WorldWideScience

Sample records for neuronal thrombospondin receptor

  1. Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies.

    Science.gov (United States)

    Jayakumar, Arumugam Radhakrishnan; Tong, Xiao Y; Shamaladevi, Nagarajarao; Barcelona, Stephanie; Gaidosh, Gabriel; Agarwal, Apeksha; Norenberg, Michael D

    2017-02-01

    Transactivating DNA-binding protein-43 (TDP-43) inclusions and the accumulation of phosphorylated and ubiquitinated tau proteins (p-tau) have been identified in postmortem brain specimens from patients with chronic traumatic encephalopathy (CTE). To examine whether these proteins contribute to the development of CTE, we utilized an in vitro trauma system known to reproduce many of the findings observed in humans and experimental animals with traumatic brain injury. Accordingly, we examined the role of TDP-43 and Tau in an in vitro model of trauma, and determined whether these proteins contribute to the defective neuronal integrity associated with CNS trauma. Single or multiple episodes of trauma to cultured neurons resulted in a time-dependent increase in cytosolic levels of phosphorylated TDP-43 (p-TDP-43). Trauma to cultured neurons also caused an increase in levels of casein kinase 1 epsilon (CK1ε), and ubiquitinated p-TDP-43, along with a decrease in importin-β (all factors known to mediate the "TDP-43 proteinopathy"). Defective neuronal integrity, as evidenced by a reduction in levels of the NR1 subunit of the NMDA receptor, and in PSD95, along with increased levels of phosphorylated tau were also observed. Additionally, increased levels of intra- and extracellular thrombospondin-1 (TSP-1) (a factor known to regulate neuronal integrity) were observed in cultured astrocytes at early stages of trauma, while at later stages decreased levels were identified. The addition of recombinant TSP-1, conditioned media from cultured astrocytes at early stages of trauma, or the CK1ε inhibitor PF4800567 hydrochloride to traumatized cultured neurons reduced levels of p-TDP-43, and reversed the trauma-induced decline in NR1 subunit of the NMDA receptor and PSD95 levels. These findings suggest that a trauma-induced increase in TDP-43 phosphorylation contributes to defective neuronal integrity, and that increasing TSP-1 levels may represent a useful therapeutic approach for

  2. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  3. A thrombospondin in the anthozoan Nematostella vectensis is associated with the nervous system and upregulated during regeneration

    Directory of Open Access Journals (Sweden)

    Richard P. Tucker

    2012-12-01

    Thrombospondins are multimeric extracellular matrix glycoproteins that play important roles in development, synaptogenesis and wound healing in mammals. We previously identified four putative thrombospondins in the genome of the starlet sea anemone Nematostella vectensis. This study presents the first analysis of these thrombospondins, with the goals of understanding fundamental roles of thrombospondins in the Eumetazoa. Reverse transcriptase PCR showed that each of the N. vectensis thrombospondins (Nv85341, Nv22035, Nv168100 and Nv30790 is transcribed. Three of the four thrombospondins include an RGD or KGD motif in their thrombospondin type 3 repeats at sites equivalent to mammalian thrombospondins, suggesting ancient roles as RGD integrin ligands. Phylogenetic analysis based on the C-terminal regions demonstrated a high level of sequence diversity between N. vectensis thrombospondins. A full-length cDNA sequence was obtained for Nv168100 (NvTSP168100, which has an unusual domain organization. Immunohistochemistry with an antibody to NvTSP168100 revealed labeling of neuron-like cells in the mesoglea of the retractor muscles and the pharynx. In situ hybridization and quantitative PCR showed that NvTSP168100 is upregulated during regeneration. Immunohistochemistry of the area of regeneration identified strong immunostaining of the glycocalyx, the carbohydrate-rich matrix coating the epidermis, and electron microscopy identified changes in glycocalyx organization during regeneration. Thus, N. vectensis thrombospondins share structural features with thrombospondins from mammals and may have roles in the nervous system and in matrix reorganization during regeneration.

  4. Postsynaptic scaffolds for nicotinic receptors on neurons

    Institute of Scientific and Technical Information of China (English)

    Robert A NEFF III; David GOMEZ-VARELA; Catarina C FERNANDES; Darwin K BERG

    2009-01-01

    Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses. Recent studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses on neurons. PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors (nAChRs) and mediate downstream signaling in the neurons. The PDZ-proteins also promote functional nicotinic innerva- tion of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 recep- tor. In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface. This review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role of nAChR trafficking.

  5. Thrombospondins in the transition from myocardial infarction to heart failure.

    Science.gov (United States)

    Kirk, Jonathan A; Cingolani, Oscar H

    2016-01-01

    The heart's reaction to ischemic injury from a myocardial infarction involves complex cross-talk between the extra-cellular matrix (ECM) and different cell types within the myocardium. The ECM functions not only as a scaffold where myocytes beat synchronously, but an active signaling environment that regulates the important post-MI responses. The thrombospondins are matricellular proteins that modulate cell--ECM interactions, functioning as "sensors" that mediate outside-in and inside-out signaling. Thrombospondins are highly expressed during embryonic stages, and although their levels decrease during adult life, can be re-expressed in high quantities in response to cardiac stress including myocardial infarction and heart failure. Like a Swiss-army knife, the thrombospondins possess many tools: numerous binding domains that allow them to interact with other elements of the ECM, cell surface receptors, and signaling molecules. It is through these that the thrombospondins function. In the present review, we provide basic as well as clinical evidence linking the thrombospondin proteins with the post myocardial infarction response, including inflammation, fibrotic matrix remodeling, angiogenesis, as well as myocyte hypertrophy, apoptosis, and contractile dysfunction in heart failure. We will describe what is known regarding the intracellular signaling pathways that are involved with these responses, paving the road for future studies identifying these proteins as therapeutic targets for cardiac disease.

  6. Identification of neuron selective androgen receptor inhibitors.

    Science.gov (United States)

    Otto-Duessel, Maya; Tew, Ben Yi; Vonderfecht, Steven; Moore, Roger; Jones, Jeremy O

    2017-05-26

    To identify neuron-selective androgen receptor (AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease, a neuromuscular disorder in which deterioration of motor neurons leads to progressive muscle weakness. Cell lines representing prostate, kidney, neuron, adipose, and muscle tissue were developed that stably expressed the CFP-AR-YFP FRET reporter. We used these cells to screen a library of small molecules for cell type-selective AR inhibitors. Secondary screening in luciferase assays was used to identify the best cell-type specific AR inhibitors. The mechanism of action of a neuron-selective AR inhibitor was examined in vitro using luciferase reporter assays, immunofluorescence microscopy, and immunoprecipitations. Rats were treated with the most potent compound and tissue-selective AR inhibition was examined using RT-qPCR of AR-regulated genes and immunohistochemistry. We identified the thiazole class of antibiotics as compounds able to inhibit AR signaling in a neuronal cell line but not a muscle cell line. One of these antibiotics, thiostrepton is able to inhibit the activity of both wild type and polyglutamine expanded AR in neuronal GT1-7 cells with nanomolar potency. The thiazole antibiotics are known to inhibit FOXM1 activity and accordingly, a novel FOXM1 inhibitor FDI-6 also inhibited AR activity in a neuron-selective fashion. The selective inhibition of AR is likely indirect as the varied structures of these compounds would not suggest that they are competitive antagonists. Indeed, we found that FOXM1 expression correlates with cell-type selectivity, FOXM1 co-localizes with AR in the nucleus, and that shRNA-mediated knock down of FOXM1 reduces AR activity and thiostrepton sensitivity in a neuronal cell line. Thiostrepton treatment reduces FOXM1 levels and the nuclear localization of beta-catenin, a known co-activator of both FOXM1 and AR, and reduces the association between beta

  7. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    Science.gov (United States)

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  8. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

    Science.gov (United States)

    Cheung, Samantha K.

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation. PMID:28362856

  9. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  10. Predicting olfactory receptor neuron responses from odorant structure

    Directory of Open Access Journals (Sweden)

    Hähnel Melanie

    2007-05-01

    Full Text Available Abstract Background Olfactory receptors work at the interface between the chemical world of volatile molecules and the perception of scent in the brain. Their main purpose is to translate chemical space into information that can be processed by neural circuits. Assuming that these receptors have evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight in how to encode chemical information in an efficient way. Results We mimicked olfactory coding by modeling responses of primary olfactory neurons to small molecules using a large set of physicochemical molecular descriptors and artificial neural networks. We then tested these models by recording in vivo receptor neuron responses to a new set of odorants and successfully predicted the responses of five out of seven receptor neurons. Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited for response prediction vary for different receptor neurons, implying that each receptor neuron detects a different aspect of chemical space. Finally, we demonstrate that receptor responses themselves can be used as descriptors in a predictive model of neuron activation. Conclusion The chemical meaning of molecular descriptors helps understand structure-response relationships for olfactory receptors and their "receptive fields". Moreover, it is possible to predict receptor neuron activation from chemical structure using machine-learning techniques, although this is still complicated by a lack of training data.

  11. Deficiency of GDNF Receptor GFRα1 in Alzheimer's Neurons Results in Neuronal Death

    Science.gov (United States)

    Konishi, Yoshihiro; Yang, Li-Bang; He, Ping; Lindholm, Kristina; Lu, Bai

    2014-01-01

    We have recently developed aged cortical neuron cultures from autopsied human brains with Alzheimer's disease (AD). During the culturing process, we found that glutamatergic cortical neurons from the AD brain lacked a response to glial cell line-derived neurotrophic factor (GDNF), including no axonal regrowth, and were starting to undergo apoptosis. Here we showed that, in cortical neurons from age- and gender-matched cognitively normal control (NC) subjects (NC neurons), GDNF enhanced the expression of GDNF family receptor subtype α1 (GFRα1), but not the other three subtypes (GFRα2, GFRα3, and GFRα4), whereas GDNF failed to induce GFRα1 expression in cortical neurons from the AD brain (AD neurons). The exogenous introduction of GFRα1, but not of its binding partner α1-neural cell adhesion molecule, or RET into AD neurons restored the effect of GDNF on neuronal survival. Moreover, between NC and AD neurons, the AMPA receptor blocker CNQX and the NMDA receptor blocker AP-5 had opposite effects on the GFRα1 expression induced by GDNF. In NC neurons, the presence of glutamate receptors was necessary for GDNF-linked GFRα1 expression, while in AD neurons the absence of glutamate receptors was required for GFRα1 expression by GDNF stimulation. These results suggest that, in AD neurons, specific impairments of GFRα1, which may be linked to glutamatergic neurotransmission, shed light on developing potential therapeutic strategies for AD by upregulation of GFRα1 expression. PMID:25253858

  12. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    Science.gov (United States)

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  13. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    Science.gov (United States)

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  14. Transient brain ischemia: NMDA receptor modulation and delayed neuronal death

    OpenAIRE

    Benquet, Pascal; Gee, Christine E.; Gerber, Urs

    2008-01-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiolo...

  15. Functional diversity and developmental changes in rat neuronal kainate receptors.

    Science.gov (United States)

    Wilding, T J; Huettner, J E

    2001-04-15

    1. Whole-cell currents evoked by kainate and the GluR5-selective agonist (RS)-2-amino-3-(3-hydroxy-5-tertbutylisoxazol-4-yl)propanoic acid (ATPA) were used to compare the physiological properties of kainate receptors expressed by neurons from rat hippocampus, spinal cord and dorsal root ganglia. 2. In contrast to kainate, which evoked desensitizing currents with similar decay rates and steady-state components in all three cell types, responses to ATPA were distinctly different in the three cell populations. Currents evoked by ATPA displayed a significant steady-state component in hippocampal neurons, but decayed rapidly to baseline in dorsal root ganglion (DRG) cells. ATPA failed to evoke current in many of the spinal neurons. 3. ATPA caused steady-state desensitization in DRG cells with an IC50 of 41 nM. Recovery from desensitization of DRG cell receptors by ATPA was significantly slower than for any previously described agonist. In contrast, hippocampal kainate receptors recovered from desensitization by ATPA within a few seconds. 4. Half-maximal activation of kainate receptors in hippocampal neurons required 938 nM ATPA. In DRG cells treated with concanavalin A the EC50 for ATPA was 341 nM. ATPA evoked current in embryonic hippocampal neurons but with lower amplitude relative to kainate than in cultured postnatal neurons. 5. Collectively, these results highlight functional differences between neuronal kainate receptors that may reflect their distinct subunit composition and their diverse roles in synaptic transmission.

  16. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  17. Chemical labelling for visualizing native AMPA receptors in live neurons

    Science.gov (United States)

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-04-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.

  18. Central projections of auditory receptor neurons of crickets.

    Science.gov (United States)

    Imaizumi, Kazuo; Pollack, Gerald S

    2005-12-19

    We describe the central projections of physiologically characterized auditory receptor neurons of crickets as revealed by confocal microscopy. Receptors tuned to ultrasonic frequencies (similar to those produced by echolocating, insectivorous bats), to a mid-range of frequencies, and a subset of those tuned to low, cricket-like frequencies have similar projections, terminating medially within the auditory neuropile. Quantitative analysis shows that despite the general similarity of these projections they are tonotopic, with receptors tuned to lower frequencies terminating more medially. Another subset of cricket-song-tuned receptors projects more laterally and posteriorly than the other types. Double-fills of receptors and identified interneurons show that the three medially projecting receptor types are anatomically well positioned to provide monosynaptic input to interneurons that relay auditory information to the brain and to interneurons that modify this ascending information. The more laterally and posteriorly branching receptor type may not interact directly with this ascending pathway, but is well positioned to provide direct input to an interneuron that carries auditory information to more posterior ganglia. These results suggest that information about cricket song is segregated into functionally different pathways as early as the level of receptor neurons. Ultrasound-tuned and mid-frequency tuned receptors have approximately twice as many varicosities, which are sites of transmitter release, per receptor as either anatomical type of cricket-song-tuned receptor. This may compensate in part for the numerical under-representation of these receptor types.

  19. Temporal coding by populations of auditory receptor neurons.

    Science.gov (United States)

    Sabourin, Patrick; Pollack, Gerald S

    2010-03-01

    Auditory receptor neurons of crickets are most sensitive to either low or high sound frequencies. Earlier work showed that the temporal coding properties of first-order auditory interneurons are matched to the temporal characteristics of natural low- and high-frequency stimuli (cricket songs and bat echolocation calls, respectively). We studied the temporal coding properties of receptor neurons and used modeling to investigate how activity within populations of low- and high-frequency receptors might contribute to the coding properties of interneurons. We confirm earlier findings that individual low-frequency-tuned receptors code stimulus temporal pattern poorly, but show that coding performance of a receptor population increases markedly with population size, due in part to low redundancy among the spike trains of different receptors. By contrast, individual high-frequency-tuned receptors code a stimulus temporal pattern fairly well and, because their spike trains are redundant, there is only a slight increase in coding performance with population size. The coding properties of low- and high-frequency receptor populations resemble those of interneurons in response to low- and high-frequency stimuli, suggesting that coding at the interneuron level is partly determined by the nature and organization of afferent input. Consistent with this, the sound-frequency-specific coding properties of an interneuron, previously demonstrated by analyzing its spike train, are also apparent in the subthreshold fluctuations in membrane potential that are generated by synaptic input from receptor neurons.

  20. Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Paula G Slater

    Full Text Available The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5 on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.

  1. Frizzled-5 Receptor Is Involved in Neuronal Polarity and Morphogenesis of Hippocampal Neurons

    Science.gov (United States)

    Slater, Paula G.; Ramirez, Valerie T.; Gonzalez-Billault, Christian; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2013-01-01

    The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5) on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK. PMID:24205342

  2. Spatial organization of tettigoniid auditory receptors: insights from neuronal tracing.

    Science.gov (United States)

    Strauß, Johannes; Lehmann, Gerlind U C; Lehmann, Arne W; Lakes-Harlan, Reinhard

    2012-11-01

    The auditory sense organ of Tettigoniidae (Insecta, Orthoptera) is located in the foreleg tibia and consists of scolopidial sensilla which form a row termed crista acustica. The crista acustica is associated with the tympana and the auditory trachea. This ear is a highly ordered, tonotopic sensory system. As the neuroanatomy of the crista acustica has been documented for several species, the most distal somata and dendrites of receptor neurons have occasionally been described as forming an alternating or double row. We investigate the spatial arrangement of receptor cell bodies and dendrites by retrograde tracing with cobalt chloride solution. In six tettigoniid species studied, distal receptor neurons are consistently arranged in double-rows of somata rather than a linear sequence. This arrangement of neurons is shown to affect 30-50% of the overall auditory receptors. No strict correlation of somata positions between the anterio-posterior and dorso-ventral axis was evident within the distal crista acustica. Dendrites of distal receptors occasionally also occur in a double row or are even massed without clear order. Thus, a substantial part of auditory receptors can deviate from a strictly straight organization into a more complex morphology. The linear organization of dendrites is not a morphological criterion that allows hearing organs to be distinguished from nonhearing sense organs serially homologous to ears in all species. Both the crowded arrangement of receptor somata and dendrites may result from functional constraints relating to frequency discrimination, or from developmental constraints of auditory morphogenesis in postembryonic development.

  3. A choreography of nicotinic receptors directs the dopamine neuron routine.

    Science.gov (United States)

    Ungless, Mark A; Cragg, Stephanie J

    2006-06-15

    Modulation of the mesocorticolimbic dopamine system by nicotinic acetylcholine receptors (nAChRs) is thought to play an important role in both health and addiction. However, a clear understanding of how these receptors regulate in vivo firing activity has been elusive. In this issue of Neuron, Mameli-Engvall and colleagues report an impressive and thought-provoking series of in vivo experiments combining single-unit recordings from dopamine neurons with nAChR subunit deletions and region-specific lentiviral subunit re-expression.

  4. Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis.

    Directory of Open Access Journals (Sweden)

    Cecilia Gonzalez Campo

    Full Text Available BACKGROUND: Reelin is a large secreted protein of the extracellular matrix that has been proposed to participate to the etiology of schizophrenia. During development, reelin is crucial for the correct cytoarchitecture of laminated brain structures and is produced by a subset of neurons named Cajal-Retzius. After birth, most of these cells degenerate and reelin expression persists in postnatal and adult brain. The phenotype of neurons that bind secreted reelin and whether the continuous secretion of reelin is required for physiological functions at postnatal stages remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Combining immunocytochemical and pharmacological approaches, we first report that two distinct patterns of reelin expression are present in cultured hippocampal neurons. We show that in hippocampal cultures, reelin is secreted by GABAergic neurons displaying an intense reelin immunoreactivity (IR. We demonstrate that secreted reelin binds to receptors of the lipoprotein family on neurons with a punctate reelin IR. Secondly, using calcium imaging techniques, we examined the physiological consequences of reelin secretion blockade. Blocking protein secretion rapidly and reversibly changes the subunit composition of N-methyl-D-aspartate glutamate receptors (NMDARs to a predominance of NR2B-containing NMDARs. Addition of recombinant or endogenously secreted reelin rescues the effects of protein secretion blockade and reverts the fraction of NR2B-containing NMDARs to control levels. Therefore, the continuous secretion of reelin is necessary to control the subunit composition of NMDARs in hippocampal neurons. CONCLUSIONS/SIGNIFICANCE: Our data show that the heterogeneity of reelin immunoreactivity correlates with distinct functional populations: neurons synthesizing and secreting reelin and/or neurons binding reelin. Furthermore, we show that continuous reelin secretion is a strict requirement to maintain the composition of NMDARs. We propose

  5. Kainate receptors: multiple roles in neuronal plasticity.

    Science.gov (United States)

    Sihra, Talvinder S; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2014-02-01

    Ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA)- and AMPA-type, as well as metabotropic glutamate receptors have been extensively invoked in plasticity. Until relatively recently, however, kainate-type receptors (KARs) had been the most elusive to study because of the lack of appropriate pharmacological tools to specifically address their roles. With the development of selective glutamate receptor antagonists, and knockout mice with specific KAR subunits deleted, the functions of KARs in neuromodulation and synaptic transmission, together with their involvement in some types of plasticity, have been extensively probed in the central nervous system. In this review, we summarize the findings related to the roles of KARs in short- and long-term forms of plasticity, primarily in the hippocampus, where KAR function and synaptic plasticity have received avid attention.

  6. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  7. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  8. NMDA receptors in dopaminergic neurons are crucial for habit learning.

    Science.gov (United States)

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z

    2011-12-22

    Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning, however, remain unclear. Here, we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit-learning tasks, while normal in some other dopamine-modulated functions such as locomotor activities, goal-directed learning, and spatial reference memories. In vivo neural recording revealed that dopaminergic neurons in these mutant mice could still develop the cue-reward association responses; however, their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning.

  9. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    Science.gov (United States)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  10. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  11. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Directory of Open Access Journals (Sweden)

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  12. Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus.

    Science.gov (United States)

    Medler, K F; Tran, H N; Parker, J M; Caprio, J; Bruch, R C

    1998-04-01

    Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.

  13. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death.

    Science.gov (United States)

    Rameau, Gerald A; Tukey, David S; Garcin-Hosfield, Elsa D; Titcombe, Roseann F; Misra, Charu; Khatri, Latika; Getzoff, Elizabeth D; Ziff, Edward B

    2007-03-28

    Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We show that, in cortical neurons, a low glutamate concentration (30 microM) induces rapid and transient NMDAR-dependent phosphorylation of S1412 by Akt, followed by sustained phosphorylation of S847 by CaMKII (calcium-calmodulin-dependent kinase II). We demonstrate that phosphorylation of S1412 by Akt is necessary for activation of nNOS by the NMDAR. nNOS mutagenesis confirms that these phosphorylations respectively activate and inhibit nNOS and, thus, transiently activate NO production. A constitutively active (S1412D), but not a constitutively repressed (S847D) nNOS mutant elevated surface glutamate receptor 2 levels, demonstrating that these phosphorylations can control AMPA receptor trafficking via NO. Notably, an excitotoxic stimulus (150 microM glutamate) induced S1412, but not S847 phosphorylation, leading to deregulated nNOS activation. S1412D did not kill neurons; however, it enhanced the excitotoxicity of a concomitant glutamate stimulus. We propose a swinging domain model for the regulation of nNOS: S1412 phosphorylation facilitates electron flow within the reductase module of nNOS, increasing nNOS sensitivity to Ca2+-calmodulin. These findings suggest a critical role for a kinetically complex and novel series of regulatory nNOS phosphorylations induced by the NMDA receptor for the in vivo control of nNOS.

  14. Perampanel inhibition of AMPA receptor currents in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Chao-Yin Chen

    Full Text Available Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM, concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M-1 s-1 and 0.58 s-1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM was similar at all kainate concentrations (3-100 µM, demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics.

  15. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells

    OpenAIRE

    Basu, Sreyashi; Srivastava, Pramod

    2005-01-01

    Capsaicin (CP), the pungent component of chili pepper, acts on sensory neurons to convey the sensation of pain. The CP receptor, vanilloid receptor 1 (VR1), has been shown to be highly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. We demonstrate here that the dendritic cell (DC), a key cell type of the vertebrate immune system, expresses VR1. Engagement of VR1 on immature DCs such as by treatment with CP leads to maturation of DCs as measured by up-regulation of anti...

  16. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    Science.gov (United States)

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  17. Sensory habituation of auditory receptor neurons: implications for sound localization.

    Science.gov (United States)

    Givois, V; Pollack, G S

    2000-09-01

    Auditory receptor neurons exhibit sensory habituation; their responses decline with repeated stimulation. We studied the effects of sensory habituation on the neural encoding of sound localization cues using crickets as a model system. In crickets, Teleogryllus oceanicus, sound localization is based on binaural comparison of stimulus intensity. There are two potential codes at the receptor-neuron level for interaural intensity difference: interaural difference in response strength, i.e. spike rate and/or count, and interaural difference in response latency. These are affected differently by sensory habituation. When crickets are stimulated with cricket-song-like trains of sound pulses, response strength declines for successive pulses in the train, and the decrease becomes more pronounced as the stimulus intensity increases. Response decrement is thus greater for receptors serving the ear ipsilateral to the sound source, where intensity is higher, resulting in a decrease in the interaural difference in response strength. Sensory habituation also affects response latency, which increases for responses to successive sound pulses in the stimulus train. The change in latency is independent of intensity, and thus is similar for receptors serving both ears. As a result, interaural latency difference is unaffected by sensory habituation and may be a more reliable cue for sound localization.

  18. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  19. Improgan antinociception does not require neuronal histamine or histamine receptors.

    Science.gov (United States)

    Izadi Mobarakeh, Jalal; Nalwalk, Julia W; Watanabe, Takeshi; Sakurada, Shinobu; Hoffman, Marcel; Leurs, Rob; Timmerman, Henk; Silos-Santiago, Immaculada; Yanai, Kazuhiko; Hough, Lindsay B

    2003-06-06

    Improgan, a chemical congener of the H(2) antagonist cimetidine, induces antinociception following intracerebroventricular (i.c.v.) administration in rodents, but the mechanism of action of this compound remains unknown. Because the chemical structure of improgan closely resembles those of histamine and certain histamine blockers, and because neuronal histamine is known to participate in pain-relieving responses, the antinociceptive actions of improgan were evaluated in mice containing null mutations in the genes for three histamine receptors (H(1), H(2), and H(3)) and also in the gene for histidine decarboxylase (the histamine biosynthetic enzyme). Similar to earlier findings in Swiss-Webster mice, improgan induced maximal, reversible, dose-related reductions in thermal nociceptive responses in ICR mice, but neither pre-improgan (baseline) nor post-improgan nociceptive latencies were changed in any of the mutant mice as compared with wild-type controls. Improgan also had weak inhibitory activity in vitro (pK(i)=4.7-4.9) on specific binding to three recently-discovered, recombinant isoforms of the rat H(3) receptor (H(3A), H(3B), and H(3C)). The present findings strongly support the hypothesis that neuronal histamine and its receptors fail to play a role in improgan-induced antinociception.

  20. Ionotropic Glutamate Receptor Expression in Preganglionic Neurons of the Rat Inferior Salivatory Nucleus

    OpenAIRE

    Kim, M.; Chiego, D.J.; Bradley, R.M.

    2007-01-01

    Glutamate receptor (GluR) subunit composition of inferior salivatory nucleus (ISN) neurons was studied by immunohistochemical staining of retrogradely labeled neurons. Preganglionic ISN neurons innervating the von Ebner or parotid salivary glands were labeled by application of a fluorescent tracer to the lingual-tonsilar branch of the glossopharyngeal nerve or the otic ganglion respectively. We used polyclonal antibodies to glutamate receptor subunits NR1, NR2A, NR2B, (NMDA receptor subunits)...

  1. Severely impaired learning and altered neuronal morphology in mice lacking NMDA receptors in medium spiny neurons.

    Directory of Open Access Journals (Sweden)

    Lisa R Beutler

    Full Text Available The striatum is composed predominantly of medium spiny neurons (MSNs that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning.

  2. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI.

    Science.gov (United States)

    Xu, Zhen; Lv, Xiao-Ai; Dai, Qun; Ge, Yu-Qing; Xu, Jie

    2016-08-02

    Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT) on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis.

  3. In vitro neuronal network activity in NMDA receptor encephalitis

    Directory of Open Access Journals (Sweden)

    Jantzen Sabine U

    2013-02-01

    Full Text Available Abstract Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF from an anti-N-methyl-D-aspartate receptor (NMDAR encephalitis patient on in vitro neuronal network activity (ivNNA. In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes.

  4. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury

    DEFF Research Database (Denmark)

    Jansen, Pernille; Giehl, Klaus; Nyengaard, Jens R

    2007-01-01

    Neurotrophins are essential for development and maintenance of the vertebrate nervous system. Paradoxically, although mature neurotrophins promote neuronal survival by binding to tropomyosin receptor kinases and p75 neurotrophin receptor (p75(NTR)), pro-neurotrophins induce apoptosis in cultured ...

  5. Ionotropic glutamate receptor expression in preganglionic neurons of the rat inferior salivatory nucleus.

    Science.gov (United States)

    Kim, M; Chiego, D J; Bradley, R M

    2008-02-29

    Glutamate receptor (GluR) subunit composition of inferior salivatory nucleus (ISN) neurons was studied by immunohistochemical staining of retrogradely labeled neurons. Preganglionic ISN neurons innervating the von Ebner or parotid salivary glands were labeled by application of a fluorescent tracer to the lingual-tonsilar branch of the glossopharyngeal nerve or the otic ganglion respectively. We used polyclonal antibodies to glutamate receptor subunits NR1, NR2A, NR2B, (NMDA receptor subunits) GluR1, GluR2, GluR3, GluR4 (AMPA receptor subunits), and GluR5-7, KA2 (kainate receptor subunits) to determine their expression in ISN neurons. The distribution of the NMDA, AMPA and kainate receptor subunits in retrogradely labeled ISN neurons innervating the von Ebner and parotid glands was qualitatively similar. The percentage of retrogradley labeled ISN neurons innervating the parotid gland expressing the GluR subunits was always greater than those innervating the von Ebner gland. For both von Ebner and parotid ISN neurons, NR2A subunit staining had the highest expression and the lowest expression of GluR subunit staining was NR2B for von Ebner ISN neurons and GluR1 for parotid ISN neurons. The percentage of NR2B and GluR4 expressing ISN neurons was significantly different between the two glands. The percentage of ISN neurons that expressed GluR receptor subunits ranged widely indicating that the distribution of GluR subunit expression differs amongst the ISN neurons. While ISN preganglionic neurons express all the GluR subunits, differences in the percentage of ISN neurons expression between neurons innervating the von Ebner and parotid glands may relate to the different functional roles of these glands.

  6. Deep sequencing of the murine olfactory receptor neuron transcriptome.

    Directory of Open Access Journals (Sweden)

    Ninthujah Kanageswaran

    Full Text Available The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR and a multitude of accessory proteins within the olfactory epithelium (OE. ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS-sorted olfactory receptor neurons (ORNs obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.

  7. P-selectin can promote thrombus propagation independently of both von Willebrand factor and thrombospondin-1 in mice.

    Science.gov (United States)

    Prakash, P; Nayak, M K; Chauhan, A K

    2017-02-01

    Essentials The main receptor for platelet glycoprotein (GP) Ibα is von Willebrand factor (VWF). P-selectin and thrombospondin-1 (TSP1) have been suggested as counter receptors for GPIbα. In a laser injury model, P-selectin promotes thrombus propagation independently of VWF and TSP1. In a laser injury model, thrombus persists in interleukin-4 receptor α/GPIbα-transgenic mice.

  8. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  9. Morphine induces μ opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation

    Science.gov (United States)

    Patierno, Simona; Anselmi, Laura; Jaramillo, Ingrid; Scott, David; Garcia, Rachel; Sternini, Catia

    2010-01-01

    Background & Aims The μ opioid receptor (μOR) undergoes rapid endocytosis following acute stimulation with opioids and most opiates, but not with morphine. We investigated whether prolonged activation of μOR affects morphine’s ability to induce receptor endocytosis in enteric neurons. Methods We compared the effects of morphine, a poor μOR-internalizing opiate, and [D-Ala2, MePhe4,Gly-ol5] enkephalin (DAMGO), a potent μOR-internalizing agonist, on μOR trafficking in enteric neurons and on the expression of dynamin and β-arrestin immunoreactivity in the ileum of guinea pigs rendered tolerant by chronic administration of morphine. Results Morphine (100 µM) strongly induced endocytosis of μOR in tolerant but not naïve neurons (55.7%±9.3% vs. 24.2%±7.3%, P<0.001) whereas DAMGO (10 µM) strongly induced internalization of μOR in neurons from tolerant and naïve animals (63.6%±8.4% and 66.5%±3.6%). Morphine- or DAMGO-induced μOR endocytosis resulted from direct interactions between the ligand and the μOR, because endocytosis was not affected by tetrodotoxin, a blocker of endogenous neurotransmitter release. Ligand-induced μOR internalization was inhibited by pretreatment with the dynamin inhibitor, dynasore. Chronic morphine administration resulted in a significant increase in dynamin and translocation of dynamin immunoreactivity from the intracellular pool to the plasma membrane, but did not affect β arrestin immunoreactivity. Conclusion Chronic activation of μORs increases the ability of morphine to induce μOR endocytosis in enteric neurons, which depends on the level and cellular localization of dynamin, a regulatory protein that has an important role in receptor-mediated signal transduction in cells. PMID:21070774

  10. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    Science.gov (United States)

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  11. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    Science.gov (United States)

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  12. Expression and significance of thrombospondin-1 in rats' hippocampal neurons cultured in vitro by fluid percussion injury%凝血酶敏感蛋白-1在液压冲击损伤体外培养大鼠海马神经细胞中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    杨术旺; 梁林; 战丽; 舒清明; 秦晓静; 张永亮; 董化江

    2013-01-01

    Objective To investigate the expression of thrombospondin-1 (TSP-1) in hippocampal neurons of rats cultured in vitro by fluid percussion injury. Methods The primary cultural neuron models of fluid percussion injury were established. The degree of neurons injury was observed by toluidine blue stain. The expression of TSP-1 in neurons was detected by Western blot and immunocytochemical stain. Results After fluid percussion, the results of toluidine blue stain showed that most post-injury neurons were necrotic cells, the cells body were condensed, and nuclei were pycnosis and dark blue. The results of immunocytochemical stain showed that there was some expression of TSP-1 in the neurons of control group, and the expression of TSP-1 and the positive cells increased in injury group. The results of Western blot showed that the optical density value was 0.937 ±0.194 in control group and 2. 318 ±0.495 in injury group, the expression of TSP-1 in the neurons of injury group was significantly stronger than that in control group (P < 0. 01). Conclusion The increased expression of TSP-1 may play an important role in the development of neurons cultured in vitro by fluid percussion injury.%目的 探讨凝血酶敏感蛋白-1(TSP-1)在液压冲击损伤大鼠体外培养海马神经细胞中的表达.方法 建立体外原代培养神经细胞液压冲击损伤模型,采用甲苯胺蓝染色观察神经细胞损伤程度,免疫细胞化学染色和West-ern blot技术检测神经细胞中TSP-1的表达水平.结果 液压冲击后,甲苯胺蓝染色显示,损伤组部分神经细胞胞体浓缩,细胞核固缩,呈深蓝色,多为坏死型损伤细胞.免疫细胞化学染色显示,对照组神经细胞内有一定量的TSP-1表达,损伤组神经细胞内TSP-1表达增多,阳性细胞数目增多.Western blot结果显示,对照组和损伤组光密度值分别为0.937±0.194与2.318±0.495,损伤组神经细胞TSP-1蛋白表达显著强于对照组(P<0.01).结论 体外培养

  13. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Directory of Open Access Journals (Sweden)

    Cecilia Bucci

    2014-10-01

    Full Text Available Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC and p75NTR, a member of the tumor necrosis factor (TNF receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.

  14. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons

    Science.gov (United States)

    Klasen, K.; Corey, E.A.; Kuck, F.; Wetzel, C.H.; Hatt, H.; Ache, B.W.

    2009-01-01

    Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 sec of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction. PMID:19781634

  15. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    OpenAIRE

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of...

  16. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  17. Influence of antiseptics on microcirculation after neuronal and receptor blockade.

    Science.gov (United States)

    Goertz, Ole; Hirsch, Tobias; Ring, Andrej; Muehlberger, Thomas; Steinau, Hans U; Tilkorn, Daniel; Lehnhardt, Marcus; Homann, Heinz H

    2011-08-01

    The topical application of the antiseptics octenidine and polyhexanide on wounds seems to improve microcirculation. These two antiseptics were tested in combination with neuronal inhibition and sympathethic receptor blockade to verify these findings, explore the influence of β blockers on these microcirculative effects, and find out the principle of operation. Investigations were carried out on a standardised cremaster muscle model in rats (n = 66). The tested antiseptics, octenidine and polyhexanide were investigated alone (n = 12) and in combination with bupivacaine (n = 12), metoprolol (n = 12), phentolamine (n = 12) and surgical denervation (n = 12). Physiological saline was used for control (n = 6). The arteriolar diameter and functional capillary density (FCD) were investigated via trans-illumination microscopy before, as well as 60 and 120 minutes after application. Polyhexanide caused a significant increase in arteriolar diameter (86·5 ± 3·8 µm versus 100·0 ± 3·6 µm) and, like octenidine (7·2 ± 0·7 n/0·22 mm(2) versus 11·6 ± 0·6 n/0·22 mm(2) ), in FCD (9·2 ± 0·5 versus 12·6 ± 0·9) as well. When the antiseptics are used in combination with bupivacaine, metoprolol, phentolamine or surgical sympathectomy, these effects were eliminated or inverted. Assessing the results of the different blockades in combination with polyhexanide, we surmise that the antiseptic polyhexanide acts on the microcirculation mainly by blocking α receptors. This study shows that polyhexanide and octenidine improve muscular perfusion. Interestingly, the benefit of polyhexanide and octenidine on muscular perfusion is eliminated when the antiseptics are combined with other vasoactive agents, especially β blockers. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  18. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons.

    Science.gov (United States)

    Gee, Christine E; Benquet, Pascal; Raineteau, Olivier; Rietschin, Lotty; Kirbach, Sebastian W; Gerber, Urs

    2006-05-01

    Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramidal cells and transiently depressed in the resistant CA3 pyramidal cells. The long-lasting potentiation of NMDA responses in CA1 cells was associated with delayed cell death and was prevented by blocking tyrosine kinase-dependent up-regulation of NMDA receptor function. In CA3 cells, the energy deprivation-induced transient depression of NMDA responses was converted to potentiation by blocking protein phosphatase signalling. These results suggest that energy deprivation differentially shifts the intracellular equilibrium between the tyrosine kinase and phosphatase activities that modulate NMDA responses in CA1 and CA3 pyramidal cells. Therapeutic modulation of tyrosine phosphorylation may thus prove beneficial in mitigating ischemia-induced neuronal death in vulnerable brain areas.

  19. Inhibitory Odorant Signaling in Mammalian Olfactory Receptor Neurons

    Science.gov (United States)

    Corey, Elizabeth A.; Brunert, Daniela; Klasen, Katharina; Ache, Barry W.

    2010-01-01

    Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many species of animals. Cyclic nucleotide-dependent activation of canonical mammalian ORNs is well established but it is still unclear how odorants inhibit these cells. Here we further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI signaling in many cellular processes, in olfactory transduction in rodent ORNs. We show that odorants rapidly and transiently activate PI3K in the olfactory cilia and in the olfactory epithelium in vitro. We implicate known G-protein–coupled isoforms of PI3K and show that they modulate not only the magnitude but also the onset kinetics of the electrophysiological response of ORNs to complex odorants. Finally, we show that the ability of a single odorant to inhibit another can be PI3K dependent. Our collective results provide compelling support for the idea that PI3K-dependent signaling mediates inhibitory odorant input to mammalian ORNs and at least in part contributes to the mixture suppression typically seen in the response of ORNs to complex natural odorants. PMID:20032232

  20. Structural and functional diversity of native brain neuronal nicotinic receptors.

    Science.gov (United States)

    Gotti, Cecilia; Clementi, Francesco; Fornari, Alice; Gaimarri, Annalisa; Guiducci, Stefania; Manfredi, Irene; Moretti, Milena; Pedrazzi, Patrizia; Pucci, Luca; Zoli, Michele

    2009-10-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels present in the central and peripheral nervous systems, that are permeable to mono- and divalent cations. They share a common basic structure but their pharmacological and functional properties arise from the wide range of different subunit combinations making up distinctive subtypes. nAChRs are involved in many physiological functions in the central and peripheral nervous systems, and are the targets of the widely used drug of abuse nicotine. In addition to tobacco dependence, changes in their number and/or function are associated with neuropsychiatric disorders, ranging from epilepsy to dementia. Although some of the neural circuits involved in the acute and chronic effects of nicotine have been identified, much less is known about which native nAChR subtypes are involved in specific physiological functions and pathophysiological conditions. We briefly review some recent findings concerning the structure and function of native nAChRs, focusing on the subtypes identified in the mesostriatal and habenulo-interpeduncular pathways, two systems involved in nicotine reinforcement and withdrawal. We also discuss recent findings concerning the effect of chronic nicotine on the expression of native subtypes.

  1. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  2. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    Science.gov (United States)

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  3. Stellate and pyramidal neurons in goldfish telencephalon respond differently to anoxia and GABA receptor inhibition.

    Science.gov (United States)

    Hossein-Javaheri, Nariman; Wilkie, Michael P; Lado, Wudu E; Buck, Leslie T

    2017-02-15

    With oxygen deprivation, the mammalian brain undergoes hyper-activity and neuronal death while this does not occur in the anoxia-tolerant goldfish (Carassius auratus). Anoxic survival of the goldfish may rely on neuromodulatory mechanisms to suppress neuronal hyper-excitability. As γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, we decided to investigate its potential role in suppressing the electrical activity of goldfish telencephalic neurons. Utilizing whole-cell patch-clamp recording, we recorded the electrical activities of both excitatory (pyramidal) and inhibitory (stellate) neurons. With anoxia, membrane potential (Vm) depolarized in both cell types from -72.2 mV to -57.7 mV and from -64.5 mV to -46.8 mV in pyramidal and stellate neurons, respectively. While pyramidal cells remained mostly quiescent, action potential frequency (APf) of the stellate neurons increased 68-fold. Furthermore, the GABAA receptor reversal potential (E-GABA) was determined using the gramicidin perforated-patch-clamp method and found to be depolarizing in pyramidal (-53.8 mV) and stellate neurons (-42.1 mV). Although GABA was depolarizing, pyramidal neurons remained quiescent as EGABA was below the action potential threshold (-36 mV pyramidal and -38 mV stellate neurons). Inhibition of GABAA receptors with gabazine reversed the anoxia-mediated response. While GABAB receptor inhibition alone did not affect the anoxic response, co-antagonism of GABAA and GABAB receptors (gabazine and CGP-55848) led to the generation of seizure-like activities in both neuron types. We conclude that with anoxia, Vm depolarizes towards EGABA which increases APf in stellate neurons and decreases APf in pyramidal neurons, and that GABA plays an important role in the anoxia tolerance of goldfish brain. © 2017. Published by The Company of Biologists Ltd.

  4. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    Science.gov (United States)

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  5. A pair of pharyngeal gustatory receptor neurons regulates caffeine-dependent ingestion in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Jaekyun Choi

    2016-07-01

    Full Text Available The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal gustatory receptor neurons are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal gustatory receptor neurons, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of gustatory receptor neurons in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal gustatory receptor neurons have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.

  6. 5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons.

    Science.gov (United States)

    Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex; Cohenca, Nathalie; Sullivan, Jane M; Neumaier, John F

    2017-04-01

    The 5-HT6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT6 knockout (5-HT6KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT6KO mice to study the function of these receptors. Selective 5-HT6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT6KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT6 receptors affected the fidelity of ciliary localization in both WT and 5-HT6KO neurons; overexpression lead to increasing amounts of 5-HT6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT6 receptor to primary cilia. These data suggest that blocking 5-HT6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT6 receptors to cilia are more complex than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons.

    Directory of Open Access Journals (Sweden)

    Catherine E Hueston

    2016-04-01

    Full Text Available During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru. The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh. The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.

  8. Induction of delta opioid receptor function by up-regulation of membrane receptors in mouse primary afferent neurons.

    Science.gov (United States)

    Walwyn, Wendy; Maidment, Nigel T; Sanders, Matthew; Evans, Christopher J; Kieffer, Brigitte L; Hales, Tim G

    2005-12-01

    It is not clear whether primary afferent neurons express functional cell-surface opioid receptors. We examined delta receptor coupling to Ca2+ channels in mouse dorsal root ganglion neurons under basal conditions and after receptor up-regulation. [D-Ala2,Phe4,Gly5-ol]-enkephalin (DAMGO), [D-Ala2,D-Leu5]-enkephalin (DADLE), trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzene-acetamide methanesulfonate (U-50,488H; 1 microM), and baclofen (50 microM) inhibited Ca2+ currents, whereas the -selective ligands [D-Pen2,Pen5]-enkephalin (DPDPE) and deltorphin II (1 microM) did not. The effect of DADLE (1 microM) was blocked by the mu-antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 300 nM) but not by the -antagonist Tyr-1,2,3,4-tetrahydroisoquinoline-Phe-Phe-OH (300 nM), implicating mu receptors. Despite a lack of functional delta receptors, flow cytometry revealed cell-surface receptors. We used this approach to identify conditions that up-regulate receptors, including mu receptor gene deletion in dorsal root ganglion neurons of mu-/- mice and 18-h incubation of mu+/+ neurons with CTAP followed by brief (10-min) DPDPE exposure. Under these conditions, the expression of cell-surface delta receptors was up-regulated to 149 +/- 9 and 139 +/- 5%, respectively; furthermore, DPDPE and deltorphin II (1 microM) inhibited Ca2+ currents in both cases. Viral replacement of mu receptors in mu-/- neurons reduced delta receptor expression to mu+/+ levels, restored the inhibition of Ca2+ currents by DAMGO, and abolished receptor coupling. Our observations suggest that receptor-Ca2+ channel coupling in primary afferent fibers may have little functional significance under basal conditions in which mu receptors predominate. However, up-regulation of cell-surface delta receptors induces their coupling to Ca2+ channels. Pharmacological approaches that increase functional delta receptor expression may reveal a novel target for analgesic therapy.

  9. P2X7 receptors enhance glutamate release in hippocampal hilar neurons.

    Science.gov (United States)

    Cho, Jin-Hwa; Choi, In-Sun; Jang, Il-Sung

    2010-09-15

    We examined the effect of 2'-3'-O-(4-benzoylbenzoyl)-adenosine-5'-triphosphate (Bz-ATP), a P2X7 receptor agonist, on action potential-independent glutamate release from nerve terminals attached to mechanically isolated immature hilar neurons. Bz-ATP increased spontaneous excitatory postsynaptic current (sEPSC) frequency, and this effect was blocked by Brilliant blue G, a P2X7 receptor antagonist, suggesting that P2X7 receptors mediate the facilitatory action of Bz-ATP on sEPSCs. In most of hilar neurons tested, the Bz-ATP-induced increase in sEPSC frequency was blocked by tetrodotoxin or Cd, suggesting that the activation of P2X7 receptors leads to a presynaptic depolarization. The P2X7 receptor-mediated facilitation of glutamate release would modulate the excitability of hilar neurons, and eventually have a broad impact on the pathophysiological functions mediated by the hippocampus.

  10. Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade.

    Science.gov (United States)

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-09-07

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT(3) receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT(3) receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT(3) receptor by intrathecal injection of a selective 5-HT(3) receptor agonist, SR57227, induced spinal glial hyperactivity, neuronal hyperexcitability, and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via the cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous brain-derived neurotrophic factor-induced descending pain facilitation was accompanied by upregulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, and these events were significantly prevented by functional blockade of spinal 5-HT(3) receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia.

  11. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-06-23

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.

  12. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury

    Science.gov (United States)

    Nadal-Nicolás, Francisco M.; Galindo-Romero, Caridad; Valiente-Soriano, Francisco J.; Barberà-Cremades, María; deTorre-Minguela, Carlos; Salinas-Navarro, Manuel; Pelegrín, Pablo; Agudo-Barriuso, Marta

    2016-01-01

    Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy. PMID:27929040

  13. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  14. P2X receptors mediate ATP-induced primary nociceptive neurone activation.

    Science.gov (United States)

    Bland-Ward, P A; Humphrey, P P

    2000-07-01

    ATP-gated P2X ion-channel receptors are localised throughout the mammalian nervous system and have been identified on neurones which participate in conduction of nociceptive information from the periphery to, and within, the CNS. This article briefly reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X(3) receptor in this process. The P2X(3) receptor subunit is almost exclusively expressed on a subset of small and medium diameter sensory neurones innervating cutaneous and visceral tissue. Activation of P2X receptors present on the peripheral terminals of primary afferents results in neuronal depolarisation and, in conscious animals, leads to the manifestation of acute nociceptive behaviour. Recent animal studies have also shown that P2X(3) receptor expression is increased in sensory ganglia following acute neuronal injury, hinting that similar plasticity in the expression of this receptor subtype could underlie the mechanisms involved in a range of conditions characterised by sensory hypersensitivity in man. It is apparent from the evidence available that functional antagonists at specific P2X receptor subtypes could represent an important class of novel analgesic agents.

  15. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    Science.gov (United States)

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  16. Causal Interrogation of Neuronal Networks and Behavior through Virally Transduced Ivermectin Receptors.

    Science.gov (United States)

    Obenhaus, Horst A; Rozov, Andrei; Bertocchi, Ilaria; Tang, Wannan; Kirsch, Joachim; Betz, Heinrich; Sprengel, Rolf

    2016-01-01

    The causal interrogation of neuronal networks involved in specific behaviors requires the spatially and temporally controlled modulation of neuronal activity. For long-term manipulation of neuronal activity, chemogenetic tools provide a reasonable alternative to short-term optogenetic approaches. Here we show that virus mediated gene transfer of the ivermectin (IVM) activated glycine receptor mutant GlyRα1 (AG) can be used for the selective and reversible silencing of specific neuronal networks in mice. In the striatum, dorsal hippocampus, and olfactory bulb, GlyRα1 (AG) promoted IVM dependent effects in representative behavioral assays. Moreover, GlyRα1 (AG) mediated silencing had a strong and reversible impact on neuronal ensemble activity and c-Fos activation in the olfactory bulb. Together our results demonstrate that long-term, reversible and re-inducible neuronal silencing via GlyRα1 (AG) is a promising tool for the interrogation of network mechanisms underlying the control of behavior and memory formation.

  17. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain.

    Science.gov (United States)

    Aznar, Susana; Qian, Zhaoxia; Shah, Reshma; Rahbek, Birgitte; Knudsen, Gitte M

    2003-01-03

    The 5-HT(1A) receptor is a well-characterized serotonin receptor playing a role in many central nervous functions and known to be involved in depression and other mental disorders. In situ hybridization, immunocytochemical, and binding studies have shown that the 5-HT(1A) receptor is widely distributed in the rat brain, with a particularly high density in the limbic system. The receptor's localization in the different neuronal subtypes, which may be of importance for understanding its role in neuronal circuitries, is, however, unknown. In this study we show by immunocytochemical double-labeling techniques, that the 5-HT(1A) receptor is present on both pyramidal and principal cells, and calbindin- and parvalbumin-containing neurons, which generally define two different subtypes of interneurons. Moreover, semiquantitative analysis showed that the receptor's distribution in the different neuronal types varies between brain areas. In cortex, hippocampus, hypothalamus, and amygdala the receptor was located on both principal cells and calbindin- and parvalbumin-containing neurons. In septum and thalamus, the receptor was mostly present on calbindin- and parvalbumin-containing cells. Especially in the medial septum and thalamic reticular nucleus, the receptor highly colocalized with parvalbumin-positive neurons. These results suggest a diverse function of the 5-HT(1A) receptor in modulating neuronal circuitry in different brain areas, that may depend on the type of neuron the receptor is predominantly located on.

  18. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Luigi Bozzo

    Full Text Available Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM. To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM or switched to different glucose concentrations (0.5 or 10 mM. None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

  19. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway.

    Science.gov (United States)

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

  20. GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice.

    Science.gov (United States)

    Matsuki, T; Takasu, M; Hirose, Y; Murakoshi, N; Sinton, C M; Motoike, T; Yanagisawa, M

    2015-01-22

    Orexins are bioactive peptides, which have been shown to play a pivotal role in vigilance state transitions: the loss of orexin-producing neurons (orexin neurons) leads to narcolepsy with cataplexy in the human. However, the effect of the need for sleep (i.e., sleep pressure) on orexin neurons remains largely unknown. Here, we found that immunostaining intensities of the α1 subunit of the GABAA receptor and neuroligin 2, which is involved in inhibitory synapse specialization, on orexin neurons of mouse brain were significantly increased by 6-h sleep deprivation. In contrast, we noted that immunostaining intensities of the α2, γ2, and β2/3 subunits of the GABAA receptor and Huntingtin-associated protein 1, which is involved in GABAAR trafficking, were not changed by 6-h sleep deprivation. Using a slice patch recording, orexin neurons demonstrated increased sensitivity to a GABAA receptor agonist together with synaptic plasticity changes after sleep deprivation when compared with an ad lib sleep condition. In summary, the GABAergic input property of orexin neurons responds rapidly to sleep deprivation. This molecular response of orexin neurons may thus play a role in the changes that accompany the need for sleep following prolonged wakefulness, in particular the decreased probability of a transition to wakefulness once recovery sleep has begun.

  1. Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Walwyn, Wendy; John, Scott; Maga, Matthew; Evans, Christopher J; Hales, Tim G

    2009-07-01

    Recombinant micro and delta opioid receptors expressed in cell lines can form heterodimers with distinctive properties and trafficking. However, a role for opioid receptor heterodimerization in neurons has yet to be identified. The inhibitory coupling of opioid receptors to voltage-dependent Ca(2+) channels (VDCCs) is a relatively inefficient process and therefore provides a sensitive assay of altered opioid receptor function and expression. We examined micro-receptor coupling to VDCCs in dorsal root ganglion neurons of delta(+/+), delta(+/-), and delta(-/-) mice. Neurons deficient in delta receptors exhibited reduced inhibition of VDCCs by morphine and [D-Ala(2),Phe(4),Gly(5)-ol]-enkephalin (DAMGO). An absence of delta receptors caused reduced efficacy of DAMGO without affecting potency. An absence of delta receptors reduced neither the density of VDCCs nor their inhibition by either the GABA(B) receptor agonist baclofen or intracellular guanosine 5'-O-(3-thio)triphosphate. Flow cytometry revealed a reduction in micro-receptor surface expression in delta(-/-) neurons without altered DAMGO-induced internalization. There was no change in micro-receptor mRNA levels. D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)-sensitive mu-receptor-coupling efficacy was fully restored to delta(+/+) levels in delta(-/-) neurons by expression of recombinant delta receptors. However, the dimerization-deficient delta-15 construct expressed in delta(-/-) neurons failed to fully restore the inhibitory coupling of micro-receptors compared with that seen in delta(+/+) neurons, suggesting that, although not essential for micro-receptor function, micro-delta receptor dimerization contributes to full micro-agonist efficacy. Because DAMGO exhibited a similar potency in delta(+/+) and delta(-/-) neurons and caused similar levels of internalization, the role for heterodimerization is probably at the level of receptor biosynthesis.

  2. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia.

    Science.gov (United States)

    Segond von Banchet, Gisela; Boettger, Michael K; König, Christian; Iwakura, Yoichiro; Bräuer, Rolf; Schaible, Hans-Georg

    2013-01-01

    In addition to the proinflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1ß, the cytokine interleukin-17 (IL-17) is considered an important mediator of autoimmune diseases such as rheumatoid arthritis. Because tumor necrosis factor-α and interleukin-1ß have the potential to influence the expression of transduction molecules such as transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons and thus to contribute to pain we explored in the present study whether IL-17A activates DRG neurons and influences the expression of TRPV1. The IL-17A receptor was visualized in most neurons in dorsal root ganglion (DRG) sections as well as in cultured DRG neurons. Upon long-term exposure to IL-17A, isolated and cultured rat DRG neurons showed a significant upregulation of extracellular-regulated kinase (ERK) and nuclear factor κB (NFκB). Long-term exposure of neurons to IL-17A did not upregulate the expression of TRPV1. However, we found a pronounced upregulation of transient receptor potential vanilloid 4 (TRPV4) which is considered a candidate transduction molecule for mechanical hyperalgesia. Upon the injection of zymosan into the paw, IL-17A-deficient mice showed less mechanical hyperalgesia than wild type mice but thermal hyperalgesia was not attenuated in IL-17A-deficient mice. These data show, therefore, a particular role of IL-17 in mechanical hyperalgesia, and they suggest that this effect is linked to an activation and upregulation of TRPV4.

  3. Activity of protease-activated receptors in primary cultured human myenteric neurons

    Directory of Open Access Journals (Sweden)

    Eva Maria Kugler

    2012-09-01

    Full Text Available Activity of the four known protease-activated receptors (PARs has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (AP. Application of the PAR1-AP (TFLLR or PAR4-AP (GYPGQV evoked spike discharge in 79% or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs of PAR1/PAR2 in 51%, PAR1/PAR4 in 43% and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system.

  4. A broadly tuned odorant receptor in neurons of trichoid sensilla in locust, Locusta migratoria.

    Science.gov (United States)

    You, Yinwei; Smith, Dean P; Lv, Mingyue; Zhang, Long

    2016-12-01

    Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.

  5. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    Science.gov (United States)

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.

  6. Insulin receptor signaling in the development of neuronal structure and function

    Directory of Open Access Journals (Sweden)

    Cline Hollis T

    2010-03-01

    Full Text Available Abstract Sensory experience plays a crucial role in regulating neuronal shape and in developing synaptic contacts during brain formation. These features are required for a neuron to receive, integrate, and transmit signals within the neuronal network so that animals can adapt to the constant changing environment. Insulin receptor signaling, which has been extensively studied in peripheral organ systems such as liver, muscle and adipocyte, has recently been shown to play important roles in the central nervous system. Here we review the current understanding of the underlying mechanisms that regulate structural and functional aspects of circuit development, particularly with respect to the role of insulin receptor signaling in synaptic function and the development of dendritic arbor morphology. The potential link between insulin receptor signaling malfunction and neurological disorders will also be discussed.

  7. Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons.

    Science.gov (United States)

    Rubini, Patrizia; Pagel, Gregor; Mehri, Soghra; Marquardt, Peter; Riedel, Thomas; Illes, Peter

    2014-10-01

    P2X7 receptors have been suggested to be located both on neurons and astrocytes of the central and peripheral nervous systems. In the present Ca(2+)-imaging and patch-clamp study, we reinvestigated these findings on mixed neuronal-astrocytic cell cultures prepared from embryonic or newborn rat hippocampi. We found in a Mg(2+)-free bath medium that the prototypic P2X7 receptor agonist dibenzoyl-adenosine triphosphate (Bz-ATP) increased the intracellular Ca(2+) concentration ([Ca(2+)]i) both in the neuronal cell bodies and in their axo-dendritic processes only to a very minor extent. However, Bz-ATP produced marked [Ca(2+)]i transients in the neuronal processes, when they grew above a glial carpet, which was uniformly sensitive to Bz-ATP. These glial signals might be misinterpreted as neuronal responses because of the poor focal discrimination by a fluorescent microscope. Most astrocytes had a polygonal shape without clearly circumscribable boundaries, but a subgroup of them had neuron-like appearance. The cellular processes of this astrocytic subgroup, just as their cell somata and their polygonal counterparts, appeared to possess a high density of functional P2X7 receptors. In contrast to astrocytes, in a low Ca(2+)/no Mg(2+)-containing bath medium, hippocampal neurons failed to respond to Bz-ATP with membrane currents. In addition, neither the amplitude nor the frequency of spontaneous excitatory postsynaptic currents, representing the quantal release of glutamate, was modified by Bz-ATP. We conclude that cultured hippocampal neurons, in contrast to astrocytes, possess P2X7 receptors, if at all, only at a low density.

  8. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  9. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.

  10. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  11. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction

    Institute of Scientific and Technical Information of China (English)

    Nicholas L WEILINGER; Valentyna MASLIEIEVA; Jennifer BIALECKI; Sarup S SRIDHARAN; Peter L TANG; Roger J THOMPSON

    2013-01-01

    Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization.Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients.In this review,we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently,to cell death.The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons.Interestingly,two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel.We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia.The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.

  12. Muscarinic M1 receptors regulate propofol modulation of GABAergic transmission in rat ventrolateral preoptic neurons.

    Science.gov (United States)

    Zhang, Yu; Yu, Tian; Liu, Yang; Qian, Kun; Yu, Bu-Wei

    2015-04-01

    GABAergic neurons within the ventrolateral preoptic area (VLPO) play an important role in sleep-wakefulness regulation. Propofol, a widely used systemic anesthetic, has lately been reported to excite noradrenaline (NA)-inhibited type of VLPO neurons. Present study tested if acetylcholine system takes part in the propofol modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in mechanically dissociated rat VLPO neurons using a conventional whole-cell patch clamp technique. Propofol reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that propofol acts presynaptically to decrease the probability of spontaneous GABA release. The propofol action on GABAergic mIPSC frequency was completely blocked by atropine, a nonselective muscarinic acetylcholine (mACh) receptor antagonist, and pirenzepine, a selective M1 receptor antagonist. These results suggest that propofol acts on M1 receptors on GABAergic nerve terminals projecting to VLPO neurons to inhibit spontaneous GABA release. The M1 receptor-mediated modulation of GABAergic transmission onto VLPO neurons may contribute to the regulation of loss of consciousness induced by propofol.

  13. What do we really know about 5-HT1A receptor signaling in neuronal cells?

    Directory of Open Access Journals (Sweden)

    JENNY LUCY FIEDLER

    2016-11-01

    Full Text Available Serotonin (5-HT is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of serotonin receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR, specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other serotonin receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and PI3K-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease.

  14. What Do We Really Know About 5-HT1A Receptor Signaling in Neuronal Cells?

    Science.gov (United States)

    Rojas, Paulina S.; Fiedler, Jenny L.

    2016-01-01

    Serotonin (5-HT) is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of 5-HT receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR), specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other 5-HT receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and phosphoinositide-3-kinase (PI3K)-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease. PMID:27932955

  15. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate β-amyloid neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    Qiang LIU; Jie WU

    2006-01-01

    Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of β-amyloid peptides (Aβ) and loss of forebrain cholinergic neurons. Aβ accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Aβ neurotoxicity remain elusive. Recently, accumlating lines of evidence have demonstrated that Aβ directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Aβ neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Aβ modulates neuronal nAChRs, especially nAChR subunit function.

  16. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF receptors, preventing neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Iakovos Lazaridis

    2011-04-01

    Full Text Available The neurosteroid dehydroepiandrosterone (DHEA, produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR membrane receptors of neurotrophin nerve growth factor (NGF, acting as a neurotrophic factor: (1 the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2 [(3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR receptors (K(D: 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively; (3 immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR receptors; (4 DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR receptors; and (5 DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.

  17. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    (A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold......, and possibly recruits perisynaptic δ-containing receptors to participate in synaptic phasic inhibition in dentate gyrus....

  18. Crambescidin 816 induces calcium influx though glutamate receptors in primary cultures of cortical neurons

    Directory of Open Access Journals (Sweden)

    Víctor Martín Vázquez

    2014-06-01

    In summary, our data suggest that the cytotoxic effect of 10 μM Cramb816 in cortical neurons may be related to an increase in the cytosolic calcium concentration elicited by the toxin, which is shown to be mediated by glutamate receptor activation. Further studies analyzing the effect of glutamate receptor blockers on the cytotoxic effect of Cramb816 are needed to confirm this hypothesis.

  19. Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones.

    Science.gov (United States)

    Suárez, F; Zhao, Q; Monaghan, D T; Jane, D E; Jones, S; Gibb, A J

    2010-08-01

    The nigra substantia nigra pars compacta (SNc) and substantia pars reticulata (SNr) form two major basal ganglia components with different functional roles. SNc dopaminergic (DA) neurones are vulnerable to cell death in Parkinson's disease, and NMDA receptor activation is a potential contributing mechanism. We have investigated the sensitivity of whole-cell and synaptic NMDA responses to intracellular ATP and GTP application in the SNc and SNr from rats on postnatal day (P) 7 and P28. Both NMDA current density (pA/pF) and desensitization to prolonged or repeated NMDA application were greater in the SNr than in the SNc. When ATP levels were not supplemented, responses to prolonged NMDA administration desensitized in P7 SNc DA neurones but not at P28. At P28, SNr neurones desensitized more than SNc neurones, with or without added ATP. Responses to brief NMDA applications and synaptic NMDA currents were not sensitive to inclusion of ATP in the pipette solution. To investigate these differences between the SNc and SNr, NR2 subunit-selective antagonists were tested. NMDA currents were inhibited by ifenprodil (10 microM) and UBP141 (4 microM), but not by Zn(2+) (100 nm), in both the SNr and SNc, suggesting that SNc and SNr neurones express similar receptor subunits; NR2B and NR2D, but not NR2A. The different NMDA response properties in the SNc and SNr may be caused by differences in receptor modulation and/or trafficking. The vulnerability of SNc DA neurones to cell death is not correlated with NMDA current density or receptor subtypes, but could in part be related to inadequate NMDA receptor desensitization.

  20. GABA(A) receptors on calbindin-immunoreactive myenteric neurons of guinea pig intestine.

    Science.gov (United States)

    Zhou, X; Galligan, J J

    2000-01-14

    These studies were carried out to characterize the properties of gamma-aminobutyric acidA (GABA(A)) receptors on guinea pig intestinal myenteric neurons maintained in primary culture. In addition, the type of neuron expressing GABA(A) receptors was identified using immunohistochemical methods. Whole-cell patch clamp recordings of currents elicited by GABA and acetylcholine (ACh) were obtained using pipettes containing Neurobiotin. After electrophysiological studies, neurons were processed for localization of calbindin-D28K-immunoreactivity (calbindin-ir). GABA (1 mM) and ACh (3 mM) caused inward currents in most cells tested. GABA currents were mimicked by muscimol (1-300 microM) and were blocked by bicuculline (10 microM) indicating that GABA was acting at GABA(A) receptors. GABA currents were associated with a conductance increase and a linear current/voltage relationship with a reversal potential of 1 +/- 1 mV (n = 5). Pentobarbital (PB, 3-1000 microM) and diazepam (DZP, 0.01-10 microM) potentiated GABA-induced currents. A maximum concentration of DZP (1 microM) increased GABA-induced currents 3.1 +/- 0.3 times while PB (1000 microM) increased GABA currents by 11 +/- 2 times. In outside-out patches, the amplitude of GABA-activated single-channel currents was linearly related to membrane potential with a single-channel conductance of 28.5 + 0.5 pS (n = 10). PB and DZP increased the open probability of GABA-induced single-channel currents. Neurons containing calbindin-ir were large, were isolated from other neurons and had GABA current amplitudes of -3.4 +/- 0.3 nA (n = 48). Neurons with weak or absent calbindin-ir were smaller, were localized in clusters of cells and had GABA-induced current amplitudes of -0.6 +/- 0.1 nA (n = 20). ACh-induced currents were smaller in calbindin-ir neurons (-0.7 +/- 0.1 nA) compared to weakly calbindin-ir neurons (-1.4 +/- 0.1 nA). These results indicate that myenteric calbindin-ir neurons express a high density of GABA

  1. NMDA receptors on non-dopaminergic neurons in the VTA support cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Yu Luo

    Full Text Available BACKGROUND: The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR-mediated synaptic plasticity in the mesolimbic dopamine (DA circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1(DATCre mice. METHODOLOGY AND PRINCIPAL FINDINGS: Using an additional NR1(DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1(DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1(DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1(DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1(DATCre animals still blocks sensitization to cocaine. CONCLUSIONS/SIGNIFICANCE: These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1(DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.

  2. Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor.

    Science.gov (United States)

    Vergara-Castañeda, E; Grattan, D R; Pasantes-Morales, H; Pérez-Domínguez, M; Cabrera-Reyes, E A; Morales, T; Cerbón, M

    2016-04-01

    Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures.

  3. Metoprolol treatment lowers thrombospondin-4 expression in rats with myocardial infarction and left ventricular hypertrophy.

    Science.gov (United States)

    Mustonen, Erja; Leskinen, Hanna; Aro, Jani; Luodonpää, Marja; Vuolteenaho, Olli; Ruskoaho, Heikki; Rysä, Jaana

    2010-09-01

    Thrombospondins are matrix proteins linked to extracellular matrix remodelling but their precise role in the heart is not known. In this study, we characterised left ventricular thrombospondin-1 and -4 expression in rats treated with a beta-blocker metoprolol during the remodelling process in response to pressure overload and acute myocardial infarction. Left ventricular thrombospondin-1 and thrombospondin-4 mRNA levels increased 8.4-fold (p infarction, respectively. Metoprolol infusion by osmotic minipumps (1.5 mg/kg/hr) for 2 weeks after myocardial infarction decreased thrombospondin-1 and thrombospondin-4 mRNA levels (55% and 50%, respectively), improved left ventricular function, and attenuated left ventricular remodelling with reduction of left ventricular atrial natriuretic peptide and brain natriuretic peptide gene expression. Thrombospondin-1 and -4 mRNA levels correlated positively with echocardiographic parameters of left ventricular remodelling as well as with atrial natriuretic peptide and brain natriuretic peptide gene expression. Moreover, there was a negative correlation between left ventricular ejection fraction and thrombospondin-1 mRNA levels. In 12-month-old spontaneously hypertensive rats with left ventricular hypertrophy, metoprolol decreased left ventricular thrombospondin-4 levels and attenuated remodelling while thrombospondin-1, atrial natriuretic peptide and brain natriuretic peptide mRNA levels as well as left ventricular function remained unchanged. In metoprolol-treated spontaneously hypertensive rats, thrombospondin-4 gene expression correlated with parameters of left ventricular remodelling, while no correlations between thrombospondins and natriuretic peptides were observed. These results indicate that thrombospondin-1 expression is linked exclusively to left ventricular remodelling process post-infarction while thrombospondin-4 associates with myocardial remodelling both after myocardial infarction and in hypertensive heart disease

  4. Grin1 receptor deletion within CRF neurons enhances fear memory.

    Directory of Open Access Journals (Sweden)

    Georgette Gafford

    Full Text Available Corticotropin releasing factor (CRF dysregulation is implicated in mood and anxiety disorders such as posttraumatic stress disorder (PTSD. CRF is expressed in areas engaged in fear and anxiety processing including the central amygdala (CeA. Complicating our ability to study the contribution of CRF-containing neurons to fear and anxiety behavior is the wide variety of cell types in which CRF is expressed. To manipulate specific subpopulations of CRF containing neurons, our lab has developed a mouse with a Cre recombinase gene driven by a CRF promoter (CRFp3.0Cre (Martin et al., 2010. In these studies, mice that have the gene that encodes NR1 (Grin1 flanked by loxP sites (floxed were crossed with our previously developed CRFp3.0Cre mouse to selectively disrupt Grin1 within CRF containing neurons (Cre+/fGrin1+. We find that disruption of Grin1 in CRF neurons did not affect baseline levels of anxiety, locomotion, pain sensitivity or exploration of a novel object. However, baseline expression of Grin1 was decreased in Cre+/fGrin1+ mice as measured by RTPCR. Cre+/fGrin1+ mice showed enhanced auditory fear acquisition and retention without showing any significant effect on fear extinction. We measured Gria1, the gene that encodes AMPAR1 and the CREB activator Creb1 in the amygdala of Cre+/fGrin1+ mice after fear conditioning. Both Gria1 and Creb1 were enhanced in the amygdala after training. To determine if the Grin1-expressing CRF neurons within the CeA are responsible for the enhancement of fear memory in adults, we infused a lentivirus with Cre driven by a CRF promoter (LV pCRF-Cre/fGrin1+ into the CeA of floxed Grin1 mice. Cre driven deletion of Grin1 specifically within CRF expressing cells in the CeA also resulted in enhanced fear memory acquisition and retention. Altogether, these findings suggest that selective disruption of Grin1 within CeA CRF neurons strongly enhances fear memory.

  5. Metabotropic glutamate receptor 1 recycles to the cell surface in protein phosphatase 2A‐dependent manner in non‐neuronal and neuronal cell lines

    National Research Council Canada - National Science Library

    Pandey, Saurabh; Mahato, Prabhat Kumar; Bhattacharyya, Samarjit

    2014-01-01

    ...‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mG luR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied...

  6. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones

    Directory of Open Access Journals (Sweden)

    Magherini Pier C

    2010-09-01

    Full Text Available Abstract Protease-activated receptors (PAR1-4 are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.

  7. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area

    Directory of Open Access Journals (Sweden)

    Elena eVashchinkina

    2014-11-01

    Full Text Available GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids have been found to induce plasticity in the ventral tegmental area (VTA dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of

  8. Rapid effect of stress concentration corticosterone on glutamate receptor and its subtype NMDA receptor activity in cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    刘玲; 孙继虎; 王春安

    2003-01-01

    Objective:To study the rapid effect of glucocorticoids(GCs)on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms.Methods:Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone(B)on the responses of cultured hippocampal neurons to glutamate and NMDA(N-methy-D-asparatic acid).To make clear the target of B,intracellular dialysis of B(10 μ mol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA,10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current.Results:B had a rapid,reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons.Furthermore,B-BSA had the inhibitory effect on INMDA as that of B,but intracellularly dialyzed B had no significant effect on INMDA.Conclusion:These results suggest that under the condition of stress,GCs may rapidly,negatively regulate excitatory synaptic receptors-glutamate receptors(GluRs),especially NMDA receptor(NMDAR)in central nervous system,which is mediated by rapid membrane mechanisms,but not by classical,genomic mechanisms.

  9. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    OpenAIRE

    Dennis, Siobhan; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensi...

  10. Oxygen/glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and A3 Receptors

    OpenAIRE

    Dennis, Siobhan H.; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighbouring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+ resulting in delayed cell death. However, it is unclear if the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivit...

  11. Comparison of the D2 Receptor Regulation and Neurotoxicant Susceptibility of Nigrostriatal Dopamine Neurons in Wild-Type and CB1/CB2 Receptor Knockout Mice

    OpenAIRE

    Simkins, Tyrell J.; Janis, Kelly L.; McClure, Alison K.; Behrouz, Bahareh; Pappas, Samuel S.; Lehner, Andreas; Kaminski, Norbert E.; Goudreau, John L.; Lookingland, Keith J.; Kaplan, Barbara L. F.

    2012-01-01

    Motor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure. NSDA neuronal indices were assessed using unbiased stereological cell counting,...

  12. Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti

    Science.gov (United States)

    2011-06-30

    Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti Alan J. Grant, Joseph C...Dickens JC (2011) Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti . PLoS...palps. Both sexes of mosquitoes possess basiconic sensilla that contain three neurons; in Aedes aegypti these sensilla number about 35 in females and 21

  13. Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4

    OpenAIRE

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S.

    2014-01-01

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagoni...

  14. Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia.

    Science.gov (United States)

    Zhang, Xu-Feng; Han, Ping; Faltynek, Connie R; Jarvis, Michael F; Shieh, Char-Chang

    2005-08-02

    The P2X7 receptor is an ATP-sensitive ligand-gated cation channel, expressed predominantly in cells with immune origin. Recent studies have demonstrated that P2X7 may play an important role in pain signaling. In the present study, the expression of P2X7 receptors in non-neuronal cells and neurons isolated from dorsal root ganglia was characterized using patch clamp, pharmacological and confocal microscopy approaches. In small diameter DRG neurons, 100 microM 2', 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) evoked an inward current, which was inhibited completely by 1 microM A-317491, a potent and selective P2X3 receptor antagonist. In contrast, BzATP evoked concentration-dependent increases in inward currents in non-neuronal DRG cells with an EC50 value of 26 +/- 0.14 microM, which were resistant to the blockade by A-317491. The activity to evoke cationic currents by P2X receptor agonists in non-neuronal cells showed a rank order of BzATP > ATP > alpha,beta-meATP. Pyridoxal-phosphate-6-azophenyl-,2',4'-disulphonic acid (PPADS) and Mg2+ produced concentration-dependent inhibition of BzATP-evoked currents in non-neuronal cells. Confocal microscopy revealed positive immunoreactivity of anti-P2X7 receptor antibodies on non-neuronal cells. No anti-P2X7 immunoreactivity was observed on DRG neurons. Further electrophysiological studies showed that prolonged agonist activation of P2X7 receptors in non-neuronal cells did not lead to cytolytic pore formation. Taken together, the present study demonstrated functional expression of P2X7 receptors in non-neuronal but not in small diameter neurons from rat DRG. Modulation of P2X7 receptors in non-neuronal cells might have impact on peripheral sensory transduction under normal and pathological states.

  15. Isoforms of the Erythropoietin receptor in dopaminergic neurons of the Substantia Nigra.

    Science.gov (United States)

    Marcuzzi, Federica; Zucchelli, Silvia; Bertuzzi, Maria; Santoro, Claudio; Tell, Gianluca; Carninci, Piero; Gustincich, Stefano

    2016-11-01

    Erythropoietin receptor (EpoR) regulates erythrocytes differentiation in blood. In the brain, EpoR has been shown to protect several neuronal cell types from cell death, including the A9 dopaminergic neurons (DA) of the Substantia Nigra (SN). These cells form the nigrostriatal pathway and are devoted to the control of postural reflexes and voluntary movements. Selective degeneration of A9 DA neurons leads to Parkinson's disease. By the use of nanoCAGE, a technology that allows the identification of Transcription Start Sites (TSSs) at a genome-wide level, we have described the promoter-level expression atlas of mouse A9 DA neurons purified with Laser Capture Microdissection (LCM). Here, we identify mRNA variants of the Erythropoietin Receptor (DA-EpoR) transcribed from alternative TSSs. Experimental validation and full-length cDNA cloning is integrated with gene expression analysis in the FANTOM5 database. In DA neurons, the EpoR gene encodes for a N-terminal truncated receptor. Based on STAT5 phosphorylation assays, we show that the new variant of N-terminally truncated EpoR acts as decoy when co-expressed with the full-length form. A similar isoform is also found in human. This work highlights new complexities in the regulation of Erythropoietin (EPO) signaling in the brain.

  16. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  17. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons

    Science.gov (United States)

    Inglis, Fiona M.; Crockett, Richard; Korada, Sailaja; Abraham, Wickliffe C.; Hollmann, Michael; Kalb, Robert G.

    2002-01-01

    The morphology of the mature motor neuron dendritic arbor is determined by activity-dependent processes occurring during a critical period in early postnatal life. The abundance of the AMPA receptor subunit GluR1 in motor neurons is very high during this period and subsequently falls to a negligible level. To test the role of GluR1 in dendrite morphogenesis, we reintroduced GluR1 into rat motor neurons at the end of the critical period and quantitatively studied the effects on dendrite architecture. Two versions of GluR1 were studied that differed by the amino acid in the "Q/R" editing site. The amino acid occupying this site determines single-channel conductance, ionic permeability, and other essential electrophysiologic properties of the resulting receptor channels. We found large-scale remodeling of dendritic architectures in a manner depending on the amino acid occupying the Q/R editing site. Alterations in the distribution of dendritic arbor were not prevented by blocking NMDA receptors. These observations suggest that the expression of GluR1 in motor neurons modulates a component of the molecular substrate of activity-dependent dendrite morphogenesis. The control of these events relies on subunit-specific properties of AMPA receptors.

  18. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis;

    2012-01-01

    δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) recep...

  19. Inducing plasticity of astrocytic receptors by manipulation of neuronal firing rates.

    Science.gov (United States)

    Xie, Alison X; Lauderdale, Kelli; Murphy, Thomas; Myers, Timothy L; Fiacco, Todd A

    2014-03-20

    Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca(2+) indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca(2+) events using confocal microscopy. In essence, a "calcium roadmap" is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.

  20. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    Science.gov (United States)

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS. A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA Toluene (TOL...

  1. Cultured neurons as model systems for biochemical and pharmacological studies on receptors for neurotransmitter amino acids

    DEFF Research Database (Denmark)

    Schousboe, A; Drejer, J; Hansen, Gert Helge

    1985-01-01

    By the use of primary cultures of neurons consisting of cerebral cortex interneurons or cerebellar granule cells it is possible to study biochemical and pharmacological aspects of receptors for GABA and glutamate. Cerebellar granule cells have been shown to express both high- and low-affinity GAB...

  2. Parvalbumin-Positive Neurons in Rat Dorsal Hippocampus Contain Muscarinic Acetylcholine Receptors

    NARCIS (Netherlands)

    Zee, E.A. van der; de Jong, Giena; Strosberg, A.D.; Luiten, P.G.M.

    1991-01-01

    The present study describes the colocalization of muscarinic acetylcholine receptors (mAChRs) and the calcium-binding protein parvalbumin (PARV) in nonpyramidal neurons of the rat dorsal hippocampus by means of dual-label immunocytochemistry. Fifty-two percent of all muscarinic cholinoceptive

  3. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    Science.gov (United States)

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  4. Cholinergic impact on neuroplasticity drives muscarinic M1 receptor mediated differentiation into neurons.

    Science.gov (United States)

    Benninghoff, Jens; Rauh, Werner; Brantl, Victor; Schloesser, Robert J; Moessner, Rainald; Möller, Hans-Jürgen; Rujescu, Dan

    2013-04-01

    Increasing evidence indicates that canonical neurotransmitters act as regulatory signals during neuroplasticity. Here, we report that muscarinic cholinergic neurotransmission stimulates differentiation of adult neural stem cells in vitro. Adult neural stem cells (ANSC) dissociated from the adult mouse hippocampus were expanded in culture with basic fibroblast growth factor (BFGF) and epidermal growth factor (EGF). Carbachol (CCh), an analog of acetylcholine (ACh) significantly enhanced de novo differentiation into neurons on bFGF- and EGF-deprived stem cells as shown by the percentage of TUJ1 positive cells. By contrast, pirenzepine (PIR), a muscarinic M1 receptor antagonist, reduced the generation of neurons. Activation of cholinergic signaling drives the de novo differentiation of uncommitted stem cells into neurons. These effects appear to be predominantly mediated via the muscarinic M1 receptor subtype.

  5. Role of NMDA Receptors in Dopamine Neurons for Plasticity and Addictive Behaviors

    Science.gov (United States)

    Zweifel, Larry S.; Argilli, Emanuela; Bonci, Antonello; Palmiter, Richard D.

    2008-01-01

    Summary A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors. PMID:18701073

  6. A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor

    Science.gov (United States)

    Kirana, Firman Ahmad; Husein, Irzaman Sulaiman

    2016-01-01

    We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process. PMID:27774102

  7. A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor

    Directory of Open Access Journals (Sweden)

    Firman Ahmad Kirana

    2016-01-01

    Full Text Available We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.

  8. Prostaglandin receptor EP2 protects dopaminergic neurons against 6-OHDA-mediated low oxidative stress.

    Science.gov (United States)

    Carrasco, Emilce; Werner, Peter; Casper, Diana

    2008-08-15

    Dopaminergic neurons in the substantia nigra (SN) selectively die in Parkinson's disease (PD), but it is unclear how and why this occurs. Recent findings implicate prostaglandin E(2) (PGE(2)) and two of its four receptors, namely EP1 and EP2, as mediators of degenerative and protective events in situations of acute and chronic neuronal death. EP1 activation can exacerbate excitotoxic damage in stroke models and our recent study showed that EP1 activation may explain the selective sensitivity of dopaminergic neurons to oxidative stress. Conversely, EP2 activation may be neuroprotective, although toxic effects have also been demonstrated. Here we investigated if and how EP2 activation might alter the survival of dopaminergic neurons following selective low-level oxidative injury evoked by the neurotoxin 6-hydroxydopamine (6-OHDA) in primary neuronal cultures prepared from embryonic rat midbrain. We found that cultured dopaminergic neurons displayed EP2 receptors. Butaprost, a selective EP2 agonist, significantly reduced 6-OHDA neurotoxicity. EP2 receptors are coupled to stimulatory G-proteins (Gs), which activate adenylate cyclase, increasing cAMP synthesis, which then activates protein kinase A (PKA). Both dibutyryl cAMP and forskolin reduced dopaminergic cell loss after 6-OHDA exposure. Conversely, KT5720 and H-89, two structurally distinct high-affinity PKA inhibitors, abolished the protective effect of butaprost, implicating cAMP-dependent PKA activity in the neuroprotection by EP2 activation. Finally, we show that melanized dopaminergic neurons in the human SN express EP2. This pathway warrants consideration as a neuroprotective strategy for PD.

  9. LINGO-1 receptor promotes neuronal apoptosis by inhibiting WNK3 kinase activity.

    Science.gov (United States)

    Zhang, Zhaohuan; Xu, Xiaohui; Xiang, Zhenghua; Yu, Zhongwang; Feng, Jifeng; He, Cheng

    2013-04-26

    LINGO-1 is a functional component of the Nogo receptor 1 · p75(NTR) · LINGO-1 and Nogo receptor 1 · TAJ (TNFRSF19/TROY)·LINGO-1 signaling complexes. It has recently been shown that LINGO-1 antagonists significantly improve neuronal survival after neural injury. However, the mechanism by which LINGO-1 signaling influences susceptibility to apoptosis remains unknown. In an effort to better understand how LINGO-1 regulates these signaling pathways, we used an established model of serum deprivation (SD) to induce neuronal apoptosis. We demonstrate that treatment either with a construct containing the intracellular domain of LINGO-1 or with Nogo66, a LINGO-1 receptor complex agonist, resulted in an enhanced rate of apoptosis in primary cultured cortical neurons under SD. Reducing the expression levels of the serine/threonine kinase WNK3 using shRNA or inhibiting its kinase activity had similar effects on the survival of serum-deprived neurons. Consistent with these observations, we found that LINGO-1 and WNK3 co-localized and co-precipitated in cultured cortical neurons and brain tissue. Significantly, this co-association was enhanced by Nogo66 treatment. Binding of WNK3 to the intracellular domain of LINGO-1 led to a reduction in WNK3 kinase activity, as did Nogo66 stimulation. Moreover, in vitro and in vivo evidence indicates that endogenous WNK3 suppresses SD-induced neuronal apoptosis in a kinase-dependent manner, as the expression of either a WNK3 RNAi construct or a kinase-dead N-terminal fragment of WNK3 led to increased apoptosis. Taken together, our results show that LINGO-1 potentiates neuronal apoptosis, likely by inhibiting WNK3 kinase activity.

  10. Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors

    Directory of Open Access Journals (Sweden)

    Clément eVitrac

    2014-02-01

    Full Text Available The primary motor cortex (M1 is involved in fine voluntary movements control. Previous studies have shown the existence of a dopamine (DA innervation in M1 of rats and monkeys that could directly modulate M1 neuronal activity. However, none of these studies have described the precise distribution of DA terminals within M1 functional region nor have quantified the density of this innervation. Moreover, the precise role of DA on pyramidal neuron activity still remains unclear due to conflicting results from previous studies regarding D2 effects on M1 pyramidal neurons.In this study we assessed in mice the neuroanatomical characteristics of DA innervation in M1 using unbiased stereological quantification of dopamine transporter-immunostained fibers. We demonstrated for the first time in mice that DA innervates the deep layers of M1 targeting preferentially the forelimb representation area of M1. To address the functional role of the DA innervation on M1 neuronal activity, we performed electrophysiological recordings of single neurons activity in vivo and pharmacologically modulated D2 receptors activity. Local D2 receptors activation by quinpirole enhanced pyramidal neurons spike firing rate without changes in spike firing pattern. Altogether, these results indicate that DA innervation in M1 can increase neuronal activity through D2 receptors activation and suggest a potential contribution to the modulation of fine forelimb movement. Given the demonstrated role for DA in fine motor skill learning in M1, our results suggest that altered D2 modulation of M1 activity may be involved in the pathophysiology of movement disorders associated with disturbed DA homeostasis.

  11. Both Ca2+-permeable and -impermeable AMPA receptors contribute to primary synaptic drive onto rat dorsal horn neurons

    Science.gov (United States)

    Tong, Chi-Kun; MacDermott, Amy B

    2006-01-01

    Blockade of Ca2+-permeable AMPA receptors in the rat spinal cord diminishes the development of hyperalgesia and allodynia associated with peripheral injury. Cobalt uptake studies reveal that Ca2+-permeable AMPA receptors are expressed by some substance P receptor-expressing (NK1R+) neurons in lamina I, as well as other neurons throughout the superficial dorsal horn. Selective elimination of NK1R+ neurons in lamina I and lamina III/IV of the dorsal horn also suppresses development of hyperalgesia and allodynia. These observations raise the possibility that Ca2+-permeable AMPA receptors contribute to excitatory synaptic drive onto the NK1R+ neurons associated with allodynia and hyperalgesia. The first synapse in the pain pathway is the glutamatergic excitatory drive from the primary afferent fibres onto dorsal horn neurons. Therefore, we tested whether Ca2+-permeable AMPA receptors are located on lamina I and lamina III/IV NK1R+ neurons postsynaptic to primary afferent fibres, using inward rectification and polyamine toxins for receptor identification. We examined three different populations of dorsal horn neurons; lamina I NK1R+ neurons, including projection neurons, and non-NK1R+ (NK1R−) neurons including interneurons, and lamina III/IV NK1R+ neurons, believed to contribute to the low-threshold mechanosensory pathway. The majority of synapses in all three groups had rectification indices less than 1.0 and greater than 0.4, indicating that the AMPA receptors at these synapses are a mixture of Ca2+-permeable and -impermeable forms. Lamina III/IV NK1R+ neurons and lamina I NK1R− neurons have a significantly higher proportion of postsynaptic Ca2+-permeable AMPA receptors than lamina I NK1R+ neurons. Thus synaptically positioned Ca2+-permeable AMPA receptors directly contribute to low-threshold sensory afferent drive into the dorsal horn, and can mediate afferent input onto interneurons such as GABAergic neurons. These receptors also contribute to high

  12. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor

    Science.gov (United States)

    Güler, Ali D.; Rainwater, Aundrea; Parker, Jones G.; Jones, Graham L.; Argilli, Emanuela; Arenkiel, Benjamin R.; Ehlers, Michael D.; Bonci, Antonello; Zweifel, Larry s.; Palmiter, Richard D.

    2013-01-01

    The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches. PMID:22434189

  13. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  14. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng

    2003-01-01

    Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha (RPTPa....... However, these synapses are unable to undergo long-term potentiation. Mice lacking RPTPalpha also underperform in the radial-arm water-maze test. These studies identify RPTPalpha as a key mediator of neuronal migration and synaptic plasticity....... neuronal migration. The migratory abnormality likely results from a radial glial dysfunction rather than from a neuron-autonomous defect. In spite of this aberrant development, basic synaptic transmission from the Schaffer collateral pathway to CA1 pyramidal neurons remains intact in Ptpra(-/-) mice...

  15. Confocal imaging of N-methyl-D-aspartate receptors in living cortical neurons.

    Science.gov (United States)

    Durand, J; Kojic, L; Wang, Y; Lee, P; Cynader, M S; Gu, Q

    2000-01-01

    The fluorescence-conjugated N-methyl-D-aspartate receptor-selective antagonist, BODIPY-conantokin-G, was employed to label N-methyl-D-aspartate receptors in living neurons derived from the visual cortex of embryonic rats. The fluorescent labeling was visualized and analysed using confocal microscopy and digital imaging techniques. BODIPY-conantokin-G binding sites were homogeneously distributed across somata four days after neurons (E17-20) were placed in culture. In five-day-old cultures, BODIPY-conantokin-G binding sites became clusters of fluorescently labeled spots which were arranged irregularly on somata and proximal neurites. Distal neurites displayed fluorescent labeling after 10-15 days in culture. Displacement experiments showed that spermine and unlabeled conantokin-G compete with BODIPY-conantokin-G labeling at the N-methyl-D-aspartate receptor-associated polyamine site. The N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonovaleric acid also depressed the labeling but with a weaker effect, probably due to interactions occurring between the N-methyl-D-aspartate receptor agonist binding site and the polyamine modulatory site. The fluorescent dyes FM 1-43 and FM 4-64 were used in double-labeling studies to compare the distribution of nerve terminals with that of BODIPY-conantokin-G binding sites. BODIPY-conantokin-G binding clusters were associated with presynaptic nerve terminals while isolated BODIPY-conantokin-G binding sites were not always opposed to terminals. The aggregation of receptors to form clusters may lead to the functional formation of excitatory synapses. To investigate whether modulation of membrane potentials affected the formation of N-methyl-D-aspartate receptor clusters, cultured neurons were chronically treated for a week with either tetrodotoxin (to block membrane action potentials) or a high concentration of potassium to depolarize the membrane. While neurons in the tetrodotoxin-treated group showed a similar number of

  16. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    Science.gov (United States)

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  17. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Directory of Open Access Journals (Sweden)

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  18. Electrophysiological evidence of P2X2 receptor expression in the neurons of intracardiac and paratracheal ganglia

    Institute of Scientific and Technical Information of China (English)

    MA Bei; NI Xin; HAN Hong; BURNSTOCK Geoffrey

    2006-01-01

    Objective:To investigate the expression of P2X receptors on rat intracardiac and paratracheal ganglion neurons. Methods: For preparation of intracardiac neurons, hearts were excised, the atria were separated and the medial region containing intracardiac ganglia was isolated and cut into pieces. For preparation of paratracheal neurons, the tracheas were removed and the superficial membranous layer containing paratracheal ganglia was rapidly isolated. Intracardiac and paratracheal ganglion neurons were dissociated after digestion by collagenase and trypsin. Whole-cell patch clamp recording was used to identify the pharmacological properties of P2X receptors in cultured neurons. Results:Neurons from these two ganglia responded to ATP with a rapidly activating, sustained inward current. Αβ-meATP failed to evoke any responses in paratracheal ganglion neurons while a few of intracardiac ganglion neurons responded to αβ-meATP with a tiny sustained inward current. ADP and UTP had no effect on intracardiac neurons. Lowering pH potentiated ATP responses in neurons from these two ganglia whereas increasing pH inhibited ATP responses. Co-application of Zn2+ potentiated ATP responses in intracardiac and paratracheal ganglion neurons. Conclusion: The receptor subtypes involved in intracardiac and paratracheal ganglia appear to be homomeric P2X2, while heteromeric P2X2/3 could not be completely excluded from intracardiac neurons.

  19. The p75 neurotrophin receptor evades the endolysosomal route in neuronal cells, favouring multivesicular bodies specialised for exosomal release

    OpenAIRE

    Escudero, Claudia A; Lazo, Oscal M.; Galleguillos, Carolina; Parraguez, Jose I.; Lopez-Verrilli, Maria A.; Cabeza, Carolina; Leon, Luisa; Saeed, Uzma; Retamal, Claudio; Gonzalez, Alfonso; Marzolo, Maria-Paz; Bruce D Carter; Court, Felipe A.; Bronfman, Francisca C.

    2014-01-01

    The p75 neurotrophin receptor (p75, also known as NGFR) is a multifaceted signalling receptor that regulates neuronal physiology, including neurite outgrowth, and survival and death decisions. A key cellular aspect regulating neurotrophin signalling is the intracellular trafficking of their receptors; however, the post-endocytic trafficking of p75 is poorly defined. We used sympathetic neurons and rat PC12 cells to study the mechanism of internalisation and post-endocytic trafficking of p75. ...

  20. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism

    OpenAIRE

    S. Sierra; Luquin, N. (Natasha); Rico, A.J. (Alberto J.); Gomez-Bautista, V. (V.); Roda, E.; Dopeso-Reyes, I. G.; Vazquez, A.; Martinez-Pinilla, E. (Eva); Labandeira-Garcia, J.L. (José L.); Franco, R; J.L. Lanciego

    2014-01-01

    Abstract Although type 1 cannabinoid receptors (CB1- Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas th...

  1. Structural features of the Nogo receptor signaling complexes at the neuron/myelin interface.

    Science.gov (United States)

    Saha, Nayanendu; Kolev, Momchil; Nikolov, Dimitar B

    2014-10-01

    Upon spinal cord injury, the central nervous system axons are unable to regenerate, partially due to the repulsive action of myelin inhibitors, such as the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp). These inhibitors bind and signal through a single receptor/co-receptor complex that comprises of NgR1/LINGO-1 and either p75 or TROY, triggering intracellular downstream signaling that impedes the re-growth of axons. Structure-function analysis of myelin inhibitors and their neuronal receptors, particularly the NgRs, have provided novel information regarding the molecular details of the inhibitor/receptor/co-receptor interactions. Structural and biochemical studies have revealed the architecture of many of these proteins and identified the molecular regions important for assembly of the inhibitory signaling complexes. It was also recently shown that gangliosides, such as GT1b, mediate receptor/co-receptor binding. In this review, we highlight these studies and summarize our current understanding of the multi-protein cell-surface complexes mediating inhibitory signaling events at the neuron/myelin interface.

  2. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  3. Adenosine A1 receptor-mediated transactivation of the EGF receptor produces a neuroprotective effect on cortical neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke-qiang XIE; Li-min ZHANG; Yan CAO; Jun ZHU; Lin-yin FENG

    2009-01-01

    Aim:To understand the mechanism of the transactivation of the epidermal growth factor receptor (EGFR) mediated by the adenosine A1 receptor (A1R).Methods:Primary cultured rat cortical neurons subjected to oxygen-glucose deprivation (OGD) and HEK293/A1R cells were treated with the A1R-specific agonist N6-cyclopentyladenosine (CPA).Phospho-EGFR,Akt,and ERK1/2 were observed by Western blot.An interaction between EGFR and AIR was detected using immunoprecipitation and immunocytochemistry.Results:The A1R agonist CPA causes protein kinase B (Akt) activation and protects primary cortical neurons from oxygen-glucose deprivation (OGD) insult.A1R and EGFR co-localize in the membranes of neurons and form an immunocomplex.A1R stimulation induces significant EGFR phosphorylation via a P13K and Src kinase signaling pathway;this stimulation provides a neuroprotective effect in cortical neurons.CPA leads to sustained phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) in cortical neurons,but only to transient phosphorylation in HEK 293/A1R cells.The response to the AtR agonist is mediated primarily through EGFR trans-activation that is dependent on pertussis toxin (PTX)-sensitive G1 protein and metalloproteases in HEK 293/A1R.Conclusion:A1R-mediated EGFR transactivation confers a neuroprotective effect in primary cortical neurons.P13 kinase and Src kinase play pivotal roles in this response.

  4. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  5. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Lan Bao

    2012-01-01

    μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy.However,the use of these drugs is limited by their side-effects,which include antinociceptive tolerance and dependence.Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs.Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance.Further analysis of the mechanisms for regulating the trafficking of receptors,ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.

  6. Functional coupling, desensitization and internalization of virally expressed mu opioid receptors in cultured dorsal root ganglion neurons from mu opioid receptor knockout mice.

    Science.gov (United States)

    Walwyn, W M; Keith, D E; Wei, W; Tan, A M; Xie, C W; Evans, C J; Kieffer, B L; Maidment, N T

    2004-01-01

    Although mu opioid receptors desensitize in various cell lines in vitro, the relationship of this change in signaling efficacy to the development of tolerance in vivo remains uncertain. It is clear that a system is needed in which functional mu opioid receptor expression is obtained in appropriate neurons so that desensitization can be measured, manipulated, and mutated receptors expressed in this environment. We have developed a recombinant system in which expression of a flag-tagged mu opioid receptor is returned to dorsal root ganglia neurons from mu opioid receptor knockout mice in vitro. Flow cytometry analysis showed that adenoviral-mediated expression of the amino-terminal flag-tagged mu opioid receptor in neurons resulted in approximately 1.3x10(6) receptors/cell. Many mu opioid receptor cell lines express a similar density of receptors but this is approximately 7x greater than the number of endogenous receptors expressed by matched wild-type neurons. Inhibition of the high voltage-activated calcium currents in dorsal root ganglia neurons by the mu agonist, D-Ala(2), N-MePhe(4), Gly(5)-ol-enkephalin (DAMGO), was not different between the endogenous and flag-tagged receptor at several concentrations of DAMGO used. Both receptors desensitized equally over the first 6 h of DAMGO pre-incubation, but after 24 h the response of the endogenous receptor to DAMGO had desensitized further than the flag- tagged receptor (71+/-3 vs 29+/-7% respectively; P<0.002), indicating less desensitization in neurons expressing a higher density of receptor. Using flow cytometry to quantify the percentage of receptors remaining on the neuronal cell surface, the flag-tagged receptor internalized by 17+/-1% after 20 min and 55+/-2% after 24 h of DAMGO. These data indicate that this return of function model in neurons recapitulates many of the characteristics of endogenous mu opioid receptor function previously identified in non-neuronal cell lines.

  7. TAM receptors support neural stem cell survival, proliferation and neuronal differentiation.

    Directory of Open Access Journals (Sweden)

    Rui Ji

    Full Text Available Tyro3, Axl and Mertk (TAM receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS. In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+ and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF, but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.

  8. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    Science.gov (United States)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  9. Histamine Excites Rat Superior Vestibular Nuclear Neurons via Postsynaptic H1 and H2 Receptors in vitro

    Directory of Open Access Journals (Sweden)

    Qian-Xing Zhuang

    2012-09-01

    Full Text Available The superior vestibular nucleus (SVN, which holds a key position in vestibulo-ocular reflexes and nystagmus, receives direct hypothalamic histaminergic innervations. By using rat brainstem slice preparations and extracellular unitary recordings, we investigated the effect of histamine on SVN neurons and the underlying receptor mechanisms. Bath application of histamine evoked an excitatory response of the SVN neurons, which was not blocked by the low-Ca2+/high-Mg2+ medium, indicating a direct postsynaptic effect of the amine. Selective histamine H1 receptor agonist 2-pyridylethylamine and H2 receptor agonist dimaprit, rather than VUF8430, a selective H4 receptor agonist, mimicked the excitation of histamine on SVN neurons. In addition, selective H1 receptor antagonist mepyramine and H2 receptor antagonist ranitidine, but not JNJ7777120, a selective H4 receptor antagonist, partially blocked the excitatory response of SVN neurons to histamine. Moreover, mepyramine together with ranitidine nearly totally blocked the histamine-induced excitation. Immunostainings further showed that histamine H1 and H2 instead of H4 receptors existed in the SVN. These results demonstrate that histamine excites the SVN neurons via postsynaptic histamine H1 and H2 receptors, and suggest that the central histaminergic innervation from the hypothalamus may actively bias the SVN neuronal activity and subsequently modulate the SVN-mediated vestibular functions and gaze control.

  10. The sigma-1 receptor: roles in neuronal plasticity and disease.

    Science.gov (United States)

    Kourrich, Saïd; Su, Tsung-Ping; Fujimoto, Michiko; Bonci, Antonello

    2012-12-01

    Sigma-1 receptors (Sig-1Rs) have been implicated in many neurological and psychiatric conditions. Sig-1Rs are intracellular chaperones that reside specifically at the endoplasmic reticulum (ER)-mitochondrion interface, referred to as the mitochondrion-associated ER membrane (MAM). Here, Sig-1Rs regulate ER-mitochondrion Ca(2+) signaling. In this review, we discuss the current understanding of Sig-1R functions. Based on this, we suggest that the key cellular mechanisms linking Sig-1Rs to neurological disorders involve the translocation of Sig-1Rs from the MAM to other parts of the cell, whereby Sig-1Rs bind and modulate the activities of various ion channels, receptors, or kinases. Thus, Sig-1Rs and their associated ligands may represent new avenues for treating aspects of neurological and psychiatric diseases. Published by Elsevier Ltd.

  11. γ-Aminobutyric Acid B Receptor Mediated Inhibition of Gonadotropin-Releasing Hormone Neurons Is Suppressed by Kisspeptin-G Protein-Coupled Receptor 54 Signaling

    Science.gov (United States)

    Zhang, Chunguang; Bosch, Martha A.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2009-01-01

    γ-Aminobutyric acid (GABA) is one of the most important neurotransmitters that regulate the excitability of GnRH neurons. Numerous studies have shown that GABA activates Cl− currents in GnRH neurons, and these effects are antagonized by GABAA receptor antagonists. The GABAB receptor is a heterodimer composed of GABAB R1 and R2, and although both subunits have been localized in GnRH neurons, nothing is known about the cellular signaling of this Gαi,o-coupled receptor in GnRH neurons. Using whole-cell recordings from mouse enhanced green fluorescent protein-GnRH neurons, we found that the GABAB receptor agonist baclofen hyperpolarized GnRH neurons through activation of an inwardly rectifying K+ current in a concentration-dependent manner. The effects of baclofen were antagonized by the selective GABAB receptor antagonist CGP 52432 with a Ki (inhibitory constant) of 85 nm. Furthermore, in the presence of the GABAA receptor antagonist picrotoxin, GABA hyperpolarized GnRH neurons in a similar manner. Treatment with 17β-estradiol as compared with oil vehicle did not significantly alter either the EC50 for the baclofen-induced response (0.8 ± 0.1 vs. 1.0 ± 0.1 μm, respectively) or the maximal outward current (10.8 ± 1.7 pA vs. 11.4 ± 0.6 pA, respectively) in GnRH neurons. However, the outward current (and membrane hyperpolarization) was abrogated by submaximal concentrations of the G protein-coupled receptor 54 (GPR54) agonist kisspeptin-10 in both groups, indicating that Gαq-coupled (GPR54) can desensitize the GABAB receptor-mediated response. Therefore, the activation of GABAB receptors in GnRH neurons may provide increased inhibitory tone during estrogen-negative feedback states that is attenuated by kisspeptin during positive feedback. PMID:19164470

  12. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin

    Directory of Open Access Journals (Sweden)

    Pierre Cardinal

    2014-10-01

    Full Text Available Metabolic flexibility allows rapid adaptation to dietary change, however, little is known about the CNS mechanisms regulating this process. Neurons in the hypothalamic ventromedial nucleus (VMN participate in energy balance and are the target of the metabolically relevant hormone leptin. Cannabinoid type-1 (CB1 receptors are expressed in VMN neurons, but the specific contribution of endocannabinoid signaling in this neuronal population to energy balance regulation is unknown. Here we demonstrate that VMN CB1 receptors regulate metabolic flexibility and actions of leptin. In chow-fed mice, conditional deletion of CB1 in VMN neurons (expressing the steroidogenic factor 1, SF1 decreases adiposity by increasing sympathetic activity and lipolysis, and facilitates metabolic effects of leptin. Conversely, under high-fat diet, lack of CB1 in VMN neurons produces leptin resistance, blunts peripheral use of lipid substrates and increases adiposity. Thus, CB1 receptors in VMN neurons provide a molecular switch adapting the organism to dietary change.

  13. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin.

    Science.gov (United States)

    Cardinal, Pierre; André, Caroline; Quarta, Carmelo; Bellocchio, Luigi; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Maitre, Marlene; Gonzales, Delphine; Cannich, Astrid; Pagotto, Uberto; Marsicano, Giovanni; Cota, Daniela

    2014-10-01

    Metabolic flexibility allows rapid adaptation to dietary change, however, little is known about the CNS mechanisms regulating this process. Neurons in the hypothalamic ventromedial nucleus (VMN) participate in energy balance and are the target of the metabolically relevant hormone leptin. Cannabinoid type-1 (CB1) receptors are expressed in VMN neurons, but the specific contribution of endocannabinoid signaling in this neuronal population to energy balance regulation is unknown. Here we demonstrate that VMN CB1 receptors regulate metabolic flexibility and actions of leptin. In chow-fed mice, conditional deletion of CB1 in VMN neurons (expressing the steroidogenic factor 1, SF1) decreases adiposity by increasing sympathetic activity and lipolysis, and facilitates metabolic effects of leptin. Conversely, under high-fat diet, lack of CB1 in VMN neurons produces leptin resistance, blunts peripheral use of lipid substrates and increases adiposity. Thus, CB1 receptors in VMN neurons provide a molecular switch adapting the organism to dietary change.

  14. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.

    Science.gov (United States)

    Hussy, N; Deleuze, C; Pantaloni, A; Desarménien, M G; Moos, F

    1997-08-01

    1. To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole-cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity-dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2. GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl-, indicating activation of Cl(-)-selective channels. Glycine-activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100 microM glycine), but were unaffected by the GABAA antagonist gabazine (1-3 microM). GABA-activated currents were reversibly antagonized by 3 microM gabazine, but not by strychnine (up to 1 microM). 3. Responses to 1 mM taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine-induced currents, indicating selective activation of glycine receptors. Responses to 10 mM taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4. In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 microM. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5. In vivo, locally applied strychnine (300 nM) increased and taurine (1 mM) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water-loaded rats. 6. Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30

  15. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  16. Conditional knockout of NMDA receptors in dopamine neurons prevents nicotine-conditioned place preference.

    Directory of Open Access Journals (Sweden)

    Lei Phillip Wang

    Full Text Available Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction.

  17. Neuropeptide FF receptors exhibit direct and anti-opioid effects on mice dorsal raphe nucleus neurons.

    Science.gov (United States)

    Ding, Zhong; Zajac, Jean-Marie

    2014-10-05

    By using acutely dissociated dorsal raphe nucleus neurons (DRN) from young mice, direct and anti-opioid effects of Neuropeptide FF (NPFF) receptors were measured. The NPFF analog 1 DMe (10 µM) had no effect on resting Ca2+ channels but reduced the magnitude of Ca2+ transients induced by depolarization in 83.3% neurons tested, of which the inhibition rate is 45.4±2.9%. Pertussis toxin treatment reduced to 18.9% the number of responding neurons and attenuated by 47% the response of 1 DMe. In contrast, cholera toxin treatment had no significant effect. Eighteen minute perfusion with 1 DMe at a very low 10 nM concentration, that did not directly inhibit Ca2+ transients triggered by depolarization in every neuron, attenuated by 78% the inhibitory effect of Nociceptin/orphanin FQ (N/OFQ) on Ca2+ transients, but not that of by serotonin. These results demonstrated for the first time that NPFF receptors on mice DRN inhibit Ca2+ transients induced by depolarization via Gi/o protein and also exhibit a specific anti-opioid activity on nociceptin receptors, and that their specific anti-opioid activity is not a direct consequence of their activity on Ca2+ transients.

  18. Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury.

    Science.gov (United States)

    Shan, Yuexin; Liu, Baosong; Li, Lijun; Chang, Ning; Li, Lei; Wang, Hanbin; Wang, Dianshi; Feng, Hua; Cheung, Carol; Liao, Mingxia; Cui, Tianyuan; Sugita, Shuzo; Wan, Qi

    2009-12-01

    Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.

  19. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors.

    Science.gov (United States)

    Huang, Ming; Cheng, Gen; Tan, Han; Qin, Rui; Zou, Yimin; Wang, Yun; Zhang, Ying

    2017-09-01

    Capsaicin, the ingredient responsible for the pungent taste of hot chili peppers, is widely used in the study and management of pain. Recently, its neuroprotective effect has been described in multiple studies. Herein, we investigated the underlying mechanisms for the neuroprotective effect of capsaicin. Direct injection of capsaicin (1 or 3nmol) into the peri-infarct area reduced the infarct volume and improved neurological behavioral scoring and motor coordination function in the middle cerebral artery occlusion (MCAO)/reperfusion model in rats. The time window of the protective effect of capsaicin was within 1h after reperfusion, when excitotoxicity is the main reason of cell death. In cultured cortical neurons, administration of capsaicin attenuated glutamate-induced excitotoxic injury. With respect to the mechanisms of the neuroprotective effect of capsaicin, reduced calcium influx after glutamate stimulation was observed following capsaicin pretreatment in cortical neurons. Trpv1 knock-out abolished the inhibitory effect of capsaicin on glutamate-induced calcium influx and subsequent neuronal death. Reduced expression of GluN1 and GluN2B, subunits of NMDA receptor, was examined after capsaicin treatment in cortical neurons. In summary, our studies reveal that the neuroprotective effect of capsaicin in cortical neurons is TRPV1-dependent and down-regulation of the expression and function of NMDA receptors contributes to the protection afforded by capsaicin. Copyright © 2017. Published by Elsevier Inc.

  20. Orexins excite neurons of the rat cerebellar nucleus interpositus via orexin 2 receptors in vitro.

    Science.gov (United States)

    Yu, Lei; Zhang, Xiao-Yang; Zhang, Jun; Zhu, Jing-Ning; Wang, Jian-Jun

    2010-03-01

    Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep-wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM-1 microM) or orexin B (100 nM-1 microM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca(2+)/high-Mg(2+) medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala(11), D-Leu(15)] orexin B, a highly selective orexin 2 receptor (OX(2)R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX(2)R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.

  1. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells

    Directory of Open Access Journals (Sweden)

    Polman J Annelies E

    2012-10-01

    Full Text Available Abstract Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq. Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58% of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context

  2. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  3. Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons.

    Science.gov (United States)

    Watanabe, K; Kimura, M

    1998-05-01

    To understand the mechanisms by which basal ganglia neurons express acquired activities during and after behavioral learning, selective dopamine (DA) receptor antagonists were applied while recording the activity of striatal neurons in monkeys performing behavioral tasks. In experiment 1, a monkey was trained to associate a click sound with a drop of reward water. DA receptor antagonists were administered by micropressure using a stainless steel injection cannula (300 microm ID) through which a Teflon-coated tungsten wire for recording neuronal activity had been threaded. Responses to sound by tonically active neurons (TANs), a class of neurons in the primate striatum, were recorded through a tungsten wire electrode during the application of either D1- or D2-class DA receptor antagonists (total volume one of the surrounding barrels. SCH23390 (10 mM, pH 4.5) and (-)-sulpiride (10 mM, pH 4.5) were used. The effects of iontophoresis of both D1- and D2-class antagonists were examined in 40 TANs. Of 40 TANs from which recordings were made, responses were suppressed exclusively by the D2-class antagonist in 19 TANs, exclusively by the D1-class antagonist in 3 TANs, and by both D1- and D2-class antagonists in 7 TANs. When 0.9% NaCl, saline, was applied by pressure (<1 microl) or by iontophoresis (<30 nA) as a control, neither the background discharge rates nor the responses of TANs were significantly influenced. Background discharge rate of TANs was also not affected by D1- or D2-class antagonists applied by either micropressure injection or iontophoresis. It was concluded that the nigrostriatal DA system enables TANs to express learned activity primarily through D2-class and partly through D1-class receptor-mediated mechanisms in the striatum.

  4. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  5. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Science.gov (United States)

    Setti-Perdigão, Pedro; Serrano, Maria A R; Flausino, Otávio A; Bolzani, Vanderlan S; Guimarães, Marília Z P; Castro, Newton G

    2013-01-01

    Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  6. Ionic currents and ion channels of lobster olfactory receptor neurons

    OpenAIRE

    1989-01-01

    The role of the soma of spiny lobster olfactory receptor cells in generating odor-evoked electrical signals was investigated by studying the ion channels and macroscopic currents of the soma. Four ionic currents; a tetrodotoxin-sensitive Na+ current, a Ca++ current, a Ca(++)-activated K+ current, and a delayed rectifier K+ current, were isolated by application of specific blocking agents. The Na+ and Ca++ currents began to activate at -40 to -30 mV, while the K+ currents began to activate at ...

  7. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    Science.gov (United States)

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  8. Loss of the liver X receptor LXRα/β in peripheral sensory neurons modifies energy expenditure.

    Science.gov (United States)

    Mansuy-Aubert, Virginie; Gautron, Laurent; Lee, Syann; Bookout, Angie L; Kusminski, Christine; Sun, Kai; Zhang, Yuan; Scherer, Philipp E; Mangelsdorf, David J; Elmquist, Joel K

    2015-06-15

    Peripheral neural sensory mechanisms play a crucial role in metabolic regulation but less is known about the mechanisms underlying vagal sensing itself. Recently, we identified an enrichment of liver X receptor alpha and beta (LXRα/β) in the nodose ganglia of the vagus nerve. In this study, we show mice lacking LXRα/β in peripheral sensory neurons have increased energy expenditure and weight loss when fed a Western diet (WD). Our findings suggest that the ability to metabolize and sense cholesterol and/or fatty acids in peripheral neurons is an important requirement for physiological adaptations to WDs.

  9. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection:mechanistic considerations and clinical relevance

    Institute of Scientific and Technical Information of China (English)

    Merouane BENGHEKIF

    2009-01-01

    A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuro- protection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflamma- tory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes.

  10. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti

    Science.gov (United States)

    Sanford, Jillian L.; Shields, Vonnie D. C.; Dickens, Joseph C.

    2013-03-01

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N, N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.

  11. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue.

    Science.gov (United States)

    Li, Wei; Feng, Zhaoyang; Sternberg, Paul W; Xu, X Z Shawn

    2006-03-30

    The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems. Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour, it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory-motor integration during C. elegans locomotion.

  12. A novel fibroblast growth factor receptor family member promotes neuronal outgrowth and synaptic plasticity in aplysia.

    Science.gov (United States)

    Pollak, Daniela D; Minh, Bui Quang; Cicvaric, Ana; Monje, Francisco J

    2014-11-01

    Fibroblast Growth Factor (FGF) Receptors (FGFRs) regulate essential biological processes, including embryogenesis, angiogenesis, cellular growth and memory-related long-term synaptic plasticity. Whereas canonical FGFRs depend exclusively on extracellular Immunoglobulin (Ig)-like domains for ligand binding, other receptor types, including members of the tropomyosin-receptor-kinase (Trk) family, use either Ig-like or Leucine-Rich Repeat (LRR) motifs, or both. Little is known, however, about the evolutionary events leading to the differential incorporation of LRR domains into Ig-containing tyrosine kinase receptors. Moreover, although FGFRs have been identified in many vertebrate species, few reports describe their existence in invertebrates. Information about the biological relevance of invertebrate FGFRs and evolutionary divergences between them and their vertebrate counterparts is therefore limited. Here, we characterized ApLRRTK, a neuronal cell-surface protein recently identified in Aplysia. We unveiled ApLRRTK as the first member of the FGFRs family deprived of Ig-like domains that instead contains extracellular LRR domains. We describe that ApLRRTK exhibits properties typical of canonical vertebrate FGFRs, including promotion of FGF activity, enhancement of neuritic outgrowth and signaling via MAPK and the transcription factor CREB. ApLRRTK also enhanced the synaptic efficiency of neurons known to mediate in vivo memory-related defensive behaviors. These data reveal a novel molecular regulator of neuronal function in invertebrates, provide the first evolutionary linkage between LRR proteins and FGFRs and unveil an unprecedented mechanism of FGFR gene diversification in primeval central nervous systems.

  13. Orexins excite ventrolateral geniculate nucleus neurons predominantly via OX2 receptors.

    Science.gov (United States)

    Chrobok, Lukasz; Palus, Katarzyna; Lewandowski, Marian Henryk

    2016-04-01

    Orexins/hypocretins are two neuropeptides that influence many behaviours, such as feeding, sleep or arousal. Orexin A/hypocretin-1 (OXA) and orexin B/hypocretin-2 (OXB) bind to two metabotropic receptors, named the OX1 and OX2 receptors. The lateral geniculate complex of the thalamus is one of the many targets of orexinergic fibres derived from the lateral hypothalamus, although the impact of orexins on the ventrolateral geniculate nucleus (VLG) is poorly understood. The VLG, an important relay station of the subcortical visual system, is implicated in visuomotor and/or circadian processes. Therefore, in this study we evaluated the effects of orexins on single VLG neurons using a patch-clamp technique in vitro. Surprisingly, orexins depolarised the majority of the recorded neurons regardless of their localisation in the borders of the VLG. In addition, data presented in this article show that neurons synthesising NO were also affected by OXA. Moreover, immunohistochemical staining of OXB revealed the moderate density of orexinergic fibbers in the VLG. Our study using specific orexin receptor antagonists suggests that the OX2 receptor has a dominant role in the observed effects of OXA. To our knowledge, this article is the first to show orexinergic modulation of the VLG. These findings strengthen the postulated link between orexins and the circadian system, and propose a new role of these neuropeptides in the modulation of visuomotor functions.

  14. Dopamine D2 Receptors Regulate Collateral Inhibition between Striatal Medium Spiny Neurons

    Science.gov (United States)

    van der Goes, Marie-Sophie; Partridge, John G.; Vicini, Stefano

    2013-01-01

    The principle neurons of the striatum are GABAergic medium spiny neurons (MSNs), whose collateral synapses onto neighboring neurons play critical roles in striatal function. MSNs can be divided by dopamine receptor expression into D1-class and D2-class MSNs, and alterations in D2 MSNs are associated with various pathological states. Despite overwhelming evidence for D2 receptors (D2Rs) in maintaining proper striatal function, it remains unclear how MSN collaterals are specifically altered by D2R activation. Here, we report that chronic D2R stimulation regulates MSN collaterals in vitro by presynaptic and postsynaptic mechanisms. We used corticostriatal cultures from mice in which MSN subtypes were distinguished by fluorophore expression. Quinpirole, an agonist for D2/3 receptors, was used to chronically activate D2Rs. Quinpirole increased the rate and strength of collateral formation onto D2R-containing MSNs as measured by dual whole-cell patch-clamp recordings. Additionally, these neurons were more sensitive to low concentrations of GABA and exhibited an increase in gephyrin puncta density, suggesting increased postsynaptic GABAA receptors. Last, quinpirole treatment increased presynaptic GABA release sites, as shown by increased frequency of sIPSCs and mIPSCs, correlating with increased VGAT (vesicular GABA transporter) puncta. Combined with the observation that there were no detectable differences in sensitivity to specific GABAA receptor modulators, we provide evidence that D2R activation powerfully transforms MSN collaterals via coordinated presynaptic and postsynaptic alterations. As the D2 class of MSNs is highly implicated in Parkinson's disease and other neurological disorders, our findings may contribute to understanding and treating the changes that occur in these pathological states. PMID:23986243

  15. Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive.

    Science.gov (United States)

    Couchman, Kiri; Grothe, Benedikt; Felmy, Felix

    2012-02-01

    Neurons of the medial superior olive (MSO) code for the azimuthal location of low-frequency sound sources via a binaural coincidence detection system operating on microsecond time scales. These neurons are morphologically simple and stereotyped, and anatomical studies have indicated a functional segregation of excitatory and inhibitory inputs between cellular compartments. It is thought that this morphological arrangement holds important implications for the computational task of these cells. To date, however, there has been no functional investigation into synaptic input sites or functional receptor distributions on mature neurons of the MSO. Here, functional neurotransmitter receptor maps for amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA), glycine (Gly), and ionotropic γ-aminobutyric acid (GABA(A)) receptors (Rs) were compared and complemented by their corresponding synaptic input map. We find in MSO neurons from postnatal day 20-35 gerbils that AMPARs and their excitatory inputs target the soma and dendrites. Functional GlyRs and their inhibitory inputs are predominantly refined to the somata, although a pool of functional GlyRs is present extrasynaptically on MSO dendrites. GABA(A)R responses are present throughout the cell but lack direct synaptic contact indicating an involvement in volume transmission. NMDARs are present both synaptically and extrasynaptically with an overall distribution similar to GlyRs. Interestingly, even at physiological temperatures these functional NMDARs can be potentiated by synaptically released Gly. The functional receptor and synaptic input maps produced here led to the identification of a cross talk between transmitter systems and raises the possibility that extrasynaptic receptors could be modulating leak conductances as a homeostatic mechanism.

  16. S-Nitrosoglutathione and glutathione act as NMDA receptor agonists in cultured hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Ting-yu CHIN; Sheau-huei CHUEH; Pao-luh TAO

    2006-01-01

    Aim: To characterize the effect of combined pre- and postnatal morphine exposure on Af-methyl-D-aspartate receptor (NMDA) receptor signaling in hippocampal neurons of the offspring of morphine-addicted female rats. Methods: Cultured hippocampal neurons and synaptosomes were prepared from neonatal and 2-week-old offspring, respectively, of control or morphine-addicted female rats. The increase in the cytosolic Ca2+ concentration ([Ca2+]i) of cultured cells was measured using Fura-2, and glutamate release from synaptosomes was measured enzymatically. Results: Both glutamate and NMDA caused a dose-dependent increase in the [Ca2+]i. The nitric oxide (NO) donor, S-nitrosoglutathione (GSNO), but not 3-morpholinosydnonimine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine, also induced a [Ca2+]i increase. GSNO and glutathione caused a dose-dependent increase in the [Ca2+]i with respective EC50 values of 56 and 414 μmol/L. Both effects were inhibited by Mg2+ or an NMDA receptor antagonist and were unaffected by the presence of a glutamate scavenger. The other glutathione derivatives, oxidized glutathione, S-methylglutathione, S-ethylglutathione, S-propylglutathione, and S-butylglutathione, the dipeptides, Glu-Cys and Cys-Gly, and the antioxidants, dithiothreitol and mercaptoethanol, failed to induce a [Ca2+]i increase. In addition, glutathione caused a dose-dependent increase in glutamate release from synaptosomes. The maximal responses and the EC50 values for the glutamate-, NMDA-, GSNO-, and glutathione-induced [Ca2+]i increases and the glutathione-induced glutamate release were indistinguishable in the neurons of the offspring from control and morphine-addicted female rats. Conclusion: GSNO and glutathione act as NMDA receptor agonists and, in contrast to hippocampal brain slice, combined pre- and postnatal morphine exposure does not modulate NMDA receptor signaling in the cultured hippocampal neurons.

  17. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    Science.gov (United States)

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  18. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Science.gov (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  19. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    Science.gov (United States)

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.

  20. Antihyperalgesic effect of CB1 receptor activation involves the modulation of P2X3 receptor in the primary afferent neuron.

    Science.gov (United States)

    Oliveira-Fusaro, Maria Cláudia Gonçalves; Zanoni, Cristiane Isabel Silva; Dos Santos, Gilson Gonçalves; Manzo, Luis Paulo; Araldi, Dionéia; Bonet, Ivan José Magayewski; Tambeli, Cláudia Herrera; Dias, Elayne Vieira; Parada, Carlos Amilcar

    2017-03-05

    Cannabinoid system is a potential target for pain control. Cannabinoid receptor 1 (CB1) activation play a role in the analgesic effect of cannabinoids once it is expressed in primary afferent neurons. This study investigates whether the anti-hyperalgesic effect of CB1 receptor activation involves P2X3 receptor in primary afferent neurons. Mechanical hyperalgesia was evaluated by electronic von Frey test. Cannabinoid effect was evaluated using anandamide or ACEA, a non-selective or a selective CB1 receptor agonists, respectively; AM251, a CB1 receptor antagonist, and antisense ODN for CB1 receptor. Calcium imaging assay was performed to evaluated α,β-meATP-responsive cultured DRG neurons pretreated with ACEA. Anandamide or ACEA administered in peripheral tissue reduced the carrageenan-induced mechanical hyperalgesia. The reduction in the carrageenan-induced hyperalgesia induced by ACEA was completely reversed by administration of AM251 as well as by the intrathecal treatment with antisense ODN for CB1 receptor. Also, ACEA reduced the mechanical hyperalgesia induced by bradykinin and by α,β-meATP, a P2X3 receptor non-selective agonist, but not by tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and chemokine-induced chemoattractant-1 (CINC-1). Finally, CB1 receptors are co-localized with P2X3 receptors in DRG small-diameter neurons and the treatment with ACEA reduced the number of α,β-meATP-responsive cultured DRG neurons. Our data suggest that the analgesic effect of CB1 receptor activation is mediated by a negative modulation of the P2X3 receptor in the primary afferent neurons.

  1. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.

    Science.gov (United States)

    Dukoff, David James; Hogg, David William; Hawrysh, Peter John; Buck, Leslie Thomas

    2014-09-15

    Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.

  2. Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in aplysia sensory neurons.

    Science.gov (United States)

    Dumitriu, Bogdan; Cohen, Jonathan E; Wan, Qin; Negroiu, Andreea M; Abrams, Thomas W

    2006-04-01

    Highly selective serotonin (5-hydroxytryptamine, 5-HT) receptor antagonists developed for mammals are ineffective in Aplysia due to the evolutionary divergence of neurotransmitter receptors and because the higher ionic strength of physiological saline for marine invertebrates reduces antagonist affinity. It has therefore been difficult to identify antagonists that specifically block individual signaling cascades initiated by 5-HT. We studied two broad-spectrum 5-HT receptor antagonists that have been characterized biochemically in Aplysia CNS: methiothepin and spiperone. Methiothepin is highly effective in inhibiting adenylyl cyclase (AC)-coupled 5-HT receptors in Aplysia. Spiperone, which blocks phospholipase C (PLC)-coupled 5-HT receptors in mammals, does not block AC-coupled 5-HT receptors in Aplysia. In electrophysiological studies, we explored whether methiothepin and spiperone can be used in parallel to distinguish between the AC-cAMP and PLC-protein kinase C (PKC) modulatory cascades that are initiated by 5-HT. 5-HT-induced broadening of the sensory neuron action potential in the presence of tetraethylammonium/nifedipine, which is mediated by modulation of the S-K+ currents, was used an assay for the AC-cAMP cascade. Spike broadening initiated by 5 microM 5-HT was unaffected by 100 microM spiperone, whereas it was effectively blocked by 100 microM methiothepin. Facilitation of highly depressed sensory neuron-to-motor neuron synapses by 5-HT was used as an assay for the PLC-PKC cascade. Spiperone completely blocked facilitation of highly depressed synapses by 5 microM 5-HT. In contrast, methiothepin produced a modest, nonsignificant, reduction in the facilitation of depressed synapses. Interestingly, these experiments revealed that the PLC-PKC cascade undergoes desensitization during exposure to 5-HT.

  3. GABAA receptor β3 subunit expression regulates tonic current in developing striatopallidal medium spiny neurons

    Directory of Open Access Journals (Sweden)

    Megan eJanssen

    2011-07-01

    Full Text Available The striatum is a key structure for movement control, but the mechanisms that dictate the output of distinct subpopulations of medium spiny projection neurons (MSNs, striatonigral projecting and dopamine D1 receptor- (D1+ or striatopallidal projecting and dopamine D2 receptor- (D2+ expressing neurons, remains poorly understood. GABA-mediated tonic inhibition largely controls neuronal excitability and action potential firing rates, and we previously suggested with pharmacological analysis that the GABAA receptor β3 subunit plays a large role in the basal tonic current seen in D2+ MSNs from young mice (Ade et al, 2008; Janssen et al, 2009. In this study, we demonstrated the essential role of the β3 GABAA receptor subunit in mediating MSN tonic currents using conditional β3 subunit knock-out (β3f/fDrd2 mice. Cre-lox genetics were used to generate conditional knock-out animals where Cre recombinase was expressed under the D2 receptor (Drd2 promoter. We show that while the wild-type MSN tonic current pattern demonstrates a high degree of variability, tonic current patterns from β3f/fDrd2 mice are narrow, suggesting that the β3 subunit is essential to striatal MSN GABA-mediated tonic current. Our data also suggest that a distinct population of synaptic receptors upregulate due to β3 subunit removal. Further, deletion of this subunit significantly decreases the D2+ MSN excitability. These results offer insight for target mechanisms in Parkinson’s disease, where symptoms arise due to the imbalance in striatal D1+ and D2+ MSN excitability and output.

  4. Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones.

    Science.gov (United States)

    Boesmans, W; Ameloot, K; van den Abbeel, V; Tack, J; Vanden Berghe, P

    2009-09-01

    Cannabinoid (CB) receptors are expressed in the enteric nervous system (ENS) and CB(1) receptor activity slows down motility and delays gastric emptying. This receptor system has become an important target for GI-related drug development such as in obesity treatment. The aim of the study was to investigate how CB(1) ligands and antagonists affect ongoing activity in enteric neurone networks, modulate synaptic vesicle cycling and influence mitochondrial transport in nerve processes. Primary cultures of guinea-pig myenteric neurones were loaded with different fluorescent markers: Fluo-4 to measure network activity, FM1-43 to image synaptic vesicles and Mitotracker green to label mitochondria. Synaptic vesicle cluster density was assessed by immunohistochemistry and expression of CB(1) receptors was confirmed by RT-PCR. Spontaneous network activity, displayed by both excitatory and inhibitory neurones, was significantly increased by CB(1) receptor antagonists (AM-251 and SR141716), abolished by CB(1) activation (methanandamide, mAEA) and reduced by two different inhibitors (arachidonylamide serotonin, AA-5HT and URB597) of fatty acid amide hydrolase. Antagonists reduced the number of synaptic vesicles that were recycled during an electrical stimulus. CB(1) agonists (mAEA and WIN55,212) reduced and antagonists enhanced the fraction of transported mitochondria in enteric nerve fibres. We found immunohistochemical evidence for an enhancement of synaptophysin-positive release sites with SR141716, while WIN55,212 caused a reduction. The opposite effects of agonists and antagonists suggest that enteric nerve signalling is under the permanent control of CB(1) receptor activity. Using inhibitors of the endocannabinoid degrading enzyme, we were able to show there is endogenous production of a CB ligand in the ENS.

  5. De novo expression of the neurokinin 1 receptor in spinal lamina I pyramidal neurons in polyarthritis.

    Science.gov (United States)

    Almarestani, L; Waters, S M; Krause, J E; Bennett, G J; Ribeiro-da-Silva, A

    2009-05-20

    Spinal lamina I (LI) neurons play a major role in the transmission and integration of pain-related information that is relayed to higher centers. Alterations in the excitability of these neurons influence chronic pain development, and expression of the neurokinin 1 receptor (NK-1r) is thought to play a major role in such changes. Novel expression of NK-1r may underlie hyperexcitability in new populations of LI neurons. LI projection neurons can be classified morphologically into fusiform, pyramidal, and multipolar cells, differing in their functional properties, with the pyramidal type being nonnociceptive. In agreement with this, we have shown that spinoparabrachial pyramidal neurons seldom express NK-1r, in contrast with the other two cell types. In this study we investigated in the rat the long-term changes in NK-1r expression by spinoparabrachial LI neurons following the unilateral injection in the hindpaw plantar surface of complete Freund's adjuvant (CFA). Cholera toxin subunit B (CTb) was injected unilaterally into the parabrachial nucleus. Our results revealed that, ipsilaterally, pyramidal neurons were seldom immunoreactive for NK-1r both in saline-injected and in CFA-injected rats, up to 10 days post-CFA. However, a considerable number of pyramidal cells were immunoreactive for NK-1r at 15, 21, and 30 days post-CFA. Our data raise the possibility -- which needs to be confirmed by electrophysiology -- that most LI projection neurons of the pyramidal type are likely nonnociceptive in naive animals but might become nociceptive following the development of arthritis.

  6. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Lily eKang

    2015-10-01

    Full Text Available Prefrontal layer 6 (L6 pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are long (reaching to the pial surface versus short (terminating in the deep layers, as in primary cortical regions. This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons or within the deep layers (short neurons, and nicotinic perturbations differently alter spine density within each subgroup. Such changes have ramifications for adult executive function and possibly also for the morphological vulnerability of prefrontal cortex to subsequent stress exposure.

  7. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons

    Directory of Open Access Journals (Sweden)

    Brian L Jones

    2016-03-01

    Full Text Available Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.

  8. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression.

    Science.gov (United States)

    Park, E-M; Cho, B-P; Volpe, B T; Cruz, M O; Joh, T H; Cho, S

    2005-01-01

    The inflammatory response accompanies and exacerbates the developing injury after cerebral ischemia. Ibuprofen, a non-steroidal anti-inflammatory drug, has been shown to attenuate injuries in animal models of various neurological diseases. In the present study, we investigated ibuprofen's neuroprotective effects in rats exposed to transient forebrain ischemia and in cultures exposed to oxygen glucose deprivation (OGD). Rats treated with ibuprofen after transient forebrain ischemia displayed long-lasting protection of CA1 hippocampal neurons. There were selective increases in interleukin-1 receptor antagonist gene and protein expression in ibuprofen-treated OGD microglia. Furthermore, treatment with ibuprofen in neuron/microglia co-cultures increased the number of surviving HC2S2 neurons against OGD whereas IL-1ra neutralizing antibody reversed the ibuprofen-induced neuroprotection. The data indicate that ibuprofen-induced IL-1ra secretion is involved in neuroprotection against ischemic conditions.

  9. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  10. Determination of the CD148-Interacting Region in Thrombospondin-1.

    Directory of Open Access Journals (Sweden)

    Keiko Takahashi

    Full Text Available CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types, including vascular endothelial cells and duct epithelial cells. Previous studies have shown a prominent role of CD148 to reduce growth factor signals and suppress cell proliferation and transformation. Further, we have recently shown that thrombospondin-1 (TSP1 serves as a functionally important ligand for CD148. TSP1 has multiple structural elements and interacts with various cell surface receptors that exhibit differing effects. In order to create the CD148-specific TSP1 fragment, here we investigated the CD148-interacting region in TSP1 using a series of TSP1 fragments and biochemical and biological assays. Our results demonstrate that: 1 CD148 binds to the 1st type 1 repeat in TSP1; 2 Trimeric TSP1 fragments that contain the 1st type repeat inhibit cell proliferation in A431D cells that stably express wild-type CD148 (A431D/CD148wt cells, while they show no effects in A431D cells that lack CD148 or express a catalytically inactive form of CD148. The anti-proliferative effect of the TSP1 fragment in A431D/CD148wt cells was largely abolished by CD148 knockdown and antagonized by the 1st, but not the 2nd and 3rd, type 1 repeat fragment. Furthermore, the trimeric TSP1 fragments containing the 1st type repeat increased the catalytic activity of CD148 and reduced phospho-tyrosine contents of EGFR and ERK1/2, defined CD148 substrates. These effects were not observed in the TSP1 fragments that lack the 1st type 1 repeat. Last, we demonstrate that the trimeric TSP1 fragment containing the 1st type 1 repeat inhibits endothelial cell proliferation in culture and angiogenesis in vivo. These effects were largely abolished by CD148 knockdown or deficiency. Collectively, these findings indicate that the 1st type 1 repeat interacts with CD148, reducing growth factor signals and inhibiting epithelial or endothelial cell proliferation and angiogenesis.

  11. 益气活血法对脑出血大鼠脑内凝血酶敏感蛋白-1及其受体CD36表达的影响%Effects of Replenishing Qi and Promoting Blood Circulation Treatment on the Expression of Thrombospondin-1 and Receptor CD36 of lntracerebral Hemorrhagic Rats

    Institute of Scientific and Technical Information of China (English)

    陈柏林; 邢之华; 唐涛; 刘宜峰; 阳鹤鹏; 刘清娥; 吴汉军

    2011-01-01

    OBJECTIVE To make a primary study of the mechanism of replenishing qi and promoting blood circulation treatment for curing intracerebral hemorrhage (ICH) rats by observing the expression of thrombospondin-1 (TSP-1) and its receptor CD36. METHODS 155 SD rats were randomly divided into six groups, namely normal group, sham operated group, ICH model group, replenishing qi and promoting blood circulation treatment group, replenishing qi group and promoting blood circulation treatment group. ICH model was established by injecting collagenase type Ⅶ, while replenishing qi group, promoting blood circulation treatment group and replenishing qi and promoting blood circulation treatment group were respectively administered with replenishing qi decoction, promoting blood circulation treatment decoction and Buyang Huanwu Decoction. Afterwards, brain tissue was extracted different and the expression of TSP-1 and CD36 were detected by western blotting. RESULTS There was no significant changes in the expression of TSP-1 and CD36 between normal group and sham operated group at different time. In ICH model group, TSP-1 reached peak on the fourth day,CD36 on the 4th and 28th day. In replenishing qi and promoting blood circulation treatment group, the expression of TSP-1 was lower than that in model group on the 1st day(P<0.01); the expression of TSP-1 and CD36 was both lower than that in model group on the 4th day(P<0.01); the expression of CD36 was higher than that in model group on the 28th day(P<0.01).CONCLUSION Replenishing qi and promoting blood circulation treatment may regulate the expression of TSP-1 and its receptor CD36 in ICH rat, thus it can lower the inhibiting effect on angiogenesis and promote the shaping and maturity of new blood vessels as well as the recovery of brain tissue injury.%目的 通过观察益气活血法对脑出血大鼠脑内损伤区凝血酶敏感蛋白-1(thrombospondin-1,TSP-1)及其受体CD36表达的影响,初步探讨益气活血法

  12. Molecular dynamics in an optical trap of glutamate receptors labeled with quantum-dots on living neurons

    Science.gov (United States)

    Kishimoto, Tatsunori; Maezawa, Yasuyo; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie

    2017-04-01

    Molecular dynamics of glutamate receptor, which is major neurotransmitter receptor at excitatory synapse located on neuron, is essential for synaptic plasticity in the complex neuronal networks. Here we studied molecular dynamics in an optical trap of AMPA-type glutamate receptor (AMPAR) labeled with quantum-dot (QD) on living neuronal cells with fluorescence imaging and fluorescence correlation spectroscopy (FCS). When a 1064-nm laser beam for optical trapping was focused on QD-AMPARs located on neuronal cells, the fluorescence intensity of QD-AMPARs gradually increased at the focal spot. Using single-particle tracking of QD-AMPARs on neurons, the average diffusion coefficient decreased in an optical trap. Moreover, the decay time obtained from FCS analysis increased with the laser power and the initial assembling state of AMPARs depended on culturing day, suggesting that the motion of QD-AMPAR was constrained in an optical trap.

  13. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Emil [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland); Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah [Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland); Neri, Dario, E-mail: neri@pharma.ethz.ch [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  14. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons.

    Science.gov (United States)

    Cao, Lijun; Xun, Junmei; Jiang, Xinghua; Tan, Rong

    2013-08-01

    Mas is a functional binding site for angiotensin (Ang)-(1-7), a critical component of the renin-angiotensin system that is involved in processing nociceptive information. A recent study reported the localization of Mas in rat dorsal root ganglia (DRG) and demonstrated that Ang-(1-7) produced a dose-dependent peripheral antinociceptive effect in rats through the Mas receptor by an opioid-independent mechanism. In the present study, we for the first time examined the effect of propofol on Mas expression in cultured DRG neurons. We treated rat DRG neurons with propofol at different concentrations (0.1, 0.5, 1, 5 or 10 microM) for different length of time (0.5, 1, 2, 4 or 6 h) with or without transcription inhibitor actinomycin D or different kinase inhibitors. Propofol increased the Mas receptormRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the Mas receptor protein level as well as Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml) and p38 mitogen-activated protein kinase inhibitor PD169316 (25 microM) completely abolished the effect of propofol on Mas receptor expression in DRG neurons. In conclusion, we demonstrate that propofol markedly up-regulates Mas receptor expression at the transcription level in DRG neurons by a p38 MAPK-dependent mechanism. This study provides new insights into the mechanisms of action of propofol in peripheral antinociception, and suggests a new regulatory mechanism on the Ang-(1-7)/Mas axis in the peripheral nervous system.

  15. Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons

    OpenAIRE

    Reyes, Arith-Ruth S.; Levenson, Robert; Berrettini, Wade; Van Bockstaele, Elisabeth J.

    2010-01-01

    GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was recently identified as a novel mu-opioid receptor (MOR) interacting protein. GPR177 is a trans-membrane protein pivotal to mediating the secretion of Wnt signaling proteins. Wnt proteins, in turn, are essential in regulating neuronal development, a phenomenon inhibited upon chronic exposure to MOR agonists such as morphine and heroin. We previously showed that GPR177 and MOR are co-localized in the mouse dorsolateral stria...

  16. Tonically Active Kainate Receptors (tKARs) : A Novel Mechanism Regulating Neuronal Function in the Brain

    OpenAIRE

    Segerstråle, Mikael

    2011-01-01

    Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This...

  17. Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII

    OpenAIRE

    Jin, Dao-Zhong; Xue, Bing; Mao, Li-Min; Wang, John Q

    2015-01-01

    Metabotropic and ionotropic glutamate receptors are closely clustered in postsynaptic membranes and are believed to interact actively with each other to control excitatory synaptic transmission. Metabotropic glutamate receptor 5 (mGluR5), for example, has been well documented to potentiate ionotropic NMDA receptor activity, although underlying mechanisms are poorly understood. In this study, we investigated the role of mGluR5 in regulating trafficking and subcellular distribution of NMDA rece...

  18. Efficient olfactory coding in the pheromone receptor neuron of a moth.

    Science.gov (United States)

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-04-25

    The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the 'sniffer'. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots.

  19. Efficient olfactory coding in the pheromone receptor neuron of a moth.

    Directory of Open Access Journals (Sweden)

    Lubomir Kostal

    2008-04-01

    Full Text Available The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the 'sniffer'. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots.

  20. Effects of Shenpang acupoint-stimulation on estrogen receptor immunoreactive neurons in thalamus of rabbits

    Institute of Scientific and Technical Information of China (English)

    LUO Qihui; CHEN Zhengli; ZHU Chunmei; FAN Guangli; HUANG Yidan

    2007-01-01

    To investigate the effects of Shenpang acupoint-stimulation in reproductive endocrinology,the changes in estrogen receptor immunoreactive (ER-IR)neurons after Shenpang acupoint-stimulation were studied by using immnunohistochemistry.ER-IR positive reactions were detected in most nuclei of the thalamus.In the acupuncturetreated group,a great number of ER-IR positive neurons with clear dendrites existed in the nucleus,paraventricular nucleus,ventrolateral nucleus,ventromedial nucleus,ventroprincipal nucleus,centromedian nucleus,reticular nucleus,and periventricular nucleus of thalamus,and they were strongly stained.In addition,the ER-IR positive neurons were mainly located in the cytoplasm,nucleus and neutrite,and some also existed in the cytoplasmic membrane.In contrast,a few neurons existed in the above-mentioned nuclei in the control group,but they were slightly stained.It is concluded that Shenpang acupoint-stimulation can promote the expression of estrogen receptors in the above nuclei.

  1. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  2. NK3 receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig.

    Science.gov (United States)

    Werkman, Taco R; McCreary, Andrew C; Kruse, Chris G; Wadman, Wytse J

    2011-08-01

    This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists, which have been proposed to possess therapeutic activity in neuropsychiatric diseases like e.g. schizophrenia. In vitro midbrain slice preparations of both species were used to record (extracellularly) the firing rates of dopamine neurons located in the substantia nigra (SN) and ventral tegmental area (VTA). Furthermore, the effect of the D2 receptor agonist quinpirole on guinea pig SN and VTA dopamine neurons was investigated. The efficacy of quinpirole in inhibiting guinea pig dopamine neuron firing activity was much less as compared to that of rat dopamine neurons, suggesting a lower dopamine D2 autoreceptor density on the guinea pig neurons. The NK3 receptor agonist senktide induced in subpopulations of rat SN (55%) and VTA (79%) and guinea pig SN (50%) and VTA (21%) dopamine neurons an increase in firing rate. In responsive neurons this effect was concentration-dependent with EC₅₀ values of 3-5 nM (for both species). The selective NK3 receptor antagonist osanetant (100 nM) was able to partly block the senktide-induced increase in firing rates of dopamine neurons and shifted the concentration-response relation curves for senktide to the right (pA₂ values were ~7.5). The fractional block of the senktide responses by osanetant appeared to be larger in guinea pig dopamine neurons, indicating that osanetant is a more potent blocker of NK3 receptor-mediated responses with noncompetitive properties in the guinea pig.

  3. Serotonin 5-HT2C receptor-mediated inhibition of the M-current in hypothalamic POMC neurons

    OpenAIRE

    Roepke, T. A.; Smith, A W; Rønnekleiv, O. K.; Kelly, M. J.

    2012-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K+ currents. A potential K+ current is the M-current, a noninactivating, subthreshold outward K+ current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond t...

  4. Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons.

    Directory of Open Access Journals (Sweden)

    Giuseppe Battaglia

    Full Text Available Metabotropic glutamate (mGlu receptors have been considered potential targets for the therapy of experimental parkinsonism. One hypothetical advantage associated with the use of mGlu receptor ligands is the lack of the adverse effects typically induced by ionotropic glutamate receptor antagonists, such as sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3 metabotropic glutamate receptor agonist, LY379268 (0.25-3 mg/kg, i.p. increased glial cell line-derived neurotrophic factor (GDNF mRNA and protein levels in the mouse brain, as assessed by in situ hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This increase was prominent in the striatum, but was also observed in the cerebral cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF protein levels progressively increased from 24 to 72 h following LY379268 injection. The action of LY379268 was abrogated by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p., and was lost in mGlu3 receptor knockout mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal neurons, the increase in GDNF induced by LY379268 required the activation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as shown by the use of specific inhibitors of the two pathways. Both in vivo and in vitro studies led to the conclusion that neurons were the only source of GDNF in response to mGlu3 receptor activation. Remarkably, acute or repeated injections of LY379268 at doses that enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p. were highly protective against nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by stereological counting of tyrosine hydroxylase-positive neurons in the pars compacta of the substantia nigra. We speculate that selective mGlu3 receptor agonists or enhancers are potential candidates as neuroprotective agents in Parkinson's disease, and

  5. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, aedes aegypti

    Science.gov (United States)

    Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as DEET and other insect repellents. Two other ...

  6. The expression of chemorepulsive guidance receptors and the regenerative abilities of spinal-projecting neurons after spinal cord injury.

    Science.gov (United States)

    Chen, Jie; Laramore, Cindy; Shifman, Michael I

    2017-01-26

    Spinal cord injury (SCI) in mammals leads to permanent loss of function because axons do not regenerate in the central nervous system (CNS). To date, treatments based on neutralizing inhibitory environmental cues, such as the myelin-associated growth inhibitors and chondroitin sulfate proteoglycans, or on adding neurotrophic factors, have had limited success in enhancing regeneration. Published studies suggested that multiple axon guidance cues (repulsive guidance molecule (RGM) family, semaphorins, ephrins, and netrins) persist in adult animals, and that their expression is upregulated after CNS injury. Moreover, many adult CNS neurons continue to express axon guidance receptors. We used the advantages of the lamprey CNS to test the hypotheses that the regenerative abilities of spinal-projecting neurons depend upon their expression of chemorepulsive guidance receptors. After complete spinal transection, lampreys recover behaviorally, and injured axons grow selectively in their correct paths. However, the large identified reticulospinal (RS) neurons in the lamprey brain are heterogeneous in their regenerative abilities - some are high regeneration capacity neurons (probability of axon regeneration >50%), others are low regeneration capacity neurons (regeneration capacity RS neurons that regenerate poorly, and that downregulation of Neogenin by morpholino antisense oligonucleotides enhances regeneration of RS axons after SCI. Moreover, lamprey CNS neurons co-express multiple guidance receptors (Neogenin, UNC5 and PlexinA), suggesting that the regenerative abilities of spinal-projecting neurons might reflect the summed influences of the chemorepulsive guidance receptors that they express. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Science.gov (United States)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  8. Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line

    Science.gov (United States)

    A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...

  9. Activation of mesolimbic dopaminergic neurons following central administration of histamine is mediated by H1 receptors.

    Science.gov (United States)

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1993-01-01

    The effect of intracerebroventricular administration of histamine on the activity of mesolimbic and nigrostriatal dopaminergic (DA) neurons was determined in male rats. The activity of these neurons was estimated by measuring: (1) the accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor, and (2) the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens and striatum, which contain the terminals of these neurons. Central administration of histamine increased both DOPA accumulation and DOPAC concentrations in the nucleus accumbens, but was without effect in the striatum. The increase in DOPAC concentrations in the nucleus accumbens occurred within 10 min and was sustained for at least 120 min. The H1 antagonist mepyramine blocked whereas the H2 antagonist zolantidine did not affect histamine-induced increases in DOPAC concentrations in the nucleus accumbens. Neither mepyramine nor zolantidine affected basal DOPAC concentrations in the nucleus accumbens. These results indicate that central administration of histamine stimulates mesolimbic DA neurons through an action at the H1 receptor, but has no effect upon the activity of nigrostriatal DA neurons.

  10. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity.

    Science.gov (United States)

    Baron, A; Montagne, A; Cassé, F; Launay, S; Maubert, E; Ali, C; Vivien, D

    2010-05-01

    Although the molecular bases of its actions remain debated, tissue-type plasminogen activator (tPA) is a paradoxical brain protease, as it favours some learning/memory processes, but increases excitotoxic neuronal death. Here, we show that, in cultured cortical neurons, tPA selectively promotes NR2D-containing N-methyl-D-aspartate receptor (NMDAR)-dependent activation. We show that tPA-mediated signalling and neurotoxicity through the NMDAR are blocked by co-application of an NR2D antagonist (phenanthrene derivative (2S(*), 3R(*))-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid, PPDA) or knockdown of neuronal NR2D expression. In sharp contrast with cortical neurons, hippocampal neurons do not exhibit NR2D both in vitro and in vivo and are consequently resistant to tPA-promoted NMDAR-mediated neurotoxicity. Moreover, we have shown that activation of synaptic NMDAR prevents further tPA-dependent NMDAR-mediated neurotoxicity and sensitivity to PPDA. This study shows that the earlier described pro-neurotoxic effect of tPA is mediated by NR2D-containing NMDAR-dependent extracellular signal-regulated kinase activation, a deleterious effect prevented by synaptic pre-activation.

  11. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target.

  12. Electrophysiological characterization of nicotinic acetylcholine receptors in cat petrosal ganglion neurons in culture: effects of cytisine and its bromo derivatives.

    Science.gov (United States)

    Varas, Rodrigo; Valdés, Viviana; Iturriaga-Vásquez, Patricio; Cassels, Bruce K; Iturriaga, Rodrigo; Alcayaga, Julio

    2006-02-09

    Petrosal ganglion neurons are depolarized and fire action potentials in response to acetylcholine and nicotine. However, little is known about the subtype(s) of nicotinic acetylcholine receptors involved, although alpha4 and alpha7 subunits have been identified in petrosal ganglion neurons. Cytisine, an alkaloid unrelated to nicotine, and its bromo derivatives are agonists exhibiting different affinities, potencies and efficacies at nicotinic acetylcholine receptors containing alpha4 or alpha7 subunits. To characterize the receptors involved, we studied the effects of these agonists and the nicotinic acetylcholine receptor antagonists hexamethonium and alpha-bungarotoxin in isolated petrosal ganglion neurons. Petrosal ganglia were excised from anesthetized cats and cultured for up to 16 days. Using patch-clamp technique, we recorded whole-cell currents evoked by 5-10 s applications of acetylcholine, cytisine or its bromo derivatives. Agonists and antagonists were applied by gravity from a pipette near the neuron surface. Neurons responded to acetylcholine, cytisine, 3-bromocytisine and 5-bromocytisine with fast inward currents that desensitized during application of the stimuli and were reversibly blocked by 1 microM hexamethonium or 10 nM alpha-bungarotoxin. The order of potency of the agonists was 3-bromocytisine > acetylcholine approximately = cytisine > 5-bromocytisine, suggesting that homomeric alpha7 neuronal nicotinic receptors predominate in cat petrosal ganglion neurons in culture.

  13. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, K.A.; Toledo, S.P. (Univ. of California-San Diego, La Jolla (USA))

    1989-09-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of (3H)leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of (3H)aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons.

  14. Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment

    Science.gov (United States)

    Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José

    2017-01-01

    Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies

  15. Protective effects of N-methyl-D-aspartate receptor antagonism on VX-induced neuronal cell death in cultured rat cortical neurons.

    Science.gov (United States)

    Wang, Yushan; Weiss, M Tracy; Yin, Junfei; Tenn, Catherine C; Nelson, Peggy D; Mikler, John R

    2008-01-01

    Exposure of the central nervous system to organophosphorus (OP) nerve agents induces seizures and neuronal cell death. Here we report that the OP nerve agent, VX, induces apoptotic-like cell death in cultured rat cortical neurons. The VX effects on neurons were concentration-dependent, with an IC(50) of approximately 30 microM. Blockade of N-methyl-D-aspartate receptors (NMDAR) with 50 microM. D-2-amino-5-phosphonovalerate (APV) diminished 30 microM VX-induced total cell death, as assessed by alamarBlue assay and Hoechst staining. In contrast, neither antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) nor metabotropic glutamate receptors (mGluRs) had any effect on VX-induced neurotoxicity. VX-induced neuronal cell death could not be solely attributed to acetylcholinesterase (AChE) inhibition, since neither the reversible pharmacological cholinesterase inhibitor, physostigmine, nor the muscarinic receptor antagonist, atropine, affected VX-induced cell death. Importantly, APV was found to be therapeutically effective against VX-induced cell death up to 2 h post VX exposure. These results suggest that NMDARs, but not AMPARs or mGluRs, play important roles in VX-induced cell death in cultured rat cortical neurons. Based on their therapeutic effects, NMDAR antagonists may be beneficial in the treatment of VX-induced neurotoxicities.

  16. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors.

    Directory of Open Access Journals (Sweden)

    Ana Boulanger

    Full Text Available Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment and received by the motor neuron (presynaptic compartment resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.

  17. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats.

    Science.gov (United States)

    Sagar, Devi Rani; Kelly, Sara; Millns, Paul J; O'Shaughnessey, Celestine T; Kendall, David A; Chapman, Victoria

    2005-07-01

    Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on primary afferent fibres were determined by calcium imaging studies of adult dorsal root ganglion (DRG) neurons taken from neuropathic and sham-operated rats. Capsaicin (100 nm) increased [Ca2+]i in DRG neurons from sham and neuropathic rats. JWH-133 (3 microm) or ACEA (1 microm) significantly (PCB2 receptor antagonist, SR144528, (1 microm) significantly inhibited the effects of JWH-133. Effects of ACEA were significantly inhibited by the CB1 receptor antagonist SR141716A (1 microm). In vivo experiments evaluated the effects of spinal administration of JWH-133 (8-486 ng/50 microL) and ACEA (0.005-500 ng/50 microL) on mechanically evoked responses of neuropathic and sham-operated rats. Spinal JWH-133 attenuated mechanically evoked responses of spinal neurons in neuropathic, but not sham-operated rats. These inhibitory effects were blocked by SR144528 (0.001 microg/50 microL). Spinal ACEA inhibited mechanically evoked responses of neuropathic and sham-operated rats, these effects were blocked by SR141716A (0.01 microg/50 microL). Our data provide evidence for a functional role of CB2, as well as CB1 receptors on DRG neurons in sham and neuropathic rats. At the level of the spinal cord, CB2 receptors have inhibitory effects in neuropathic, but not sham-operated rats suggesting that spinal CB2 may be an important analgesic target.

  18. Inflammatory Eicosanoids Increase Amyloid Precursor Protein Expression via Activation of Multiple Neuronal Receptors.

    Science.gov (United States)

    Herbst-Robinson, Katie J; Liu, Li; James, Michael; Yao, Yuemang; Xie, Sharon X; Brunden, Kurt R

    2015-12-17

    Senile plaques comprised of Aβ peptides are a hallmark of Alzheimer's disease (AD) brain, as are activated glia that release inflammatory molecules, including eicosanoids. Previous studies have demonstrated that amyloid precursor protein (APP) and Aβ levels can be increased through activation of thromboxane A2-prostanoid (TP) receptors on neurons. We demonstrate that TP receptor regulation of APP expression depends on Gαq-signaling and conventional protein kinase C isoforms. Importantly, we discovered that Gαq-linked prostaglandin E2 and leukotriene D4 receptors also regulate APP expression. Prostaglandin E2 and thromboxane A2, as well as total APP levels, were found to be elevated in the brains of aged 5XFAD transgenic mice harboring Aβ plaques and activated glia, suggesting that increased APP expression resulted from eicosanoid binding to Gαq-linked neuronal receptors. Notably, inhibition of eicosanoid synthesis significantly lowered brain APP protein levels in aged 5XFAD mice. These results provide new insights into potential AD therapeutic strategies.

  19. Mu opioid receptor-effector coupling and trafficking in dorsal root ganglia neurons.

    Science.gov (United States)

    Walwyn, W M; Wei, W; Xie, C-W; Chiu, K; Kieffer, B L; Evans, C J; Maidment, N T

    2006-10-13

    Morphine induces profound analgesic tolerance in vivo despite inducing little internalization of the mu opioid receptor (muOR). Previously proposed explanations suggest that this lack of internalization could either lead to prolonged signaling and associated compensatory changes in downstream signaling systems, or that the receptor is unable to recycle and resensitize and so loses efficacy, either mechanism resulting in tolerance. We therefore examined, in cultured neurons, the relationship between muOR internalization and desensitization in response to two agonists, D-Ala2, N-MePhe4, Gly5-ol-enkephalin (DAMGO) and morphine. In addition, we studied the chimeric mu/delta opioid receptor (mu/ partial differentialOR) which could affect internalization and desensitization in neurons. Dorsal root ganglia neurons from muOR knockout mice were transduced with an adenovirus expressing either receptor and their respective internalization, desensitization and trafficking profiles determined. Both receptors desensitized equally, measured by Ca2+ current inhibition, during the first 5 min of agonist exposure to DAMGO or morphine treatment, although the mu/partial differentialOR desensitized more extensively. Such rapid desensitization was unrelated to internalization as DAMGO, but not morphine, internalized both receptors after 20 min. In response to DAMGO the mu/partial differentialOR internalized more rapidly than the muOR and was trafficked through Rab4-positive endosomes and lysosomal-associated membrane protein-1-labeled lysosomes whereas the muOR was trafficked through Rab4 and Rab11-positive endosomes. Chronic desensitization of the Ca2+ current response, after 24 h of morphine or DAMGO incubation, was seen in the DAMGO, but not morphine-treated, muOR-expressing cells. Such persistence of signaling after chronic morphine treatment suggests that compensation of downstream signaling systems, rather than loss of efficacy due to poor receptor recycling, is a more likely

  20. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yan-Chuan Shi

    Full Text Available BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox and NPYCre/+;Y2(lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1 and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC. While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of

  1. Increased gene and protein expressions of the transient receptor potential vanilloid receptor 4 following sustained pure mechanical pressure on rat dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Yang Zhang; Juan Huai; Yonghui Wang; Yanqin Wang; Shouwei Yue

    2011-01-01

    Dorsal root ganglion (DRG) neurons from newborn Wistar rats cultured in vitro were pressurized with 20, 40, 80 or 120 mm Hg compressive loadings (1 mm Hg = 0.133 kPa) for 12, 24, 48 or 72 hours, respectively. The 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide test showed that pressures less than 80 mm Hg had no obvious impact on the activity of DRG neurons. The protein expression levels of transient receptor potential vanilloid receptor 4 (TRPV4), transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1 were assessed by western blot analysis. The mRNA expression of TRPV4 was assessed by real-time PCR. The results showed that sustained mechanical compression up-regulated TRPV4 mRNA and protein expression in the rat DRG neurons, in a time-dependent fashion. Similar changes were not found in the protein expression of transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1. Images of cells using a laser scanning confocal microscope showed that the sustained mechanical pressure increased the number of responsive DRG neurons and was synergistic on the enhanced Ca2+ responses to the TRPV4 phorbol ester agonist 4a-phorbol 12, 13-didecanoate and hypotonic solutions. These findings demonstrate that sustained mechanical compressive loading in vitro increases the expression of TRPV4 mRNA and protein in DRG neurons and sensitizes TRPV4 Ca2+ signals. Mechanical compression does not impact other ion channels in thetransient receptor potential family.

  2. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    Directory of Open Access Journals (Sweden)

    Linzy M. Hendrickson

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  3. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron.

    Directory of Open Access Journals (Sweden)

    Joon Ha

    Full Text Available Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR activation or applied depolarization block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG, which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations

  4. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons.

    Science.gov (United States)

    Chenu, Franck; Shim, Stacey; El Mansari, Mostafa; Blier, Pierre

    2014-02-01

    Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.

  5. Molecular rheology of neuronal membranes explored using a molecular rotor: Implications for receptor function.

    Science.gov (United States)

    Pal, Sreetama; Chakraborty, Hirak; Bandari, Suman; Yahioglu, Gokhan; Suhling, Klaus; Chattopadhyay, Amitabha

    2016-03-01

    The role of membrane cholesterol as a crucial regulator in the structure and function of membrane proteins and receptors is well documented. However, there is a lack of consensus on the mechanism for such regulation. We have previously shown that the function of an important neuronal receptor, the serotonin1A receptor, is modulated by cholesterol in hippocampal membranes. With an overall objective of addressing the role of membrane physical properties in receptor function, we measured the viscosity of hippocampal membranes of varying cholesterol content using a meso-substituted fluorophore (BODIPY-C12) based on the BODIPY probe. BODIPY-C12 acts as a fluorescent molecular rotor and allows measurement of hippocampal membrane viscosity through its characteristic viscosity-sensitive fluorescence depolarization. A striking feature of our results is that specific agonist binding by the serotonin1A receptor exhibits close correlation with hippocampal membrane viscosity, implying the importance of global membrane properties in receptor function. We envision that our results are important in understanding GPCR regulation by the membrane environment, and is relevant in the context of diseases in which GPCR signaling plays a major role and are characterized by altered membrane fluidity.

  6. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Directory of Open Access Journals (Sweden)

    Avi Ring

    Full Text Available Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase, but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21 and neuronal (SH-SY5Y cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  7. Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2012-08-01

    Full Text Available Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly nonlinear dendritic spikes (plateau potentials are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of loud sounds (i.e. strong glut. inputs and amplify quiet sounds (i.e. glutamatergic inputs that barely cross the dendritic threshold for local spike initiation. Our data also explain why consecutive cortical UP states have uniform amplitudes in a

  8. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Science.gov (United States)

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R; Timperley, Christopher M; Bird, Michael; Green, A Christopher; Chad, John E; Worek, Franz; Tattersall, John E H

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  9. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline

    DEFF Research Database (Denmark)

    Dencker, Ditte; Wörtwein, Gitta; Weikop, Pia;

    2011-01-01

    studies indicate that the M(4) muscarinic cholinergic receptor subtype (mAChR) modulates the activity of the dopaminergic system and that this specific mAChR subtype is involved in mediating the antipsychotic-like effects of xanomeline. A specific neuronal subpopulation that expresses M(4) mAChRs together...... with D(1) dopamine receptors seems to be especially important in modulating dopamine-dependent behaviors. Using mutant mice that lack the M(4) mAChR only in D(1) dopamine receptor-expressing cells (D1-M4-KO), we investigated the role of this neuronal population in the antipsychotic-like effects...

  10. Calcium-stores mediate adaptation in axon terminals of Olfactory Receptor Neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Murmu Meena S

    2011-10-01

    Full Text Available Abstract Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs. These synapses are modulated by GABA, through either GABAergic local interneurons (LNs and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a

  11. Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.

    Science.gov (United States)

    Zhang, Hai Xia; Thio, Liu Lin

    2007-12-01

    Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 microM glycine (EC(25)) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 microM Zn(2+). At least part of this effect resulted from Zn(2+) enhancing the GlyR-induced decrease in input resistance. Sustained 20 microM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg(2+). However, sustained 20 microM glycine applications depressed neuronal bursting in 1 microM Zn(2+). Zn(2+) did not enhance the inhibitory effects of sustained 60 microM glycine (EC(70)) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn(2+) chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn(2+) may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.

  12. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    Full Text Available BACKGROUND: Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. CONCLUSIONS/SIGNIFICANCE: We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  13. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus1

    Science.gov (United States)

    Chee, Melissa J. S.; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance thus mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expressed cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin but neither orexin nor MCH neurons expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. PMID:23605441

  14. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord

    Science.gov (United States)

    Dai, Wen-Ling; Xiong, Feng; Yan, Bing; Cao, Zheng-Yu; Liu, Wen-Tao; Liu, Ji-Hua; Yu, Bo-Yang

    2016-01-01

    Tolerance induced by morphine remains a major unresolved problem and significantly limits its clinical use. Recent evidences have indicated that dopamine D2 receptor (D2DR) is likely to be involved in morphine-induced antinociceptive tolerance. However, its exact effect and molecular mechanism remain unknown. In this study we examined the effect of D2DR on morphine antinociceptive tolerance in mice spinal cord. Chronic morphine treatment significantly increased levels of D2DR in mice spinal dorsal horn. And the immunoreactivity of D2DR was newly expressed in neurons rather than astrocytes or microglia both in vivo and in vitro. Blockade of D2DR with its antagonist (sulpiride and L-741,626, i.t.) attenuated morphine antinociceptive tolerance without affecting basal pain perception. Sulpiride (i.t.) also down-regulated the expression of phosphorylation of NR1, PKC, MAPKs and suppressed the activation of astrocytes and microglia induced by chronic morphine administration. Particularly, D2DR was found to interact with μ opioid receptor (MOR) in neurons, and chronic morphine treatment enhanced the MOR/D2DR interactions. Sulpiride (i.t.) could disrupt the MOR/D2DR interactions and attenuate morphine tolerance, indicating that neuronal D2DR in the spinal cord may be involved in morphine tolerance possibly by interacting with MOR. These results may present new opportunities for the treatment and management of morphine-induced antinociceptive tolerance which often observed in clinic. PMID:28004735

  15. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Asmussen, Johanne W; Lindstam, Mats;

    2007-01-01

    Accumulating evidence suggests that metallothionein (MT)-I and -II promote neuronal survival and regeneration in vivo. The present study investigated the molecular mechanisms underlying the differentiation and survival-promoting effects of MT and a peptide modeled after MT, EmtinB. Both MT...... and EmtinB directly stimulated neurite outgrowth and promoted survival in vitro using primary cultures of cerebellar granule neurons. In addition, expression and surface localization of megalin, a known MT receptor, and the related lipoprotein receptor-related protein-1 (LRP) are demonstrated in cerebellar...... granule neurons. By means of surface plasmon resonance MT and EmtinB were found to bind to both megalin and LRP. The bindings were abrogated in the presence of receptor-associated protein-1, an antagonist of the low-density lipoprotein receptor family, which also inhibited MT- and EmtinB-induced neurite...

  16. beta-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process.

    Science.gov (United States)

    Audesirk, T; Cabell, L; Kern, M; Audesirk, G

    2003-01-01

    We utilized morphometric analysis of 3 day cultures of hippocampal neurons to determine the effects of both estradiol and the synthetic estrogen receptor modulator raloxifene on several parameters of neuronal growth and differentiation. These measurements included survival, neurite production, dendrite number, and axon and dendrite length and branching. 17 beta-Estradiol (10 nM) selectively stimulated dendrite branching; this effect was neither mimicked by alpha-estradiol, nor blocked by the estrogen receptor antagonist ICI 182780. The selective estrogen receptor modulator raloxifene (100 nM) neither mimicked nor reversed the effects of estradiol on dendritic branching. Western immunoblotting for the alpha and beta subtypes of estrogen receptor revealed the presence of alpha, but not beta, estrogen receptors in our hippocampal cultures. There is growing recognition of the effects of 17 beta-estradiol on neuronal development and physiology, with implications for brain sexual dimorphism, plasticity, cognition, and the maintenance of cognitive function during aging. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. These data support the hypothesis that 17 beta-estradiol is acting via alpha estrogen receptors in influencing hippocampal development in vitro. Raloxifene, prescribed to combat osteoporosis in post-menopausal women, is a selective estrogen receptor modulator with tissue-specific agonist/antagonist properties. Because raloxifene had no effect on dendritic branching, we hypothesize that it does not interact with the alpha estrogen receptor in this experimental paradigm.

  17. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor

    Science.gov (United States)

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi

    2016-01-01

    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  18. Insulin Receptor Signaling in POMC, but Not AgRP, Neurons Controls Adipose Tissue Insulin Action.

    Science.gov (United States)

    Shin, Andrew C; Filatova, Nika; Lindtner, Claudia; Chi, Tiffany; Degann, Seta; Oberlin, Douglas; Buettner, Christoph

    2017-06-01

    Insulin is a key regulator of adipose tissue lipolysis, and impaired adipose tissue insulin action results in unrestrained lipolysis and lipotoxicity, which are hallmarks of the metabolic syndrome and diabetes. Insulin regulates adipose tissue metabolism through direct effects on adipocytes and through signaling in the central nervous system by dampening sympathetic outflow to the adipose tissue. Here we examined the role of insulin signaling in agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons in regulating hepatic and adipose tissue insulin action. Mice lacking the insulin receptor in AgRP neurons (AgRP IR KO) exhibited impaired hepatic insulin action because the ability of insulin to suppress hepatic glucose production (hGP) was reduced, but the ability of insulin to suppress lipolysis was unaltered. To the contrary, in POMC IR KO mice, insulin lowered hGP but failed to suppress adipose tissue lipolysis. High-fat diet equally worsened glucose tolerance in AgRP and POMC IR KO mice and their respective controls but increased hepatic triglyceride levels only in POMC IR KO mice, consistent with impaired lipolytic regulation resulting in fatty liver. These data suggest that although insulin signaling in AgRP neurons is important in regulating glucose metabolism, insulin signaling in POMC neurons controls adipose tissue lipolysis and prevents high-fat diet-induced hepatic steatosis. © 2017 by the American Diabetes Association.

  19. Remote control of neuronal activity with a light-gated glutamate receptor.

    Science.gov (United States)

    Szobota, Stephanie; Gorostiza, Pau; Del Bene, Filippo; Wyart, Claire; Fortin, Doris L; Kolstad, Kathleen D; Tulyathan, Orapim; Volgraf, Matthew; Numano, Rika; Aaron, Holly L; Scott, Ethan K; Kramer, Richard H; Flannery, John; Baier, Herwig; Trauner, Dirk; Isacoff, Ehud Y

    2007-05-24

    The ability to stimulate select neurons in isolated tissue and in living animals is important for investigating their role in circuits and behavior. We show that the engineered light-gated ionotropic glutamate receptor (LiGluR), when introduced into neurons, enables remote control of their activity. Trains of action potentials are optimally evoked and extinguished by 380 nm and 500 nm light, respectively, while intermediate wavelengths provide graded control over the amplitude of depolarization. Light pulses of 1-5 ms in duration at approximately 380 nm trigger precisely timed action potentials and EPSP-like responses or can evoke sustained depolarizations that persist for minutes in the dark until extinguished by a short pulse of approximately 500 nm light. When introduced into sensory neurons in zebrafish larvae, activation of LiGluR reversibly blocks the escape response to touch. Our studies show that LiGluR provides robust control over neuronal activity, enabling the dissection and manipulation of neural circuitry in vivo.

  20. Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model

    Directory of Open Access Journals (Sweden)

    Ying Du

    2014-01-01

    Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.

  1. Halogenated cytisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes.

    Science.gov (United States)

    Slater, Y E; Houlihan, L M; Maskell, P D; Exley, R; Bermúdez, I; Lukas, R J; Valdivia, A C; Cassels, B K

    2003-03-01

    Cytisine (cy) is a potent and competitive partial agonist at alpha4 subunit-containing nicotinic acetylcholine (nACh) receptors while at homomeric alpha7-nACh receptors it behaves as a full agonist with a relatively lower potency. In the present study, we assessed the effects of bromination or iodination of the pyridone ring of cy and N-methylcytisine (N-Me-cy) on the effects of these compounds on recombinant human (h) alpha7, halpha4beta2 and halpha4beta4 nACh receptors expressed in clonal cell lines and Xenopus oocytes. Halogenation at C(3) of cy or N-Me-cy usually brings about a marked increase in both affinity and efficacy at halpha7, halpha4beta2 and halpha4beta4 nACh, the extent of which depends on whether the halogen is bromine or iodine, and upon receptor subtype. The effects of halogenation at C(5) are strongly influenced by the specific halogen substituent so that bromination causes a decrease in both affinity and efficacy while iodination decreases affinity but its effects on efficacy range from a decrease (halpha7, halpha4beta4 nACh receptors) to a marked increase (halpha4beta2 nACh receptors). Based on these findings, which differ from those showing that neither the affinity nor efficacy of nicotine, 3-(2-azetidinylmethoxy)-pyridine or epibatidine are greatly affected by halogenation, dehalogenation or halogen exchange at equivalent positions, we suggest that cy, N-Me-cy and their halo-isosteres bind to neuronal nACh receptors in a different orientation allowing the halogen atom to interact with a hydrophobic halogen-accepting region within the predominantly hydrophobic agonist-binding pocket of the receptors.

  2. Expression of the M3 Muscarinic Receptor on Orexin Neurons that Project to the Rostral Ventrolateral Medulla.

    Science.gov (United States)

    Dai, Yu-Wen E; Lee, Yen-Hsien; Chen, Jennifer Y S; Lin, Yen-Kuang; Hwang, Ling-Ling

    2016-05-01

    Activation of central cholinergic receptors causes a pressor response in rats, and the hypothalamus is important for this response. Projections from hypothalamic orexin neurons to the rostral ventrolateral medulla (RVLM) are involved in sympatho-excitation of the cardiovascular system. A small population of orexin neurons is regulated by cholinergic inputs through M3 muscarinic acetylcholine receptor (M3 R). To elucidate whether the M3 R on orexin neurons is involved in cardiosympathetic regulation through the RVLM, we examined the presence of the M3 R on retrograde-labeled RVLM-projecting orexin neurons. The retrograde tracer was unilaterally injected into the RVLM. Within the hypothalamus, retrograde-labeled neurons were located predominantly ipsilateral to the injection side. In the anterior hypothalamus (-1.5 to -2.3 mm to the bregma), retrograde-labeled neurons were densely distributed in the paraventricular nuclei and scattered in the retrochiasmatic area. At -2.3 to -3.5 mm from the bregma, labeled neurons were located in the regions where orexin neurons were situated, that is, the tuberal lateral hypothalamic area, perifornical area, and dorsomedial nuclei. Very few retrograde-labeled neurons were observed in the hypothalamus at -3.5 to -4.5 mm from the bregma. About 19.5% ± 1.6% of RVLM-projecting neurons in the tuberal hypothalamus were orexinergic. The M3 R was present on 18.7% ± 3.0% of RVLM-projecting orexin neurons. Injection of a muscarinic agonist, oxotremorine, in the perifornical area resulted in a pressor response, which was attenuated by a pretreatment of atropine. We conclude that cholinergic inputs to orexin neurons may be involved in cardiosympathetic regulation through the M3 R on the orexin neurons that directly project to the RVLM.

  3. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    Science.gov (United States)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  4. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  5. Glutamate and GABA activate different receptors and Cl(-) conductances in crab peptide-secretory neurons.

    Science.gov (United States)

    Duan, S; Cooke, I M

    2000-01-01

    Responses to rapid application of glutamic acid (Glu) and gamma-aminobutyric acid (GABA), 0.01-3 mM, were recorded by whole-cell patch clamp of cultured crab (Cardisoma carnifex) X-organ neurons. Responses peaked within 200 ms. Both Glu and GABA currents had reversal potentials that followed the Nernst Cl(-) potential when [Cl(-)](i) was varied. A Boltzmann fit to the normalized, averaged dose-response curve for Glu indicated an EC(50) of 0.15 mM and a Hill coefficient of 1.05. Rapid (t(1/2) approximately 1 s) desensitization occurred during Glu but not GABA application that required >2 min for recovery. Desensitization was unaffected by concanavalin A or cyclothiazide. N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, quisqualate, and kainate (to 1 mM) were ineffective, nor were Glu responses influenced by glycine (1 microM) or Mg(2+) (0-26 mM). Glu effects were imitated by ibotenic acid (0.1 mM). The following support the conclusion that Glu and GABA act on different receptors: 1) responses sum; 2) desensitization to Glu or ibotenic acid did not diminish GABA responses; 3) the Cl(-)-channel blockers picrotoxin and niflumic acid (0.5 mM) inhibited Glu responses by approximately 90 and 80% but GABA responses by approximately 50 and 20%; and 4) polyvinylpyrrolydone-25 (2 mM in normal crab saline) eliminated Glu responses but left GABA responses unaltered. Thus crab secretory neurons have separate receptors responsive to Glu and to GABA, both probably ionotropic, and mediating Cl(-) conductance increases. In its responses and pharmacology, this crustacean Glu receptor resembles Cl(-)-permeable Glu receptors previously described in invertebrates and differs from cation-permeable Glu receptors of vertebrates and invertebrates.

  6. De novo expression of neurokinin-1 receptors by spinoparabrachial lamina I pyramidal neurons following a peripheral nerve lesion.

    Science.gov (United States)

    Saeed, Abeer W; Ribeiro-da-Silva, Alfredo

    2013-06-01

    Lamina I of the spinal dorsal horn is a major site of integration and transmission to higher centers of nociceptive information from the periphery. One important primary afferent population that transmits such information to the spinal cord expresses substance P (SP). These fibers terminate in contact with lamina I projection neurons that express the SP receptor, also known as the neurokinin-1 receptor (NK-1r). Three types of lamina I projection neurons have been described: multipolar, fusiform, and pyramidal. Most neurons of the first two types are thought to be nociceptive and express the NK-1r, whereas most pyramidal neurons are nonnociceptive and do not express the NK-1r. In this immunocytochemical and behavioral study, we induced a neuropathic pain-like condition in the rat by means of a polyethylene cuff placed around in the sciatic nerve. We document that this lesion led to a de novo expression of NK-1r on pyramidal neurons as well as a significant increase in SP-immunoreactive innervation onto these neurons. These phenotypic changes were evident at the time of onset of neuropathic pain-related behavior. Additionally, we show that, after a noxious stimulus (intradermal capsaicin injection), these NK-1r on pyramidal neurons were internalized, providing evidence that these neurons become responsive to peripheral noxious stimulation. We suggest that the changes following nerve lesion in the phenotype and innervation pattern of pyramidal neurons are of significance for neuropathic pain and/or limb temperature regulation.

  7. Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis

    Science.gov (United States)

    Pallero, Manuel A.; Elzie, Carrie A.; Chen, Jiping; Mosher, Deane F.; Murphy-Ullrich, Joanne E.

    2008-01-01

    Anoikis, apoptotic cell death due to loss of cell adhesion, is critical for regulation of tissue homeostasis in tissue remodeling. Fibrogenesis is associated with reduced fibroblast apoptosis. The matricellular protein thrombospondin 1 (TSP1) regulates cell adhesion and motility during tissue remodeling and in fibrogenesis. The N-terminal domain of TSP1 binds to the calreticulin-LRP1 receptor co-complex to signal down-regulation of cell adhesion and increased cell motility through focal adhesion disassembly. TSP1 signaling through calreticulin-LRP1 activates cell survival signals such as PI3-kinase. Therefore, we tested the hypothesis that TSP1 supports cell survival under adhesion-independent conditions to facilitate tissue remodeling. Here, we show that platelet TSP1, its N-terminal domain (NoC1) as a recombinant protein, or a peptide comprising the calreticulin-LRP1 binding site [amino acids 17–35 (hep I)] in the N-terminal domain promotes fibroblast survival under anchorage-independent conditions. TSP1 activates Akt and decreases apoptotic signaling through caspase 3 and PARP1 in suspended fibroblasts. Inhibition of PI3K/Akt activity blocks TSP1-mediated anchorage-independent survival. Fibroblasts lacking LRP1 or expressing calreticulin lacking the TSP1 binding site do not respond to TSP1 with anchorage-independent survival. These data define a novel role for TSP1 signaling through the calreticulin/LRP1 co-complex in tissue remodeling and fibrotic responses through stimulation of anoikis resistance.—Pallero, M. A., Elzie, C. A., Chen, J., Mosher, D. F., Murphy-Ullrich, J. E. Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. PMID:18653767

  8. Noise-assisted information transfer in crayfish mechanoreceptors: stochastic resonance in a neuronal receptor

    Science.gov (United States)

    Douglass, John K.; Wilkens, Lon A.; Moss, Frank

    1993-11-01

    Adding random noise to a weak periodic signal can enhance the flow of information through certain nonlinear physical systems, via a process known as stochastic resonance (SR). We have used crayfish mechanoreceptor cells to investigate the possibility that SR can be induced in neurophysiological systems. Various signal-to-noise ratio (SNR) measurements were derived from the action potentials (spikes) of single receptor cells stimulated with weak periodic signals. Spike noise was controlled by one of two methods: (1) adding external noise to the stimulus, or (2) altering internal noise sources by changing the temperature of the cell. In external noise experiments, an optimal noise level can be identified at which the SNR is maximized. In internal noise experiments, although the SNR increases with increasing noise, no SNR maximum has been observed. These results demonstrate that SR can be induced in single neurons, and suggest that neuronal systems may also be capable of exploiting SR.

  9. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    Science.gov (United States)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  10. Comparison of the D2 receptor regulation and neurotoxicant susceptibility of nigrostriatal dopamine neurons in wild-type and CB1/CB2 receptor knockout mice.

    Science.gov (United States)

    Simkins, Tyrell J; Janis, Kelly L; McClure, Alison K; Behrouz, Bahareh; Pappas, Samuel S; Lehner, Andreas; Kaminski, Norbert E; Goudreau, John L; Lookingland, Keith J; Kaplan, Barbara L F

    2012-09-01

    Motor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure. NSDA neuronal indices were assessed using unbiased stereological cell counting, high pressure liquid chromatography coupled with electrochemical detection or mass spectrometry, and Western blot. Results reveal that CB1 and CB2 cannabinoid receptor signaling is not necessary for the maintenance of a normally functioning NSDA neuronal system. Mice lacking CB1 and CB2 receptors were found to be equally susceptible to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). These studies support the use of CB1/CB2 KO mice for investigating the cannabinoid receptor-mediated regulation of the NSDA neuronal system in models of PD.

  11. Ketamine Increases the Function of γ-Aminobutyric Acid Type A Receptors in Hippocampal and Cortical Neurons.

    Science.gov (United States)

    Wang, Dian-Shi; Penna, Antonello; Orser, Beverley A

    2017-04-01

    The "dissociative " general anesthetic ketamine is a well-known N-methyl-D-aspartate receptor antagonist. However, whether ketamine, at clinically relevant concentrations, increases the activity of inhibitory γ-aminobutyric acid (GABA) receptor type A (GABAA) receptors in different brain regions remains controversial. Here, the authors studied the effects of ketamine on synaptic and extrasynaptic GABAA receptors in hippocampal neurons. Ketamine modulation of extrasynaptic GABAA receptors in cortical neurons was also examined. Whole cell currents were recorded from cultured murine neurons. Current evoked by exogenous GABA, miniature inhibitory postsynaptic currents, and currents directly activated by ketamine were studied. Ketamine did not alter the amplitude, frequency, or kinetics of postsynaptic currents but increased a tonic inhibitory current generated by extrasynaptic GABAA receptors in hippocampal neurons. For example, ketamine (100 µM) increased the tonic current by 33.6 ± 6.5% (mean ± SEM; 95% CI, 18.2 to 48.9; n = 8, P Ketamine shifted the GABA concentration-response curve to the left, but only when GABAA receptors were activated by low concentrations of GABA (n = 6). The selective increase in tonic current was attributed to ketamine increasing the apparent potency of GABA at high-affinity extrasynaptic GABAA receptors. Ketamine also increased a tonic current in cortical neurons (n = 11). Ketamine directly gated the opening of GABAA receptors, but only at high concentrations that are unlikely to occur during clinical use. Clinically relevant concentrations of ketamine increased the activity of high-affinity extrasynaptic GABAA receptors in the hippocampus and cortex, an effect that likely contributes to ketamine's neurodepressive properties.

  12. Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses.

    Science.gov (United States)

    Wang, Xulong; Lippi, Giordano; Carlson, David M; Berg, Darwin K

    2013-12-01

    Astrocytes, an abundant form of glia, are known to promote and modulate synaptic signaling between neurons. They also express α7-containing nicotinic acetylcholine receptors (α7-nAChRs), but the functional relevance of these receptors is unknown. We show here that stimulation of α7-nAChRs on astrocytes releases components that induce hippocampal neurons to acquire more α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors post-synaptically at glutamatergic synapses. The increase is specific in that no change is seen in synaptic NMDA receptor clusters or other markers for glutamatergic synapses, or in markers for GABAergic synapses. Moreover, the increases in AMPA receptors on the neuron surface are accompanied by increases in the frequency of spontaneous miniature synaptic currents mediated by the receptors and increases in the ratio of evoked synaptic currents mediated by AMPA versus NMDA receptors. This suggests that stimulating α7-nAChRs on astrocytes can convert 'silent' glutamatergic synapses to functional status. Astrocyte-derived thrombospondin is necessary but not sufficient for the effect, while tumor necrosis factor-α is sufficient but not necessary. The results identify astrocyte α7-nAChRs as a novel pathway through which nicotinic cholinergic signaling can promote the development of glutamatergic networks, recruiting AMPA receptors to post-synaptic sites and rendering the synapses more functional. We find that activation of nicotinic receptors on astrocytes releases a component that specifically recruits AMPA receptors to glutamatergic synapses. The recruitment appears to occur preferentially at what may be 'silent synapses', that is, synapses that have all the components required for glutamatergic transmission (including NMDA receptors) but lack sufficient AMPA receptors to generate a response. The results are unexpected and open up new possibilities for mechanisms underlying network formation and synaptic plasticity.

  13. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers

    Directory of Open Access Journals (Sweden)

    McMillan Catherine R

    2004-10-01

    a heterogeneous population of NSCs including both neural and glial progenitors, as observed under the cell culture conditions used in this study. These NSCs have an intrinsic ability to express neurotrophic factors, with an apparent suppression of GDNF expression after several days in culture. The detection of melatonin receptors in neural stem/progenitor cells suggests involvement of this pleiotropic hormone in mammalian neurodevelopment. Moreover, the ability of melatonin to induce GDNF expression in C17.2 cells supports a functional role for the MT1 receptor expressed in these NSCs. In view of the potency of GDNF in promoting the survival of dopaminergic neurons, these novel findings have implications for the utilization of melatonin in neuroprotective strategies, especially in Parkinson's disease.

  14. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  15. AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S;

    1998-01-01

    was blocked was seen as early as 5 DIV since 10 microM MK-801 did not completely block the response whereas 10 microM NBQX did. The 2,3-benzodiazepine GYKI compounds, which have been reported to be selective non-competitive AMPA receptor antagonists, were here observed to block the AMPA toxicity...

  16. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands.

    Science.gov (United States)

    Hao, Shuzhen; Sternini, Catia; Raybould, Helen E

    2008-01-01

    G-protein-coupled receptors signaling bitter taste (T2Rs) in the oral gustatory system and the alpha-subunit of the taste-specific G-protein gustducin are expressed in the gastrointestinal (GI) tract. alpha-Subunit of the taste-specific G-protein gustducin colocalizes with markers of enteroendocrine cells in human and mouse GI mucosa, including peptide YY. Activation of T2Rs increases cholecystokinin (CCK) release from the enteroendocrine cell line, STC-1. The aim of this study was to determine whether T2R agonists in the GI tract activate neurons in the nucleus of the solitary tract (NTS) and whether this activation is mediated by CCK and peptide YY acting at CCK(1) and Y(2) receptors. Immunocytochemistry for the protooncogene c-Fos protein, a marker for neuronal activation, was used to determine activation of neurons in the midregion of the NTS, the region where vagal afferents from the GI tract terminate. Intragastric administration of the T2R agonist denatonium benzoate (DB), or phenylthiocarbamide (PTC), or a combination of T2R agonists significantly increased the number of Fos-positive neurons in the mid-NTS; subdiaphragmatic vagotomy abolished the NTS response to the mixture of T2R agonists. Deletion of CCK(1) receptor gene or blockade of CCK(1) receptors with devazepide abolishes the activation of NTS neurons in response to DB, but had no effect on the response to PTC. Administration of the Y(2) receptor antagonist BIIE0246 blocks the activation of NTS neurons to DB, but not PTC. These findings suggest that activation of neurons in the NTS following administration of T2R agonists to the GI tract involves CCK(1) and Y(2) receptors located on vagal afferent terminals in the gut wall. T2Rs may regulate GI function via release of regulatory peptides and activation of the vagal reflex pathway.

  17. Silencing gamma-aminobutyric acid A receptor alpha 1 subunit expression and outward potassium current in developing cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Tao Bo; Jiang Li; Jian Li; Xingfang Li; Kaihui Xing

    2011-01-01

    We used RNA interference (RNAi) to disrupt synthesis of the cortical neuronal γ-aminobutyric acid A receptor (GABAAR) α1 in rats during development, and measured outward K+ currents during neuronal electrical activity using whole-cell patch-clamp techniques. Three pairs of small interfering RNA (siRNA) for GABAAR α1 subunit were designed using OligoEngine RNAi software. This siRNA was found to effectively inhibited GABAAR α1 mRNA expression in cortical neuronal culture in vitro, but did not significantly affect neuronal survival. Outward K+ currents were decreased, indicating that GABAAR α1 subunits in developing neurons participate in neuronal function by regulating outward K+ current.

  18. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons.

    Science.gov (United States)

    Stanika, Ruslan I; Winters, Christine A; Pivovarova, Natalia B; Andrews, S Brian

    2010-02-01

    Hippocampal CA1 pyramidal neurons are selectively vulnerable to ischemia, while adjacent CA3 neurons are relatively resistant. Although glutamate receptor-mediated mitochondrial Ca(2+) overload and dysfunction is a major component of ischemia-induced neuronal death, no direct relationship between selective neuronal vulnerability and mitochondrial dysfunction has been demonstrated in intact brain preparations. Here, we show that in organotypic slice cultures NMDA induces much larger Ca(2+) elevations in vulnerable CA1 neurons than in resistant CA3. Consequently, CA1 mitochondria exhibit stronger calcium accumulation, more extensive swelling and damage, stronger depolarization of their membrane potential, and a significant increase in ROS generation. NMDA-induced Ca(2+) and ROS elevations were abolished in Ca(2+)-free medium or by NMDAR antagonists, but not by zinc chelation. We conclude that Ca(2)(+) overload-dependent mitochondrial dysfunction is a determining factor in the selective vulnerability of CA1 neurons.

  19. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  20. Functional contribution of alpha3L8' to the neuronal nicotinic alpha3 receptor.

    Science.gov (United States)

    Nieves-Cintrón, Madeline; Caballero-Rivera, Daniel; Silva, Walter I; Navedo, Manuel F; Lasalde-Dominicci, José A

    2008-10-01

    The role of position L8', located in transmembrane domain 1 of the neuronal nicotinic alpha3 subunit, was characterized by using two-electrode voltage clamp in Xenopus oocytes. Four amino acids (Ala, Ser, Phe, and Tyr) were inserted at this conserved position, and the mutant subunit was coexpressed with either wild-type beta2 or beta4 subunits. These substitutions led to significant alterations in the pharmacodynamic parameters of cholinergic agents, resulting in loss of function. Ala and Ser substitutions resulted in losses in agonist (ACh, nicotine, and DMPP) potency and intrinsic activity at both alpha3beta2 and alpha3beta4 receptors. Similarly, significant changes in antagonist potency were produced by the Ala and Ser substitutions. Phe and Tyr mutations did not alter the receptor's EC(50) for ACh or nicotine but reduced the EC(50) for DMPP at both receptors. The Phe mutation also reduced the intrinsic activity of all agonists tested at both receptors. The Tyr mutation, though, led to a decrease in intrinsic activity for all agonists at the alpha3beta2 receptor, yet resulted in no changes for DMPP, a decrease for nicotine, and an increase for ACh at the alpha3beta4 receptor. The most dramatic changes in the receptor's functional properties were produced by substitutions that introduced the largest changes in amino acid volume. Additional replacements (Gly, Thr, and Val) suggested an inverse correlation between amino acid volume at position alpha3L8' and EC(50) for alpha3beta4 nAChRs; however, alpha3beta2 nAChRs displayed a nonlinear correlation. These data demonstrate that structural alterations at position alpha3L8' could propagate to the agonist-binding site.

  1. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms.

    Science.gov (United States)

    Good, Cameron H; Wang, Huikun; Chen, Yuan-Hao; Mejias-Aponte, Carlos A; Hoffman, Alexander F; Lupica, Carl R

    2013-10-23

    Glutamatergic lateral habenula (LHb) output communicates negative motivational valence to ventral tegmental area (VTA) dopamine (DA) neurons via activation of the rostromedial tegmental nucleus (RMTg). However, the LHb also receives a poorly understood DA input from the VTA, which we hypothesized constitutes an important feedback loop regulating DA responses to stimuli. Using whole-cell electrophysiology in rat brain slices, we find that DA initiates a depolarizing inward current (I(DAi)) and increases spontaneous firing in 32% of LHb neurons. I(DAi) was also observed upon application of amphetamine or the DA uptake blockers cocaine or GBR12935, indicating involvement of endogenous DA. I(DAi) was blocked by D4 receptor (D4R) antagonists (L745,870 or L741,742), and mimicked by a selective D4R agonist (A412997). I(DAi) was associated with increased whole-cell conductance and was blocked by Cs+ or a selective blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel, ZD7288. I(DAi) was also associated with a depolarizing shift in half-activation voltage for the hyperpolarization-activated cation current (Ih) mediated by HCN channels. Recordings from LHb neurons containing fluorescent retrograde tracers revealed that I(DAi) was observed only in cells projecting to the RMTg and not the VTA. In parallel with direct depolarization, DA also strongly increased synaptic glutamate release and reduced synaptic GABA release onto LHb cells. These results demonstrate that DA can excite glutamatergic LHb output to RMTg via multiple cellular mechanisms. Since the RMTg strongly inhibits midbrain DA neurons, activation of LHb output to RMTg by DA represents a negative feedback loop that may dampen DA neuron output following activation.

  2. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.

    Science.gov (United States)

    Marsicano, G; Lutz, B

    1999-12-01

    Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.

  3. AVPV neurons containing estrogen receptor-beta in adult male rats are influenced by soy isoflavones

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2007-02-01

    Full Text Available Abstract Background Isoflavones, the most abundant phytoestrogens in soy foods, are structurally similar to 17beta-estradiol. It is known that 17beta-estradiol induces apoptosis in anteroventral periventricular nucleus (AVPV in rat brain. Also, there is evidence that consumption of soy isoflavones reduces the volume of AVPV in male rats. Therefore, in this study, we examined the influence of dietary soy isoflavones on apoptosis in AVPV of 150 day-old male rats fed either a soy isoflavone-free diet (Phyto-free or a soy isoflavone-rich diet (Phyto-600. Results The occurrence of apoptosis in AVPV was examined by TUNEL staining. The incidence of apoptosis was about 10 times higher in the Phyto-600 group (33.1 ± 1.7% than in the Phyto-free group (3.6 ± 1.0%. Furthermore, these apoptotic cells were identified as neurons by dual immunofluorescent staining of GFAP and NeuN as markers of astrocytes and neurons, respectively. Then the dopaminergic neurons in AVPV were detected by immunohistochemistry staining of tyrosine hydroxylase (TH. No significant difference in the number of TH neurons was observed between the diet treatment groups. When estrogen receptor (ER alpha and beta were examined by immunohistochemistry, we observed a 22% reduction of ERbeta-positive cell numbers in AVPV with consumption of soy isoflavones, whereas no significant change in ERalpha-positive cell numbers was detected. Furthermore, almost all the apoptotic cells were ERbeta-immunoreactive (ir, but not ERalpha-ir. Last, subcutaneous injections of equol (a major isoflavone metabolite that accounts for approximately 70–90% of the total circulating plasma isoflavone levels did not alter the volume of AVPV in adult male rats. Conclusion In summary, these findings provide direct evidence that consumption of soy isoflavones, but not the exposure to equol, influences the loss of ERbeta-containing neurons in male AVPV.

  4. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation.

  5. Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian hamster.

    Science.gov (United States)

    Barrett, P; van den Top, M; Wilson, D; Mercer, J G; Song, C K; Bartness, T J; Morgan, P J; Spanswick, D

    2009-08-01

    Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short winter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electrophysiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod.

  6. Dopamine receptor type 1 of Caenorhabditis elegans expressing in mechanosensory neurons

    Directory of Open Access Journals (Sweden)

    Bondarchuk T. I.

    2012-01-01

    Full Text Available Until now the results on profiling dopamine receptors in C. elegans have been incomplete and fragmentary. The aim of this study was to investigate the expression profile of dop-1 gene in C. elegans using 3 kb promoter with 3'-end locating before ATG of dop-1 gene. Methods. The strain of C. elegans with mutant unc-119 gene was used. To check a pattern of the dop-1 expression, the promoter of this gene was amplified using PCR. The animals were co-bombarded with plasmid pPD95.77 dop-1::GFP and reporter construct containing unc-119 gene. Results. Using GFP as a reporter protein, we built a whole picture of expression of dopamine receptor type 1 in C. elegans and found that this protein could be detected only in mechanosensory neurons such as PLM, PVQR, PVQL, ALNR, ALNL, DVAR, DVC.

  7. Glutamatergic synaptic inputs activate neurons in the subfornical organ through non-NMDA receptors.

    Science.gov (United States)

    Xu, S H; Inenaga, K; Honda, E; Yamashita, H

    2000-01-14

    The subfornical organ (SFO) plays an important role in central regulation of the autonomic nervous system. The synaptic transmission properties of neurons in the SFO were studied with intracellular and whole-cell patch clamp recordings in the rat slice preparations. Both the spontaneous and evoked excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were almost completely suppressed by the glutamate receptor antagonist kynurenic acid and the non-NMDA (N-methyl-D-aspartic acid) antagonist CNQX. The non-NMDA agonist kainic acid depolarized the membrane most potently, compared with NMDA and quisqualic acid. These suggest that glutamate is a main excitatory neurotransmitter in the SFO and that its action is at least partly mediated through non-NMDA receptors.

  8. An analog circuit implementation of a Huber-Braun cold receptor neuron model.

    Science.gov (United States)

    Hermida, Raul; Patrone, Martin; Pijuan, Martin; Monzon, Pablo; Oreggioni, Julián

    2012-01-01

    We present the design and implementation of an electronic device that, using off the shelf discrete analog components, implements the mathematical model of a cold receptor neuron called Huber-Braun. This model describes the electrical behavior of certain kinds of receptors when interacting with their environment, and it consists of a set of differential equations that has only been solved by numeric simulations. By these means a chaotic behavior has been found. An analog computer can be relevant for further analysis and validation of the model. The results obtained by means of numeric simulations and through our analog circuit simulator are consistent. In particular, temperature and external current bifurcation diagrams were successfully built. Finally, the electronic device allows the observation of all relevant variables and most of the expected behavior (tonic firing, chaotic, burst discharge, subthreshold oscillation and steady state).

  9. Trafifc lights for axon growth:proteoglycans and their neuronal receptors

    Institute of Scientific and Technical Information of China (English)

    Yingjie Shen

    2014-01-01

    Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like trafifc lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and hepa-ran sulfate proteoglycans (HSPGs) often lead to“stop”and“go”growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identiifcation of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon re-generation.

  10. μ-Opioid receptor antibody reveals tissue-dependent specific staining and increased neuronal μ-receptor immunoreactivity at the injured nerve trunk in mice.

    Directory of Open Access Journals (Sweden)

    Yvonne Schmidt

    Full Text Available Neuropathic pain is a debilitating chronic disease often resulting from damage to peripheral nerves. Activation of opioid receptors on peripheral sensory neurons can attenuate pain without central nervous system side effects. Here we aimed to analyze the distribution of neuronal μ-opioid receptors, the most relevant opioid receptors in the control of clinical pain, along the peripheral neuronal pathways in neuropathy. Hence, following a chronic constriction injury of the sciatic nerve in mice, we used immunohistochemistry to quantify the μ-receptor protein expression in the dorsal root ganglia (DRG, directly at the injured nerve trunk, and at its peripheral endings in the hind paw skin. We also thoroughly examined the μ-receptor antibody staining specificity. We found that the antibody specifically labeled μ-receptors in human embryonic kidney 293 cells as well as in neuronal processes of the sciatic nerve and hind paw skin dermis, but surprisingly not in the DRG, as judged by the use of μ/δ/κ-opioid receptor knockout mice. Therefore, a reliable quantitative analysis of μ-receptor expression in the DRG was not possible. However, we demonstrate that the μ-receptor immunoreactivity was strongly enhanced proximally to the injury at the nerve trunk, but was unaltered in paws, on days 2 and 14 following injury. Thus, μ-opioid receptors at the site of axonal damage might be a promising target for the control of painful neuropathies. Furthermore, our findings suggest a rigorous tissue-dependent characterization of antibodies' specificity, preferably using knockout animals.

  11. Use of adenovirus vector expressing the mouse full estrogen receptor alpha gene to infect mouse primary neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao HU; Lei Lou; Jun Yuan; Xing Wan; Jianyi Wang; Xinyue Qin

    2010-01-01

    Estrogen plays important regulatory and protective roles in the central nervous system through estrogen receptor a mediation.Previous studies applied eukaryotic expression and lentiviral vectors carrying estrogen receptor a to clarify the undedying mechanisms,in the present study,an adenovirus vector expressing the mouse full estrogen receptor a gene was constructed to identify biological characteristics of estrogen receptor a recombinant adenovirus infecting nerve cells.Primary cultured mouse nerve cells were first infected with estrogen receptor a recombinant adenovirus at various multiplicities of infection,followed by 100 multiplicity of infection.Results showed overexpression of estrogen receptor a mRNA and protein in the infected nerve cells.Estrogen receptor a recombinant adenovirus at 100 multiplicity of infection successfully infected neurons and upregulated estrogen receptor a mRNA and protein expression.

  12. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  13. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    Science.gov (United States)

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express.

  14. Cysteinyl leukotriene receptor 1 is involved in /N-methyl-D-aspartate-mediated neuronal injury in mice

    Institute of Scientific and Technical Information of China (English)

    Qian DING; Er-qing WEI; Yan-jun ZHANG; Wei-ping ZHANG; Zhong CHEN

    2006-01-01

    Aim: To determine whether cysteinyl leukotriene receptor 1 (CysLT1 receptor) is involved in N-methyl-D-aspartate (NMDA)-induced excitotoxic injury in the mouse brain. Methods: Brain injury was induced by NMDA microinjection (50-150 nmol in 0.5 μL) into the cerebral cortex. The changes in CysLT1 receptor expression 24 h after NMDA injection and the effects of a CysLT1 receptor antagonist, pranlukast (0.01 and 0.1 mg/kg), an NMDA receptor antagonist, ketamine (30 mg/kg), and an antioxidant, edaravone (9 mg/kg) were observed. Results: In the NMDA-injured brain, the CysLT1 receptor mRNA, and protein expression were upregulated, and the receptor was mainly localized in the neurons and not in the astrocytes. Pranlukast, ketamine and edaravone decreased NMDA-induced injury;pranlukast (0.1 mg/kg) and ketamine inhibited the upregulated expression of the CysLT1 receptor. Conclusion: CysLT1 receptor expression in neurons is upregulated after NMDA injection, and NMDA-induced responses are inhibited by CysLT1 receptor antagonists, indicating that the increased CysLT1 receptor is involved in NMDA excitotoxicity.

  15. Metabotropic glutamate and GABA receptors modulate cellular excitability and glutamatergic transmission in chicken cochlear nucleus angularis neurons.

    Science.gov (United States)

    Shi, Wei; Lu, Yong

    2017-03-01

    Neurons in the avian cochlear nucleus angularis (NA) receive glutamatergic input from the auditory nerve, and GABAergic input from the superior olivary nucleus. Physiologically heterogeneous, NA neurons perform multiple functions including encoding sound intensity information. Using in vitro whole-cell patch recordings from acute brain slices and immunohistochemistry staining, we investigated neuromodulation mediated by metabotropic glutamate and GABA receptors (mGluRs and GABABRs) in NA neurons. Based on their intrinsic firing patterns in response to somatic current injections, NA neurons were classified into onset, damped, and tonic cells. Pharmacological activation of group II mGluRs, group III mGluRs, and GABABRs, by their respective agonists, suppressed the cellular excitability of non-onset firing NA neurons. Each of these agonists inhibited the glutamatergic transmission in NA neurons, in a cell type-independent manner. The frequency but not the amplitude of spontaneous release of glutamate was reduced by each of these agonists, suggesting that the modulation of the glutamatergic transmission was via presynaptic actions. Interestingly, activation of group I mGluRs increased cellular excitability and suppressed glutamatergic transmission in non-onset neurons. These results elaborate that auditory processing in NA neurons is subject to neuromodulation mediated by metabotropic receptors activated by native neurotransmitters released at NA.

  16. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    Directory of Open Access Journals (Sweden)

    Xianglong eZhu

    2016-04-01

    Full Text Available While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The NAc is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs D2 neurons was done in both low expenditure and high expenditure (wheel running conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a DREADD (Designer Receptors Exclusively Activated by Designer Drugs strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from D1 NAc neuronal manipulations depend upon the activity state of the animals (wheel running vs non-running. The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control.

  17. 5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons.

    Science.gov (United States)

    Wang, Xiaojuan; Hu, Rong; Liang, Jianbo; Li, Ze; Sun, Weiwen; Pan, Xiaoping

    2016-06-01

    Migraine is a common but complex neurological disorder. Its precise mechanisms are not fully understood. Increasing indirect evidence indicates that 5-HT7 receptors may be involved; however, their role remains unknown. Our previous in vivo study showed that selective blockade of 5-HT7 receptors caused decreased serum levels of calcitonin gene-related peptide (CGRP) in the external jugular vein following electrical stimulation of the trigeminal ganglion (TG) in an animal model of migraine. In the present study, we used an in vitro model of cultured TG cells to further investigate whether 5-HT7 receptors are directly responsible for the release of CGRP and substance P from TG neurons. We stimulated rat primary cultured TG neurons with capsaicin or potassium chloride (KCl) to mimic neurogenic inflammation, resulting in release of CGRP and substance P. 5-HT7 receptors were abundantly expressed in TG neurons. Greater than 93 % of 5-HT7 receptor-positive neurons co-expressed CGRP and 56 % co-expressed substance P. Both the capsaicin- and KCl-induced release of CGRP and substance P were unaffected by pretreatment of cultured TG cells with the selective 5-HT7 receptor agonist AS19 and antagonist SB269970. This study demonstrates for the first time that 5-HT7 receptors are abundantly co-expressed with CGRP and substance P in rat primary TG neurons and suggests that they are not responsible for the release of CGRP and substance P from cultured TG neurons evoked by capsaicin or KCl.

  18. Structure and chromosomal localization of the human thrombospondin gene.

    Science.gov (United States)

    Wolf, F W; Eddy, R L; Shows, T B; Dixit, V M

    1990-04-01

    Thrombospondin (THBS1) is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins. Determination of THBS1 gene structure has revealed that the type I repeat modules are encoded by symmetrical exons and that the heparin-binding domain is encoded by a single exon. To further elucidate the higher level organization of THBS1, the gene was localized to the q11-qter region of chromosome 15.

  19. Amyloid β-protein differentially affects NMDA receptor- and GABAA receptor-mediated currents in rat hippocampal CA1 neurons

    Institute of Scientific and Technical Information of China (English)

    Junfang Zhang; Lei Hou; Xiuping Gao; Fen Guo; Wei Jing; Jinshun Qi; Jiantian Qiao

    2009-01-01

    Although the aggregated amyloid β-protein (Aβ) in senile plaques is one of the key neuropathological features of Alzheimer's disease (AD), soluble forms of Aβ also interfere with synaptic plasticity at the early stage of AD. The suppressive action of acute application of Aβ on hippocampal long-term potentiation (LTP) has been reported widely, whereas the mechanism underlying the effects of Aβ is still mostly unknown. The present study, using the whole-cell patch clamp technique, investigated the effects of Aβ fragments (Aβ25-35 and Aβ31-35) on the LTP induction-related postsynaptic ligand-gated channel currents in isolated hippocampal CA1 neurons. The results showed a rapid but opposite action of both peptides on excitatory and inhibitory receptor currents. Glutamate application-induced currents were suppressed by A β25-35 in a dose-dependent manner, and further N-methyl-I>aspartate (NMDA) receptor-mediated currents were selec-tively inhibited. In contrast, pretreatment with Aβ fragments potentiated γ-aminobutyric acid (GABA)-induced whole-cell currents. As a control, Aβ35-31 the reversed sequence of Aβ35-31 showed no effect on the currents induced by glutamate, NMDA or GABA. These results may partly explain the impaired effects of Aβ on hippocampal LTP, and suggest that the functional down-regulation of N M DA receptors and up-regulation of GABAA receptors may play an important role in remodeling the hippocampal synaptic plasticity in early AD.

  20. Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors.

    Science.gov (United States)

    Brown, D A; Filippov, A K; Barnard, E A

    2000-07-01

    Messenger RNAs and cDNAs for individual cloned P2Y(1), P2Y2 and P2Y(6) nucleotide receptors have been expressed by micro-injection into dissociated rat superior cervical sympathetic neurones and the effects of stimulating the expressed receptors on voltage-activated N-type Ca(2+) currents and M-type K(+) currents recorded. Both currents were reduced by stimulating all three receptors, with the following mean IC(50) values: P2Y(1) (agonist: ADP) - I(K(M)) 6.9 nM, I(Ca) 8.2 nM; P2Y(2) (agonist: UTP) - I(K(M)) 1.5 microM, I(Ca) 0.5 microM; P2Y(6) (agonist: UDP) - I(K(M)) 30 nM, I(Ca) 5.9 nM. Inhibition of I(K(M)) was voltage-independent and insensitive to Pertussis toxin; inhibition of I(Ca) showed both voltage-sensitive and insensitive, and Pertussis toxin-sensitive and insensitive components. It is concluded that these P2Y receptors can couple to more than one G protein and thereby modulate more than one ion channel. It is suggested that these effects on K(M) and Ca(N) channels may induce both postsynaptic excitory and presynaptic inhibitory responses.

  1. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons.

    Science.gov (United States)

    Sadeghi, Mahsa; Tzschentke, Thomas M; Christie, MacDonald J

    2015-01-01

    Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K(+) (KIR 3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR 3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2013 The British Pharmacological Society.

  2. Loss of Fertility in the Absence of Progesterone Receptor Expression in Kisspeptin Neurons of Female Mice.

    Directory of Open Access Journals (Sweden)

    Arnon Gal

    Full Text Available Ovarian steroids, estradiol and progesterone, play central roles in regulating female reproduction by acting as both positive and negative regulators of gonadotropin-releasing hormone (GnRH secretion in the hypothalamus. Recent studies have identified kisspeptin neurons of the hypothalamus as the target of estrogenic regulation of GnRH secretion. In this study, we aimed to determine the significance of progesterone receptor (PGR expression in the kisspeptin neurons. To this end, the Pgr gene was selectively ablated in mouse kisspeptin neurons and the reproductive consequence assessed. The hypothalamus of the Pgr deficient female mouse expressed kisspeptin, the pituitary released LH in response to GnRH stimulation, and the ovary ovulated when stimulated with gonadotropins. However, the mutant mouse gradually lost cyclicity, was unable to generate a LH surge in response to rising estradiol, and eventually became infertile. Taken together, these results indicate that the loss of PGR impairs kisspeptin secretory machinery and therefore that PGR plays a critical role in regulating kisspeptin secretion.

  3. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation.

    Science.gov (United States)

    Kuznetsova, Anna Y; Deth, Richard C

    2008-06-01

    We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention-related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. Decreased potassium channel inertia shortens spike duration and decreases the interspike interval via its influence on the calcium-dependent potassium current. This mechanism leads to a transition to attention-related gamma oscillations in a pyramidal cell-interneuron network. The higher frequency and better synchronization is observed with PLM affecting pyramidal neurons only, and recurrent excitation between pyramidal neurons is important for synchronization. Thus dopamine-stimulated methylation of membrane phospholipids may be an important mechanism for modulating firing activity, while impaired methylation can contribute to disorders of attention.

  4. Neurites regrowth of cortical neurons by GSK3beta inhibition independently of Nogo receptor 1.

    Science.gov (United States)

    Seira, Oscar; Gavín, Rosalina; Gil, Vanessa; Llorens, Franc; Rangel, Alejandra; Soriano, Eduardo; del Río, José Antonio

    2010-06-01

    Lesioned axons do not regenerate in the adult mammalian CNS, owing to the over-expression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3beta (GSK3beta) and extracellular-related kinase (ERK) 1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: (i) cerebellar granule cells and (ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Finally, these regenerative effects were corroborated in the lesioned entorhino-hippocampal pathway in NgR1-/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.

  5. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)-dependent activation by blocking A1 adenosine receptors.

    Science.gov (United States)

    Klishin, A; Tsintsadze, T; Lozovaya, N; Krishtal, O

    1995-01-01

    When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors. PMID:8618915

  6. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons.

    Science.gov (United States)

    Zaitsev, Aleksey V; Kim, Kira Kh; Vasilev, Dmitry S; Lukomskaya, Nera Ya; Lavrentyeva, Valeria V; Tumanova, Natalia L; Zhuravin, Igor A; Magazanik, Lev G

    2015-03-01

    Alterations in inhibitory and excitatory neurotransmission play a central role in the etiology of epilepsy, with overstimulation of glutamate receptors influencing epileptic activity and corresponding neuronal damage. N-methyl-D-aspartate (NMDA) receptors, which belong to a class of ionotropic glutamate receptors, play a primary role in this process. This study compared the anticonvulsant properties of two NMDA receptor channel blockers, memantine and 1-phenylcyclohexylamine (IEM-1921), in a pentylenetetrazole (PTZ) model of seizures in rats and investigated their potencies in preventing PTZ-induced morphological changes in the brain. The anticonvulsant properties of IEM-1921 (5 mg/kg) were more pronounced than those of memantine at the same dose. IEM-1921 and memantine decreased the duration of convulsions by 82% and 37%, respectively. Both compounds were relatively effective at preventing the tonic component of seizures but not myoclonic seizures. Memantine significantly reduced the lethality caused by PTZ-induced seizures from 42% to 11%, and all animals pretreated with IEM-1921 survived. Morphological examination of the rat brain 24 hr after administration of PTZ revealed alterations in the morphology of 20-25% of neurons in the neocortex and the hippocampus, potentially induced by excessive glutamate. The expression of the excitatory amino acid transporter 1 protein was increased in the hippocampus of the PTZ-treated rats. However, dark neurons did not express caspase-3 and were immunopositive for the neuronal nuclear antigen protein, indicating that these neurons were alive. Both NMDA antagonists prevented neuronal abnormalities in the brain. These results suggest that NMDA receptor channel blockers might be considered possible neuroprotective agents for prolonged seizures or status epilepticus leading to neuronal damage.

  7. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    Science.gov (United States)

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  8. Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons.

    Science.gov (United States)

    Reyes, Arith-Ruth S; Levenson, Robert; Berrettini, Wade; Van Bockstaele, Elisabeth J

    2010-10-28

    GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was recently identified as a novel mu-opioid receptor (MOR) interacting protein. GPR177 is a trans-membrane protein pivotal to mediating the secretion of Wnt signaling proteins. Wnt proteins, in turn, are essential in regulating neuronal development, a phenomenon inhibited upon chronic exposure to MOR agonists such as morphine and heroin. We previously showed that GPR177 and MOR are co-localized in the mouse dorsolateral striatum; however, the nature of this interaction was not fully elucidated. Therefore, in the present study, we examined cellular substrates for interactions between GPR177 and MOR using a combined immunogold-silver and peroxidase detection approach in coronal sections in the dorsolateral segment of the striatum. Semi-quantitative analysis of the ultrastructural distribution of GPR177 and MOR in striatal somata and in dendritic processes showed that, of the somata and dendritic processes exhibiting GPR177, 32% contained MOR immunolabeling while for profiles exhibiting MOR, 37% also contained GPR177 immunoreactivity. GPR177-labeled particles were localized predominantly along both the plasma membrane and within the cytoplasm of MOR-labeled dendrites. Somata and dendritic processes that contained both GPR177 and MOR more often received symmetric (inhibitory-type) synapses from unlabeled axon terminals. To further define the phenotype of GPR177 and MOR-containing cellular profiles, triple immunofluorescence detection showed that GPR177 and MOR are localized in neurons containing the opioid peptide, enkephalin, within the dorsolateral striatum. The results provide an anatomical substrate for interactions between MOR and its interacting protein, GPR177, in striatal opioid-containing neurons that may underlie the morphological alterations produced in neurons by chronic opiate use.

  9. Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons.

    Science.gov (United States)

    Hong, Zhiwen; Jie, Pinghui; Tian, Yujing; Chen, Tingting; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is reported to control the resting membrane potential and increase excitability in many types of cells. Voltage-gated sodium channels (VGSCs) play an important role in initiating action potentials in neurons. However, whether VGSCs can be modulated by the activation of TRPV4 in hippocampal pyramidal neurons remains unknown. In this study, we tested the effect of TRPV4 agonists (GSK1016790A and 4α-PDD) on voltage-gated sodium current (I Na) in hippocampal CA1 pyramidal neurons and the protein levels of α/β-subunit of VGSCs in the hippocampus of mice subjected to intracerebroventricular (icv.) injection of GSK1016790A (GSK-injected mice). Herein, we report that I Na was inhibited by acute application of GSK1016790A or 4α-PDD. In the presence of TRPV4 agonists, the voltage-dependent inactivation curve shifted to the hyperpolarization, whereas the voltage-dependent activation curve remained unchanged. The TRPV4 agonist-induced inhibition of I Na was blocked by the TRPV4 antagonist or tetrodotoxin. Moreover, blocking protein kinase A (PKA) markedly attenuated the GSK1016790A-induced inhibition of I Na, whereas antagonism of protein kinase C or p38 mitogen-activated protein kinase did not change GSK1016790A action. Finally, the protein levels of Nav1.1, Nav1.2, and Nav1.6 in the hippocampus increased in GSK-injected mice, whereas those of Nav1.3 and Navβ1 remained nearly unchanged. We conclude that I Na is inhibited by the acute activation of TRPV4 through PKA signaling pathway in hippocampal pyramidal neurons, but protein expression of α-subunit of VGSCs is increased by sustained TRPV4 activation, which may compensate for the acute inhibition of I Na and provide a possibility for hyper-excitability upon sustained TRPV4 activation.

  10. Influence of leptin and GABAB-receptor agonist and antagonist on neurons of the hypothalamic infundibular nucleus in the chicken.

    Science.gov (United States)

    Bogatyrev, S; Yakimova, K S; Tzschentke, B

    2017-04-01

    In birds and mammals, the neuroendocrine regulation of energy balance is conserved in many aspects. Despite significant similarities between the two groups, differences in the regulatory mechanisms were detected. The present study was performed to carry out investigations of the influence of human leptin and GABAB-receptor agonist and antagonist on the firing rate of neurons of the Nucleus infundibuli hypothalami in brain slices from juvenile chickens. For the first time, we demonstrated a clear, dose-related change in the firing rate of hypothalamic neurons in juvenile chickens after the acute application of recombinant human leptin (1, 10, and 100 nM). All investigated neurons increased their subsequent firing rate. Application of GABAB-receptor agonist baclofen (1 µM) blocked, while antagonist CGP 35348 (10 µM) increased the spontaneous neuronal activity. Simultaneous application of baclofen and leptin reduced the effect observed from single leptin application. This was not found after simultaneously application of leptin and CGP. Altogether, our results indicate that in bird brain slices, and exemplarily in those of the chicken, hypothalamic neurons show mammalian-like responsiveness after acute leptin and GABA application. GABAB-mechanisms involved in GABA release play a likely important role in the leptin-mediated effects on NI neurons via functional leptin receptors.

  11. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  12. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    Institute of Scientific and Technical Information of China (English)

    Xu-Qiao Chen; BinWang; Chengbiao Wu; Jin Pan; Bo Yuan; Yuan-Yuan Su; Xing-Yu Jiang; Xu Zhang; Lan Bao

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals.However,the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood.Here,we report that the signals of the purinergic (P)2X3 receptor,an ATP-gated ion channel are retrogradely transported in dorsal root ganglion (DRG) neuron axons.We found that Rab5,a small GTPase,controls the early sorting of P2X3 receptors into endosomes,while Rab7 mediates the fast retrograde transport of P2X3 receptors.Intraplantar injection and axonal application into the microfluidic chamber of α,β-methylene-ATP (α,β-MeATP),a P2X selective agonist,enhanced the endocytosis and retrograde transport of P2X3 receptors.The α,β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C,rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK),which associated with endocytic P2X3 receptors to form signaling endosomes.Disruption of the lipid rafts abolished the α,β-MeATP-induced ERK phosphorylation,endocytosis and retrograde transport of P2X3 receptors.Furthermore,treatment of peripheral axons with α,β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability.Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α,β-MeATP-induced retrograde signals.These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  13. Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice.

    Science.gov (United States)

    Wu, He; Wu, Tao; Han, Xiaoning; Wan, Jieru; Jiang, Chao; Chen, Wenwu; Lu, Hong; Yang, Qingwu; Wang, Jian

    2017-01-01

    Inflammatory responses mediated by prostaglandins such as PGE2 may contribute to secondary brain injury after intracerebral hemorrhage (ICH). However, the cell-specific signaling by PGE2 receptor EP2 differs depending on whether the neuropathic insult is acute or chronic. Using genetic and pharmacologic approaches, we investigated the role of EP2 receptor in two mouse models of ICH induced by intrastriatal injection of collagenase or autologous arterial whole blood. We used middle-aged male mice to enhance the clinical relevance of the study. EP2 receptor was expressed in neurons but not in astrocytes or microglia after collagenase-induced ICH. Brain injury after collagenase-induced ICH was associated with enhanced cellular and molecular inflammatory responses, oxidative stress, and matrix metalloproteinase (MMP)-2/9 activity. EP2 receptor deletion exacerbated brain injury, brain swelling/edema, neuronal death, and neurobehavioral deficits, whereas EP2 receptor activation by the highly selective agonist AE1-259-01 reversed these outcomes. EP2 receptor deletion also exacerbated brain edema and neurologic deficits in the blood ICH model. These findings support the premise that neuronal EP2 receptor activation by PGE2 protects brain against ICH injury in middle-aged mice through its anti-inflammatory and anti-oxidant effects and anti-MMP-2/9 activity. PGE2/EP2 signaling warrants further investigation for potential use in ICH treatment.

  14. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor.

    Science.gov (United States)

    Gravati, Marta; Busnelli, Marta; Bulgheroni, Elisabetta; Reversi, Alessandra; Spaiardi, Paolo; Parenti, Marco; Toselli, Mauro; Chini, Bice

    2010-09-01

    Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.

  15. Effects of protein deprivation and re-feeding on P2X_2 receptors in enteric neurons

    Institute of Scientific and Technical Information of China (English)

    Rúbia; Misawa; Priscila; Azevedo; Girotti; Márcia; Sanae; Mizuno; Edson; Aparecido; Liberti; John; Barton; Furness; Patricia; Castelucci

    2010-01-01

    AIM:To investigate the effects of malnutrition and refeeding on the P2X2 receptor,nitric oxide synthase(NOS),calretinin,calbindin and choline acetyltransferase(ChAT) in neurons of the rat ileum.METHODS:We analyzed the co-localization,numbers and sizes of P2X2-expressing neurons in relation to NOS-immunoreactive(IR),calbindin-IR,ChAT-IR,and calretinin-IR neurons of the myenteric and submucosal plexus.The experimental groups consisted of:(1) rats maintained on normal feed throughout pregnancy until 42 d post-...

  16. Roles of the serotonin 5-HT4 receptor in dendrite formation of the rat hippocampal neurons in vitro.

    Science.gov (United States)

    Kozono, Naoki; Ohtani, Akiko; Shiga, Takashi

    2017-01-15

    Serotonin (5-HT) is involved in various aspects of hippocampal development, although the specific roles of 5-HT receptors are poorly understood. We investigated the roles of 5-HT receptors in the dendrite formation of hippocampal neurons. We focused on the 5-HT4 receptor, which is coupled with Gs protein, and compared the effects with those of the Gi-coupled 5-HT1A receptor. Neurons from rat hippocampi at embryonic day 18 were dissociated and treated for 4 days with the 5-HT4 receptor agonist BIMU8 or the 5-HT1A receptor agonist 8-OH DPAT. The formation of primary dendrites and dendrite branching were promoted by BIMU8, whereas the dendrite branching was inhibited by 8-OH DPAT. BIMU8-induced promotion of dendrite formation was neutralized by concomitant treatment with the 5-HT4 receptor antagonist, confirming the specific actions of the 5-HT4 receptor. We then examined the signaling mechanisms underlying the actions of the 5-HT4 receptor by using a protein kinase A (PKA) inhibitor. The BIMU8-induced promotion of dendrite formation was reversed partially by the PKA inhibitor, suggesting involvement of PKA signaling downstream of the 5-HT4 receptor. Finally, we examined the contribution of brain-derived neurotrophic factor (BDNF) to the promotion of dendrite formation by BIMU8. Quantitative RT-PCR analysis showed that BIMU8 increased the BDNF mRNA expression and that treatment of cultured neurons with the TrkB antagonist reversed the BIMU8-induced increase in dendrite formation. In summary, the present study suggests a novel role for the 5-HT4 receptor in facilitation of dendrite formation in which intracellular signaling of PKA and the BDNF-TrkB system may be involved.

  17. A Globin Domain in a Neuronal Transmembrane Receptor of Caenorhabditis elegans and Ascaris suum

    Science.gov (United States)

    Tilleman, Lesley; Germani, Francesca; De Henau, Sasha; Helbo, Signe; Desmet, Filip; Berghmans, Herald; Van Doorslaer, Sabine; Hoogewijs, David; Schoofs, Liliane; Braeckman, Bart P.; Moens, Luc; Fago, Angela; Dewilde, Sylvia

    2015-01-01

    We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor. PMID:25666609

  18. Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells.

    Science.gov (United States)

    Thomas, Peter; Pang, Yefei

    2012-01-01

    Membrane progesterone receptors (mPRs) are novel G protein-coupled receptors belonging to the progestin and adipoQ receptor family (PAQR) that mediate a variety of rapid cell surface-initiated progesterone actions in the reproductive system involving activation of intracellular signaling pathways (i.e. nonclassical actions). The mPRs are highly expressed in the brain, but research on their neural functions has only been conducted in a single neuronal cell line, GT1-7 cells, which have negligible nuclear progesterone receptor (PR) expression. GT1-7 cells express mPRα and mPRβ on their plasma membranes which is associated with the presence of high-affinity, specific [(3)H]-progesterone receptor binding. The neurosteroid, allopregnanolone, is an effective ligand for recombinant mPRα with a relative binding affinity of 7.6% that of progesterone. Allopregnanolone acts as a potent mPR agonist on GT1-7 cells, mimicking the progesterone-induced decrease in cAMP accumulation and its antiapoptotic actions at low nanomolar concentrations. The decrease in cAMP levels is associated with rapid progesterone-induced downregulation of GnRH pulsatile secretion from perifused GT1-7 cells. The recent suggestion that mPRs are alkaline ceramidases and mediate sphingolipid signaling is not supported by empirical evidence that TNFα does not bind to mPRs overexpressed in human cells and that exogenous sphingomyelinase is ineffective in mimicking progestin actions through mPRs to induce meiotic maturation of fish oocytes. Taken together, these recent studies indicate that mPRs mediate neuroprotective effects of progesterone and allopregnanolone and are also the likely intermediaries in progesterone-induced inhibition of pulsatile GnRH secretion in GT1-7 cells. Copyright © 2012 S. Karger AG, Basel.

  19. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  20. Androgen receptors and estrogen receptors are colocalized in male rat hypothalamic and limbic neurons that express Fos immunoreactivity induced by mating.

    Science.gov (United States)

    Gréco, B; Edwards, D A; Michael, R P; Clancy, A N

    1998-01-01

    Conversion of testosterone into estradiol is important for male rat sexual behavior, and both steroids probably contribute to mating. The distributions of neurons containing androgen receptors (AR) and estrogen receptors (ER) overlap, and many AR-immunoreactive (AR-ir) neurons express Fos immunoreactivity (Fos-ir) induced by mating. Because mating-induced Fos-ir in the male rat occurs mainly in AR-ir neurons, and because both steroids are important for mating, we hypothesized that (i) AR-ir and ER-ir are colocalized and that (ii) some of these neurons are activated during mating. We examined, in adjacent sections from the medial preoptic area (MPN) through the central tegmental field (CTF), the expression of ER-ir in: (i) AR-ir-containing neurons, and (ii) Fos-ir-expressive neurons. PG21 anti-AR, OA-11-824 anti-c-fos, H222 or 1D5 anti-ER primary antibodies were visualized, respectively, with cyanine-conjugated, fluorescein- or cyanine-conjugated, and fluorescein-conjugated secondary antibodies in male rats which were killed 1 h after ejaculating with a receptive female. In MPN, bed nucleus of the stria terminalis (BNST), and medial amygdala (MEA), 80-90% of ER-ir labeling occurred in AR-ir-positive neurons but only about 30% of AR-ir neurons were ER-ir-positive. No ER-ir was found in the CTF. This suggests the presence of three types of brain neurons sensitive to gonadal steroid hormones: neurons sensitive to androgens only, neurons sensitive to both androgens and estrogens, and neurons sensitive to estrogens only. About 50% of ER-ir labeling occurred in cells expressing mating-induced Fos-ir but only about 30% of Fos-ir neurons were ER-ir-positive. These findings suggest that, in the MPN, at least two different neuronal populations are activated during mating: the first contains AR-ir only and the second contains AR-ir and ER-ir. In the BNST and MEA, at least three hormonally sensitive populations are activated during mating: the two described above plus a third

  1. Medial parabrachial nucleus neurons modulate d-fenfluramine-induced anorexia through 5HT2C receptors.

    Science.gov (United States)

    Trifunovic, Radmila; Reilly, Steve

    2006-01-05

    We previously reported that lesions of the medial parabrachial nucleus (PBN) enhanced d-fenfluramine (DFEN)-induced anorexia; a finding that suggests these lesions may potentiate the release of serotonin (5HT) or increase the postsynaptic action of 5HT. In the present study, we used SB 206553 (a 5HT2B/2C receptor antagonist) or m-CPP (a 5HT2C/1B receptor agonist) in a standard behavioral procedure (deprivation-induced feeding) to further explore the role of the medial PBN in drug-induced anorexia. In Experiment 1, DFEN (0 or 1.0 mg/kg) was given alone or in combination with SB 206553 (2.0 or 5.0 mg/kg). In Experiment 2, we investigated the food-suppressive effects of m-CPP (0.5, 1.0 or 2.0 mg/kg). The results of Experiment 1 show that SB 206553, while having no influence on the performance of control subjects, attenuated (2.0 mg/kg) or abolished (5 mg/kg) the potentiating effect of the lesions on DFEN-induced anorexia. In Experiment 2, m-CPP induced a suppression of food intake in nonlesioned animals that was significantly potentiated in rats with medial PBN lesions. These results are consistent with the hypothesis that medial PBN neurons mediate anorexia through 5HT2C receptors.

  2. PI3Kγ-Dependent Signaling in Mouse Olfactory Receptor Neurons

    Science.gov (United States)

    Klasen, Katharina; Corey, Elizabeth A.; Ache, Barry W.

    2010-01-01

    Phosphatidylinositol 3-kinase (PI3K)-dependent signaling couples to receptors for many different ligands in diverse cellular systems. Recent findings suggest that PI3K-dependent signaling also mediates inhibition of odorant responses in rat olfactory receptor neurons (ORNs). Here, we present evidence that murine ORNs show PI3K-dependent calcium responses to odorant stimulation, they express 2 G protein-coupled receptor (GPCR)-activated isoforms of PI3K, PI3Kβ and PI3Kγ, and they exhibit odorant-induced PI3K activity. These findings support our use of a transgenic mouse model to begin to investigate the mechanisms underlying PI3K-mediated inhibition of odorant responses in mammalian ORNs. Mice deficient in PI3Kγ, a class IB PI3K that is activated via GPCRs, lack detectable odorant-induced PI3K activity in their olfactory epithelium and their ORNs are less sensitive to PI3K inhibition. We conclude that odorant-dependent PI3K signaling generalizes to the murine olfactory system and that PI3Kγ plays a role in mediating inhibition of odorant responses in mammalian ORNs. PMID:20190008

  3. Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain.

    Science.gov (United States)

    Li, Chia; Sugam, Jonathan A; Lowery-Gionta, Emily G; McElligott, Zoe A; McCall, Nora M; Lopez, Alberto J; McKlveen, Jessica M; Pleil, Kristen E; Kash, Thomas L

    2016-07-01

    The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure-the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release.

  4. Orexin excites rat inferior vestibular nuclear neurons via co-activation of OX1 and OX 2 receptors.

    Science.gov (United States)

    Yu, Lei; Zhang, Xiao-Yang; Chen, Zhang-Peng; Zhuang, Qian-Xing; Zhu, Jing-Ning; Wang, Jian-Jun

    2015-06-01

    Orexin deficiency results in cataplexy, a motor deficit characterized by sudden loss of muscle tone, strongly indicating an active role of central orexinergic system in motor control. However, effects of orexin on neurons in central motor structures are still largely unknown. Our previous studies have revealed that orexin excites neurons in the cerebellar nuclei and lateral vestibular nucleus, two important subcortical motor centers for control of muscle tone. Here, we report that both orexin-A and orexin-B depolarizes and increases the firing rate of neurons in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex and holding an important position in integration of information signals in the control of body posture. TTX does not block orexin-induced excitation on IVN neurons, suggesting a direct postsynaptic action of the neuropeptide. Furthermore, bath application of orexin induces an inward current on IVN neurons in a concentration-dependent manner. SB334867 and TCS-OX2-29, specific OX1 and OX2 receptor antagonists, blocked the excitatory effect of orexin, and [Ala(11), D-Leu(15)]-orexin B, a selective OX2 receptor agonist, mimics the orexin-induced inward current on IVN neurons. qPCR and immunofluorescence results show that both OX1 and OX2 receptor mRNAs and proteins are expressed and localized in the rat IVN. These results demonstrate that orexin excites the IVN neurons by co-activation of both OX1 and OX2 receptors, suggesting that via the direct modulation on the IVN, the central orexinergic system may actively participate in the central vestibular-mediated postural and motor control.

  5. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  6. Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors.

    Science.gov (United States)

    Xia, Jingsheng; Lim, Jason C; Lu, Wennan; Beckel, Jonathan M; Macarak, Edward J; Laties, Alan M; Mitchell, Claire H

    2012-05-15

    Mechanical deformation produces complex effects on neuronal systems, some of which can lead to dysfunction and neuronal death. While astrocytes are known to respond to mechanical forces, it is not clear whether neurons can also respond directly. We examined mechanosensitive ATP release and the physiological response to this release in isolated retinal ganglion cells. Purified ganglion cells released ATP upon swelling. Release was blocked by carbenoxolone, probenecid or peptide (10)panx, implicating pannexin channels as conduits. Mechanical stretch of retinal ganglion cells also triggered a pannexin-dependent ATP release. Whole cell patch clamp recording demonstrated that mild swelling induced the activation of an Ohmic cation current with linear kinetics. The current was inhibited by removal of extracellular ATP with apyrase, by inhibition of the P2X(7) receptor with A438079, zinc, or AZ 10606120, and by pannexin blockers carbenoxolone and probenecid. Probenecid also inhibited the regulatory volume decrease observed after swelling isolated neurons. Together, these observations indicate mechanical strain triggers ATP release directly from retinal ganglion cells and that this released ATP autostimulates P2X(7) receptors. Since extracellular ATP levels in the retina increase with elevated intraocular pressure, and stimulation of P2X(7) receptors on retinal ganglion cells can be lethal, this autocrine response may impact ganglion cells in glaucoma. It remains to be determined whether the autocrine stimulation of purinergic receptors is a general response to a mechanical deformation in neurons, or whether preventing ATP release through pannexin channels and blocking activation of the P2X(7) receptor, is neuroprotective for stretched neurons.

  7. Functional expression of 5-HT7 receptor on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice.

    Science.gov (United States)

    Yang, Eun Ju; Han, Seong Kyu; Park, Soo Joung

    2013-10-25

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc; medullary dorsal horn) receives and processes orofacial nociceptive inputs, and serotonergic fibers involved in the descending modulation of nociception are more densely distributed in the superficial laminae of the Vc. This study investigated the direct effects of 5-HT1A/7 receptor agonist 8-OH-DPAT on SG neurons of the Vc to assess functional expression of the 5-HT7 receptor using gramicidin-perforated patch-clamp in postnatal day (PND) 5-84 male mice. Of the 70 SG neurons tested, bath application of 8-OH-DPAT (30μM) induced depolarization (n=33), hyperpolarization (n=16) or no response (n=21). In another 10 SG neurons, 8-OH-DPAT in the presence of 5-HT1A receptor antagonist WAY-100635 (1μM) elicited either depolarization (n=6) or no response (n=4); hyperpolarization was not observed. The 8-OH-DPAT-induced depolarization was significantly blocked by the selective 5-HT7 receptor antagonist SB-269970 (10μM; n=8), but not by WAY-100635 (1μM; n=5). The depolarizing effect of 8-OH-DPAT was maintained in the presence of TTX, CNQX, AP5, picrotoxin, and strychnine, indicating direct postsynaptic action of 8-OH-DPAT on SG neurons (n=6). 5-HT7 receptor mRNA was also detected in five of 21 SG neurons by single-cell RT-PCR. The mean amplitude of 8-OH-DPAT-induced depolarization in PND 5-21 mice (n=21) was significantly larger than that in PND 22-84 mice (n=12), although the proportion of SG neurons responding to 8-OH-DPAT by depolarization did not differ significantly between two age groups of mice. These results indicate that 5-HT7 receptors are functionally expressed in a subpopulation of SG neurons of the Vc and activation of 5-HT7 receptors plays an important role in modulating orofacial nociceptive processing in the SG neurons of the Vc.

  8. Antagonism of 5-HT1A receptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT7 receptors

    NARCIS (Netherlands)

    Bosker, Fokko J.; Folgering, Joost H. A.; Gladkevich, Anatoliy V.; Schmidt, Anne; van der Hart, Marieke C. G.; Sprouse, Jeffrey; den Boer, Johan A.; Westerink, Ben H. C.; Cremers, Thomas I. F. H.

    2009-01-01

    Both microdialysis and electrophysiology were used to investigate whether another serotonin (5-HT) receptor subtype next to the 5-HT1A autoreceptor is involved in the acute effects of a selective serotonin reuptake inhibitor on 5-HT neuronal activity. On the basis of a previous study, we decided to

  9. Endocytosis following dopamine D2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons.

    Science.gov (United States)

    Shioda, N; Yabuki, Y; Wang, Y; Uchigashima, M; Hikida, T; Sasaoka, T; Mori, H; Watanabe, M; Sasahara, M; Fukunaga, K

    2016-12-06

    Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.Molecular Psychiatry advance online publication, 6 December 2016; doi:10.1038/mp.2016.200.

  10. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear.

    Science.gov (United States)

    Aridon, Paolo; Marini, Carla; Di Resta, Chiara; Brilli, Elisa; De Fusco, Maurizio; Politi, Fausta; Parrini, Elena; Manfredi, Irene; Pisano, Tiziana; Pruna, Dario; Curia, Giulia; Cianchetti, Carlo; Pasqualetti, Massimo; Becchetti, Andrea; Guerrini, Renzo; Casari, Giorgio

    2006-08-01

    Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep walking. We identified a new genetic locus for familial sleep-related focal epilepsy on chromosome 8p12.3-8q12.3. By sequencing the positional candidate neuronal cholinergic receptor alpha 2 subunit gene (CHRNA2), we detected a heterozygous missense mutation, I279N, in the first transmembrane domain that is crucial for receptor function. Whole-cell recordings of transiently transfected HEK293 cells expressing either the mutant or the wild-type receptor showed that the new CHRNA2 mutation markedly increases the receptor sensitivity to acetylcholine, therefore indicating that the nicotinic alpha 2 subunit alteration is the underlying cause. CHRNA2 is the third neuronal cholinergic receptor gene to be associated with familial sleep-related epilepsies. Compared with the CHRNA4 and CHRNB2 mutations reported elsewhere, CHRNA2 mutations cause a more complex and finalized ictal behavior.

  11. Estrogen receptor immunoreactivity is present in the majority of central histaminergic neurons: evidence for a new neuroendocrine pathway associated with luteinizing hormone-releasing hormone-synthesizing neurons in rats and humans.

    Science.gov (United States)

    Fekete, C S; Strutton, P H; Cagampang, F R; Hrabovszky, E; Kalló, I; Shughrue, P J; Dobó, E; Mihály, E; Baranyi, L; Okada, H; Panula, P; Merchenthaler, I; Coen, C W; Liposits, Z S

    1999-09-01

    The central regulation of the preovulatory LH surge requires a complex sequence of interactions between neuronal systems that impinge on LH-releasing hormone (LHRH)-synthesizing neurons. The reported absence of estrogen receptors (ERs) in LHRH neurons indicates that estrogen-receptive neurons that are afferent to LHRH neurons are involved in mediating the effects of this steroid. We now present evidence indicating that central histaminergic neurons, exclusively located in the tuberomammillary complex of the caudal diencephalon, serve as an important relay in this system. Evaluation of this system revealed that 76% of histamine-synthesising neurons display ERalpha-immunoreactivity in their nucleus; furthermore histaminergic axons exhibit axo-dendritic and axo-somatic appositions onto LHRH neurons in both the rodent and the human brain. Our in vivo studies show that the intracerebroventricular administration of the histamine-1 (H1) receptor antagonist, mepyramine, but not the H2 receptor antagonist, ranitidine, can block the LH surge in ovariectomized estrogen-treated rats. These data are consistent with the hypothesis that the positive feedback effect of estrogen in the induction of the LH surge involves estrogen-receptive histamine-containing neurons in the tuberomammillary nucleus that relay the steroid signal to LHRH neurons via H1 receptors.

  12. Synaptic relationship between somatostatin- and neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats.

    Science.gov (United States)

    Wei, Xiao-Yan; Zhao, Yu; Wong-Riley, Margaret T T; Ju, Gong; Liu, Ying-Ying

    2012-09-01

    The pre-Bötzinger complex (pre-BötC) in the ventrolateral medulla oblongata is critical for the generation of respiratory rhythm in mammals. Somatostatin (SST) and neurokinin 1 receptor (NK1R) immunoreactivity have been used as markers of the pre-BötC. SST immunoreactivity almost completely overlaps with small fusiform NK1R-immunoreactive (ir) neurons, the presumed rhythmogenic neurons, but not with large multipolar NK1R-ir neurons. Understanding the neurochemical characteristics, especially the synaptic relationship of SST/NK1R-ir neurons within the pre-BötC network is essential in providing cellular and structural bases for understanding their physiological significance. This work has not been documented so far. We found that SST immunoreactivity was highly expressed in terminals, somas, and primary dendrites in the pre-BötC. Besides the small fusiform neurons, a small population of medium-sized NK1R-ir neurons also colocalized with SST. Large NK1R-ir neurons were not SST-ir, but received somatostatinergic inputs. SST-ir terminals were glutamatergic or GABAergic, and synapsed with NK1R-ir neurons. Most of synapses between them were of the symmetric type, indicating their inhibitory nature. Asymmetric synapses were evident between SST-ir terminals and NK1R-ir dendrites, strongly suggesting an excitatory innervation from the presumed rhythmogenic neurons as these neurons are glutamatergic. We speculate that SST-mediated excitatory and inhibitory synaptic transmission onto NK1R-ir rhythmogenic and follower neurons synchronizes their activity to contribute to respiratory rhythmogenesis and control.

  13. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    Science.gov (United States)

    Dennis, Siobhan H; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G; Henley, Jeremy M; Mellor, Jack R

    2011-08-17

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.

  14. Both Estrogen and Androgen Modify the Response to Activation of Neurokinin-3 and κ-Opioid Receptors in Arcuate Kisspeptin Neurons From Male Mice.

    Science.gov (United States)

    Ruka, Kristen A; Burger, Laura L; Moenter, Suzanne M

    2016-02-01

    Gonadal steroids regulate the pattern of GnRH secretion. Arcuate kisspeptin (kisspeptin, neurokinin B, and dynorphin [KNDy]) neurons may convey steroid feedback to GnRH neurons. KNDy neurons increase action potential firing upon the activation of neurokinin B receptors (neurokinin-3 receptor [NK3R]) and decrease firing upon the activation of dynorphin receptors (κ-opioid receptor [KOR]). In KNDy neurons from intact vs castrated male mice, NK3R-mediated stimulation is attenuated and KOR-mediated inhibition enhanced, suggesting gonadal secretions are involved. Estradiol suppresses spontaneous GnRH neuron firing in male mice, but the mediators of the effects on firing in KNDy neurons are unknown. We hypothesized the same gonadal steroids affecting GnRH firing pattern would regulate KNDy neuron response to NK3R and KOR agonists. To test this possibility, extracellular recordings were made from KNDy neurons in brain slices from intact, untreated castrated or castrated adult male mice treated in vivo with steroid receptor agonists. As observed previously, the stimulation of KNDy neurons by the NK3R agonist senktide was attenuated in intact vs castrated mice and suppression by dynorphin was enhanced. In contrast to observations of steroid effects on the GnRH neuron firing pattern, both estradiol and DHT suppressed senktide-induced KNDy neuron firing and enhanced the inhibition caused by dynorphin. An estrogen receptor-α agonist but not an estrogen receptor-β agonist mimicked the effects of estradiol on NK3R activation. These observations suggest the steroid modulation of responses to activation of NK3R and KOR as mechanisms for negative feedback in KNDy neurons and support the contribution of these neurons to steroid-sensitive elements of a GnRH pulse generator.

  15. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish.

    Science.gov (United States)

    Sundvik, Maria; Kudo, Hisaaki; Toivonen, Pauliina; Rozov, Stanislav; Chen, Yu-Chia; Panula, Pertti

    2011-12-01

    The histaminergic and hypocretin/orexin (hcrt) neurotransmitter systems play crucial roles in alertness/wakefulness in rodents. We elucidated the role of histamine in wakefulness and the interaction of the histamine and hcrt systems in larval zebrafish. Translation inhibition of histidine decarboxylase (hdc) with morpholino oligonucleotides (MOs) led to a behaviorally measurable decline in light-associated activity, which was partially rescued by hdc mRNA injections and mimicked by histamine receptor H1 (Hrh1) antagonist pyrilamine treatment. Histamine-immunoreactive fibers targeted the dorsal telencephalon, an area that expresses histamine receptors hrh1 and hrh3 and contains predominantly glutamatergic neurons. Tract tracing with DiI revealed that projections from dorsal telencephalon innervate the hcrt and histaminergic neurons. Translation inhibition of hdc decreased the number of hcrt neurons in a Hrh1-dependent manner. The reduction was rescued by overexpression of hdc mRNA. hdc mRNA injection alone led to an up-regulation of hcrt neuron numbers. These results suggest that histamine is essential for the development of a functional and intact hcrt system and that histamine has a bidirectional effect on the development of the hcrt neurons. In summary, our findings provide evidence that these two systems are linked both functionally and developmentally, which may have important implications in sleep disorders and narcolepsy. development via histamine receptor H1 in zebrafish.

  16. Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice.

    Science.gov (United States)

    Oishi, Yo; Suzuki, Yoshiaki; Takahashi, Koji; Yonezawa, Toshiya; Kanda, Takeshi; Takata, Yohko; Cherasse, Yoan; Lazarus, Michael

    2017-01-25

    A growing body of evidence suggests that dopamine plays a role in sleep-wake regulation, but the dopamine-producing brain areas that control sleep-wake states are unclear. In this study, we chemogenetically activated dopamine neurons in the ventral midbrain of mice to examine the role of these neurons in sleep-wake regulation. We found that activation of dopamine neurons in the ventral tegmental area (VTA), but not in the substantia nigra, strongly induced wakefulness, although both cell populations expressed the neuronal activity marker c-Fos after chemogenetic stimulation. Analysis of the pattern of behavioral states revealed that VTA activation increased the duration of wakefulness and decreased the number of wakefulness episodes, indicating that wakefulness was consolidated by VTA activation. The increased wakefulness evoked by VTA activation was completely abolished by pretreatment with the dopamine D2/D3 receptor antagonist raclopride, but not by the D1 receptor antagonist SCH23390. These findings indicate that the activation of VTA dopamine neurons promotes wakefulness via D2/D3 receptors.

  17. The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus

    Science.gov (United States)

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-07-01

    We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.

  18. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension.

    Science.gov (United States)

    Li, Wencheng; Peng, Hua; Mehaffey, Eamonn P; Kimball, Christie D; Grobe, Justin L; van Gool, Jeanette M G; Sullivan, Michelle N; Earley, Scott; Danser, A H Jan; Ichihara, Atsuhiro; Feng, Yumei

    2014-02-01

    The (pro)renin receptor (PRR), which binds both renin and prorenin, is a newly discovered component of the renin-angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, nonproteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate-salt-induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. PRR expression, detected by immunostaining and reverse transcription-polymerase chain reaction, was significantly decreased in the brains of knockout mice compared with wild-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild-type mice. This hypertensive response was abolished in PRR-knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate-salt increased PRR expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in PRR-knockout mice. PRR knockout in neurons prevented the development of deoxycorticosterone acetate-salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, nonproteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate-salt-induced hypertension, possibly through diminished angiotensin II formation.

  19. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  20. Functional Selectivity of Kappa Opioid Receptor Agonists in Peripheral Sensory Neurons

    Science.gov (United States)

    Jamshidi, Raehannah J.; Jacobs, Blaine A.; Sullivan, Laura C.; Chavera, Teresa A.; Saylor, Rachel M.; Prisinzano, Thomas E.; Clarke, William P.

    2015-01-01

    Activation of kappa opioid receptors (KORs) expressed by peripheral sensory neurons that respond to noxious stimuli (nociceptors) can reduce neurotransmission of pain stimuli from the periphery to the central nervous system. We have previously shown that the antinociception dose-response curve for peripherally restricted doses of the KOR agonist (–)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50488) has an inverted U shape. Here, we found that the downward phase of the U50488 dose-response curve was blocked by an inhibitor of extracellular signal-regulated kinase (ERK) activation U0126. Local administration of the selective KOR agonist salvinorin A (Sal-A), also resulted in an inverted U-shaped curve; however, the downward phase was insensitive to U0126. By contrast, inhibition of c-Jun N-terminal kinase (JNK) partially blocked the downward phase of the dose-response curve to Sal-A, suggesting a role for JNK. In cultures of peripheral sensory neurons, U50488 and Sal-A inhibited adenylyl cyclase activity with similar efficacies; however, their ability to activate ERK and JNK differed. Whereas U50488 activated ERK but not JNK, Sal-A activated JNK but not ERK. Moreover, although both U50488 and Sal-A produced homologous desensitization, desensitization to U50488 was blocked by inhibition of ERK activation, whereas desensitization to Sal-A was blocked by inhibition of JNK. Substitution of an ethoxymethyl ether for the C2 position acetyl group of Sal-A reduced stimulation of JNK, prevented desensitization by ethoxymethyl ether for the C2 position acetyl group of Sal-A, and resulted in a monotonic antinociception dose-response curve. Collectively, these data demonstrate the functional selectivity of KOR ligands for signaling in peripheral sensory neurons, which results in differential effects on behavioral responses in vivo. PMID:26297384

  1. Membrane voltage modulates the GABA(A) receptor gating in cultured rat hippocampal neurons.

    Science.gov (United States)

    Pytel, Maria; Mercik, Katarzyna; Mozrzymas, Jerzy W

    2006-02-01

    The kinetics of GABAergic currents in neurons is known to be modulated by the membrane voltage but the underlying mechanisms have not been fully explored. In particular, the impact of membrane potential on the GABA(A) receptor gating has not been elucidated. In the present study, the effect of membrane voltage on current responses elicited by ultrafast GABA applications was studied in cultured hippocampal neurons. The current to voltage relationship (I-V) for responses to saturating [GABA] (10 mM) showed an inward rectification (slope conductance at positive voltages was 0.62 +/- 0.05 of that at negative potentials). On the contrary, I-V for currents evoked by low [GABA] (1 microM) showed an outward rectification. The onset of currents elicited by saturating [GABA] was significantly accelerated at positive potentials. Analysis of currents evoked by prolonged applications of saturating [GABA] revealed that positive voltages significantly increased the rate and extent of desensitization. The onsets of current responses to non-saturating [GABA] were significantly accelerated at positive voltages indicating an enhancement of the binding rate. However, at low [GABA] at which the onset rate is expected to approach an asymptote set by opening/closing and unbinding rates, no significant modification of current onset by voltage was observed. Quantitative analysis based on model simulations indicated that the major effect of membrane depolarization was to increase the rates of binding, desensitization and of opening as well as to slightly reduce the rate of exit from desensitization. In conclusion, we provide evidence that membrane voltage affects the GABA(A) receptor microscopic gating.

  2. Dysfunction of ventrolateral striatal dopamine receptor type 2-expressing medium spiny neurons impairs instrumental motivation

    Science.gov (United States)

    Tsutsui-Kimura, Iku; Takiue, Hiroyuki; Yoshida, Keitaro; Xu, Ming; Yano, Ryutaro; Ohta, Hiroyuki; Nishida, Hiroshi; Bouchekioua, Youcef; Okano, Hideyuki; Uchigashima, Motokazu; Watanabe, Masahiko; Takata, Norio; Drew, Michael R.; Sano, Hiromi; Mimura, Masaru; Tanaka, Kenji F.

    2017-01-01

    Impaired motivation is present in a variety of neurological disorders, suggesting that decreased motivation is caused by broad dysfunction of the nervous system across a variety of circuits. Based on evidence that impaired motivation is a major symptom in the early stages of Huntington's disease, when dopamine receptor type 2-expressing striatal medium spiny neurons (D2-MSNs) are particularly affected, we hypothesize that degeneration of these neurons would be a key node regulating motivational status. Using a progressive, time-controllable, diphtheria toxin-mediated cell ablation/dysfunction technique, we find that loss-of-function of D2-MSNs within ventrolateral striatum (VLS) is sufficient to reduce goal-directed behaviours without impairing reward preference or spontaneous behaviour. Moreover, optogenetic inhibition and ablation of VLS D2-MSNs causes, respectively, transient and chronic reductions of goal-directed behaviours. Our data demonstrate that the circuitry containing VLS D2-MSNs control motivated behaviours and that VLS D2-MSN loss-of-function is a possible cause of motivation deficits in neurodegenerative diseases. PMID:28145402

  3. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    Science.gov (United States)

    Melone, Mariarosa A B; Calarco, Anna; Petillo, Orsolina; Margarucci, Sabrina; Colucci-D'Amato, Luca; Galderisi, Umberto; Koverech, Guido; Peluso, Gianfranco

    2013-01-01

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  4. Neuronal nitric oxide synthase is an endogenous negative regulator of glucocorticoid receptor in the hippocampus.

    Science.gov (United States)

    Liu, Meng-ying; Zhu, Li-Juan; Zhou, Qi-Gang

    2013-07-01

    The hippocampus is rich in both glucocorticoid receptor (GR) and neuronal nitric oxide synthase (nNOS). But the relationship between the two molecules under physiological states remains unrevealed. Here, we report that nNOS knockout mice display increased GR expression in the hippocampus. Both systemic administration of 7-Nitroindazole (7-NI), a selective nNOS activity inhibitor, and selective infusion of 7-NI into the hippocampus resulted in an increase in GR expression in the hippocampus. Moreover, KCl exposure, which can induce overexpression of nNOS, resulted in a decrease in GR protein level in cultured hippocampal neurons. Moreover, blockade of nNOS activity in the hippocampus leads to decreased corticosterone (CORT, glucocorticoids in rodents) concentration in the plasma and reduced corticotrophin-releasing factor expression in the hypothalamus. The results indicate that nNOS is an endogenous inhibitor of GR in the hippocampus and that nNOS in the hippocampus may participate in the modulation of Hypothalamic-Pituitary-Adrenal axis activity via GR.

  5. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury.

    Directory of Open Access Journals (Sweden)

    Kai Kysenius

    Full Text Available The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine.

  6. Low-affinity neurotrophin receptor with targeted mutation of exon 3 is capable of mediating the death of axotomized neurons.

    Science.gov (United States)

    Murray, Simon S; Bartlett, Perry F; Lopes, Elizabeth C; Coulson, Elizabeth J; Greferath, Una; Cheema, Surindar S

    2003-04-01

    1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo, we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.

  7. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    Science.gov (United States)

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  8. Neuronal Fc gamma receptor I as a novel mediator for IgG immune complex-induced peripheral sensitization

    Institute of Scientific and Technical Information of China (English)

    Lintao Qu

    2012-01-01

    Chronic pain often accompanies immune-related diseases with an elevated level of IgG immune complex (IgG-IC) in the serum and/or the affected tissues though the underlying mechanisms are largely unknown. Fc gamma receptors (FcγRs), known as the receptors for the Fc domain of immunoglobulin G (IgG), are typically expressed on immune cells. A general consensus is that the activation of FcγRs by IgG-IC in such immune cells induces the release of proinflammatory cytokines from the immune cells, which may contribute to the IgG-IC-mediated peripheral sensitization. In addition to the immune cells, recent studies have revealed that FcγRI, but not FcγRII and FcγRIII, is also expressed in a subpopulation of primary sensory neurons. Moreover, IgG-IC directly excites the primary sensory neurons through neuronal FcγRI. These findings indicate that neuronal FcγRI provides a novel direct linkage between immunoglobulin and primary sensory neurons, which may be a novel target for the treatment of pain in the immune-related disorders. In this review, we summarize the expression pattern, functions, and the associated cellular signaling of FcγRs in the primary sensory neurons.

  9. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Steinberg

    Full Text Available The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS, a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc, a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  10. Molecular mechanism for opioid dichotomy: bidirectional effect of μ-opioid receptors on P2X₃ receptor currents in rat sensory neurones.

    Science.gov (United States)

    Chizhmakov, Igor; Kulyk, Vyacheslav; Khasabova, Iryna; Khasabov, Sergey; Simone, Donald; Bakalkin, Georgy; Gordienko, Dmitri; Verkhratsky, Alexei; Krishtal, Oleg

    2015-06-01

    Here, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X3 purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X3-mediated currents with IC50 ~10 nM in ~25% of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X3 currents. All effects of opioid were abolished by selective μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nonselective inhibitor naloxone, and by PLC inhibitor U73122. Thus, we discovered a dual link between purinoceptors and μ-opioid receptors: the latter exert both inhibitory (pertussis toxin-sensitive) and stimulatory (pertussis toxin-insensitive) actions on P2X3 receptors through phospholipase C (PLC)-dependent pathways. This dual opioid control of P2X3 receptors may provide a molecular explanation for dichotomy of opioid therapy. Pharmacological control of this newly identified facilitation/inhibition switch may open new perspectives for the adequate medical use of opioids, the most powerful pain-killing agents known today.

  11. Functional characterization of the octenol receptor neuron on the maxillary palps of the yellow fever mosquito, Aedes aegypti

    Science.gov (United States)

    1-Octen-3-ol (octenol) is a common attractant released by vertebrates which in combination with carbon dioxide attracts haematophagous arthropods including mosquitoes. A receptor neuron contained within basiconic sensilla on the maxillary palps of adult mosquitoes responds selectively to 1-octen-3-o...

  12. Estrogen receptor-alpha-immunoreactive neurons in the mesencephalon, pons and medulla oblongata of the female golden hamster

    NARCIS (Netherlands)

    Boers, J; Gerrits, PO; Holstege, G

    1999-01-01

    Recent studies have revealed brainstem-spinal pathways involved in the generation of receptive behavior in hamster and cat, and the enormous influence of estrogen on these pathways. The present study gives an overview of the location of estrogen receptor-alpha-immunoreactive neurons (ER-alpha-IR) in

  13. Estrogen receptor-alpha immunoreactivity in parasympathetic preganglionic neurons innervating the bladder in the adult ovariectomized cat

    NARCIS (Netherlands)

    VanderHorst, VGJM; Meijer, E; Holstege, G

    2001-01-01

    Estrogen affects autonomic functions such as micturition. The sacral cord is important in the control of micturition and contains numerous estrogen receptor-alpha immnoreactive (ER-alpha IR) neurons. Therefore, the present double labeling study examines whether sacral parasympathetic preganglionic

  14. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  15. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons

    DEFF Research Database (Denmark)

    Jørgensen, Christinna V; Klein, Anders B; El-Sayed, Mona;

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We...... are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT2A R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene...... expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT2A R mRNA was seen...

  16. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

    Directory of Open Access Journals (Sweden)

    Sangdeuk Ha

    Full Text Available Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC and agouti-related peptide (AgRP/Neuropeptide Y (NPY/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb. Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM, confocal-laser scanning microscopy (CLSM, and electron microscopy (EM to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+ mice and in Leprb (db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.

  17. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Huang Li-Yen

    2007-08-01

    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  18. NK-3 receptor activation depolarizes and induces an after-depolarization in pyramidal neurons in gerbil cingulate cortex

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2004-01-01

    The involvement of tachykinins in cortical function is poorly understood. To study the actions of neurokinin-3 (NK3) receptor activation in frontal cortex, whole cell patch clamp recordings were performed from pyramidal neurons in slices of cingulate cortex from juvenile gerbils. Senktide (500n......M), a selective NK3 receptor agonist, induced a transient increase in spontaneous EPSPs in layer V pyramidal neurons, accompanied by a small depolarization ( approximately 4 mV). EPSPs during senktide had a larger amplitude and faster 10-90% rise time than during control. Senktide induced a transient...... depolarization in layer II/III pyramidal neurons, which often reached threshold for spikes. The depolarization ( approximately 6 mV) persisted in TTX, and was accompanied by an increase in input resistance. Senktide also transiently induced a slow after-depolarization, which appeared following a depolarizing...

  19. Propofol Modulates Agonist-induced Transient Receptor Potential Vanilloid Subtype-1 Receptor Desensitization via a Protein Kinase Cε-dependent Pathway in Mouse Dorsal Root Ganglion Sensory Neurons

    Science.gov (United States)

    Wickley, Peter J.; Yuge, Ryo; Russell, Mary S.; Zhang, Hongyu; Sulak, Michael A.; Damron, Derek S.

    2011-01-01

    Background The activity of transient receptor potential vanilloid subtype-1 (TRPV1) receptors, key nociceptive transducers in dorsal root ganglion sensory neurons, is enhanced by protein kinase C ε (PKCε) activation. The intravenous anesthetic propofol has been shown to activate PKCε. Our objectives were to examine whether propofol modulates TRPV1 function in dorsal root ganglion neurons via activation of PKCε. Methods Lumbar dorsal root ganglion neurons from wild-type and PKCε-null mice were isolated and cultured for 24 h. Intracellular free Ca2+ concentration was measured in neurons by using fura-2 acetoxymethyl ester. The duration of pain-associated behaviors was also assessed. Phosphorylation of PKCε and TRPV1 and the cellular translocation of PKCε from cytosol to membrane compartments were assessed by immunoblot analysis. Results In wild-type neurons, repeated stimulation with capsaicin (100 nM) progressively decreased the transient rise in intracellular free Ca2+ concentration. After desensitization, exposure to propofol rescued the Ca2+ response. The resensitizing effect of propofol was absent in neurons obtained from PKCε-null mice. Moreover, the capsaicin-induced desensitization of TRPV1 was markedly attenuated in the presence of propofol in neurons from wild-type mice but not in neurons from PKCε-null mice. Propofol also prolonged the duration of agonist-induced pain associated behaviors in wild-type mice. In addition, propofol increased phosphorylation of PKCε as well as TRPV1 and stimulated translocation of PKCε from cytosolic to membrane fraction. Discussion Our results indicate that propofol modulates TRPV1 sensitivity to capsaicin and that this most likely occurs through a PKCε-mediated phosphorylation of TRPV1. PMID:20808213

  20. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  1. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels

    Directory of Open Access Journals (Sweden)

    Goldstein Peter A

    2005-01-01

    Full Text Available Abstract Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.

  2. Cannabinoid type 1 (CB1) receptors on Sim1-expressing neurons regulate energy expenditure in male mice.

    Science.gov (United States)

    Cardinal, Pierre; Bellocchio, Luigi; Guzmán-Quevedo, Omar; André, Caroline; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Gonzales, Delphine; Cannich, Astrid; Marsicano, Giovanni; Cota, Daniela

    2015-02-01

    The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure (EE) and brown adipose tissue thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from single-minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-knockout [KO]) had food intake, body weight, adiposity, glucose metabolism, and EE comparable with wild-type (WT) (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity, and increased EE, whereas feeding behavior was similar to Sim1-CB1-WT mice. Additionally, high-fat diet-fed Sim1-CB1-KO mice had increased mRNA expression of the β3-adrenergic receptor, as well as of uncoupling protein-1, cytochrome-c oxidase subunit IV and mitochondrial transcription factor A in the brown adipose tissue, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using β-blockers suggested that modulation of β-adrenergic transmission play an important role in determining EE changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and EE, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake but hinder EE during dietary environmental challenges that promote body weight gain.

  3. Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERalpha and ERbeta on calcium oscillations in neurons derived from human (hES and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERbeta, but not ERalpha. The non-selective ER agonist 17beta-estradiol (E(2 rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERalpha agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyltrisphenol (PPT. In contrast, the selective ERbeta agonists, 2,3-bis(4-Hydroxyphenyl-propionitrile (DPN, MF101, and 2-(3-fluoro-4-hydroxyphenyl-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041 stimulated calcium oscillations similar to E(2. The ERbeta agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERbeta activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERbeta signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.

  4. P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons.

    Science.gov (United States)

    Valdez-Morales, Eduardo; Guerrero-Alba, Raquel; Liñán-Rico, Andrómeda; Espinosa-Luna, Rosa; Zarazua-Guzman, Sergio; Miranda-Morales, Marcela; Montaño, Luis M; Barajas-López, Carlos

    2011-10-15

    The whole-cell configuration, several pharmacological tools, and single-cell RT-PCR were used to investigate the contribution of P2X7 subunits to the ATP-induced currents (I(ATP)) in guinea pig myenteric neurons. I(ATP) was recorded in the great majority of tested neurons. ATP concentration-response curve (0.01-10mM) showed two phases, the first mediated by high-sensitive P2X receptors (hsP2X receptors), observed between 0.01-0.3mM and the second mediated by low-sensitive P2X receptors (lsP2X receptors). The calculated EC(50) values of these phases were 38 and 1759 μM, respectively. 2'-3'-O-(4-benzoylbenzoyl)-ATP (BzATP) concentration-response curve was monophasic (0.01-1mM), and less potent (EC(50) 142 μM) than ATP to activate hsP2X receptors. A strong inward rectification was noticed when hsP2X receptors were activated with ATP (0.1mM) and for BzATP-induced currents (0.1mM; I(BzATP)) but a significant lower rectification was noticed when lsP2X receptors were activated (5mM). Brilliant blue G (BBG) at a concentration of 0.3 μM (known to inhibit only P2X7 receptors) reduced I(ATP) when lsP2X receptors contributed to it but neither affect hsP2X receptors nor I(BzATP). However, hsP2X receptors and I(BzATP) were both inhibited by concentrations ≥ 1 μM of this antagonist. BzATP inhibited hsP2X receptors and therefore, it behaves as partial agonist on these receptors. Using the single-cell RT-PCR technique P2X7 mRNA was detectable in 7 out of 13 myenteric neurons exhibiting P2X2 mRNA. Altogether, our results show that low-sensitive P2X receptors are likely P2X7, whereas, the high-sensitive P2X channels are probably constituted, at least in part, by P2X2 subunits.

  5. Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment.

    Science.gov (United States)

    Kang, J; Richards, E M; Posner, P; Sumners, C

    1995-01-01

    Angiotensin II (ANG II) stimulates the delayed rectifier K+ current (IK) in neurons cultured from rat hypothalamus and brain stem via AT2 receptors, and this effect involves activation of a Gi protein and protein phosphatase 2A (PP2A). However, there was no evidence that the AT2 receptor involved in this response was the same as the recently cloned AT2 receptor. In the present study, intracellular injection of a 22-amino acid peptide (PEP-22) corresponding to the putative third intracellular loop of the cloned AT2 receptor elicited an increase in IK in cultured neurons that was similar to the effect produced by ANG II. Furthermore, this effect of PEP-22 was abolished by pertussis toxin (200 ng/ml, 24 h) pretreatment and also by superfusion of the PP2A inhibitor okadaic acid (10 nM), suggesting the involvement of Gi protein and PP2A, respectively. Intracellular injection of a random peptide or normal pipette solution did not affect neuronal IK. This is direct evidence to link the cloned AT2 receptor to a defined response elicited by ANG II.

  6. Trafficking of calcium-permeable and calcium-impermeable AMPA receptors in nucleus accumbens medium spiny neurons co-cultured with prefrontal cortex neurons.

    Science.gov (United States)

    Werner, Craig T; Murray, Conor H; Reimers, Jeremy M; Chauhan, Niravkumar M; Woo, Kenneth K Y; Molla, Hanna M; Loweth, Jessica A; Wolf, Marina E

    2017-04-01

    AMPA receptor (AMPAR) transmission onto medium spiny neurons (MSNs) of the adult rat nucleus accumbens (NAc) is normally dominated by GluA2-containing, Ca(2+)-impermeable AMPAR (CI-AMPARs). However, GluA2-lacking, Ca(2+)-permeable AMPA receptors (CP-AMPARs) accumulate after prolonged withdrawal from extended-access cocaine self-administration and thereafter their activation is required for the intensified (incubated) cue-induced cocaine craving that characterizes prolonged withdrawal from such regimens. These findings suggest the existence of mechanisms in NAc MSNs that differentially regulate CI-AMPARs and CP-AMPARs. Here, we compared trafficking of GluA1A2 CI-AMPARs and homomeric GluA1 CP-AMPARs using immunocytochemical assays in cultured NAc MSNs plated with prefrontal cortical neurons to restore excitatory inputs. We began by evaluating constitutive internalization of surface receptors and found that this occurs more rapidly for CP-AMPARs. Next, we studied receptor insertion into the membrane; combined with past results, the present findings suggest that activation of protein kinase A accelerates insertion of both CP-AMPARs and CI-AMPARs. We also studied constitutive cycling (net loss of receptors from the membrane under conditions where internalization and recycling are both occurring). Interestingly, although CP-AMPARs exhibit faster constitutive internalization, they cycle at similar rates as CI-AMPARs, suggesting faster reinsertion of CP-AMPARs. In studies of synaptic scaling, long-term (24 h) activity blockade increased surface expression and cycling rates of CI-AMPARs but not CP-AMPARs, whereas long-term increases in activity produced more pronounced scaling down of CI-AMPARs than CP-AMPARs but did not alter receptor cycling. These findings can be used to evaluate and generate hypotheses regarding AMPAR plasticity in the rat NAc following cocaine exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Distinct Physiological Effects of Dopamine D4 Receptors on Prefrontal Cortical Pyramidal Neurons and Fast-Spiking Interneurons.

    Science.gov (United States)

    Zhong, Ping; Yan, Zhen

    2016-01-01

    Dopamine D4 receptor (D4R), which is strongly linked to neuropsychiatric disorders, such as attention-deficit hyperactivity disorder and schizophrenia, is highly expressed in pyramidal neurons and GABAergic interneurons in prefrontal cortex (PFC). In this study, we examined the impact of D4R on the excitability of these 2 neuronal populations. We found that D4R activation decreased the frequency of spontaneous action potentials (sAPs) in PFC pyramidal neurons, whereas it induced a transient increase followed by a decrease of sAP frequency in PFC parvalbumin-positive (PV+) interneurons. D4R activation also induced distinct effects in both types of PFC neurons on spontaneous excitatory and inhibitory postsynaptic currents, which drive the generation of sAP. Moreover, dopamine substantially decreased sAP frequency in PFC pyramidal neurons, but markedly increased sAP frequency in PV+ interneurons, and both effects were partially mediated by D4R activation. In the phencyclidine model of schizophrenia, the decreasing effect of D4R on sAP frequency in both types of PFC neurons was attenuated, whereas the increasing effect of D4R on sAP in PV+ interneurons was intact. These results suggest that D4R activation elicits distinct effects on synaptically driven excitability in PFC projection neurons versus fast-spiking interneurons, which are differentially altered in neuropsychiatric disorder-related conditions.

  8. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors.

    Science.gov (United States)

    Huang, Shang-Cheng; Dai, Yu-Wen E; Lee, Yen-Hsien; Chiou, Lih-Chu; Hwang, Ling-Ling

    2010-08-01

    An injection of orexin A or B into the cisterna magna or the rostral ventrolateral medulla (RVLM), where bulbospinal vasomotor neurons are located, elevated arterial pressure (AP) and heart rate (HR). We examined how orexins affected RVLM neurons to regulate cardiovascular functions by using in vitro recordings of neuronal activity of the RVLM and in vivo measurement of cardiovascular functions in rats. Orexin A and B concentration-dependently depolarized RVLM neurons. At 100 nM, both peptides excited 42% of RVLM neurons. Tetrodotoxin failed to block orexin-induced depolarization. In the presence of N-(2-methyl-6-benzoxazolyl)-N'-1, 5-naphthyridin-4-yl urea (SB-334867), an orexin 1 receptor (OX(1)R) antagonist, orexin A depolarized 42% of RVLM neurons with a smaller, but not significantly different, amplitude (4.9 +/- 0.8 versus 7.2 +/- 1.1 mV). In the presence of (2S)-1- (3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride (TCS OX2 29), an orexin 2 receptor (OX(2)R) antagonist, orexin A depolarized 25% of RVLM neurons with a significantly smaller amplitude (1.7 +/- 0.5 mV). Coapplication of both antagonists completely eliminated orexin A-induced depolarization. An OX(2)R agonist, [Ala(11),D-Leu(15)]-orexin B, concentration-dependently depolarized RVLM neurons. Regarding neuronal phenotypes, orexins depolarized 88% of adrenergic, 43% of nonadrenergic, and 36 to 41% of rhythmically firing RVLM neurons. Intracisternal TCS OX2 29 (3 and 10 nmol) suppressed intracisternal orexin A-induced increases of AP and HR, whereas intracisternal SB-334867 (3 and 10 nmol) had no effect on the orexin A-induced increase of HR but suppressed the orexin A-induced pressor response at 10 nmol. We concluded that orexins directly excite RVLM neurons, which include bulbospinal vasomotor neurons, and regulate cardiovascular function mainly via the OX(2)R, with a smaller contribution from the OX(1)R.

  9. Acute neuregulin-1 signaling influences AMPA receptor mediated responses in cultured cerebellar granule neurons.

    Science.gov (United States)

    Fenster, Catherine; Vullhorst, Detlef; Buonanno, Andres

    2012-01-04

    Neuregulin-1 (NRG1) is a trophic and differentiation factor that signals through ErbB receptor tyrosine kinases to regulate nervous system development. Previous studies have demonstrated that NRG1 affects plasticity at glutamatergic synapses in principal glutamatergic neurons of the hippocampus and frontal cortex; however, immunohistochemical and genetic analyses strongly suggest these effects are indirect and mediated via ErbB4 receptors on GABAergic interneurons. Here, we used cultured cerebellar granule cells (CGCs) that express ErbB4 to analyze the cell-autonomous effects of NRG1 stimulation on glutamatergic function. These cultures have the advantage that they are relatively homogenous and consist primarily of granule neurons that express ErbB4. We show that acute NRG1 treatment does not affect whole-cell AMPA or NMDA receptor (NMDAR) mediated currents in CGCs at 10-12 days in vitro. NRG1 also does not affect the frequency or amplitude of spontaneous AMPAR or NMDAR mediated miniature excitatory post-synaptic currents (mEPSCs). To further investigate the effects of NRG1 on activity-dependent plasticity of glutamatergic synapses in CGCs, we characterized the effects of high-glyine/0 Mg(2+) (which activates synaptic NMDARs) on AMPAR-mEPSC frequency and amplitude. We show that high-glycine induces a form of chemical long-term potentiation (chemLTP) in CGCs characterized by an increase in AMPAR-mEPSC frequency but not amplitude. Moreover, NRG1 induces a decrease in AMPAR-mEPSC frequency following chemLTP, but does not affect AMPAR-mEPSC amplitude. CGCs in our cultures conditions express low levels of GluR1, in contrast to dissociated hippocampal cultures, but do express the long isoform of GluR4. This study provides first evidence that (1) high-glycine can induce plasticity at glutamatergic synapses in CGCs, and (2) that acute NRG1/ErbB-signaling can regulate glutamatergic plasticity in CGCs. Taken together with previous reports, our results suggest that, similar

  10. Effects of coriaria lactone-activated, astrocyte-conditioned medium on estrogen receptor and progesterone receptor expression in rat cortical and hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jie Rong; Shuhua Zhang

    2009-01-01

    BACKGROUND: Coriaria lactone-activated astrocytes released bioactive substances that eventually caused epilepsy.OBJECTIVE: It has been suggested that activated astrocytes alter the expression of the estrogen receptor and progesterone receptor by releasing bioactive substances during epilepsy, thereby affecting neuronal activity in the brain. This study was designed to observe the expression of the estrogen receptor and the progesterone receptor in rat brain following lateral ventricle injection of coriaria lactone-activated, astrocyte-conditioned medium.DESIGN AND SETTING: This immunohistochemical, randomized, controlled, animal study was conducted at the Department of Pathology, Hospital Affiliated to Binzhou Medical College, China.MATERIAL: Coriaria lactone was provided by Huaxi Pharmaceutical Factory, China.METHODS: Forty adult, healthy, male, Sprague Dawley rats were randomly assigned into two groups. Astrocyte-conditioned medium (10 μL) was injected into rat lateral ventricle in the control group (n = 8). Coriaria lactone-activated, astrocyte-conditioned medium (10 μL) was infused into the rat lateral ventricle in the coriaria lactone group (n = 32). At 2, 4, 8 and 12 hours following injection, rats were sacrificed and subjected to immunohistochemistry. Eight rats were studied at each time point.MAIN OUTCOME MEASURES: Behavioral changes were observed in rats of both groups. Expression of the estrogen receptor and the progesterone receptor in rat cortical and hippocampal neurons was measured using immunohistochemistry.RESULTS: Four hours after injection, estrogen receptor levels in rat cortical and hippocampal neurons were significantly higher in the coriaria lactone group than in the control group (P < 0.05). Progesterone receptor levels were significantly lower in the coriaria lactone group than in the control group (P < 0.05). Seizures were not observed in the control group. In the coriaria lactone group, convulsions appeared 30 minutes after injection

  11. Oxygen/glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and A3 Receptors

    Science.gov (United States)

    Dennis, Siobhan H.; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Summary Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighbouring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+ resulting in delayed cell death. However, it is unclear if the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 minute OGD protocol a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by mGluR1 or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalisation of AMPARs after OGD. We also show a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists indicating that AMPARs are degraded following internalisation. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection. PMID:21849555

  12. Spinal 5-HT3 receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade

    OpenAIRE

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-01-01

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT3 receptor by intrathecal injection of a selective...

  13. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  14. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  15. PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms.

    Science.gov (United States)

    Yang, Dongren; Kania-Korwel, Izabela; Ghogha, Atefeh; Chen, Hao; Stamou, Marianna; Bose, Diptiman D; Pessah, Isaac N; Lehmler, Hans-Joachim; Lein, Pamela J

    2014-04-01

    We recently demonstrated that polychlorinated biphenyl (PCB) congeners with multiple ortho chlorine substitutions sensitize ryanodine receptors (RyRs), and this activity promotes Ca²⁺-dependent dendritic growth in cultured neurons. Many ortho-substituted congeners display axial chirality, and we previously reported that the chiral congener PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) atropselectively sensitizes RyRs. Here, we test the hypothesis that PCB 136 atropisomers differentially alter dendritic growth and other parameters of neuronal connectivity influenced by RyR activity. (-)-PCB 136, which potently sensitizes RyRs, enhances dendritic growth in primary cultures of rat hippocampal neurons, whereas (+)-PCB 136, which lacks RyR activity, has no effect on dendritic growth. The dendrite-promoting activity of (-)-PCB 136 is observed at concentrations ranging from 0.1 to 100 nM and is blocked by pharmacologic RyR antagonism. Neither atropisomer alters axonal growth or cell viability. Quantification of PCB 136 atropisomers in hippocampal cultures indicates that atropselective effects on dendritic growth are not due to differential partitioning of atropisomers into cultured cells. Imaging of hippocampal neurons loaded with Ca²⁺-sensitive dye demonstrates that (-)-PCB 136 but not (+)-PCB 136 increases the frequency of spontaneous Ca²⁺ oscillations. Similarly, (-)-PCB 136 but not (+)-PCB 136 increases the activity of hippocampal neurons plated on microelectrode arrays. These data support the hypothesis that atropselective effects on RyR activity translate into atropselective effects of PCB 136 atropisomers on neuronal connectivity, and suggest that the variable atropisomeric enrichment of chiral PCBs observed in the human population may be a significant determinant of individual susceptibility for adverse neurodevelopmental outcomes following PCB exposure.

  16. Thrombospondin and VEGF-R: Is There a Correlation in Inflammatory Bowel Disease?

    Directory of Open Access Journals (Sweden)

    Jaroslaw Wejman

    2013-01-01

    Full Text Available Up to date several authors discussed interactions between cells forming inflammatory infiltrates in the course of inflammatory bowel disease (IBD, mainly dealing with endoscopic biopsy specimens. These usually contain only mucosa. We have evaluated full bowel wall sections, which seems to be especially important in patients with Crohn's disease (CD. The purpose of our study was to evaluate the relationship between vascular density and expression of thrombospondin-1 (TSP-1 and vascular endothelial growth factor receptor 1 (VEGFR-1 in full-thickness tissue fragments of intestinal wall taken from patients after colectomy, comparing those with IBD to non-IBD control group. Histological sections were immunostained with antibodies against CD-31, TSP-1, and VEGFR-1 and analyzed by pathologists with the use of computer-assisted morphometrics. Our research showed significantly higher vascular density and vascular area percentage in all layers of bowel wall in patients with CD when compared to control. We have also demonstrated differences in vascular density distribution between ulcerative colitis (CU and CD and between CU and control. However we have not found statistically significant correlation between those findings and VEGFR-1 or TSP-1 expression. Our results might suggest existence of different, TSP-1 independent pathways of antiangiogenesis in IBD.

  17. Thrombospondin-1 production is enhanced by Porphyromonas gingivalis lipopolysaccharide in THP-1 cells.

    Directory of Open Access Journals (Sweden)

    Misa Gokyu

    Full Text Available Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1 in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS. TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.

  18. Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle

    NARCIS (Netherlands)

    Haywood, S.A.; Simonian, S.X.; Beek, van der E.M.; Bicknell, R.J.; Herbison, A.E.

    1999-01-01

    Norepinephrine (NE) neurons within the nucleus tractus solitarii (NTS; A2 neurons) and ventrolateral medulla (A1 neurons) represent gonadal steroid-dependent components of several neural networks regulating reproduction. Previous studies have shown that both A1 and A2 neurons express estrogen recept

  19. Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle

    NARCIS (Netherlands)

    Haywood, S.A.; Simonian, S.X.; Beek, van der E.M.; Bicknell, R.J.; Herbison, A.E.

    1999-01-01

    Norepinephrine (NE) neurons within the nucleus tractus solitarii (NTS; A2 neurons) and ventrolateral medulla (A1 neurons) represent gonadal steroid-dependent components of several neural networks regulating reproduction. Previous studies have shown that both A1 and A2 neurons express estrogen

  20. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  1. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    Full Text Available The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+ signaling. To characterize Ca(2+ signaling in striatal cells, spontaneous cytoplasmic Ca(2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP in the astrocytes. In both the GFP-negative cells (putative-neurons and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+ transients (referred to as slow Ca(2+ oscillations, which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+ oscillation. Depletion of the intracellular Ca(2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+ oscillation in both putative-neurons and astrocytes. The slow Ca(2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+ oscillation may involve in the neuron-glia interaction in the striatum.

  2. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    Science.gov (United States)

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  3. Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling

    Directory of Open Access Journals (Sweden)

    Hurley Joyce H

    2008-04-01

    Full Text Available Abstract Background The aberrant release of the neurotransmitters, glutamate and calcitonin-gene related peptide (CGRP, from trigeminal neurons has been implicated in migraine. The voltage-gated P/Q-type calcium channel has a critical role in controlling neurotransmitter release and has been linked to Familial Hemiplegic Migraine. Therefore, we examined the importance of voltage-dependent calcium channels in controlling release of glutamate and CGRP from trigeminal ganglion neurons isolated from male and female rats and grown in culture. Serotonergic pathways are likely involved in migraine, as triptans, a class of 5-HT1 receptor agonists, are effective in the treatment of migraine and their effectiveness may be due to inhibiting neurotransmitter release from trigeminal neurons. We also studied the effect of serotonin receptor activation on release of glutamate and CGRP from trigeminal neurons grown in culture. Results P/Q-, N- and L-type channels each mediate a significant fraction of potassium-stimulated release of glutamate and CGRP. We determined that 5-HT significantly inhibits potassium-stimulated release of both glutamate and CGRP. Serotonergic inhibition of both CGRP and glutamate release can be blocked by pertussis toxin and NAS-181, a 5-HT1B/1D antagonist. Stimulated release of CGRP is unaffected by Y-25130, a 5-HT3 antagonist and SB 200646, a 5-HT2B/2C antagonist. Conclusion These data suggest that release of both glutamate and CGRP from trigeminal neurons is controlled by calcium channels and modulated by 5-HT signaling in a pertussis-toxin dependent manner and probably via 5-HT1 receptor signaling. This is the first characterization of glutamate release from trigeminal neurons grown in culture.

  4. Transgenic silencing of neurons in the mammalian brain by expression of the allatostatin receptor (AlstR).

    Science.gov (United States)

    Wehr, M; Hostick, U; Kyweriga, M; Tan, A; Weible, A P; Wu, H; Wu, W; Callaway, E M; Kentros, C

    2009-10-01

    The mammalian brain is an enormously complex set of circuits composed of interconnected neuronal cell types. The analysis of central neural circuits will be greatly served by the ability to turn off specific neuronal cell types while recording from others in intact brains. Because drug delivery cannot be restricted to specific cell types, this can only be achieved by putting "silencer" transgenes under the control of neuron-specific promoters. Towards this end we have created a line of transgenic mice putting the Drosophila allatostatin (AL) neuropeptide receptor (AlstR) under the control of the tetO element, thus enabling its inducible expression when crossed to tet-transactivator lines. Mammals have no endogenous AL or AlstR, but activation of exogenously expressed AlstR in mammalian neurons leads to membrane hyperpolarization via endogenous G-protein-coupled inward rectifier K(+) channels, making the neurons much less likely to fire action potentials. Here we show that this tetO/AlstR line is capable of broadly expressing AlstR mRNA in principal neurons throughout the forebrain when crossed to a commercially-available transactivator line. We electrophysiologically characterize this cross in hippocampal slices, demonstrating that bath application of AL leads to hyperpolarization of CA1 pyramidal neurons, making them refractory to the induction of action potentials by injected current. Finally, we demonstrate the ability of AL application to silence the sound-evoked spiking responses of auditory cortical neurons in intact brains of AlstR/tetO transgenic mice. When crossed to other transactivator lines expressing in defined neuronal cell types, this AlstR/tetO line should prove a very useful tool for the analysis of intact central neural circuits.

  5. Transgenic Silencing of Neurons in the Mammalian Brain by Expression of the Allatostatin Receptor (AlstR)

    Science.gov (United States)

    Wehr, M.; Hostick, U.; Kyweriga, M.; Tan, A.; Weible, A. P.; Wu, H.; Wu, W.; Callaway, E. M.

    2009-01-01

    The mammalian brain is an enormously complex set of circuits composed of interconnected neuronal cell types. The analysis of central neural circuits will be greatly served by the ability to turn off specific neuronal cell types while recording from others in intact brains. Because drug delivery cannot be restricted to specific cell types, this can only be achieved by putting “silencer” transgenes under the control of neuron-specific promoters. Towards this end we have created a line of transgenic mice putting the Drosophila allatostatin (AL) neuropeptide receptor (AlstR) under the control of the tetO element, thus enabling its inducible expression when crossed to tet-transactivator lines. Mammals have no endogenous AL or AlstR, but activation of exogenously expressed AlstR in mammalian neurons leads to membrane hyperpolarization via endogenous G-protein-coupled inward rectifier K+ channels, making the neurons much less likely to fire action potentials. Here we show that this tetO/AlstR line is capable of broadly expressing AlstR mRNA in principal neurons throughout the forebrain when crossed to a commercially-available transactivator line. We electrophysiologically characterize this cross in hippocampal slices, demonstrating that bath application of AL leads to hyperpolarization of CA1 pyramidal neurons, making them refractory to the induction of action potentials by injected current. Finally, we demonstrate the ability of AL application to silence the sound-evoked spiking responses of auditory cortical neurons in intact brains of AlstR/tetO transgenic mice. When crossed to other transactivator lines expressing in defined neuronal cell types, this AlstR/tetO line should prove a very useful tool for the analysis of intact central neural circuits. PMID:19692509

  6. Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action

    Science.gov (United States)

    Laque, Amanda; Zhang, Yan; Gettys, Sarah; Nguyen, Tu-Anh; Bui, Kelly; Morrison, Christopher D.

    2013-01-01

    Leptin acts centrally via leptin receptor (LepRb)-expressing neurons to regulate food intake, energy expenditure, and other physiological functions. LepRb neurons are found throughout the brain, and several distinct populations contribute to energy homeostasis control. However, the function of most LepRb populations remains unknown, and their contribution to regulate energy homeostasis has not been studied. Galanin has been hypothesized to interact with the leptin signaling system, but literature investigating colocalization of LepRb and galanin has been inconsistent, which is likely due to technical difficulties to visualize both. We used reporter mice with green fluorescent protein expression from the galanin locus to recapitulate the colocalization of galanin and leptin-induced p-STAT3 as a marker for LepRb expression. Here, we report the existence of two populations of galanin-expressing LepRb neurons (Gal-LepRb neurons): in the hypothalamus overspanning the perifornical area and adjacent dorsomedial and lateral hypothalamus [collectively named extended perifornical area (exPFA)] and in the brainstem (nucleus of the solitary tract). Surprisingly, despite the known orexigenic galanin action, leptin induces galanin mRNA expression and stimulates LepRb neurons in the exPFA, thus conflicting with the expected anorexigenic leptin action. However, we confirmed that intra-exPFA leptin injections were indeed sufficient to mediate anorexic responses. Interestingly, LepRb and galanin-expressing neurons are distinct from orexin or melanin-concentrating hormone (MCH)-expressing neurons, but exPFA galanin neurons colocalized with the anorexigenic neuropeptides neurotensin and cocaine- and amphetamine-regulated transcript (CART). Based on galanin's known inhibitory function, we speculate that in exPFA Gal-LepRb neurons galanin acts inhibitory rather than orexigenic. PMID:23482448

  7. Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons.

    Science.gov (United States)

    Caudle, Robert M; Caudle, Stephanie L; Jenkins, Alan C; Ahn, Andrew H; Neubert, John K

    2017-01-01

    The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons' voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity.

  8. Subcellular distribution and early signalling events of P2X7 receptors from mouse cerebellar granule neurons.

    Science.gov (United States)

    Sánchez-Nogueiro, Jesús; Marín-García, Patricia; Bustillo, Diego; Olivos-Oré, Luis Alcides; Miras-Portugal, María Teresa; Artalejo, Antonio R

    2014-12-05

    The subcellular distribution and early signalling events of P2X7 receptors were studied in mouse cerebellar granule neurons. Whole-cell patch-clamp recordings evidenced inwardly directed non-desensitizing currents following adenosine 5'-triphosphate (ATP; 600 µM) or 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 µM) administration to cells bathed in a medium with no-added divalent cations (Ca(2+) and Mg(2+)). Nucleotide-activated currents were inhibited by superfusion of 2.5 mM Ca(2+), 1.2 mM Mg(2+) or 100 nM Brilliant Blue G (BBG), hence indicating the expression of ionotropic P2X7 receptors. Fura-2 calcium imaging showed [Ca(2+)]i elevations in response to ATP or BzATP at the somas and at a small number of axodendritic regions of granule neurons. Differential sensitivity of these [Ca(2+)]i increases to three different P2X7 receptor antagonists (100 nM BBG, 10 μM 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester, KN-62, and 1 μM 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine hydrochloride hydrate, A-438079) revealed that P2X7 receptors are co-expressed with different P2Y receptors along the plasmalemma of granule neurons. Finally, experiments with the fluorescent dye YO-PRO-1 indicated that prolonged stimulation of P2X7 receptors does not lead to the opening of a membrane pore permeable to large cations. Altogether, our results emphasise the expression of functional P2X7 receptors at both the axodendritic and somatic levels in mouse cerebellar granule neurons, and favour the notion that P2X7 receptors might function in a subcellular localisation-specific manner: presynaptically, by controlling glutamate release, and on the cell somas, by supporting granule neuron survival against glutamate excytotoxicity.

  9. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding.

    Science.gov (United States)

    Qi, Yue; Fu, Melissa; Herzog, Herbert

    2016-02-01

    Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation.

  10. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  11. Analysis of G-protein-activated inward rectifying K(+) (GIRK) channel currents upon GABAB receptor activation in rat supraoptic neurons.

    Science.gov (United States)

    Harayama, Nobuya; Kayano, Tomohiko; Moriya, Taiki; Kitamura, Naoki; Shibuya, Izumi; Tanaka-Yamamoto, Keiko; Uezono, Yasuhito; Ueta, Yoichi; Sata, Takeyoshi

    2014-12-03

    While magnocellular neurons in the supraoptic nucleus (SON) possess rich Gi/o-mediated mechanisms, molecular and cellular properties of G-protein-activated inwardly rectifying K(+) (GIRK) channels have been controversial. Here, properties of GIRK channels are examined by RT-PCR and whole-cell patch-clamp techniques in rat SON neurons. Patch clamp experiments showed that the selective GABAB agonist, baclofen, enhanced currents in a high K(+) condition. The baclofen-enhanced currents exhibited evident inward rectification and were blocked by the selective GABAB antagonist, CGP55845A, the IRK channel blocker, Ba(2+), and the selective GIRK channel blocker, tertiapin, indicating that baclofen activates GIRK channels via GABAB receptors. The GIRK currents were abolished by N-ethylmaleimide pretreatment, and prolonged by GTPγS inclusion in the patch pipette, suggesting that Gi/o proteins are involved. RT-PCR analysis revealed mRNAs for all four GIRK 1-4 channels and for both GABABR1 and GABABR2 receptors in rat SON. However, the concentration-dependency of the baclofen-induced activation of GIRK currents had an EC50 of 110 µM, which is about 100 times higher than that of baclofen-induced inhibition of voltage-dependent Ca(2+) channels. Moreover, baclofen caused no significant changes in the membrane potential and the firing rate. These results suggest that although GIRK channels can be activated by GABAB receptors via the Gi/o pathway, this occurs at high agonist concentrations, and thus may not be a physiological mechanism regulating the function of SON neurons. This property that the membrane potential receives little influence from GIRK currents seems to be uncommon for CNS neurons possessing rich Gi/o-coupled receptors, and could be a special feature of rat SON neurons. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. ErbB receptors and PKC regulate PC12 neuronal-like differentiation and sodium current elicitation.

    Science.gov (United States)

    García, L; Castillo, C; Carballo, J; Rodríguez, Y; Forsyth, P; Medina, R; Martínez, J C; Longart, M

    2013-04-16

    Excitability, neurite outgrowth and their specification are very important features in the establishment of neuronal differentiation. We have studied a conditioned medium (CM) from sciatic nerve which is able to induce a neuronal-like differentiation of PC12 cells. Previously, we have demonstrated that supplementing this CM with a generic inhibitor (k252a), which mainly inhibits tropomyosin-related kinase receptors (Trk receptors) and protein kinase C (PKC), caused neurite elongation, sodium current induction and axon development. In the present work, we are showing that the enhancement of neurite length and induction of sodium currents induced by CM+k252a were prevented by ErbB receptor inhibition. Additionally, we demonstrated that specific inhibition of PKC produced a similar effect to that exerted by k252a in CM-treated cells, specifically by increasing the percentage of differentiated cells with long neurites and inducing sodium currents. Moreover, CM changed the mRNA levels for ErbB2 and ErbB3 increasing them 6- and 36-folds respectively compared to their control. The inclusion of k252a with CM changed the ErbB1, ErbB2 and ErbB3 mRNA proportions increasing those eight-, seven- and fivefolds respectively. From this point, it is clear that appropriate ErbB receptor levels and PKC inhibition are necessary to enhance the effect of the CM in inducing the neuronal-like differentiation of PC12 cells. In summary, we demonstrated the involvement of ErbB receptors in the regulation of neurite elongation and sodium current induction in PC12 cells and propose that these processes could be initiated by ErbB receptors followed by a fine regulation of PKC signaling. These findings might implicate a novel interplay between ErbB receptors and PKC in the regulation of these molecular mechanisms.

  13. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.

    Science.gov (United States)

    Itoh, K; Chiang, C-Y; Li, Z; Lee, J-C; Dostrovsky, J O; Sessle, B J

    2011-09-29

    Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model.

  14. TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor

    OpenAIRE

    Geetha, Thangiah; Zheng, Chen; McGregor, Wade C.; White, B. Douglas; Diaz-Meco, Maria T; Moscat, Jorge; Babu, Jeganathan Ramesh

    2012-01-01

    Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found ...

  15. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  16. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.

    Science.gov (United States)

    Speranza, Luisa; Labus, Josephine; Volpicelli, Floriana; Guseva, Daria; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian Carlo; di Porzio, Umberto; Bijata, Monika; Perrone-Capano, Carla; Ponimaskin, Evgeni

    2017-06-01

    Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644. © 2017 International Society for Neurochemistry.

  17. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Directory of Open Access Journals (Sweden)

    Ainhoa eBilbao

    2014-06-01

    Full Text Available IIt is suggested that striatal cAMP responsive element binding protein (CREB regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. Drug-naïve mutants showed moderate alterations in gene expression, most prominently a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2, when compared to wild-type controls. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB.

  18. Genetic evidence for involvement of neuronally expressed S1P₁ receptor in nociceptor sensitization and inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Norbert Mair

    Full Text Available Sphingosine-1-phosphate (S1P is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P₁ receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P₁ receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P₁ receptor. Our data show that neuronally expressed S1P₁ receptors play a significant role in regulating nociceptor function and that S1P/S1P₁ signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation.

  19. The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors.

    Science.gov (United States)

    Gartside, S E; Griffith, N C; Kaura, V; Ingram, C D

    2010-11-01

    Dehydroepiandrosterone (DHEA) and its metabolites, DHEA-sulphate (DHEA-S) and androsterone, have neurosteroid activity. In this study, we examined whether DHEA, DHEA-S and androsterone, can influence serotonin (5-HT) neuronal firing activity via modulation of γ-aminobutryic acid (GABA(A)) receptors. The firing of presumed 5-HT neurones in a slice preparation containing rat dorsal raphe nucleus was inhibited by the GABA(A) receptor agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridinyl-3-ol (THIP) (25 μM) and GABA (100 μM). DHEA (100 and 300 μM) and DHEA-S (1, 10 and 100 μM) caused a rapid and reversible attenuation of the response to THIP. DHEA (100 μM) and DHEA-S (100 μM) also attenuated the effect of GABA. Androsterone (10 and 30 μM) markedly enhanced the inhibitory response to THIP (25 μM). The effect was apparent during androsterone administration but persisted and even increased in magnitude after drug wash-out. The data indicate that GABA(A) receptor-mediated regulation of 5-HT neuronal firing is sensitive to negative modulation by DHEA and its metabolite DHEA-S is sensitive to positive modulation by the metabolite androsterone. The effects of these neurosteroids on GABA(A) receptor-mediated regulation of 5-HT firing may underlie some of the reported behavioural and psychological effects of endogenous and exogenous DHEA.

  20. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism.

    Science.gov (United States)

    Sierra, Salvador; Luquin, Natasha; Rico, Alberto J; Gómez-Bautista, Virginia; Roda, Elvira; Dopeso-Reyes, Iria G; Vázquez, Alfonso; Martínez-Pinilla, Eva; Labandeira-García, José L; Franco, Rafael; Lanciego, José L

    2015-09-01

    Although type 1 cannabinoid receptors (CB1Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R-CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R-CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R-CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers.

  1. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons.

    Science.gov (United States)

    Chen, S-R; Prunean, A; Pan, H-M; Welker, K L; Pan, H-L

    2007-03-16

    Deletion of transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons reduces presynaptic mu opioid receptors but paradoxically potentiates the analgesic efficacy of mu opioid agonists. In this study, we determined if removal of TRPV1-expressing afferent neurons by resiniferatoxin (RTX), an ultrapotent capsaicin analog, influences the development of opioid analgesic tolerance. Morphine tolerance was induced by daily intrathecal injections of 10 microg of morphine for 14 consecutive days or by daily i.p. injections of 10 mg/kg of morphine for 10 days. In vehicle-treated rats, the effect of intrathecal or systemic morphine on the mechanical withdrawal threshold was gradually diminished within 7 days. However, the analgesic effect of intrathecal and systemic morphine was sustained in RTX-treated rats at the time the morphine effect was lost in the vehicle group. Furthermore, the mu opioid receptor-G protein coupling in the spinal cord was significantly decreased ( approximately 22%) in vehicle-treated morphine tolerant rats, but was not significantly altered in RTX-treated rats receiving the same treatment with morphine. Additionally, there was a large reduction in protein kinase Cgamma-immunoreactive afferent terminals in the spinal dorsal horn of RTX-treated rats. These findings suggest that loss of TRPV1-expressing sensory neurons attenuates the development of morphine analgesic tolerance possibly by reducing mu opioid receptor desensitization through protein kinase Cgamma in the spinal cord. These data also suggest that the function of presynaptic mu opioid receptors on TRPV1-expressing sensory neurons is particularly sensitive to down-regulation by mu opioid agonists during opioid tolerance development.

  2. Calcium-sensing receptor antagonist NPS2390 attenuates neuronal apoptosis though intrinsic pathway following traumatic brain injury in rats.

    Science.gov (United States)

    Xue, Zhaoliang; Song, Zhengfei; Wan, Yingfeng; Wang, Kun; Mo, Lianjie; Wang, Yirong

    2017-04-29

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. Previous study indicates that calcium-sensing receptor (CaSR) activation contributes to neuron death in focal cerebral ischemia-reperfusion mice, however, its role in neuronal apoptosis after TBI is not well-established. Using a controlled cortical impact model in rats, the present study was designed to determine the effect of CaSR inhibitor NPS2390 upon neuronal apoptosis after TBI. Rats were randomly distributed into three groups undergoing the sham surgery or TBI procedure, and NPS2390 (1.5 mg/kg) was infused subcutaneously at 30 min and 120 min after TBI. All rats were sacrificed at 24 h after TBI. Our data indicated that NPS2390 significantly reduced the brain edema and improved the neurological function after TBI. In addition, NPS2390 decreased caspase-3 levels and the number of apoptotic neurons. Furthermore, NPS2390 up-regulated anti-apoptotic protein Bcl-2 expression and down-regulated pro-apoptotic protein Bax, and reduced subsequent release of cytochrome c into the cytosol. In summary, this study indicated that inhibition of CaSR by NPS2390 attenuates neuronal apoptosis after TBI, in part, through modulating intrinsic apoptotic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Functional endothelin receptors are selectively expressed in isolectin B4-negative sensory neurons and are upregulated in isolectin B4-positive neurons by neurturin and glia-derived neurotropic factor.

    Science.gov (United States)

    Vellani, Vittorio; Prandini, Massimiliano; Giacomoni, Chiara; Pavesi, Giorgia; Ravegnani, Laura; Magherini, Pier Cosimo

    2011-03-24

    Activation of endothelin receptors expressed in DRG neurons is functionally coupled to translocation of PKCε from cytoplasm to the plasma membrane. Using immunocytochemistry we show that in DRG cultured neurons PKCε translocation induced by endothelin-1 was prominently seen in a peptidergic subpopulation of cultured DRG neurons largely negative for isolectin B4 staining, indicating that in basal conditions functional expression of endothelin receptors does not occur in non-peptidergic, RET-expressing nociceptors. Translocation was blocked by the specific ETA-R antagonist BQ-123 while it was unaffected by the ETB-R antagonist BQ-788. No calcium response in response to endothelin-1 was observed in sensory neurons, while large and long-lasting responses were observed in the majority of non-neuronal cells present in DRG cultures, which are ensheathing Schwann cells and satellite cells, identified with the glial marker S-100. Calcium responses in non-neuronal cells were abolished by BQ-788. The fraction of peptidergic PKCε-translocated neurons was significantly increased by nerve growth factor, while in the presence of neurturin or glia-derived neurotropic factor (GDNF), an IB4-positive subpopulation of small- and medium-sized neurons showed PKCε translocation induced by endothelin-1 which could be blocked by BQ-123 but not by BQ-788. Our in vitro results show that the level of expression of functional endothelin receptors coupled to PKCε is different in peptidergic and non-peptidergic nociceptors and is modulated with different mechanisms in distinct neuronal subpopulations.

  4. PGE2 released by primary sensory neurons modulates Toll-like receptor 4 activities through an EP4 receptor-dependent process.

    Science.gov (United States)

    Tse, Kai-Hei; Chow, Kevin B S; Wise, Helen

    2016-04-15

    Exogenous prostaglandin E2 (PGE2) displays mixed regulatory properties with regard to inflammatory gene expression in dorsal root ganglion (DRG) cells. We show here that endogenously-produced nanomolar concentrations of PGE2, such as that generated in response to Toll-like receptor 4 (TLR4) stimulation, inhibits both cyclooxygenase-2 (COX-2) and tumour necrosis factor alpha (TNFα) mRNA expression in DRG cells in an EP4 receptor-dependent manner. DRG neurons appear to be the major source of PGE2 in the DRG and likely serve as both an autocrine and paracrine system for limiting over-activation of both DRG neurons and glial cells in response to TLR4 stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [Peculiarities of dopamine receptors on the membrane of spinal cord multipolar neurons of the brook lamprey Lampetra planeri].

    Science.gov (United States)

    Bukinich, A a; Tsvetkov, E A; Veselkin, N P

    2007-01-01

    On isolated multiporal neurons of spinal cord of amniocoete larva of the brook lamprey Lampetra planeri, by the patch-clamp method in configuration "the whole cell", a modulating effect of dopamine on potential-activated Na+ currents was studied. Application of dopamine (10 microM) was shown to produce a complex action on the sodium current amplitude. In some cases a decrease of the amplitude, on average, by 13.5 +/- 2.2% was found, while in others--an increase, on average, by 8.6 +/- 6.1%. The modulation dopamine effect was not accompanied by any changes either of the threshold of the current appearance or of resistance of neuronal cell membranes. Pharmacological analysis with use of dopamine agonist has shown that the agonist of D1-receptors (-)-SKF-38393 (10 microM) decreases the Na+ current amplitude, whereas the agonist of D2-receptors (-)-quinpirole (10 microM) can produce in different cells both an increase, by 30.7 +/- 17.0 %, and a decrease, by 13.2 +/- 3.1%, of the Na+ current amplitude. The obtained data indicate the existence of D1- and D2-receptors on the membrane of multipolar spinal neurons of the amniocoete larva of the brook lamprey. Study of action of antagonists has shown that the antagonist of D1-receptors (+)-SCH-23390 (10 microM) does not affect action of the agonist of D1-receptors (-)-SKF-38393 (10 microM); the antagonist of D2-receptors (-)-sulpiride (10 microM) blocks completely effects both of the agonist of D1-receptors (-)-SKF-38393 (10 microM) and of the agonist of D2-receptors (-)-quinpirole (10 microM). The antagonist of D1-receptors (+)-SCH-23390 (10 microM) produced no effect on action of the agonist of D1-receptors (-)-SKF-38393 (10 microM). The obtained data indicate peculiarities of dopamine receptors of Cyclostomata as compared with those in mammals.

  6. Leptin receptor expressing neurons express phosphodiesterase-3B (PDE3B) and leptin induces STAT3 activation in PDE3B neurons in the mouse hypothalamus.

    Science.gov (United States)

    Sahu, Maitrayee; Sahu, Abhiram

    2015-11-01

    Leptin signaling in the hypothalamus is critical for normal food intake and body weight regulation. Cumulative evidence suggests that besides the signal transducer and activator of transcription-3 (STAT3) pathway, several non-STAT3 pathways including the phosphodiesterase-3B (PDE3B) pathway mediate leptin signaling in the hypothalamus. We have shown that PDE3B is localized in various hypothalamic sites implicated in the regulation of energy homeostasis and that the anorectic and body weight reducing effects of leptin are mediated by the activation of PDE3B. It is still unknown if PDE3B is expressed in the long form of the leptin-receptor (ObRb)-expressing neurons in the hypothalamus and whether leptin induces STAT3 activation in PDE3B-expressing neurons. In this study, we examined co-localization of PDE3B with ObRb neurons in various hypothalamic nuclei in ObRb-GFP mice that were treated with leptin (5mg/kg, ip) for 2h. Results showed that most of the ObRb neurons in the arcuate nucleus (ARC, 93%), ventromedial nucleus (VMN, 94%), dorsomedial nucleus (DMN, 95%), ventral premammillary nucleus (PMv, 97%) and lateral hypothalamus (LH, 97%) co-expressed PDE3B. We next examined co-localization of p-STAT3 and PDE3B in the hypothalamus in C57BL6 mice that were treated with leptin (5mg/kg, ip) for 1h. The results showed that almost all p-STAT3 positive neurons in different hypothalamic nuclei including ARC, VMN, DMN, LH and PMv areas expressed PDE3B. These results suggest the possibility for a direct role for the PDE3B pathway in mediating leptin action in the hypothalamus. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Dioxin modulates expression of receptor for activated C kinase (RACK-1) in developing neurons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Kim, S.Y.; Lee, H.G.; Kim, M.Y.; Lee, J.H.; Chae, W.G. [Catholic Univ. of Daegu, Dept. of Pharmacology/Toxicology, Daegu (Korea)

    2004-09-15

    TCDD is sensitive to the central nerve system of the developing brain. The TCDD-induced neurodevelopmental deficits include the cognitive disability and motor dysfunction. While TCDD may lead to neurodevelopmental and neurobehavioral deficit, it is not known which molecular substances are intracellular targets for TCDD. Since TCDD accumulates in brain and the brain contains the Ah receptor, it is possible that TCDD may act at the target site such as cerebellum, which is responsible for cognitive abilities and motor function. A recent in vitro studies using cerebellar granule cells demonstrated a translocation of PKC-{alpha} and {epsilon} following the TCDD or PCB exposure. One of the most pivotal second messenger molecules involved in neuronal function and development is protein kinase C (PKC). PKC signaling pathways have been implicated as an important factor in learning and memory processes. PKC signaling events are optimized by the adaptor proteins, which organize PKCs near their selective substrates and away from others. RACK-1(receptor for activated C-kinase) is one of adaptor proteins that anchor the activated PKC at the site of translocation 6. RACKs bind PKC only in the presence of PKC activators. RACKs are 30- and 36-kDa proteins located in cytoskeletal compartment and play a key role in PKC activation and in membrane amchoring. Since different PKC isoforms translocate to distinct subcellular sites on activation, it is suggested that isoform-specific RACK may be present. Activation of certain PKC isoforms (PKC-a and {beta}II) is preferentially associated with RACK-1. While TCDD modulates PKC signaling pathway, role of RACK-1 on TCDD-mediated signaling pathway is not known. To identify the intracellular target for TCDD and understand a mechanism of signaling pathway in the developing brain, the present study attempted to analyze effects of RACK-1 in the cerebellar granule cells following TCDD exposure.

  8. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons.

    Science.gov (United States)

    Bobkov, Yuriy V; Pezier, Adeline; Corey, Elizabeth A; Ache, Barry W

    2010-05-01

    Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.

  9. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    Science.gov (United States)

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos(+) D2 MSNs and decreased c-Fos(+) non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina.

    Science.gov (United States)

    Ho, T; Vessey, K A; Fletcher, E L

    2014-09-26

    Extracellular adenosine 5'-triphosphate (eATP) acts as a neurotransmitter within the retina and brain, activating a range of ionotropic P2X and metabotropic P2Y receptors. In this study, the specific localization of the P2X4 receptor (P2X4-R) subunit was evaluated in the retina using fluorescence immunohistochemistry and pre-embedding immuno-electron microscopy. Punctate P2X4-R labeling was largely localized to the inner and outer plexiform layers of mouse, rat and cat retinae. In the mouse outer retina, double-labeling of P2X4-R with the horizontal cell marker, calbindin, revealed P2X4-R immunoreactivity (P2X4-R-IR) on horizontal cell somata and processes. In the inner retina, P2X4-R expression was found closely associated with rod and cone bipolar cell terminals, and the punctate labeling was observed on calretinin-positive amacrine cells. Using immuno-electron microscopy, P2X4-Rs were observed on processes post-synaptic to photoreceptor and bipolar cell terminals, likely representing horizontal, amacrine and ganglion cells, respectively. Furthermore, P2X4-R expression was also observed on Müller cells, astrocytes and microglia. These data suggest a role for P2X4-Rs in the lateral inhibitory pathways of the retina, modulating neuronal function of photoreceptors and bipolar cells. The expression on macro- and microglial cells implicates a role for P2X4-Rs in glial signaling, tissue homeostasis and immunosurveillance within the mammalian retina.

  11. Cytisine derivatives as ligands for neuronal nicotine receptors and with various pharmacological activities.

    Science.gov (United States)

    Boido, Caterina Canu; Tasso, Bruno; Boido, Vito; Sparatore, Fabio

    2003-03-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) form a family of ACh-gated cation channels made up of different subtypes. They are widely distributed in peripheral and central nervous systems and are involved in complex cerebral processes as learning, memory, nociception, movement, etc. The possibility that subtype-selective ligands be used in the treatment of CNS disorders promoted the synthesis of a large number of structural analogues of nicotine and epibatidine, two very potent nAChR agonists. Pursuing our long standing research on the structural modification of quinolizidine alkaloids, we devoted our attention to cytisine, another very potent ligand for many nAChR subtypes. Thus a systematic structural modification of cytisine was undertaken in order to obtain compounds of potential therapeutic interest at peripheral as well as central level, with a particular concern for achieving nAChR subtype selective ligands. Up to the present more than 80 cytisine derivatives, mainly of N-substitution and a few by modifying the pyridone ring, have been prepared. The biological results, which concern so far about an half of the prepared compounds, indicate that the introduction of a nitro group in position 3 of the pyridone nucleus further enhances the high affinity of cytisine, while the introduction of substituents on the basic nitrogen, though reducing in different degrees the affinity, gives rise to compounds with a higher selectivity for central (alpha(4)beta(2)) versus gangliar (alpha(3)-containing) receptor subtype. On the other hand, the analgesic, antihypertensive and inotropic activities found in some N-substituted cytisines, represent an attractive starting point for the development of more active compounds.

  12. Expression of NMDA receptors and Ca2+-impermeable AMPA receptors requires neuronal differentiation and allows discrimination between two different types of neural stem cells.

    Science.gov (United States)

    Muth-Köhne, Elke; Pachernegg, Svenja; Karus, Michael; Faissner, Andreas; Hollmann, Michael

    2010-01-01

    Glutamate and its receptors are ascribed a pivotal role during acitivity-dependent neurogenesis. Nevertheless, their precise expression patterns during embryonic and adult differentiation remain elusive. An in vitro-approach that includes cells representing embryonic as well as adult neural stem cells that are both amenable to retinoic acid treatment is well-suited for assessing the developmental regulation of ionotropic glutamate receptors (iGluRs). The chosen system provides a continuous time line from embryonic to adult neurogenesis via two distinguishable cell populations, namely neuroepithelial precursors (NEPs) and radial glia-like neural stem cells (NSCs). We investigated the expression of cell type-specific differentiation markers and iGluR subunits before and after neuronal induction. A quantitative PCR assay was established for the determination of a hypothetical correlation of neuronal differentiation and iGluR expression. The NMDAR subunits NR1 and NR2B as well as the AMPAR subunit GluR2 present in Ca(2+)-impermeable AMPARs were found to be upregulated at the mRNA level in differentiated neuroepithelial precursors, indicating their likely contribution to neurotransmission after the first establishment of neuronal networks. Furthermore, with this approach, discrimination between NEPs and NSCs regarding their iGluR subunit expression patterns before and after the induction of neuronal differentiation was possible and pointed to diverse functions in these two cell types carried out by differentially assembled iGluRs. Copyright © 2010 S. Karger AG, Basel.

  13. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10−5–10−2 M dose dependently increased [Ca2+]i in 12–16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly

  14. Intracellular calcium level is an important factor influencing ion channel modulations by PLC-coupled metabotropic receptors in hippocampal neurons.

    Science.gov (United States)

    Sugawara, Yuto; Echigo, Ryousuke; Kashima, Kousuke; Minami, Hanae; Watanabe, Megumi; Nishikawa, Yuiko; Muranishi, Miho; Yoneda, Mitsugu; Ohno-Shosaku, Takako

    2013-05-28

    Signaling pathways involving phospholipase C (PLC) are involved in various neural functions. Understanding how these pathways are regulated will lead to a better understanding of their roles in neural functions. Previous studies demonstrated that receptor-driven PLCβ activation depends on intracellular Ca(2+) concentration ([Ca(2+)]i), suggesting the possibility that PLCβ-dependent cellular responses are basically Ca(2+) dependent. To test this possibility, we examined whether modulations of ion channels driven by PLC-coupled metabotropic receptors are sensitive to [Ca(2+)]i using cultured hippocampal neurons. Muscarinic activation triggered an inward current at -100 mV (the equilibrium potential for K(+)) in a subpopulation of neurons. This current response was suppressed by pirenzepine (an M1-preferring antagonist), PLC inhibitor, non-selective cation channel blocker, and lowering [Ca(2+)]i. Using the neurons showing no response at -100 mV, effects of muscarinic activation on K(+) channels were examined at -40 mV. Muscarinic activation induced a transient decrease of the holding outward current. This current response was mimicked and occluded by XE991, an M-current K(+) channel blocker, suppressed by pirenzepine, PLC inhibitor and lowering [Ca(2+)]i, and enhanced by elevating [Ca(2+)]i. Similar results were obtained when group I metabotropic glutamate receptors were activated instead of muscarinic receptors. These results clearly show that ion channel modulations driven by PLC-coupled metabotropic receptors are dependent on [Ca(2+)]i, supporting the hypothesis that cellular responses induced by receptor-driven PLCβ activation are basically Ca(2+) dependent.

  15. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Moidunny Shamsudheen

    2012-08-01

    Full Text Available Abstract Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF have been widely reported. In the central nervous system (CNS, astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC, mitogen-activated protein kinases (MAPKs: p38 and ERK1/2, and the nuclear transcription factor (NF-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (CgA and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions

  16. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors.

    Science.gov (United States)

    Ferguson, Alexandra L; Stone, Trevor W

    2010-04-01

    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  17. The contribution of low affinity NGF receptor (p75NGFR to delayed neuronal death after ischemia in the gerbil hippocampus.

    Directory of Open Access Journals (Sweden)

    Bagum MA

    2001-02-01

    Full Text Available The implication of low affinity nerve growth factor receptor (p75NGFR, which is believed to play a pro-apoptotic role, in delayed neuronal death (DND after ischemia in the gerbil hippocampus was investigated. Immunohistochemistry and Western blot analysis revealed that the presence of p75 NGFR immunoreactivity (IR was negligible in the hippocampus of the sham control gerbil but appeared clearly in CA1 neurons 3 and 4 days after 5-min transient ischemia. Terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL positive nuclei appeared when the level of p75NGFR IR increased. Furthermore, almost all TUNEL-positive CA1 neurons also costained for p75NGFR. These results suggest that p75NGFR contributes to DND after ischemia by an apoptotic mechanism.

  18. Activation of noradrenergic neurons projecting to the diencephalon following central administration of histamine is mediated by H1 receptors.

    Science.gov (United States)

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-02-28

    The effect of histamine on the activity of noradrenergic neurons terminating in discrete regions of the diencephalon was examined in male rats. Noradrenergic neuronal activity was estimated by measuring the concentration of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylethyleneglycol [MHPG] in the medial zona incerta [MZI] and in the dorsomedial [DMN], periventricular [PeVN] and medial preoptic hypothalamic nuclei [MPN]. The intracerebroventricular administration of histamine effected a time-related increase in MHPG concentrations in the MZI, DMN, PeVN and MPN; these effects were blocked by the H1 antagonist mepyramine but not the H2 antagonist zolantidine. Neither mepyramine nor zolantidine affected basal MHPG concentrations in any of the brain regions examined. These results indicate that central administration of histamine increases the activity of noradrenergic neurons projecting to the diencephalon via an action at H1 but not H2 receptors.

  19. Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms.

    Science.gov (United States)

    Govind, Anitha P; Walsh, Heather; Green, William N

    2012-02-08

    Nicotine causes changes in brain nicotinic acetylcholine receptors (nAChRs) during smoking that initiate addiction. Nicotine-induced upregulation is the long-lasting increase in nAChR radioligand binding sites in brain resulting from exposure. The mechanisms causing upregulation are not established. Many different mechanisms have been reported with the assumption that there is a single underlying cause. Using live rat cortical neurons, we examined for the first time how exposure and withdrawal of nicotine shape the kinetics of native α4β2-containing nAChR upregulation in real time. Upregulation kinetics demonstrates that at least two different mechanisms underlie this phenomenon. First, a transient upregulation occurs that rapidly reverses, faster than nAChR degradation, and corresponds to nAChR conformational changes as assayed by conformational-dependent, subunit-specific antibodies. Second, a long-lasting process occurs correlating with increases in nAChR numbers caused by decreased proteasomal subunit degradation. Previous radioligand binding measurements to brain tissue have measured the second process and largely missed the first. We conclude that nicotine-induced upregulation is composed of multiple processes occurring at different rates with different underlying causes.

  20. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  1. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons.

    Science.gov (United States)

    Rodriguez-Gil, Diego J; Bartel, Dianna L; Jaspers, Austin W; Mobley, Arie S; Imamura, Fumiaki; Greer, Charles A

    2015-05-05

    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli.

  2. Adaptation as a mechanism for gain control in cockroach ON and OFF olfactory receptor neurons.

    Science.gov (United States)

    Burgstaller, Maria; Tichy, Harald

    2012-02-01

    In many sensory systems adaptation acts as a gain control mechanism that optimizes sensory performance by trading increased sensitivity to low stimulus intensity for decreased sensitivity to high stimulus intensity. Adaptation of insect antennal olfactory receptor neurons (ORNs) has been studied for strong odour concentrations, either pulsed or constant. Here, we report that during slowly oscillating changes in the concentration of the odour of lemon oil, the ON and OFF ORNs on the antenna of the cockroach Periplaneta americana adapt to the actual odour concentration and the rate at which concentration changes. When odour concentration oscillates rapidly with brief periods, adaptation improves gain for instantaneous odour concentration and reduces gain for the rate of concentration change. Conversely, when odour concentration oscillates slowly with long periods, adaptation increases gain for the rate of change at the expense of instantaneous concentration. Without this gain control the ON and OFF ORNs would, at brief oscillation periods, soon reach their saturation level and become insensitive to further concentration increments and decrements. At long oscillation periods, on the other hand, the cue would simply be that the discharge begins to change. Because of the high gain for the rate of change, the cockroach will receive creeping changes in odour concentration, even if they persist in one direction. Gain control permits a high degree of precision at small rates when it counts most, without sacrificing the range of detection and without extending the measuring scale.

  3. Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding.

    Science.gov (United States)

    Bao, Guobin; de Jong, Daniëlle; Alevra, Mihai; Schild, Detlev

    2015-12-01

    Olfactory receptor neurons (ORNs) have high-voltage-gated Ca(2+) channels whose physiological impact has remained enigmatic since the voltage-gated conductances in this cell type were first described in the 1980s. Here we show that in ORN somata of Xenopus laevis tadpoles these channels are clustered and co-expressed with large-conductance potassium (BK) channels. We found approximately five clusters per ORN and twelve Ca(2+) channels per cluster. The action potential-triggered activation of BK channels accelerates the repolarization of action potentials and shortens interspike intervals during odour responses. This increases the sensitivity of individual ORNs to odorants. At the level of mitral cells of the olfactory bulb, odour qualities have been shown to be coded by first-spike-latency patterns. The system of Ca(2+) and BK channels in ORNs appears to be important for correct odour coding because the blockage of BK channels not only affects ORN spiking patterns but also changes the latency pattern representation of odours in the olfactory bulb.

  4. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine

    DEFF Research Database (Denmark)

    Pedersen, Jens; B. Pedersen, Nis; Brix, Sophie W.

    2015-01-01

    Glucagon-like peptide 2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential in the treatment of intestinal deficiencies. It has recently been approved for the treatment of short bowel syndrome. The effects of GLP-2 are mediated by specific binding of the hormone to the GLP......-2 receptor (GLP-2R) which was cloned in 1999. However, consensus about the exact receptor localization in the intestine has never been established. By physical, chemical and enzymatic tissue fragmentation, we were able to divide rat jejunum into different compartments consisting of: (1) epithelium...... compartments rich in enteric neurons and, importantly they exclude significant expression in the epithelium of rat jejunal mucosa....

  5. Removal of GABA(A receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations.

    Directory of Open Access Journals (Sweden)

    Elli Leppä

    Full Text Available We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABA(A receptors on parvalbumin (Pv cells. The GABA(A receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[(35S]thionate suggested an increased amount of GABA(A receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons. This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception.

  6. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Science.gov (United States)

    Audet, Gerald N; Fulks, Daniel; Stricker, Janelle C; Olfert, I Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  7. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Directory of Open Access Journals (Sweden)

    Gerald N Audet

    Full Text Available Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1, a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510, which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA, 11% decrease in the plantaris (PLT, and a 35% decrease in the soleus (SOL. ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF in both the GA (-140% and SOL (-62%; however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  8. p38 MAPK and β-Arrestin 2 Mediate Functional Interactions between Endogenous μ-Opioid and α2A-Adrenergic Receptors in Neurons*

    Science.gov (United States)

    Tan, Miao; Walwyn, Wendy M.; Evans, Christopher J.; Xie, Cui-Wei

    2009-01-01

    Formation of receptor complexes between μ-opioid and α2A-adrenergic receptors has been demonstrated in transfected cells. The functional significance and underlying mechanisms of such receptor interactions remain to be determined in neuronal systems. We examined functional interactions between endogenous μ and α2A receptors in mouse dorsal root ganglion neurons. Acute application of the μ agonist [d-Ala2,N-MePhe4, Gly-ol5]enkephalin (DAMGO) or the α2 agonist clonidine inhibited voltage-gated Ca2+ currents in these neurons. Prolonged treatment with either DAMGO or clonidine induced a mutual cross-desensitization between μ and α2A receptor-mediated current inhibition. The cross-desensitization was closely associated with simultaneous internalization of μ and α2A receptors. Morphine, a μ agonist triggering little μ receptor endocytosis, induced neither cross-desensitization nor internalization of α2A receptors. Furthermore, inhibition of p38 MAPK prevented the cross-desensitization as well as cointernalization of μ and α2A receptors. Changes in receptor trafficking profiles suggested that p38 MAPK activity was required for initiating μ receptor internalization and maintaining possible μ-α2A association during their cointernalization. Finally, the μ-α2A cross-desensitization was absent in dorsal root ganglion neurons lacking β-arrestin 2. These findings demonstrated p38 MAPK- and β-arrestin 2-dependent cross-regulation between neuronal μ and α2A receptors. By promoting receptor cross-desensitization and cointernalization, such functional interactions may serve as negative feedback mechanisms triggered by prolonged agonist exposure to modulate the signaling of functionally related G protein-coupled receptors. PMID:19126537

  9. p38 MAPK and beta-arrestin 2 mediate functional interactions between endogenous micro-opioid and alpha2A-adrenergic receptors in neurons.

    Science.gov (United States)

    Tan, Miao; Walwyn, Wendy M; Evans, Christopher J; Xie, Cui-Wei

    2009-03-06

    Formation of receptor complexes between micro-opioid and alpha2A-adrenergic receptors has been demonstrated in transfected cells. The functional significance and underlying mechanisms of such receptor interactions remain to be determined in neuronal systems. We examined functional interactions between endogenous micro and alpha2A receptors in mouse dorsal root ganglion neurons. Acute application of the micro agonist [D-Ala2,N-MePhe4, Gly-ol5]enkephalin (DAMGO) or the alpha2 agonist clonidine inhibited voltage-gated Ca2+ currents in these neurons. Prolonged treatment with either DAMGO or clonidine induced a mutual cross-desensitization between micro and alpha2A receptor-mediated current inhibition. The cross-desensitization was closely associated with simultaneous internalization of micro and alpha2A receptors. Morphine, a mu agonist triggering little mu receptor endocytosis, induced neither cross-desensitization nor internalization of alpha2A receptors. Furthermore, inhibition of p38 MAPK prevented the cross-desensitization as well as cointernalization of micro and alpha2A receptors. Changes in receptor trafficking profiles suggested that p38 MAPK activity was required for initiating micro receptor internalization and maintaining possible micro-alpha2A association during their cointernalization. Finally, the micro-alpha2A cross-desensitization was absent in dorsal root ganglion neurons lacking beta-arrestin 2. These findings demonstrated p38 MAPK- and beta-arrestin 2-dependent cross-regulation between neuronal micro and alpha2A receptors. By promoting receptor cross-desensitization and cointernalization, such functional interactions may serve as negative feedback mechanisms triggered by prolonged agonist exposure to modulate the signaling of functionally related G protein-coupled receptors.

  10. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    Science.gov (United States)

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr(+/+) mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr(-/-) mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr(-/-) mice. In both Ghsr(+/+) and Ghsr(-/-) mice, blocking GABAA receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  11. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    Directory of Open Access Journals (Sweden)

    Sarah eGuadiana

    2016-05-01

    Full Text Available The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII, somatostatin receptor 3 (SSTR3, and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344 and Fischer 344 x Brown Norway (F344 x BN rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 x BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in DG. Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young

  12. Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors.

    Science.gov (United States)

    Fasano, Caroline; Bourque, Marie-Josée; Lapointe, Gabriel; Leo, Damiana; Thibault, Dominic; Haber, Michael; Kortleven, Christian; Desgroseillers, Luc; Murai, Keith K; Trudeau, Louis-Éric

    2013-04-01

    Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.

  13. Increased Sensitivity of the Neuronal Nicotinic Receptor α2 Subunit Causes Familial Epilepsy with Nocturnal Wandering and Ictal Fear

    OpenAIRE

    Aridon, Paolo; Marini, Carla; Di Resta, Chiara; Brilli, Elisa; De Fusco, Maurizio; Politi, Fausta; Parrini, Elena; Manfredi, Irene; Pisano, Tiziana; Pruna, Dario; Curia, Giulia; Cianchetti, Carlo; Pasqualetti, Massimo; Becchetti, Andrea; Guerrini, Renzo

    2006-01-01

    Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the α4 and β2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular gene...

  14. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).

    Science.gov (United States)

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz

    2012-03-01

    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage.

  15. Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington's disease.

    Science.gov (United States)

    Chiodi, Valentina; Uchigashima, Motokazu; Beggiato, Sarah; Ferrante, Antonella; Armida, Monica; Martire, Alberto; Potenza, Rosa Luisa; Ferraro, Luca; Tanganelli, Sergio; Watanabe, Masahiko; Domenici, Maria Rosaria; Popoli, Patrizia

    2012-03-01

    Cannabinoid CB1 receptors (CB1Rs) are known to be downregulated in patients and in animal models of Huntington's disease (HD). However, the functional meaning of this reduction, if any, is still unclear. Here, the effects of the cannabinoid receptor agonist WIN 55,212-2 (WIN) were investigated on striatal synaptic transmission and on glutamate and GABA release in symptomatic R6/2 mice, a genetic model of HD. The expression levels of CB1Rs in glutamatergic and GABAergic synapses were also evaluated. We found that in R6/2 mice, WIN effects on synaptic transmission and glutamate release were significantly increased with respect to wild type mice. On the contrary, a decrease in WIN-induced reduction of GABA release was found in R6/2 versus WT mice. The expression of CB1Rs in GABAergic neurons was drastically reduced, while CB1Rs levels in glutamatergic neurons were unchanged. These results demonstrate that the expression and functionality of CB1Rs are differentially affected in GABAergic and glutamatergic neurons in R6/2 mice. As a result, the balance between CB1Rs expressed by the two neuronal populations and, thus, the net effect of CB1R stimulation, is profoundly altered in HD mice.

  16. Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

    Science.gov (United States)

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S

    2014-11-12

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.

  17. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra

    Directory of Open Access Journals (Sweden)

    Jhaveri Vimal V

    2007-01-01

    Full Text Available Abstract Background Recent attention has focused on understanding the role of the brain-renin-angiotensin-system (RAS in stroke and neurodegenerative diseases. Direct evidence of a role for the brain-RAS in Parkinson's disease (PD comes from studies demonstrating the neuroprotective effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an antagonist of the angiotensin II (Ang II type 1 (AT1 receptor, losartan, protects dopaminergic (DA neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP toxicity both in primary ventral mesencephalic (VM cultures as well as in the substantia nigra pars compacta (SNpc of C57BL/6 mice (Fig. 1. Results In the presence of exogenous Ang II, losartan reduced MPP+ (5 μM induced DA neuronal loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH immunostaining of the striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25% and reduced the decrease in striatal TH+ immunostaining to 34% of control. Conclusion Our study demonstrates that the brain-RAS plays an important neuroprotective role in the MPTP model of PD and points to AT1 receptor as a potential novel target for neuroprotection.

  18. Potentiation of excitatory transmission in substantia gelatinosa neurons of rat spinal cord by inhibition of estrogen receptor alpha

    Directory of Open Access Journals (Sweden)

    Li Kai-Cheng

    2010-12-01

    Full Text Available Abstract Background It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER subtypes, estrogen receptor alpha (ERα, is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II. However, it is unclear how ERs are involved in the modulation of nociceptive transmission. Results In the present study, a selective ERα antagonist, methyl-piperidino-pyrazole (MPP, was used to test the potential functional roles of spinal ERα in the nociceptive transmission. Using the whole-cell patch-clamp technique, we examined the effects of MPP on SG neurons in the dorsal root-attached spinal cord slice prepared from adult rats. We found that MPP increased glutamatergic excitatory postsynaptic currents (EPSCs evoked by the stimulation of either Aδ- or C-afferent fibers. Further studies showed that MPP treatment dose-dependently increased spontaneous EPSCs frequency in SG neurons, while not affecting the amplitude. In addition, the PKC was involved in the MPP-induced enhancement of synaptic transmission. Conclusions These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.

  19. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen Yong

    2012-02-01

    Full Text Available Abstract Background The purinergic P2X3 receptor (P2X3R expressed in the dorsal root ganglion (DRG sensory neuron and the P2X7 receptor (P2X7R expressed in the surrounding satellite glial cell (SGC are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.

  20. High- and low-conductance NMDA receptors are present in layer 4 spiny stellate and layer 2/3 pyramidal neurons of mouse barrel cortex.

    Science.gov (United States)

    Scheppach, Christian

    2016-12-01

    N-Methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate in the mammalian brain and are important in synaptic function and plasticity, but are also found in extrasynaptic locations and influence neuronal excitability. There are different NMDA receptor subtypes which differ in their single-channel conductance. Recently, synaptic plasticity has been studied in the mouse barrel cortex, the primary sensory cortex for input from the animal's whiskers. Pharmacological data imply the presence of low-conductance NMDA receptors in spiny stellate neurons of cortical layer 4, but of high-conductance NMDA receptors in pyramidal neurons of layer 2/3. Here, to obtain complementary electrophysiological information on the functional NMDA receptors expressed in layer 4 and layer 2/3 neurons, single NMDA receptor currents were recorded with the patch-clamp method. Both cell types were found to contain high-conductance as well as low-conductance NMDA receptors. The results are consistent with the reported pharmacological data on synaptic plasticity, and with previous claims of a prominent role of low-conductance NMDA receptors in layer 4 spiny stellate neurons, including broad integration, amplification and distribution of excitation within the barrel in response to whisker stimulation, as well as modulation of excitability by ambient glutamate. However, layer 4 cells also expressed high-conductance NMDA receptors. The presence of low-conductance NMDA receptors in layer 2/3 pyramidal neurons suggests that some of these functions may be shared with layer 4 spiny stellate neurons.

  1. Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway.

    Science.gov (United States)

    Moreno, Estefanía; Hoffmann, Hanne; Gonzalez-Sepúlveda, Marta; Navarro, Gemma; Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Vignes, Michel; McCormick, Peter J; Canela, Enric I; Lluís, Carme; Moratalla, Rosario; Ferré, Sergi; Ortiz, Jordi; Franco, Rafael

    2011-02-18

    Previously, using artificial cell systems, we identified receptor heteromers between the dopamine D(1) or D(2) receptors and the histamine H(3) receptor. In addition, we demonstrated two biochemical characteristics of the dopamine D(1) receptor-histamine H(3) receptor heteromer. We have now extended this work to show the dopamine D(1) receptor-histamine H(3) receptor heteromer exists in the brain and serves to provide a novel link between the MAPK pathway and the GABAergic neurons in the direct striatal efferent pathway. Using the biochemical characteristics identified previously, we found that the ability of H(3) receptor activation to stimulate p44 and p42 extracellular signal-regulated MAPK (ERK 1/2) phosphorylation was only observed in striatal slices of mice expressing D(1) receptors but not in D(1) receptor-deficient mice. On the other hand, the ability of both D(1) and H(3) receptor antagonists to block MAPK activation induced by either D(1) or H(3) receptor agonists was also found in striatal slices. Taken together, these data indicate the occurrence of D(1)-H(3) receptor complexes in the striatum and, more importantly, that H(3) receptor agonist-induced ERK 1/2 phosphorylation in striatal slices is mediated by D(1)-H(3) receptor heteromers. Moreover, H(3) receptor-mediated phospho-ERK 1/2 labeling co-distributed with D(1) receptor-containing but not with D(2) receptor-containing striatal neurons. These results indicate that D(1)-H(3) receptor heteromers work as processors integrating dopamine- and histamine-related signals involved in controlling the function of striatal neurons of the direct striatal pathway.

  2. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAA receptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons. PMID:24379976

  3. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    Science.gov (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo.

  4. Translational downregulation of the noncatalytic growth factor receptor TrkB.T1 by ischemic preconditioning of primary neurons.

    Science.gov (United States)

    Steinbeck, Julius A; Methner, Axel

    2005-01-01

    Short episodes of ischemia can protect neuronal cells and tissue against a subsequent lethal ischemia by a phenomenon called ischemic preconditioning. The development of this tolerance depends on protein synthesis and takes at least 1 day. It therefore seems reasonable that preconditioning leads to upregulation and translation of protective genes or posttranslational modification of pro- or antiapoptotic proteins. We recently used suppression subtractive hybridization to identify transcripts upregulated in rat primary neuronal cultures preconditioned by oxygen glucose deprivation. In this contribution, we describe the previously unknown 7-kb full-length sequence of an upregulated expressed sequence tag and show that it constitutes the 3' end of the large untranslated region of the noncatalytic "truncated" growth factor receptor TrkB.T1. TrkB.T1 is expressed most prominently in the adult brain and its mRNA was found to be 2.1-fold upregulated by ischemic preconditioning. At the protein level, however, TrkB.T1 was clearly downregulated, possibly by increased degradation in preconditioned cultures. TrKB.T1 can act as a dominant-negative inhibitor of its catalytic counterpart TrkB, which is the receptor for brain-derived neurotrophic factor (BDNF), a factor induced by ischemia that can protect from ischemia-induced neuron loss. We hypothesize that the downregulation of TrkB.T1 at the protein level can prolong BDNF-mediated protective signaling via the catalytic receptor and thus participates in the development of ischemic preconditioning.

  5. The p75 neurotrophin receptor evades the endolysosomal route in neuronal cells, favouring multivesicular bodies specialised for exosomal release

    Science.gov (United States)

    Escudero, Claudia A.; Lazo, Oscal M.; Galleguillos, Carolina; Parraguez, Jose I.; Lopez-Verrilli, Maria A.; Cabeza, Carolina; Leon, Luisa; Saeed, Uzma; Retamal, Claudio; Gonzalez, Alfonso; Marzolo, Maria-Paz; Carter, Bruce D.; Court, Felipe A.; Bronfman, Francisca C.

    2014-01-01

    ABSTRACT The p75 neurotrophin receptor (p75, also known as NGFR) is a multifaceted signalling receptor that regulates neuronal physiology, including neurite outgrowth, and survival and death decisions. A key cellular aspect regulating neurotrophin signalling is the intracellular trafficking of their receptors; however, the post-endocytic trafficking of p75 is poorly defined. We used sympathetic neurons and rat PC12 cells to study the mechanism of internalisation and post-endocytic trafficking of p75. We found that p75 internalisation depended on the clathrin adaptor protein AP2 and on dynamin. More surprisingly, p75 evaded the lysosomal route at the level of the early endosome, instead accumulating in two different types of endosomes, Rab11-positive endosomes and multivesicular bodies (MVBs) positive for CD63, a marker of the exosomal pathway. Consistently, depolarisation by KCl induced the liberation of previously endocytosed full-length p75 into the extracellular medium in exosomes. Thus, p75 defines a subpopulation of MVBs that does not mature to lysosomes and is available for exosomal release by neuronal cells. PMID:24569882

  6. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hoang Nguyen

    2013-01-01

    Full Text Available The substantia gelatinosa (SG of the trigeminal subnucleus caudalis (Vc has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AAR