WorldWideScience

Sample records for neuropeptide ff-sensitive confinement

  1. Association of SNP of neuropeptide Y, leptin, and IGF-1 genes with residual feed intake in confinement and under grazing condition in Angus cattle.

    Science.gov (United States)

    Trujillo, A I; Casal, A; Peñagaricano, F; Carriquiry, M; Chilibroste, P

    2013-09-01

    In this study we quantify and compare the phenotypic variation in residual feed intake (RFI) in 2 groups of Angus female calves: one carrying simultaneously putative favorable allelic variants (SNP) of neuropeptide Y, leptin, and IGF-1 genes (VAL group) and another devoid of such alleles (CON group). We performed 2 sequential trials: under confinement feeding a high-concentrate diet and under grazing condition. In confinement, 38 purebred Angus female calves [mean age and BW of 247 d (SD = 15) and 186 kg (SD = 33.2), respectively] were offered a total mixed ration diet (60:40 concentrate: alfalfa hay, as fed) ad libitum during 57 d. Dry matter intake was estimated from the difference between offered and refused feed; BW was recorded every 2 wk. Under grazing, 12 heifers from each group were ranked by BW and RFI and randomly assigned to 4 pasture paddocks. Heifers were continuously stocked at high-quality, high-herbage-mass mixed pasture. Herbage DMI was determined using the n-alkane technique. Different models were used to determine RFI: models that use phenotypic data [RFI as described by Koch et al. (1963; RFIK) and RFI as described by ME (RFIME)] and models that use standards feeding data [RFI estimated by Fan et al. (1995; RFIF) and RFI in which the expected DMI was derived from equations in Standing Committee on Agriculture (1990; RFISCA)]. Least squares mean values (SE) of DMI (kg/d), metabolizable energy intake (MEI; Mcal/d), ADG (kg), RFIK (kg DM/d), and feed conversion ratio (FCR; kg DMI/kg ADG) for VAL and CON genotype groups were 6.65 and 6.89 (0.49), 16.7 and 17.4 (1.44), 1.24 and 1.24 (0.03), -0.11 and 0.11 (0.09), and 5.8 and 5.8 (0.14), respectively, in the confinement trial. In the grazing trial least squares mean values (SE) of herbage DMI (kg/d), ADG (kg), MEI (Mcal/d), RFIK, and FCR of VAL and CON groups were 8.76 and 10.93 (0.71), 1.4 and 1.37 (0.05), 25.5 and 31.7 (2.09), -1.02 and 1.02 (0.42), and 6.41 and 6.96 (0.46), respectively. Genotyped

  2. Introduction: Invertebrate Neuropeptides XIV

    Science.gov (United States)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  3. Introduction: Invertebrate Neuropeptides XV

    Science.gov (United States)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  4. Introduction: Invertebrate Neuropeptides XIII

    Science.gov (United States)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  5. Introduction: Invertebrate Neuropeptides XVI

    Science.gov (United States)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  6. Neuropeptides in flatworms.

    Science.gov (United States)

    Gustafsson, M K S; Halton, D W; Kreshchenko, N D; Movsessian, S O; Raikova, O I; Reuter, M; Terenina, N B

    2002-11-01

    The use of well-characterized antibodies raised to neuronal signal substances and their application through immunocytochemistry and confocal scanning laser microscopy has revolutionized studies of the flatworm nervous system (NS). Data about flatworm neuropeptides and the spatial relationship between neuropeptides and other neuronal signal substances and muscle fibers are presented. Neuropeptides form a large part of the flatworm NS. Neuropeptides are especially important as myoexcitatory transmitters or modulators, controlling the musculature of the attachment organs, the stomatogastric and the reproductive systems.

  7. [Physiology of the neuropeptides].

    Science.gov (United States)

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez- Expósito, M J

    In the present review, the characteristics of mammalian neuropeptides have been studied. Neuropeptides are widely distributed not only in the nervous system but also in the periphery. They are synthesised by neurons as large precursor molecules (pre propeptides) which have to be cleaved and modified in order to form the mature neuropeptides. Neuropeptides may exert actions as neurotransmitters, neuromodulators and/or neurohormones. In the neurons, they coexist with classic transmitters and often with other peptides. After their releasing, they bind to especific receptors to exert their action in the target cell. Most of these receptors belongs to a family of G protein coupled receptors. Finally, peptidases are the enzymes involved in the degradation of neuropeptides. Conclusions. In the last years, the number of known neuropeptides and the understanding of their functions have been increased. With these data, present investigations are looking for the treatment of different pathologies associated with alterations in the physiology of neuropeptides.

  8. Neuropeptides, Microbiota, and Behavior.

    Science.gov (United States)

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.

  9. Neuropeptides in epilepsy.

    Science.gov (United States)

    Kovac, Stjepana; Walker, Matthew C

    2013-12-01

    Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.

  10. Neuropeptides and hippocampal neurogenesis.

    Science.gov (United States)

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  11. Neuropeptide physiology in helminths.

    Science.gov (United States)

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points

  12. Penultimate proline in neuropeptides.

    Science.gov (United States)

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  13. Migraine and neuropeptides.

    Science.gov (United States)

    Tajti, János; Szok, Délia; Majláth, Zsófia; Tuka, Bernadett; Csáti, Anett; Vécsei, László

    2015-08-01

    Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.

  14. Signaling by Drosophila capa neuropeptides.

    Science.gov (United States)

    Davies, Shireen-A; Cabrero, Pablo; Povsic, Manca; Johnston, Natalie R; Terhzaz, Selim; Dow, Julian A T

    2013-07-01

    The capa peptide family, originally identified in the tobacco hawk moth, Manduca sexta, is now known to be present in many insect families, with increasing publications on capa neuropeptides each year. The physiological actions of capa peptides vary depending on the insect species but capa peptides have key myomodulatory and osmoregulatory functions, depending on insect lifestyle, and life stage. Capa peptide signaling is thus critical for fluid homeostasis and survival, making study of this neuropeptide family attractive for novel routes for insect control. In Dipteran species, including the genetically tractable Drosophila melanogaster, capa peptide action is diuretic; via elevation of nitric oxide, cGMP and calcium in the principal cells of the Malpighian tubules. The identification of the capa receptor (capaR) in several insect species has shown this to be a canonical GPCR. In D. melanogaster, ligand-activated capaR activity occurs in a dose-dependent manner between 10(-6) and 10(-12)M. Lower concentrations of capa peptide do not activate capaR, either in adult or larval Malpighian tubules. Use of transgenic flies in which capaR is knocked-down in only Malpighian tubule principal cells demonstrates that capaR modulates tubule fluid secretion rates and in doing so, sets the organismal response to desiccation. Thus, capa regulates a desiccation-responsive pathway in D. melanogaster, linking its role in osmoregulation and fluid homeostasis to environmental response and survival. The conservation of capa action between some Dipteran species suggests that capa's role in desiccation tolerance may not be confined to D. melanogaster.

  15. Neuropeptides in cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J.P.; Williamson, Michael; Hansen, Georg Nørgaard

    2002-01-01

    Cnidarians are the lowest animal group having a nervous system. In the primitive nervous systems of cnidarians, peptides play important roles as neurotransmitters or neurohormones. So far, we have isolated and sequenced about 35 neuropeptides from different cnidarian classes (Hydrozoa, Scyphozoa,...

  16. Neuropeptides in cardiovascular control.

    Science.gov (United States)

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Orphan neuropeptides. Novel neuropeptides modulating sleep or feeding.

    Science.gov (United States)

    Chung, Shinjae; Civelli, Olivier

    2006-08-01

    Neuropeptides form the largest family of modulators of synaptic transmission. Until 1995 some 60 different neuropeptides had been found. With the recognition that all neuropeptides act by binding to G protein coupled receptors (GPCRs), a new approach relying on the use of orphan GPCRs as targets was designed to identify novel neuropeptides. Thirteen new neuropeptide families have since been discovered. In this review we will describe the orphan GPCR-based approach that led to these discoveries and present its impact on two specific physiological responses, feeding and sleep. In particular, we will discuss the modulatory roles of the hypocretins/orexins and of neuropeptide S in sleep and awakening and those of ghrelin and melanin concentrating hormone in food intake.

  18. Role of neuropeptides in cardiomyopathies.

    Science.gov (United States)

    Dvorakova, Magdalena Chottova; Kruzliak, Peter; Rabkin, Simon W

    2014-11-01

    The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.

  19. Neuropeptides in atopic dermatitis

    Directory of Open Access Journals (Sweden)

    M. Cholis

    2001-09-01

    Full Text Available The nervous system, the immune system, and the cutaneous system are not independent systems, but are closely associated and use the same language of cytokines and neurotransmitters. Atopic dermatitis (AD is exacerbated by several factors, such as emotional stress, scratching and sweating. This review presents the role of neuropeptides (NP in AD. In AD, abnormalities occur in distribution of some types of neural filaments and in the associated active NP. Nerve fibre increases. Nerve fibres for substance-P (SP and calcitonin gene-related peptide (CGRP are positive, The cutaneous concentration of SP decreases while vasoactive-intestinal polypeptide (VIP increases. Immunohistochemical examination has revealed neuropeptide-Y (NPY-positive dendritic epidermal cells in AD lesions but no somatostatin (SOM fibres. Neuromediators modulate functions of all cutaneous cellular types, which are all part of the neuroimmunocutaneous system (NCIS: endothelial cells, glandular cells, fibroblasts, epidermal cells and immune cells. Conclusion: during the course of AD, the NICS is destabilized. Evidence show that NP can also be responsible for the induction and maintenance of the cutaneous inflammation process and confirm an involvement in the pathogenesis of AD. Release of the NP by cutaneous nerve potentially explains the role of emotional stress, scratching and sweating in exacerbation of AD. (Med J Indones 2001; 10: 197-200Keywords : neuroimmunocutaneous system, neurotransmitter, neurogenic inflammation

  20. RIC-7 promotes neuropeptide secretion.

    Directory of Open Access Journals (Sweden)

    Yingsong Hao

    2012-01-01

    Full Text Available Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs and dense core vesicles (DCVs respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV-mediated secretion.

  1. Neuropeptides and obesity.

    Science.gov (United States)

    Beck, B

    2000-10-01

    This review focuses on the expression, content, and release of neuropeptides and on their role in the development of obesity in animal models with single-gene mutations. The balance between neuropeptides that contribute to the control of feeding behavior is profoundly and variously altered in these models, supporting the concept of the existence of several types of obesity. The hypothalamic neuropeptide Y (NPY) and the pro-opiomelanocortin (POMC) systems are the networks most studied in relation to energy intake. Both receive information about the nutritional status and the level of energy storage through insulin and leptin signaling mediated by specific receptors located on POMC and NPY neurons present predominantly in the arcuate nucleus (ARC). When leptin signaling is defective, through a defect in either the receptor (Zucker fa/fa rat, cp/cp rat, and db/db mouse) or in the peptide itself (ob/ob mouse), the NPY system is upregulated as shown by mRNA overexpression and increased peptide release, whereas the content and/or release of some inhibitory peptides (neurotensin, cholecystokinin) are diminished. For the POMC system, there is a complex interaction between the tonic inhibition of food intake exerted by alpha-melanocyte-stimulating hormone (alpha-MSH) and the Agouti-related protein at the level of the type 4 melanocortin receptor. The latter peptide is coexpressed with NPY in the ARC. Corticotropin-releasing factor (CRF) is the link between food intake and environmental factors. It not only inhibits food intake and prevents weight gain, likely through hypothalamic effects, but also activates the hypothalamo-pituitary axis and therefore contributes to energy storage in adipose tissue. The factors that prod the CRF system toward the hypothalamic or hypothalamo-pituitary axis system remain to be more clearly defined (comodulators, connections between limbic system and ARC, cellular location, and type of receptors, etc. ). The pathways used by all of these

  2. Neuropeptides as therapeutic targets in anxiety disorders.

    Science.gov (United States)

    Lin, En-Ju D

    2012-01-01

    In addition to the classical neurotransmitters, neuropeptides represent an important class of modulators for affective behaviors and associated disorders, such as anxiety disorders. Many neuropeptides are abundantly expressed in brain regions involved in emotional processing and anxiety behaviors. Moreover, risk factors for anxiety disorders such as stress modulate the expression of various neuropeptides in the brain. Due to the high prevalence of anxiety disorders and yet limited treatment options, there is a clear need for more effective therapeutics. In this regard, the various neuropeptides represent exciting candidates for new therapeutic designs. In this review, I will provide an up-to-date summary on the evidences for the involvement of seven neuropeptides in anxiety: corticotropin-releasing factor, urocortins, vasopressin, oxytocin, substance P, neuropeptide Y and galanin. This review will cover the behavioral effects of these neuropeptides in animal models of anxiety by both genetic and pharmacological manipulations. Human studies indicating a role for these neuropeptides in anxiety disorders will also be discussed.

  3. Neuropeptide signalling systems in flatworms.

    Science.gov (United States)

    McVeigh, P; Kimber, M J; Novozhilova, E; Day, T A

    2005-01-01

    Two distinct families of neuropeptides are known to endow platyhelminth nervous systems - the FMRFamide-like peptides (FLPs) and the neuropeptide Fs (NPFs). Flatworm FLPs are structurally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydrophobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFamide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flatworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.

  4. Neurones and neuropeptides in coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff; McFarlane, I D

    1989-01-01

    The first nervous system probably evolved in coelenterates. Many neurons in coelenterates have morphological characteristics of both sensory and motor neurones, and appear to be multifunctional. Using immunocytochemistry with antisera to the sequence Arg-Phe-NH2 (RFamide), RFamide-like peptides w...... that these neuropeptides play a role in neurotransmission....

  5. Neuropeptide Y (NPY)

    Science.gov (United States)

    Zhang, Kuixing; Rao, Fangwen; Miramontes-Gonzalez, Jose Pablo; Hightower, C. Makena; Vaught, Brian; Chen, Yuhong; Greenwood, Tiffany A.; Schork, Andrew J.; Wang, Lei; Mahata, Manjula; Stridsberg, Mats; Khandrika, Srikrishna; Biswas, Nilima; Fung, Maple M.; Waalen, Jill; Middelberg, Rita P.; Heath, Andrew C.; Montgomery, Grant W.; Martin, Nicholas G.; Whitfield, John B.; Baker, Dewleen G.; Schork, Nicholas J.; Nievergelt, Caroline M.; O’Connor, Daniel T.

    2013-01-01

    Objectives This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. Background The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. Methods Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. Results Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇−880Δ (2-bp TG/—, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h2) stress traits: higher NPY secretion (h2 = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇−880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele −880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter −880Δ interrupts a novel

  6. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  7. Nematode neuropeptides as transgenic nematicides.

    Science.gov (United States)

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2017-02-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  8. Biochemical characterisation and clinical correlation of neuropeptides in neuroblastoma with emphasis on neuropeptide Y

    OpenAIRE

    Bjellerup, Per

    2000-01-01

    Neuropeptides influence cellular events involved in tumour growth and differentiation. Neuroblastoma, a malignant childhood tumour of neural crest origin, synthesises and releases monoamines and neuropeptides. The concentrations of some of these neuropeptides in plasma are correlated to clinical stage and outcome. The neuropeptides exist in various molecular forms in plasma and tumour tissue but their biochemical structure in vivo are poorly investigated. The aim of the ...

  9. Epigenetic control of cancer by neuropeptides

    Science.gov (United States)

    Galoian, Karina; Patel, Parthik

    2017-01-01

    Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors.

  10. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J

    2013-01-01

    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  11. Hypothalamic neuropeptides and the regulation of appetite.

    Science.gov (United States)

    Parker, Jennifer A; Bloom, Stephen R

    2012-07-01

    Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.

  12. No confinement without Coulomb confinement

    CERN Document Server

    Zwanziger, D

    2003-01-01

    We compare the physical potential $V_D(R)$ of an external quark-antiquark pair in the representation $D$ of SU(N), to the color-Coulomb potential $V_{\\rm coul}(R)$ which is the instantaneous part of the 44-component of the gluon propagator in Coulomb gauge, $D_{44}(\\vx,t) = V_{\\rm coul}(|\\vx|) \\delta(t)$ + (non-instantaneous). We show that if $V_D(R)$ is confining, $\\lim_{R \\to \\infty}V_D(R) = + \\infty$, then the inequality $V_D(R) \\leq - C_D V_{\\rm coul}(R)$ holds asymptotically at large $R$, where $C_D > 0$ is the Casimir in the representation $D$. This implies that $ - V_{\\rm coul}(R)$ is also confining.

  13. Brain neuropeptides in gastric mucosal protection.

    Science.gov (United States)

    Gyires, Klára; Zádori, Zoltán S

    2014-12-01

    The centrally induced gastroprotective effect of neuropeptides has been intensively studied. Besides many similarities, however, differences can also be observed in their gastroprotective actions. The gastroprotective dose-response curve proved to be either sigmoid, or bell-shaped. Additional gastrointestinal effects of neuropeptides can contribute to their mucosal protective effect. Part of the neuropeptides induces gastroprotection by peripheral administration as well. Besides vagal nerve the sympathetic nervous system may also be involved in conveying the central effect to the periphery. Better understanding of the complex mechanism of the maintenance of gastric mucosal integrity may result in the development of new strategy to enhance gastric mucosal resistance against injury.

  14. Neuropeptides in learning and memory.

    Science.gov (United States)

    Borbély, Eva; Scheich, Bálint; Helyes, Zsuzsanna

    2013-12-01

    Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to

  15. Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

    Science.gov (United States)

    Yamanaka, Naoki; Yamamoto, Sachie; Žitňan, Dušan; Watanabe, Ken; Kawada, Tsuyoshi; Satake, Honoo; Kaneko, Yu; Hiruma, Kiyoshi; Tanaka, Yoshiaki; Shinoda, Tetsuro; Kataoka, Hiroshi

    2008-01-01

    Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research. PMID:18725956

  16. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways.

    Directory of Open Access Journals (Sweden)

    Naoki Yamanaka

    Full Text Available Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT, remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA. Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC, an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research.

  17. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  18. Neuropeptide Y: A stressful review.

    Science.gov (United States)

    Reichmann, Florian; Holzer, Peter

    2016-02-01

    Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptors, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sensory neuropeptide effects in human skin.

    OpenAIRE

    Fuller, R W; Conradson, T. B.; Dixon, C M; Crossman, D.C.; Barnes, P. J.

    1987-01-01

    1 Neuropeptides released from sensory nerves may account for cutaneous flare and wheal following local trauma. In 28 normal subjects we have studied the effects of four sensory neuropeptides given by intradermal injection on the forearm or back. 2 All peptides caused a flare distant from the site of injection, presumably due to an axon reflex. Substance P (SP) was the most potent (geometric mean dose causing 50% of maximum flare, 4.2 pmol). Neurokinin A (NKA) was the next most potent with neu...

  20. Neuropeptides in helminths: occurrence and distribution.

    Science.gov (United States)

    Marks, Nikki J; Maule, Aaron G

    2010-01-01

    Nematode neuropeptide systems comprise an exceptionally complex array of approximately 250 peptidic signaling molecules that operate within a structurally simple nervous system of approximately 300 neurons. A relatively complete picture of the neuropeptide complement is available for Caenorhabditis elegans, with 30 flp, 38 ins and 43 nlp genes having been documented; accumulating evidence indicates similar complexity in parasitic nematodes from clades I, III, IV and V. In contrast, the picture for parasitic platyhelminths is less clear, with the limited peptide sequence data available providing concrete evidence for only FMRFamide-like peptide (FLP) and neuropeptide F (NPF) signaling systems, each of which only comprises one or two peptides. With the completion of the Schmidtea meditteranea and Schistosoma mansoni genome projects and expressed sequence tag datasets for other flatworm parasites becoming available, the time is ripe for a detailed reanalysis ofneuropeptide signalingin flatworms. Although the actual neuropeptides provide limited obvious value as targets for chemotherapeutic-based control strategies, they do highlight the signaling systems present in these helminths and provide tools for the discovery of more amenable targets such as neuropeptide receptors or neuropeptide processing enzymes. Also, they offer opportunities to evaluate the potential of their associated signaling pathways as targets through RNA interference (RNAi)-based, target validation strategies. Currently, within both helminth phyla, theflp signaling systems appear to merit further investigation as they are intrinsically linked with motor function, a proven target for successful anti-parasitics; it is clear that some nematode NLPs also play a role in motor function and could have similar appeal. At this time, it is unclear if flatworm NPF and nematode INS peptides operate in pathways that have utility for parasite control. Clearly, RNAi-based validation could be a starting point for

  1. Neuropeptide receptor expression in inflammatory bowel disease

    NARCIS (Netherlands)

    Beek, Willy Pascale ter

    2008-01-01

    Inflammatory bowel disease (IBD), i.e. Crohn’s disease and ulcerative colitis are characterized by a chronic inflammation of the gastrointestinal tract. Neuropeptides are involved in the regulation of intestinal motility, chloride secretion and inflammatory response, three processes that are disturb

  2. The evolution and diversity of SALMFamide neuropeptides.

    Science.gov (United States)

    Elphick, Maurice R; Achhala, Sufyan; Martynyuk, Natalia

    2013-01-01

    The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Two types of SALMFamides have been identified: L-type (e.g. the starfish neuropeptides S1 and S2) with the C-terminal motif LxFamide (x is variable) and F-type with the C-terminal motif FxFamide. In the sea urchin Strongylocentrotus purpuratus (class Echinoidea) there are two SALMFamide genes, one encoding L-type SALMFamides and a second encoding F-type SALMFamides, but hitherto it was not known if this applies to other echinoderms. Here we report the identification of SALMFamide genes in the sea cucumber Apostichopus japonicus (class Holothuroidea) and the starfish Patiria miniata (class Asteroidea). In both species there are two SALMFamide genes: one gene encoding L-type SALMFamides (e.g. S1 in P. miniata) and a second gene encoding F-type SALMFamides plus one or more L-type SALMFamides (e.g. S2-like peptide in P. miniata). Thus, the ancestry of the two SALMFamide gene types traces back to the common ancestor of echinoids, holothurians and asteroids, although it is not clear if the occurrence of L-type peptides in F-type SALMFamide precursors is an ancestral or derived character. The gene sequences also reveal a remarkable diversity of SALMFamide neuropeptides. Originally just two peptides (S1 and S2) were isolated from starfish but now we find that in P. miniata, for example, there are sixteen putative SALMFamide neuropeptides. Thus, the SALMFamides would be a good model system for experimental analysis of the physiological significance of neuropeptide "cocktails" derived from the same precursor protein.

  3. Neuropeptides controlling energy balance: orexins and neuromedins.

    Science.gov (United States)

    Nixon, Joshua P; Kotz, Catherine M; Novak, Colleen M; Billington, Charles J; Teske, Jennifer A

    2012-01-01

    In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.

  4. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  5. The role of neuropeptides in suicidal behavior: a systematic review.

    Science.gov (United States)

    Serafini, Gianluca; Pompili, Maurizio; Lindqvist, Daniel; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.

  6. The Role of Neuropeptides in Suicidal Behavior: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gianluca Serafini

    2013-01-01

    Full Text Available There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF, VGF, cholecystokinin, substance P, and neuropeptide Y (NPY, which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.

  7. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    Science.gov (United States)

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  8. Neuropeptides in the Gonads: From Evolution to Pharmacology

    Directory of Open Access Journals (Sweden)

    Nicolette L McGuire

    2010-09-01

    Full Text Available Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meagre. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH and gonadotropin-inhibitory hormone (GnIH. Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology.

  9. Profiling of diet-induced neuropeptide changes in rat brain by quantitative mass spectrometry

    NARCIS (Netherlands)

    Frese, C.; Boender, A.J.; Mohammed, S.; Heck, A.J.R.; Adan, R.A.H.; Altelaar, A.F.M.

    2013-01-01

    Neuropeptides are intercellular signal transmitters that play key roles in modulation of many behavioral and physiological processes. Neuropeptide signaling in several nuclei in the hypothalamus contributes to the control of food intake. Additionally, food intake regulation involves neuropeptide

  10. Neuropeptide Y: An Anti-Aging Player?

    Science.gov (United States)

    Botelho, Mariana; Cavadas, Cláudia

    2015-11-01

    Accumulating evidence suggests that neuropeptide Y (NPY) has a role in aging and lifespan determination. In this review, we critically discuss age-related changes in NPY levels in the brain, together with recent findings concerning the contribution of NPY to, and impact on, six hallmarks of aging, specifically: loss of proteostasis, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing, cellular senescence, and mitochondrial dysfunction. Understanding how NPY contributes to, and counteracts, these hallmarks of aging will open new avenues of research on limiting damage related to aging.

  11. Mimetic analogs of three insect neuropeptide classes for pest management

    Science.gov (United States)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs w...

  12. Mimetic analogs of pyrokinin neuropeptides for pest management

    Science.gov (United States)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs ...

  13. The neuroendocrine genome : neuropeptides and related signaling peptides

    NARCIS (Netherlands)

    Burbach, JPH

    2016-01-01

    Neuropeptides are small proteinaceous substances which are produced, stored, and released through the regulated secretory route by neurons and act on neural substrates. They represent the most diverse group of signaling molecules in the nervous system. In mammals there are 200–300 neuropeptides know

  14. The neuroendocrine genome : neuropeptides and related signaling peptides

    NARCIS (Netherlands)

    Burbach, JPH|info:eu-repo/dai/nl/068420404

    2016-01-01

    Neuropeptides are small proteinaceous substances which are produced, stored, and released through the regulated secretory route by neurons and act on neural substrates. They represent the most diverse group of signaling molecules in the nervous system. In mammals there are 200–300 neuropeptides know

  15. [Effects of neuropeptides on interferon production in vitro].

    Science.gov (United States)

    Kul'chikov, A E; Makarenko, A N

    2008-01-01

    The study of an interferon-inducing action of neuropeptides (a cerebrolysin model) on production of interferons by human blood leukocytes has shown that neuropeptides induce gamma-interferon production in the titer 267 IU/ml that determines one of the mechanisms of a neuroimmunocorrecting effect of cerebrolysin (Ebewe, Austria) in many neurological diseases (acute stroke, brain traumas and different neuroinfectious diseases).

  16. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities.

    Science.gov (United States)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    2013-06-01

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition and behavior are observed, the study of neuropeptides is particularly interesting since altered neuropeptides can function as biomarkers or as targets for new medication. In this article neuropeptides with relevance to AD are listed and their influence on cognitive and behavioral disturbances is discussed. Findings from human cerebrospinal fluid and brain tissue, and AD mouse models are described and related to the pathophysiology and symptomatology of the disease. In the past, clinical trials with neuropeptides have often failed due to insufficient delivery to the brain. Therefore, new strategies to target the brain with peptide drugs are also covered.

  17. Neuropeptides as lung cancer growth factors.

    Science.gov (United States)

    Moody, Terry W; Moreno, Paola; Jensen, Robert T

    2015-10-01

    This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer. Published by Elsevier Inc.

  18. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    Science.gov (United States)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  19. Electrofreezing of confined water

    NARCIS (Netherlands)

    Zangi, R; Mark, AE

    2004-01-01

    We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a

  20. Confinement Aquaculture. Final Report.

    Science.gov (United States)

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  1. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  2. Neuropeptides as targets for the development of anticonvulsant drugs.

    Science.gov (United States)

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  3. NeuroPep: a comprehensive resource of neuropeptides.

    Science.gov (United States)

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential therapeutic targets for the treatment of some nervous-system disorders. In recent years, there has been a tremendous increase in the number of identified neuropeptides. Therefore, we have developed NeuroPep, a comprehensive resource of neuropeptides, which holds 5949 non-redundant neuropeptide entries originating from 493 organisms belonging to 65 neuropeptide families. In NeuroPep, the number of neuropeptides in invertebrates and vertebrates is 3455 and 2406, respectively. It is currently the most complete neuropeptide database. We extracted entries deposited in UniProt, the database (www.neuropeptides.nl) and NeuroPedia, and used text mining methods to retrieve entries from the MEDLINE abstracts and full text articles. All the entries in NeuroPep have been manually checked. 2069 of the 5949 (35%) neuropeptide sequences were collected from the scientific literature. Moreover, NeuroPep contains detailed annotations for each entry, including source organisms, tissue specificity, families, names, post-translational modifications, 3D structures (if available) and literature references. Information derived from these peptide sequences such as amino acid compositions, isoelectric points, molecular weight and other physicochemical properties of peptides are also provided. A quick search feature allows users to search the database with keywords such as sequence, name, family, etc., and an advanced search page helps users to combine queries with logical operators like AND/OR. In addition, user-friendly web tools like browsing, sequence alignment and mapping are also integrated into the NeuroPep database. Database URL: http://isyslab.info/NeuroPep

  4. Neuromodulatory function of neuropeptides in the normal CNS.

    Science.gov (United States)

    Merighi, Adalberto; Salio, Chiara; Ferrini, Francesco; Lossi, Laura

    2011-12-01

    Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.

  5. Discovery of defense- and neuropeptides in social ants by genome-mining.

    Science.gov (United States)

    Gruber, Christian W; Muttenthaler, Markus

    2012-01-01

    Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant), Camponotus floridanus (carpenter ant) and Harpegnathos saltator (basal genus). Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins) and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae) and supports recent findings in Tribolium castaneum (red flour beetle) and Nasonia vitripennis (parasitoid wasp), and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee), another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family) and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.

  6. Discovery of defense- and neuropeptides in social ants by genome-mining.

    Directory of Open Access Journals (Sweden)

    Christian W Gruber

    Full Text Available Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant, Camponotus floridanus (carpenter ant and Harpegnathos saltator (basal genus. Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae and supports recent findings in Tribolium castaneum (red flour beetle and Nasonia vitripennis (parasitoid wasp, and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee, another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.

  7. Expression of neuropeptide W in rat stomach mucosa: regulation by nutritional status, glucocorticoids and thyroid hormones.

    Science.gov (United States)

    Caminos, Jorge E; Bravo, Susana B; García-Rendueles, María E R; Ruth González, C; Garcés, Maria F; Cepeda, Libia A; Lage, Ricardo; Suárez, Miguel A; López, Miguel; Diéguez, Carlos

    2008-02-07

    Neuropeptide W (NPW) is a recently identified neuropeptide that binds to G-protein-coupled receptor 7 (GPR7) and 8 (GPR8). In rodent brain, NPW mRNA is confined to specific nuclei in hypothalamus, midbrain and brainstem. Expression of NPW mRNA has also been confirmed in peripheral organs such as stomach. Several reports suggested that brain NPW is implicated in the regulation of energy and hormonal homeostasis, namely the adrenal and thyroid axes; however the precise physiological role and regulation of peripheral NPW remains unclear. In this study, we examined the effects of nutritional status on the regulation of NPW in stomach mucosa. Our results show that in this tissue, NPW mRNA and protein expression is negatively regulated by fasting and food restriction, in all the models we studied: males, females and pregnant females. Next, we examined the effect of glucocorticoids and thyroid hormones on NPW mRNA expression in the stomach mucosa. Our data showed that NPW expression is decreased in this tissue after glucocorticoid treatment or hyperthyroidism. Conversely, hypothyroidism induces a marked increase in the expression of NPW in rat stomach. Overall, these data indicate that stomach NPW is regulated by nutritional and hormonal status.

  8. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Tanaka, Yoshiaki; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Noda, Hiroaki; Shinoda, Tetsuro

    2014-03-01

    The genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors were identified in the brown planthopper (BPH), Nilaparvata lugens (Stål) by transcriptome analysis (RNA-seq). Forty-eight candidate genes were found to encode neuropeptides or peptide hormones. These include all known insect neuropeptides and neurohormones, with the exception of neuropeptide-like precursor 2 (NPLP2) and trissin. The gene coding for prothoracicotropic hormone (PTTH) was first identified from hemimetabolous insect. A total of 57 putative neuropeptide GPCR genes were identified and phylogenetic analysis showed most of them to be closely related to insect GPCRs. A notable finding was the occurrence of vertebrate hormone receptors, thyrotropin-releasing hormone receptor (TRHR)-like GPCR and parathyroid hormone receptor (PTHR)-like GPCRs. These results suggest that N. lugens possesses the most comprehensive neuropeptide system yet found in insects. Moreover, our findings demonstrate the power of RNA-seq as a tool for analyzing the neuropeptide-related genes in the absence of whole genome sequence information.

  9. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.

    Science.gov (United States)

    Koziol, Uriel; Koziol, Miguel; Preza, Matías; Costábile, Alicia; Brehm, Klaus; Castillo, Estela

    2016-10-01

    Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes.

  10. The confining trailing string

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)

    2014-02-19

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  11. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  12. Motion of Confined Particles

    CERN Document Server

    Miller, David E

    2016-01-01

    We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.

  13. Advances in Mass Spectrometric Tools for Probing Neuropeptides

    Science.gov (United States)

    Buchberger, Amanda; Yu, Qing; Li, Lingjun

    2015-07-01

    Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.

  14. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells.

    Science.gov (United States)

    Voedisch, Sabrina; Rochlitzer, Sabine; Veres, Tibor Z; Spies, Emma; Braun, Armin

    2012-01-01

    The airway mucosal epithelium is permanently exposed to airborne particles. A network of immune cells patrols at this interface to the environment. The interplay of immune cells is orchestrated by different mediators. In the current study we investigated the impact of neuronal signals on key functions of dendritic cells (DC). Using two-photon microscopic time-lapse analysis of living lung sections from CD11c-EYFP transgenic mice we studied the influence of neuropeptides on airway DC motility. Additionally, using a confocal microscopic approach, the phagocytotic capacity of CD11c(+) cells after neuropeptide stimulation was determined. Electrical field stimulation (EFS) leads to an unspecific release of neuropeptides from nerves. After EFS and treatment with the neuropeptides vasoactive intestinal peptide (VIP) or calcitonin gene-related peptide (CGRP), airway DC in living lung slices showed an altered motility. Furthermore, the EFS-mediated effect could partially be blocked by pre-treatment with the receptor antagonist CGRP(8-37). Additionally, the phagocytotic capacity of bone marrow-derived and whole lung CD11c(+) cells could be inhibited by neuropeptides CGRP, VIP, and Substance P. We then cross-linked these data with the in vivo situation by analyzing DC motility in two different OVA asthma models. Both in the acute and prolonged OVA asthma model altered neuropeptide amounts and DC motility in the airways could be measured. In summary, our data suggest that neuropeptides modulate key features motility and phagocytosis of mouse airway DC. Therefore altered neuropeptide levels in airways during allergic inflammation have impact on regulation of airway immune mechanisms and therefore might contribute to the pathophysiology of asthma.

  15. Neuropeptides of the cotton fleahopper, Pseudatomoscelis seriatus (Reuter).

    Science.gov (United States)

    Predel, Reinhard; Russell, William K; Russell, David H; Suh, Charles P-C; Nachman, Ronald J

    2012-03-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an economically important pest of cotton, and increasing concerns over resistance, detrimental effects on beneficial insects and safety issues associated with traditional insecticide applications have led to an interest in research on novel, alternative strategies for control. One such approach requires a more basic understanding of the neurohormonal system that regulates important physiological properties of the fleahopper; e.g. the expression of specific messenger molecules such as neuropeptides. Therefore we performed a peptidomic study of neural tissues from the fleahopper which led to the first identification of the sequences of native peptide hormones. These peptide hormones include the following neuropeptides: corazonin, short neuropeptide F (sNPF), myosuppressin, CAPA-pyrokinin and CAPA-PVK peptides. The CAPA-pyrokinin, sNPF, and CAPA-PVK peptides represent novel sequences. A comparison of fleahopper neuropeptides with those of related heteropteran species indicates that they are quite different. The sNPF of P. seriatus shows, among others, a novel substitution of Leu with Phe within the C-terminal region; a modification that sets it apart from the known sNPFs of not only other Heteroptera but of other arthropod species as well. The identity of the neuropeptides native to the fleahopper can aid in the potential development of biostable, bioavailable mimetic agonists and antagonists capable of disrupting the physiological functions that these neuropeptides regulate.

  16. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    Science.gov (United States)

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.

  17. Amygdalar neuropeptide Y Y1 receptors mediate the anxiolytic-like actions of neuropeptide Y in the social interaction test.

    Science.gov (United States)

    Sajdyk, T J; Vandergriff, M G; Gehlert, D R

    1999-03-01

    The effects of intra-amygdalar neuropeptide Y infusions were assessed in rats using the social interaction test. Neuropeptide Y administered into the central nucleus of the amygdala did not alter behavior, while injections into the basolateral nucleus of the amygdala produced an increased social interaction time. Furthermore, the anxiolytic-like effect was antagonized by co-administration of the potent neuropeptide Y Y1 receptor antagonist ((R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphen ylacetyl)-argininamide trifluoroacetate) 3304, but not with the inactive enantiomer ((R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphen ylacetyl)-argininamide trifluoroacetate) 3457. Therefore, neuropeptide Y produces an anxiolytic-like effect in the social interaction test through neuropetide Y Y1 receptors located in the basolateral amygdala.

  18. Neuropeptide Regulation of Appetite and Reproduction

    Directory of Open Access Journals (Sweden)

    Small CJ

    2004-01-01

    Full Text Available It is now recognised that appropriate regulation of reproduction, energy intake and energy expenditure, and thus maintenance of body weight and fertility, relies on complex hypothalamic neuro-circuitry. Feeding and reproductive function are closely linked. During times of under nourishment and falling body fat the reproductive axis is down regulated. Circulating factors and hypothalamic circuits co-ordinate these responses. Leptin has been described to be an important peripheral signal that indicates body fat stores to the hypothalamus and thus links nutrition and reproduction. Leptin acts by altering neuropeptide circuits in the hypothalamus, which alter gonadotrophin releasing hormone (GnRH release and food intake. The importance of key neuropeptide systems identified in rodents is now being established in man. Notably mutations in the melanocortin MC4 receptor are found in up to 4 % of the morbidly obese whilst in a proportion of patients with anorexia nervosa mutations have been identified in the agoutirelated peptide (AgRP gene, which codes for an endogenous antagonist of this receptor. Intranasal administration of a melanocortin fragment known to activate the MC4 receptor decreases adiposity in humans. The melanocortin system has been shown to influence the reproductive axis in rodents. However, the role of the melanocortin system in the control of reproduction in humans remains to be established. Since the discovery of leptin, attention has also been focused on peripheral signals that regulate reproduction, food intake and energy expenditure, either directly or via feedback on hypothalamic circuits. Notable new discoveries in this area include the gastric hormone ghrelin. Circulating ghrelin stimulates food intake in rodents and humans although an influence on the reproductive axis is yet to be reported. Neuropeptidregulation von Appetit und Reproduktion. Mittlerweile gilt es als anerkannt, daß eine entsprechende Regulation der

  19. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity

    OpenAIRE

    Boughton, C K; Murphy, K. G.

    2013-01-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxi...

  20. Simulations of Enhanced Confinement

    Science.gov (United States)

    Dorland, W.; Kotschenreuther, M.; Liu, Q. P.; Jones, C. S.; Beer, M. A.; Hammett, G. W.

    1996-11-01

    Most existing tokamaks routinely achieve enhanced confinement regimes. Designs for new, larger tokamaks therefore are typically predicated upon reliable enhanced confinement performance. However, most enhanced confinement regimes rely (to some degree) upon sheared E×B flows to stabilize the turbulence that otherwise limits the confinement. For example, the pedestal H-mode transport barrier is typically attributed to shear stabilization [Biglari, Diamond and Terry, Phys. Fl. B, 2 1 (1990)]. Unfortunately, it is easily shown that sheared E×B stabilization of microinstabilities such as the ITG mode does not scale favorably with machine size. Here, using nonlinear gyrofluid simulations in general geometry, we attempt to quantify the confinement enhancement that can be expected from velocity shear stabilization for conventional reactor plasmas. We also consider other microinstability stabilization mechanisms(See related presentations by Beer, Kotschenreuther, Manickam, and Ramos, this conference.) (strong density peaking, Shafranov shift stabilization, dots) and unconventional reactor configurations.^2 Experimental datasets from JET, DIII-D, C-Mod and TFTR are analyzed, and ITER operation is considered.

  1. [Leu31, Pro34]neuropeptide Y

    DEFF Research Database (Denmark)

    Fuhlendorff, J; Gether, U; Aakerlund, L;

    1990-01-01

    Two types of binding sites have previously been described for 36-amino acid neuropeptide Y (NPY), called Y1 and Y2 receptors. Y2 receptors can bind long C-terminal fragments of NPY-e.g., NPY-(13-36)-peptide. In contrast, Y1 receptors have until now only been characterized as NPY receptors that do...... not bind such fragments. In the present study an NPY analog is presented, [Leu31, Pro34]NPY, which in a series of human neuroblastoma cell lines and on rat PC-12 cells can displace radiolabeled NPY only from cells that express Y1 receptors and not from those expressing Y2 receptors. The radiolabeled analog......, [125I-Tyr36] monoiodo-[Leu31, Pro34]NPY, also binds specifically only to cells with Y1 receptors. The binding of this analog to Y1 receptors on human neuroblastoma cells is associated with a transient increase in cytoplasmic free calcium concentrations similar to the response observed with NPY. [Leu31...

  2. The neuropeptide oxytocin modulates consumer brand relationships.

    Science.gov (United States)

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-10-09

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers' attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one's favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands.

  3. Confined Brownian ratchets.

    Science.gov (United States)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J Miguel

    2013-05-21

    We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.

  4. Biopolymer organization upon confinement

    Energy Technology Data Exchange (ETDEWEB)

    Marenduzzo, D [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Micheletti, C [SISSA, International School for Advanced Studies, CNR-INFM Democritos and Italian Institute of Technology, SISSA Unit via Bonomea, 265, Trieste (Italy); Orlandini, E [Dipartimento di Fisica, Universita di Padova and Sezione INFN Padova, Via Marzolo 8, 35131, Padova (Italy)

    2010-07-21

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered. (topical review)

  5. Spin wave confinement

    CERN Document Server

    2008-01-01

    This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and

  6. Order, Disorder and Confinement

    CERN Document Server

    D'Elia, M; Pica, C

    2006-01-01

    Studying the order of the chiral transition for $N_f=2$ is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the transition by use of a novel strategy in finite size scaling analysis. The specific heat and a number of susceptibilities are compared with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. Results are in agreement with those found by studying the scaling properties of a disorder parameter related to the dual superconductivity mechanism of color confinement.

  7. Confinement for More Space

    DEFF Research Database (Denmark)

    Kipnusu, Wycliffe K.; Elsayed, Mohamed; Kossack, Wilhelm

    2015-01-01

    Broadband dielectric spectroscopy and positron annihilation lifetime spectroscopy are employed to study the molecular dynamics and effective free volume of 2-ethyl-1-hexanol (2E1H) in the bulk state and when confined in unidirectional nanopores with average diameters of 4, 6, and 8 nm. Enhanced α...

  8. Fractional statistics and confinement

    CERN Document Server

    Gaete, P; Gaete, Patricio; Wotzasek, Clovis

    2004-01-01

    It is shown that a pointlike composite having charge and magnetic moment displays a confining potential for the static interaction while simultaneously obeying fractional statistics in a pure gauge theory in three dimensions, without a Chern-Simons term. This result is distinct from the Maxwell-Chern-Simons theory that shows a screening nature for the potential.

  9. Confinement from Merons

    CERN Document Server

    Lenz, F; Thies, M

    2003-01-01

    It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topological susceptibility are similar to those arising in lattice QCD.

  10. Atlas of Central Nervous System and the first Neuropeptide from Fire Ant

    Science.gov (United States)

    In some insects, especially lepidopteran species, regulation of pheromone biosynthesis and production is under hormonal control. The neuropeptide hormone responsible, PBAN (Pheromone Biosynthesis Activating Neuropeptide), is synthesized in the subesophageal ganglion (SG) and released into the hemoly...

  11. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    Science.gov (United States)

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of

  12. Peptidomics for the discovery and characterization of neuropeptides and hormones.

    Science.gov (United States)

    Romanova, Elena V; Sweedler, Jonathan V

    2015-09-01

    The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.

  13. Brain neuropeptides in central ventilatory and cardiovascular regulation in trout.

    Directory of Open Access Journals (Sweden)

    Jean-Claude eLe Mével

    2012-10-01

    Full Text Available Many neuropeptides and their G-protein coupled receptors (GPCRs are present within the brain area involved in ventilatory and cardiovascular regulation but only a few mammalian studies have focused on the integrative physiological actions of neuropeptides on these vital cardio-respiratory regulations. Because both the central neuroanatomical substrates that govern motor ventilatory and cardiovascular output and the primary sequence of regulatory peptides and their receptors have been mostly conserved through evolution, we have developed a trout model to study the central action of native neuropeptides on cardio-ventilatory regulation. In the present review, we summarize the most recent results obtained using this non-mammalian model with a focus on PACAP, VIP, tachykinins, CRF, urotensin-1, CGRP, angiotensin-related peptides, urotensin-II, NPY, and PYY. We propose hypotheses regarding the physiological relevance of the results obtained.

  14. Role of endogenous neuropeptides in the pathomechanism of alcohol addiction

    Directory of Open Access Journals (Sweden)

    Urszula Rudzińska

    2009-12-01

    Full Text Available Recent studies with endogenous neuropeptides have indicated their modulating role in the etiology of alcoholism. The role of endogenous opioids is relatively well known and there is growing evidence for a role of the appetite-regulating peptides leptin, ghrelin, neuropeptide Y, galanin, and orexins. It has been demonstrated that these peptides could also be involved in alcohol intake regulation and the occurrence of alcohol craving. Moreover, important significance is attached to corticotrophin-releasing factor, since an increased level of this peptide during alcohol withdrawal is responsible for the occurrence of anxiety behaviors. Knowledge of the processes tied with neuropeptides is needed in the search for more effective therapy for alcohol addiction as their actions could perhaps facilitate the search for new medicines which would adapt the therapy to the individual patient as well as contribute to increasing the effectiveness of alcohol addiction therapy.

  15. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  16. Neuropeptides and the microbiota-gut-brain axis.

    Science.gov (United States)

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  17. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones

    DEFF Research Database (Denmark)

    Dircksen, Heinrich; Neupert, Susanne; Predel, Reinhard

    2011-01-01

    We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic...

  18. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas;

    2012-01-01

    on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y...

  19. Pathogenic involvement of neuropeptides in anxiety and depression.

    Science.gov (United States)

    Alldredge, Brett

    2010-06-01

    Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.

  20. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms.

    Science.gov (United States)

    Elphick, Maurice R

    2014-09-01

    The SALMFamides are a family of neuropeptides that occur in species belonging to the phylum Echinodermata. The prototypes for this neuropeptide family (S1 and S2) were discovered in starfish but subsequently SALMFamides were identified in other echinoderms. There are two types of SALMFamides: L-type, which have the C-terminal motif SxLxFamide, and F-type, which have the C-terminal motif SxFxFamide. They are derived from two types of precursor proteins: an L-type SALMFamide precursor, which comprises only L-type or L-type-like SALMFamides and an F-type SALMFamide precursor, which contains several F-type or F-type-like SALMFamides and, typically, one or more L-type SALMFamides. Thus, SALMFamides occur as heterogeneous mixtures of neuropeptides - a SALMFamide salmagundi. SALMFamides are produced by distinct populations of neurons in echinoderm larval and adult nervous systems and are present in the innervation of neuromuscular organs. Both L-type and F-type SALMFamides cause muscle relaxation in echinoderms and, for example, in starfish this effect of SALMFamides may mediate neural control of cardiac stomach eversion in species that feed extra-orally (e.g., Asterias rubens). The SALMFamide S1 also causes inhibition of neural release of a relaxin-like gonadotropin in the starfish Asterina pectinifera. An important issue that remains to be resolved are the relationships of SALMFamides with neuropeptides that have been identified in other phyla. However, it has been noted that the C-terminal SxLxFamide motif of L-type SALMFamides is a feature of some members of a bilaterian neuropeptide family that includes gonadotropin-inhibitory hormone (GnIH) in vertebrates and SIFamide-type neuropeptides in protostomes. Similarly, the C-terminal FxFamide motif of F-type SALMFamides is a feature of vertebrate QRFP (26RFa)-type neuropeptides. These sequence similarities may provide a basis for molecular identification of receptors that mediate effects of SALMFamides. Furthermore

  1. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  2. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  3. Confining gauge fields

    CERN Document Server

    Lenz, F

    2009-01-01

    By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.

  4. Neuropeptide Y in the adult and fetal human pineal gland

    DEFF Research Database (Denmark)

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we s...

  5. Neuropeptides and social behavior of rats tested in dyadic encounters

    NARCIS (Netherlands)

    Niesink, R.J.M.; Ree, J.M. van

    1984-01-01

    The effects of various neuropeptides on social behavior was studied in a test procedure in which 7-day isolated animals were tested together with non-isolated partners in dyadic encounters. The short-term isolation procedure increased the frequency and duration of social activities of the rats, but

  6. Functional roles of neuropeptides in the insect central nervous system

    Science.gov (United States)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  7. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    Science.gov (United States)

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-23

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes.

  8. The insect capa neuropeptides impact desiccation and cold stress responses

    Science.gov (United States)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  9. Neuropeptides and social behavior of rats tested in dyadic encounters

    NARCIS (Netherlands)

    Niesink, R.J.M.; Ree, J.M. van

    1984-01-01

    The effects of various neuropeptides on social behavior was studied in a test procedure in which 7-day isolated animals were tested together with non-isolated partners in dyadic encounters. The short-term isolation procedure increased the frequency and duration of social activities of the rats, but

  10. Neuropeptide Y in the Adult and Fetal Human Pineal Gland

    Directory of Open Access Journals (Sweden)

    Morten Møller

    2014-01-01

    Full Text Available Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  11. Neuropeptide Y in the adult and fetal human pineal gland.

    Science.gov (United States)

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  12. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lila Carniglia

    2017-01-01

    Full Text Available Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  13. Neuropeptides in Alzheimer's Disease : From Pathophysiological Mechanisms to Therapeutic Opportunities

    NARCIS (Netherlands)

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    2013-01-01

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition a

  14. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  15. Altered neuropeptide Y Y1 responses in mesenteric arteries in rats with congestive heart failure

    DEFF Research Database (Denmark)

    Bergdahl, A; Nilsson, T; Sun, X Y;

    1998-01-01

    The aim of the present study was to elucidate if the potentiating effect of neuropeptide Y on various vasoactive agents in vitro is (1) altered in mesenteric arteries from rats with congestive heart failure and (2) mediated by the neuropeptide Y Y1 receptor. The direct vascular effects...... of the neuropeptide Y Y1 antagonist, BIBP3226 (BIBP3226¿(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl ]-D-arginine-amide¿). Neuropeptide Y, per se, had no vasoactive effect in the arteries. The potency of endothelin-1 was significantly decreased in congestive heart failure rats. Neuropeptide Y and neuropeptide Y......-(13-36) potentiated the endothelin-1-induced contraction in congestive heart failure mesenteric arteries. In 20% of the congestive heart failure rats, sarafotoxin 6c induced a contraction of 31+/-4%. Neuropeptide Y also potentiated U46619- and noradrenaline-induced contractions but not 5-HT...

  16. Confinement studies in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M.; Arunasalam, V.; Bell, J.D.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Boody, F.; Boyd, D.; Bretz, N.; Bush, C.E.

    1985-06-01

    The paper describes the present (end of February 1985) status of the plasma confinement studies in the TFTR tokamak with emphasis on those with neutral beam injection (NBI). Recent improvements in the device capabilities have substantially extended operating parameters: B/sub T/ increased to 4.0 T, I/sub p/ to 2.0 MA, injection power (P/sub b/) to 5 MW with H/sup 0/ or D/sup 0/ beams anti n/sub e/ to 5 x 10/sup 19/ m/sup -3/, and Z/sub eff/ reduced to 1.4. With ohmic heating (OH) alone, the previously established scaling for gross energy confinement time (tau/sub E/ = anti n/sub e/q) has been confirmed at higher I/sub p/ and B/sub T/, and the maximum tau/sub E/ of 0.4 sec has been achieved. With NBI at P/sub b/ substantially (by factor >2) higher than P/sub OH/, excellent power and particle accountability have been established. This suggests that the less-than-expected increase in stored energy with NBI is not due to problems of power delivery, but due to problems of confinement deterioration. tau/sub E/ is observed to scale approximately as I/sub p/ P/sub b//sup -0.5/ (independent of anti n/sub e/), consistent with previous L-mode scalings. With NBI we have achieved the maximum tau/sub E/ of 0.2 sec and the maximum T/sub i/(o) of 4.4 keV in the normal operating regime, and even higher T/sub i/(o) in the energetic-ion regime with low-n/sub e/ and low-I/sub p/ operation.

  17. Working under confinement

    CERN Document Server

    Malgaretti, Paolo; Rubi, J Miguel

    2014-01-01

    We analyze the performance of a Brownian ratchet in the presence of geometrical constraints. A two-state model that describes the kinetics of molecular motors is used to characterize the energetic cost when the motor proceeds under confinement, in the presence of an external force. We show that the presence of geometrical constraints has a strong effect on the performance of the motor. In particular, we show that it is possible to enhance the ratchet performance by a proper tuning of the parameters characterizing the environment. These results open the possibility of engineering entropically-optimized transport devices.

  18. Hadrosynthesis and Quark Confinement

    Directory of Open Access Journals (Sweden)

    Satz Helmut

    2014-04-01

    Full Text Available Multihadron production in high energy collisions, from e+e− annihilation to heavy ion interactions, shows remarkable thermal behaviour, specified by a universal “Hagedorn” temperature. We argue that this hadronic radiation is formed by tunnelling through the event horizon of colour confinement, i.e., that it is the QCD counterpart of Hawking-Unruh radiation from black holes. It is shown to be emitted at a universal temperature TH ≃ (σ/2π1/2, where σ denotes the string tension. Since the event horizon does not allow information transfer, the radiation is thermal “at birth”.

  19. Confinement Vessel Dynamic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  20. Confinement Contains Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  1. Feeding behavior and gene expression of appetite-related neuropeptides in mice lacking for neuropeptide Y Y5 receptor subclass

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Higuchi; Takeshi Nild; Tomohiro Shiiya

    2008-01-01

    Neuropeptide Y (NPY) is a potent neurotransmitter for feeding. Besides NPY, orexigenic neuropeptides such as agouti-related protein (AgRP), and anorexi-genic neuropeptides such as a-melatonin stimulating hormone (MSH) and cocaine-amphetamine-regulated transcript (CART) are also involved in central feeding regulation. During fasting, NPY and AgRP gene expres-sions are up-regulated and POMC and CART gene ex-pressions are down-regulated in hypothalamus. Based on the network of peptidergic neurons, the former are involved in positive feeding regulation, and the latter are involved in negative feeding, which exert these feeding-regulated peptides especially in paraventricular nucleus (PVN). To clarify the compensatory mecha-nism of knock-out of NPY system on feeding, change in gene expressions of appetite-related neuropeptides and the feeding behavior was studied in NPY Y5-KO mice. Food intake was increased in Y5-KO mice. Fast-ing increased the amounts of food and water intake in the KO mice more profoundly. These data indicated the compensatory phenomenon of feeding behavior in YS-KO mice. RT-PCR and [SH suggested that the compensation of feeding is due to change in gene ex-pressions of AgRP, CART and POMC in hypothalamus. Thus, these findings indicated that the compensatory mechanism involves change in POMC/CART gene ex-pression in arcuate nucleus (ARC). The POMC/CART gene expression is important for central compensatory regulation in feeding behavior.

  2. Neuropeptide Y Gene Polymorphism and Plasma Neuropeptide Y Level in Febrile Seizure Patients in Taiwan

    Directory of Open Access Journals (Sweden)

    Lung-Chang Lin

    2007-11-01

    Full Text Available Neuropeptide Y (NPY has been shown to depress the hyperexcitability of neurons. In the present study, we investigated the association between the nucleotide (nt 5671 C/T polymorphism of the NPY gene and the plasma NPY level in patients with febrile seizures (FS. Fifty-six patients with FS and 55 control subjects were enrolled. Genotype and allele frequencies were compared. The frequencies of genotypes TT, TC and CC for the NPY gene nt 5671 C/T polymorphism were 21.4%, 28.6% and 50.0%, respectively, in patients with FS, and 14.6%, 40.0% and 45.4%, respectively, in control subjects. The frequencies of alleles T and C were 35.7% and 64.3%, respectively, in patients with FS, while those in the control group were 34.5% and 65.5%, respectively. We found no significant relationship between the NPY gene nt 5671 C/T polymorphism and FS. The plasma NPY concentrations of the FS group, the age-matched non-FS group, and subjects aged > 6 years in the non-FS group were 48.23±32.49, 55.36±23.12, and 70.10±60.31 pg/mL, respectively. These results indicate no statistical difference in plasma NPY concentration between FS patients and the non-FS group. However, plasma NPY concentration was found to increase significantly with age.

  3. Amoeboid motion in confined geometry

    CERN Document Server

    Wu, Hao; Hu, Wei-Fan; Farutin, Alexander; Rafaï, Salima; Lai, Ming-Chih; Peyla, Philippe; Misbah, Chaouqi

    2015-01-01

    Cells of the immune system, as well as cancer cells, migrating in confined environment of tissues undergo frequent shape changes (described as amoeboid motion) that enable them to move forward through these porous media without the assistance of adhesion sites. In other words, they perform amoeboid swimming (AS) while using extracellular matrices and cells of tissues as support. We introduce a simple model of AS in a confined geometry solved by means of 2D numerical simulations. We find that confinement promotes AS, unless being so strong that it restricts shape change amplitude. A straight AS trajectory in the channel is found to be unstable, and ample lateral excursions of the swimmer prevail. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. This is a spontaneous symmetry-breaking bifurcation. We find that there exists an optimal confinement for migration. We provide numerical results as...

  4. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans.

    Science.gov (United States)

    Chang, Yan-Jung; Burton, Tina; Ha, Lawrence; Huang, Zi; Olajubelo, Adewale; Li, Chris

    2015-01-01

    Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.

  5. The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates

    Directory of Open Access Journals (Sweden)

    Maurice Richard Elphick

    2014-06-01

    Full Text Available Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: 1. gonadotropin-inhibitory hormone (GnIH, 2. neuropeptide FF (NPFF 3. pyroglutamylated RFamide peptide (QRFP, 4. prolactin-releasing peptide (PrRP and 5. Kisspeptin. Experimental demonstration of neuropeptide-receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates - urochordates, cephalochordates, hemichordates and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g. NPY/NPF, neuropeptide families where the RFamide motif is unique to protostomian members (e.g. CCK/sulfakinins and RFamide-type peptides that have been lost in the vertebrate lineage (e.g. luqins. Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g. the prototypical FMRFamide-related neuropeptides in protostomes. Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition or loss of this motif occurring in different branches of the animal kingdom.

  6. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides.

    Science.gov (United States)

    Funkelstein, Lydiane; Beinfeld, Margery; Minokadeh, Ardalan; Zadina, James; Hook, Vivian

    2010-12-01

    Neuropeptides are essential for cell-cell communication in the nervous and neuroendocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes recent findings indicating the prominent role of cathepsin L in secretory vesicles for production of neuropeptides from their protein precursors. The role of cathepsin L in neuropeptide production was discovered using the strategy of activity-based probes for proenkephalin-cleaving activity for identification of the enzyme protein by mass spectrometry. The novel role of cathepsin L in secretory vesicles for neuropeptide production has been demonstrated in vivo by cathepsin L gene knockout studies, cathepsin L gene expression in neuroendocrine cells, and notably, cathepsin L localization in neuropeptide-containing secretory vesicles. Cathepsin L is involved in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The neuropeptide-synthesizing functions of cathepsin L represent its unique activity in secretory vesicles, which contrasts with its role in lysosomes. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to those lacking PC1/3 and PC2 (PC, prohormone convertase) indicate the key role of cathepsin L in neuropeptide production. Therefore, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. Significantly, the recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.

  7. Molecular cloning of a preprohormone from sea anemones containing numerous copies of a metamorphosis-inducing neuropeptide: a likely role for dipeptidyl aminopeptidase in neuropeptide precursor processing

    DEFF Research Database (Denmark)

    Leviev, I; Grimmelikhuijzen, C J

    1995-01-01

    Neuropeptides are an important group of hormones mediating or modulating neuronal communication. Neuropeptides are especially abundant in evolutionarily "old" nervous systems, such as those of cnidarians, the lowest animal group having a nervous system. Cnidarians often have a life cycle includin...

  8. Deforming baryons into confining strings

    CERN Document Server

    Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben

    2004-01-01

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.

  9. Brain clock driven by neuropeptides and second messengers

    Science.gov (United States)

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  10. Melatonin-induced neuropeptide release from isolated locust corpora cardiaca.

    Science.gov (United States)

    Huybrechts, J; De Loof, A; Schoofs, L

    2005-01-01

    A method, based on a combination of mass spectrometry and liquid chromatography, was developed to investigate the release of neuropeptides from isolated locust corpora cardiaca. Melatonin, octopamine, trehalose and forskolin were administered to the perifused glands. The neuropeptides present in the releasates (spontaneous versus induced) were visualized by either conventional or capillary HPLC. Identification was achieved by means of MALDI-TOF MS and/or nanoflow-LC-Q-TOF MS. The observed effects of these chemicals regarding AKH release were in line with previous studies and validate the method. The most important finding of this study was that administration of melatonin stimulated the release of adipokinetic hormone precursor related peptides (APRP 1 and APRP 2), neuroparsins (NP A1, NP A2 and NP B) and diuretic peptide.

  11. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    Science.gov (United States)

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  12. Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea).

    Science.gov (United States)

    Christie, Andrew E

    2014-09-15

    Despite being used as models in the field of ecotoxicology, including use in studies of endocrine disruption, little is known about the hormonal systems of amphipods, particularly their peptidergic signaling systems. Here, transcriptome shotgun assembly (TSA) sequences were used to predict the structures of the first neuropeptides from members of this crustacean order. Using a well-established workflow, BLAST searches of the extant amphipod TSA data were conducted for putative peptide-encoding transcripts. The pre/preprohormones deduced from the identified TSA sequences were then used to predict the mature structures of amphipod neuropeptides. In total, 43 putative peptide-encoding transcripts were identified from three amphipods, Echinogammarus veneris, Hyalella azteca and Melita plumulosa. Collectively, 139 distinct mature peptides (110 from E. veneris alone) were predicted from these TSA sequences. The identified peptides included members of the adipokinetic hormone/red pigment concentrating hormone, allatostatin A, allatostatin B, allatostatin C, bursicon α, bursicon β, crustacean hyperglycemic hormone, diuretic hormone 31, FLRFamide, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone (PDH), proctolin, RYamide, SIFamide, sulfakinin and tachykinin-related peptide families. Of particular note were the identifications of orcokinins possessing SFDEIDR- rather than the typical NFDEIDR- amino-termini, e.g. SFDEINRSNFGFN, a carboxyl-terminally amidated orcokinin, i.e. SFDEINRSNFGFSamide, PDHs longer than the stereotypical 18 amino acids, e.g. NSELLNTLLGSKSLAALRAAamide, and a 13 rather than 12 amino acid long SIFamide, i.e. GPYRKPPFNGSIFamide. These data not only provide the first descriptions of native amphipod neuropeptides, but also represent a new resource for initiating investigations of peptidergic signaling in the Amphipoda.

  13. Neurotrophic and antioxidant potential of neuropeptides and trace elements

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2015-01-01

    Full Text Available Neurotrophic therapy with brain extract-based drugs has been performed for decades. The basis for their neurotrophic activity is amino acids and neuropeptides. However, incomplete information on the composition of these drugs precludes a detailed description of mechanisms through which their pharmacological effects occur. The review considers the results of the most recent molecular pharmacological investigations and the mechanisms of therapeutic action of cerebrolysin.

  14. Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing

    OpenAIRE

    Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D.; Frank W LoGerfo; Veves, Aristidis

    2009-01-01

    This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization ...

  15. Allatotropin: An ancestral myotropic neuropeptide involved in feeding

    OpenAIRE

    María Eugenia Alzugaray; Mariana Laura Adami; Luis Anibal Diambra; Salvador Hernandez-Martinez; Cristina Damborenea; Fernando Gabriel Noriega; Jorge Rafael Ronderos

    2015-01-01

    Background: Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone s...

  16. "Neuropeptides in the brain defense against distant organ damage".

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Barbeiro, Hermes Vieira; Barbeiro, Denise Frediani; Cunha, Débora Maria Gomes; Koike, Marcia Kiyomi; Machado, Marcel Cerqueira César; Pinheiro da Silva, Fabiano

    2016-01-15

    Delirium, or acute confusional state, is a common manifestation in diseases that originate outside the central nervous system, affecting 30-40% of elderly hospitalized patients and up to 80% of the critically ill, even though it remains unclear if severe systemic inflammation is able or not to induce cellular disturbances and immune activation in the brain. Neuropeptides are pleotropic molecules heterogeneously distributed throughout the brain and possess a wide spectrum of functions, including regulation of the inflammatory response, so we hypothesized that they would be the major alarm system in the brain before overt microglia activation. In order to investigate this hypothesis, we induced acute pancreatitis in 8-10week old rats and collected brain tissue, 12 and 24h following pancreatic injury, to measure neuropeptide and cytokine tissue levels. We found significantly higher levels of β-endorphin, orexin and oxytocin in the brain of rats submitted to pancreatic injury, when compared to healthy controls. Interestingly, these differences were not associated with increased local cytokine levels, putting in evidence that neuropeptide release occurred independently of microglia activation and may be a pivotal alarm system to initiate neurologic reactions to distant inflammatory non-infectious aggression.

  17. A radioactive assay for the degradation of neuropeptide Y

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, R.; Lucius, R.; Mentlein, R. [Kiel Univ. (Germany)

    1995-12-31

    Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian central nervous system. Like other neuropeptides, NPY is inactivated by specialized neuro-peptidases. To trace the degradation of NPY, an assay was established using biotinylated NPY. Biotinyl-NPY was radiolabeled with Na{sup 125}I by the chloramine-T method and bound to a streptavidin-agarose matrix. The amount of radiolabeling was analyzed by reverse-phase HPLC. The assay was carried out with five peptidases and inhibitors to demonstrate different specific activity. Measurable amounts of radioactivity were released by treatment with endopeptidase-24.18, plasmin, and trypsin, whereas dipetidylpeptidase IV (DPPIV) and angiotensin-converting enzyme (ACE) showed no activity in this assay. In the case of DPPIV this is due to a resistance of the assay to aminopeptidase attack. The assay is useful to study the specific degradation of NPY particularly by endopeptidases in all kinds of biological samples. (authors). 31 refs., 6 figs.

  18. Insect capa neuropeptides impact desiccation and cold tolerance.

    Science.gov (United States)

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-03

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  19. Toward a consensus nomenclature for insect neuropeptides and peptide hormones.

    Science.gov (United States)

    Coast, Geoffrey M; Schooley, David A

    2011-03-01

    The nomenclature currently in use for insect neuropeptide and peptide hormone families is reviewed and suggestions are made as to how it can be rationalized. Based upon this review, a number of conventions are advanced as a guide to a more rationale nomenclature. The scheme that is put forward builds upon the binomial nomenclature scheme proposed by Raina and Gäde in 1988, when just over 20 insect neuropeptides had been identified. Known neuropeptides and peptide hormones are assigned to 32 structurally distinct families, frequently with overlapping functions. The names given to these families are those that are currently in use, and describe a biological function, homology to known invertebrate/vertebrate peptides, or a conserved structural motif. Interspecific isoforms are identified using a five-letter code to indicate genus and species names, and intraspecific isoforms are identified by Roman or Arabic numerals, with the latter used to signify the order in which sequences are encoded on a prepropeptide. The proposed scheme is sufficiently flexible to allow the incorporation of novel peptides, and could be extended to other arthropods and non-arthropod invertebrates. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. [Modification of the FF neuropeptide enhances its hypertensive effect].

    Science.gov (United States)

    Kapel'ko, V I; Bespalova, Zh D; Efremov, E E; Lakomkin, V L; Orlova, Ts R; Lakomkin, S V; Sidorova, M V; Az'muko, A A; Molokoedov, A S; Sharf, T V

    2009-05-01

    Neuropeptide FF (H-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) injected intravenously temporarily enhanced the arterial pressure (AP) and the heart rate (HR). However, its role in the regulation of blood circulation is obscure. To study the properties of the molecule, its analogue was synthesized, in which proline in position 7 was substituted with glycine, and leucine in the position 2 with norleucine. Modified neuropeptide FF (FFm) also temporarily and in a dose-dependent manner increased the AP and HR; however, the equal degree of increase was reached at doses of FFm being 5-7 times lesser as compared with the natural peptide. The application of the FFm at hemorrhagic shock excluded mortality of animals during the experiment, considerably increased the degree of AP and HR restoration in the remaining experiments, and improved the survival of animals in 24 hours. It has been found that the level of antibodies to the fragment of hFF1 receptor in the serum is lower in spontaneously hypertensive rats SHR as compared with Wistar rats, but it is increased in patients of cardiological profile as compared with donors. The findings suggest involvement of neuropeptide FF in the regulation of blood circulation; however, the precise mechanisms remain to be determined.

  1. Sensory neurobiological analysis of neuropeptide modulation of meal size.

    Science.gov (United States)

    Schwartz, Gary J; Azzara, Anthony V

    2004-08-01

    Gerry Smith's emphasis on the meal as the functional unit of ingestion spurred experiments designed to (1) identify oral and postoral stimuli that affect meal size, and (2) identify peripheral and central neural mechanisms involved in the processing of sensory signals generated by these stimuli. His observations that gut-brain peptides can limit meal size were important in formulating the idea that neuropeptides involved in the control of food intake modulate the peripheral and central neural processing of meal-stimulated sensory signals. This focus on meal size continues to foster the development of hypotheses and the design of experiments that characterize the sites and modes of action of feeding modulatory neuropeptides. These investigations have focused attention on the gut-brain neuraxis as a critical sensory pathway in the control of ingestive behavior, and have revealed important integrative properties of peripheral and central neurons along this axis. The neuromodulatory function of peptides that alter food intake is supported by their ability to recruit the activation of neurons at multiple central nodes of the gut-brain axis and to affect the neural processing and behavioral potency of meal-related gastrointestinal signals important in the negative feedback control of meal size. This sensory neurobiological perspective may also be applied to determine whether feeding modulatory neuropeptides affect the neural and behavioral potency of oral positive feedback signals that promote ingestion.

  2. Parasite neuropeptide biology: Seeding rational drug target selection?

    Science.gov (United States)

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  3. Insect capa neuropeptides impact desiccation and cold tolerance

    Science.gov (United States)

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  4. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    Science.gov (United States)

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  5. Neuropeptide Y gene transfection inhibits post-epileptic hippocampal synaptic reconstruction

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang; Wenqing Zhao; Wenling Li; Changzheng Dong; Xinying Zhang; Jiang Wu; Na Li; Chuandong Liang

    2013-01-01

    Exogenous neuropeptide Y has antiepileptic effects; however, the underlying mechanism and optimal administration method for neuropeptide Y are still unresolved. Previous studies have used intracerebroventricular injection of neuropeptide Y into animal models of epilepsy. In this study, a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene was injected into the lateral ventricle of rats, while the ipsilateral hippocampus was injected with kainic acid to establish the epileptic model. After transfection of neuropeptide Y gene, mossy fiber sprouting in the hippocampal CA3 region of epileptic rats was significantly suppressed, hippocampal synaptophysin (p38) mRNA and protein expression were inhibited, and epileptic seizures were reduced. These experimental findings indicate that a recombinant adeno-associated virus expression vector carrying the neuropeptide Y gene reduces mossy fiber sprouting and inhibits abnormal synaptophysin expression, thereby suppressing post-epileptic synaptic reconstruction.

  6. Confined helium on Lagrange meshes

    CERN Document Server

    Baye, Daniel

    2015-01-01

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  7. Confinement versus asymptotic freedom

    CERN Document Server

    Dubin, A Yu

    2002-01-01

    I put forward the low-energy confining asymptote of the solution $$ (valid for large macroscopic contours C of the size $>>1/\\Lambda_{QCD}$) to the large N Loop equation in the D=4 U(N) Yang-Mills theory with the asymptotic freedom in the ultraviolet domain. Adapting the multiscale decomposition characteristic of the Wilsonean renormgroup, the proposed Ansatz for the loop-average is composed in order to sew, along the lines of the bootstrap approach, the large N weak-coupling series for high-momentum modes with the $N\\to{\\infty}$ limit of the recently suggested stringy representation of the 1/N strong-coupling expansion Dub4 applied to low-momentum excitations. The resulting low-energy stringy theory can be described through such superrenormalizable deformation of the noncritical Liouville string that, being devoid of ultraviolet divergences, does not possess propagating degrees of freedom at short-distance scales $<<1/{\\sqrt{\\sigma_{ph}}}$, where $\\sigma_{ph}\\sim{(\\Lambda_{QCD})^{2}}$ is the physical s...

  8. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  9. Two neuropeptides from synganglia of the hard tick,Ixodes sinensis (Acari:Ixodidae)

    Institute of Scientific and Technical Information of China (English)

    LI Jianxu; LIU Tongguang; YANG Hailong; XU Xueqing; LIU Zhigang; LAI Ren

    2006-01-01

    Two neuropeptides were isolated from synganglia (central nervous system) of the hard tick,Ixodes sinensis. Their primary sequences were established as Leu-VaI-VaI-Tyr-Pro-Trp-Thr-Lys and TrpGlu-Lys-Leu-Gly-Ser-Met-Glu-Thr-Leu. By hot plate bioassay, neuropeptide a displayed strong antinociceptive effect in mice by a dose-dependent behavior, while neuropeptide b had some relaxant effects on the isolated rat strip. These neuropeptides might be involved in down-regulating the host's defensive reaction.

  10. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity.

    Science.gov (United States)

    Boughton, C K; Murphy, K G

    2013-12-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  11. BY FRUSTUM CONFINING VESSEL

    Directory of Open Access Journals (Sweden)

    Javad Khazaei

    2016-09-01

    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  12. Spatial confinement of muonium atoms

    Science.gov (United States)

    Khaw, K. S.; Antognini, A.; Prokscha, T.; Kirch, K.; Liszkay, L.; Salman, Z.; Crivelli, P.

    2016-08-01

    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into a vacuum from mesoporous silica reflects between two SiO2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1 S -2 S transition frequency using continuous-wave laser spectroscopy.

  13. Spatial confinement of muonium atoms

    CERN Document Server

    Khaw, K S; Prokscha, T; Kirch, K; Liszkay, L; Salman, Z; Crivelli, P

    2016-01-01

    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica is forced to bounce back and forth between two SiO$_2$ confining surfaces separated by 1 mm. From the data, one can extract that the reflection on the confining surfaces is well described by a cosine law. This technique opens up a way to perform new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy.

  14. Alternative approaches to plasma confinement

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  15. Confining Strings with Topological Term

    CERN Document Server

    Diamantini, M Cristina; Trugenberger, Carlo Andrea

    1997-01-01

    We consider several aspects of `confining strings', recently proposed to describe the confining phase of gauge field theories. We perform the exact duality transformation that leads to the confining string action and show that it reduces to the Polyakov action in the semiclassical approximation. In 4D we introduce a `$\\theta$-term' and compute the low-energy effective action for the confining string in a derivative expansion. We find that the coefficient of the extrinsic curvature (stiffness) is negative, confirming previous proposals. In the absence of a $\\theta$-term, the effective string action is only a cut-off theory for finite values of the coupling e, whereas for generic values of $\\theta$, the action can be renormalized and to leading order we obtain the Nambu-Goto action plus a topological `spin' term that could stabilize the system.

  16. Magnetic freezing of confined water.

    Science.gov (United States)

    Zhang, Guangyu; Zhang, Weiwei; Dong, Huijuan

    2010-10-07

    We report results from molecular dynamic simulations of the freezing transition of liquid water in the nanoscale hydrophobic confinement under the influence of a homogeneous external magnetic field of 10 T along the direction perpendicular to the parallel plates. A new phase of bilayer crystalline ice is obtained at an anomalously high freezing temperature of 340 K. The water-to-ice translation is found to be first order. The bilayer ice is built from alternating rows of hexagonal rings and rhombic rings parallel to the confining plates, with a large distortion of the hydrogen bonds. We also investigate the temperature shifts of the freezing transition due to the magnetic field. The freezing temperature, below which the freezing of confined water occurs, shifts to a higher value as the magnetic field enhances. Furthermore, the temperature of the freezing transition of confined water is proportional to the denary logarithm of the external magnetic field.

  17. Neuropeptídeos na pele Neuropeptides in the skin

    Directory of Open Access Journals (Sweden)

    Pedro Kalil-Gaspar

    2003-08-01

    Full Text Available Há evidências crescentes de que a inervação cutânea é capaz de modular uma variedade de fenômenos cutâneos agudos e crônicos, interagindo com as células da pele e seus componentes imunes. Essa forma de sinalização local entre tecido nervoso e tecido cutâneo ocorre especialmente por meio dos neuropeptídeos, uma numerosa família de neurotransmissores de natureza química comum e nomenclatura heterogênea presentes em todo o sistema nervoso e secretados pelas fibras nervosas cutâneas. São alvo desta revisão os neuropeptídeos substância P (SP, o peptídeo relacionado ao gene da calcitonina (CGRP, o peptídeo vasoativo intestinal (VIP, o peptídeo ativador da adenilato-ciclase pituitária (PACAP, o neuropeptídeo Y (NPY e a somatostatina (SOM. Serão discutidas suas ações sobre as células da pele e sistema imune, bem como estudos recentes que sugerem a participação dos neuropeptídeos nas respostas inflamatórias cutâneas, nas reações de hipersensibilidade e em dermatoses humanas, notadamente na psoríase, dermatite atópica, hanseníase e alopecia.There is increasing evidence that cutaneous nerve fibers play a modulatory role in a variety of acute and chronic skin processes. Local interactions between skin cells, skin immune components and neuronal tissues occur specially through neuropeptides, a large family of chemically-related neurotransmitters exhibiting a heterogeneous nomenclature. Neuropeptides are ubiquitous in central and peripheral nervous systems, being directly released in skin by cutaneous nerve fibers. This review is focused on the actions of substance P (SP, calcitonin gene-related peptide (CGRP, vasointestinal peptide (VIP, pituitary adenylate cyclase-activating polypeptide (PACAP, neuropeptide Y (NPY and somatostatin (SOM. Neuropeptide-related functions on skin and immune cells are also discussed, as well as recent findings implicating nerve fibers in cutaneous inflammatory responses, hypersensitivity

  18. Effects of a skin neuropeptide (substance p) on cutaneous microflora.

    Science.gov (United States)

    Mijouin, Lily; Hillion, Mélanie; Ramdani, Yasmina; Jaouen, Thomas; Duclairoir-Poc, Cécile; Follet-Gueye, Marie-Laure; Lati, Elian; Yvergnaux, Florent; Driouich, Azzedine; Lefeuvre, Luc; Farmer, Christine; Misery, Laurent; Feuilloley, Marc G J

    2013-01-01

    Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence. Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10(-6) M) and this effect was rapid (microbiote should be another mechanism.

  19. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity

    NARCIS (Netherlands)

    van den Heuvel, José K; Furman, Kara; Gumbs, Myrtille C R; Eggels, Leslie; Opland, Darren M; Land, Benjamin B; Kolk, Sharon M; S Narayanan, Nandakumar; Fliers, Eric; Kalsbeek, A.; DiLeone, Ralph J; la Fleur, Susanne E

    2015-01-01

    BACKGROUND: Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we p

  20. Neuropeptide Y activates urocortin 1 neurons in the nonpreganglionic Edinger-Westphal nucleus

    NARCIS (Netherlands)

    Gaszner, B.; Korosi, A.; Palkovits, M.; Roubos, E.W.; Kozicz, L.T.

    2007-01-01

    Central regulatory pathways promoting stress adaptation utilize various neurotransmitters/neuropeptides, such as urocortin 1 (Ucn1) and neuropeptide Y (NPY). Ucn1 is abundantly expressed in the nonpreganglionic Edinger-Westphal nucleus (npEW), where it is codistributed with NPY-immunoreactive (ir) t

  1. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication.

    Science.gov (United States)

    Ma, Wenhui; Zhang, Xuemin; Shi, Shushan; Zhang, Yingze

    2013-06-01

    Neuropeptides released from the skeletal nerve fibers have neurotransmitter and immunoregulatory roles; they exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), Neuropeptide Y (NPY) and tyrosine hydroxylase (TH) on the cell viability and function of the human osteoblasts, and comparing their difference in the role of regulating bone formation. Cultures of normal human osteoblasts were treated with SP, CGRP, VIP, NPY or TH at three concentrations. We found that each of the five neuropeptides induced increases in cell viability of human osteoblasts. The stimulatory action of NPY was the highest, followed by VIP, SP and TH, while CGRP had the lowest stimulatory effect. The viability index of osteoblasts was inversely associated with the concentration of neuropeptides, and positively with the time of exposure. Moreover, the five neuropeptides increased the ALP activity and osteocalcin to different extents in a dose-dependent manner. The GJIC of osteoblasts was significantly promoted by neuropeptides. The results demonstrated that neuropeptides released from skeletal nerve endings after a stimulus appeared to be able to induce the proliferation and activity of osteoblasts via enhancing GJIC between cells, and further influence the bone formation. These findings may contribute toward a better understanding of the neural influence on bone remodeling and improving treatments related to bone diseases.

  2. Expression of neuropeptides and their receptors in the developing retina of mammals

    OpenAIRE

    bagnoli, P; M. Dal Monte; Casini, G.

    2003-01-01

    The present review examines various aspects of the developmental expression of neuropeptides and of their receptors in mammalian retinas, emphasizing their possible roles in retinal maturation. Different peptidergic systems have been investigated with some detail during retinal development, including substance P (SP), somatostatin (SRIF), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY...

  3. Reatividade animal Confinement reactivity

    Directory of Open Access Journals (Sweden)

    Walsiara Estanislau Maffei

    2009-07-01

    Full Text Available A reatividade é definida como a reação do animal quando contido num ambiente de contenção móvel. Ela é quantificada por meio do teste de reatividade animal em ambiente de contenção móvel - REATEST®. Este teste consiste num dispositivo eletrônico acoplado à balança e num software específico. O dispositivo capta a movimentação que o animal provoca na balança, durante 20 segundos e a envia para o software que a processa determinando a reatividade do animal numa escala contínua de pontos. Pontuações maiores são de animais mais reativos (mais agressivo. A reatividade foi criada com os objetivos de solucionar os problemas até então existentes na seleção para temperamento e de permitir estimação de parâmetros genéticos mais confiáveis. Ela é uma característica objetiva que tem grande variabilidade fenotípica e é de quantificação rápida, fácil e segura, além de poder ser quantificada em qualquer tipo de balança, o que permite maior aplicabilidade. Ela não interfere nas práticas de manejo das fazendas porque é quantificada no momento da pesagem dos animais. Sua herdabilidade na raça Nelore é de 0,39 ao ano e 0,23 ao sobreano e suas correlações genéticas com ganho de peso diário são de -0,28 do nascimento até desmama e de -0,49 do desmame até ano. Já suas correlações genéticas com desenvolvimento do perímetro escrotal do ano ao sobreano variam de -0,25 e -0,41.The confinement reactivity (CR has been used as a measure of temperament in Brazil and it is defined as the animal reaction when contained in the scale. It is quantified through the animal reactivity test - REATEST®. This test consists of an electronic device coupled to the scale and of specific software. The device captures the movement that the animal provokes in the scale, during 20 seconds and sends it for the software that processes this movement and determines the animal CR in a continuous scale of points. Higher punctuations belong to

  4. Isolation of L-3-phenyllactyl-Phe-Lys-Ala-NH2 (Antho-KAamide), a novel neuropeptide from sea anemones

    DEFF Research Database (Denmark)

    Nothacker, H P; Rinehart, K L; Grimmelikhuijzen, C J

    1991-01-01

    We have isolated and sequenced the neuropeptide L-3-phenyllactyl-Phe-Lys-Ala-NH2 from the sea anemone Anthopleura elegantissima. This neuropeptide (named Antho-KAamide) has the unusual N-terminal L-3-phenyllactyl blocking group which has recently also been discovered in 2 other neuropeptides from...

  5. Ethological principles predict the neuropeptides co-opted to influence parenting

    Science.gov (United States)

    Cunningham, Christopher B.; Badgett, Majors J.; Meagher, Richard B.; Orlando, Ron; Moore, Allen J.

    2017-01-01

    Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting. PMID:28145404

  6. ProSAAS-derived peptides are colocalized with neuropeptide Y and function as neuropeptides in the regulation of food intake.

    Directory of Open Access Journals (Sweden)

    Jonathan H Wardman

    Full Text Available ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY, but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpe(fat/fat mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpe(fat/fat mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake.

  7. Effects of leptin and neuropeptide Y on function of human ovarian granulosa cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Song Qing; Chen Xiao-yan; Cao Zuan-sun; Mao Wen-jun

    2006-01-01

    Objective: To investigate the effects of leptin and neuropeptide Y on steroidogenesis of human ovarian granulosa cells in vitro. Methods: Human ovarian granulosa cells were isolated from follicular fluid obtained during oocyte retrieval of in vitro fertilization-embryo transfer program and cultured for 2 days with various concentration of leptin(1,10,100 ng/ml) or neuropeptide Y (1×10-6, 1×10-7, 1×10-8 mol/L) alone or both,or with the combination of human chorionic gonadotropin (hCG 0, 20 IU/L). The medium was collected for estradiol (E2) and progesterone (P) measurements. Results: (1)Whether hCG existed or not, the adding of leptin did not alter estradiol and progesterone production by human granulosa cells (P>0.05).(2) Only when the concentration of neuropeptide Y was at 1×10-7mol/L,estradiol level was lower than that in the control (P<0.05).(3) The levels of estradiol in neuropeptide Y (1×10-7mol/L) plus hCG group were significantly higher than those with neuropeptide Y alone(P<0.05). (4) In the absence of hCG, the levels of estradiol in neuropeptide Y (1×10-7mol/L)plus leptin (10 ng/ml) group were significantly higher than those with neuropeptide Y(1×10-7mol/L)alone(P<0.05).Conclusions: (1)Leptin alone produced no direct effect on secretion of E2 and P from granulosa cells in vitro.(2)Neuropeptide Y alone may inhibit the secretion of E2, but the inhibition would probably be blocked with the presentation of hCG.(3)Leptin probably blocked the inhibition of neuropeptide Y on E2 secretion, and this may indicate that there were some coordination between leptin and neuropeptid Y on the level of ovarian function.

  8. Effects of exogenous neuropeptide Y and neuropeptide Y-Y1 receptor antagonist on focal cerebral ischemia in the rat

    OpenAIRE

    Chen, SH; Cheung, RTF

    2000-01-01

    We studied the effects of exogenous neuropeptide Y (NPY) and BIBP3226, an NPY-Y1 antagonist, on the infarct volume. Adult male Sprague-Dawley rats weighing between 280 and 380 g were anaesthetised with sodium pentobarbital (60 mg/kg, I.P.) to undergo reversible right-sided endovascular middle cerebral artery occlusion (MCAO) for 2 hours. Arterial blood pressure, heart rate and cerebral blood flow (CBF) were monitored, and rectal temperature was kept between 36.5 and 37.5 ºC throughout anesthe...

  9. Neuropeptides Y, YY, PP and their clinical significance

    Directory of Open Access Journals (Sweden)

    Mariola Śliwińska-Mossoń

    2013-07-01

    Full Text Available peripheral nervous system. Considering the structure and evolutionary origin, neuropeptideY (NPY is a peptide of the same family as peptide YY (PYY and pancreatic polypeptide(PP. These proteins were discovered relatively recently, however, knowledge about them isdeepened. They are 36-amino acid peptide acting through G-protein coupled receptors, Y1,Y2, Y3, Y4, Y5 and Y6. The diverse structure C-terminus of the peptide and protein binding toreceptors affect the biological activity and the physiological effects on the digestive system,blood vessels, and the center of hunger and satiety in the hypothalamus. Peptides have anorexicproperties, they regulate appetite and food intake mainly through the intestinal cerebrospinalaxis and the hypothalamus. These substances represent an important potential target of newdrugs in the long-term treatment and prevention of obesity. Furthermore, neuropeptide Yaffects many processes depending on the central nervous system modifies ethanol consumption,affect circadian rhythms, memory processes, anxiety behavior. Peripherally NPY affectssmooth muscle contraction of the blood vessels, blood pressure, and atherogenic processes.Conducted more thorough research trying to define the role and participation of variousneuropeptides in the development of diseases of the pancreas and the gastrointestinal tract,cardiovascular system and use it for diagnosis.

  10. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ashiq Hussain

    2016-05-01

    Full Text Available A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR, and its neuropeptide ligands, MIPs (myoinhibitory peptides, which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.

  11. Influence of sensory neuropeptides on human cutaneous wound healing process.

    Science.gov (United States)

    Chéret, J; Lebonvallet, N; Buhé, V; Carre, J L; Misery, L; Le Gall-Ianotto, C

    2014-06-01

    Close interactions exist between primary sensory neurons of the peripheral nervous system (PNS) and skin cells. The PNS may be implicated in the modulation of different skin functions as wound healing. Study the influence of sensory neurons in human cutaneous wound healing. We incubated injured human skin explants either with rat primary sensory neurons from dorsal root ganglia (DRG) or different neuropeptides (vasoactive intestinal peptide or VIP, calcitonin gene-related peptide or CGRP, substance P or SP) at various concentrations. Then we evaluated their effects on the proliferative and extracellular matrix (ECM) remodeling phases, dermal fibroblasts adhesion and differentiation into myofibroblasts. Thus, DRG and all studied neuromediators increased fibroblasts and keratinocytes proliferation and act on the expression ratio between collagen type I and type III in favor of collagen I, particularly between the 3rd and 7th day of culture. Furthermore, the enzymatic activities of matrix metalloprotesases (MMP-2 and MMP-9) were increased in the first days of wound healing process. Finally, the adhesion of human dermal fibroblasts and their differentiation into myofibroblasts were promoted after incubation with neuromediators. Interestingly, the most potent concentrations for each tested molecules, were the lowest concentrations, corresponding to physiological concentrations. Sensory neurons and their derived-neuropeptides are able to promote skin wound healing. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Vasoactive neuropeptides in clinical ophthalmology: An association with autoimmune retinopathy?

    Directory of Open Access Journals (Sweden)

    Donald R Staines

    2009-03-01

    Full Text Available Donald R Staines1,2, Ekua W Brenu2, Sonya Marshall-Gradisnik21Queensland Health, Gold Coast Population Health Unit, Southport, Gold Coast, Queensland, Australia; 2Faculty of Health Science and Medicine, Population Health and Neuroimmunology Unit, Bond University, Robina, Queensland, AustraliaAbstract: The mammalian eye is protected against pathogens and inflammation in a relatively immune-privileged environment. Stringent mechanisms are activated that regulate external injury, infection, and autoimmunity. The eye contains a variety of cells expressing vasoactive neuropeptides (VNs, and their receptors, located in the sclera, cornea, iris, ciliary body, ciliary process, and the retina. VNs are important activators of adenylate cyclase, deriving cyclic adenosine monophosphate (cAMP from adenosine triphosphate (ATP. Impairment of VN function would arguably impede cAMP production and impede utilization of ATP. Thus VN autoimmunity may be an etiological factor in retinopathy involving perturbations of purinergic signaling. A sound blood supply is necessary for the existence and functional properties of the retina. This paper postulates that impairments in the endothelial barriers and the blood–retinal barrier, as well as certain inflammatory responses, may arise from disruption to VN function. Phosphodiesterase inhibitors and purinergic modulators may have a role in the treatment of postulated VN autoimmune retinopathy.Keywords: retinopathy, autoimmune, vasoactive neuropeptides, phosphodiesterase inhibitors

  13. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding

    Science.gov (United States)

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael

    2013-01-01

    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  14. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    Science.gov (United States)

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures.

  15. The Importance of GLWamide Neuropeptides in Cnidarian Development and Physiology

    Directory of Open Access Journals (Sweden)

    Toshio Takahashi

    2011-01-01

    Full Text Available The peptide-signaling molecules (<50 amino acid residues occur in a wide variety of invertebrate and vertebrate organisms, playing pivotal roles in physiological, endocrine, and developmental processes. While some of these peptides display similar structures in mammals and invertebrates, others differ with respect to their structure and function in a species-specific manner. Such a conservation of basic structure and function implies that many peptide-signaling molecules arose very early in the evolutionary history of some taxa, while species-specific characteristics led us to suggest that they also acquire the ability to evolve in response to specific environmental conditions. In this paper, we describe GLWamide-family peptides that function as signaling molecules in the process of muscle contraction, metamorphosis, and settlement in cnidarians. The peptides are produced by neurons and are therefore referred to as neuropeptides. We discuss the importance of the neuropeptides in both developmental and physiological processes in a subset of hydrozoans, as well as the potential use as a seed compound in drug development and aspects related to the protection of corals.

  16. Allatotropin: an ancestral myotropic neuropeptide involved in feeding.

    Directory of Open Access Journals (Sweden)

    María Eugenia Alzugaray

    Full Text Available BACKGROUND: Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. METHODS: A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. CONCLUSIONS: AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. SIGNIFICANCE: Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.

  17. Quantum Confinement in Hydrogen Bond

    CERN Document Server

    Santos, Carlos da Silva dos; Ricotta, Regina Maria

    2015-01-01

    In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

  18. Three Dimensional Confinement WKB Revisited

    CERN Document Server

    Sinha, A K

    2002-01-01

    We develop an alternate formalism for radially confined quantum mechanical systems, in the framework of Wentzel-Kramers-Brillouin (WKB) approximation, without considering the Langer correction for the centrifugal term. Rather, following the analysis the Hainz and Grabert, we expand the centrifugal term perturbatively (in powers of $\\hbar$), decomposing it into 2 terms -- the classical centrifugal potential and a quantum correction. To test the validity of our formalism, we apply it explicitly to study the energy spectrum of certain physically relevant, radially confined quantum mechanical systems, viz., the 3-dimensional harmonic oscillator, the hydrogen atom, and the Hulthen potential. As observed by Hainz and Grabert, this approach gives better estimates than the conventional WKB approximation technique (based on Langer modification), even for spatially confined systems.

  19. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    M Sivapragasam; M D Deshpande; S Ramamurthy; P White

    2014-06-01

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of linear growth of the jet penetration length for the unconfined case when the momentum flux ratio is small. However, for the high momentum flux ratio case corresponding to the confinement, the jet penetration length is shown to reach an asymptotic limit of about 3.57 times the confining duct diameter. This conclusion is contrary to the existing results which predict indefinite growth. A simple modification of an existing similarity solution for the jet in an unconfined counterflow provides a convenient framework for presenting the results of the flowfield and jet penetration length.

  20. CORRELATIONS IN CONFINED QUANTUM PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    DUFTY J W

    2012-01-11

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  1. [Neuropeptides and psychiatry report presented at the French-Swiss Psychiatric meeting in Bel-Air, Geneva, 4 May 1980].

    Science.gov (United States)

    Taban, C H

    1981-01-01

    In this mini-review the definition, some localizations and effects of 18 neuropeptides (as known at the beginning of 1980) are recalled, as well as some of the methods used. The hypothesis that neuropeptides may modify both functions and structures is presented. After a brief comment on the neuropeptides/monoamines relations and on some pharmacological results, the possible implications of neuropeptides dysfunctions in various psychiatric disorders are discussed. Some facts leading to the suspicion that both substance P and endorphines are increased in some psychoses are mentioned. The results of therapeutic trials are discussed. The importance of neuropeptides for the maintenance of internal homeostasis and behavioural adjustments is stressed.

  2. Confinement: G(2) group case

    CERN Document Server

    Cossu, G; Di Giacomo, A; Lucini, B; Pica, C

    2007-01-01

    The gauge group being centreless, $G_2$ gauge theory is a good laboratory for studying the role of the centre of the group for colour confinement in Yang-Mills gauge theories. In this paper, we investigate $G_2$ pure gauge theory at finite temperature on the lattice. By studying the finite size scaling of the plaquette, the Polyakov loop and their susceptibilities, we show that a deconfinement phase transition takes place. The analysis of the pseudocritical exponents give strong evidence of the deconfinement transition being first order. Implications of our findings for scenarios of colour confinement are discussed.

  3. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    Science.gov (United States)

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides.

  4. Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides.

    Science.gov (United States)

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2015-07-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  5. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    Science.gov (United States)

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects.

  6. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.

    Science.gov (United States)

    Hapiak, Vera; Summers, Philip; Ortega, Amanda; Law, Wen Jing; Stein, Andrew; Komuniecki, Richard

    2013-08-28

    Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.

  7. Presence of neuropeptide FF receptors on primary afferent fibres of the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, J.-M. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France); Kar, S. [Douglas Hospital Research Centre and Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, Quebec H4H1R3 (Canada); Gouarderes, C. [Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., 205 Route de Narbonne, 31077 Toulouse Cedex (France)

    1996-09-01

    A radioiodinated analogue of neuropeptide FF, [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF, was used as a selective probe to label neuropeptide FF receptors in the rat spinal cord. Following neonatal capsaicin treatment, dorsal rhizotomy or sciatic nerve section, the distribution and possible alterations of spinal cord specific [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding sites were evaluated using in vitro quantitative receptor autoradiography. In normal rats, the highest densities of sites were observed in the superficial layers of the dorsal horn (laminae I-II) whereas moderate to low amounts of labelling were seen in the deeper (III-VI) laminae, around the central canal, and in the ventral horn. Capsaicin-treated rats showed a bilateral decrease (47%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF binding in all spinal areas. Unilateral sciatic nerve section and unilateral dorsal rhizotomy induced significant depletions (15-27%) in [{sup 125}I][d.Tyr{sup 1},(NMe)Phe{sup 3}]neuropeptide FF labelling in the ipsilateral dorsal horn.These results suggest that a proportion of neuropeptide FF receptors is located on primary afferent terminals of the dorsal horn and could thus play a role in the modulation of nociceptive transmission. (Copyright (c) 1996 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  9. The roles of neuropeptides in Caenorhabditis elegans including their importance in the regulation of feeding and metabolism.

    Science.gov (United States)

    Holden-Dye, Lindy; Walker, Robert J

    2013-06-01

    C. elegans has 302 neurons (in the adult hermaphrodite) and this simple nervous system harbours over 250 neuropeptides. Neuropeptides are a class of signalling molecule implicated in key physiological roles and thus confer a surprising level of complexity to signalling in this nematode. Indeed, it is probable that most, if not all, sensory, motor and interneurons, in C. elegans synthesise and release at least one neuropeptide but that many neurons synthesise an array of neuropeptides. In this review neuropeptides and their receptors with specific roles in feeding, metabolism, reproduction and locomotion are discussed. It is noted that the majority of C. elegans neuropeptides do not yet have defined roles and their cognate receptors have not yet been identified. Future studies will serve to provide further fundamental insight into how neuropeptide signalling can underpin animal behaviour.

  10. Cloning, expression and processing of the CP2 neuropeptide precursor of Aplysia.

    Science.gov (United States)

    Vilim, F S; Alexeeva, V; Moroz, L L; Li, L; Moroz, T P; Sweedler, J V; Weiss, K R

    2001-12-01

    The cDNA sequence encoding the CP2 neuropeptide precursor is identified and encodes a single copy of the neuropeptide that is flanked by appropriate processing sites. The distribution of the CP2 precursor mRNA is described and matches the CP2-like immunoreactivity described previously. Single cell RT-PCR independently confirms the presence of CP2 precursor mRNA in selected neurons. MALDI-TOF MS is used to identify additional peptides derived from the CP2 precursor in neuronal somata and nerves, suggesting that the CP2 precursor may give rise to additional bioactive neuropeptides.

  11. Confined Quantum Time of Arrivals

    CERN Document Server

    Galapon, E A; Galapon, Eric A.; Bahague, Ricardo T.

    2003-01-01

    We show that the non-self-adjoint free time of arrival operator in free space defines a class of compact, self-adjoint, and canonical operators for a spatially confined particle. We analytically and numerically study the qualitative behaviors of these operators, and demonstrate that their eigenfunctions and eigenvalues are consistent with the interpretation that they are time of arrival operators.

  12. Dynamical conductivity of confined water

    Science.gov (United States)

    Artemov, V. G.

    2017-01-01

    The electrodynamic response of water confined in nanoporous MCM-41 is measured in the frequency range 1 MHz-3 THz at room temperature. The results are analyzed in the context of a recently proposed ionic model of water. We found an increase in dc-conductivity of confined water by 3 orders of magnitude (3.3 · 10-3 Ω-1 · m-1) compared to bulk water (5.5 · 10-6 Ω-1 · m-1). This is attributed to the increase of H3O+ and OH- ion mobility, due to a decrease of the effective potential amplitude by walls of the confining environment. We found that the absorption in the microwave frequency range is much smaller in the medium with confined water than in the bulk water, and the quadratic dependence of the conductivity (σ) on frequency (ω) becomes less steep and tends to σ ~ ω. The results are of fundamental importance and can be used for understanding of the proton transport in systems with water in the nanoconfined state.

  13. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  14. Color confinement multi quark resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fan [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China); Ping, J.L. [Department of Physics, Nanjing Normal University, Nanjing, 210097 (China); Pang, H.R. [Department of Physics, Southeast University, Nanjing, 210008 (China); Chen, L.Z. [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China)

    2007-06-15

    A new kind microscopic resonance, the color confinement multi quark resonance is proposed and studied. The quark delocalization color screening model is compared to one of the chiral quark model, the Salamanca model, and a new mechanism of the intermediate range NN interaction, the mutual distortion of interacting nucleons, is checked to be similar to the {sigma} meson exchange.

  15. Two flavor QCD and Confinement

    DEFF Research Database (Denmark)

    D'Elia, M.; Di Giacomo, A.; Pica, Claudio

    2005-01-01

    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...

  16. Neuropeptide Y inhibits hippocampal seizures and wet dog shakes

    DEFF Research Database (Denmark)

    Woldbye, D P; Madsen, T M; Larsen, P J

    1996-01-01

    The effects of intracerebroventricular neuropeptide Y (NPY) or somatostatin were studied upon hippocampal EEG seizures elicited by electrical stimulation of the rat dentate gyrus or subiculum. At doses of 6 and 12 nmol, the latter dose being more effective, NPY reduced the primary afterdischarge...... effects in the dentate gyrus and subiculum, but also in areas to which epileptiform EEG activity spreads before reverberating. In addition, NPY strongly reduced seizure-related 'wet dog shakes' (WDS). This is consistent with previous studies showing that the dentate gyrus is essential for the generation...... of WDS. However, NPY inhibited WDS even when 1.ADDs were evoked which did not differ from those of vehicle rats, indicating extra-dentate inhibition by NPY as well. No effects were seen with somatostatin. These results show that NPY exerts antiepileptiform effects in vivo, suggesting that increased NPY...

  17. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    Science.gov (United States)

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  18. Neuropeptide y promotes neurogenesis in murine subventricular zone

    DEFF Research Database (Denmark)

    Agasse, Fabienne; Bernardino, Liliana; Christiansen, Søren H

    2008-01-01

    Stem cells of the subventricular zone (SVZ) represent a reliable source of neurons for cell replacement. Neuropeptide Y (NPY) promotes neurogenesis in the hippocampal subgranular layer and the olfactory epithelium and may be useful for the stimulation of SVZ dynamic in brain repair purposes. We...... describe that NPY promotes SVZ neurogenesis. NPY (1 microM) treatments increased proliferation at 48 hours and neuronal differentiation at 7 days in SVZ cell cultures. NPY proneurogenic properties are mediated via the Y1 receptor. Accordingly, Y1 receptor is a major active NPY receptor in the mouse SVZ......-Jun-NH(2)-terminal kinase signal in growing axons, consistent with axonogenesis. NPY, as a promoter of SVZ neurogenesis, is a crucial factor for future development of cell-based brain therapy. Disclosure of potential conflicts of interest is found at the end of this article....

  19. Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters.

    Science.gov (United States)

    Paul, Matthew J; Freeman, David A; Park, Jin Ho; Dark, John

    2005-09-01

    Intracerebroventricular (ICV) injections of neuropeptide Y (NPY) are known to decrease body temperature (Tb) of laboratory rats by 1-3 degrees C. Several NPY pathways in the brain terminate in hypothalamic structures involved in energy balance and thermoregulation. Laboratory rats are homeothermic, maintaining Tb within a narrow range. We examined the effect of ICV injected NPY on Tb in the heterothermic Siberian hamster (Phodopus sungorus), a species that naturally undergoes daily torpor in which Tb decreases by as much as 15-20 degrees C. Minimum effective dose was determined in preliminary testing then various doses of NPY were tested in cold-acclimated Siberian hamsters while food was withheld. NPY markedly reduced Tb in the heterothermic Siberian hamster. In addition, the reduction in Tb in 63% of the observations was sufficient to reach the criterion for daily torpor (Tb Siberian hamster. NPY treatment may be activating hypothalamic systems that normally integrate endogenous torpor-producing signals and initiate torpor.

  20. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation.

    Science.gov (United States)

    Jhamandas, Jack H; Goncharuk, Valeri

    2013-01-01

    Neuropeptide FF (NPFF) is an octapeptide belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain including central cardiovascular and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat and human brain. Herein, we review evidence for the role of NPFF in central regulation of blood pressure particularly within the brainstem and the hypothalamic paraventricular nucleus (PVN). At a cellular level, NPFF demonstrates distinct responses in magnocellular and parvocellular neurons of the PVN, which regulate the secretion of neurohypophyseal hormones and sympathetic outflow, respectively. Finally, the presence of NPFF system in the human brain and its alterations within the hypertensive brain are discussed.

  1. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    Science.gov (United States)

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  2. Expression of neuropeptide Y in rat brain ischemia

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2013-01-01

    Full Text Available Introduction. The immunohistochemical method was used to follow the expression of neuropeptide Y in the course of pre ischemia of the rat brain. The aim of the study was to define all the areas of expression of this protein, show their localization, their map of distribution and histological types. Material and Methods. All the sections of telencephalon, diencephalon and midbrain were studied in resistant, and transitory ischemia, which enabled us to observe the reaction of neurons to an ischemic attack or to repeated attacks. The mapping was done for all three proteins by introducing our results into the maps of rat brain atlas, George Paxinos, Charles Watson. Photographing and protein expression was done using Analysis program. Results. The results of this research show that there is a differens in reaction between the resistant and transitory ischemia groups of rats, especially in the caudoputamen, gyrus dentatus, corpus amygdaloideum, particularly in the medial nucleus. The mapping shows the reaction in caudoputamen, gyrusdentatus, corpus amygdaloideum - especially in the central nucleus, then in the sensitive and secondary auditory cortex, mostly in the laminae V/VI, but less in neuron groups CA1, CA2, CA3 of hippocampus. Discussion. The phylogenetically older parts of the brain-rhinencephalon, also showed reaction, which lead us to conclude that both newer and older brain structures reacted immunohistochemically. Histological data have shown that small neurons are most commonly found while the second most common ones are big pyramidal cells of multipolar and bipolar type, with a different body shape. Conclusion. Our findings have confirmed the results obtained in some rare studies dealing with this issue, and offered a precise and detailed map of cells expressing neuropeptide Y in the rat brain following ischemic attack.

  3. Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum

    DEFF Research Database (Denmark)

    Li, Bin; Predel, Reinhard; Neupert, Susanne;

    2008-01-01

    Neuropeptides and protein hormones are ancient molecules that mediate cell-to-cell communication. The whole genome sequence from the red flour beetle Tribolium castaneum, along with those from other insect species, provides an opportunity to study the evolution of the genes encoding neuropeptide...... and protein hormones. We identified 41 of these genes in the Tribolium genome by using a combination of bioinformatic and peptidomic approaches. These genes encode >80 mature neuropeptides and protein hormones, 49 peptides of which were experimentally identified by peptidomics of the central nervous system...... with a sequenced genome. The presence of many additional osmoregulatory peptides in Tribolium agrees well with its ability to live in very dry surroundings. In contrast to these extra genes, there are at least nine neuropeptide genes missing in Tribolium, including the genes encoding the prepropeptides...

  4. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain

    Institute of Scientific and Technical Information of China (English)

    Changzheng Dong; Wenqing Zhao; Wenling Li; Peiyuan Lv; Xiufang Dong

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.

  5. Analytic framework for peptidomics applied to large-scale neuropeptide identification

    DEFF Research Database (Denmark)

    Secher, Anna; Kelstrup, Christian D; Conde-Frieboes, Kilian W;

    2016-01-01

    was integrated with publically available databases. We developed and applied an algorithm that reduces the peptide complexity for identification of biologically relevant peptides. The developed pipeline was applied to rat hypothalamus and identifies thousands of neuropeptides and their post...

  6. Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment

    DEFF Research Database (Denmark)

    Gonçalves, J; Baptista, S; Olesen, MV

    2012-01-01

    Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions...

  7. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance.

    Science.gov (United States)

    Zhang, Guo; Bai, Hua; Zhang, Hai; Dean, Camin; Wu, Qiang; Li, Juxue; Guariglia, Sara; Meng, Qingyuan; Cai, Dongsheng

    2011-02-10

    Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Manipulation of neuropeptide biosynthesis through the expression of antisense RNA for peptidylglycine alpha-amidating monooxygenase.

    Science.gov (United States)

    Mains, R E; Bloomquist, B T; Eipper, B A

    1991-02-01

    Stable cell lines with significantly elevated or diminished levels of a key neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), were generated by transfection of a mouse pituitary cell line with expression vectors containing PAM cDNA in the sense or antisense orientation. By evaluating the ability of these cell lines to alpha-amidate endogenous neuropeptides, a rate-limiting role for PAM in neuropeptide alpha-amidation was demonstrated. Overexpression of either the full-length PAM precursor with its trans-membrane domain or a soluble protein containing only the monooxygenase domain of PAM led to increased alpha-amidation of endogenous neuropeptides. Overexpression of the full-length PAM led to an unexpected decrease in the endoproteolytic processing of endogenous prohormone; conversely, underexpression of PAM led to significantly enhanced endoproteolytic processing of endogenous prohormone. These data suggest that PAM may have additional functions in peptide processing.

  9. Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens

    Science.gov (United States)

    Mayorova, Tatiana D.; Tian, Shi; Cai, Weigang; Semmens, Dean C.; Odekunle, Esther A.; Zandawala, Meet; Badi, Yusef; Rowe, Matthew L.; Egertová, Michaela; Elphick, Maurice R.

    2016-01-01

    Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s) that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g., the annelid Platynereis dumerilii) and deuterostomian (e.g., the urochordate Ciona intestinalis) invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata—the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1), F-type SALMFamide (S2), vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide) was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with distinctive

  10. Localization of neuropeptide gene expression in larvae of an echinoderm, the starfish Asterias rubens

    Directory of Open Access Journals (Sweden)

    Tatiana D Mayorova

    2016-12-01

    Full Text Available Neuropeptides are an ancient class of neuronal signaling molecules that regulate a variety of physiological and behavioral processes in animals. The life cycle of many animals includes a larval stage(s that precedes metamorphic transition to a reproductively active adult stage but, with the exception of Drosophila melanogaster and other insects, research on neuropeptide signaling has hitherto largely focused on adult animals. However, recent advances in genome/transcriptome sequencing have facilitated investigation of neuropeptide expression/function in the larvae of protostomian (e.g. the annelid Platynereis dumerilii and deuterostomian (e.g. the urochordate Ciona intestinalis invertebrates. Accordingly, here we report the first multi-gene investigation of larval neuropeptide precursor expression in a species belonging to the phylum Echinodermata - the starfish Asterias rubens. Whole-mount mRNA in situ hybridization was used to visualize in bipinnaria and brachiolaria stage larvae the expression of eight neuropeptide precursors: L-type SALMFamide (S1, F-type SALMFamide (S2, vasopressin/oxytocin-type, NGFFYamide, thyrotropin-releasing hormone-type, gonadotropin-releasing hormone-type, calcitonin-type and corticotropin-releasing hormone-type. Expression of only three of the precursors (S1, S2, NGFFYamide was observed in bipinnaria larvae but by the brachiolaria stage expression of all eight precursors was detected. An evolutionarily conserved feature of larval nervous systems is the apical organ and in starfish larvae this comprises the bilaterally symmetrical lateral ganglia, but only the S1 and S2 precursors were found to be expressed in these ganglia. A prominent feature of brachiolaria larvae is the attachment complex, comprising the brachia and adhesive disk, which mediates larval attachment to a substratum prior to metamorphosis. Interestingly, all of the neuropeptide precursors examined here are expressed in the attachment complex, with

  11. Neuropeptides and central control of sexual behaviour from the past to the present: a review.

    Science.gov (United States)

    Argiolas, Antonio; Melis, Maria Rosaria

    2013-09-01

    Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction.

  12. Control of planula migration by LWamide and RFamide neuropeptides in Hydractinia echinata

    DEFF Research Database (Denmark)

    Katsukura, Yuki; Ando, Hiroshi; David, Charles N.;

    2004-01-01

    ). This pattern of periodic migration is regulated by LWamide and RFamide neuropeptides. LWamide (10-8 mol l-1) stimulates migration primarily by making the active periods longer, whereas RFamide (10-7 mol l-1) inhibits migration by blocking the initiation and also shortening the length of the active periods....... Since sensory neurons containing LWamides and RFamides are present in planula larvae, it appears likely that planula migration is regulated by the release of endogenous neuropeptides in response to environmental cues....

  13. Cloned human neuropeptide Y receptor couples to two different second messenger systems.

    OpenAIRE

    Herzog, H.; Hort, Y J; Ball, H J; Hayes, G; Shine, J; Selbie, L A

    1992-01-01

    Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian nervous system and exhibits a diverse range of important physiological activities, including effects on psychomotor activity, food intake, regulation of central endocrine secretion, and potent vasoactive effects on the cardiovascular system. Two major subtypes of NPY receptor (Y1 and Y2) have been defined by pharmacological criteria. We report here the molecular cloning of a cDNA sequence encoding a human NPY rece...

  14. Theory of rheology in confinement.

    Science.gov (United States)

    Aerov, Artem A; Krüger, Matthias

    2015-10-01

    The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement, based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krüger, J. Chem. Phys. 140, 094701 (2014).] deficiency of inhomogeneous (unphysical) stresses under naive application of shear in confinement is healed when hydrodynamic interactions are included.

  15. Soft Confinement for Polymer Solutions

    CERN Document Server

    Oya, Yutaka

    2014-01-01

    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa, et al.

  16. Quark confinement and the renormalization group.

    Science.gov (United States)

    Ogilvie, Michael C

    2011-07-13

    Recent approaches to quark confinement are reviewed, with an emphasis on their connection to renormalization group (RG) methods. Basic concepts related to confinement are introduced: the string tension, Wilson loops and Polyakov lines, string breaking, string tension scaling laws, centre symmetry breaking and the deconfinement transition at non-zero temperature. Current topics discussed include confinement on R(3)×S(1), the real-space RG, the functional RG and the Schwinger-Dyson equation approach to confinement.

  17. Quark Confinement and the Renormalization Group

    CERN Document Server

    Ogilvie, Michael C

    2010-01-01

    Recent approaches to quark confinement are reviewed, with an emphasis on their connection to renormalization group methods. Basic concepts related to confinement are introduced: the string tension, Wilson loops and Polyakov lines, string breaking, string tension scaling laws, center symmetry breaking, and the deconfinement transition at non-zero temperature. Current topics discussed include confinement on $R^3\\times S^1$, the real-space renormalization group, the functional renormalization group, and the Schwinger-Dyson equation approach to confinement.

  18. Quark confinement mechanism for baryons

    CERN Document Server

    Goncharov, Yu P

    2013-01-01

    The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...

  19. Holographic confinement in inhomogeneous backgrounds

    Science.gov (United States)

    Marolf, Donald; Wien, Jason

    2016-08-01

    As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.

  20. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers.

    Science.gov (United States)

    Han, Bin; Fang, Yu; Feng, Mao; Hu, Han; Qi, Yuping; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-10-01

    Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.

  1. Rapid Preconcentration for Liquid Chromatography-Mass Spectrometry Assay of Trace Level Neuropeptides

    Science.gov (United States)

    Zhou, Ying; Mabrouk, Omar S.; Kennedy, Robert T.

    2013-11-01

    Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ˜30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.

  2. The endoparasitoid, Cotesia vestalis, regulates host physiology by reprogramming the neuropeptide transcriptional network.

    Science.gov (United States)

    Shi, Min; Dong, Shuai; Li, Ming-tian; Yang, Yan-yan; Stanley, David; Chen, Xue-xin

    2015-02-02

    Endoparasitoids develop inside another insect by regulating host immunity and development via maternal factors injected into hosts during oviposition. Prior results have provided insights into parasitism-induced immunosuppression, including the neuropeptide accumulation in parasitized insects. Nonetheless, our understanding of neuropeptide influence on host development and behavior is not yet complete. We posed the hypothesis that parasitization alters expression of genes encoding pro-neuropeptides and used larvae of Plutella xylostella and its endoparasitoid, Cotesia vestalis to test our hypothesis. We prepared transcriptomes from the larval P. xylostella brain-CC-CA complex and identified transcripts encoding 19 neuropeptides. All corresponding cDNAs were confirmed by RACE. Our results demonstrate that parasitism significantly down-regulated, or delayed, expression of genes encoding pro-neuropeptides within 48 h post-parasitization. Changing expression of these genes may account for the previously reported decreased feeding behavior, reduced growth rates and aborted development in the host larvae. In effect, parasitization may operate at the molecular level within the CNS to create global changes in larval host biology. The significance of our finding is that, in addition to the known effects on immunity, parasitoids influence host pro-neuropeptide gene transcription. This finding reveals a new mechanism operating in host-parasitoid relationships to the advantage of the parasitoid.

  3. Study on Correlation between Neuropeptide and Functional Hypothalamic Amenorrhea

    Institute of Scientific and Technical Information of China (English)

    陈晓燕; 吕淑兰; 曹缵孙; 毛文军; 宋青

    2001-01-01

    Objective To explore the correlation between neuropeptide and functional hypothalam ic amenorrhea (FHA)Materials & Methods The basic and GnRH-stimulated levels of serum FSH, LH and plasma β-endorphin (β-EP), somatostatin (SS) in 33 patients with FHA and 17 women with normal menstrual cycles were tested by RIA.Results β-EP level in FHA group was significantly higher than that in control group and had a negative correlation with FSH and LH. The basic SS level in FHA group had no significant difference compared with the control group, but it had negative correlation with LH and no correlation with FSH. β-EP level in FHA group decreased after being stimulated with GnRH, and reached its minimum value after 15 min, then gradually rose back to the basic level. β-EP level in control group had no regular changes. SS level in both group did not change obviously.Conclusion The increased level of β-EP may play an important role in FHA. GnRH can inhibit β-EP level to some extent, while the effect of SS on FHA deserve further research.

  4. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice.

    Science.gov (United States)

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M; Fröhlich, Esther E; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-06-16

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation.

  5. Neuropeptide Y system in the retina: From localization to function.

    Science.gov (United States)

    Santos-Carvalho, Ana; Ambrósio, António Francisco; Cavadas, Cláudia

    2015-07-01

    The retina is a highly complex structure where several types of cells communicate through countless different molecules to codify visual information. Each type of cells plays unique roles in the retina, presenting a singular expression of neurotransmitters. Some neurotransmitter systems in the retina are well understood, while others need to be better explored to unravel the intricate signaling system involved. Neuropeptide Y (NPY), a 36 amino acid peptide, is one of the most common peptide neurotransmitter in the CNS and a highly conserved peptide among species. We review the localization of NPY and NPY receptors (mainly NPY Y1, Y2, Y4 and Y5) in retinal cells. Common features of the expression of NPY and NPY receptors in mammalian and non-mammalian species indicate universal roles of this system in the retina. In the present review, we highlight the putative roles of NPY receptor activation in the retina, discussing, in particular, their involvement in retinal development, neurotransmitter release modulation, neuroprotection, microglia and Muller cells function, retinal pigmented epithelium changes, retinal endothelial physiology and proliferation of retinal progenitor cells. Further studies are needed to confirm that targeting the NPY system might be a potential therapeutic strategy for retinal degenerative diseases.

  6. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  7. Dcf1 regulates neuropeptide expression and maintains energy balance.

    Science.gov (United States)

    Liu, Qiang; Chen, Yu; Li, Qian; Wu, Liang; Wen, Tieqiao

    2017-05-22

    Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1(-/-), KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1(-/-) mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mast cell subsets and neuropeptides in leprosy reactions

    Directory of Open Access Journals (Sweden)

    Antunes Sérgio Luiz Gomes

    2003-01-01

    Full Text Available The immunohistochemical identification of neuropeptides (calcitonin gene-related peptide, vasoactive intestinal polypeptide, substance P, alpha-melanocyte stimulating hormone and gamma-melanocyte stimulating hormone quantification of mast cells and their subsets (tryptase/chymase-immunoreactive mast cells = TCMC and tryptase-immunoreactive mast cells = TMC were determined in biopsies of six patients with leprosy reactions (three patients with type I reaction and three with type II. Biopsies were compared with those taken from the same body site in the remission stage of the same patient. We found a relative increase of TMC in the inflammatory infiltrate of the reactional biopsies compared to the post-reactional biopsy. Also, the total number of mast cells and the TMC/TCMC ratio in the inflammatory infiltrate was significantly higher than in the intervening dermis of the biopsies of both periods. No significant difference was found regarding neuroptide expression in the reactional and post-reactional biopsies. The relative increase of TMC in the reactional infiltrates could implicate this mast cell subset in the reported increase of the immune response in leprosy reactions.

  9. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    Beaudet A.

    1998-01-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  10. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    Science.gov (United States)

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-06-29

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.

  11. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    National Research Council Canada - National Science Library

    Cifani, Carlo; Micioni Di Bonaventura, Maria V; Pucci, Mariangela; Giusepponi, Maria E; Romano, Adele; Di Francesco, Andrea; Maccarrone, Mauro; D'Addario, Claudio

    2015-01-01

    .... To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance...

  12. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    Science.gov (United States)

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.

  13. Liquid Spreading under Nanoscale Confinement

    Science.gov (United States)

    Checco, Antonio

    2009-03-01

    Dynamic atomic force microscopy in the noncontact regime is used to study the morphology of a nonvolatile liquid (squalane) as it spreads along wettable nanostripes embedded in a nonwettable surface. Results show that the liquid profile depends on the amount of lateral confinement imposed by the nanostripes, and it is truncated at the microscopic contact line in good qualitative agreement with classical mesoscale hydrodynamics. However, the width of the contact line is found to be significantly larger than expected theoretically. This behavior may originate from small chemical inhomogeneity of the patterned stripes as well as from thermal fluctuations of the contact line.

  14. Wicking a confined micropillar array

    CERN Document Server

    Texier, Baptiste Darbois; Stoukatch, Serguei; Dorbolo, Stéphane

    2016-01-01

    This study considers the spreading of a Newtonian and perfectly wetting liquid in a square array of cylindric micropillars confined between two plates. We show experimentally that the dynamics of the contact line follows a Washburn-like law which depends on the characteristics of the micropillar array (height, diameter and pitch). The presence of pillars can either enhanced or slow down the motion of the contact line. A theoretical model based on capillary and viscous forces has been developed in order to rationalize our observations. Finally, the impact of pillars on the volumic flow rate of liquid which is pumped in the microchannel is inspected.

  15. Electromelting of Confined Monolayer Ice

    CERN Document Server

    Qiu, Hu

    2013-01-01

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to field-induced disruption of the water-wall interaction induced well-ordered network of hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  16. Thermoelectricity in confined liquid electrolytes

    CERN Document Server

    Dietzel, Mathias

    2015-01-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.

  17. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  18. Mapping of Neuropeptides in the Crustacean Stomatogastric Nervous System by Imaging Mass Spectrometry

    Science.gov (United States)

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve ( stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  19. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    Science.gov (United States)

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.

  20. Magnetic confinement fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Grad, H

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10/sup 8/ degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface.

  1. Holographic confinement in inhomogenous backgrounds

    CERN Document Server

    Marolf, Donald

    2016-01-01

    As noted by Witten, compactifying a $d$-dimensional holographic CFT on an $S^1$ gives a class of $(d-1)$-dimensional confining theories with gravity duals. The prototypical bulk solution dual to the ground state is a double Wick rotation of the AdS$_{d+1}$ Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the $S^1$, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for $3 \\le d \\le 8$ using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for $d \\le 6$ but repelled by gradients for $d \\ge 7$, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attract...

  2. Holographic collisions in confining theories

    CERN Document Server

    Cardoso, Vitor; Mateos, David; Pani, Paolo; Rocha, Jorge V

    2013-01-01

    We study the gravitational dual of a high-energy collision in a confining gauge theory. We consider a linearized approach in which two point particles traveling in an AdS-soliton background suddenly collide to form an object at rest (presumably a black hole for large enough center-of-mass energies). The resulting radiation exhibits the features expected in a theory with a mass gap: late-time power law tails of the form t^(-3/2), the failure of Huygens' principle and distortion of the wave pattern as it propagates. The energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At larger frequencies the spectrum has an upward-stairway structure, which corresponds to the excitation of the tower of massive states in the confining gauge theory. We discuss the importance of phenomenological cutoffs to regularize the divergent spectrum, and the aspects of the full non-linear collision that are expected ...

  3. A multi-scale strategy for discovery of novel endogenous neuropeptides in the crustacean nervous system.

    Science.gov (United States)

    Jia, Chenxi; Lietz, Christopher B; Ye, Hui; Hui, Limei; Yu, Qing; Yoo, Sujin; Li, Lingjun

    2013-10-08

    The conventional mass spectrometry (MS)-based strategy is often inadequate for the comprehensive characterization of various size neuropeptides without the assistance of genomic information. This study evaluated sequence coverage of different size neuropeptides in two crustacean species, blue crab Callinectes sapidus and Jonah crab Cancer borealis using conventional MS methodologies and revealed limitations to mid- and large-size peptide analysis. Herein we attempt to establish a multi-scale strategy for simultaneous and confident sequence elucidation of various sizes of peptides in the crustacean nervous system. Nine novel neuropeptides spanning a wide range of molecular weights (0.9-8.2kDa) were fully sequenced from a major neuroendocrine organ, the sinus gland of the spiny lobster Panulirus interruptus. These novel neuropeptides included seven allatostatin (A- and B-type) peptides, one crustacean hyperglycemic hormone precursor-related peptide, and one crustacean hyperglycemic hormone. Highly accurate multi-scale characterization of a collection of varied size neuropeptides was achieved by integrating traditional data-dependent tandem MS, improved bottom-up sequencing, multiple fragmentation technique-enabled top-down sequencing, chemical derivatization, and in silico homology search. Collectively, the ability to characterize a neuropeptidome with vastly differing molecule sizes from a neural tissue extract could find great utility in unraveling complex signaling peptide mixtures employed by other biological systems. Mass spectrometry (MS)-based neuropeptidomics aims to completely characterize the neuropeptides in a target organism as an important first step toward a better understanding of the structure and function of these complex signaling molecules. Although liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with data-dependent acquisition is a powerful tool in peptidomic research, it often lacks the capability for de novo sequencing of

  4. Effects of loratadine and cetirizine on serum levels of neuropeptides in patients with chronic urticaria.

    Science.gov (United States)

    Başak, Pinar Y; Vural, Huseyin; Kazanoglu, Oya O; Erturan, Ijlal; Buyukbayram, Halil I

    2014-12-01

    H1-receptor inhibiting drugs, namely loratadine and cetirizine, were frequently used in treatment of chronic urticaria. Urticarial weal and flare reactions, a neurogenic reflex due to neuropeptides, were reported to be more effectively inhibited by cetirizine than loratadine. The aim of this study was to determine and compare the effects of systemic loratadine and cetirizine treatments on serum levels of selected neuropeptides in chronic urticaria. Treatment groups of either systemic loratadine or cetirizine (10 mg/d), consisting of 16 and 22 patients, respectively, were included. Serum levels of stem cell factor (SCF), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), and substance P (SP) were detected before and after one week of treatment with antihistamines. Serum NPY and VIP levels were significantly decreased when compared before and after treatment with antihistamines (P neuropeptides. Systemic loratadine and cetirizine treatments in patients with chronic urticaria precisely caused variations in serum levels of neuropeptides. The predominant effect of cetirizine compared to loratadine on reducing serum SCF levels might be explained with anti-inflammatory properties of cetirizine.

  5. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function

    Institute of Scientific and Technical Information of China (English)

    Qijun Li; Changzheng Dong; Wenling Li; Wei Bu; Jiang Wu; Wenqing Zhao

    2014-01-01

    Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microg-lial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antago-nist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxic-ity, thereby protecting neurons.

  6. Spatially confined assembly of nanoparticles.

    Science.gov (United States)

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    an increasingly important role in the controllable assembly of NPs. In this Account, we summarize our approaches and progress in fabricating spatially confined assemblies of NPs that allow for the positioning of NPs with high resolution and considerable throughput. The spatially selective assembly of NPs at the desired location can be achieved by various mechanisms, such as, a controlled dewetting process, electrostatically mediated assembly of particles, and confined deposition and growth of NPs. Three nanofabrication techniques used to produce prepatterns on a substrate are summarized: the Langmuir-Blodgett (LB) patterning technique, e-beam lithography (EBL), and nanoimprint lithography (NPL). The particle density, particle size, or interparticle distance in NP assemblies strongly depends on the geometric parameters of the template structure due to spatial confinement. In addition, with smart design template structures, multiplexed NPs can be assembled into a defined structure, thus demonstrating the structural and functional complexity required for highly integrated and multifunction applications.

  7. Methods for two-dimensional cell confinement.

    Science.gov (United States)

    Le Berre, Maël; Zlotek-Zlotkiewicz, Ewa; Bonazzi, Daria; Lautenschlaeger, Franziska; Piel, Matthieu

    2014-01-01

    Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.

  8. Engineered Models of Confined Cell Migration

    Science.gov (United States)

    Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2017-01-01

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  9. Gene expression and pharmacology of nematode NLP-12 neuropeptides.

    Science.gov (United States)

    McVeigh, Paul; Leech, Suzie; Marks, Nikki J; Geary, Timothy G; Maule, Aaron G

    2006-05-31

    This study examines the biology of NLP-12 neuropeptides in Caenorhabditis elegans, and in the parasitic nematodes Ascaris suum and Trichostrongylus colubriformis. DYRPLQFamide (1 nM-10 microM; n > or =6) produced contraction of innervated dorsal and ventral Ascaris body wall muscle preparations (10 microM, 6.8+/-1.9 g; 1 microM, 4.6+/-1.8 g; 0.1 microM, 4.1+/-2.0 g; 10 nM, 3.8+/-2.0 g; n > or =6), and also caused a qualitatively similar, but quantitatively lower contractile response (10 microM, 4.0+/-1.5 g, n=6) on denervated muscle strips. Ovijector muscle displayed no measurable response (10 microM, n=5). nlp-12 cDNAs were characterised from A. suum (As-nlp-12) and T. colubriformis (Tc-nlp-12), both of which show sequence similarity to C. elegans nlp-12, in that they encode multiple copies of -LQFamide peptides. In C. elegans, reverse transcriptase (RT)-PCR analysis showed that nlp-12 was transcribed throughout the life cycle, suggesting that DYRPLQFamide plays a constitutive role in the nervous system of this nematode. Transcription was also identified in both L3 and adult stages of T. colubriformis, in which Tc-nlp-12 is expressed in a single tail neurone. Conversely, As-nlp-12 is expressed in both head and tail tissue of adult female A. suum, suggesting species-specific differences in the transcription pattern of this gene.

  10. Development of neuropeptide Y-mediated heart innervation in rats.

    Science.gov (United States)

    Masliukov, Petr M; Moiseev, Konstantin; Emanuilov, Andrey I; Anikina, Tatyana A; Zverev, Alexey A; Nozdrachev, Alexandr D

    2016-02-01

    Neuropeptide Y (NPY) plays a trophic role in the nervous and vascular systems and in cardiac hypertrophy. However, there is no report concerning the expression of NPY and its receptors in the heart during postnatal development. In the current study, immunohistochemistry and Western blot analysis was used to label NPY, and Y1R, Y2R, and Y5R receptors in the heart tissue and intramural cardiac ganglia from rats of different ages (newborn, 10 days old, 20 days old, 30 days old, 60 days old, 1 year old, and 2 years old).The obtained data suggest age-dependent changes of NPY-mediated heart innervation. The density of NPY-immunoreactive (IR) fibers was the least in newborn animals and increased in the first 20 days of life. In the atria of newborn and 10-day-old rats, NPY-IR fibers were more abundant compared with the ventricles. The vast majority of NPY-IR fibers also contained tyrosine hydroxylase, a key enzyme in catecholamine synthesis.The expression of Y1R increased between 10 and 20 days of life. Faint Y2R immunoreactivity was observed in the atria and ventricles of 20-day-old and older rats. In contrast, the highest level of the expression of Y5R was found in newborn pups comparing with more adult rats. All intramural ganglionic neurons were also Y1R-IR and Y5R-IR and Y2R-negative in all studied animals.Thus, the increasing of density of NPY-containing nerve fibers accompanies changes in relation of different subtypes of NPY receptors in the heart during development.

  11. Neuropeptides of the VIP family inhibit glioblastoma cell invasion.

    Science.gov (United States)

    Cochaud, Stéphanie; Meunier, Annie-Claire; Monvoisin, Arnaud; Bensalma, Souheyla; Muller, Jean-Marc; Chadéneau, Corinne

    2015-03-01

    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides acting through VPAC1, VPAC2 and PAC1 receptors (referred here as the VIP-receptor system). In the central nervous system, VIP and PACAP are involved in neurogenesis, cell differentiation and migration, suggesting that they could be implicated in the development of glioblastoma (GBM). The infiltrative nature of GBM remains a major problem for the therapy of these tumors. We previously demonstrated that the VIP-receptor system regulated cell migration of the human cell lines M059J and M059K, derived from a single human GBM. Here, we evaluated the involvement of the VIP-receptor system in GBM cell invasion. In Matrigel invasion assays, M059K cells that express more the VIP-receptor system than M059J cells were less invasive. Invasion assays performed in the presence of agonists, antagonists or anti-PACAP antibodies as well as experiments with transfected M059J cells overexpressing the VPAC1 receptor indicated that the more the VIP-receptor system was expressed and activated, the less the cells were able to invade. Western immunoblotting experiments revealed that the VIP-receptor system inactivated the signaling protein AKT. Invasion assays carried out in the presence of an AKT inhibitor demonstrated the involvement of this signaling kinase in the regulation of cell invasion by the VIP-receptor system in M059K cells. The inhibition by VIP of invasion and AKT was also observed in U87 cells. In conclusion, VIP and PACAP act as anti-invasive factors in different GBM cell lines, a function mediated by VPAC1 inhibition of AKT signaling in M059K cells.

  12. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  13. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.

    Science.gov (United States)

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J; Petzold, Linda R; Herzog, Erik D

    2013-11-12

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.

  14. Effects of a skin neuropeptide (substance p on cutaneous microflora.

    Directory of Open Access Journals (Sweden)

    Lily Mijouin

    Full Text Available BACKGROUND: Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP, a peptide released by nerve endings in the skin on bacterial virulence. METHODOLOGY/PRINCIPAL FINDINGS: Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10(-6 M and this effect was rapid (<5 min. Infection of keratinocytes with SP treated B. cereus led to a rise in caspase1 and morphological alterations of the actin cytoskeleton. Secretome analysis revealed that SP stimulated the release of collagenase and superoxide dismutase. Moreover, we also noted a shift in the surface polarity of the bacteria linked to a peel-off of the S-layer and the release of S-layer proteins. Meanwhile, the biofilm formation activity of B. cereus was increased. The Thermo unstable ribosomal Elongation factor (Ef-Tu was identified as the SP binding site in B. cereus. Other Gram positive skin bacteria, namely Staphylococcus aureus and Staphylococcus epidermidis also reacted to SP by an increase of virulence. Thermal water from Uriage-les-Bains and an artificial polysaccharide (Teflose® were capable to antagonize the effect of SP on bacterial virulence. CONCLUSIONS/SIGNIFICANCE: SP is released in sweat during stress and is known to be involved in the pathogenesis of numerous skin diseases through neurogenic inflammation. Our study suggests that a direct effect of SP on the skin microbiote should be another mechanism.

  15. Quark confinement in a constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique

    1995-07-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.

  16. Quark Confinement and Force Unification

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-04-01

    Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.

  17. Nanorheology of confined polymer films

    Science.gov (United States)

    Fowler, Paul; Ilton, Mark; McGraw, Joshua D.; Dalnoki-Veress, Kari

    Liquid films with a non-uniform thickness flatten in order minimize surface energy, a process driven by surface tension and mediated by viscosity. For a viscous thin film, the time evolution of the film height profile is accurately described with lubrication theory by the capillary-driven thin film equation. Previous experiments have successfully applied the thin film equation to measure the rheological properties of polymeric liquids. Here we probe confinement effects in thin polymer films. We measure the viscosity by tracking the levelling of surface perturbations with AFM. For films with thicknesses thinner than the end-to-end distance of the molecule we observe deviations from a thin film model with bulk viscosity.

  18. Walking droplets in confined geometries

    Science.gov (United States)

    Filoux, Boris; Mathieu, Olivier; Vandewalle, Nicolas

    2014-11-01

    When gently placing a droplet onto a vertically vibrated bath, coalescence may be avoided: the drop bounces permanently. Upon increasing forcing acceleration, a drop interacts with the wave it generates, and becomes a ``walker'' with a well defined velocity. In this work, we investigate the confinement of a walker in a mono-dimensional geometry. The system consists of linear submarine channels used as waveguides for a walker. By studying the dynamics of walkers in those channels, we discover some 1D-2D transition. We also propose a model based on an analogy with ``Quantum Wires.'' Finally, we consider the situation of a walker in a circular submarine channel, and examine the behavior of several walking droplets in this system. We show the quantization of the drop distances, and correlate it to their bouncing modes.

  19. Two flavor QCD and Confinement

    CERN Document Server

    D'Elia, M; Pica, C

    2005-01-01

    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. A detailed comparison with previous works is performed.

  20. Bipolaron in different configuration of quantum confinement

    Institute of Scientific and Technical Information of China (English)

    阮永红; 陈庆虎; 焦正宽

    2004-01-01

    The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement.Numerical and analytical results showed that when configuration changes from quantum dot and wire to well,confinement shows different effect on the formation of a bipolaron.In contrast to a bipolaron in a quantum dot or wire,the binding energy of a bipolaron in a quantum well increases with increasing confinement,indicating that confinement favors bipolaron formation in a quantum well.

  1. Bipolaron in different configuration of quantum confinement

    Institute of Scientific and Technical Information of China (English)

    阮永红; 陈庆虎; 焦正宽

    2004-01-01

    The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configuration changes from quantum dot and wire to well, confinement shows different effect on the formation of a bipolaron. In contrast to a bipolaron in a quantum dot or wire, the binding energy of a bipolaron in a quantum well increases with increasing con-finement, indicating that confinement favors bipolaron formation in a quantum well.

  2. Lipid-Conjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic Cancer.

    Science.gov (United States)

    Gopalakrishnan, Gopakumar; Lepetre, Sinda; Maksimenko, Andrei; Mura, Simona; Desmaële, Didier; Couvreur, Patrick

    2015-05-01

    Neuropeptides are small neuronal signaling molecules that act as neuromodulators for a variety of neural functions including analgesia, reproduction, social behavior, learning, and memory. One of the endogenous neuropeptides-Met-Enkephalin (Met-Enk), has been shown to display an inhibitory effect on cell proliferation and differentiation. Here, a novel lipid-modification approach is shown to create a small library of neuropeptides that will allow increased bioavailability and plasma stability after systemic administration. It is demonstrated, on an experimental model of human pancreatic adenocarcinoma, that lipid conjugation of Met-Enk enhances its tumor suppression efficacy compared to its nonlipidated counterparts, both in vitro and in vivo. More strikingly, the in vivo studies show that a combination therapy with a reduced concentration of Gemcitabine has suppressed the tumor growth considerably even three weeks after the last treatment.

  3. The Neuropeptides FLP-2 and PDF-1 Act in Concert To Arouse Caenorhabditis elegans Locomotion.

    Science.gov (United States)

    Chen, Didi; Taylor, Kelsey P; Hall, Qi; Kaplan, Joshua M

    2016-11-01

    During larval molts, Caenorhabditis elegans exhibits a sleep-like state (termed lethargus) that is characterized by the absence of feeding and profound locomotion quiescence. The rhythmic pattern of locomotion quiescence and arousal linked to the molting cycle is mediated by reciprocal changes in sensory responsiveness, whereby arousal is associated with increased responsiveness. Sensory neurons arouse locomotion via release of a neuropeptide (PDF-1) and glutamate. Here we identify a second arousing neuropeptide (FLP-2). We show that FLP-2 acts via an orexin-like receptor (FRPR-18), and that FLP-2 and PDF-1 secretion are regulated by reciprocal positive feedback. These results suggest that the aroused behavioral state is stabilized by positive feedback between two neuropeptides. Copyright © 2016 by the Genetics Society of America.

  4. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  5. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide

    Science.gov (United States)

    Erwin, P. M.; Szmant, A. M.

    2010-12-01

    Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10-6 M), achieving 40-80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (96% metamorphosis after 6 h. In contrast , M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and reliable settlement of

  6. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    Science.gov (United States)

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  7. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  8. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor.

    Science.gov (United States)

    Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Trapella, Claudio; Gavioli, Elaine C

    2015-10-01

    Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.

  9. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René;

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  10. Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe-NH2) neuropeptides in Hydra magnipapillata

    DEFF Research Database (Denmark)

    Darmer, D; Hauser, F; Nothacker, H P;

    1998-01-01

    from H. magnipapillata, each of which gives rise to a variety of RFamide neuropeptides. Preprohormone A contains one copy of unprocessed Hydra-RFamide I (QWLGGRFG), II (QWFNGRFG), III/IV [(KP)HLRGRFG] and two putative neuropeptide sequences (QLMSGRFG and QLMRGRFG). Preprohormone B has the same general...... organization as preprohormone A, but instead of unprocessed Hydra-RFamide III/IV it contains a slightly different neuropeptide sequence [(KP)HYRGRFG]. Preprohormone C contains one copy of unprocessed Hydra-RFamide I and seven additional putative neuropeptide sequences (with the common N-terminal sequence QWF....../LSGRFGL). The two Hydra-RFamide II copies (in preprohormones A and B) are preceded by Thr residues, and the single Hydra-RFamide III/IV copy (in preprohormone A) is preceded by an Asn residue, confirming that cnidarians use unconventional processing signals to generate neuropeptides from their precursor proteins...

  11. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  12. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  13. Strong evolutionary conservation of neuropeptide Y: sequences of chicken, goldfish, and Torpedo marmorata DNA clones.

    OpenAIRE

    Blomqvist, A. G.; Söderberg, C; Lundell, I; Milner, R J; Larhammar, D

    1992-01-01

    Neuropeptide Y (NPY) is an abundant and widespread neuropeptide in the nervous system of mammals. NPY belongs to a family of 36-amino acid peptides that also includes pancreatic polypeptide and the endocrine gut peptide YY as well as the fish pancreatic peptide Y. To study the evolution of this peptide family, we have isolated clones encoding NPY from central nervous system cDNA libraries of chicken, goldfish, and the ray Torpedo marmorata, as well as from a chicken genomic library. The predi...

  14. Lumbar cerebrospinal fluid concentrations of somatostatin and neuropeptide Y in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Vecsei, L.; Csala, B.; Widerloev, E.E.; Ekman, R.; Czopf, J.; Palffy, G. (Univ. of Lund (Sweden))

    1990-09-01

    The cerebrospinal fluid (CSF) concentrations of somatostatin and neuropeptide Y were investigated by use of radioimmunoassay in patients suffering from chronic progressive multiple sclerosis. The somatostatin level was significantly decreased in the CSF of patients with multiple sclerosis compared to the control group. The magnitude of this change was more pronounced in patients with severe clinical symptoms of the illness. The CSF neuropeptide Y concentration did not differ from the control values. These findings suggest a selective involvement of somatostatin neurotransmission in multiple sclerosis.

  15. Expression of messenger RNAs for glutamic acid decarboxylase, preprotachykinin, cholecystokinin, somatostatin, proenkephalin and neuropeptide Y in the adult rat superior colliculus.

    Science.gov (United States)

    Harvey, A R; Heavens, R P; Yellachich, L A; Sirinathsinghji, D J

    2001-01-01

    The mammalian superior colliculus is an important subcortical integrator of sensorimotor behaviours. It is multi-layered, each layer containing specific neuronal types and possessing distinct input/output relationships. Here we use in situ hybridisation methods to map the distribution of seven neurotransmitters/neuromodulator systems in adult rat superior colliculus. Coronal sections were probed for preprotachykinin, cholecystokinin, somatostatin, proenkephalin, neuropeptide Y and the enzymes glutamic acid decarboxylase and choline acetyltransferase, markers for GABA and acetylcholine respectively. Cells expressing glutamic acid decarboxylase messenger RNA were the most abundant, the highest density being found in the superficial layers. Many cells containing proprotachykinin messenger RNA were found in stratum zonale and the upper two-thirds of stratum griseum superficiale; cells were also located in deeper tectal laminae, particularly caudomedially. Most cholecystokinin messenger RNA expressing cells were located in the superficial layers with a prominent band in the middle third of stratum griseum superficiale. Cells expressing moderate to high levels of somatostatin messenger RNA formed a dense band in the lower third of stratum griseum superficiale/upper stratum opticum; two less distinct tiers of labelling were seen in deeper layers. These in situ hybridisation data reveal three distinct sub-laminae in rat stratum griseum superficiale. Cells expressing moderate to low levels of proenkephalin messenger RNA were located in lower stratum griseum superficiale/upper stratum opticum and intermediate laminae. A cluster of enkephalinergic cells was located medially in the deep tectal laminae. Expression of neuropeptide Y messenger RNA was relatively low and mostly confined to cells in stratum griseum superficiale and stratum opticum. No choline acetyltransferase messenger RNA was detected. This in situ analysis of seven different neurotransmitters

  16. Expression of Neuropeptide Y in Human Pituitary Adenoma

    Institute of Scientific and Technical Information of China (English)

    Laizhao Chen; Jingjian Ma; Anchao Zheng; Honggang Zheng

    2006-01-01

    OBJECTIVE Neuropeptid e Y (NPY) acts as a neuroendocrine modulator in the anterior pituitary, and NPY mRNA and NPY-immunoreactivity have been detected in normal human anterior pituitaries. However, only a few studies of NPY expression in human pituitary adenomas have been published. Our study was conducted to determine whether or not adenomatous cells express NPY, to investigate the relationship between NPY expression and the subtypes of pituitary adenoma and to explore the clinical significance of NPY.METHODS The study included tissues from 58 patients with pituitary adenomas who underwent surgery because of their clinical diagnosis.Using a highly specific anti-NPY polyclonal antibody, immunohistochemical analysis was performed on the surgically removed pituitary adenomas. Six fresh specimens also were examined using immuno-electron microscopy. NPY was labeled with colloidal gold in order to study the distribution of NPY at the subcellular level.RESULTS The NPY expression level was significantly different among subgroups of pituitary adenomas (P<0.05). NPY was immuno-detected in 58.6% of all adenomas, in 91.7% of gonadotrophic adenomas and in 14.3% of prolactinomas. NPY expression was slightly lower in invasive pituitary adenomas compared to noninvasive adenomas, but the difference was not significant (t=1.81, P>0.05). Of particular interest was the finding that vascular endothelial cells showed positive NPY expression in some pituitary adenomas. Parts of strongly positive tumor cells were seen in channels formed without endothelial cells, but which contained some red blood cells in a formation similar to so-called vasculogenic mimicry. Immuno-electron microscopy demonstrated that 4 of the 6 fresh specimens displayed positive NPY staining with a high density of gold particles located mainly in the secretory granulas. In addition, gold particles were sparsely detected in the rough endoplasmic reticulum and cell matrix.CONCLUSION NPY exists in pituitary adenomas

  17. Probing the properties of confined liquids

    NARCIS (Netherlands)

    Beer, de Sissi Jacoba Adrianus

    2011-01-01

    In this thesis we describe Atomic Force Microscopy (AFM) measurements and Molecular Dynamics (MD) simulation of the static and dynamic properties of layered liquids confined between two solid surfaces. Liquid molecules in the proximity of a solid surface assemble into layers. When a fluid is confine

  18. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  19. Catalytic capsids: The art of confinement

    NARCIS (Netherlands)

    Minten, Inge J.; Claessen, Victor I.; Blank, Kerstin; Rowan, Alan E.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria

    2011-01-01

    In the cell, enzymes are almost always spatially confined in crowded and tightly controlled cellular compartments. The entrapment of enzymes in artificial nanoreactors as biomimetic systems can be expected to contribute to the understanding of the activity and the interactions of enzymes in confined

  20. Confinement of charge carriers in bilayer graphene

    NARCIS (Netherlands)

    Goossens, A.M.

    2013-01-01

    In this thesis we investigate the fundamental properties of electronic transport in bilayer graphene. We do this by confining electrons to narrow constrictions and small islands. Our key result is the fabrication and measurement of nanoscale devices that permit confinement with electric fields in b

  1. Confinement of charge carriers in bilayer graphene

    NARCIS (Netherlands)

    Goossens, A.M.

    2013-01-01

    In this thesis we investigate the fundamental properties of electronic transport in bilayer graphene. We do this by confining electrons to narrow constrictions and small islands. Our key result is the fabrication and measurement of nanoscale devices that permit confinement with electric fields in b

  2. Colloidal dynamics in flow and confinement

    NARCIS (Netherlands)

    Ghosh, Somnath

    2015-01-01

    The aim of this thesis is to understand how the diffusive dynamics and flow behaviors of colloidal hard spheres are influenced by the confinement of nearby walls. The Brownian motion of hard spheres in quiescent bulk fluids is well known, but the presence of confining walls generate new physical phe

  3. Inertial Confinement Fusion Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable

  4. Bimetallic Microswimmers Speed Up in Confining Channels

    Science.gov (United States)

    Liu, Chang; Zhou, Chao; Wang, Wei; Zhang, H. P.

    2016-11-01

    Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in tightly confined spaces. It is therefore important to understand how confinement influences swimmer dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and the relative velocity increase depends weakly on the fuel concentration and ionic strength in solution. Experimental results are reproduced in a numerical model which attributes the swimmer velocity increase to electrostatic and electrohydrodynamic boundary effects. Our work not only helps to elucidate the confinement effect of phoretic swimmers, but also suggests that spatial confinement may be used as an effective control method for them.

  5. Confinement optimisation by plasma shaping on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Moret, J.M.; Behn, R.; Franke, S.; Hofmann, F.; Weisen, H. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-06-01

    Any improvement in the energy confinement time of a tokamak reactor may facilitate its access to ignition. TCV has the unique capability of creating a wide variety of plasma shapes and can therefore investigate to which extent an appropriate choice of the plasma shape can improve the energy confinement time. For simple shapes defined only by their elongation and triangularity, it has already been observed on TCV that the confinement properties of the plasma depend strongly on the shape. This previous work has now been extended to include more complex shapes and higher elongations, in order firstly to test the applicability of the previously proposed explanation for the shape dependence of the confinement time and secondly to propose new shapes which offer a substantial gain on their confinement characteristics. (author) 4 figs., 1 tab., 2 refs.

  6. Confinement and screening in tachyonic matter

    CERN Document Server

    Brito, F A; Serafim, W

    2014-01-01

    In this paper we consider confinement and screening of the electric field. We study the behavior of a static electric field coupled to a dielectric function with the intent of obtaining an electrical confinement similar to what happens with the field of gluons that bind quarks in hadronic matter. For this we use the phenomenon of `anti-screening' in a medium with exotic dielectric. We show that tachyon matter behaves like an exotic way whose associated dielectric function modifies the Maxwell's equations and affects the fields which results in confining and Coulombian-like potentials in three spatial dimensions. We note that the confining regime coincides with the tachyon condensation, which resembles the effect of confinement due to condensation of magnetic monopoles. The Coulombian-like regime is developed at large distance which is associated with {a screening phase

  7. Confinement and screening in tachyonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, Paraiba (Brazil); Freire, M.L.F. [Universidade Estadual da Paraiba, Departamento de Fisica, Campina Grande, Paraiba (Brazil); Serafim, W. [Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, Paraiba (Brazil); Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil)

    2014-12-01

    In this paper we consider confinement and screening of the electric field. We study the behavior of a static electric field coupled to a dielectric function with the intent of obtaining an electrical confinement similar to what happens with the field of gluons that bind quarks in hadronic matter. For this we use the phenomenon of 'anti-screening' in a medium with exotic dielectric. We show that tachyon matter behaves like in an exotic way whose associated dielectric function modifies the Maxwell equations and affects the fields which results in confining and Coulombian-like potentials in three spatial dimensions. We note that the confining regime coincides with the tachyon condensation, which resembles the effect of confinement due to the condensation of magnetic monopoles. The Coulombian-like regime is developed at large distance, which is associated with a screening phase. (orig.)

  8. Understanding and improving confinement in CNT

    Science.gov (United States)

    Brenner, Paul; Pedersen, Thomas; Sarasola, Xabier; Durand de Gevigney, Benoit; Traverso, Peter

    2010-11-01

    Confinement studies in the Columbia Non-neutral Torus (CNT) are providing new insights into the physics of pure electron plasmas confined on magnetic surfaces. The confinement of pure electron plasmas has now been measured in the absence of internal objects . These transient plasmas exhibit confinement times that are shorter than expected and have a strong dependence on neutral pressure. Plasmas created by electron emission in one direction have been compared to those created by emission in two directions. The confinement is significantly longer when emitting in only one direction, suggesting that a two-stream instability is present and affects the radial transport rate. Progress on verifying the existence of a two-stream instability will be presented. Experimental results from previously unexplored stellarator configurations, with low shear and large islands will also be shown.

  9. Cell migration in confined environments.

    Science.gov (United States)

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.

  10. Fermion Superfluidity And Confining Interactions

    CERN Document Server

    Galal, A A

    2004-01-01

    We study the pairing of Fermi systems with long-range, confining interparticle interactions. We solve the Cooper problem for a pair of fermions interacting via a regularized harmonic oscillator potential and determine the s-wave spectrum of bound states. Using a model of two interacting species of fermions, we calculate the ground state energy of the normal phase in the Hartree-Fock approximation and find that it is infrared (IR) divergent, due to a combination of the sharpness of the Fermi sea and the long-range nature of the interaction. We calculate the correlation energy in the normal phase using the random phase approximation (RPA) and demonstrate the cancellation of infrared divergences between the Hartree-Fock and RPA contributions. Introducing a variational wavefunction to study the superfluid phase, we solve the BCS equations using a Hartree-Fock-Bogoliubov (HFB) analysis to determine the wave-function, excitation gap, and other parameters of the superfluid phase. We show that the system crosses over...

  11. Ring polymers in confined geometries

    CERN Document Server

    Usatenko, Z; Kuterba, P

    2016-01-01

    The investigation of a dilute solution of phantom ideal ring polymers and ring polymers with excluded volume interactions (EVI) in a good solvent confined in a slit geometry of two parallel repulsive walls and in a solution of colloidal particles of big size were performed. Taking into account the correspondence between the field theoretical $\\phi^4$ $O(n)$-vector model in the limit $n\\to 0$ and the behavior of long-flexible polymer chains in a good solvent the correspondent depletion interaction potentials, depletion forces and the forces which exert phantom ideal ring and ring polymer chains with EVI on the walls were obtained in the framework of the massive field theory approach at fixed space dimensions d=3 up to one-loop order. Additionally, the investigation of a dilute solution of phantom ideal ring polymers in a slit geometry of two inert walls and mixed walls with one repulsive and other one inert wall were performed and correspondent depletion interaction potentials and the depletion forces were cal...

  12. Confinement Physics in Quantum Chromodynamics

    CERN Document Server

    Suganuma, H; Amemiya, K; Tanaka, A; Suganuma, Hideo; Ichie, Hiroko; Amemiya, Kazuhisa; Tanaka, Atsunori

    1998-01-01

    We study the confinement physics in QCD in the maximally abelian (MA) gauge using the SU(2) lattice QCD, based on the dual-superconductor picture. In the MA gauge, off-diagonal gluon components are forced to be small, and the off-diagonal angle variable $\\chi_\\mu(s)$ tends to be random. Within the random-variable approximation for $\\chi_\\mu(s)$, we analytically prove the perimeter law of the off-diagonal gluon contribution to the Wilson loop in the MA gauge, which leads to abelian dominance on the string tension. To clarify the origin of abelian dominance for the long-range physics, we study the charged-gluon propagator in the MA gauge using the lattice QCD, and find that the effective mass $m_{ch} \\simeq 0.9 {\\rm GeV}$ of the charged gluon is induced by the MA gauge fixing. In the MA gauge, there appears the macroscopic network of the monopole world-line covering the whole system, which would be identified as monopole condensation at a large scale. To prove monopole condensation in the field-theoretical mann...

  13. Fluid viscosity under confined conditions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.

    2014-12-01

    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  14. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Science.gov (United States)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  15. Feed intake of gilts following intracerebroventicular injection of the novel hypothalamic RFamide (RFa) neuropeptide, 26RFa

    Science.gov (United States)

    RFamide (RFa) peptides have been implicated in a broad spectrum of biological processes including energy expenditure and feed intake. 26RFa is a recently discovered hypothalamic neuropeptide that altered the release of pituitary hormones and stimulated feed intake via a NPY-specific mechanism in rat...

  16. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    Science.gov (United States)

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  17. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    Science.gov (United States)

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.

  18. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    Science.gov (United States)

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  19. Circulating levels of neuropeptides (CGRP, VIP, NPY) in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Edvinsson, Lars; Larsen, Fin Stolze;

    2001-01-01

    The present study investigated the circulating levels and cerebral fluxes of calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP), and neuropeptide Y (NPY) and their relation to cerebral blood flow (CBF) during normoventilation and hyperventilation in patients with fulminant...

  20. The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila

    DEFF Research Database (Denmark)

    Hentze, Julie Lilith; Carlsson, Mikael A.; Kondo, Shu;

    2015-01-01

    and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both...

  1. Differential Effect of Neuropeptides on Excitatory Synaptic Transmission in Human Epileptic Hippocampus

    DEFF Research Database (Denmark)

    Ledri, Marco; Sorensen, Andreas T.; Madsen, Marita G.;

    2015-01-01

    antiepileptic actions in human epileptic tissue as well, we applied these neuropeptides directly to human hippocampal slices in vitro. NPY strongly decreased stimulation-induced EPSPs in dentate gyrus and CA1 (up to 30 and 55%, respectively) via Y2 receptors, while galanin had no significant effect. Receptor...

  2. Cerebrospinal fluid prohormone processing and neuropeptides stimulating feed intake of dairy cows during early lactation.

    Science.gov (United States)

    Kuhla, Björn; Laeger, Thomas; Husi, Holger; Mullen, William

    2015-02-01

    After parturition, feed intake of dairy cows increases within the first weeks of lactation, but the molecular mechanisms stimulating or delaying the slope of increase are poorly understood. Some of the molecules controlling feed intake are neuropeptides that are synthesized as propeptides and subsequently processed before they bind to specific receptors in feeding centers of the brain. Cerebrospinal fluid surrounds most of the feed intake regulatory centers and contains numerous neuropeptides. In the present study, we used a proteomic approach to analyze the neuropeptide concentrations in cerebrospinal fluid taken from dairy cows between day -18 and -10, and between day +10 and +20 relative to parturition. We found 13 proteins which were only present in samples taken before parturition, 13 proteins which were only present in samples taken after parturition, and 25 proteins which were commonly present, before and after parturition. Among them, differences in pro-neuropeptide Y, proenkephalin-A, neuroendocrine convertase-2, neurosecretory protein VGF, chromogranin-A, and secretogranin-1 and -3 concentrations relative to parturition highlight propeptides and prohormone processings involved in the control of feed intake and energy homeostasis. Scaffold analysis further emphasized an increased tone of endogenous opioids associated with the postparturient increase of feed intake.

  3. Role of neuropeptides in anxiety, stress, and depression: from animals to humans.

    Science.gov (United States)

    Kormos, Viktória; Gaszner, Balázs

    2013-12-01

    Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.

  4. Neuropeptide-like precursor 4 is uniquely expressed during pupal diapause in the flesh fly

    Science.gov (United States)

    Suppression subtractive hybridization comparing brains from diapausing and nondiapausing pupae of the flesh fly, Sarcophaga crassipalpis, suggested that the gene encoding neuropeptide-like precursor 4 (Nplp4) was uniquely expressed during diapause. We have sequenced the full-length cDNA encoding Npl...

  5. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    Science.gov (United States)

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough.

  6. A phosphoproteomics approach to elucidate neuropeptide signal transduction controlling insect metamorphosis

    DEFF Research Database (Denmark)

    Rewitz, Kim F; Larsen, Martin R; Lobner-Olesen, Anders

    2009-01-01

    In insects, the neuropeptide prothoracicotropic hormone (PTTH) stimulates production of ecdysone (E) in the prothoracic glands (PGs). E is the precursor of the principal steroid hormone, 20-hydroxyecdysone (20E), that is responsible for eliciting molting and metamorphosis. In this study, we used ...

  7. Limbic substrates of the effects of neuropeptide Y on intake of and motivation for palatable food

    NARCIS (Netherlands)

    Pandit, R.; Luijendijk, M.C.; Vanderschuren, L.J.M.J.; la Fleur, S.E.; Adan, R.A.H.

    2014-01-01

    Objective: Neuropeptide Y (NPY), given centrally augments food intake and the motivation to work for palatable food. Here, the brain regions were identified through which NPY increases food intake and motivation. Methods: NPY was infused into three brain regions implicated in food intake and motivat

  8. Differential roles for neuropeptide Y Y1 and Y5 receptors in anxiety and sedation

    DEFF Research Database (Denmark)

    Lindberg, Camilla; Wörtwein, Gitta; Bolwig, Tom G

    2004-01-01

    Central administration of neuropeptide Y (NPY) causes both anxiolysis and sedation. Previous studies suggest that both effects are mediated via NPY Y1 receptors. However, most of these studies were carried out before the advent of specific NPY receptor ligands. Therefore, a potential role for oth...

  9. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans.

    Science.gov (United States)

    Lindemans, Marleen; Janssen, Tom; Husson, Steven J; Meelkop, Ellen; Temmerman, Liesbet; Clynen, Elke; Mertens, Inge; Schoofs, Liliane

    2009-02-13

    Neuromedin U (NMU) in vertebrates is a structurally highly conserved neuropeptide of which highest levels are found in the pituitary and gastrointestinal tract. In Drosophila, two neuropeptide genes encoding pyrokinins (PKs), capability (capa) and hugin, are possible insect homologs of vertebrate NMU. Here, the ligand for an orphan G protein-coupled receptor in the nematode Caenorhabditis elegans (Ce-PK-R) was found using a bioinformatics approach. After cloning and expressing Ce-PK-R in HEK293T cells, we found that it was activated by a neuropeptide from the C. elegans NLP-44 precursor (EC(50)=18nM). This neuropeptide precursor is reminiscent of insect CAPA precursors since it encodes a PK-like peptide and two periviscerokinin-like peptides (PVKs). Analogous to CAPA peptides in insects and NMUs in vertebrates, whole mount immunostaining in C. elegans revealed that the CAPA precursor is expressed in the nervous system. The present data also suggest that the ancestral CAPA precursor was already present in the common ancestor of Protostomians and Deuterostomians and that it might have been duplicated into CAPA and HUGIN in insects. In vertebrates, NMU is the putative homolog of a protostomian CAPA-PK.

  10. Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation

    NARCIS (Netherlands)

    Hoek, A.M. van den; Heijningen, C. van; Schröder - Elst, J.P. van der; Ouwens, D.M.; Havekes, L.M.; Romijn, J.A.; Kalsbeek, A.; Pijl, H.

    2008-01-01

    OBJECTIVE-We recently showed that intracerebroventricular infusion of neuropeptide Y (NPY) hampers inhibition of endogenous glucose production (EGP) by insulin in mice. The down stream mechanisms responsible for these effects of NPY remain to be elucidated. Therefore, the aim of this study was to es

  11. Limbic substrates of the effects of neuropeptide Y on intake of and motivation for palatable food

    NARCIS (Netherlands)

    Pandit, R.; Luijendijk, M.C.; Vanderschuren, L.J.M.J.; la Fleur, S.E.; Adan, R.A.H.

    2014-01-01

    Objective: Neuropeptide Y (NPY), given centrally augments food intake and the motivation to work for palatable food. Here, the brain regions were identified through which NPY increases food intake and motivation. Methods: NPY was infused into three brain regions implicated in food intake and

  12. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control

    Science.gov (United States)

    Blasiak, Anna; Gundlach, Andrew L.; Hess, Grzegorz; Lewandowski, Marian H.

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements. PMID:28373831

  13. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael

    2002-01-01

    the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification...

  14. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis

    DEFF Research Database (Denmark)

    Hauser, Frank; Neupert, Susanne; Williamson, Michael

    2010-01-01

    neuropeptide gene in Nasonia, coding for peptides containing the C-terminal sequence RYamide. This gene has orthologs in nearly all arthropods with a sequenced genome, and its expression in mosquitoes was confirmed by mass spectrometry. No precursor could be identified for N-terminally extended FMRFamides...

  15. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors

    DEFF Research Database (Denmark)

    Woldbye, David P D; Nanobashvili, Avtandil; Sørensen, Andreas Vehus

    2005-01-01

    Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the...

  16. Identification of a novel starfish neuropeptide that acts as a muscle relaxant.

    Science.gov (United States)

    Kim, Chan-Hee; Kim, Eun Jung; Go, Hye-Jin; Oh, Hye Young; Lin, Ming; Elphick, Maurice R; Park, Nam Gyu

    2016-04-01

    Neuropeptides that act as muscle relaxants have been identified in chordates and protostomian invertebrates but little is known about the molecular identity of neuropeptides that act as muscle relaxants in deuterostomian invertebrates (e.g. echinoderms) that are 'evolutionary intermediates' of chordates and protostomes. Here, we have used the apical muscle of the starfish Patiria pectinifera to assay for myorelaxants in extracts of this species. A hexadecapeptide with the amino acid sequence Phe-Gly-Lys-Gly-Gly-Ala-Tyr-Asp-Pro-Leu-Ser-Ala-Gly-Phe-Thr-Asp was identified and designated starfish myorelaxant peptide (SMP). Cloning and sequencing of a cDNA encoding the SMP precursor protein revealed that it comprises 12 copies of SMP as well as 3 peptides (7 copies in total) that are structurally related to SMP. Analysis of the expression of SMP precursor transcripts in P. pectinifera using qPCR revealed the highest expression in the radial nerve cords and lower expression levels in a range of neuromuscular tissues, including the apical muscle, tube feet and cardiac stomach. Consistent with these findings, SMP also caused relaxation of tube foot and cardiac stomach preparations. Furthermore, SMP caused relaxation of apical muscle preparations from another starfish species - Asterias amurensis. Collectively, these data indicate that SMP has a general physiological role as a muscle relaxant in starfish. Interestingly, comparison of the sequence of the SMP precursor with known neuropeptide precursors revealed that SMP belongs to a bilaterian family of neuropeptides that include molluscan pedal peptides (PP) and arthropodan orcokinins (OK). This is the first study to determine the function of a PP/OK-type peptide in a deuterostome. Pedal peptide/orcokinin (PP/OK)-type peptides are a family of structurally related neuropeptides that were first identified and functionally characterised in protostomian invertebrates. Here, we report the discovery of starfish myorelaxant

  17. Neuropeptide FF, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading.

    Science.gov (United States)

    Kalliomäki, M-L; Panula, P

    2004-01-01

    Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.

  18. Aerofractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  19. Mobility in geometrically confined membranes.

    Science.gov (United States)

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-02

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.

  20. Opioid Tolerance and Physical Dependence: Role of Spinal Neuropeptides, Excitatory Amino Acids and Their Messengers

    Directory of Open Access Journals (Sweden)

    Khem Jhamandas

    2000-01-01

    Full Text Available Chronic opioid treatment results in the development of tolerance and physical dependence. The mechanisms underlying opioid tolerance and/or physical dependence are unclear. Recent studies suggest that opioid receptor or nociceptive, neural network-based adaptations contribute to this phenomenon. At the spinal level, the genesis of tolerance and physical dependence is associated with increased excitatory amino acid activity expressed through N-methyl-D-aspartate receptors in the dorsal horn. However, recent evidence also implicates spinal neuropeptide transmitters such as calcitonin gene-related peptide (CGRP and  substance P in the development of opioid tolerance. Long term spinal morphine treatment increases CGRP-like immunostaining in the dorsal horn, and coadministration of morphine with CGRP8-37, a competitive CGRP1 receptor antagonist, prevents this response as well as loss of the analgesic potency. CGRP8-37, like N-methyl-D-aspartate receptor antagonists, has the potential to restore morphine potency in experimental animals who are already tolerant to the opioid agonist. Recent evidence suggests that the effects of excitatory amino acid and neuropeptide receptor activity may be expressed through the generation of messengers such as nitric oxide and prostanoids. Agents that inhibit the synthesis of nitric oxide and prostanoids have the potential to inhibit and reverse spinal opioid tolerance, suggesting that this phenomenon may be expressed through the activity of these mediators. Nociceptive transmission in the dorsal horn of the spinal cord also involves activity of a number of other mediators including morphine modulatory neuropeptides, neuropeptide FF  and neuropeptide SF. The role of these mediators and their relationship with other factors implicated in tolerance remain to be determined.

  1. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats.

    Science.gov (United States)

    de Rijke, C E; Hillebrand, J J G; Verhagen, L A W; Roeling, T A P; Adan, R A H

    2005-10-01

    When rats are given access to a running-wheel in combination with food restriction, they will become hyperactive and decrease their food intake, a paradoxical phenomenon known as activity-based anorexia (ABA). Little is known about the regulation of the hypothalamic neuropeptides that are involved in the regulation of food intake and energy balance during the development of ABA. Therefore, rats were killed during the development of ABA, before they entered a state of severe starvation. Neuropeptide mRNA expression levels were analysed using quantitative real-time PCR on punches of separate hypothalamic nuclei. As is expected in a state of negative energy balance, expression levels of agouti-related protein (AgRP) and neuropeptide Y (NPY) were increased 5-fold in the arcuate nucleus (ARC) of food-restricted running ABA rats vs 2-fold in sedentary food-restricted controls. The co-regulated expression of AgRP and NPY strongly correlated with relative body weight and white adipose tissue mass. Arcuate expression of pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) was reduced 2-fold in the ABA group. In second-order neurons of the lateral hypothalamic area (LHA), melanin-concentrating hormone (MCH) mRNA expression was upregulated 2-fold in food-restricted running rats, but not in food-restricted sedentary controls. Prepro-orexin, CART and corticotropin-releasing hormone expression levels in the LHA and the paraventricular nucleus (PVN) were unchanged in both food-restricted groups. From this study it was concluded that during the development of ABA, neuropeptides in first-order neurons in the ARC and MCH in the LHA are regulated in an adequate response to negative energy balance, whereas expression levels of the other studied neuropeptides in secondary neurons of the LHA and PVN are unchanged and are probably regulated by factors other than energy status alone.

  2. Role of neuropeptides in appetite regulation and obesity--a review.

    Science.gov (United States)

    Arora, Sarika; Anubhuti

    2006-12-01

    Obesity represents the most prevalent nutritional problem worldwide which in the long run predisposes to development of diabetes mellitus, hypertension, endometrial carcinoma, osteoarthritis, gall stones and cardiovascular diseases. Despite significant reductions in dietary fat consumption, the prevalence of obesity is on a rise and is taking on pandemic proportions. Obesity develops when energy intake exceeds energy expenditure over time. Recently, a close evolutionary relationship between the peripheral and hypothalamic neuropeptides has become apparent. The hypothalamus being the central feeding organ mediates regulation of short-term and long-term dietary intake via synthesis of various orexigenic and anorectic neuropeptides. The structure and function of many hypothalamic peptides (neuropeptide Y (NPY), melanocortins, agouti-related peptide (AGRP), cocaine and amphetamine regulated transcript (CART), melanin concentrating hormone (MCH), orexins have been characterized in rodent models The peripheral neuropeptides such as cholecystokinin (CCK), ghrelin, peptide YY (PYY3-36), amylin, bombesin regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. The pharmacological potential of several endogenous peripheral peptides released prior to, during and/or after feeding are being explored. Long-term regulation is provided by the main circulating hormones leptin and insulin. These systems implicated in hypothalamic appetite regulation provide potential targets for treatment of obesity which could potentially pass into clinical development in the next 5 years. This review summarizes various effects and interrelationship of these central and peripheral neuropeptides in metabolism, obesity and their potential role as targets for treatment of obesity.

  3. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    Science.gov (United States)

    Stawicki, Tamara M; Takayanagi-Kiya, Seika; Zhou, Keming; Jin, Yishi

    2013-05-01

    Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  4. Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox

    Directory of Open Access Journals (Sweden)

    Conzelmann Markus

    2012-10-01

    Full Text Available Abstract Background Neuronal antibodies that show immunoreactivity across a broad range of species are important tools for comparative neuroanatomy. Nonetheless, the current antibody repertoire for non-model invertebrates is limited. Currently, only antibodies against the neuropeptide RFamide and the monoamine transmitter serotonin are extensively used. These antibodies label respective neuron-populations and their axons and dendrites in a large number of species across various animal phyla. Results Several other neuropeptides also have a broad phyletic distribution among invertebrates, including DLamides, FVamides, FLamides, GWamides and RYamides. These neuropeptides show strong conservation of the two carboxy-terminal amino acids and are α-amidated at their C-termini. We generated and affinity-purified specific polyclonal antibodies against each of these conserved amidated dipeptide motifs. We thoroughly tested antibody reactivity and specificity both by peptide pre-incubation experiments and by showing a close correlation between the immunostaining signals and mRNA expression patterns of the respective precursor genes in the annelid Platynereis. We also demonstrated the usefulness of these antibodies by performing immunostainings on a broad range of invertebrate species, including cnidarians, annelids, molluscs, a bryozoan, and a crustacean. In all species, the antibodies label distinct neuronal populations and their axonal projections. In the ciliated larvae of cnidarians, annelids, molluscs and bryozoans, a subset of antibodies reveal peptidergic innervation of locomotor cilia. Conclusions We developed five specific cross-species-reactive antibodies recognizing conserved two-amino-acid amidated neuropeptide epitopes. These antibodies allow specific labelling of peptidergic neurons and their projections in a broad range of invertebrates. Our comparative survey across several marine phyla demonstrates a broad occurrence of peptidergic

  5. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    Directory of Open Access Journals (Sweden)

    Tamara M Stawicki

    2013-05-01

    Full Text Available Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf, that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf. The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf mutants. We further find that acr-2(gf causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  6. Neuropeptide release from airways of young and fully-grown rabbits.

    Science.gov (United States)

    Larsen, Gary L; Fratelli, Cori; Loader, Joan; Kang, June-Ku Brian; Dakhama, Azzeddine

    2006-12-01

    Nerve growth factor (NGF), a neurotrophin that regulates neuronal development, enhances production of neuropeptides that control airway caliber including substance P (SP). Little is known about the developmental interplay between neurotrophins and neuropeptides. Our goal was to assess release of NGF, SP, and vasoactive intestinal peptide (VIP) from tracheal segments of young (2-week-old) and fully-grown (13-week-old) rabbits, and ascertain location of neuropeptides in airways with mechanical denudation of epithelium and immunohistochemistry. After electrical field stimulation of nerves, bath solutions were collected and immunoassays performed to quantify NGF, SP, and VIP release. There were significant decreases in NGF, SP, and VIP release from airways in 13- versus 2-week-old rabbits. There were also significant decreases in SP and VIP release from denuded versus normal tissues at 2 weeks of age. A similar pattern for SP was seen in 13-week-old rabbits. Immunohistochemistry demonstrated increased neuropeptides in airways from younger rabbits. Although SP was seen in the epithelium and submucosal nerves in the younger group, it was localized to the latter location in fully-grown rabbits. VIP was seen in only submucosal nerves at both ages. Thus, release of NGF, SP, and VIP with neural stimulation decreases in rabbit tracheal segments with age. Decreases in SP with maturation and epithelial denudation appear related in part to decreases in epithelial SP with growth. However, decreases in VIP that occur normally and with epithelial denudation are not explained by location of VIP within the epithelium. The epithelium may be a source of factors that inhibit release of neuropeptides.

  7. Toroidal membrane vesicles in spherical confinement

    CERN Document Server

    Bouzar, Lila; Müller, Martin Michael

    2015-01-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  8. Toroidal membrane vesicles in spherical confinement

    Science.gov (United States)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  9. Electronic Quantum Confinement in Cylindrical Potential Well

    CERN Document Server

    Baltenkov, A S

    2016-01-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limi...

  10. Controlling the Electromagnetic Field Confinement with Metamaterials

    Science.gov (United States)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  11. Theory of Confined Quantum Time of Arrivals

    CERN Document Server

    Galapon, E A

    2005-01-01

    We extend the concept of confined quantum time of arrival operators, first developed for the free particle [E.A. Galapon, R. Caballar, R. Bahague {\\it Phys. Rev. Let.} {\\bf 93} 180406 (2004)], to arbitrary potentials.

  12. Colloidal cholesteric liquid crystal in spherical confinement

    Science.gov (United States)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  13. Plasma confinement system and methods for use

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Thomas R.; Sutherland, Derek

    2017-09-05

    A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.

  14. A model for melting of confined DNA

    CERN Document Server

    Werner, E; Ambjörnsson, T; Mehlig, B

    2015-01-01

    When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this "melting" transition have been intensively investigated. Recently there has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.

  15. Computer simulation of confined liquid crystal dynamics

    CERN Document Server

    Webster, R E

    2001-01-01

    are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results...

  16. A Study of Confined Helium Atom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.

  17. Consequences of Confinement in Zeolite Acid Catalysis

    OpenAIRE

    Gounder, Rajamani Pachayappan

    2011-01-01

    The catalytic consequences of confinement within zeolite voids were examined for several elimination (alkane cracking and dehydrogenation, alkene cracking, alkanol dehydration) and addition (alkene hydrogenation, alkylation and oligomerization) reactions catalyzed by Brønsted solid acids. These reactions are mediated by cationic transition states that are confined within voids of molecular dimensions (0.4-1.3 nm) and proceed at rates that reflect the Gibbs free energies of late ion-pairs at t...

  18. Comparison between Major Confined and Eruptive Flares

    Science.gov (United States)

    Gopalswamy, N.; Yashiro, S.; Mäkelä, P.; Dennis, B. R.

    2012-05-01

    Statistical studies have shown that a large fraction of major solar flares (42% M-class and 15% X-class) are not associated with coronal mass ejections (CMEs). The CME-less flares are confined flares as opposed to the eruptive flares associated with CMEs. Confined flares are certainly good particle accelerators as inferred from intense microwave, hard X-ray, and gamma-ray emissions. Note that a single acceleration mechanism operates in confined flares, whereas eruptive flares can have both flare-resident and shock accelerations (the shock acceleration is due to energetic CMEs). In this paper, we report on a statistical study of more than two dozen confined flares with soft X-ray flare size exceeding M5 in comparison with a control sample of eruptive flares with similar soft X-ray flare size. We compare the microwave and X-ray emission characteristics in the two populations; these emissions correspond to sunward energy flow. For a given X-ray flare size, the microwave flux is scattered over a wider range for the eruptive flares when compared to the confined flares. We also compare the metric and longer wavelength radio bursts between the two populations; these emissions correspond to the flow of nonthermal electrons away from the Sun. We find that almost all the confined flares lack metric radio bursts, suggesting that there is very little flow of energy into the interplanetary medium. On the other hand, there is high degree of association between eruptive flares and metric radio bursts. This suggests that in confined flares the accelerated electrons have no access to open magnetic field lines. Finally, we examined the association of EUV waves with the two flare populations. While we find EUV waves in most of the eruptive flares, there was no confined flare with EUV waves. This suggests that CMEs is a necessary condition for the generation of global waves.

  19. Decoupling of Confined Normal 3He

    Science.gov (United States)

    Dimov, S. G.; Bennett, R. G.; Ilic, B.; Verbridge, S. S.; Levitin, L. V.; Fefferman, A. D.; Casey, A.; Saunders, J.; Parpia, J. M.

    2010-01-01

    Anodic bonding was used to fabricate a 10 mm diameter × 640 nm tall annular geometry suitable for torsion pendulum studies of confined 3He. For pure 3He at saturated vapor pressure the inertia of the confined fluid was seen to be only partially coupled to the pendulum at 160 mK. Below 100 mK the liquid’s inertial contribution was negligible, indicating a complete decoupling of the 3He from the pendulum.

  20. Structure of polymer chains under confinement

    Indian Academy of Sciences (India)

    Jyotsana Lal

    2008-11-01

    We observe by SANS the structure of neutral polystyrene and charged polystyrene sulphonate chains in semi-dilute solutions confined in a model nanoporous glass, Vycor. The size of the free chains in solution is always larger than the pore diameter, 70. The use of a suitable mixture of hydrogenated and deuterated solvents and polymers enables us to measure directly the form factor of one single chain among the others. Single chain form factor was observed both for bulk and confined chains using the condition of zero average contrast. Our measurements on neutral polymer chains are in agreement with the theoretical predictions established by Daoud and de Gennes for chains confined in a cylindrical pore when the chains are entangled and laterally squeezed but remain ideal at large scale along the cylinder axis because of the screening of the excluded volume interactions (so-called regime of ``semi-dilute cigars"). For confined charged polymers, a peak is observed whose intensity increases with molecular weight and the asymptotic 1/ scattering region is extended compared to the bulk. We infer that the chains are sufficiently extended, under the influence of confinement, to highlight the large scale disordered structure of Vycor even under contrast matched conditions. The asymptotic behaviour of the observed interchain structure factor is ≈ 1/2 and ≈ 1/ for free and confined chains respectively.

  1. Confined Space Evaluation Student Manual, #19613

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, David Ezekiel [Los Alamos National Laboratory

    2016-08-29

    Many workplaces contain spaces that are considered to be “confined” because their configuration hinders the activities of employees who must enter into, work in, and exit from them. In general, the permit-required confined spaces (PRCSs) Occupational Safety and Health Administration (OSHA) standard requires that Los Alamos National Laboratory (LANL) evaluate the workplace to determine if any spaces are PRCSs. The standard specifies strict procedures for the evaluation and atmospheric testing of a space before and during an entry by workers. The OSHA PRCS standard provides for alternative (less stringent than full-permit) entry procedures in cases where the only hazard in a space is atmospheric and the hazard can be controlled by forced air. At LANL, all confined spaces or potential confined spaces on LANL-owned or -operated property must be identified and evaluated by a confined space evaluator accompanied by a knowledgeable person. This course provides the information needed by confined space evaluators to make judgements about whether a space is a confined space, and if so, whether the space will require a permit for entry.

  2. Neuropeptide imaging on an LTQ with vMALDI source: The complete `all-in-one' peptidome analysis

    Science.gov (United States)

    Verhaert, Peter D.; Conaway, Maria C. Prieto; Pekar, Tonya M.; Miller, Ken

    2007-02-01

    Direct tissue imaging was performed on dissected insect tissue using a MALDI ion trap to visualize endogenous neuropeptides. Coupling tissue imaging to tandem MSn allows for the identification of previously known species and the ability to identify new ones by de novo sequencing, as searchable databases for insects are sparse. Direct tissue imaging is an attractive technique for the study of neuropeptides as minimal sample preparation is required prior to mass spectrometry. We successfully identified neuropeptides present in the corpora cardiaca and allata of Acheta domesticus (the house cricket). Diagnostic fragments at low m/z were used to distinguish between lipids and neuropeptides. The distribution of peptides appears to be more differentially localized than that of phospholipids, which seem to be more evenly distributed within the tissue.

  3. Food intake regulating-neuropeptides are expressed and regulated through pregnancy and following food restriction in rat placenta

    Directory of Open Access Journals (Sweden)

    Cepeda Libia A

    2008-04-01

    Full Text Available Abstract Background Neuropeptide Y (NPY, agouti related peptide (AgRP, cocaine and amphetamine-regulated transcript (CART and melanocortins, the products of the proopiomelanocortin (POMC, are hypothalamic peptides involved in feeding regulation and energy homeostasis. Recent evidence has demonstrated their expression in rat and human placenta. Methods In the current study, we have investigated the expression of those neuropeptides in the rat placenta by real-time PCR using a model of maternal food restriction. Results Our results showed that placental-derived neuropeptides were regulated through pregnancy and following food restriction. Conclusion These data could indicate that placental-derived neuropeptides represent a local regulatory circuit that may fine-tune control of energy balance during pregnancy.

  4. A pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila

    National Research Council Canada - National Science Library

    Renn, Susan C.P; Park, Jae H; Rosbash, Michael; Hall, Jeffrey C; Taghert, Paul H

    1999-01-01

    .... Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons...

  5. Neuropeptide Y (NPY): genetic variation in the human promoter alters glucocorticoid signaling, yielding increased NPY secretion and stress responses

    National Research Council Canada - National Science Library

    Zhang, Kuixing; Rao, Fangwen; Miramontes-Gonzalez, Jose Pablo; Hightower, C Makena; Vaught, Brian; Chen, Yuhong; Greenwood, Tiffany A; Schork, Andrew J; Wang, Lei; Mahata, Manjula; Stridsberg, Mats; Khandrika, Srikrishna; Biswas, Nilima; Fung, Maple M; Waalen, Jill; Middelberg, Rita P; Heath, Andrew C; Montgomery, Grant W; Martin, Nicholas G; Whitfield, John B; Baker, Dewleen G; Schork, Nicholas J; Nievergelt, Caroline M; O'Connor, Daniel T

    2012-01-01

    This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells...

  6. Diet-Induced Neuropeptide Expression : Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring

    NARCIS (Netherlands)

    Schmidlin, Thierry; Boender, Arjen J.; Frese, Christian K.; Heck, Albert J R; Adan, Roger A H; Altelaar, A. F Maarten

    2015-01-01

    Understanding regulation and action of endogenous peptides, especially neuropeptides, which serve as inter- and intracellular signal transmitters, is key in understanding a variety of functional processes, such as energy balance, memory, circadian rhythm, drug addiction, etc. Therefore, accurate and

  7. Effects of clozapine and haloperidol on body weight,neuropeptide Y and leptin in patients with schizophrenia

    Institute of Scientific and Technical Information of China (English)

    宋梓祥

    2013-01-01

    Objective To investigate the changes of neuropeptide Y(NPY) ,leptin,body weight and their relationship in schizophrenics with clozapine and haloperidol treatment. Methods Thirty schizophrenic patients treated

  8. Neuropeptides in Heteroptera: Identification of allatotropin-related peptide and tachykinin-related peptides using MALDI-TOF mass spectrometry

    Science.gov (United States)

    Recently, the peptidomic analysis of neuropeptides from the retrocerebral complex and abdominal perisympathetic organs of polyphagous stinkbugs (Pentatomidae) revealed the group-specific sequences of pyrokinins, CAPA peptides (CAPA-periviscerokinins/PVKs and CAPA-pyrokinin), myosuppressin, corazonin...

  9. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Science.gov (United States)

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  10. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Yan

    Full Text Available The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in

  11. Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice Krill, Euphausia crystallorophias.

    Directory of Open Access Journals (Sweden)

    Jean-Yves Toullec

    Full Text Available BACKGROUND: The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. METHODOLOGY/PRINCIPAL FINDINGS: Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C, Bursicon (α and β, Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs, Crustacean Cardioactive Peptide (CCAP, Corazonin, Diuretic Hormones (DH, the Eclosion Hormone (EH, Neuroparsin, Neuropeptide F (NPF, small Neuropeptide F (sNPF, Pigment Dispersing Hormone (PDH, Red Pigment Concentrating Hormone (RPCH and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. CONCLUSIONS: This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change

  12. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng

    2012-10-02

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  13. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress.

    Science.gov (United States)

    Zhang, Yuzhuo; Buchberger, Amanda; Muthuvel, Gajanthan; Li, Lingjun

    2015-12-01

    Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides.

  14. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis.

    Science.gov (United States)

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-11-23

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain.

  15. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying.

    Science.gov (United States)

    Zatylny-Gaudin, Céline; Cornet, Valérie; Leduc, Alexandre; Zanuttini, Bruno; Corre, Erwan; Le Corguillé, Gildas; Bernay, Benoît; Garderes, Johan; Kraut, Alexandra; Couté, Yohan; Henry, Joël

    2016-01-01

    Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.

  16. Towards understanding the free and receptor bound conformation of neuropeptide Y by fluorescence resonance energy transfer studies.

    Science.gov (United States)

    Haack, Michael; Beck-Sickinger, Annette G

    2009-06-01

    Despite a considerable sequence identity of the three mammalian hormones of the neuropeptide Y family, namely neuropeptide Y, peptide YY and pancreatic polypeptide, their structure in solution is described to be different. A so-called pancreatic polypeptide-fold has been identified for pancreatic polypeptide, whereas the structure of the N-terminal segment of neuropeptide Y is unknown. This element is important for the binding of neuropeptide Y to two of its relevant receptors, Y(1) and Y(5), but not to the Y(2) receptor subtype. In this study now, three doubly fluorescent-labeled analogs of neuropeptide Y have been synthesized that still bind to the Y(5) receptor with high affinity to investigate the conformation in solution and, for the first time, to probe the conformational changes upon binding of the ligand to its receptor in cell membrane preparations. The results obtained from the fluorescence resonance energy transfer investigations clearly show considerable differences in transfer efficiency that depend both on the solvent as well as on the peptide concentration. However, the studies do not support a pancreatic polypeptide-like folding of neuropeptide Y in the presence of membranes that express the human Y(5) receptor subtype.

  17. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    Science.gov (United States)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  18. Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release.

    Directory of Open Access Journals (Sweden)

    Seungwon Choi

    2015-07-01

    Full Text Available C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH, touch sensitive (ALM and PLM, and stretch sensing (DVA neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states.

  19. Functional properties of Pfr(Tic)amide and BIBP3226 at human neuropeptide FF2 receptors.

    Science.gov (United States)

    Engström, Mia; Wurster, Siegfried; Savola, Juha-Matti; Panula, Pertti

    2003-12-01

    The functional characteristics of two putative neuropeptide FF (NPFF) antagonists, BIBP3226 and PFR(Tic)amide, on the human neuropeptide FF receptor subtype 2 (hNPFF2) were investigated. Surprisingly, PFR(Tic)amide was shown to exhibit agonist properties in the [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTPgammaS) binding assay. The efficacy of PFR(Tic)amide was significantly greater than that of (1DMe)Y8Fa, a stable analog of NPFF, and PFR(Tic)amide can therefore be classified as a 'super-agonist'. BIBP3226 did act as a reversible competitive antagonist on the hNPFF2 receptor. However, high concentrations of BIBP3226 also non-specifically increased [35S]GTP-gammaS binding. The usefulness of BIBP3226 as an antagonist tool on the NPFF receptor is thus limited.

  20. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2.

    Science.gov (United States)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael; Hauser, Frank; Grimmelikhuijzen, Cornelis J P

    2002-12-13

    The Drosophila Genome Project website contains an annotated gene (CG14575) for a G protein-coupled receptor. We cloned this receptor and found that the cloned cDNA did not correspond to the annotated gene; it partly contained different exons and additional exons located at the 5(')-end of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification of this first insect capa receptor will advance our knowledge on insect renal function.

  1. [Neuropeptides, Cytokines and Thymus Peptides as Effectors of Interactions Between Thymus and Neuroendocrine System].

    Science.gov (United States)

    Torkhovskaya, T I; Belova, O V; Zimina, I V; Kryuchkova, A V; Moskvina, S N; Bystrova, O V; Arion, V Ya; Sergienko, V I

    2015-01-01

    The review presents data on mutual influence of nervous system and thymus, realized through the neuroendocrine-immune interactions. The pres- ence of adrenergic and peptidergic nerves in thymus creates conditions for implementation of the effect of neuropeptides secreted by them. These neuropeptides induce activation of thymus cells receptors and influence on the main processes in thymus, including T-lymphocyte maturation, cytokine and hormones production. In turn, thymuspeptides and/or cytokines, controlled by them, enter the brain and exert influence on neuro- nalfunction, which creates the basis for changes of behavior and homeostasis maintenance in response to infection. Ageing and some infectious, autoimmune, neurodegenerative and cancer diseases are accompanied by distortion of interactions between thymus and central nervous system. Mechanisms of signaling pathways, which determine these interactions, are not revealed yet, and their understanding will promote the development of effective therapeutic strategies.

  2. In vitro Leishmania major promastigote-induced macrophage migration is modulated by sensory and autonomic neuropeptides

    DEFF Research Database (Denmark)

    Ahmed, A A; Wahbi, A; Nordlind, K

    1998-01-01

    the chemotactic activities of live, killed and sonicated Leishmania major promastigotes and of the promastigote culture supernatant as well as the L. major surface protease gp63 towards a murine macrophage cell line, Raw 264.7, were investigated, using the Boyden technique. The sensory neuropeptides SOM, CGRP...... and SP, and the autonomic neuropeptides VIP and NPY, were also investigated for possible modulatory effects on this chemotaxis, using the living promastigotes. Living promastigotes were the most efficient attractants for macrophages compared with other forms of the parasites. Prior incubation...... of the macrophages with the parasites completely abolished the chemotactic activity. This might indicate that the living promastigote chemotaxis is a receptor-mediated process. On the other hand, paraformaldehyde-killed promastigotes not only failed to induce macrophage chemotaxis but also inhibited it in comparison...

  3. Neuropeptide Y and leptin receptor expression in the hypothalamus of rats with chronic immobilization stress

    Institute of Scientific and Technical Information of China (English)

    Shaoxian Wang; Jiaxu Chen; Guangxin Yue; Minghua Bai; Meijing Kou; Zhongye Jin

    2013-01-01

    In this study, Sprague-Dawley rats were immobilized to a frame for 3 hours a day for 21 days to establish a model of chronic immobilization stress. The body weight and food intake of rats subjected to chronic immobilization stress were significantly decreased compared with the control group. Dual-labeling immunofluorescence revealed that the expression of leptin receptor and the co-localization coeffient in these leptic receptor neurons in the arcuate nucleus of the hypothalamus were both upregulated, while the number of neuropeptide Y neurons was decreased. Chronic immobilization stress induced high expression of leptin receptor in the arcuate nucleus and suppressed the synthesis and secretion of neuropeptide Y, thereby disrupting the pathways in the arcuate nucleus that regulate feeding behavior, resulting in diminished food intake and reduced body weight.

  4. Does either the gastrointestinal peptide PYY or the neuropeptide NPY bind aluminium?

    Science.gov (United States)

    Korchazhkina, Olga V; Ashcroft, Alison E; Croom, James; Exley, Christopher

    2003-04-01

    Peptide YY and neuropeptide Y are common peptides with a high degree of primary and tertiary structural homology. They are multifunctional and participate in a diverse array of distinct activities including regulation of gastrointestinal function and neural regulation of satiety. Recently both have been implicated in aluminium chemistry in vivo although their modus opperandi have not been determined. We have used molecular fluorescence, RP-HPLC, ESMS and equilibrium dialysis to identify if either peptide YY or neuropeptide Y will bind aluminium in vitro under near-physiological conditions. We were unable to demonstrate any direct interaction between either peptide and aluminium although we have speculated upon an in vivo mechanism whereby PYY, in particular, might form a stable complex with aluminium.

  5. Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee.

    Science.gov (United States)

    Ament, S A; Velarde, R A; Kolodkin, M H; Moyse, D; Robinson, G E

    2011-06-01

    Previous research has led to the idea that derived traits can arise through the evolution of novel roles for conserved genes. We explored whether neuropeptide Y (NPY)-like signalling, a conserved pathway that regulates food-related behaviour, is involved in a derived, nutritionally-related trait, the division of labour in worker honey bees. Transcripts encoding two NPY-like peptides were expressed in separate populations of brain neurosecretory cells, consistent with endocrine functions. NPY-related genes were upregulated in the brains of older foragers compared with younger bees performing brood care ('nurses'). A subset of these changes can be attributed to nutrition, but neuropeptide F peptide treatments did not influence sugar intake. These results contrast with recent reports of more robust associations between division of labour and the related insulin-signalling pathway and suggest that some elements of molecular pathways associated with feeding behaviour may be more evolutionarily labile than others.

  6. Axial Vibration Confinement in Nonhomogenous Rods

    Directory of Open Access Journals (Sweden)

    S. Choura

    2005-01-01

    Full Text Available A design methodology for the vibration confinement of axial vibrations in nonhomogenous rods is proposed. This is achieved by a proper selection of a set of spatially dependent functions characterizing the rod material and geometric properties. Conditions for selecting such properties are established by constructing positive Lyapunov functions whose derivative with respect to the space variable is negative. It is shown that varying the shape of the rod alone is sufficient to confine the vibratory motion. In such a case, the vibration confinement requires that the eigenfunctions be exponentially decaying functions of space, where the notion of spatial domain stability is introduced as a concept dual to that of the time domain stability. It is also shown that vibration confinement can be produced if the rod density and/or stiffness are varied with respect to the space variable while the cross-section area is kept constant. Several case studies, supporting the developed conditions imposed on the spatially dependent functions for vibration confinement in vibrating rods, are discussed. Because variation in the geometric and material properties might decrease the critical buckling loads, we also discuss the buckling problem.

  7. Exceptional Confinement in G(2) Gauge Theory

    CERN Document Server

    Holland, K; Pepé, M; Wiese, U J

    2003-01-01

    We study theories with the exceptional gauge group G(2). The 14 adjoint "gluons" of a G(2) gauge theory transform as {3}, {3bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a "quark" in the {7} representation of G(2) can be screened by "gluons". As a result, in G(2) Yang-Mills theory the string between a pair of static "quarks" can break. In G(2) QCD there is a hybrid consisting of one "quark" and three "gluons". In supersymmetric G(2) Yang-Mills theory with a {14} Majorana "gluino" the chiral symmetry is Z(4)_\\chi. Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, wher...

  8. Endotoxemia-induced muscle wasting is associated with the change of hypothalamic neuropeptides in rats.

    Science.gov (United States)

    Duan, Kaipeng; Yu, Wenkui; Lin, Zhiliang; Tan, Shanjun; Bai, Xiaowu; Gao, Tao; Xi, Fengchan; Li, Ning

    2014-12-01

    In critical patients, sepsis-induced muscle wasting is considered to be an important contributor to complications and mortality. Previous work mainly focuses on the peripheral molecular mechanism of muscle degradation, however little evidence exists for the role of central nervous system in the process. In the present study, we, for the first time, characterized the relationship between muscle wasting and central neuropeptide changes in a septic model. Thirty-six adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) or saline. Twelve, 24 and 48 hrs after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methyl-histidine (3-MH) and tyrosine release. Hypothalamic neuropeptides and inflammatory marker expressions were also measured in three time points. LPS injection caused an increase expression of MuRF-1 and MAFbx, and a significant higher release of 3-MH and tyrosine. Hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP) and neuropeptide Y (NPY) presented a dynamic change after LPS injection. Also, hypothalamic inflammatory markers, interleukin-1 β (IL-1β) and tumor necrosis factor α (TNF-α) increased substantially after LPS administration. Importantly, the expressions of POMC, AgRP and CART were well correlated with muscle atrophy gene, MuRF-1 expression. These findings suggest hypothalamic peptides and inflammation may participate in the sepsis-induced muscle wasting, but the exact mechanism needs further study.

  9. Glucocorticoids are required for meal-induced changes in the expression of hypothalamic neuropeptides.

    Science.gov (United States)

    Uchoa, Ernane Torres; Silva, Lilian Eslaine C M; de Castro, Margaret; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2012-06-01

    Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.

  10. Relative Quantitation of Neuropeptides over a Thousand-fold Concentration Range

    Science.gov (United States)

    Hou, Xiaowen; Xie, Fang; Sweedler, Jonathan V.

    2012-12-01

    Neuropeptides are essential cell-to-cell signaling molecules that influence diverse regulatory and behavioral functions within biological systems. Differing in their amino acid sequences and post-translational modifications, hundreds of neuropeptides are produced via a series of enzymatic processing steps, and their levels vary with location, time, and physiological condition. Due to their wide range of endogenous concentrations and inherent chemical complexity, using mass spectrometry (MS) to accurately quantify changes in peptide levels can be challenging. Here we evaluate three different MS systems for their ability to accurately measure neuropeptide levels: capillary liquid chromatography-electrospray ionization-ion trap (CapLC-ESI-IT) MS, ultraperformance liquid chromatography-electrospray ionization-quadrupole-time-of-flight (UPLC-LC-ESI-Q-TOF) MS, and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS. Specifically, eight sample mixtures composed of five neuropeptide standards, with four technical replicates of each, were labeled with H4/D4-succinic anhydride, followed by relative peptide quantitation using the three MS platforms. For these samples, the CapLC-ESI-IT MS platform offered the most robust ability to accurately quantify peptides over a concentration range of 1200-fold, although it required larger sample sizes than the other two platforms. Both the UPLC-ESI-Q-TOF MS and the MALDI-TOF MS systems had lower limits of quantification, with the MALDI-TOF having the lowest. By implementing several data acquisition schemes and optimizing the data analysis approaches, we were able to accurately quantify peptides over a three orders of magnitude concentration range using either the UPLC or MALDI-TOF platforms. Overall these results increase our understanding of both the capabilities and limits of using MS-based approaches to measure peptides.

  11. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish

    Directory of Open Access Journals (Sweden)

    Ulrich eHerget

    2015-02-01

    Full Text Available The paraventricular nucleus (PVN of the hypothalamus in mammals coordinates neuroendocrine, autonomic and behavioral responses pivotal for homeostasis and the stress response. A large amount of studies in rodents has documented that the PVN contains diverse neuronal cell types which can be identified by the expression of distinct secretory neuropeptides. Interestingly, PVN cell types often coexpress multiple neuropeptides whose relative coexpression level are subject to environment-induced plasticity.Due to their small size and transparency, zebrafish larvae offer the possibility to comprehensively study the development and plasticity of the PVN in large groups of intact animals, yet important anatomical information about the larval zebrafish PVN-homologous region has been missing. Therefore we recently defined the location and borders of the larval neurosecretory preoptic area (NPO as the PVN-homologous region in larval zebrafish based on transcription factor expression and cell type clustering. To identify distinct cell types present in the larval NPO, we also generated a comprehensive 3D map of 9 zebrafish homologs of typical neuropeptides found in the mammalian PVN (arginine vasopressin, corticotropin-releasing hormone, proenkephalin a/b, neurotensin, oxytocin, vasoactive intestinal peptide, cholecystokinin, and somatostatin. Here we extend this chemoarchitectural map to include the degrees of coexpression of two neuropeptides in the same cell by performing systematic pairwise comparisons. Our results allowed the subclassification of NPO cell types, and differences in variability of coexpression profiles suggest potential targets of biochemical plasticity. Thus, this work provides an important basis for the analysis of the development, function, and plasticity of the primary neuroendocrine brain region in larval zebrafish.

  12. Interaction of Mimetic Analogs of Insect Kinin Neuropeptides with Arthropod Receptors

    Science.gov (United States)

    2010-01-01

    associated with the regulation of such diverse processes as hindgut contraction, diuresis and the release of digestive enzymes. In this chapter, the chemical...inhibition of diuresis in the housefly. Strategies for the modification of insect neuropeptide structures for the enhancement of the topical and oral...contraction, diuresis and the release of digestive enzymes. In this chapter, the chemical, conformational and stereochemical aspects of the activity

  13. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food.

    OpenAIRE

    Kalra, S P; Dube, M G; Sahu, A; Phelps, C P; Kalra, P S

    1991-01-01

    Feeding in mammals is a periodic behavior; however, knowledge of how the brain signals an intermittent eating pattern is scanty. Recent indirect evidence indicates that one of the signals encoded in the structure of neuropeptide Y (NPY) is to stimulate robust feeding. Therefore, two series of experiments were undertaken to characterize NPY secretion within the paraventricular nucleus (PVN) in association with eating behavior in the rat. Dynamic changes in NPY concentration in several hypothal...

  14. Intracerebroventricular Administration of Neuropeptide Y Induces Hepatic Insulin Resistance via Sympathetic Innervation

    OpenAIRE

    Anita M van den Hoek; Van Heijningen, Caroline; Schröder-van der Elst, Janny P.; Ouwens, D. Margriet; Havekes, Louis M.; Johannes A Romijn; Kalsbeek, Andries; Pijl, Hanno

    2008-01-01

    OBJECTIVE—We recently showed that intracerebroventricular infusion of neuropeptide Y (NPY) hampers inhibition of endogenous glucose production (EGP) by insulin in mice. The downstream mechanisms responsible for these effects of NPY remain to be elucidated. Therefore, the aim of this study was to establish whether intracerebroventricular NPY administration modulates the suppressive action of insulin on EGP via hepatic sympathetic or parasympathetic innervation. RESEARCH DESIGN AND METHODS—The ...

  15. Neuropeptide and sigma receptors as novel therapeutic targets for the pharmacotherapy of depression.

    Science.gov (United States)

    Paschos, Konstantinos A; Veletza, Stavroula; Chatzaki, Ekaterini

    2009-09-01

    Among the most prevalent of mental illnesses, depression is increasing in incidence in the Western world. It presents with a wide variety of symptoms that involve both the CNS and the periphery. Multiple pharmacological observations led to the development of the monoamine theory as a biological basis for depression, according to which diminished neurotransmission within the CNS, including that of the dopamine, noradrenaline (norepinephrine) and serotonin systems, is the leading cause of the disorder. Current conventional pharmacological antidepressant therapies, using selective monoamine reuptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors, aim to enhance monoaminergic neurotransmission. However, the use of these agents presents severe disadvantages, including a delay in the alleviation of depressive symptoms, significant adverse effects and high frequencies of non-responding patients. Neuroendocrinological data of recent decades reveal that depression and anxiety disorders may occur simultaneously due to hypothalamus-pituitary-adrenal (HPA) axis hyperactivity. As a result, the stress-diathesis model was developed, which attempts to associate genetic and environmental influences in the aetiology of depression. The amygdala and the hippocampus control the activity of the HPA axis in a counter-balancing way, and a plethora of regulatory neuropeptide signalling pathways are involved. Intervention at these molecular targets may lead to alternative antidepressant therapeutic solutions that are expected to overcome the limitations of existing antidepressants. This prospect is based on preclinical evidence from pharmacological and genetic modifications of the action of neuropeptides such as corticotropin-releasing factor, substance P, galanin, vasopressin and neuropeptide Y. The recent synthesis of orally potent non-peptide micromolecules that can selectively bind to various neuropeptide receptors permits the onset of clinical trials to evaluate

  16. Genomic and peptidomic analyses of the neuropeptides from the emerging pest, Drosophila suzukii.

    Science.gov (United States)

    Audsley, Neil; Down, Rachel E; Isaac, R Elwyn

    2015-06-01

    Drosophila suzukii is a highly polyphagous invasive pest which has been recently introduced into Europe and North America, where it is causing severe economic losses through larval infestations of stone and berry fruits. The peptidome of the selected nervous tissues of adult D. suzukii was investigated as a first step in identifying potential targets for the development of novel insecticides. Through in silico analyses of the D. suzukii genome databases 28 neuropeptide families, comprising more than 70 predicted peptides were identified. Using a combination of liquid chromatography and mass spectrometry of tissue extracts, 33 predicted peptides, representing 15 different peptide families were identified by their molecular masses and a total of 17 peptide sequences were confirmed by ion fragmentation. A comparison between the peptides and precursors of D. suzukii and D. melanogaster shows they are highly conserved, with differences only identified in the amino acid sequences of the peptides encoded in the FMRFamide, hugin and ecydysis triggering hormone precursors. All other peptides predicted and identified from D. suzukii appear to be identical to those previously characterized from D. melanogaster. Adipokinetic hormone was only identified in the corpus cardiacum, other peptides present included short neuropeptide F, a pyrokinin and myosuppressin, the latter of which was the only peptide identified from the crop nerve bundle. Peptides present in extracts of the brain and/or thoracico-abdominal ganglion included allatostatins, cardioacceleratory peptide 2b, corazonin, extended FMRFamides, pyrokinins, myoinihibitory peptides, neuropeptide-like precursor 1, SIFamide, short neuropeptide F, kinin, sulfakinins and tachykinin related peptides. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  17. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission

    Science.gov (United States)

    Mosqueiro, Thiago; de Lecea, Luis; Huerta, Ramon

    2014-01-01

    The Locus Coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate in a time scale of several seconds. Evidences from anatomical, electrophysiological and optogenetic experiments have shown that LC neurons receive input from a group of neurons called Hypocretins (HCRTs) that release a neuropeptide called hypocretin. It is less known how these two groups of neurons can be coregulated using GABAergic neurons. Since the time scales of GABAA inhibition is several orders of magnitude faster than the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABAA inhibition is insufficient to control the activity levels of the LCs. Despite slower forms of GABAA can in principle work, there is not much plausibility due to the low probability of the presence of slow GABAA and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides that exert effects in a similar time scale as the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions. PMID:25598695

  18. NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?

    Science.gov (United States)

    Aveleira, Célia A; Botelho, Mariana; Cavadas, Cláudia

    2015-01-01

    Aging was recently described as a life event programmed by the hypothalamus, a key brain region that is crucial for the neuroendocrine interaction between the central nervous system and the periphery. Autophagy impairment is a hallmark of aging, contributing to the aging phenotype and to the aggravation of age-related diseases. Since hypothalamic autophagy decreases with age, strategies to promote autophagy in the hypothalamus may be relevant for control of the aging process. NPY (neuropeptide Y) is an endogenous neuropeptide mainly produced by the hypothalamus. We recently reported, for the first time, that NPY stimulates autophagy in rodent hypothalamus and mediates caloric restriction-induced autophagy in hypothalamic neurons. Moreover, we observed that NPY acts through NPY1R (neuropeptide Y receptor Y1) or NPY5R activation involving a concerted action of different signaling pathways. Since both hypothalamic autophagy and NPY levels decrease with age, modulation of NPY levels could provide new putative therapeutic tools to ameliorate age-related deteriorations and extend longevity.

  19. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    Science.gov (United States)

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  20. Oxygen sensing neurons and neuropeptides regulate survival after anoxia in developing C. elegans.

    Science.gov (United States)

    Flibotte, John J; Jablonski, Angela M; Kalb, Robert G

    2014-01-01

    Hypoxic brain injury remains a major source of neurodevelopmental impairment for both term and preterm infants. The perinatal period is a time of rapid transition in oxygen environments and developmental resetting of oxygen sensing. The relationship between neural oxygen sensing ability and hypoxic injury has not been studied. The oxygen sensing circuitry in the model organism C. elegans is well understood. We leveraged this information to investigate the effects of impairments in oxygen sensing on survival after anoxia. There was a significant survival advantage in developing worms specifically unable to sense oxygen shifts below their preferred physiologic range via genetic ablation of BAG neurons, which appear important for conferring sensitivity to anoxia. Oxygen sensing that is mediated through guanylate cyclases (gcy-31, 33, 35) is unlikely to be involved in conferring this sensitivity. Additionally, animals unable to process or elaborate neuropeptides displayed a survival advantage after anoxia. Based on these data, we hypothesized that elaboration of neuropeptides by BAG neurons sensitized animals to anoxia, but further experiments indicate that this is unlikely to be true. Instead, it seems that neuropeptides and signaling from oxygen sensing neurons operate through independent mechanisms, each conferring sensitivity to anoxia in wild type animals.

  1. Les neuropeptides gastro-intestinaux cibles des effets des rayonnements ionisants : altérations fonctionnelles

    Science.gov (United States)

    Linard, C.; Esposito, V.; Wysocki, J.; Griffiths, N. M.

    1998-04-01

    The symptoms associated with exposure to ionizing radiation are nausea, vomiting, diarrhoea. The response of the gut is complex involving modifications of motility and fluid and electrolyte transport. Gastrointestinal regulatory peptides have an important role in these functions. This study showed that radiation-induced tissue variations of neuropeptides have some repercussions on intestinal biological activity of these peptides soon after irradiation. In addition such modifications are also seen a few years after irradiation. Les symptômes associés à l'exposition aux rayonnements ionisants sont des nausées, vomissements et diarrhées. La réponse du système digestif est complexe, impliquant des modifications de la motilité et du transport d'eau et d'électrolytes. les neuropeptides gastro-intestinaux ont un rôle important dans ces fonctions. Cette étude montre que les variations tissulaires de ces neuropeptides induites par l'irradiation ont des répercussions sur l'activité biologique intestinale pour des temps précoces mais que ces perturbations sont encore visibles quelques années après l'irradiation.

  2. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.

    Directory of Open Access Journals (Sweden)

    Steve Whalan

    Full Text Available In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA, Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

  3. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.

    Science.gov (United States)

    Whalan, Steve; Webster, Nicole S; Negri, Andrew P

    2012-01-01

    In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

  4. Oxytocin and Vasopressin: Linking Pituitary Neuropeptides and their Receptors to Social Neurocircuits

    Directory of Open Access Journals (Sweden)

    Danielle Andrea Baribeau

    2015-09-01

    Full Text Available Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders.

  5. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed. PMID:28139692

  6. Mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuhashi, M.; Payan, D.G.

    1987-03-02

    In order to investigate the relationship between the biochemical pathways that characterize contraction and cell growth, the authors have studied both contraction, mitogenesis and protein synthesis induced by the vasoactive neuropeptides, substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) on four different established vascular and non-vascular smooth muscle cell lines. Contraction in vitro was evaluated by light microscopy and recorded photographically. Mitogenesis and protein synthesis were evaluated by (/sup 3/H)-thymidine incorporation into cells and (/sup 3/H)-amino acid incorporation into trichloroacetic acid precipitated materials, respectively. SP stimulated mitogenesis of A7r5 cells (embryonic rat aorta), but failed to induce significant contraction of these cells, whereas, SP induced contraction of cultured adult rat vascular smooth muscle cells (VSMC), but failed to stimulate mitogenesis. CGRP and VIP stimulated mitogenesis and protein synthesis, respectively, of DDT/sub 1/MF-2 cells (hamster vas deferens), but neither induced contraction of this cell line. All three neuropeptides showed no effect on BC/sub 3/H1 (mouse smooth muscle-like) cells. These results suggest that neuropeptides with vasoactive properties modulate different stages of cellular mitogenic responses which may be regulated by the degree of maturation of smooth muscle cell. 22 references, 5 figures.

  7. Effects of acute heat stress on gene expression of brain-gut neuropeptides in broiler chickens.

    Science.gov (United States)

    Lei, L; Hepeng, L; Xianlei, L; Hongchao, J; Hai, L; Sheikhahmadi, A; Yufeng, W; Zhigang, S

    2013-11-01

    Heat stress-induced reduction in feed intake is an annoyance of the poultry industry. Feed intake is regulated by complex mechanisms in which brain-gut neuropeptides are involved, but the changes in such neuropeptides in broiler chickens during heat exposure remain unclear. In this study, we investigated the effects of acute heat stress (35°C, 6 h, and 65% relative humidity) on the gene expression of appetite-regulating peptides in the hypothalamus and gastrointestinal tract of broiler chickens at 42 d of age. The hypothalamic mRNA levels of neuropeptide Y, agouti-related peptide, pro-opiomelanocortin, cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, melanocortin 4 receptor, melanin-concentrating hormone, prepro-orexin, cholecystokinin (CCK), and ghrelin did not significantly change (P>0.05) in the heat-exposed broiler chickens. However, the mRNA levels of ghrelin in the glandular stomach, duodenum, and jejunum significantly increased and the mRNA level of CCK in the duodenum significantly decreased. The results indicate that acute heat stress had no effect on the gene expression of central appetite-regulating peptides under current experimental conditions; however, some gastrointestinal tract peptides (e.g., ghrelin and CCK) might play a role in the regulation of appetite in acute heat-exposed broiler chickens. Furthermore, ghrelin in the glandular stomach, duodenum, and jejunum might be the main regulative target of acute heat stress induced anorexia.

  8. Neuropeptide W: a key player in the homeostatic regulation of feeding and energy metabolism?

    Science.gov (United States)

    Takenoya, Fumiko; Kageyama, Haruaki; Shiba, Kanako; Date, Yukari; Nakazato, Masamitsu; Shioda, Seiji

    2010-07-01

    Neuropeptide W (NPW), recently isolated from porcine hypothalamus, has been identified as the endogenous ligand for both NPBWR1 (GPR7) and NPBWR2 (GPR8), which belong to the orphan G protein-coupled receptor family. NPW is thought to play an important role in the regulation of feeding and drinking behavior, and to be related to the stress response. NPW-containing neurons are localized in several regions of the brain, including the hypothalamus, hippocampus, limbic system, midbrain, and brain stem. Accumulated evidence suggests that hypothalamic neuropeptides, such as neuropeptide Y (NPY), orexin, melanin-concentrating hormone (MCH), and proopiomelanocortin (POMC), are involved in the regulation of feeding behavior and energy homeostasis via neuronal circuits in the hypothalamus. NPW also forms part of the feeding-regulating neuronal circuitry in conjunction with other feeding-regulating peptide-containing neurons within the hypothalamus. We summarize our current understanding of the distribution of NPW and of the neuronal interactions between NPW and the different feeding-regulating peptide-containing neurons. This review also discusses evidence for the dichotomous actions of NPW on energy balance and the potential mechanisms involved.

  9. Investigations into mild electric foot shock stress-induced cognitive enhancement: possible role of angiotensin neuropeptides.

    Science.gov (United States)

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2013-09-01

    This study was designed to investigate the role of angiotensin neuropeptides in mild electric foot shock stress-induced cognitive enhancement in mice. Mild stress was induced by applying mild electric foot shocks of 0.15 mA intensity for 0.5 s. The stress-induced alteration in cognition was assessed using a Morris water maze test. The animals were subjected to mild electric foot shocks 5 min before we recorded escape latency time (ELT), an index of learning, during the first 4 days of a 5-day trial in the Morris water maze. The time spent in target quadrant (TSTQ), an index of retrieval, was noted on the fifth day without prior administration of electric foot shock. The angiotensin-converting enzyme inhibitor lisinopril (5, 10 and 20 mg/kg), and telmisartan (1, 2 and 5 mg/kg), an angiotensin II receptor blocker, were employed to assess the role of angiotensin neuropeptides. The application of mild electric shocks significantly decreased ELT and increased TSTQ, indicating enhancement in stress-induced learning and memory. However, administration of lisinopril and telmisartan significantly attenuated the stress-induced decrease in ELT and increase in TSTQ. It may be concluded that mild electric foot shock-induced stress triggers the release of angiotensin neuropeptides that may be responsible for memory enhancement.

  10. Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity

    Directory of Open Access Journals (Sweden)

    Roger Maldonado-Ruiz

    2017-01-01

    Full Text Available Central nervous system (CNS senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.

  11. Tissue localization and partial characterization of pheromone biosynthesis activating neuropeptide in Achaea janata

    Indian Academy of Sciences (India)

    V S Ajitha; D Muraleedharan

    2005-03-01

    Female sex pheromone production in certain moth species have been shown to be regulated by a cephalic endocrine peptidic factor: pheromone biosynthesis activating neuropeptide (PBAN), having 33 amino acid residues. Antisera against synthetic Heliothis zea-PBAN were developed. Using these polyclonals, immunoreactivity was mapped in the nervous system of Achaea janata. Three distinct groups of immunopositive secretory neurons were identified in the suboesophageal ganglion; and immunoreactivity was observed in the corpora cardiaca, thoracic and in the abdominal ganglia. From about 6000 brain sub-oesophageal ganglion complexes, the neuropeptide was isolated; and purified sequentially by Sep-pak and reversed phase high performance liquid chromatographic methods. Identity of purified PBAN fraction was confirmed with polyclonal antibody by immunoblotting. Molecular mass of the isolated peptide was determined by matrix-assisted laser desorption/ionization mass spectrometry, and was found to be 3900 Da, same as that of known H. zea-PBAN. Radiochemical bioassay confirmed the pheromonotropic effect of the isolated neuropeptide in this insect.

  12. Transition metal catalysis in confined spaces.

    Science.gov (United States)

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  13. TOPICAL REVIEW: Biopolymer organization upon confinement

    Science.gov (United States)

    Marenduzzo, D.; Micheletti, C.; Orlandini, E.

    2010-07-01

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.

  14. Density shock waves in confined microswimmers

    CERN Document Server

    Tsang, Alan Cheng Hou

    2015-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...

  15. Configurational statistics of confined polymer chains

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, David John

    1978-01-01

    The work on confined chain statistics is reviewed. The work on the general statistics is discussed first, and then some of the theories for the applications of statistics are considered. Two methods for determining the general statistics of a confined chain are discussed. The first is the method of images. The second method involves the use of differential equations. In a specific case the statistics of the unconfined chain are chosen to be defined by the Gaussian real chain distribution. The confinement is provided by two parallel walls. The distribution for the four possible types of chains, bridges (tie chains), loops, cilia (dangling chain ends), and floating (unattached) chains, are derived. These statistics are then applied to two polymer systems in which the confinement is due to internal surfaces, semicrystalline polymers and block copolymers. Both systems are modelled by chains between two walls for a number of morphologies. Mechanical properties are calculated for both systems and for block copolymers swelling is also considered. The main result of this work is that there are two effects which determine the behavior of the chains in these systems. The first is the effect of the confinement which operates on all the chains, since the mode of attachment is not important. The confinement reduces the number of configurations available to the chains. This effect is larger the closer the walls are, relative to the length and stiffness of the chains. The second effect operates only on bridges, since it requires that the ends of the chain be attached to different walls. This is the inherent elastic nature of the bridge, which means that the number of configurations is reduced when it is stretched beyond its equilibrium length. All the behavior calculated here can be explained by these two effects.

  16. MOLECULAR AND SUPRAMOLECULAR ORDERING IN CONFINED ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    Lei Zhu; Stephen Z.D. Cheng; Bret H. Calhoun; Qing Ge; Roderic P. Quirk; Benjamin S. Hsiao; Fengji Yeh

    2000-01-01

    Crystal and phase morphologies and structures determined by self-organization of crystalline-amorphous diblock copolymers, crystallization of the crystallizable blocks, and vitrification of the amorphous blocks are reviewed through a systematic study on a series of poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers. On the base of competitions among these three processes, molecular and supramolecular ordering in confined environments can be investigated. In a concentration-fluctuation-induced disordered (DCF) diblock copolymer, the competition between crystallization of the PEO blocks and vitrification of the PS blocks is momtored by time-resolved simultaneous small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD) techniques. In the case of Tc < TgPS-rich, the crystallization of the PEO blocks is observed to be confined within the bicontinuous DCF phase due to the rapid vitrification of the PS-rich phase.Overall crystallization rate, crystal melting behavior, and crystallinity results further confirm the competition between crystallization and vitrification at different temperatures. In an ordered lamellar PEO-b-PS diblock copolymer, the crystallization of the PEO blocks is completely confined within the ordered lamellae due to rapid vitrification of the PS layers as observed by time-resolved SAXS and WAXD experiments. From the combined two-dimensional SAXS and WAXD measurements, the crystal orientation within the confined lamellar geometry is found parallel to the lamellar surface normal when it is isothermally crystallized at 35℃. In an ordered cylindrical PEO-b-PS sample, the crystallization of the PEO blocks is also observed to be confined within the ordered cylinders because of rapid vitrification of the PS matrix. The crystal orientation within the confined cylinders is found perpendicular to the cylinder axis as it is crystallized at 35℃.

  17. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry

    Directory of Open Access Journals (Sweden)

    De Loof Arnold

    2006-08-01

    Full Text Available Abstract Background For holometabolous insects there has been an explosion of proteomic and peptidomic information thanks to large genome sequencing projects. Heterometabolous insects, although comprising many important species, have been far less studied. The migratory locust Locusta migratoria, a heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence of genomic information. Results Recently, EST (Expressed Sequence Tag databases from Locusta migratoria were constructed. Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors. Based on known locust neuropeptide sequences, we confirmed the sequence of several previously identified neuropeptide precursors (i.e. pacifastin-related peptides, which consolidated our method. In addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques. Conclusion In this study we describe the annotation of 6 novel neuropeptide precursors and the neuropeptides they encode from the

  18. Cooperative rectification in confined Brownian ratchets.

    Science.gov (United States)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubí, J Miguel

    2012-01-01

    We analyze the rectified motion of a Brownian particle in a confined environment. We show the emergence of strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may develop even in situations where separately the ratchet and the geometric restrictions do not give rise to particle motion. The combined rectification effects can lead to bidirectional transport depending on particle size, resulting in a different route for segregation. The reported mechanism can be used to control transport in mesostructures and nanodevices in which particles move in a reduced space.

  19. Coordinated Water Under Confinement Eases Sliding Friction

    Science.gov (United States)

    Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali

    Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.

  20. Is the spin connection confined or condensed?

    CERN Document Server

    Donoghue, John F

    2016-01-01

    The spin connection enters the theory of gravity as a nonabelian gauge field associated with local Lorentz transformations. Normally it is eliminated from making an extra assumption - that of the metricity of the vierbein field. However, treated by itself with the usual gauge action, it has a negative beta function, implying that it is asymptotically free. I suggest that the spin connection could be confined (or perhaps partially confined) in the same way as other nonabelian gauge fields. This would remove the need to make the extra assumption of metricity, as the spin connection would not be present in the low energy theory, leaving the symmetry to be realized only using metric variables.

  1. Area confined position control of molecular aggregates

    CERN Document Server

    Wang, Hong; Wang, Wenchong; Heuer, Andreas; Zhang, Dequin; Fuchs, Harald; Chi, Lifeng

    2015-01-01

    We report an experimental approach to control the position of molecular aggregates on surfaces by vacuum deposition. The control is accomplished by regulating the molecular density on the surface in a confined area. The diffusing molecules are concentrated at the centre of the confined area, producing a stable cluster when reaching the critical density for nucleation. Mechanistic aspects of that control are obtained from kinetic Monte Carlo simulations. The dimensions of the position can further be controlled by varying the beam flux and the substrate temperature.

  2. Confined Feeding Operations - CONFINED_FEEDING_OPERATIONS_IDEM_IN: Confined Feeding Operation Facilities in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — CONFINED_FEEDING_OPERATIONS_IDEM_IN is a point shapefile that contains confined feeding operation facility locations in Indiana, provided by personnel of Indiana...

  3. Homolateral cerebrocortical changes in neuropeptide and receptor expression after minimal cortical infarction.

    Science.gov (United States)

    Van Bree, L; Zhang, F; Schiffmann, S N; Halleux, P; Mailleux, P; Vanderhaeghen, J J

    1995-12-01

    A cortical infarct of 2 mm diameter was obtained in the parietal cortex after a craniotomy, disruption of the dura mater and topical application of 3 M KCl. It has been shown previously that the presence of a small cortical infarct induces an increase in immediate early gene messenger RNA expression followed by an increase in neuropeptide and glutamic acid decarboxylase messenger RNA expression. Glutamate, acting at N-methyl-D-aspartate receptors, is held responsible for these changes, since they are blocked by pretreatment with dizocilpine. In the present study, we have analysed the consequences of the dramatic changes in messenger RNA expression on the level of immediate early gene products c-fos and zif 268, and on that of neuropeptides by using immunohistochemistry. After just 1 h, an increase in c-fos- and zif 268-like immunoreactivity is observed in the entire cortical hemisphere homolateral to the infarct, and is no longer detected after 6 h. An increase in cholecystokinin octapeptide-, substance P-, neuropeptide Y- and somatostatin-like immunoreactivity is observed in the entire cortical hemisphere homolateral to the infarct after three days, and is no longer detected after 30 days. To investigate if these dramatic increases in neuropeptide immunoreactivities may have functional consequences, we studied the level of cholecystokinin receptors by autoradiographic binding using [125I]cholecystokinin-8S and in situ hybridization for the detection of cholecystokinin-b receptor messenger RNA. A decrease in cholecystokinin binding sites and cholecystokinin-b receptor messenger RNA is observed in the entire cortical hemisphere homolateral to the infarct after three days, and is no longer detected after nine days. This study shows that a topical stimulation has diffuse effects, reaching regions far from the site of the lesion, and some of them are still strongly present after nine days. The increase in neuropeptide messenger RNAs is followed by an increase in the

  4. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA and neuropeptide S receptor 1 (NPSR1 in asthma.

    Directory of Open Access Journals (Sweden)

    Nathalie Acevedo

    Full Text Available Retinoid acid receptor-related Orphan Receptor Alpha (RORA was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs in the vicinity of the asthma-associated SNP (rs11071559 and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1, has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children and the European cross-sectional PARSIFAL study (1120 children. Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively, and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.

  5. Confinement and fat-center-vortices model

    CERN Document Server

    Deldar, S

    2004-01-01

    In this paper I review shortly potentials obtained for SU(2), SU(3) and SU(4) static sources from fat-center-vortices model. Results confirm the confinement of quarks in all three gauge groups. Proportionality of string tensions with flux tube counting is better than Casimir scaling especially for SU(4).

  6. Dynamics of Colloids Confined in Microcylinders

    NARCIS (Netherlands)

    Ghosh, Somnath; Wijnperle, Daniël; Mugele, Friedrich Gunther; Duits, Michael H.G.

    2016-01-01

    We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water–glycerol.

  7. Linear and ring polymers in confined geometries

    Science.gov (United States)

    Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk

    2017-03-01

    A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.

  8. Confining strings revisited - a short comment

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    2000-03-01

    We show that Polyakov's confining string Nucl. Phys. B486, (1997) 23, is the author's previously proposed self-avoiding extrinsic strings (Luiz C.L. Botelho), Rev. Bras. Fis. 16, 279, (1986); CALTECH-preprint 68, 1444, (1987); J. Math. Phys. 30 (9), (1989), 2160. (author)

  9. Ultrafast chemistry in complex and confined systems

    Indian Academy of Sciences (India)

    Partha Dutta; Kankan Bhattacharyya

    2004-01-01

    Self-organized molecular assemblies play a crucial role in many natural and biological processes. Recent applications of ultrafast laser spectroscopy and computer simulations revealed that chemistry in a confined environment is fundamentally different from that in ordinary solutions. Many recent examples of slow dynamics in constrained environments and their biological implications are discussed.

  10. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  11. Computer simulation technology in inertial confinement (ICF)

    Energy Technology Data Exchange (ETDEWEB)

    Yabe, Takashi (Gunma Univ., Kiryu (Japan). Faculty of Engineering)

    1994-12-01

    Recent development of computational technologies in inertial confinement fusion (ICF) is reviewed with a special emphasis on hydrodynamic simulations. The CIP method developed for ICF simulations is one of the typical examples that are used in various fields of physics such as variety of computational fluid dynamics, astrophysics, laser applications, geophysics, and so on. (author).

  12. Analysis of thermally-degrading, confined HMX

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  13. Probing the properties of confined liquids

    NARCIS (Netherlands)

    de Beer, Sissi Jacoba Adrianus

    2011-01-01

    In this thesis we describe Atomic Force Microscopy (AFM) measurements and Molecular Dynamics (MD) simulation of the static and dynamic properties of layered liquids confined between two solid surfaces. Liquid molecules in the proximity of a solid surface assemble into layers. When a fluid is

  14. Glycerol in micellar confinement with tunable rigidity

    Science.gov (United States)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  15. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  16. On condensation of topological defects and confinement

    CERN Document Server

    Gaete, P; Gaete, Patricio; Wotzasek, Clovis

    2004-01-01

    We study the static quantum potential for a theory of anti-symmetric tensor fields that results from the condensation of topological defects, within the framework of the gauge-invariant but path-dependent variables formalism. Our calculations show that the interaction energy is the sum of a Yukawa and a linear potentials, leading to the confinement of static probe charges.

  17. Modulus-Pressure Equation for Confined Fluids

    CERN Document Server

    Gor, Gennady Y; Shen, Vincent K; Bernstein, Noam

    2016-01-01

    Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work [J. Chem. Phys., (2015) 143, 194506], using Monte Carlo simulations we showed that the elastic modulus $K$ of a fluid confined in a mesopore is a function of the pore size. Here we focus on modulus-pressure dependence $K(P)$, which is linear for bulk materials, a relation known as the Tait-Murnaghan equation. Using transition-matrix Monte Carlo simulations we calculated the elastic modulus of bulk argon as a function of pressure and argon confined in silica mesopores as a function of Laplace pressure. Our calculations show that while the elastic modulus is strongly affected by confinement and temperature, the slope of the modulus versus pressure is not. Moreover, the calculated slope is in a good agreement with the reference data for bulk argon and experimental data for ...

  18. Polymer Statics and Dynamics Under Box Confinement

    Science.gov (United States)

    Kalb, Joshua; Chakraborty, Bulbul

    2007-03-01

    Current work on biological systems and glass forming polymers (JCP 106, 6176 (1997)) has led to an interest in the study of single polymer systems. The main questions concern relaxation phenomena and the shape adopted by single polymers under hard and soft boundaries. We are concerned with whether or not there is a critical length scale for a confined polymer system. Both structure and relaxation can be described using scaling arguments and tested with Monte Carlo simulations using the bond-fluctuation algorithm (Macromolecules 21,2819 (1988)), which uses a lattice representation of the polymer chain with excluded volume effects. We look at the effects of confinement on a single polymer chain confined to a box by measuring dynamical quantities such as the end-to-end vector and single monomer positions (JACS 124, 20 (2004)). A primary question is how spatial correlations between monomers, `blob's, influence the dynamics. Understanding how these quantities change with various confining geometries will lead to a deeper understanding of biological structures and glass formation. Work supported by NSF-DMR 0403997.

  19. Morphology of diblock copolymers under confinement

    Science.gov (United States)

    Ackerman, David; Ganapathysubramanian, Baskar

    The structure adopted by polymer chains is of particular intrest for materials design. In particular, a great deal of effort has been made to study diblock polymers due to the importance they have in industrial applications. The bulk structure of most systems has been the most widely studied. However, when under the effect of confinement, the polymer chains are forced to adopt structures differing from the familiar bulk phases. As many applications utilize polymers in sizes and shapes that lead to these non bulk structures, the confinement effects are important. A commonly used tool for computationally determining structures is the continuum self consistant field theory (SCFT). We discuss our highly scalable parallel framework for SCFT using real space methods (finite element) that is especially well suited to modelling complex geometries. This framework is capable of modeling both Gaussian and worm like chains. We illustate the use of the software framework in determining structures under varying degrees of confinement. We detail the method used and present selected results from a systematic study of confinement using arbitrary structures.

  20. Chiral effects in the confining QCD vacuum

    CERN Document Server

    Simonov, Yu A

    1994-01-01

    Configurations are introduced into the standard instanton vacuum model. This drastically improves theoretical properties of the vacuum: instanton size density $d(\\rho)$ stabilizes at $\\rho\\sim 0.2 fm$, all chiral effects are formulated in a gauge-invariant way and quarks are confined. An interesting interplay of chiral and confining dynamics is observed; for the realistic values of parameters the Georgi-Manohar picture emerges with chiral radius $R_{ch}\\sim \\rho\\sim 0.2 fm$ much less than confining radius $R_c\\sim$ hadron radius $\\sim 1 fm$. In the limit $R_{ch}\\ll R_c$ the chiral mass $M_{ch}(p)$ is unaffected by confinement and can be taken in the local limit $M_{ch}(p=0)$. Different types of effective chiral Lagrangians (ECL) are obtained, containing all or a part of gluon, quark and Nambu--Goldstone--meson fields. The ECL are manifestly gauge--invariant and in the limit of no gluon fields coincide with those found previously. The problem of the double role of the pion -- as a Goldstone meson or as a $q\\ba...

  1. Signatures of confinement in Landau gauge QCD

    CERN Document Server

    Pawlowski, J M; Nedelko, S; Von Schmekal, L

    2005-01-01

    We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.

  2. Subwavelength light confinement with surface plasmon polaritons

    NARCIS (Netherlands)

    Verhagen, E.

    2009-01-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a r

  3. Non-resonant Nanoscale Extreme Light Confinement

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, Ganapathi Subramanian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].

  4. Threshold power and energy confinement for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T.

    1996-12-31

    In order to predict the threshold power for L-H transition and the energy confinement performance in ITER, assembling of database and analyses of them have been progressed. The ITER Threshold Database includes data from 10 divertor tokamaks. Investigation of the database gives a scaling of the threshold power of the form P{sub thr} {proportional_to} B{sub t} n{sub e}{sup 0.75} R{sup 2} {times} (n{sub e} R{sup 2}){sup +-0.25}, which predicts P{sub thr} = 100 {times} 2{sup 0{+-}1} MW for ITER at n{sub e} = 5 {times} 10{sup 19} m{sup {minus}3}. The ITER L-mode Confinement Database has also been expanded by data from 14 tokamaks. A scaling of the thermal energy confinement time in L-mode and ohmic phases is obtained; {tau}{sub th} {approximately} I{sub p} R{sup 1.8} n{sub e}{sup 0.4{sub P{sup {minus}0.73}}}. At the ITER parameter, it becomes about 2.2 sec. For the ignition in ITER, more than 2.5 times of improvement will be required from the L-mode. The ITER H-mode Confinement Database is expanded from data of 6 tokamaks to data of 11 tokamaks. A {tau}{sub th} scaling for ELMy H-mode obtained by a standard regression analysis predicts the ITER confinement time of {tau}{sub th} = 6 {times} (1 {+-} 0.3) sec. The degradation of {tau}{sub th} with increasing n{sub e} R{sup 2} (or decreasing {rho}{sub *}) is not found for ELMy H-mode. An offset linear law scaling with a dimensionally correct form also predicts nearly the same {tau}{sub th} value.

  5. Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues.

    Science.gov (United States)

    Podvin, Sonia; Bundey, Richard; Toneff, Thomas; Ziegler, Michael; Hook, Vivian

    2015-09-01

    The goal of this study was to define profiles of secreted neuropeptide and catecholamine neurotransmitters that undergo co-release from sympathoadrenal chromaffin cells upon stimulation by distinct secretagogues. Chromaffin cells of the adrenal medulla participate in the dynamic responses to stress, especially that of 'fight and flight', and, thus, analyses of the co-release of multiple neurotransmitters is necessary to gain knowledge of how the stress response regulates cell-cell communication among physiological systems. Results of this study demonstrated that six different secretagogues stimulated the co-release of the neuropeptides Met-enkephalin, galanin, NPY, and VIP with the catecholamines dopamine, norepinephrine, and epinephrine. Importantly, the quantitative profiles of the secreted neurotransmitters showed similarities and differences upon stimulation by the different secretagogues evaluated, composed of KCl depolarization, nicotine, carbachol, PACAP, bradykinin, and histamine. The rank-orders of the secreted profiles of the neurotransmitters were generally similar among these secretagogues, but differences in the secreted amounts of each neurotransmitter occurred with different secretagogues. Epinephrine among the catecholamines showed the highest level of secretion. (Met)enkephalin showed the largest levels of secretion compared to the other neuropeptides examined. Levels of secreted catecholamines were greater than that of the neuropeptides. These data support the hypothesis that profiles of secreted neuropeptide and catecholamine neurotransmitters show similarities and differences upon stimulation by distinct secretagogues. These results illustrate the co-release of concerted neurotransmitter profiles that participate in the stress response of the sympathoadrenal nervous system.

  6. Characterization of a new fish-derived bioactive neuropeptide involved in bone remodelling. Its physiological function and therapeutic potential.

    Directory of Open Access Journals (Sweden)

    Paula Suarez-Bregua

    2014-04-01

    Full Text Available A complex network of autocrine and paracrine signals, hormones and neuronal factors preserve the structural integrity of the skeleton and regulate mineral metabolism in vertebrates. We have characterized a new neuropeptide belonging to parathyroid hormone (PTH family. PTH family members are known to play a key role in maintaining mineral homeostasis, bone remodeling and in regulating embryonic development of skeleton and other tissues. This new neuropeptide is synthesized by two clusters of neurons located in lateral hypothalamus as showed in whole mount in situ hybridization. The functional characterization of the gene using a stable transgenic line revealed its key role in the regulation of bone mineral density. Moreover, phylogenetic analyses and comparative genomics results of conserved synteny reveal that this new neuropeptide is a new ohnolog of the PTH family present in teleosts and some tetrapods like chicken, but absent in mammals . Our findings suggest a new brain to bone pathway, where neuronal factors from hypothalamus signal to receptors on bone cells promoting bone remodeling. Further investigations about this new neuropeptide system would be relevant for developing therapies for bone mineral disorders in humans, since this neuropeptide has a conserved domain similar to other PTH-related peptides which have anabolic effects on bone.

  7. A neuropeptide FF agonist blocks the acquisition of conditioned place preference to morphine in C57Bl/6J mice.

    Science.gov (United States)

    Marchand, Stéphane; Betourne, Alexandre; Marty, Virginie; Daumas, Stéphanie; Halley, Hélène; Lassalle, Jean-Michel; Zajac, Jean-Marie; Frances, Bernard

    2006-05-01

    Neuropeptide FF behaves as an opioid-modulating peptide that seems to be involved in morphine tolerance and physical dependence. Nevertheless, the effects of neuropeptide FF agonists on the rewarding properties of morphine remain unknown. C57BL6 mice were conditioned in an unbiased balanced paradigm of conditioned place preference to study the effect of i.c.v. injections of 1DMe (D-Tyr1(NMe)Phe3]NPFF), a stable agonist of the neuropeptide FF system, on the acquisition of place conditioning by morphine or alcohol (ethanol). Morphine (10 mg/kg, i.p.) or ethanol (2 g/kg, i.p.) induced a significant place preference. Injection of 1DMe (1-20 nmol), given 10 min before the i.p. injection of the reinforcing drug during conditioning, inhibited the rewarding effect of morphine but had no effect on the rewarding effect of ethanol. However, a single injection of 1DMe given just before place preference testing was unable to inhibit the rewarding effects of morphine. By itself, 1DMe was inactive but an aversive effect of this agonist could be evidenced if the experimental procedure was biased. These results suggest that neuropeptide FF, injected during conditioning, should influence the development of rewarding effects of morphine and reinforce the hypothesis of strong inhibitory interactions between neuropeptide FF and opioids.

  8. Quantum Chromodynamics and Color Confinement (confinement 2000) - Proceedings of the International Symposium

    Science.gov (United States)

    Suganuma, H.; Fukushima, M.; Toki, H.

    The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off

  9. Confined disordered strictly jammed binary sphere packings

    Science.gov (United States)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  10. DNA Confined in Nanochannels and Nanoslits

    Science.gov (United States)

    Tree, Douglas R.

    It has become increasingly apparent in recent years that next-generation sequencing (NGS) has a blind spot for large scale genomic variation, which is crucial for understanding the genotype-phenotype relationship. Genomic mapping methods attempt to overcome the weakesses of NGS by providing a coarse-grained map of the distances between restriction sites to aid in sequence assembly. From such methods, one hopes to realize fast and inexpensive de novo sequencing of human and plant genomes. One of the most promising methods for genomic mapping involves placing DNA inside a device only a few dozen nanometers wide called a nanochannel. A nanochannel stretches the DNA so that the distance between fluorescently labeled restriction sites can be measured en route to obtaining an accurate genome map. Unfortunately for those who wish to design devices, the physics of how DNA stretches when confined in a nanochannel is still an active area of research. Indeed, despite decades old theories from polymer physics regarding weakly and strongly stretched polymers, seminal experiments in the mid-2000s have gone unexplained until very recently. With a goal of creating a realistic engineering model of DNA in nanochannels, this dissertation addresses a number of important outstanding research topics in this area. We first discuss the physics of dilute solutions of DNA in free solution, which show distinctive behavior due to the stiff nature of the polymer. We then turn our attention to the equilibrium regimes of confined DNA and explore the effects of stiff chains and weak excluded volume on the confinement free energy and polymer extension. We also examine dynamic properties such as the diffusion coefficient and the characteristic relaxation time. Finally, we discuss a sister problem related to DNA confined in nanoslits, which shares much of the same physics as DNA confined in channels. Having done this, we find ourselves with a well-parameterized wormlike chain model that is

  11. C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol.

    Science.gov (United States)

    Stemmler, Elizabeth A; Barton, Elizabeth E; Esonu, Onyinyechi K; Polasky, Daniel A; Onderko, Laura L; Bergeron, Audrey B; Christie, Andrew E; Dickinson, Patsy S

    2013-08-01

    Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptide discovery commonly involves chemical extraction from a tissue source followed by mass spectrometric characterization. Ideally, the extraction procedure accurately preserves the sequence and any inherent modifications of the native peptides. Here, we present data showing that this is not always true. Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin family members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated from full-length orcokinin precursors as the result of a highly selective peptide modification (peptide truncation with C-terminal methylation) that occurs during extraction. These peptides were observed by MALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent, but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanol excluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substituting deuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group, and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe is not produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears to result from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conversion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. This unusual and highly specific extraction-derived peptide conversion exemplifies the need to consider both chemical and biochemical processes that may modify the structure of endogenous neuropeptides.

  12. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chunxia He

    Full Text Available Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY, a homolog of Drosophila neuropeptide F (NPF, is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1 on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sleep during the nighttime. Further analysis demonstrated that sleep episode duration during nighttime was greatly increased and sleep latency was significantly reduced, indicating that NPF and NPFR1 promote sleep quality, and their action on sleep is not because of an impact of the NPF signal system on development. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by altered NPF signaling, since sleep deprivation decreased transcription of NPF in control flies, and there were less sleep loss during sleep deprivation and less sleep gain after sleep deprivation in flies overexpressing NPF and NPFR1 than in control flies, suggesting that NPF system auto-regulation plays an important role in sleep homeostasis. However, these effects did not occur in females, suggesting a sex-dependent regulatory function in sleep for NPF and NPFR1. NPF in D1 brain neurons showed male-specific expression, providing the cellular locus for male-specific regulation of sleep by NPF and NPFR1. This study brings a new understanding into sleep studies of a sexually dimorphic regulatory mode in female and male flies.

  13. Mice with early retinal degeneration show differences in neuropeptide expression in the suprachiasmatic nucleus

    Directory of Open Access Journals (Sweden)

    Brown R Lane

    2010-07-01

    Full Text Available Abstract Background In mammals, the brain clock responsible for generating circadian rhythms is located in the suprachiasmatic nucleus (SCN of the hypothalamus. Light entrainment of the clock occurs through intrinsically photosensitive retinal ganglion cells (ipRGCs whose axons project to the SCN via the retinohypothalamic tract. Although ipRGCs are sufficient for photoentrainment, rod and cone photoreceptors also contribute. Adult CBA/J mice, which exhibit loss of rod and cone photoreceptors during early postnatal development, have greater numbers of ipRGCs compared to CBA/N control mice. A greater number of photosensitive cells might argue for enhanced light responses, however, these mice exhibit attenuated phase shifting behaviors. To reconcile these findings, we looked for potential differences in SCN neurons of CBA/J mice that might underly the altered circadian behaviors. We hypothesized that CBA/J mice have differences in the expression of neuropeptides in the SCN, where ipRGCs synapse. The neuropeptides vasoactive intestinal peptide (VIP and vasopressin (VP are expressed by many SCN neurons and play an important role in the generation of circadian rhythms and photic entrainment. Methods Using immunohistochemistry, we looked for differences in the expression of VIP and VP in the SCN of CBA/J mice, and using a light-induced FOS assay, we also examined the degree of retinal innervation of the SCN by ipRGCs. Results Our data demonstrate greater numbers of VIP-and VP-positive cells in the SCN of CBA/J mice and a greater degree of light-induced FOS expression. Conclusions These results implicate changes in neuropeptide expression in the SCN which may underlie the altered circadian responses to light in these animals.

  14. Semisynthesis and characterization of the first analogues of pro-neuropeptide y.

    Science.gov (United States)

    von Eggelkraut-Gottanka, Regula; Machova, Zuzana; Grouzmann, Eric; Beck-Sickinger, Annette G

    2003-05-09

    Enzymatic cleavage of prohormone neuropeptide Y (proNPY) leads to mature neuropeptide Y (NPY), a widely distributed neuropeptide with multiple functions both peripherally and centrally. A single dibasic pair of amino acids, Lys38-Arg39, represents the recognition motif for a class of hormone-processing enzymes known as prohormone convertases (PCs). Two members of this PC family, PC1/3 and PC2, are involved in proNPY cleavage. The aim of this work was to establish an effective method for the generation of full-length 69-amino acid proNPY analogues for further studies of prohormone convertase interaction. We have chosen two ligation sites in order to perform the semisynthesis of proNPY analogues by expressed protein ligation (EPL). By using the intein-mediated purification system (IMPACT) with improved conditions for intein splicing, we were able to isolate proNPY 1-40 and proNPY 1-54 fragments as Cterminal thioesters. Peptides bearing Nterminal cysteine instead of the naturally occurring Ser41 and Thr55 residues, respectively, were generated by solid-phase peptide synthesis. Moreover, labels (carboxyfluorescein and biotin) were inserted into the peptide sequences. The synthesis of the [C41]proNPY 41-69 fragment, which proved to be a difficult peptide sequence, could be achieved by the incorporation of two pseudo-proline derivatives. Western blot analysis revealed that all five proNPY analogues are recognized by monoclonal antibodies directed against NPY as well as against the Cflanking peptide of NPY (CPON).

  15. Circulating levels of neuropeptides (CGRP, VIP, NPY) in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Edvinsson, L; Larsen, F S;

    2001-01-01

    The present study investigated the circulating levels and cerebral fluxes of calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP), and neuropeptide Y (NPY) and their relation to cerebral blood flow (CBF) during normoventilation and hyperventilation in patients with fulminant...... in FHF than in cirrhosis, 87 (55-218) vs. 29 (21-42) pmol/L, and 11 (6-29) vs. 5 (3-9)pmol/L, respectively. NPY was normal, none of the measures were related to CBF, and there was no detectable net brain fluxes. Hyperventilation did not alter any of the measures. CGRP and VIP in FHF seem to reflect...

  16. Ancient Grandeur of the Vertebrate Neuropeptide Y System Shown by the Coelacanth Latimeria chalumnae

    OpenAIRE

    Larhammar, Dan; Bergqvist, Christina A

    2013-01-01

    The neuropeptide Y (NPY) family receptors and peptides have previously been characterized in several tetrapods, teleost fishes, and in a holocephalan cartilaginous fish. This has shown that the ancestral NPY system in the jawed vertebrates consisted of the peptides NPY and peptide YY (PYY) and seven G-protein-coupled receptors named Y1–Y8 (Y3 does not exist). The different vertebrate lineages have subsequently lost or gained a few receptor genes. For instance, the human genome has lost three ...

  17. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo...... receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia...... actions detected in retinal explants can be translated into animal models of retinal degenerative diseases....

  18. Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior.

    Science.gov (United States)

    Trebak, Fatima; Alaoui, Abdelilah; Alexandre, David; El Ouezzani, Seloua; Anouar, Youssef; Chartrel, Nicolas; Magoul, Rabia

    2015-07-01

    The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen. The AF poisoning results in symptoms of depression, anorexia, diarrhea, jaundice or anemia that can lead to death, but very few studies have explored the impact of AF on neuroendocrine regulations. To better understand the neurotoxic effects of AF related to anorexia, we explored in rat the impact of AFB1 on the major hypothalamic neuropeptides regulating feeding behavior, either orexigenic (NPY, Orexin, AgRP, MCH) or anorexigenic (α-MSH, CART, TRH). We also studied the effect of AFB1 on a novel neuropeptide, the secretogranin II (SgII)-derived peptide EM66, which has recently been linked to the control of food intake. For this, adult male rats were orally treated twice a week for 5 weeks with a low dose (150 μg/kg) or a high dose (300 μg/kg) of AFB1 dissolved in corn oil. Repeated exposure to AFB1 resulted in reduced body weight gain, which was highly significant for the high dose of AF. Immunocytochemical and quantitative PCR experiments revealed a dose-related decrease in the expression of all the hypothalamic neuropeptides studied in response to AFB1. Such orexigenic and anorexigenic alterations may underlie appetite disorders as they are correlated to a dose-dependent decrease in body weight gain of treated rats as compared to controls. We also found a decrease in the number of EM66-containing neurons in the arcuate nucleus of AFB1-treated animals, which was associated with a lower expression of its precursor SgII. These findings show for the first time that repeated consumption of AFB1 disrupts the hypothalamic regulation of neuropeptides involved in feeding behavior, which may contribute to the lower body weight gain

  19. Analysis of neuropeptides using capillary zone electrophoresis with multichannel fluorescence detection

    Science.gov (United States)

    Sweedler, Jonathan V.; Shear, Jason B.; Fishman, Harvey A.; Zare, Richard N.; Scheller, Richard H.

    1991-12-01

    Capillary zone electrophoresis is fast becoming one of the most sensitive separation schemes for sampling complex microenvironments. A unique detection scheme is developed in which a charge-coupled device (CCD) detects laser induced fluorescence from an axially illuminated electrophoresis capillary. The fluorescence from an analyte band is measured over a several centimeter section of the capillary, greatly increasing the observation time of the fluorescently tagged band. The sensitivity of the system is in the 1-8 X 10-20 mol range for derivatized amino acids and peptides. Subattomole quantities of bag cell neuropeptides collected from the giant marine mollusk Aplysia californica can be measured.

  20. 神经肽的免疫调节作用%Neuropeptide Regulation of Immunity

    Institute of Scientific and Technical Information of China (English)

    王霞; 周江睿; 蒋春雷

    2012-01-01

    机体自我免疫耐受的降低或者破坏会导致免疫系统的失衡,并加重炎症反应过程,从而引发多种自身免疫性疾病.所以诱导免疫耐受并终止炎症反应对恢复机体健康具有十分重要的意义.最近研究发现机体在炎症反应过程中会释放一类神经肽,如VIP,urocortin,ghrelin等.这些神经肽可下调固有免疫应答,抑制抗原特异性Th1细胞分化,诱导调节性T细胞的产生,维持免疫耐受,并终止炎症反应.神经肽的这种抑炎作用主要是通过激活cAMP-PKA通路以及调节与免疫炎症因子表达相关的信号通路来实现的.神经肽有可能成为治疗炎症性疾病的一类新药物.%The loss of immune tolerance results in the breakdown of immune homeostasis and the appearance of exacerbated inflamematory conditions, causing a variety of autoimmune disease. Induction of immune tolerance and resolution of inflammation are essential to health. Some neuropeptides such as VIP, urocortin, ghrelin, are produced during the ongoing inflammatory response. Those neuropeptides could downregulation innate immunity, inhibit antigen-specific Thl-driven responses and generate regulatory T cells. Therefore, they participate in maintaining immune tolerance and resolving inflammation. The effects of these neuropeptides in anti-inflammatory activity depend on the activation of cAMP-protein kinase A signaling and the regulation of various transduction pathways involved in the expression of many immune factors. Neuropeptides maybe become a novel pharmacological agents for the treatment of immune disorders.

  1. Drosophila DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference.

    Science.gov (United States)

    Goda, Tadahiro; Tang, Xin; Umezaki, Yujiro; Chu, Michelle L; Hamada, Fumika N

    2016-11-16

    Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown. We have previously shown that Drosophila exhibit a daily temperature preference rhythm (TPR), in which their preferred temperatures increase during the daytime and then decrease at the transition from day to night (night-onset) (Kaneko et al., 2012). Because Drosophila are small ectotherms, their body temperature is very close to that of the ambient temperature (Stevenson, 1985), suggesting that their TPR generates their body temperature rhythm. Here, we demonstrate that the neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing factor receptor (PDFR) contribute to regulate the preferred temperature decrease at night-onset. We show that PDFR and tethered-DH31 expression in dorsal neurons 2 (DN2s) restore the preferred temperature decrease at night-onset, suggesting that DH31 acts on PDFR in DN2s. Notably, we previously showed that the molecular clock in DN2s is important for TPR. Although PDF (another ligand of PDFR) is a critical factor for locomotor activity rhythms, Pdf mutants exhibit normal preferred temperature decreases at night-onset. This suggests that DH31-PDFR signaling specifically regulates a preferred temperature decrease at night-onset. Thus, we propose that night-onset TPR and locomotor activity rhythms are differentially controlled not only by clock neurons but also by neuropeptide signaling in the brain. Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR

  2. [Molecular cloning of Tupaia belangeri chinensis neuropeptide Y and homology comparison with other analogues from primates].

    Science.gov (United States)

    Dong, Li; Lv, Long-Bao; Lai, Ren

    2012-02-01

    Much attention has been payed to tree shrews for their close phylogenetic relationship with primates, small size, and short reproductive cycle. Especially, they are considered as excellent experiential animals for medicine or/and disease research. A nucleotide sequence encoding neuropeptide Y(NPY) precursor has been cloned from the cDNA library of Tupaia belangeri chinensis. Sequence alignment revealed that the sequence homology with primate NPY was up to 96.9%. The phylogenetic analysis based on NPY precursor sequence revealed that the tree shrew has a close relationship with primates.

  3. Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands

    DEFF Research Database (Denmark)

    Fahrenkrug, Jan; Hannibal, Jens

    2011-01-01

    (calcitonin-gene-related peptide) and were sensitive to capsaicin-treatment. mRNA's for PAC(1) and VPAC(2) receptors occurred in the parathyroid gland, mainly located in the glandular cells. In the thyroid gland PACAP-immunoreactive nerve fibres were associated with blood vessels, thyroid follicles...... with relation to blood vessels co-stored NPY (neuropeptide Y), whereas only a few fibres co-stored CGRP. PAC(1) and VPAC(1) receptor mRNA's occurred in follicular cells and blood vessels, whereas the expression of the VPAC(2) receptor was low. The findings suggest that PACAP plays a role in the regulation...

  4. The Neuropeptide Oxytocin Enhances Information Sharing and Group Decision Making Quality.

    Science.gov (United States)

    De Wilde, Tim R W; Ten Velden, Femke S; De Dreu, Carsten K W

    2017-01-11

    Groups can make better decisions than individuals when members cooperatively exchange and integrate their uniquely held information and insights. However, under conformity pressures group members are biased towards exchanging commonly known information, and away from exchanging unique information, thus undermining group decision-making quality. At the neurobiological level, conformity associates with the neuropeptide oxytocin. A double-blind placebo controlled study found no evidence for oxytocin induced conformity. Compared to placebo groups, three-person groups whose members received intranasal oxytocin, focused more on unique information (i) and repeated this information more often (ii). These findings reveal oxytocin as a neurobiological driver of group decision-making processes.

  5. Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis

    Directory of Open Access Journals (Sweden)

    Donald R. Staines

    2006-01-01

    Full Text Available Disorders such as chronic fatigue syndrome (CFS and gulf war syndrome (GWS are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN in the context of molecular mimicry, inappropriate immunological memory and autoimmunity.

  6. Metabolism of cryptic peptides derived from neuropeptide FF precursors: the involvement of insulin-degrading enzyme.

    Science.gov (United States)

    Grasso, Giuseppe; Mielczarek, Przemyslaw; Niedziolka, Magdalena; Silberring, Jerzy

    2014-09-22

    The term "cryptome" refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE) is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor), generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes.

  7. The Neuropeptide Oxytocin Enhances Information Sharing and Group Decision Making Quality

    Science.gov (United States)

    De Wilde, Tim R. W.; Ten Velden, Femke S.; De Dreu, Carsten K. W.

    2017-01-01

    Groups can make better decisions than individuals when members cooperatively exchange and integrate their uniquely held information and insights. However, under conformity pressures group members are biased towards exchanging commonly known information, and away from exchanging unique information, thus undermining group decision-making quality. At the neurobiological level, conformity associates with the neuropeptide oxytocin. A double-blind placebo controlled study found no evidence for oxytocin induced conformity. Compared to placebo groups, three-person groups whose members received intranasal oxytocin, focused more on unique information (i) and repeated this information more often (ii). These findings reveal oxytocin as a neurobiological driver of group decision-making processes. PMID:28074896

  8. Cloning and sequence analysis of neuropeptide F from the oriental tobacco budworm Helicoverpa assulta (Guenée).

    Science.gov (United States)

    Liu, Xiaoguang; Zhang, Yifan; Zhou, Zijing; Zhao, Zhangwu; Liu, Xiaoguang

    2013-11-01

    Neuropeptide F (NPF), the invertebrate homolog of neuropeptide Y (NPY) in vertebrates, shares similarity of structure and function with NPY. However, a few NPYs were also found in some insect species. In this paper, two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library. The npf1 gene further produces two splicing variants of rnRNAs, i.e. npf1a (lacks the 120 bp segment) and npf1b (includes a 120 bp segment). These two splicing variants form two mature peptides, NPF1a and NPF1b by modification of transcripts. NPF and NPY co-exist in H. assulta. © 2013 Wiley Periodicals, Inc.

  9. The primary structure of the Pol-RFamide neuropeptide precursor protein from the hydromedusa Polyorchis penicillatus indicates a novel processing proteinase activity

    DEFF Research Database (Denmark)

    Schmutzler, C; Diekhoff, D; Grimmelikhuijzen, C J

    1994-01-01

    Neuropeptides containing the C-terminal sequence Arg-Phe-NH2 (RFamide) occur throughout the Animal Kingdom and are abundant in evolutionarily 'old' nervous systems such as those of cnidarians. From the hydromedusa Polyorchis penicillatus we have previously isolated two neuropeptides, Pol-RFamide I (...

  10. Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (less than Glu-Gly-Arg-Phe-NH2)

    DEFF Research Database (Denmark)

    Darmer, D; Schmutzler, C; Diekhoff, D;

    1991-01-01

    Neuropeptides containing the carboxylterminal sequence Arg-Phe-NH2 are found throughout the animal kingdom and are important substances mediating neuronal communication. Here, we have cloned the cDNA coding for the precursor protein of the sea anemone neuropeptide (Antho-RFamide) less than Glu...

  11. Statistical physics of dyons and confinement

    CERN Document Server

    Diakonov, Dmitri

    2008-01-01

    We present a semiclassical description of the SU(N) Yang--Mills theory whose partition function at nonzero temperatures is approximated by that of an ensemble of N kinds of interacting dyons. The ensemble is mathematically described by an exactly solvable 3d quantum field theory, allowing calculation of correlations functions relevant to confinement. We show that all known criteria of confinement are satisfied in this semiclassical approximation: (i) the average Polyakov line is zero below some critical temperature, and nonzero above it, (ii) static quarks in any nonzero N-ality representation have linear rising potential energy, (iii) the average spatial Wilson loop falls off exponentially with the area, (iv) N^2 gluons are canceled out from the spectrum, (v) the critical temperature is in good agreement with lattice data.

  12. Nonlinear magnetohydrodynamics in the Dag confinement configuration

    Science.gov (United States)

    Strauss, H. R.

    2004-03-01

    The Dag magnetic fusion confinement configuration is a spheromak-like toroidal device. It consists of central vertical current channel, and an outer toroidal chamber with a toroidal current. It has a special magnetic topology. Whether this has consequences for plasma confinement is a motive for this study. A restricted class of computations, using the Multi-level 3D code [Park et al., Phys. Plasmas 6, 1796 (1999)], indicate stability for β<15%. For higher β, the simulations exhibit turbulent magnetic behavior similar to spheromaks and reverse field pinches. A reverse field pinch-like variant should be capable of a less turbulent start up and higher β than the spheromak-like Dag.

  13. Confinement of antihydrogen for 1000 seconds

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kemp, S; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2011-01-01

    Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here we report the observation of anti-atom confinement for 1000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of CPT symmetry and ...

  14. Liquefaction of Sand under Low Confining Pressure

    Institute of Scientific and Technical Information of China (English)

    YANG Shaoli; Rolf Sandven; Lars Grande

    2003-01-01

    Undrained behaviour of sand under low cell pressure was studied in static and cyclic triaxial tests. It was found that very loose sand liquefies under static loading with the relative density being a key parameter for the undrained behaviour of sand. In cyclic triaxial tests, pore water pressures built up during the cyclic loading and exceeded the confining cell pressure. This process was accompanied by a large sudden increase in axial deformation. The necessary number of cycles to obtain liquefaction was related to the confining cell pressure, the amplitude of cyclic loading and the relative density of sand.In addition, the patterns of pore water pressure response are different from those of sand samples with different relative densities. The test results are very useful for expounding scour mechanism around coastal structures since they relate to the low stress behaviour of the sand.

  15. Inertial-confinement fusion with lasers

    Science.gov (United States)

    Betti, R.; Hurricane, O. A.

    2016-05-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

  16. Stretching p -wave molecules by transverse confinements

    Science.gov (United States)

    Zhou, Lihong; Cui, Xiaoling

    2017-09-01

    We revisit the confinement-induced p -wave resonance in quasi-one-dimensional (quasi-1D) atomic gases and study the induced molecules near resonance. We derive the reduced 1D interaction parameters and show that they can well predict the binding energy of shallow molecules in quasi-1D system. Importantly, these shallow molecules are found to be much more spatially extended compared to those in three dimensions (3D) without transverse confinement. Our results strongly indicate that a p -wave interacting atomic gas can be much more stable in quasi-1D near the induced p -wave resonance, where most weight of the molecule lies outside the short-range regime and thus the atom loss could be suppressed.

  17. Multiscale confining dynamics from holographic RG flows

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel [Department of Physics, Purdue University,525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Department of Theoretical Physics, Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai 400 005 (India); Faedo, Anton F. [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea, Wales (United Kingdom); Departament de Física Fonamental & Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Hoyos, Carlos [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Ramat-Aviv 69978 (Israel); Mateos, David [Departament de Física Fonamental & Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig Lluís Companys 23, E-08010, Barcelona (Spain); Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea, Wales (United Kingdom)

    2014-05-05

    We consider renormalization group flows between conformal field theories in five (six) dimensions with a string (M-theory) dual. By compactifying on a circle (torus) with appropriate boundary conditions, we obtain continuous families of confining four-dimensional theories parametrized by the ratio Λ{sub flow}/Λ{sub QCD}, with Λ{sub flow} the scale at which the flow between fixed points takes place and Λ{sub QCD} the confinement scale. We construct the dual geometries explicitly and compute the spectrum of scalar bound states (glueballs). We find a ‘universal’ subset of states common to all the models. We comment on the modifications of these models, and the corresponding fine-tuning, required for a parametrically light ‘dilaton’ state to be present. We also comment on some aspects of these theories as probed by extended objects such as strings and branes.

  18. Nonlinear adhesion dynamics of confined lipid membranes

    Science.gov (United States)

    To, Tung; Le Goff, Thomas; Pierre-Louis, Olivier

    Lipid membranes, which are ubiquitous objects in biological environments are often confined. For example, they can be sandwiched between a substrate and the cytoskeleton between cell adhesion, or between other membranes in stacks, or in the Golgi apparatus. We present a study of the nonlinear dynamics of membranes in a model system, where the membrane is confined between two flat walls. The dynamics derived from the lubrication approximation is highly nonlinear and nonlocal. The solution of this model in one dimension exhibits frozen states due to oscillatory interactions between membranes caused by the bending rigidity. We develope a kink model for these phenomena based on the historical work of Kawasaki and Otha. In two dimensions, the dynamics is more complex, and depends strongly on the amount of excess area in the system. We discuss the relevance of our findings for experiments on model membranes, and for biological systems. Supported by the grand ANR Biolub.

  19. Multiscale confining dynamics from holographic RG flows

    CERN Document Server

    Elander, Daniel; Hoyos, Carlos; Mateos, David; Piai, Maurizio

    2013-01-01

    We consider renormalization group flows between conformal field theories in five (six) dimensions with a string (M-theory) dual. By compactifying on a circle (torus) with appropriate boundary conditions, we obtain continuous families of confining four-dimensional theories parametrized by the ratio $\\Lambda_{\\rm {\\tiny flow}}/\\Lambda_{\\rm \\tiny{QCD}}$, with $\\Lambda_{\\rm \\tiny{flow}}$ the scale at which the flow between fixed points takes place and $\\Lambda_{\\rm \\tiny{QCD}}$ the confinement scale. We construct the dual geometries explicitly and compute the spectrum of scalar bound states (glueballs). We find a `universal' subset of states common to all the models. We comment on the modifications of these models, and the corresponding fine-tuning, required for a parametrically light `dilaton' state to be present. We also comment on some aspects of these theories as probed by extended objects such as strings and branes.

  20. Multiphase flows in confinement with complex geometries

    Science.gov (United States)

    Aymard, Benjamin; Pradas, Marc; Vaes, Urbain; Kalliadasis, Serafim

    2016-11-01

    Understanding the dynamics of immiscible fluids in confinement is crucial in numerous applications such as oil recovery, fuel cells and the rapidly growing field of microfluidics. Complexities such as microstructures, chemical-topographical heterogeneities or porous membranes, can often induce non-trivial effects such as critical phenomena and phase transitions . The dynamics of confined multiphase flows may be efficiently described using diffuse-interface theory, leading to the Cahn-Hilliard-Navier-Stokes(CHNS) equations with Cahn wetting boundary conditions. Here we outline an efficient numerical method to solve the CHNS equations using advanced geometry-capturing mesh techniques both in two and three dimensional scenarios. The methodology is applied to two different systems: a droplet on a spatially chemical-topographical heterogeneous substrateand a microfluidic separator.

  1. Spiral precipitation patterns in confined chemical gardens.

    Science.gov (United States)

    Haudin, Florence; Cartwright, Julyan H E; Brau, Fabian; De Wit, A

    2014-12-09

    Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.

  2. Extra-dimensional confinement of quantum particles

    CERN Document Server

    Hedin, Eric R

    2016-01-01

    A basic theoretical framework is developed in which elementary particles have a component of their wave function extending into higher spatial dimensions. This model postulates an extension of the Schrodinger equation to include a 4th and 5th spatial component. A higher-dimensional simple harmonic oscillator confining potential localizes particles into 3-d space, characterizing the brane tension which confines Standard Model particles to the sub-manifold. Quantum effects allow a non-zero probability for a particle's evanescent existence in the higher dimensions, and suggest an experimental test for the validity of this model via particles being temporarily excited into the first excited state of the extra-dimensional potential well, in which their probability of existing in 3-d space transiently drops to zero. Several consistency checks of the outcomes of this extra-dimensional model are included in this paper. Among the outcomes of this model are: a match with the quantum phenomenon of zitterbewegung; the pr...

  3. Compaction of granular material inside confined geometries

    Science.gov (United States)

    Marks, Benjy; Sandnes, Bjornar; Dumazer, Guillaume; Eriksen, Jon Alm; Måløy, Knut Jørgen

    2015-06-01

    In both nature and the laboratory, loosely packed granular materials are often compacted inside confined geometries. Here, we explore such behaviour in a quasi-two dimensional geometry, where parallel rigid walls provide the confinement. We use the discrete element method to investigate the stress distribution developed within the granular packing as a result of compaction due to the displacement of a rigid piston. We observe that the stress within the packing increases exponentially with the length of accumulated grains, and show an extension to current analytic models which fits the measured stress. The micromechanical behaviour is studied for a range of system parameters, and the limitations of existing analytic models are described. In particular, we show the smallest sized systems which can be treated using existing models. Additionally, the effects of increasing piston rate, and variations of the initial packing fraction, are described.

  4. Gauge topology and confinement: an update

    CERN Document Server

    Shuryak, Edward

    2015-01-01

    In the instanton ensemble the fermionic zero modes collectivize and break chiral symmetry. Recent studies of resulting zero mode zone confirm its very small width and overall importance for lattice simulations. Confinement however has been related with completely different topological objects, the magnetic monopoles. Instanton constituents -- instanton dyons, discovered at nonzero holonomy by Pierre van Baal and others -- are able to explain both confinement and chiral symmetry breaking. The talk summarizes recent works deriving the instanton-dyon mutual interactions, and statistical studies of their ensemble. At high density the screening is robust enough to do it analytically, in the mean-field-type approach: we call this limit Dense Dyonic Plasma (DDP). Above $T_c$ the classical interaction between the dyons induce strong correlations and should be studied by direct numerical simulations. Those works are now in progress.

  5. Tachocline Confinement by an Oscillatory Magnetic Field

    CERN Document Server

    Forgács-Dajka, E

    2001-01-01

    Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative zone is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B_p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of eta~10^10 cm^2/s (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B_p, eta). The assumption of the dynamo field penetrating into the tachocline is consistent whenever eta>10^9 cm^2/s.

  6. Gaussian Confinement in a Jkj Decay Model

    Science.gov (United States)

    da Silva, Mario L. L.; Hadjimichef, Dimiter; Vasconcellos, Cesar A. Z.

    In microscopic decay models, one attempts to describe hadron strong decays in terms of quark and gluon degrees of freedom. We begin by assuming that strong decays are driven by the same interquark Hamiltonian which determines the spectrum, and that it incorporates gaussian confinement. An A → BC decay matrix element of the JKJ Hamiltonian involves a pair-production current matrix elements times a scatering matrix element. Diagrammatically this corresponds to an interaction between an initial line and produced pair.

  7. Confining caesium in expanded natural Perlite

    OpenAIRE

    Rehspringer, Jean Luc; Balencie, J.; Vilminot, Serge; Burger, Didier; Boos, Anne; Estournès, Claude

    2007-01-01

    International audience; We present the potential use of expanded perlite, a metastable amorphous hydrated aluminum silicate, as a permanent medium for the long-term confinement of caesium. A simple loading by mixing an aqueous caesium nitrate solution and expanded perlite at 300K followed by thermal annealing leads to 96% sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, appears as the crystalline phase embedded in a glassy phase. Leaching tests on the res...

  8. Statistical mechanics of confined quantum particles

    CERN Document Server

    Bannur, V M; Bannur, Vishnu M.

    2006-01-01

    We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which may be applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC), condensed matter physics etc. Detailed study of QGP system is carried out and compared with lattice results. Further, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.

  9. Statistical Mechanics of Confined Quantum Particles

    Science.gov (United States)

    Bannur, Vishnu M.; Udayanandan, K. M.

    We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which is applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC) etc. Detailed study of QGP system is carried out and compared with lattice results. Furthermore, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.

  10. Waveforms Measured in Confined Thermobaric Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  11. Numerical Simulation of Confined Multiple Transverse Jets

    Science.gov (United States)

    2012-06-25

    density ratio • Multiple confined transverse jets • Single phase/component ONERA experimental/LES studies of an eight jet mixing chamber 9Distribution A...Approved for public release; distribution unlimited ONERA Experiments Pros: • PIV and PLIF data • Characterized boundary conditions Cons: • ONERA ...Pairs Diluent Flow X = 2d: X = 5d: X = 10d: Fluent STAR-CCM+ CFD++ Axial locations (d = inj. dia.) Experiment LES ( ONERA ) Distribution A: Approved

  12. Beam ion confinement on NSTX-U

    Science.gov (United States)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.

    2016-10-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good beam ion confinement is essential to achieve the anticipated improvements in performance. In the planned beam ion confinement experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses from six neutral beam sources will be injected into center-stack limited L-mode plasmas to characterize the beam ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the beam ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The tangential and vertical Fast-Ion D-Alpha (FIDA) diagnostics and multi-view Solid State Neutral Particle Analyzer (SSNPA) arrays will be used to measure beam ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Beam ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental data and comparisons with classical predictions from NUBEAM modeling will be presented. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  13. Thermonuclear reactions with magnetical confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinkau, K.; Schumacher, U.

    1982-09-01

    As the result of intensive research activities in the plasma physics one can expect that in future an independent burning plasma can be produced. The focal point of fusion research then will crescent shift on the answer of the question whether the technological development the design of a commercial working energy systems allows. The authors report on thermonuclear devices, plasma confinement, plasma heating, thermonuclear reactions and safety.

  14. Spectral confinement and current for atoms in strong magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren

    2007-01-01

    e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B<3......e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B

  15. Confined Tube Crimp Using Portable Hand Tools

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Joseph James [Los Alamos National Laboratory; Pereyra, R. A. [LANL Retired; Archuleta, Jeffrey Christopher [Los Alamos National Laboratory; Martinez, Isaac P. [Los Alamos National Laboratory; Nelson, A. M. [MST-16 Summer Student (2007); Allen, Ronald Scott [Los Alamos National Laboratory; Page, R. L. [LANL Retired; Freer, Jerry Eugene [Los Alamos National Laboratory; Dozhier, Nathan Gus [Los Alamos National Laboratory

    2016-04-04

    The Lawrence Radiation Laboratory developed handheld tools that crimp a 1/16 inch OD tube, forming a leak tight seal1 (see Figure 1). The leak tight seal forms by confining the 1/16 inch OD tubing inside a die while applying crimp pressure. Under confined pressure, the tube walls weld at the crimp. The purpose of this study was to determine conditions for fabricating a leak tight tube weld. The equipment was used on a trial-and-error basis, changing the conditions after each attempt until successful welds were fabricated. To better confine the tube, the die faces were polished. Polishing removed a few thousandths of an inch from the die face, resulting in a tighter grip on the tubing wall. Using detergent in an ultrasonic bath, the tubing was cleaned. Also, the time under crimp pressure was increased to 30 seconds. With these modifications, acceptable cold welds were fabricated. After setting the conditions for an acceptable cold weld, the tube was TIG welded across the crimped face.

  16. The Confinement of Neptune's Ring Arcs

    Science.gov (United States)

    Porco, C.; Namouni, F.

    2002-09-01

    The stability of the narrow ring arcs of Neptune has been a puzzle since their discovery. First detected in 1984 from the Earth in stellar occultations and imaged by the Voyager spacecraft in 1989, the 5 arcs spanning approximately 40 deg in longitude are apparently confined against the rapid azimuthal and radial spreading that results from energy dissipation in inter-particle collisions. Voyager data were used to argue in favor of an arc confinement model (Goldreich et al. AJ 1986; Porco, Science 1991) that relies on both the vertical and mean angular motions of the nearby Neptunian moon, Galatea, to produce a pair of Lindblad (LR) and corotation inclination (CIR) resonances capable of trapping ring particles into a sequence of arcs. However, HST and Earth-based observations taken in 1998 (Dumas et al. Nature 1999; Sicardy et al. Nature 1999) indicate a revised arc mean angular motion which displaces the arcs away from the CIR, leaving their stability once again unexplained. In this presentation, we will discuss the workings of a hitherto neglected resonance which relies on Galatea's orbital eccentricity and which, together with the LR, is likely responsible for the angular confinement of the arcs. The action of this resonance, which operates through the precession of Galatea's eccentric orbit forced by the arcs' inertia, will allow a determination of the arcs' mass from future measurements of Galatea's eccentricity. We acknowledge the financial support of NASA's Planetary Geology and Geophysics Program and the Southwest Research Institute's Internal Research Grant program.

  17. Radioactivity Confinement Studies Within the SEAL Program

    Science.gov (United States)

    Collén, Jan; Matsugu, Ron; Natalizio, Antonio; Shen, Kecheng

    1997-09-01

    In the framework of the European SEAL program, investigations have been performed with the aim of optimizing the second confinement function and plant layout with respect to normal operation as well as abnormal operation, including accident conditions. This has been done for two conceptual fusion reactor designs: one using water as the coolant and the other using helium. The starting point of these investigations was the SEAFP project design. For the water-cooled reactor design the studies were focused on design options such as pressure suppression spray system, pressure suppression pool with closed containment or with venting to gravel bed filter and stack, and separate expansion volume optionally operated with a vacuum and equipped with spray system. Similar analyses were performed for the helium-cooled reactor design. The analyses were focused on design options comprising a single, large confinement volume or a vent duct connected to an expansion volume operated at vacuum in comparison with the SEAFP Model 1. The thermal-hydraulic analyses performed with the MELCOR code provide an integrated assessment of the cooling loop and confinement system dynamics.

  18. Quantum Confined Semiconductors for High Efficiency Photovoltaics

    Science.gov (United States)

    Beard, Matthew

    2014-03-01

    Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.

  19. Dynamics of Hyperbranched Polymers under Confinement

    Science.gov (United States)

    Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano

    2015-03-01

    The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.

  20. Computer simulation of polypeptides in a confinement.

    Science.gov (United States)

    Sikorski, Andrzej; Romiszowski, Piotr

    2007-02-01

    A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.

  1. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  2. Chain-like molecules confined in nanopores

    Science.gov (United States)

    Huber, Patrick; Soprunyuk, Viktor; Hofmann, Tommy; Knorr, Klaus

    2004-03-01

    We present an x-ray diffraction study on chain-like molecules, i.e. a selection of n-alkane molecules, embedded in the pores of nanoporous silica matrices. The lengths of the hydrocarbon chains are comparable to the mean diameter ( 7nm) of the tubular like nanopores which leads to drastic geometric restrictions. Diffraction patterns, recorded on heating and cooling between 200 K and 310 K, elucidate how the structure and phase behavior of the molecules is affected by the random substrate disorder and the confinement. The confined n-alkanes form close-packed structures by aligning parallel to the pore axis. In the case of the medium-length hydrocarbon chains one basic ordering principle known from the bulk crystalline state, i.e. the lamellar ordering of the molecules, is quenched[1], whereas for shorter n-alkanes this ordering principle survives[2]. The confined solids mimic the orientational order-disorder transitions known from the 3D unconfined crystals albeit in a modified fashion. 1. P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhysics Letters, in press; 2. P. Huber, D. Wallacher, J. Albers, K. Knorr, Journal of Physics: Condensed Matter 15, 309 (2003).

  3. CATTLE PRODUCTIVE PERFORMANCE EVALUATION CONFINED SUBMITTED IMMUNOCASTRATION

    Directory of Open Access Journals (Sweden)

    J. M. Maluf

    2016-09-01

    Full Text Available In order to evaluate the performance and carcass characteristics of cattle cross breeds ½ Aberdeen Angus x ½Nelore and Nelore confined submitted to immunocastration 218 male animals were used, feedlot, averaging 342 kg, divided into three experimental groups, T1: 117 steers ½ Angus x ½ Nelore no castrated (ANC, T2: 51 Nelore steers uncastrated (NNC and T3: 50 Nellore steers immunocastrated (NIC. The experiment lasted 144 days of confinement. The selection of animals for group formation was according to the individual weight, breed, sex condition and age. For immunocastration it wasused Bopriva® vaccine. The rating was finished according to the parameter used by the meatpacking industry ranging from 1 to 5. The experimental design was completely randomized in three groups. For the analyzes the variables studied statistics were submitted to analysis of variance (ANOVA and Tukey test both at the 5% level of significance. The results showed differences (p <0.01 at various features of productive performance and carcass between treatments. For slaughter weight, the ANC animals were higher (with 582.1 kg to Nelore, regardless of sexual condition, and the NNC were in turn heavier than the NIC, 527.4 and 503.7 respectively. Finally, it observed that the use of immunocastration in Nellore animals provided a decrease in productive performance of confined animals, but provided better finish carcass similar to crossbred (ANC.

  4. A Study of a Confined Hydrogen Negative Ion

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2007-01-01

    The ground and three low-excited states of the hydrogen negative ion confined by a spherical harmonic oscillator potential are studied employing the adiabatic hyperspherical approach method. Total energies are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values.

  5. Nerve fibre studies in skin biopsies in peripheral neuropathies. I. Immunohistochemical analysis of neuropeptides in diabetes mellitus

    DEFF Research Database (Denmark)

    Lindberger, M; Schröder, H D; Schultzberg, M

    1989-01-01

    Standardised skin biopsies followed by immunohistochemical examination for the presence of terminal nerve fibres reacting for neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) were evaluated. Healthy subjects regularly displayed free nerve endings of both fibre types...... in the dermis layers. Five type I diabetes patients without clinical or neurophysiological evidence of polyneuropathy also had reduced density of both fibre types, being significant for CGRP fibres when compared with controls. Skin biopsy with immunohistochemical staining for neuropeptides may represent...... a sensitive tool in evaluation of patients with peripheral neuropathies....

  6. Characterization, tissue distribution, and expression of neuropeptide Y in olive flounder Paralichthys olivaceus

    Science.gov (United States)

    Wang, Qian; Tan, Xungang; Du, Shaojun; Sun, Wei; You, Feng; Zhang, Peijun

    2015-05-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide of the neuropeptide Y family that plays key roles in the regulation of food intake. In this study, we focused on NPY mRNA expression changes around feeding time and during food deprivation in olive flounder. The olive flounder NPY mRNA levels were analyzed in different tissues and a high level of expression was detected in the brain. We also demonstrated a correlation between NPY expression levels in the brain and feeding schedule. NPY expression levels in olive flounder maintained on a daily scheduled feeding regimen increased shortly before feeding and decreased after the scheduled feeding time. Compared with the -1 h group before feeding, NPY expression in the 3 h group after feeding decreased significantly ( PNPY mRNA levels in the 24 h fasted group ( PNPY expression is associated with food intake in olive flounder. This result reveals the function of NPY in regulating food intake and its potential importance in olive flounder aquaculture.

  7. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster.

    Science.gov (United States)

    Alò, Raffaella; Avolio, Ennio; Mele, Maria; Di Vito, Anna; Canonaco, Marcello

    2015-04-15

    Interaction of the orexinergic (ORXergic) neuronal system with the excitatory (glutamate, l-Glu) or the inhibitory (GABA) neurosignaling complexes evokes major homeostatic physiological events. In this study, effects of the two ORXergic neuropeptides (ORX-A/B) on their receptor (ORX-2R) expression changes were correlated to feeding and grooming actions of the hibernating hamster (Mesocricetus auratus). Infusion of the central amygdala nucleus (CeA) with ORX-A caused hamsters to consume notable quantities of food, while ORX-B accounted for a moderate increase. Interestingly the latter neuropeptide was responsible for greater frequencies of grooming with respect to both controls and the hamsters treated with ORX-A. These distinct behavioral changes turned out to be even greater in the presence of l-Glu agonist (NMDA) while the α1 GABAA receptor agonist (zolpidem, Zol) greatly reduced ORX-A-dependent feeding bouts. Moreover, ORX-A+NMDA mainly promoted greater ORX-2R expression levels with respect to ORX-A-treated hamsters while ORX-B+Zol was instead largely responsible for a down-regulatory trend. Overall, these features point to CeA ORX-2R sites as key sensory limbic elements capable of regulating eating and grooming responses, which may provide useful insights regarding the type of molecular mechanism(s) operating during feeding bouts.

  8. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans.

    Science.gov (United States)

    Nelson, M D; Trojanowski, N F; George-Raizen, J B; Smith, C J; Yu, C-C; Fang-Yen, C; Raizen, D M

    2013-01-01

    Neuropeptides have central roles in the regulation of homoeostatic behaviours such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed during lethargus. nlp-22 shows cyclical mRNA expression in synchrony with lethargus; it is regulated by LIN-42, an orthologue of the core circadian protein PERIOD; and it is expressed solely in the two RIA interneurons. nlp-22 and the RIA interneurons are required for normal lethargus quiescence, and forced expression of nlp-22 during active stages causes anachronistic locomotion and feeding quiescence. Optogenetic stimulation of the RIA interneurons has a movement-promoting effect, demonstrating functional complexity in a single-neuron type. Our work defines a quiescence-regulating role for NLP-22 and expands our knowledge of the neural circuitry controlling Caenorhabditis elegans behavioural quiescence.

  9. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  10. Characterization, tissue distribution and regulation of neuropeptideY in Schizothorax prenanti.

    Science.gov (United States)

    Wei, R; Zhou, C; Yuan, D; Wang, T; Lin, F; Chen, H; Wu, H; Xin, Z; Yang, S; Wang, Y; Chen, D; Liu, J; Gao, Y; Li, Z

    2014-08-01

    In this study, the full-length neuropeptide Y (npy) complementary (c)DNA was cloned in ya fish Schizothorax prenanti. npy cDNA was composed of 789 nucleotides with a 288 nucleotide open reading frame encoding a protein of 96 amino acids. The deduced amino acid sequences contained a 28 amino acids signal peptide followed by a 36 amino acids mature neuropeptide Y (NPY). The npy mRNA was expressed mainly in the brain and eye as detected by real-time quantitative polymerase chain reaction RT-PCR (rt-qPCR). The S. prenanti NPY was detectable from blastulation to hatch, suggesting that npy might be involved in the late embryonic development of S. prenanti. An experiment was conducted to determine the expression profile of npy during feeding of a single meal and during long-term fasting. The expression level of npy in fed fish was significantly decreased at 0.5, 1.5, 3 and 9 h post-feeding (hpf) than in fasting fish. Fasting for 14 days induced an increase in npy messenger (m)RNA expression in the brain. Overall, the results suggest that NPY is a conserved peptide that might be involved in the regulation of feeding and other physiological function in S. prenanti. © 2014 The Fisheries Society of the British Isles.

  11. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus***

    Institute of Scientific and Technical Information of China (English)

    Yale Duan; Rui Zhang; Min Zhang; Lijuan Sun; Suzhen Dong; Gang Wang; Jun Zhang; Zheng Zhao

    2013-01-01

    Metformin may reduce food intake and body weight, but the anorexigenic effects of metformin are stil poorly understood. In this study, Sprague-Dawley rats were administered a single intracere-broventricular dose of metformin and compound C, in a broader attempt to investigate the regula-tory effects of metformin on food intake and to explore the possible mechanism. Results showed that central administration of metformin significantly reduced food intake and body weight gain, par-ticularly after 4 hours. A reduction of neuropeptide Y expression and induction of AMP-activated protein kinase phosphorylation in the hypothalamus were also observed 4 hours after metformin administration, which could be reversed by compound C, a commonly-used antagonist of AMP-activated protein kinase. Furthermore, metformin also improved lipid metabolism by reducing plasma low-density lipoprotein. Our findings suggest that under normal physiological conditions, central regulation of appetite by metformin is related to a decrease in neuropeptide Y gene expres-sion, and that the activation of AMP-activated protein kinase may simply be a response to the anorexigenic effect of metformin.

  12. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism.

    Science.gov (United States)

    Zhang, Wei; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.

  13. Dorsal hippocampus: a site of action of neuropeptides on avoidance behavior?

    Science.gov (United States)

    Greidanus, T B; De Wied, D

    1976-01-01

    Vasopressin and ACTH 4-10 induce a dose dependent long-term, respectively short-term inhibition of extinction of a pole jumping avoidance response in animals with sham lesions in the antero-dorsal hippocampus. Small lesions, causing a restricted damage in this area of the brain, partly inhibit the behavioral effect of vasopressin. Extensive lesions in the antero-dorsal hippocampus completely prevent the inhibitory effects of vasopressin and of ACTH 4-10 on extinction of the avoidance response. The extensive lesions in the dorsal hippocampus complex do not interfere with the rate of extinction, but acquisition of the response is retarded. These observations do not allow the conclusion that the hippocampal complex is the locus of action of neuropeptides in relation to avoidance behavior; it is more likely that this brain region is but one site of behavioral action of these hormones, and that the limbic system needs to be intact to permit the neuropeptides to exert their behavioral effects.

  14. Neuronal network of panic disorder: the role of the neuropeptide cholecystokinin.

    Science.gov (United States)

    Zwanzger, P; Domschke, K; Bradwejn, J

    2012-09-01

    Panic disorder (PD) is characterized by panic attacks, anticipatory anxiety and avoidance behavior. Its pathogenesis is complex and includes both neurobiological and psychological factors. With regard to neurobiological underpinnings, anxiety in humans seems to be mediated through a neuronal network, which involves several distinct brain regions, neuronal circuits and projections as well as neurotransmitters. A large body of evidence suggests that the neuropeptide cholecystokinin (CCK) might be an important modulator of this neuronal network. Key regions of the fear network, such as amygdala, hypothalamus, peraqueductal grey, or cortical regions seem to be connected by CCKergic pathways. CCK interacts with several anxiety-relevant neurotransmitters such as the serotonergic, GABA-ergic and noradrenergic system as well as with endocannabinoids, NPY and NPS. In humans, administration of CCK-4 reliably provokes panic attacks, which can be blocked by antipanic medication. Also, there is some support for a role of the CCK system in the genetic pathomechanism of PD with particularly strong evidence for the CCK gene itself and the CCK-2R (CCKBR) gene. Thus, it is hypothesized that genetic variants in the CCK system might contribute to the biological basis for the postulated CCK dysfunction in the fear network underlying PD. Taken together, a large body of evidence suggests a possible role for the neuropeptide CCK in PD with regard to neuroanatomical circuits, neurotransmitters and genetic factors. This review article proposes an extended hypothetical model for human PD, which integrates preclinical and clinical findings on CCK in addition to existing theories of the pathogenesis of PD.

  15. Study of neuropeptide Y in the plasma and skin tissue of patients with vitiligo

    Institute of Scientific and Technical Information of China (English)

    ZENG Wei-hui; TANG Sheng-shun; ZHENG Yan; LEI Xiao-bing

    2004-01-01

    Objective: To study the role of neuropeptide Y (NPY) in the pathogenesis of vitiligo. Methods: The levels of NPY in the plasma from patients with vitiligo and healthy volunteers were measured by 125 I RIA Kit. The expression of NPY in normal skin tissues, uninvolved tissues and lesional tissues of vitiligo was detected by immunohistochemistry. Results: The levels of NPY in the patients with vitiligo of all types were significantly higher than that in the normal controls. In all types, the levels in active stage were significantly higher than those in stable stage. The expression of NPY was upregulated in lesions of patients with active vitiligo ( P < 0.01) compared with those in normal skin tissues and uninvolved tissues.There was significant difference of NPY expression between active stage and stable stage (P < 0.01 ). Conclusion: These findings support the concept of neuropeptide involvement in vitiligo, especially in active vitiligo, and suggest that NPY may play a role in the pathogenesis of this disease.

  16. Habituation as an adaptive shift in response strategy mediated by neuropeptides

    Science.gov (United States)

    Ardiel, Evan L.; Yu, Alex J.; Giles, Andrew C.; Rankin, Catharine H.

    2017-08-01

    Habituation is a non-associative form of learning characterized by a decremented response to repeated stimulation. It is typically framed as a process of selective attention, allowing animals to ignore irrelevant stimuli in order to free up limited cognitive resources. However, habituation can also occur to threatening and toxic stimuli, suggesting that habituation may serve other functions. Here we took advantage of a high-throughput Caenorhabditis elegans learning assay to investigate habituation to noxious stimuli. Using real-time computer vision software for automated behavioral tracking and optogenetics for controlled activation of a polymodal nociceptor, ASH, we found that neuropeptides mediated habituation and performed an RNAi screen to identify candidate receptors. Through subsequent mutant analysis and cell-type-specific gene expression, we found that pigment-dispersing factor (PDF) neuropeptides function redundantly to promote habituation via PDFR-1-mediated cAMP signaling in both neurons and muscles. Behavioral analysis during learning acquisition suggests that response habituation and sensitization of locomotion are parts of a shifting behavioral strategy orchestrated by pigment dispersing factor signaling to promote dispersal away from repeated aversive stimuli.

  17. Hypothalamic Neuropeptide 26RFa Acts as an Incretin to Regulate Glucose Homeostasis.

    Science.gov (United States)

    Prévost, Gaëtan; Jeandel, Lydie; Arabo, Arnaud; Coëffier, Moïse; El Ouahli, Mariama; Picot, Marie; Alexandre, David; Gobet, Françoise; Leprince, Jérôme; Berrahmoune, Hind; Déchelotte, Pierre; Malagon, Maria; Bonner, Caroline; Kerr-Conte, Julie; Chigr, Fatiha; Lefebvre, Hervé; Anouar, Youssef; Chartrel, Nicolas

    2015-08-01

    26RFa is a hypothalamic neuropeptide that promotes food intake. 26RFa is upregulated in obese animal models, and its orexigenic activity is accentuated in rodents fed a high-fat diet, suggesting that this neuropeptide might play a role in the development and maintenance of the obese status. As obesity is frequently associated with type 2 diabetes, we investigated whether 26RFa may be involved in the regulation of glucose homeostasis. In the current study, we show a moderate positive correlation between plasma 26RFa levels and plasma insulin in patients with diabetes. Plasma 26RFa concentration also increases in response to an oral glucose tolerance test. In addition, we found that 26RFa and its receptor GPR103 are present in human pancreatic β-cells as well as in the gut. In mice, 26RFa attenuates the hyperglycemia induced by a glucose load, potentiates insulin sensitivity, and increases plasma insulin concentrations. Consistent with these data, 26RFa stimulates insulin production by MIN6 insulinoma cells. Finally, we show, using in vivo and in vitro approaches, that a glucose load induces a massive secretion of 26RFa by the small intestine. Altogether, the present data indicate that 26RFa acts as an incretin to regulate glucose homeostasis. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Neuropeptide Y Y1 receptor in human dental pulp cells of noncarious and carious teeth.

    Science.gov (United States)

    El Karim, I A; Lamey, P-J; Linden, G J; Lundy, F T

    2008-10-01

    To determine the distribution of the NPY Y1 receptor in carious and noncarious human dental pulp tissue using immunohistochemistry. A subsidiary aim was to confirm the presence of the NPY Y1 protein product in membrane fractions of dental pulp tissue from carious and noncarious teeth using western blotting. Twenty two dental pulp samples were collected from carious and noncarious extracted teeth. Ten samples were processed for immunohistochemistry using a specific antibody to the NPY Y1 receptor. Twelve samples were used to obtain membrane extracts which were electrophoresed, blotted onto nitrocellulose and probed with NPY Y1 receptor antibody. Kruskal-Wallis one-way analysis of variance was employed to test for overall statistical differences between NPY Y1 levels in noncarious, moderately carious and grossly carious teeth. Neuropeptide Y Y1 receptor immunoreactivity was detected on the walls of blood vessels in pulp tissue from noncarious teeth. In carious teeth NPY Y1 immunoreactivity was observed on nerve fibres, blood vessels and inflammatory cells. Western blotting indicated the presence and confirmed the variability of NPY Y1 receptor protein expression in solubilised membrane preparations of human dental pulp tissue from carious and noncarious teeth. Neuropeptide Y Y1 is expressed in human dental pulp tissue with evidence of increased expression in carious compared with noncarious teeth, suggesting a role for NPY Y1 in modulation of caries induced pulpal inflammation.

  19. Energy confinement scaling from the international stellarator database

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Murakami, M.; Dory, R.A.; Yamada, H.; Okamura, S.; Sano, F.; Obiki, T.

    1995-09-01

    An international stellarator database on global energy confinement is presented comprising data from the ATF, CHS and Heliotron E heliotron/torsatrons and the W7-A and W7-AS shearless stellarators. Regression expressions for the energy confinement time are given for the individual devices and the combined dataset. A comparison with tokamak L mode confinement is discussed on the basis of various scaling expressions. In order to make this database available to interested colleagues, the structure of the database and the parameter list are explained in detail. More recent confinement results incorporating data from enhanced confinement regimes such as H mode are reported elsewhere. (author).

  20. Improved energy confinement with nonlinear isotope effects in magnetically confined plasmas

    CERN Document Server

    Garcia, J; Jenko, F

    2016-01-01

    The efficient production of electricity from nuclear fusion in magnetically confined plasmas relies on a good confinement of the thermal energy. For more than thirty years, the observation that such confinement depends on the mass of the plasma isotope and its interaction with apparently unrelated plasma conditions has remained largely unexplained and it has become one of the main unsolved issues. By means of numerical studies based on the gyrokinetic theory, we quantitatively show how the plasma microturbulence depends on the isotope mass through nonlinear multiscale microturbulence effects involving the interplay between zonal flows, electromagnetic effects and the torque applied. This finding has crucial consequences for the design of future reactors since, in spite of the fact that they will be composed by multiple ion species, their extrapolation from present day experiments heavily relies on the knowledge obtained from a long experimental tradition based in single isotope plasmas.