mannitol to reduce intracranial pressure and cinepazide maleate to improve microcirculation in the brain as well as given a comprehensive treatment with oxygen inhalation, fluid infusion, acid-base imbalance correction and electrolyte disturbance. Patients in the observation group underwent conventional treatment combined with neuroprotective therapeutic strategies. The effects of the different treatment strategies were compared. Results: Consciousness recovery time, reflex recovery time, muscle tension recovery time and duration of ICU stay were significantly shorter in the observation group compared with the control group (P < 0.05. After treatment, the jugular vein oxygen saturation (SjvO2 and blood lactate (JB-LA levels of both groups were lower than before treatment and the cerebral oxygen utilization rate (O2UC increased, with a significantly higher increase in the observation group (P < 0.05. After treatment, the activities of daily living (ADL score was higher for both groups and the neural function defect (NIHS score was lower. Conclusion: The neuroprotective strategies of hypothermia and ganglioside administration assisted with hyperbaric oxygen was effective for treating AMI patients with HIE and may be worth clinical promotion. Keywords: ICU, Acute myocardial infarction, Hypoxic ischemic encephalopathy, Neural protection

  6. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis

    Directory of Open Access Journals (Sweden)

    De-An Zhao

    Full Text Available Abstract Background and objectives: Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. Methods: A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Results: Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Conclusions: Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis.

  7. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    Science.gov (United States)

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Omega-3 Fatty Acids: Possible Neuroprotective Mechanisms in the Model of Global Ischemia in Rats

    OpenAIRE

    Nobre, Maria Elizabeth Pereira; Correia, Alyne Oliveira; Mendon?a, Francisco Nilson Maciel; Uchoa, Luiz Ricardo Ara?jo; Vasconcelos, Jessica Tamara Nunes; de Ara?jo, Carlos Ney Alencar; Brito, Gerly Anne de Castro; Siqueira, Rafaelly Maria Pinheiro; Cerqueira, Gilberto dos Santos; Neves, Kelly Rose Tavares; Arida, Ricardo M?rio; Viana, Glauce Socorro de Barros

    2016-01-01

    Background. Omega-3 (ω3) administration was shown to protect against hypoxic-ischemic injury. The objectives were to study the neuroprotective effects of ω3, in a model of global ischemia. Methods. Male Wistar rats were subjected to carotid occlusion (30 min), followed by reperfusion. The groups were SO, untreated ischemic and ischemic treated rats with ω3 (5 and 10 mg/kg, 7 days). The SO and untreated ischemic animals were orally treated with 1% cremophor and, 1 h after the last administrati...

  9. Polyamine conjugation of curcumin analogues toward the discovery of mitochondria-directed neuroprotective agents.

    Science.gov (United States)

    Simoni, Elena; Bergamini, Christian; Fato, Romana; Tarozzi, Andrea; Bains, Sandip; Motterlini, Roberto; Cavalli, Andrea; Bolognesi, Maria Laura; Minarini, Anna; Hrelia, Patrizia; Lenaz, Giorgio; Rosini, Michela; Melchiorre, Carlo

    2010-10-14

    Mitochondria-directed antioxidants 2-5 were designed by conjugating curcumin congeners with different polyamine motifs as vehicle tools. The conjugates emerged as efficient antioxidants in mitochondria and fibroblasts and also exerted a protecting role through heme oxygenase-1 activation. Notably, the insertion of a polyamine function into the curcumin-like moiety allowed an efficient intracellular uptake and mitochondria targeting. It also resulted in a significant decrease in the cytotoxicity effects. 2-5 are therefore promising molecules for neuroprotectant lead discovery.

  10. Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Isenberg, Jacob D; Harmel, Allison T

    2017-01-01

    Activation of the angiotensin II type 2 receptor (AT2R) by administration of Compound 21 (C21), a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect....... These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human....... Intraperitoneal injections of C21 (0.03mg/kg) after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments...

  11. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    Directory of Open Access Journals (Sweden)

    Michal eHorowitz

    2015-07-01

    Full Text Available Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA develops via altered molecular programs such as cross-tolerance (Heat Acclimation -Neuroprotection Cross-Tolerance -HANCT. The mechanisms underlying cross-tolerance depend on enhanced on-demand protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI. The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

  12. Peripheral Neuropathy: Symptoms and Signs

    Science.gov (United States)

    ... Utah Research News Make a Difference Symptoms of Peripheral Neuropathy Print This Page Peripheral Neuropathy symptoms usually start ... more slowly over many years. The symptoms of peripheral neuropathy often include: A sensation of wearing an invisible “ ...

  13. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  14. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden

    Directory of Open Access Journals (Sweden)

    Abisambra Jose F

    2010-11-01

    Full Text Available Abstract Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB, the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17: Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.

  15. Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo.

    Science.gov (United States)

    Szydlowska, Kinga; Kaminska, Bozena; Baude, Andrea; Parsons, Chris G; Danysz, Wojciech

    2007-01-05

    The neuroprotective potential of allosteric mGlu5 and mGlu1 antagonists such as 6-methyl-2-(phenylethynyl)-pyridin (MPEP)/[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), was tested in vitro in organotypic hippocampal cultures and in the middle cerebral artery occlusion model of stroke in vivo. Both classes of agent have high selectivity toward mGlu sub-types and are active in animal models of various diseases indicating satisfactory CNS penetration. In organotypic hippocampal cultures MPEP showed high neuroprotective potency against sub-chronic (12 days) insult produced by 3-NP with an IC50 of c.a. 70 nM. In contrast, although the mGlu1 antagonist EMQMCM was also protective, it seems to be weaker yielding an IC50 of c.a. 1 microM. Similarly, in the transient (90 min) middle cerebral artery occlusion model of ischaemia in rats, MTEP seems to be more effective than EMQMCM. MTEP, at 2.5 mg/kg and at 5 mg/kg provided 50 and 70% neuroprotection if injected 2 h after the onset of ischaemia. At a dose of 5 mg/kg, significant (50%) neuroprotection was also seen if the treatment was delayed by 4 h. EMQMCM was not protective at 5 mg/kg (given 2 h after occlusion) but at 10 mg/kg 50% of neuroprotection was observed. The present data support stronger neuroprotective potential of mGlu5 than mGlu1 antagonists.

  16. NEUROPROTECTIVE EFFICACY OF SUBCUTANEOUS INSULIN-LIKE GROWTH FACTOR-I ADMINISTRATION IN NORMOTENSIVE AND HYPERTENSIVE RATS WITH AN ISCHEMIC STROKE

    NARCIS (Netherlands)

    de Geyter, D.; Stoop, W.; Sarre, S.; de Keyser, J.; Kooijman, R.

    2013-01-01

    The aim of this study was to test the insulin-like growth factor-I (IGF-I) as a neuroprotective agent in a rat model for ischemic stroke and to compare its neuroprotective effects in conscious normotensive and spontaneously hypertensive rats. The effects of subcutaneous IGF-I injection were

  17. A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Idriss Ali Abdoulaye

    2016-01-01

    Full Text Available The research of alternative treatment for ischemic stroke and degenerative diseases has always been a priority in neurology. 3-N-Butylphthalide (NBP, a family of compounds initially isolated from the seeds of Apium graveolens Linn., has shown significant neuroprotective effects. Previous extensive studies have demonstrated that NBP promotes a better poststroke outcome and exerts a multitargeted action on several mechanisms, from oxidative stress to mitochondrial dysfunction to apoptosis to inflammation. Additionally, recent findings on several neurological disorders have shown that NBP’s beneficial effects extend beyond the management of stroke. However, despite the increasing number of studies toward a better understanding and the rapid advances made in therapeutic options, to date, dl-3-N-butylphthalide, a synthetic variation of l-3-N-butylphthalide, remains the only clinically approved anti-ischemic agent in China, stressing the difficulties for a viable and effective transition from experimental to clinical practice. Events indicate that NBP, due to its multitargeted effect and the adaptability of its basic structure, can be an important game changer and a precursor to a whole new therapeutic approach to several neurological conditions. The present review discusses recent advances pertaining to the neuroprotective mechanisms of NBP-derived compounds and the possibility of their clinical implementation in the management of various neurological conditions.

  18. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.

    Science.gov (United States)

    Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino

    2014-07-15

    Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.

  19. Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetic Retinopathy: Relationship with Cardiovascular Biomarkers.

    Science.gov (United States)

    González-Correa, José Antonio; Rodríguez-Pérez, María Dolores; Márquez-Estrada, Lucía; López-Villodres, Juan Antonio; Reyes, José Julio; Rodriguez-Gutierrez, Guillermo; Fernández-Bolaños, Juan; De La Cruz, José Pedro

    2018-01-24

    The aim of the study was to test the neuroprotective effect of hydroxytyrosol (HT) on experimental diabetic retinopathy. Animals were divided in four groups: (1) control nondiabetic rats, (2) streptozotocin-diabetic rats (DR), (3) DR treated with 1 mg/kg/day p.o. HT, and (4) DR treated with 5 mg/kg/day p.o. HT. Treatment with HT was started 7 days before inducing diabetes and was maintained for 2 months. In the DR group, total area occupied by extracellular matrix was increased, area occupied by retinal cells was decreased; both returned to near-control values in DR rats treated with HT. The number of retinal ganglion cells in DR was significantly lower (44%) than in the control group, and this decrease was smaller after HT treatment (34% and 9.1%). Linear regression analysis showed that prostacyclin, platelet aggregation, peroxynitrites, and the dose of 5 mg/kg/day HT significantly influenced retinal ganglion cell count. In conclusion, HT exerted a neuroprotective effect on diabetic retinopathy, and this effect correlated significantly with changes in some cardiovascular biomarkers.

  20. Neuroprotective Activity of Lavender Oil on Transient Focal Cerebral Ischemia in Mice

    Directory of Open Access Journals (Sweden)

    Qiusheng Zheng

    2012-08-01

    Full Text Available The air-dried aerial parts of Lavandula angustifolia Mill, a traditional Uygur herbal drug, is used as resuscitation-inducing therapy to treat neurodisfunctions, such as stroke. This study was designed to assess the neuroprotective effects of lavender oil against ischemia/reperfusion (IR injury in mice. Focal cerebral ischemia was induced by the intraluminal occlusion method with a nylon string. The neurodysfuntion was evaluated by neurological deficit and the infarct area was showed by 2,3,5-triphenyltetrazolium chloride (TTC staining. The histopathological changes were observed by hematoxylin and eosin staining. The levels of mitochondria-generated reactive oxygen species (ROS, malondialdehyde (MDA and carbonyl, the ratio of reduced glutathione (GSH/glutathione disulfide (GSSG, the activities of superoxide dismutase (SOD, catalase (CAT and glutathion peroxidase (GSH-Px in brain tissue were measured to estimate the oxidative stress state. Neurological deficit, infarct size, histopathology changes and oxidative stress markers were evaluated after 22 h of reperfusion. In comparison with the model group, treatment with lavender oil significantly decreased neurological deficit scores, infarct size, the levels of MDA, carbonyl and ROS, and attenuated neuronal damage, upregulated SOD, CAT, GSH-Px activities and GSH/GSSG ratio. These results suggested that the neuroprotective effects of lavender oil against cerebral ischemia/reperfusion injury may be attributed to its antioxidant effects.

  1. GGF2 is neuroprotective in a rat model of cavernous nerve injury-induced erectile dysfunction.

    Science.gov (United States)

    Burnett, Arthur L; Sezen, Sena F; Hoke, Ahmet; Caggiano, Anthony O; Iaci, Jennifer; Lagoda, Gwen; Musicki, Biljana; Bella, Anthony J

    2015-04-01

    Erectile dysfunction is a major complication of radical prostatectomy, commonly associated with penile neuropathy. In animal models of peripheral nerve injury, glial growth factor-2 (GGF2), a member of the neuregulin family of growth factors, has neuroprotective and neurorestorative properties, but this potential has not been established after cavernous nerve (CN) injury. The effectiveness of GGF2 in preserving axonal integrity and recovering erectile function in a rat model of radical prostatectomy-associated CN injury. Adult male Sprague-Dawley rats underwent bilateral CN crush injury (BCNI) or sham surgery. Rats were administered GGF2 (0.5, 5, or 15 mg/kg) or vehicle subcutaneously 24 hour pre and 24-hour post-BCNI, and once weekly for 5 weeks. Erectile function was assessed in response to electrical stimulation of the CN. CN survival was assessed by fluorogold retrograde axonal tracing in major pelvic ganglia (MPG). Unmyelinated axons in the CNs were quantitated by electron microscopy. Erectile function recovery, CN survival, and unmyelinated CN axon preservation in response to GGF2 treatment following BCNI. Erectile function was decreased (P cells in the MPG was reduced (P Schwann cells in the BCNI group was higher (P Schwann cell compared with the BCNI group. GGF2 promotes erectile function recovery following CN injury in conjunction with preserving unmyelinated CN fibers. Our findings suggest the clinical opportunity to develop GGF2 as a neuroprotective therapy for radical prostatectomy. © 2015 International Society for Sexual Medicine.

  2. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  3. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    Science.gov (United States)

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (pkefir group were significantly higher than ischemia group (pkefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (pkefir group compared with ischemia group (pkefir group were significantly higher than ischemia group at 24 h (pkefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  4. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-08-01

    Full Text Available Background: Acute spinal cord injury (SCI leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. Methods: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. Results: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. Conclusion: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.

  5. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  6. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity.

    Science.gov (United States)

    Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad

    2013-11-01

    In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p extract also dose-dependently reduced intracellular ROS production (p extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.

  7. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage

    Science.gov (United States)

    Park, Jonghyuck; Zheng, Lingxing; Marquis, Andrew; Walls, Michael; Duerstock, Brad; Pond, Amber; Alvarez, Sascha Vega; He, Wang; Ouyang, Zheng; Shi, Riyi

    2014-01-01

    Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in SCI, mainly based on in vitro and ex vivo evidence. Here we demonstrate an increase of acrolein up to 300%; the elevation lasted at least two weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine treatment also resulted in significant amelioration of tissue damage, motor deficits, and neuropathic pain. This effect was further supported by demonstrating the ability of hydralazine to reach spinal cord tissue at a therapeutic level following intraperitoneal application. This suggests that hydralazine is an effective neuroprotective agent not only in vitro, but in a live animal model of SCI as well. Finally, the role of acrolein in SCI was further validated by the fact that acrolein injection into the spinal cord caused significant SCI-like tissue damage and motor deficits. Taken together, available evidence strongly suggests a critical causal role of acrolein in the pathogenesis of spinal cord trauma. Since acrolein has been linked to a variety of illness and conditions, we believe that acrolein-scavenging measures have the potential to be expanded significantly ensuring a broad impact on human health. PMID:24286176

  8. Progranulin levels in status epilepticus as a marker of neuronal recovery and neuroprotection.

    Science.gov (United States)

    Huchtemann, T; Körtvélyessy, P; Feistner, H; Heinze, H J; Bittner, D

    2015-08-01

    Recently, a mouse model showed that progranulin, a mediator in neuroinflammation and a neuronal growth factor, was elevated in the hippocampus after status epilepticus (SE). This elevated level might mirror compensating neuronal mechanisms after SE. Studies concerning neuronal recovery and neuroprotective mechanisms after SE in humans are scarce, so we tested for progranulinin the cerebrospinal fluid (CSF) after various types of SE. We performed a retrospective analysis of progranulin levels in CSF in patients (n = 24) who underwent lumbar puncture as part of diagnostic workup after having SE and in patients after having one single tonic-clonic seizure who comprised the control group (n = 8). In our group with SE, progranulin levels in CSF were not significantly elevated compared to our control group. Furthermore, there was no correlation between progranulin levels and the time interval between lumbar puncture and SE. Additionally, in cases of higher CSF progranulin levels, we found no impact on the clinical outcome after SE. Although our cohort is heterogeneous and not fully sufficient, we conclude that progranulin in CSF is not elevated after SE in our cohort. Therefore, our results do not suggest a change in cerebral progranulin metabolism as a possible neuroregenerative or neuroprotective mechanism in humans after SE in acute and subacute phases. A larger cohort study is needed to further strengthen this result. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  9. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Antonella Cardinale

    Full Text Available Poly (ADP-ribose polymerase 1 (PARP-1 is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington's disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.

  10. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Muhammad Ayaz

    2017-05-01

    Full Text Available The use of essential oils (EOs and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ, neurofibrillary tangles (NFTs, cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.

  11. Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Taiwo Olayemi Elufioye

    2017-01-01

    Full Text Available Neuroprotection is the preservation of the structure and function of neurons from insults arising from cellular injuries induced by a variety of agents or neurodegenerative diseases (NDs. The various NDs including Alzheimer’s, Parkinson’s, and Huntington’s diseases as well as amyotropic lateral sclerosis affect millions of people around the world with the main risk factor being advancing age. Each of these diseases affects specific neurons and/or regions in the brain and involves characteristic pathological and molecular features. Hence, several in vitro and in vivo study models specific to each disease have been employed to study NDs with the aim of understanding their underlying mechanisms and identifying new therapeutic strategies. Of the most prevalent drug development efforts employed in the past few decades, mechanisms implicated in the accumulation of protein-based deposits, oxidative stress, neuroinflammation, and certain neurotransmitter deficits such as acetylcholine and dopamine have been scrutinized in great detail. In this review, we presented classical examples of plant-derived neuroprotective agents by highlighting their structural class and specific mechanisms of action. Many of these natural products that have shown therapeutic efficacies appear to be working through the above-mentioned key multiple mechanisms of action.

  12. Free-Radical Scavenger Edaravone Treatment Confers Neuroprotection Against Traumatic Brain Injury in Rats

    Science.gov (United States)

    Wang, Guo-Hua; Li, Yong-Cai; Li, Xia; Shi, Hong; Gao, Yan-Qin; Vosler, Peter S.

    2011-01-01

    Abstract Traumatic brain injury (TBI) is one of the leading causes of neurological disability in young adults. Edaravone, a novel synthetic small-molecule free-radical scavenger, has been shown to have a neuroprotective effect in both animal models of cerebral ischemia and stroke patients; however, the underlying mechanism is poorly understood. In this report, we investigated the potential mechanisms of edaravone treatment in a rat model of TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. Edaravone (0.75, 1.5, or 3 mg/kg) or vehicle (normal saline) was intravenously administered at 2 and 12 h after TBI. Edaravone treatment significantly decreased hippocampal CA3 neuron loss, reduced oxidative stress, and decreased neuronal programmed cell death compared to vehicle treatment. The protective effects of edaravone treatment were also related to the pathology of TBI on non-neuronal cells, as edaravone decreased astrocyte and glial activation. Lastly, edaravone treatment significantly reduced the presence of inflammatory cytokines, cerebral edema, blood–brain barrier (BBB) permeability, and, importantly, neurological deficits following TBI. Our results suggest that edaravone exerts a neuroprotective effect in the rat model of TBI. The likely mechanism is via inhibiting oxidative stress, leading to a decreased inflammatory response and glial activation, and thereby reducing neuronal death and improving neurological function. PMID:21732763

  13. Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Lee, Dae-Hee; Ha, Nina; Bu, Yung-Min; Choi, Hyoung Il; Park, Yoo Guen; Kim, Yoon Bum; Kim, Mi-Yeon; Kim, Hocheol

    2006-08-01

    The flower buds of Buddleja officinalis MAXIM (Loganiaceae) are used to treat headache and inflammatory diseases in traditional Korean medicine. In the present study, the neuroprotective effects of the methanolic extract of B. officinalis (BOME) and of its hexane fraction (BOHF) were investigated in a middle cerebral artery occlusion (MCAo, 120 min occlusion, 24 h reperfusion) Sprague-Dawley rat model. BOME or BOHF (100 mg/kg, p.o.) was twice administered 30 min before the onset of MCAo and 2 h after reperfusion. BOME and BOHF treated groups showed infarct volumes reduced by 33.9% and 68.2%, respectively, at 2 h occlusion. In BOHF treated animals, cyclooxygenase-2 and iNOS inductions were inhibited in ischemic hemispheres at both the mRNA and protein levels. Furthermore, in vitro studies showed that BOME and BOHF both inhibited LPS-induced nitric oxide production in BV-2 mouse microglial cells. These results suggest that the anti-inflammatory and the microglial activation inhibitory effects of B. officinalis extract may contribute to its neuroprotective effects in brain ischemia.

  14. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    WALESKA B. MARTINS

    2016-01-01

    Full Text Available ABSTRACT The Portulaca oleracea L. (Portulacaceae is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease.

  15. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons.

    Science.gov (United States)

    Martins, Waleska B; Rodrigues, Sheyla A; Silva, Hatamy K; Dantas, Camila G; Júnior, Waldecy DE Lucca; Filho, Lauro Xavier; Cardoso, Juliana C; Gomes, Margarete Z

    2016-09-01

    The Portulaca oleracea L. (Portulacaceae) is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg) daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease.

  16. The neuroprotective effect of lovastatin on MPP(+)-induced neurotoxicity is not mediated by PON2.

    Science.gov (United States)

    Aguirre-Vidal, Yoshajandith; Montes, Sergio; Tristan-López, Luis; Anaya-Ramos, Laura; Teiber, John; Ríos, Camilo; Baron-Flores, Verónica; Monroy-Noyola, Antonio

    2015-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of the pigmented dopaminergic neurons in the substantia nigra pars compacta with subsequent striatal dopamine (DA) deficiency and increased lipid peroxidation. The etiology of the disease is still unclear and it is thought that PD may be caused by a combination of genetic and environmental factors. In the search of new pharmacological options, statins have been recognized for their potential application to treat PD, due to their antioxidant effect. The aim of this work is to contribute in the characterization of the neuroprotective effect of lovastatin in a model of PD induced by 1-methyl-4-phenylpyridinium (MPP(+)). Male Wistar rats (200-250 g) were randomly allocated into 4 groups and administered for 7 days with different pharmacological treatments. Lovastatin administration (5 mg/kg) diminished 40% of the apomorphine-induced circling behavior, prevented the striatal DA depletion and lipid peroxides formation by MPP(+) intrastriatal injection, as compared to the group of animals treated only with MPP(+). Lovastatin produced no change in paraoxonase-2 (PON2) activity. It is evident that lovastatin conferred neuroprotection against MPP(+)-induced protection but this effect was not associated with the induction of PON2 in the rat striatum. Copyright © 2015. Published by Elsevier B.V.

  17. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    Science.gov (United States)

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (Pnootropic, neuroprotective and neurotrophic activities in SCP induced memory impaired mice and hence, is a promising therapeutic moiety in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hong-fei Li

    2015-01-01

    Full Text Available Nerve growth factor (NGF plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  19. Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and stroke.

    Science.gov (United States)

    Zhang, Ming; Martin, Billy R; Adler, Martin W; Razdan, Raj J; Kong, Weimin; Ganea, Doina; Tuma, Ronald F

    2009-06-01

    Recognition of the importance of the endocannabinoid system in both homeostasis and pathologic responses raised interest recently in the development of therapeutic agents based on this system. The CB(2) receptor, a component of the endocannabinoid system, has significant influence on immune function and inflammatory responses. Inflammatory responses are major contributors to central nervous system (CNS) injury in a variety of diseases. In this report, we present evidence that activation of CB(2) receptors, by selective CB(2) agonists, reduces inflammatory responses that contribute to CNS injury. The studies demonstrate neuroprotective effects in experimental autoimmune encephalomyelitis, a model of multiple sclerosis, and in a murine model of cerebral ischemia/reperfusion injury. In both cases, CB(2) receptor activation results in reduced white cell rolling and adhesion to cerebral microvessels, a reduction in immune cell invasion, and improved neurologic function after insult. In addition, administration of the CB(1) antagonist SR141716A reduces infarct size following ischemia/reperfusion injury. Administration of both a selective CB(2) agonist and a CB(1) antagonist has the unique property of increasing blood flow to the brain during the occlusion period, suggesting an effect on collateral blood flow. In summary, selective CB(2) receptor agonists and CB(1) receptor antagonists have significant potential for neuroprotection in animal models of two devastating diseases that currently lack effective treatment options.

  20. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age

    Science.gov (United States)

    Saraulli, Daniele; Costanzi, Marco; Mastrorilli, Valentina; Farioli-Vecchioli, Stefano

    2017-01-01

    Background The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on adult neurogenesis, a process which has proved being highly responsive to physical exercise and may represent a major factor of brain health over the lifespan. Methods The most recent literature related to the subject has been reviewed. The text has been divided into three main sections, addressing the effects of physical exercise during childhood/adolescence, adulthood and aging, respectively. For each one, the most relevant studies, carried out on both human participants and rodent models, have been described. Results The data reviewed converge in indicating that physical activity exerts a positive effect on brain functioning throughout the lifespan. However, uncertainty remains about the magnitude of the effect and its biological underpinnings. Cellular and synaptic plasticity provided by adult neurogenesis are highly probable mediators, but the mechanism for their action has yet to be conclusively established. Conclusion Despite alternative mechanisms of action are currently debated, age-appropriate physical activity programs may constitute a large-scale, relatively inexpensive and powerful approach to dampen the individual and social impact of age-related cognitive decline. PMID:27000776

  1. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration.

    Science.gov (United States)

    Herdegen, T; Waetzig, V

    2001-04-30

    Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.

  2. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems.

    Directory of Open Access Journals (Sweden)

    Mireia Herrando-Grabulosa

    Full Text Available Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology, we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.

  3. Anticonvulsant and neuroprotective effects of Rosa damascena hydro-alcoholic extract on rat hippocampus

    Directory of Open Access Journals (Sweden)

    Mansour Homayoun

    2015-04-01

    Full Text Available Objective: Previously, analgesic, hypnotic, and anticonvulsant effects have been suggested for Rosa damascena (R. damascena. In the present study, possible anti-seizure and neuro-protective effects of hydro-alcoholic extract of R. damascena has been investigated after inducing seizures in rats by pentylenetetrazole (PTZ. Materials and Methods: The rats were divided to five groups: (1 Control: received saline, (2 PTZ: 100 mg/kg, i.p., (3 PTZ-Extract 50 mg/kg(PTZ-Ext 50, (4 PTZ- Extract 100 mg/kg(PTZ-Ext 100, and (5 PTZ- Extract 200 mg/kg(PTZ-Ext 200 groups which were treated with 50, 100, and 200 mg/kg respectively of hydro-alcoholic extract of R. damascena for one week before PTZ injection. The animals were examined for electrocorticography (ECoG recording and finally, the brains were removed for histological study. Results: The hydro-alcoholic extract of R. damascena significantly prolonged the latency of seizure attacks and reduced the frequency and amplitude of epileptiform burst discharges induced by PTZ injection. Moreover, all three doses of the extract significantly inhibited production of dark neurons in different regions of the hippocampus in the mentioned animal model. Conclusion: The present study showed that the hydro-alcoholic extract of R. damascena has anticonvulsant and neuroprotective effects. More investigations are needed to be done in order to better understand the responsible compound(s as well as the possible mechanism(s.

  4. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Hanna M Vesterinen

    Full Text Available To develop and implement an evidence based framework to select, from drugs already licenced, candidate oral neuroprotective drugs to be tested in secondary progressive multiple sclerosis.Systematic review of clinical studies of oral putative neuroprotective therapies in MS and four other neurodegenerative diseases with shared pathological features, followed by systematic review and meta-analyses of the in vivo experimental data for those interventions. We presented summary data to an international multi-disciplinary committee, which assessed each drug in turn using pre-specified criteria including consideration of mechanism of action.We identified a short list of fifty-two candidate interventions. After review of all clinical and pre-clinical evidence we identified ibudilast, riluzole, amiloride, pirfenidone, fluoxetine, oxcarbazepine, and the polyunsaturated fatty-acid class (Linoleic Acid, Lipoic acid; Omega-3 fatty acid, Max EPA oil as lead candidates for clinical evaluation.We demonstrate a standardised and systematic approach to candidate identification for drug rescue and repurposing trials that can be applied widely to neurodegenerative disorders.

  5. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair

    Science.gov (United States)

    Zárate, Sandra; Stevnsner, Tinna; Gredilla, Ricardo

    2017-01-01

    Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain. PMID:29311911

  6. In vitro neuroprotective properties of some commonly consumed green leafy vegetables in Southern Nigeria

    Directory of Open Access Journals (Sweden)

    E.E. Nwanna

    2016-03-01

    Full Text Available Green leafy vegetable is one of the major cuisines in Southern Nigeria and they are not only consumed for their palatability, but also for their nutritional and medicinal properties as reported in folklore. Notable among them are afang (Gnetum africanum, editan (Lasianthera africana and utazi (Gongronema latifolium. In this study, we investigated the effect of aqueous extracts from afang, editan and utazi leaves on cholinesterases [acetylcholinesterase (AChE and butyrylcholinesterase (BChE] and monoamine oxidase (MAO activities. Fe2+ chelating abilities were also determined as an assessment of their neuroprotective potentials in vitro. We also assayed for their total phenol contents while the constituent phenolics were characterized using high performance liquid chromatography coupled with diode array detector (HPLC-DAD. The results revealed that the extracts inhibited AChE, BChE and MAO activities and also chelated Fe2+ in concentration dependent manner. The HPLC-DAD characterization showed that gallic, caffeic and ellagic acids and rutin were the dominant phenolic compounds in the extracts; nevertheless, utazi had the highest distribution of identified phenolics while afang had the least. The ability of the aqueous extracts of the vegetables to inhibit key enzymes (AChE, BChE and MAO relevant to neurodegeneration, as well chelate metal ion could help suggest their possible neuroprotective properties. These vegetables could be use as dietary intervention in the management of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases.

  7. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants.

    Science.gov (United States)

    Ayaz, Muhammad; Sadiq, Abdul; Junaid, Muhammad; Ullah, Farhat; Subhan, Fazal; Ahmed, Jawad

    2017-01-01

    The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa , Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.

  8. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    Science.gov (United States)

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Omega-3 Fatty Acids: Possible Neuroprotective Mechanisms in the Model of Global Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Maria Elizabeth Pereira Nobre

    2016-01-01

    Full Text Available Background. Omega-3 (ω3 administration was shown to protect against hypoxic-ischemic injury. The objectives were to study the neuroprotective effects of ω3, in a model of global ischemia. Methods. Male Wistar rats were subjected to carotid occlusion (30 min, followed by reperfusion. The groups were SO, untreated ischemic and ischemic treated rats with ω3 (5 and 10 mg/kg, 7 days. The SO and untreated ischemic animals were orally treated with 1% cremophor and, 1 h after the last administration, they were behaviorally tested and euthanized for neurochemical (DA, DOPAC, and NE determinations, histological (Fluoro jade staining, and immunohistochemical (TNF-alpha, COX-2 and iNOS evaluations. The data were analyzed by ANOVA and Newman-Keuls as the post hoc test. Results. Ischemia increased the locomotor activity and rearing behavior that were partly reversed by ω3. Ischemia decreased striatal DA and DOPAC contents and increased NE contents, effects reversed by ω3. This drug protected hippocampal neuron degeneration, as observed by Fluoro-Jade staining, and the increased immunostainings for TNF-alpha, COX-2, and iNOS were partly or totally blocked by ω3. Conclusion. This study showed a neuroprotective effect of ω3, in great part due to its anti-inflammatory properties, stimulating translational studies focusing on its use in clinic for stroke managing.

  10. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy

    Science.gov (United States)

    Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil. PMID:28349969

  11. Pifithrin-α provides neuroprotective effects at the level of mitochondria independently of p53 inhibition.

    Science.gov (United States)

    Neitemeier, Sandra; Ganjam, Goutham K; Diemert, Sebastian; Culmsee, Carsten

    2014-12-01

    Impaired mitochondrial integrity and function are key features of intrinsic death pathways in neuronal cells. Therefore, key regulators of intrinsic death pathways acting upstream of mitochondria are potential targets for therapeutic approaches of neuroprotection. The tumor suppressor p53 is a well-established regulator of cellular responses towards different kinds of lethal stress, including oxidative stress. Recent reports suggested that p53 may affect mitochondrial integrity and function through both, transcriptional activation of mitochondria-targeted pro-death proteins and direct effects at the mitochondrial membrane. In the present study, we compared the effects of pharmacological inhibition of p53 by pifithrin-α with those of selective p53 gene silencing by RNA interference. Using MTT assay and real-time cell impedance measurements we confirmed the protective effect of both strategies against glutamate-induced oxidative stress in immortalized mouse hippocampal HT-22 neurons. Further, we observed full restoration of mitochondrial membrane potential and inhibition of glutamate-induced mitochondrial fragmentation by pifithrin-α which was, in contrast, not achieved by p53 gene silencing. Downregulation of p53 by siRNA decreased p53 transcriptional activity and reduced expression levels of p21 mRNA, while pifithrin-α did not affect these endpoints. These results suggest a neuroprotective effect of pifithrin-α which occurred at the level of mitochondria and independently of p53 inhibition.

  12. Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals

    Directory of Open Access Journals (Sweden)

    Marco eFiocchetti

    2012-04-01

    Full Text Available 17β-estradiol (E2 exerts protective effects in the central nervous system besides its crucial role in many physiological and pathological events. E2 effects are not restricted to the brain areas related with the control of the reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated by estrogen receptors (i.e., ERα and ERβ belonging to the nuclear receptor super family. As members of the ligand-regulated transcription factor family, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence has emerged indicating the presence of rapid, membrane initiated E2 effects in the brain which result independent from ER transcriptional activities and involved in E2-induced neuroprotection. Aim of this review is to focus on the rapid effects of E2 in the brain taking into account the specific contribution of the signaling pathway of ERβ subtype in neuroprotective actions of E2.

  13. Biochemical Properties and Neuroprotective Effects of Compounds in Various Species of Berries

    Directory of Open Access Journals (Sweden)

    Erin Kelly

    2017-12-01

    Full Text Available Several species of berries, such as blueberries (Vaccinium angustifolium and lingonberries (Vaccinium vitis-idaea L., have attracted much scientific attention in recent years, especially due to their reported antioxidant and anti-inflammatory properties. Berries, as with other types of plants, have developed metabolic mechanisms to survive various environmental stresses, some of which involve reactive oxygen species. In addition, the fruits and leaves of berries have high amounts of polyphenols, such as flavonoids, which act as potent antioxidants. These compounds could potentially be beneficial for brain aging and neurodegenerative disorders. There are now several studies documenting the beneficial effects of various berries in cell models of neurotoxicity as well as in vivo models of neurodegenerative disease. In the current review, we discuss the metabolic strategies that plants and animals have developed in order to combat reactive oxygen species. We then discuss issues of bioavailability of various compounds in mammals and provide a synopsis of studies demonstrating the neuroprotective ability of berries and polyphenols. We also summarize findings from our own research group. For example, we have detected various polyphenols in samples of blueberries and lingonberries and have found that the leaves have a much higher antioxidant capacity than the fruits. Extracts from these species have also demonstrated neuroprotective effects in cellular models of toxicity and inflammation, which are being further pursued in animal models.

  14. Neuroprotective Effect of Tea Polyphenols on Oxyhemoglobin Induced Subarachnoid Hemorrhage in Mice

    Directory of