WorldWideScience

Sample records for neuronal firing patterns

  1. Pattern formation and firing synchronization in networks of map neurons

    International Nuclear Information System (INIS)

    Wang Qingyun; Duan Zhisheng; Huang Lin; Chen Guanrong; Lu Qishao

    2007-01-01

    Patterns and collective phenomena such as firing synchronization are studied in networks of nonhomogeneous oscillatory neurons and mixtures of oscillatory and excitable neurons, with dynamics of each neuron described by a two-dimensional (2D) Rulkov map neuron. It is shown that as the coupling strength is increased, typical patterns emerge spatially, which propagate through the networks in the form of beautiful target waves or parallel ones depending on the size of networks. Furthermore, we investigate the transitions of firing synchronization characterized by the rate of firing when the coupling strength is increased. It is found that there exists an intermediate coupling strength; firing synchronization is minimal simultaneously irrespective of the size of networks. For further increasing the coupling strength, synchronization is enhanced. Since noise is inevitable in real neurons, we also investigate the effects of white noise on firing synchronization for different networks. For the networks of oscillatory neurons, it is shown that firing synchronization decreases when the noise level increases. For the missed networks, firing synchronization is robust under the noise conditions considered in this paper. Results presented in this paper should prove to be valuable for understanding the properties of collective dynamics in real neuronal networks

  2. A hidden Markov model approach to neuron firing patterns.

    Science.gov (United States)

    Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G

    1996-11-01

    Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.

  3. Relating neuronal firing patterns to functional differentiation of cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Shigeru Shinomoto

    2009-07-01

    Full Text Available It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also vary among cytoarchitectonically unique cortical areas. To examine how neuronal signaling patterns are related to innate cortical functions, we detected intrinsic features of cortical firing by devising a metric that efficiently isolates non-Poisson irregular characteristics, independent of spike rate fluctuations that are caused extrinsically by ever-changing behavioral conditions. Using the new metric, we analyzed spike trains from over 1,000 neurons in 15 cortical areas sampled by eight independent neurophysiological laboratories. Analysis of firing-pattern dissimilarities across cortical areas revealed a gradient of firing regularity that corresponded closely to the functional category of the cortical area; neuronal spiking patterns are regular in motor areas, random in the visual areas, and bursty in the prefrontal area. Thus, signaling patterns may play an important role in function-specific cerebral cortical computation.

  4. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    Science.gov (United States)

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  5. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    Science.gov (United States)

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  6. Firing Patterns and Transitions in Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Mei-Sheng, Li; Qi-Shao, Lu; Li-Xia, Duan; Qing-Yun, Wang

    2008-01-01

    To reveal the dynamics of neuronal networks with pacemakers, the firing patterns and their transitions are investigated in a ring HR neuronal network with gap junctions under the control of a pacemaker. Compared with the situation without pacemaker, the neurons in the network can exhibit various firing patterns as the external current is applied or the coupling strength of pacemaker varies. The results are beneficial for understanding the complex cooperative behaviour of large neural assemblies with pacemaker control

  7. Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema.

    Science.gov (United States)

    McKenzie, Sam; Robinson, Nick T M; Herrera, Lauren; Churchill, Jordana C; Eichenbaum, Howard

    2013-06-19

    According to schema theory as proposed by Piaget and Bartlett, learning involves the assimilation of new memories into networks of preexisting knowledge, as well as alteration of the original networks to accommodate the new information. Recent evidence has shown that rats form a schema of goal locations and that the hippocampus plays an essential role in adding new memories to the spatial schema. Here we examined the nature of hippocampal contributions to schema updating by monitoring firing patterns of multiple CA1 neurons as rats learned new goal locations in an environment in which there already were multiple goals. Before new learning, many neurons that fired on arrival at one goal location also fired at other goals, whereas ensemble activity patterns also distinguished different goal events, thus constituting a neural representation that linked distinct goals within a spatial schema. During new learning, some neurons began to fire as animals approached the new goals. These were primarily the same neurons that fired at original goals, the activity patterns at new goals were similar to those associated with the original goals, and new learning also produced changes in the preexisting goal-related firing patterns. After learning, activity patterns associated with the new and original goals gradually diverged, such that initial generalization was followed by a prolonged period in which new memories became distinguished within the ensemble representation. These findings support the view that consolidation involves assimilation of new memories into preexisting neural networks that accommodate relationships among new and existing memories.

  8. Sequentially firing neurons confer flexible timing in neural pattern generators

    International Nuclear Information System (INIS)

    Urban, Alexander; Ermentrout, Bard

    2011-01-01

    Neuronal networks exhibit a variety of complex spatiotemporal patterns that include sequential activity, synchrony, and wavelike dynamics. Inhibition is the primary means through which such patterns are implemented. This behavior is dependent on both the intrinsic dynamics of the individual neurons as well as the connectivity patterns. Many neural circuits consist of networks of smaller subcircuits (motifs) that are coupled together to form the larger system. In this paper, we consider a particularly simple motif, comprising purely inhibitory interactions, which generates sequential periodic dynamics. We first describe the dynamics of the single motif both for general balanced coupling (all cells receive the same number and strength of inputs) and then for a specific class of balanced networks: circulant systems. We couple these motifs together to form larger networks. We use the theory of weak coupling to derive phase models which, themselves, have a certain structure and symmetry. We show that this structure endows the coupled system with the ability to produce arbitrary timing relationships between symmetrically coupled motifs and that the phase relationships are robust over a wide range of frequencies. The theory is applicable to many other systems in biology and physics.

  9. The chronotron: a neuron that learns to fire temporally precise spike patterns.

    Directory of Open Access Journals (Sweden)

    Răzvan V Florian

    Full Text Available In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons, one that provides high memory capacity (E-learning, and one that has a higher biological plausibility (I-learning. With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.

  10. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    Science.gov (United States)

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Adaptation in the visual cortex: influence of membrane trajectory and neuronal firing pattern on slow afterpotentials.

    Directory of Open Access Journals (Sweden)

    Vanessa F Descalzo

    Full Text Available The input/output relationship in primary visual cortex neurons is influenced by the history of the preceding activity. To understand the impact that membrane potential trajectory and firing pattern has on the activation of slow conductances in cortical neurons we compared the afterpotentials that followed responses to different stimuli evoking similar numbers of action potentials. In particular, we compared afterpotentials following the intracellular injection of either square or sinusoidal currents lasting 20 seconds. Both stimuli were intracellular surrogates of different neuronal responses to prolonged visual stimulation. Recordings from 99 neurons in slices of visual cortex revealed that for stimuli evoking an equivalent number of spikes, sinusoidal current injection activated a slow afterhyperpolarization of significantly larger amplitude (8.5 ± 3.3 mV and duration (33 ± 17 s than that evoked by a square pulse (6.4 ± 3.7 mV, 28 ± 17 s; p<0.05. Spike frequency adaptation had a faster time course and was larger during plateau (square pulse than during intermittent (sinusoidal depolarizations. Similar results were obtained in 17 neurons intracellularly recorded from the visual cortex in vivo. The differences in the afterpotentials evoked with both protocols were abolished by removing calcium from the extracellular medium or by application of the L-type calcium channel blocker nifedipine, suggesting that the activation of a calcium-dependent current is at the base of this afterpotential difference. These findings suggest that not only the spikes, but the membrane potential values and firing patterns evoked by a particular stimulation protocol determine the responses to any subsequent incoming input in a time window that spans for tens of seconds to even minutes.

  12. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin.

    NARCIS (Netherlands)

    Kleine, B.U.; Stegeman, D.F.; Schelhaas, H.J.; Zwarts, M.J.

    2008-01-01

    BACKGROUND: In amyotrophic lateral sclerosis (ALS), the origin of fasciculations is disputed. We hypothesized that the discharge pattern of fasciculation potentials (FPs) would be different for FPs arising in the motor axon or in the spinal motor neuron. METHOD: FPs were recorded by high-density

  13. Firing dynamics of an autaptic neuron

    International Nuclear Information System (INIS)

    Wang Heng-Tong; Chen Yong

    2015-01-01

    Autapses are synapses that connect a neuron to itself in the nervous system. Previously, both experimental and theoretical studies have demonstrated that autaptic connections in the nervous system have a significant physiological function. Autapses in nature provide self-delayed feedback, thus introducing an additional timescale to neuronal activities and causing many dynamic behaviors in neurons. Recently, theoretical studies have revealed that an autapse provides a control option for adjusting the response of a neuron: e.g., an autaptic connection can cause the electrical activities of the Hindmarsh–Rose neuron to switch between quiescent, periodic, and chaotic firing patterns; an autapse can enhance or suppress the mode-locking status of a neuron injected with sinusoidal current; and the firing frequency and interspike interval distributions of the response spike train can also be modified by the autapse. In this paper, we review recent studies that showed how an autapse affects the response of a single neuron. (topical review)

  14. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    Science.gov (United States)

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    Science.gov (United States)

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  17. Firing probability and mean firing rates of human muscle vasoconstrictor neurones are elevated during chronic asphyxia

    DEFF Research Database (Denmark)

    Ashley, Cynthia; Burton, Danielle; Sverrisdottir, Yrsa B

    2010-01-01

    in the obstructive sleep apnoea syndrome (OSAS) is associated with an increase in firing probability and mean firing rate, and an increase in multiple within-burst firing. Here we characterize the firing properties of muscle vasoconstrictor neurones in patients with chronic obstructive pulmonary disease (COPD), who...... are chronically asphyxic. We tested the hypothesis that this elevated chemical drive would shift the firing pattern from that seen in healthy subjects to that seen in OSAS. The mean firing probability (52%) and mean firing rate (0.92 Hz) of 17 muscle vasoconstrictor neurones recorded in COPD were comparable...

  18. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu eLi

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  19. Dynamical behaviour of the firing in coupled neuronal system

    International Nuclear Information System (INIS)

    Wei Wang; Perez, G.; Cerdeira, H.A.

    1993-03-01

    The time interval sequences and the spatio-temporal patterns of the firings of a coupled neuronal network are investigated in this paper. For a single neuron stimulated by an external stimulus I, the time interval sequences show a low frequency firing of bursts of spikes, and reversed period-doubling cascade to a high frequency repetitive firing state as the stimulus I is increased. For two neurons coupled to each other through the firing of the spikes, the complexity of the time interval sequences becomes simple as the coupling strength increases. A network with large numbers of neurons shows a complex spatio-temporal pattern structure. As the coupling strength increases, the numbers of phase locked neurons increase and the time interval diagram shows temporal chaos and a bifurcation in the space. The dynamical behaviour is also verified by the Lyapunov exponent. (author). 17 refs, 6 figs

  20. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.

    Science.gov (United States)

    Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey

    2016-10-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.

  1. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  2. Firing patterns in the adaptive exponential integrate-and-fire model.

    Science.gov (United States)

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  3. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  4. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Okada

    Full Text Available The pedunculopontine tegmental nucleus (PPTN has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.

  5. Noise adaptation in integrate-and fire neurons.

    Science.gov (United States)

    Rudd, M E; Brown, L G

    1997-07-01

    The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.

  6. A memristive spiking neuron with firing rate coding

    Directory of Open Access Journals (Sweden)

    Marina eIgnatov

    2015-10-01

    Full Text Available Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2 and on the chemical electromigration cell Ag/TiO2-x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  7. Adrenergic receptor-mediated modulation of striatal firing patterns.

    Science.gov (United States)

    Ohta, Hiroyuki; Kohno, Yu; Arake, Masashi; Tamura, Risa; Yukawa, Suguru; Sato, Yoshiaki; Morimoto, Yuji; Nishida, Yasuhiro; Yawo, Hiromu

    2016-11-01

    Although noradrenaline and adrenaline are some of the most important neurotransmitters in the central nervous system, the effects of noradrenergic/adrenergic modulation on the striatum have not been determined. In order to explore the effects of adrenergic receptor (AR) agonists on the striatal firing patterns, we used optogenetic methods which can induce continuous firings. We employed transgenic rats expressing channelrhodopsin-2 (ChR2) in neurons. The medium spiny neuron showed a slow rising depolarization during the 1-s long optogenetic striatal photostimulation and a residual potential with 8.6-s half-life decay after the photostimulation. As a result of the residual potential, five repetitive 1-sec long photostimulations with 20-s onset intervals cumulatively increased the number of spikes. This 'firing increment', possibly relating to the timing control function of the striatum, was used to evaluate the AR modulation. The β-AR agonist isoproterenol decreased the firing increment between the 1st and 5th stimulation cycles, while the α 1 -AR agonist phenylephrine enhanced the firing increment. Isoproterenol and adrenaline increased the early phase (0-0.5s of the photostimulation) firing response. This adrenergic modulation was inhibited by the β-antagonist propranolol. Conversely, phenylephrine and noradrenaline reduced the early phase response. β-ARs and α 1 -ARs work in opposition controlling the striatal firing initiation and the firing increment. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  8. Intrinsic modulation of pulse-coupled integrate-and-fire neurons

    Science.gov (United States)

    Coombes, S.; Lord, G. J.

    1997-11-01

    Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the synaptic transmission process and dendritic structure as well as discrete delays associated with axonal communication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis, numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchronous behavior, the strength of electrical synapses can control the firing rate of the system.

  9. TETRAMETHRIN AND DDT INHIBIT SPONTANEOUS FIRING IN CORTICAL NEURONAL NETWORKS

    Science.gov (United States)

    The insecticidal and neurotoxic effects of pyrethroids result from prolonged sodium channel inactivation, which causes alterations in neuronal firing and communication. Previously, we determined the relative potencies of 11 type I and type II pyrethroid insecticides using microel...

  10. Connectivities and synchronous firing in cortical neuronal networks

    International Nuclear Information System (INIS)

    Jia, L.C.; Sano, M.; Lai, P.-Y.; Chan, C.K.

    2004-01-01

    Network connectivities (k-bar) of cortical neural cultures are studied by synchronized firing and determined from measured correlations between fluorescence intensities of firing neurons. The bursting frequency (f) during synchronized firing of the networks is found to be an increasing function of k-bar. With f taken to be proportional to k-bar, a simple random model with a k-bar dependent connection probability p(k-bar) has been constructed to explain our experimental findings successfully

  11. Neuronal firing in the globus pallidus internus and the ventrolateral thalamus related to parkinsonian motor symptoms

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai; ZHUANG Ping; ZHANG Yu-qing; LI Jian-yu; LI Yong-jie

    2009-01-01

    Background It has been proposed that parkinsonian motor signs result from hyperactivity in the output nucleus of the basal ganglia, which suppress the motor thalamus and cortical areas. This study aimed to explore the neuronal activity in the globus pallidus internus (GPi) and the ventrolateral thalamic nuclear group (ventral oral posterior/ventral intermediate, Vop/Vim) in patients with Parkinson's disease (PD).Methods Twenty patients with PD who underwent neurosurgery were studied. Microelectrode recording was performed in the GPi (n=10) and the Vop/Vim (n=10) intraoperatively. Electromyography (EMG) contralateral to the surgery was simultaneously performed. Single unit analysis was carried out. The interspike intervals (ISI) and coefficient of variation (CV) of ISI were calculated. Histograms of ISI were constructed. A unified Parkinson's disease rating scale (UPDRS) was used to assess the clinical outcome of surgery.Results Three hundred and sixty-three neurons were obtained from 20 trajectories. Of 175 GPi neurons, there were 15.4% with tremor frequency, 69.2% with tonic firing, and 15.4% with irregular discharge. Of 188 thalamic neurons, there were 46.8% with tremor frequency, 22.9% with tonic firing, and 30.3% with irregular discharge. The numbers of three patterns of neuron in GPi and Vop/Vim were significantly different (P <0.001). ISI analysis revealed that mean firing rate of the three patterns of GPi neurons was (80.9±63.9) Hz (n=78), which was higher than similar neurons with 62.9 Hz in a normal primate. For the Vop/Vim group, ISI revealed that mean firing rate of the three patterns of neurons (n=95) was (23.2±17.1) Hz which was lower than similar neurons with 30 Hz in the motor thalamus of normal primates. UPDRS indicated that the clinical outcome of pallidotomy was (64.3±9.5)%, (83.4±19.1)% and (63.4±36.3)%, and clinical outcome of thalamotomy was (92.2±12.9)%, (68.0±25.2)% and (44.3±27.2)% for tremor, rigidity and bradykinesia, respectively

  12. Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons

    Science.gov (United States)

    Ratas, Irmantas; Pyragas, Kestutis

    2017-10-01

    We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently spiking and excitable neurons. The coupling within and between the populations is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size networks.

  13. Bayesian nonparametric modeling for comparison of single-neuron firing intensities.

    Science.gov (United States)

    Kottas, Athanasios; Behseta, Sam

    2010-03-01

    We propose a fully inferential model-based approach to the problem of comparing the firing patterns of a neuron recorded under two distinct experimental conditions. The methodology is based on nonhomogeneous Poisson process models for the firing times of each condition with flexible nonparametric mixture prior models for the corresponding intensity functions. We demonstrate posterior inferences from a global analysis, which may be used to compare the two conditions over the entire experimental time window, as well as from a pointwise analysis at selected time points to detect local deviations of firing patterns from one condition to another. We apply our method on two neurons recorded from the primary motor cortex area of a monkey's brain while performing a sequence of reaching tasks.

  14. Integrate-and-fire neurons driven by asymmetric dichotomous noise.

    Science.gov (United States)

    Droste, Felix; Lindner, Benjamin

    2014-12-01

    We consider a general integrate-and-fire (IF) neuron driven by asymmetric dichotomous noise. In contrast to the Gaussian white noise usually used in the so-called diffusion approximation, this noise is colored, i.e., it exhibits temporal correlations. We give an analytical expression for the stationary voltage distribution of a neuron receiving such noise and derive recursive relations for the moments of the first passage time density, which allow us to calculate the firing rate and the coefficient of variation of interspike intervals. We study how correlations in the input affect the rate and regularity of firing under variation of the model's parameters for leaky and quadratic IF neurons. Further, we consider the limit of small correlation times and find lowest order corrections to the first passage time moments to be proportional to the square root of the correlation time. We show analytically that to this lowest order, correlations always lead to a decrease in firing rate for a leaky IF neuron. All theoretical expressions are compared to simulations of leaky and quadratic IF neurons.

  15. Midcervical neuronal discharge patterns during and following hypoxia

    Science.gov (United States)

    Sandhu, M. S.; Baekey, D. M.; Maling, N. G.; Sanchez, J. C.; Reier, P. J.

    2014-01-01

    Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3–C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3–C4 lamina I–IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3–C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia. PMID:25552641

  16. A hydroclimatic model of global fire patterns

    Science.gov (United States)

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  17. Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow

    Directory of Open Access Journals (Sweden)

    Milena Raffi

    2017-01-01

    Full Text Available The cortical representation of visual perception requires the integration of several-signal processing distributed across many cortical areas, but the neural substrates of such perception are largely unknown. The type of firing pattern exhibited by single neurons is an important indicator of dynamic circuitry within or across cortical areas. Neurons in area PEc are involved in the spatial mapping of the visual field; thus, we sought to analyze the firing pattern of activity of PEc optic flow neurons to shed some light on the cortical processing of visual signals. We quantified the firing activity of 152 optic flow neurons using a spline interpolation function, which allowed determining onset, end, and latency of each neuronal response. We found that many PEc neurons showed multiphasic activity, which is strictly related to the position of the eye and to the position of the focus of expansion (FOE of the flow field. PEc neurons showed a multiphasic activity comprised of excitatory phases interspersed with inhibitory pauses. This phasic pattern seems to be a very efficient way to signal the spatial location of visual stimuli, given that the same neuron sends different firing patterns according to a specific combination of FOE/eye position.

  18. Modeling the differentiation of A- and C-type baroreceptor firing patterns

    DEFF Research Database (Denmark)

    Sturdy, Jacob; Ottesen, Johnny T.; Olufsen, Mette

    2017-01-01

    The baroreceptor neurons serve as the primary transducers of blood pressure for the autonomic nervous system and are thus critical in enabling the body to respond effectively to changes in blood pressure. These neurons can be separated into two types (A and C) based on the myelination...... of their axons and their distinct firing patterns elicited in response to specific pressure stimuli. This study has developed a comprehensive model of the afferent baroreceptor discharge built on physiological knowledge of arterial wall mechanics, firing rate responses to controlled pressure stimuli, and ion...

  19. Neurons the decision makers, Part I: The firing function of a single neuron.

    Science.gov (United States)

    Saaty, Thomas

    2017-02-01

    This paper is concerned with understanding synthesis of electric signals in the neural system based on making pairwise comparisons. Fundamentally, every person and every animal are born with the talent to compare stimuli from things that share properties in space or over time. Comparisons always need experience to distinguish among things. Pairwise comparisons are numerically reciprocal. If a value is assigned to the larger of two elements that have a given property when compared with the smaller one, then the smaller has the reciprocal of that value when compared with the larger. Because making comparisons requires the reciprocal property, we need mathematics that can cope with division. There are four division algebras that would allow us to use our reciprocals arising from comparisons: The real numbers, the complex numbers, the non-commutative quaternions and the non-associative octonions. Rather than inferring function as from electric flow in a network, in this paper we infer the flow from function. Neurons fire in response to stimuli and their firings vary relative to the intensities of the stimuli. We believe neurons use some kind of pairwise comparison mechanism to determine when to fire based on the stimuli they receive. The ideas we develop here about flows are used to deduce how a system based on this kind of firing determination works and can be described. Furthermore the firing of neurons requires continuous comparisons. To develop a formula describing the output of these pairwise comparisons requires solving Fredholm's equation of the second kind which is satisfied if and only if a simple functional equation has solutions. The Fourier transform of the real solution of this equation leads to inverse square laws like those that are common in physics. The Fourier transform applied to a complex valued solution leads to Dirac type of firings. Such firings are dense in the very general fields of functions known as Sobolev spaces and thus can be used to

  20. Chimera patterns in two-dimensional networks of coupled neurons

    Science.gov (United States)

    Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2017-03-01

    We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.

  1. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Directory of Open Access Journals (Sweden)

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  2. Deep brain stimulation changes basal ganglia output nuclei firing pattern in the dystonic hamster.

    Science.gov (United States)

    Leblois, Arthur; Reese, René; Labarre, David; Hamann, Melanie; Richter, Angelika; Boraud, Thomas; Meissner, Wassilios G

    2010-05-01

    Dystonia is a heterogeneous syndrome of movement disorders characterized by involuntary muscle contractions leading to abnormal movements and postures. While medical treatment is often ineffective, deep brain stimulation (DBS) of the internal pallidum improves dystonia. Here, we studied the impact of DBS in the entopeduncular nucleus (EP), the rodent equivalent of the human globus pallidus internus, on basal ganglia output in the dt(sz)-hamster, a well-characterized model of dystonia by extracellular recordings. Previous work has shown that EP-DBS improves dystonic symptoms in dt(sz)-hamsters. We report that EP-DBS changes firing pattern in the EP, most neurons switching to a less regular firing pattern during DBS. In contrast, EP-DBS did not change the average firing rate of EP neurons. EP neurons display multiphasic responses to each stimulation impulse, likely underlying the disruption of their firing rhythm. Finally, neurons in the substantia nigra pars reticulata display similar responses to EP-DBS, supporting the idea that EP-DBS affects basal ganglia output activity through the activation of common afferent fibers. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise

    Directory of Open Access Journals (Sweden)

    Loreen eHertäg

    2014-09-01

    Full Text Available Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing a mathematical description as simple as possible. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF which consists of two differential equations for the membrane potential (V and an adaptation current (w. Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the $w$ variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  4. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise.

    Science.gov (United States)

    Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas

    2014-01-01

    Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.

  5. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro

    Science.gov (United States)

    Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth

    2004-01-01

    In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047

  6. Codimension-two bifurcation analysis on firing activities in Chay neuron model

    International Nuclear Information System (INIS)

    Duan Lixia; Lu Qishao

    2006-01-01

    Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing

  7. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  8. Codimension-two bifurcation analysis on firing activities in Chay neuron model

    Energy Technology Data Exchange (ETDEWEB)

    Duan Lixia [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)]. E-mail: qishaolu@hotmail.com

    2006-12-15

    Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing.

  9. The Impact of Stimulation Induced Short Term Synaptic Plasticity on Firing Patterns in the Globus Pallidus of the Rat

    Directory of Open Access Journals (Sweden)

    Jenia eBugaysen

    2011-03-01

    Full Text Available Electrical stimulation in the globus pallidus (GP leads to complex modulations of neuronal activity in the stimulated nucleus. Multiple in-vivo studies have demonstrated the modulation of both firing rates and patterns during and immediately following the GP stimulation. Previous in-vitro studies, together with computational studies, have suggested the involvement of short-term synaptic plasticity (STP during the stimulation. The aim of the current study was to explore in-vitro the effects of STP on neuronal activity of GP neurons during local repetitive stimulation. We recorded synaptic potentials and assessed the modulations of spontaneous firing in a postsynaptic neuron in acute brain slices via a whole-cell pipette. Low-frequency repetitive stimulation locked the firing of the neuron to the stimulus. However, high-frequency repetitive stimulation in the GP generated a biphasic modulation of the firing frequency consisting of inhibitory and excitatory phases. Using blockers of synaptic transmission, we show that GABAergic synapses mediated the inhibitory and glutamatergic synapses the excitatory part of the response. Furthermore, we report that at high stimulation frequencies both types of synapses undergo short-term depression leading to a time dependent modulation of the neuronal firing. These findings indicate that STP modulates the dynamic responses of pallidal activity during electrical stimulation, and may contribute to a better understanding of the mechanism underlying deep brain stimulation (DBS like protocols.

  10. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  11. The Morris-Lecar neuron model embeds a leaky integrate-and-fire model

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Greenwood, Priscilla

    2013-01-01

    We showthat the stochastic Morris–Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a leaky integrate-and-fire (LIF) model prior to firing...

  12. Differential Activation of Fast-Spiking and Regular-Firing Neuron Populations During Movement and Reward in the Dorsal Medial Frontal Cortex

    Science.gov (United States)

    Insel, Nathan; Barnes, Carol A.

    2015-01-01

    The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory–excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state. PMID:24700585

  13. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  14. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.

    Science.gov (United States)

    Albéri, Lavinia; Lintas, Alessandra; Kretz, Robert; Schwaller, Beat; Villa, Alessandro E P

    2013-06-01

    The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

  15. Simple and effective graphene laser processing for neuron patterning application

    Science.gov (United States)

    Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno

    2013-06-01

    A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors.

  16. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    Science.gov (United States)

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  17. Increasing inhibitory input increases neuronal firing rate: why and when? Diffusion process cases

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University (United Kingdom)]. E-mail: jf218@cam.ac.uk; Wei Gang [Department of Mathematics, Hong Kong Baptist University, Hong Kong (China)]. E-mail gwei@math.hkbu.edu.hk

    2001-09-21

    Increasing inhibitory input to single neuronal models, such as the FitzHugh-Nagumo model and the Hodgkin-Huxley model, can sometimes increase their firing rates, a phenomenon which we term inhibition-boosted firing (IBF). Here we consider neuronal models with diffusion approximation inputs, i.e. they share the identical first- and second-order statistics of the corresponding Poisson process inputs. Using the integrate-and-fire model and the IF-FHN model, we explore theoretically how and when IBF can happen. For both models, it is shown that there is a critical input frequency at which the efferent firing rate is identical when the neuron receives purely excitatory inputs or exactly balanced inhibitory and excitatory inputs. When the input frequency is lower than the critical frequency, IBF occurs. (author)

  18. Growth of large patterned arrays of neurons using plasma methods

    International Nuclear Information System (INIS)

    Brown, I G; Bjornstad, K A; Blakely, E A; Galvin, J E; Monteiro, O R; Sangyuenyongpipat, S

    2003-01-01

    To understand how large systems of neurons communicate, we need to develop, among other things, methods for growing patterned networks of large numbers of neurons. Success with this challenge will be important to our understanding of how the brain works, as well as to the development of novel kinds of computer architecture that may parallel the organization of the brain. We have investigated the use of metal ion implantation using a vacuum-arc ion source, and plasma deposition with a filtered vacuum-arc system, as a means of forming regions of selective neuronal attachment on surfaces. Lithographic patterns created by the treating surface with ion species that enhance or inhibit neuronal cell attachment allow subsequent proliferation and/or differentiation of the neurons to form desired patterned neural arrays. In the work described here, we used glass microscope slides as substrates, and some of the experiments made use of simple masks to form patterns of ion beam or plasma deposition treated regions. PC-12 rat neurons were then cultured on the treated substrates coated with Type I Collagen, and the growth and differentiation was monitored. Particularly good selective growth was obtained using plasma deposition of diamond-like carbon films of about one hundred Angstroms thickness. Neuron proliferation and the elaboration of dendrites and axons after the addition of nerve growth factor both showed excellent contrast, with prolific growth and differentiation on the treated surfaces and very low growth on the untreated surfaces

  19. Growth of large patterned arrays of neurons using plasma methods

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I G; Bjornstad, K A; Blakely, E A; Galvin, J E; Monteiro, O R; Sangyuenyongpipat, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2003-05-01

    To understand how large systems of neurons communicate, we need to develop, among other things, methods for growing patterned networks of large numbers of neurons. Success with this challenge will be important to our understanding of how the brain works, as well as to the development of novel kinds of computer architecture that may parallel the organization of the brain. We have investigated the use of metal ion implantation using a vacuum-arc ion source, and plasma deposition with a filtered vacuum-arc system, as a means of forming regions of selective neuronal attachment on surfaces. Lithographic patterns created by the treating surface with ion species that enhance or inhibit neuronal cell attachment allow subsequent proliferation and/or differentiation of the neurons to form desired patterned neural arrays. In the work described here, we used glass microscope slides as substrates, and some of the experiments made use of simple masks to form patterns of ion beam or plasma deposition treated regions. PC-12 rat neurons were then cultured on the treated substrates coated with Type I Collagen, and the growth and differentiation was monitored. Particularly good selective growth was obtained using plasma deposition of diamond-like carbon films of about one hundred Angstroms thickness. Neuron proliferation and the elaboration of dendrites and axons after the addition of nerve growth factor both showed excellent contrast, with prolific growth and differentiation on the treated surfaces and very low growth on the untreated surfaces.

  20. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    Science.gov (United States)

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  1. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    Science.gov (United States)

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  2. Quantum pattern recognition with multi-neuron interactions

    Science.gov (United States)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  3. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.

    Science.gov (United States)

    Fröhlich, Dominik; Kuo, Wen Ping; Frühbeis, Carsten; Sun, Jyh-Jang; Zehendner, Christoph M; Luhmann, Heiko J; Pinto, Sheena; Toedling, Joern; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2014-09-26

    Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  5. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.

    Science.gov (United States)

    Ma, Weiyuan; Berg, Jim; Yellen, Gary

    2007-04-04

    A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.

  6. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    Science.gov (United States)

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  7. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  8. Three-dimensional chimera patterns in networks of spiking neuron oscillators

    Science.gov (United States)

    Kasimatis, T.; Hizanidis, J.; Provata, A.

    2018-05-01

    We study the stable spatiotemporal patterns that arise in a three-dimensional (3D) network of neuron oscillators, whose dynamics is described by the leaky integrate-and-fire (LIF) model. More specifically, we investigate the form of the chimera states induced by a 3D coupling matrix with nonlocal topology. The observed patterns are in many cases direct generalizations of the corresponding two-dimensional (2D) patterns, e.g., spheres, layers, and cylinder grids. We also find cylindrical and "cross-layered" chimeras that do not have an equivalent in 2D systems. Quantitative measures are calculated, such as the ratio of synchronized and unsynchronized neurons as a function of the coupling range, the mean phase velocities, and the distribution of neurons in mean phase velocities. Based on these measures, the chimeras are categorized in two families. The first family of patterns is observed for weaker coupling and exhibits higher mean phase velocities for the unsynchronized areas of the network. The opposite holds for the second family, where the unsynchronized areas have lower mean phase velocities. The various measures demonstrate discontinuities, indicating criticality as the parameters cross from the first family of patterns to the second.

  9. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  10. Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex.

    Science.gov (United States)

    Gabbott, Paul L; Rolls, Edmund T

    2013-06-01

    The medial prefrontal cortex (mPFC) of humans and macaques is an integral part of the default mode network and is a brain region that shows increased activation in the resting state. A previous paper from our laboratory reported significantly increased firing rates of neurons in the macaque subgenual cingulate cortex, Brodmann area (BA) 25, during disengagement from a task and also during slow wave sleep [E.T. Rolls et al. (2003) J. Neurophysiology, 90, 134-142]. Here we report the finding that there are neurons in other areas of mPFC that also increase their firing rates during disengagement from a task, drowsiness and eye-closure. During the neurophysiological recording of single mPFC cells (n = 249) in BAs 9, 10, 13 m, 14c, 24b and especially pregenual area 32, populations of neurons were identified whose firing rates altered significantly with eye-closure compared with eye-opening. Three types of neuron were identified: Type 1 cells (28.1% of the total population) significantly increased (mean + 329%; P ≪ 0.01) their average firing rate with eye-closure, from 3.1 spikes/s when awake to 10.2 spikes/s when asleep; Type 2 cells (6.0%) significantly decreased (mean -68%; P areas of mPFC, implicated in the anterior default mode network, there is a substantial population of neurons that significantly increase their firing rates during periods of eye-closure. Such neurons may be part of an interconnected network of distributed brain regions that are more active during periods of relaxed wakefulness than during attention-demanding tasks. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Monkey pulvinar neurons fire differentially to snake postures.

    Science.gov (United States)

    Le, Quan Van; Isbell, Lynne A; Matsumoto, Jumpei; Le, Van Quang; Hori, Etsuro; Tran, Anh Hai; Maior, Rafael S; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.

  12. Optimal Detection of a Localized Perturbation in Random Networks of Integrate-and-Fire Neurons

    Science.gov (United States)

    Bernardi, Davide; Lindner, Benjamin

    2017-06-01

    Experimental and theoretical studies suggest that cortical networks are chaotic and coding relies on averages over large populations. However, there is evidence that rats can respond to the short stimulation of a single cortical cell, a theoretically unexplained fact. We study effects of single-cell stimulation on a large recurrent network of integrate-and-fire neurons and propose a simple way to detect the perturbation. Detection rates obtained from simulations and analytical estimates are similar to experimental response rates if the readout is slightly biased towards specific neurons. Near-optimal detection is attained for a broad range of intermediate values of the mean coupling between neurons.

  13. Synchronization stability and pattern selection in a memristive neuronal network.

    Science.gov (United States)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  14. Synchronization stability and pattern selection in a memristive neuronal network

    Science.gov (United States)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  15. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Science.gov (United States)

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  16. The Edinger-Westphal nucleus of the juvenile rat contains transient- and repetitive-firing neurons

    DEFF Research Database (Denmark)

    Laursen, M; Rekling, J C

    2006-01-01

    Classically, the Edinger-Westphal nucleus is described as containing neurons controlling accommodation and pupillary constriction via projections to the ciliary ganglion. However, in several species including rat, some Edinger-Westphal neurons have ascending or descending CNS projections suggesting...... an immunohistochemical procedure directed at the peptide Urocortin, which is expressed in Edinger-Westphal neurons. Passive and active membrane responses were investigated and two different neuron types were identified. One type had a transient firing response to 400 ms depolarizing current pulses and one type had...... threshold Ca(2+) spikes were seen and these were blocked by nickel(II) chloride hexahydrate, suggesting that they are mediated via low voltage-activated Ca(2+) channels. Some biocytin-labeled neurons had axons or axonal collaterals projecting laterally or dorsally, suggesting possible non-ocular targets...

  17. Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice.

    Science.gov (United States)

    Vanacker, Charlotte; Moya, Manuel Ricu; DeFazio, R Anthony; Johnson, Michael L; Moenter, Suzanne M

    2017-10-01

    Pulsatile release of gonadotropin-releasing hormone (GnRH) is key to fertility. Pulse frequency is modulated by gonadal steroids and likely arises subsequent to coordination of GnRH neuron firing activity. The source of rhythm generation and the site of steroid feedback remain critical unanswered questions. Arcuate neurons that synthesize kisspeptin, neurokinin B, and dynorphin (KNDy) may be involved in both of these processes. We tested the hypotheses that action potential firing in KNDy neurons is episodic and that gonadal steroids regulate this pattern. Targeted extracellular recordings were made of green fluorescent protein-identified KNDy neurons in brain slices from adult male mice that were intact, castrated, or castrated and treated with estradiol or dihydrotestosterone (DHT). KNDy neurons exhibited marked peaks and nadirs in action potential firing activity during recordings lasting 1 to 3.5 hours. Peaks, identified by Cluster analysis, occurred more frequently in castrated than intact mice, and either estradiol or DHT in vivo or blocking neurokinin type 3 receptor in vitro restored peak frequency to intact levels. The frequency of peaks in firing rate and estradiol regulation of this frequency is similar to that observed for GnRH neurons, whereas DHT suppressed firing in KNDy but not GnRH neurons. We further examined the patterning of action potentials to identify bursts that may be associated with increased neuromodulator release. Burst frequency and duration are increased in castrated compared with intact and steroid-treated mice. The observation that KNDy neurons fire in an episodic manner that is regulated by steroid feedback is consistent with a role for these neurons in GnRH pulse generation and regulation. Copyright © 2017 Endocrine Society.

  18. Evaluating fire danger in Brazilian biomes: present and future patterns

    Science.gov (United States)

    Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata

    2017-04-01

    Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J

  19. Asymmetry in electrical coupling between neurons alters multistable firing behavior

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; García-Vellisca, M. A.

    2018-03-01

    The role of asymmetry in electrical synaptic connection between two neuronal oscillators is studied in the Hindmarsh-Rose model. We demonstrate that the asymmetry induces multistability in spiking dynamics of the coupled neuronal oscillators. The coexistence of at least three attractors, one chaotic and two periodic orbits, for certain coupling strengths is demonstrated with time series, phase portraits, bifurcation diagrams, basins of attraction of the coexisting states, Lyapunov exponents, and standard deviations of peak amplitudes and interspike intervals. The experimental results with analog electronic circuits are in good agreement with the results of numerical simulations.

  20. Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise

    Science.gov (United States)

    Paekivi, S.; Mankin, R.; Rekker, A.

    2017-10-01

    We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.

  1. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  2. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    Science.gov (United States)

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Time-warp invariant pattern detection with bursting neurons

    International Nuclear Information System (INIS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression

  4. How pattern formation in ring networks of excitatory and inhibitoryspiking neurons depends on the input current regime

    Directory of Open Access Journals (Sweden)

    Birgit eKriener

    2014-01-01

    Full Text Available Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics,specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningfulproperties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily.When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supercritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- orfluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability.In particular, if neurons are mean-driven, the linearization has a very simple form and becomesindependent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance areimportant parameters in the determination of the critical weight.We demonstrate that interestingly even in ``intermediate'' regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical couplingstrength. We moreover analyze the effects of structural randomness by rewiring individualsynapses or redistributing weights, as well as coarse-graining on pattern

  5. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime.

    Science.gov (United States)

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T

    2013-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of

  6. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.

    Science.gov (United States)

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  7. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Science.gov (United States)

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  8. Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3.

    Science.gov (United States)

    Crozier, Robert A; Davis, Robin L

    2014-07-16

    Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal and apical neurons obtained during the first 2 postnatal weeks from CBA/CaJ mice. We found that during this developmental time period neuron response properties changed from uniformly excitable to differentially plastic. Low-frequency, apical and high-frequency basal neurons at postnatal day 1 (P1)-P3 were predominantly slowly accommodating (SA), firing at low thresholds with little alteration in accommodation response mode induced by changes in resting membrane potential (RMP) or added neurotrophin-3 (NT-3). In contrast, P10-P14 apical and basal neurons were predominately rapidly accommodating (RA), had higher firing thresholds, and responded to elevation of RMP and added NT-3 by transitioning to the SA category without affecting the instantaneous firing rate. Therefore, older neurons appeared to be uniformly less excitable under baseline conditions yet displayed a previously unrecognized capacity to change response modes dynamically within a remarkably stable accommodation framework. Because the soma is interposed in the signal conduction pathway, these specializations can potentially lead to shaping and filtering of the transmitted signal. These results suggest that spiral ganglion neurons possess electrophysiological mechanisms that enable them to adapt their response properties to the characteristics of incoming stimuli and thus have the capacity to encode a wide spectrum of auditory information. Copyright © 2014 the authors 0270-6474/14/349688-15$15.00/0.

  9. Equilibrium and response properties of the integrate-and-fire neuron in discrete time

    Directory of Open Access Journals (Sweden)

    Moritz Helias

    2010-01-01

    Full Text Available The integrate-and-fire neuron with exponential postsynaptic potentials is a frequently employed model to study neural networks. Simulations in discrete time still have highest performance at moderate numerical errors, which makes them first choice for long-term simulations of plastic networks. Here we extend the population density approach to investigate how the equilibrium and response properties of the leaky integrate-and-fire neuron are affected by time discretization. We present a novel analytical treatment of the boundary condition at threshold, taking both discretization of time and finite synaptic weights into account. We uncover an increased membrane potential density just below threshold as the decisive property that explains the deviations found between simulations and the classical diffusion approximation. Temporal discretization and finite synaptic weights both contribute to this effect. Our treatment improves the standard formula to calculate the neuron’s equilibrium firing rate. Direct solution of the Markov process describing the evolution of the membrane potential density confirms our analysis and yields a method to calculate the firing rate exactly. Knowing the shape of the membrane potential distribution near threshold enables us to devise the transient response properties of the neuron model to synaptic input. We find a pronounced non-linear fast response component that has not been described by the prevailing continuous time theory for Gaussian white noise input.

  10. Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*

    Science.gov (United States)

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-01-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577

  11. Dynamic analysis and pattern visualization of forest fires.

    Science.gov (United States)

    Lopes, António M; Tenreiro Machado, J A

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

  12. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

    Science.gov (United States)

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416

  13. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    Science.gov (United States)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  14. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Science.gov (United States)

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  15. Auto- and Crosscorrelograms for the Spike Response of Leaky Integrate-and-Fire Neurons with Slow Synapses

    International Nuclear Information System (INIS)

    Moreno-Bote, Ruben; Parga, Nestor

    2006-01-01

    An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced previously by Moreno-Bote and Parga [Phys. Rev. Lett. 92, 028102 (2004)]. These two functions define the firing variability and firing synchronization between neurons, and are of much importance for understanding neuron communication

  16. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.

    Science.gov (United States)

    Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng

    2017-07-01

    Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P neurons in male rats. Furthermore, application of the specific OX 1 receptor antagonist SB-334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P neurons. Coapplication of SB-334867 completely blocked orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors.

    Science.gov (United States)

    Zhang, Yue; Kaneko, Ryosuke; Yanagawa, Yuchio; Saito, Yasuhiko

    2014-04-01

    Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Complex Behavior in an Integrate-and-Fire Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Lin Min; Chen Tianlun

    2005-01-01

    Based on our previously pulse-coupled integrate-and-fire neuron model in small world networks, we investigate the complex behavior of electroencephalographic (EEG)-like activities produced by such a model. We find EEG-like activities have obvious chaotic characteristics. We also analyze the complex behaviors of EEG-like signals, such as spectral analysis, reconstruction of the phase space, the correlation dimension, and so on.

  19. Connectivity, excitability and activity patterns in neuronal networks

    International Nuclear Information System (INIS)

    Le Feber, Joost; Stoyanova, Irina I; Chiappalone, Michela

    2014-01-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFP i,j ) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFP i,j with the autocorrelation of i (i.e. CFP i,i ), to obtain the single pulse response (SPR i,j )—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression. (papers)

  20. Cognitive Deficits Associated with Nav1.1 Alterations: Involvement of Neuronal Firing Dynamics and Oscillations.

    Directory of Open Access Journals (Sweden)

    Alex C Bender

    Full Text Available Brain oscillations play a critical role in information processing and may, therefore, be essential to uncovering the mechanisms of cognitive impairment in neurological disease. In Dravet syndrome (DS, a mutation in SCN1A, coding for the voltage-gated sodium channel Nav1.1, is associated with severe cognitive impairment and seizures. While seizure frequency and severity do not correlate with the extent of impairment, the slowing of brain rhythms may be involved. Here we investigate the role of Nav1.1 on brain rhythms and cognition using RNA interference. We demonstrate that knockdown of Nav1.1 impairs fast- and burst-firing properties of neurons in the medial septum in vivo. The proportion of neurons that fired phase-locked to hippocampal theta oscillations was reduced, and medial septal regulation of theta rhythm was disrupted. During a working memory task, this deficit was characterized by a decrease in theta frequency and was negatively correlated with performance. These findings suggest a fundamental role for Nav1.1 in facilitating fast-firing properties in neurons, highlight the importance of precise temporal control of theta frequency for working memory, and imply that Nav1.1 deficits may disrupt information processing in DS via a dysregulation of brain rhythms.

  1. Short and Long-Term Attentional Firing Rates Can Be Explained by ST-Neuron Dynamics

    Directory of Open Access Journals (Sweden)

    Oscar J. Avella Gonzalez

    2018-03-01

    Full Text Available Attention modulates neural selectivity and optimizes the allocation of cortical resources during visual tasks. A large number of experimental studies in primates and humans provide ample evidence. As an underlying principle of visual attention, some theoretical models suggested the existence of a gain element that enhances contrast of the attended stimuli. In contrast, the Selective Tuning model of attention (ST proposes an attentional mechanism based on suppression of irrelevant signals. In this paper, we present an updated characterization of the ST-neuron proposed by the Selective Tuning model, and suggest that the inclusion of adaptation currents (Ih to ST-neurons may explain the temporal profiles of the firing rates recorded in single V4 cells during attentional tasks. Furthermore, using the model we show that the interaction between stimulus-selectivity of a neuron and attention shapes the profile of the firing rate, and is enough to explain its fast modulation and other discontinuities observed, when the neuron responds to a sudden switch of stimulus, or when one stimulus is added to another during a visual task.

  2. Population density models of integrate-and-fire neurons with jumps: well-posedness.

    Science.gov (United States)

    Dumont, Grégory; Henry, Jacques

    2013-09-01

    In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation.

  3. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.

    Directory of Open Access Journals (Sweden)

    Josef Ladenbauer

    Full Text Available The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency

  4. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest

    Science.gov (United States)

    Sparkle L. Malone; Paula J. Fornwalt; Mike A. Battaglia; Marin E. Chambers; Jose M. Iniguez; Carolyn H. Sieg

    2018-01-01

    We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11-12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire...

  5. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    OpenAIRE

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbanc...

  6. A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory.

    Science.gov (United States)

    Chicca, E; Badoni, D; Dante, V; D'Andreagiovanni, M; Salina, G; Carota, L; Fusi, S; Del Giudice, P

    2003-01-01

    Electronic neuromorphic devices with on-chip, on-line learning should be able to modify quickly the synaptic couplings to acquire information about new patterns to be stored (synaptic plasticity) and, at the same time, preserve this information on very long time scales (synaptic stability). Here, we illustrate the electronic implementation of a simple solution to this stability-plasticity problem, recently proposed and studied in various contexts. It is based on the observation that reducing the analog depth of the synapses to the extreme (bistable synapses) does not necessarily disrupt the performance of the device as an associative memory, provided that 1) the number of neurons is large enough; 2) the transitions between stable synaptic states are stochastic; and 3) learning is slow. The drastic reduction of the analog depth of the synaptic variable also makes this solution appealing from the point of view of electronic implementation and offers a simple methodological alternative to the technological solution based on floating gates. We describe the full custom analog very large-scale integration (VLSI) realization of a small network of integrate-and-fire neurons connected by bistable deterministic plastic synapses which can implement the idea of stochastic learning. In the absence of stimuli, the memory is preserved indefinitely. During the stimulation the synapse undergoes quick temporary changes through the activities of the pre- and postsynaptic neurons; those changes stochastically result in a long-term modification of the synaptic efficacy. The intentionally disordered pattern of connectivity allows the system to generate a randomness suited to drive the stochastic selection mechanism. We check by a suitable stimulation protocol that the stochastic synaptic plasticity produces the expected pattern of potentiation and depression in the electronic network.

  7. Fire history and pattern in a Cascade Range landscape.

    Science.gov (United States)

    Peter H. Morrison; Frederick J. Swanson

    1990-01-01

    Fire history from years 1150 to 1985 was reconstructed by analyzing forest stands in two 1940-hectare areas in the central-western Cascade Range of Oregon. Serving as records for major fire episodes, these stands revealed a highly variable fire regime. The steeper, more dissected, lower elevation Cook-Quentin study area experienced more frequent fires (natural fire...

  8. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    Science.gov (United States)

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  9. Substance P differentially modulates firing rate of solitary complex (SC neurons from control and chronic hypoxia-adapted adult rats.

    Directory of Open Access Journals (Sweden)

    Nicole L Nichols

    Full Text Available NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS. Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus neurons from control and chronic hypoxia-adapted (CHx adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.

  10. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    Science.gov (United States)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  11. Cutaneous TRPM8-expressing sensory afferents are a small population of neurons with unique firing properties.

    Science.gov (United States)

    Jankowski, Michael P; Rau, Kristofer K; Koerber, H Richard

    2017-04-01

    It has been well documented that the transient receptor potential melastatin 8 (TRPM8) receptor is involved in environmental cold detection. The role that this receptor plays in nociception however, has been somewhat controversial since conflicting reports have shown different neurochemical identities and responsiveness of TRPM8 neurons. In order to functionally characterize cutaneous TRMP8 fibers, we used two ex vivo somatosensory recording preparations to functionally characterize TRPM8 neurons that innervate the hairy skin in mice genetically engineered to express GFP from the TRPM8 locus. We found several types of cold-sensitive neurons that innervate the hairy skin of the mouse but the TRPM8-expressing neurons were found to be of two specific populations that responded with rapid firing to cool temperatures. The first group was mechanically insensitive but the other did respond to high threshold mechanical deformation of the skin. None of these fibers were found to contain calcitonin gene-related peptide, transient receptor potential vanilloid type 1 or bind isolectin B4. These results taken together with other reports suggest that TRPM8 containing sensory neurons are environmental cooling detectors that may be nociceptive or non-nociceptive depending on the sensitivity of individual fibers to different combinations of stimulus modalities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.

    Science.gov (United States)

    Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad

    2012-08-01

    Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.

  13. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    Science.gov (United States)

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels.

    Science.gov (United States)

    Lutas, Andrew; Birnbaumer, Lutz; Yellen, Gary

    2014-12-03

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. Copyright © 2014 the authors 0270-6474/14/3416336-12$15.00/0.

  15. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?

    Directory of Open Access Journals (Sweden)

    Andreas eKnoblauch

    2012-08-01

    Full Text Available Spike synchronization is thought to have a constructive role for feature integration, attention, associativelearning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoreticalstudies on spike-timing-dependent plasticity (STDP report an inherently decoupling influence of spikesynchronization on synaptic connections of coactivated neurons. For example, bidirectional synapticconnections as found in cortical areas could be reproduced only by assuming realistic models of STDP andrate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realisticSTDP models that provide a more complete characterization of conditions when STDP leads to eithercoupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistentlycouples synchronized neurons if key model parameters are matched to physiological data: First, synapticpotentiation must be significantly stronger than synaptic depression for small (positive or negative timelags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficientlyimprecise, for example, within a time window of 5-10msec instead of 1msec. Third, axonal propagationdelays should not be much larger than dendritic delays. Under these assumptions synchronized neuronswill be strongly coupled leading to a dominance of bidirectional synaptic connections even for simpleSTDP models and low mean firing rates at the level of spontaneous activity.

  16. Histomorphological patterns in osseous rests exposed at fire

    International Nuclear Information System (INIS)

    Medina, C.; Tiesler, V.; Oliva, A.I.; Quintana, P.

    2005-01-01

    Histomorphology as part of morphological research studies bony structure on the tissue level. Its methods are applied in this investigation to evaluate histomorphological impact patterns in heat-exposed bony material, particularly color changes, fissure patterns, volumetric reduction, and changes in the size of Haversian canals. These variables were evaluated in exposed thin sections of porcine long bones, obtained during two experimental series. The first one was conducted under stable thermal conditions in a furnace by measuring heat impact in stepped time (I to S hours) and temperature intervals (200 to 800 C). During a second experimental phase, bony samples were exposed to direct fire in defined time and heat intervals. The treated specimens were then sectioned and microscopically scrutinized. The results presented here were designed to offer new analytical, measurable standards in the investigation of forms of heat exposition of the human body, applicable in forensics and the study of ancient Maya posthumous body treatments. (Author)

  17. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    Directory of Open Access Journals (Sweden)

    Huaguang eGu

    2015-08-01

    Full Text Available In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor.

  18. Normalized burn ratios link fire severity with patterns of avian occurrence

    Science.gov (United States)

    Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa

    2016-01-01

    ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.

  19. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands

    Science.gov (United States)

    Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson

    2007-01-01

    The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...

  20. Stalling for Time: It's Not the Magnitude, but the Way Neurons Fire that Matters.

    Science.gov (United States)

    Scott, Stephen H

    2017-07-05

    In this issue of Neuron, Stavisky et al. (2017) demonstrate that visual feedback in M1 during reaching initially reflects a specific pattern of neural activity that does not generate motor output and then is altered to a pattern that does generate motor output. This switch likely provides time for the motor system to consider various behavioral factors when specifying the appropriate motor response during voluntary motor actions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pattern of childhood neuronal migrational disorders in Oman

    International Nuclear Information System (INIS)

    Koul, Roshan L.; Alfuitasi, Amna M.; Javad, Hashim; Sankhla, Dilip K.; William, Ranjan R.

    2009-01-01

    To record the pattern of different neuronal migrational disorders (NMD) and their associated neurological conditions. The data were collected at the Child Neurology Services of Sultan Qaboos University Hospital, Oman, from January 1993 to September 2006 from all children with psychomotor delay and epilepsy, who underwent brain imaging (mostly MRI). The MR imaging was used for the diagnosis of a neuronal migration anomaly. There were 86 cases of NMD. Corpus callosum agenesis and lissencephaly/pachygyria formed the major group. There were 48 cases of corpus callosum agenesis, and 16 cases of lissencephaly/pachygyria. Other disorders were 10 cases of heterotopias, 5 schizencephaly, 3 holoprosencephaly, 2 polymicrogyria, and one each of hemimegalencephaly, and hydranencephaly. Developmental delay was the most common associated finding noted in 80 (93%) cases. Sixty-seven (77.9%) cases had motor deficit. Forty out of 86 (46.5%) cases had epilepsy. Partial/partial complex seizures were the most common at 13 out of 40 (32.5%). Syndromic seizures were seen in 11 out of 40 (27.5%) cases. The seizures were controlled in only 3/40 (7.5%) cases. The NMD constitute a significant number of child neurology patients with psychomotor delay and intractable epilepsy. Exogenic and genetic factors affecting the early embryonic and fetal development from sixth to twenty-sixth weeks of gestation result in NMD. Recent genetic studies are defining the underlying mechanism and these studies will help in early diagnosis and possible prevention of NMD. (author)

  2. UNDERSTANDING THE SPATIO-TEMPORAL PATTERN OF FIRE DISTURBANCE IN THE EASTERN MONGOLIA USING MODIS PRODUCT

    OpenAIRE

    Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying

    2018-01-01

    Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire dis...

  3. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    Science.gov (United States)

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  4. Patterns of Weakness, Classification of Motor Neuron Disease, and Clinical Diagnosis of Sporadic Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Statland, Jeffrey M; Barohn, Richard J; McVey, April L; Katz, Jonathan S; Dimachkie, Mazen M

    2015-11-01

    When approaching a patient with suspected motor neuron disease (MND), the pattern of weakness on examination helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing. MNDs exist on a spectrum, from a pure lower motor neuron to mixed upper and lower motor neuron to a pure upper motor neuron variant. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic, which is invariably fatal. This article describes a pattern approach to identifying MND and clinical features of sporadic ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    Science.gov (United States)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  6. Ketogenic diet prevents neuronal firing increase within the substantia nigra during pentylenetetrazole-induced seizure in rats.

    Science.gov (United States)

    Viggiano, Andrea; Stoddard, Madison; Pisano, Simone; Operto, Francesca Felicia; Iovane, Valentina; Monda, Marcellino; Coppola, Giangennaro

    2016-07-01

    The mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia. The results demonstrated that the ketogenic diet abolished the correlation between the firing rate response of SNr-neurons and the seizure-threshold. This result suggests that the anti-seizure effect of ketogenic diets can be due to a decrease in reactivity of GABAergic SNr-neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior.

    Science.gov (United States)

    Carlson, Bruce A

    2009-07-29

    Sensory systems often encode stimulus information into the temporal pattern of action potential activity. However, little is known about how the information contained within these patterns is extracted by postsynaptic neurons. Similar to temporal coding by sensory neurons, social information in mormyrid fish is encoded into the temporal patterning of an electric organ discharge. In the current study, sensitivity to temporal patterns of electrosensory stimuli was found to arise within the midbrain posterior exterolateral nucleus (ELp). Whole-cell patch recordings from ELp neurons in vivo revealed three patterns of interpulse interval (IPI) tuning: low-pass neurons tuned to long intervals, high-pass neurons tuned to short intervals, and bandpass neurons tuned to intermediate intervals. Many neurons within each class also responded preferentially to either increasing or decreasing IPIs. Playback of electric signaling patterns recorded from freely behaving fish revealed that the IPI and direction tuning of ELp neurons resulted in selective responses to particular social communication displays characterized by distinct IPI patterns. The postsynaptic potential responses of many neurons indicated a combination of excitatory and inhibitory synaptic input, and the IPI tuning of ELp neurons was directly related to rate-dependent changes in the direction and amplitude of postsynaptic potentials. These results suggest that differences in the dynamics of short-term synaptic plasticity in excitatory and inhibitory pathways may tune central sensory neurons to particular temporal patterns of presynaptic activity. This may represent a general mechanism for the processing of behaviorally relevant stimulus information encoded into temporal patterns of activity by sensory neurons.

  8. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    OpenAIRE

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  9. Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Lin Min; Chen Tianlun

    2005-01-01

    A lattice model for a set of pulse-coupled integrate-and-fire neurons with small world structure is introduced. We find that our model displays the power-law behavior accompanied with the large-scale synchronized activities among the units. And the different connectivity topologies lead to different behaviors in models of integrate-and-fire neurons.

  10. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.

  11. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    Science.gov (United States)

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. Copyright © 2013 Wiley Periodicals, Inc.

  12. Sleep/wake firing patterns of human genioglossus motor units.

    Science.gov (United States)

    Bailey, E Fiona; Fridel, Keith W; Rice, Amber D

    2007-12-01

    Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.

  13. The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus.

    Science.gov (United States)

    Ranels, Heather J; Griffin, John D

    2003-02-21

    In response to an immune system challenge with lipopolysaccharide (LPS), recent work has shown that Fos immunoreactivity is displayed by neurons in the ventromedial preoptic area of the hypothalamus (VMPO). In addition, neurons in this region show distinct axonal projections to the anterior perifornical area (APFx) and the paraventricular nucleus (PVN). It has been hypothesized that neurons within the VMPO integrate their local responses to temperature with changes in firing activity that result from LPS induced production of prostaglandin E(2) (PGE(2)). This may be an important mechanism by which the set-point regulation of thermoeffector neurons in the APFx and PVN is altered, resulting in hyperthermia. To characterize the firing rate activity of VMPO neurons, single-unit recordings were made of neuronal extracellular activity in rat hypothalamic tissue slices. Based on the slope of firing rate as a function of tissue temperature, neurons were classified as either warm sensitive or temperature insensitive. Neurons were then treated with PGE(2) (200 nM) while tissue temperature was held at a constant level ( approximately 36 degrees C). The majority of temperature insensitive neurons responded to PGE(2) with an increase in firing rate activity, while warm sensitive neurons showed a reduction in firing rate. This suggests that both warm sensitive and temperature insensitive neurons in the VMPO may play critical and contrasting roles in the production of a fever during an acute phase response to infection.

  14. NK3 Receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig

    NARCIS (Netherlands)

    Werkman, T.R.; McCreary, A.C.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists,

  15. The Gamma renewal process as an output of the diffusion leaky integrate-and-fire neuronal model

    Czech Academy of Sciences Publication Activity Database

    Lánský, Petr; Sacerdote, L.; Zucca, C.

    2016-01-01

    Roč. 110, 2-3 (2016), s. 193-200 ISSN 0340-1200 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : first-passage-time problem * leaky integrate-and-fire * Stein's neuronal model Subject RIV: BD - Theory of Information Impact factor: 1.716, year: 2016

  16. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator

    DEFF Research Database (Denmark)

    Butt, S. J B; Harris-Warrick, Ronald M.; Kiehn, Ole

    2002-01-01

    a heterogenous population with neurons that fired in all phases of the locomotor cycle and exhibited varying degrees of rhythmicity, from strongly rhythmic to nonrhythmic. Among the rhythmic, putative CPG dCINs were populations that fired inphase with the ipsilateral or with the contralateral L2 locomotorlike......, with little direct contribution from the intrinsic pacemaker hyperpolarization-activated inward current. For both ipsilaterally and contralaterally firing dCINs the dominant synaptic drive was in-phase with the ipsilateral L2 motor activity. This study provides the first characterization of putative CPG...

  17. Mixed-Severity Fire Fosters Heterogeneous Spatial Patterns of Conifer Regeneration in a Dry Conifer Forest

    Directory of Open Access Journals (Sweden)

    Sparkle L. Malone

    2018-01-01

    Full Text Available We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11–12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving trees, in three 4-ha plots following the 2002 Hayman Fire. Residual tree density ranged from 167 to 197 trees ha−1 (TPH, and these trees were clustered at distances up to 30 m. Post-fire regenerating conifers, which ranged in density from 241 to 1036 TPH, were also clustered at distances up to at least 30 m. Moreover, residual tree locations drove post-fire regenerating conifer locations, with the two showing a pattern of repulsion. Topography and post-fire sprouting tree species locations further drove post-fire conifer regeneration locations. These results provide a foundation for anticipating how the reintroduction of mixed-severity fire may affect long-term forest structure, and also yield insights into how historical mixed-severity fire may have regulated the spatially heterogeneous conditions commonly described for pre-settlement dry conifer forests of Colorado and elsewhere.

  18. Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact

    Directory of Open Access Journals (Sweden)

    Andreas eKlaus

    2011-07-01

    Full Text Available In the striatal microcircuit, fast-spiking (FS interneurons have an important role in mediating inhibition onto neighboring medium spiny (MS projection neurons. In this study, we combined computational modeling with in vitro and in vivo electrophysiological measurements to investigate FS cells in terms of their discharge properties and their synaptic efficacies onto MS neurons. In vivo firing of striatal FS interneurons is characterized by a high firing variability. It is not known, however, if this variability results from the input that FS cells receive, or if it is promoted by the stuttering spike behavior of these neurons. Both our model and measurements in vitro show that FS neurons that exhibit random stuttering discharge in response to steady depolarization, do not show the typical stuttering behavior when they receive fluctuating input. Importantly, our model predicts that electrically coupled FS cells show substantial spike synchronization only when they are in the stuttering regime. Therefore, together with the lack of synchronized firing of striatal FS interneurons that has been reported in vivo, these results suggest that neighboring FS neurons are not in the stuttering regime simultaneously and that in vivo FS firing variability is more likely determined by the input fluctuations. Furthermore, the variability in FS firing is translated to variability in the postsynaptic amplitudes in MS neurons due to the strong synaptic depression of the FS-to-MS synapse. Our results support the idea that these synapses operate over a wide range from strongly depressed to almost fully recovered. The strong inhibitory effects that FS cells can impose on their postsynaptic targets, and the fact that the FS-to-MS synapse model showed substantial depression over extended periods of time might indicate the importance of cooperative effects of multiple presynaptic FS interneurons and the precise orchestration of their activity.

  19. Climate controls on fire pattern in African and Australian continents

    Science.gov (United States)

    Zubkova, M.; Boschetti, L.; Abatzoglou, J. T.

    2017-12-01

    Studies have primarily attributed the recent decrease in global fire activity in many savanna and grassland regions as detected by the Global Fire Emission Database (GFEDv4s) to anthropogenic changes such as deforestation and cropland expansion (Andela et al. 2017, van der Werf et al. 2008). These changes have occurred despite increases in fire weather season length (Jolly et al. 2015). Efforts to better resolve retrospective and future changes in fire activity require refining the host of influences on societal and environmental factors on fire activity. In this study, we analyzed how climate variability influences interannual fire activity in Africa and Australia, the two continents most affected by fire and responsible for over half of the global pyrogenic emissions. We expand on the analysis presented in Andela et al. (2017) by using the most recent Collection 6 MODIS MCD64 Burned Area Product and exploring the explanatory power of a broader suite of climate variables that have been previously shown to explain fire variability (Bowman et al. 2017). We examined which climate metrics show a strong interannual relationship with the amount of burned area and fire size accounting for antecedent and in-season atmospheric conditions. Fire characteristics were calculated using the 500m resolution MCD64A1 product (2002-2016); the analysis was conducted at the ecoregion scale, and further stratified by landcover using a broad aggregation (forest, shrublands and grasslands) of the Landcover CCI maps (CCI-LC, 2014); all agricultural areas fires were excluded from the analysis. The results of the analysis improve our knowledge of climate controls on fire dynamics in the most fire-prone places in the world which is critical for statistical fire and vegetation models. Being able to predict the impact of climate on fire activity has a strategic importance in designing future fire management scenarios, help to avoid degradation of biodiversity and ecosystem services and improve

  20. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  1. KV7 Channels Regulate Firing during Synaptic Integration in GABAergic Striatal Neurons

    Directory of Open Access Journals (Sweden)

    M. Belén Pérez-Ramírez

    2015-01-01

    Full Text Available Striatal projection neurons (SPNs process motor and cognitive information. Their activity is affected by Parkinson’s disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.

  2. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Science.gov (United States)

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  3. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Directory of Open Access Journals (Sweden)

    Danny L Fry

    Full Text Available In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1, and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56% in large patches (≥ 10 trees, and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  4. Reconstructing stimuli from the spike-times of leaky integrate and fire neurons

    Directory of Open Access Journals (Sweden)

    Sebastian eGerwinn

    2011-02-01

    Full Text Available Reconstructing stimuli from the spike-trains of neurons is an important approach for understanding the neural code. One of the difficulties associated with this task is that signals which are varying continuously in time are encoded into sequences of discrete events or spikes. An important problem is to determine how much information about the continuously varying stimulus can be extracted from the time-points at which spikes were observed, especially if these time-points are subject to some sort of randomness. For the special case of spike trains generated by leaky integrate and fire neurons, noise can be introduced by allowing variations in the threshold every time a spike is released. A simple decoding algorithm previously derived for the noiseless case can be extended to the stochastic case, but turns out to be biased. Here, we review a solution to this problem, by presenting a simple yet efficient algorithm which greatly reduces the bias, and therefore leads to better decoding performance in the stochastic case.

  5. Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model

    Science.gov (United States)

    Mankin, Romi; Paekivi, Sander

    2018-01-01

    The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks, is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival probability (the probability that a spike is not generated) are derived and their dependence on input parameters, especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate values of the memory exponent the survival probability is significantly enhanced in comparison with the cases of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI distribution on input parameters shows that there exists a critical memory exponent αc≈0.402 , which marks a dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between the behavior of the model at internal and external noises are also discussed.

  6. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    Science.gov (United States)

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  7. Predicting the effect of fire on large-scale vegetation patterns in North America.

    Science.gov (United States)

    Donald McKenzie; David L. Peterson; Ernesto. Alvarado

    1996-01-01

    Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...

  8. Automatic classification of canine PRG neuronal discharge patterns using K-means clustering.

    Science.gov (United States)

    Zuperku, Edward J; Prkic, Ivana; Stucke, Astrid G; Miller, Justin R; Hopp, Francis A; Stuth, Eckehard A

    2015-02-01

    Respiratory-related neurons in the parabrachial-Kölliker-Fuse (PB-KF) region of the pons play a key role in the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according to their discharge contours. This report presents a method that automatically classifies neurons according to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional methods for choosing the optimal number of clusters are described. Analysis of the results suggests that the K-means clustering method offers a robust objective means of both automatically categorizing neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge patterns of group of neurons. Published by Elsevier B.V.

  9. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  10. Castration modulates singing patterns and electrophysiological properties of RA projection neurons in adult male zebra finches

    Directory of Open Access Journals (Sweden)

    Songhua Wang

    2014-04-01

    Full Text Available Castration can change levels of plasma testosterone. Androgens such as testosterone play an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA is an important premotor nucleus critical for singing. In this study, we investigated the effect of castration on singing patterns and electrophysiological properties of projection neurons (PNs in the RA of adult male zebra finches. Adult male zebra finches were castrated and the changes in bird song assessed. We also recorded the electrophysiological changes from RA PNs using patch clamp recording. We found that the plasma levels of testosterone were significantly decreased, song syllable’s entropy was increased and the similarity of motif was decreased after castration. Spontaneous and evoked firing rates, membrane time constants, and membrane capacitance of RA PNs in the castration group were lower than those of the control and the sham groups. Afterhyperpolarization AHP time to peak of spontaneous action potential (AP was prolonged after castration.These findings suggest that castration decreases song stereotypy and excitability of RA PNs in male zebra finches.

  11. Understanding the Spatio-Temporal Pattern of Fire Disturbance in the Eastern Mongolia Using Modis Product

    Science.gov (United States)

    Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying

    2018-04-01

    Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.

  12. UNDERSTANDING THE SPATIO-TEMPORAL PATTERN OF FIRE DISTURBANCE IN THE EASTERN MONGOLIA USING MODIS PRODUCT

    Directory of Open Access Journals (Sweden)

    Wurihan

    2018-04-01

    Full Text Available Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1 The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2 The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3 Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4 The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.

  13. Human Nav1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons

    Science.gov (United States)

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.

    2015-01-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950

  14. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    Science.gov (United States)

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  15. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb.

    Science.gov (United States)

    Sahay, Amar; Wilson, Donald A; Hen, René

    2011-05-26

    While adult-born neurons in the olfactory bulb (OB) and the dentate gyrus (DG) subregion of the hippocampus have fundamentally different properties, they may have more in common than meets the eye. Here, we propose that new granule cells in the OB and DG may function as modulators of principal neurons to influence pattern separation and that adult neurogenesis constitutes an adaptive mechanism to optimally encode contextual or olfactory information. See the related Perspective from Aimone, Deng, and Gage, "Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation," in this issue of Neuron. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  17. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  18. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  19. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  20. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  1. Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States.

    Directory of Open Access Journals (Sweden)

    Andreas Steimer

    Full Text Available Oscillations between high and low values of the membrane potential (UP and DOWN states respectively are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs of the exponential integrate and fire (EIF model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing

  2. An approximation to the adaptive exponential integrate-and-fire neuron model allows fast and predictive fitting to physiological data

    Directory of Open Access Journals (Sweden)

    Loreen eHertäg

    2012-09-01

    Full Text Available For large-scale network simulations, it is often desirable to have computationally tractable, yet in a defined sense still physiologically valid neuron models. In particular, these models should be able to reproduce physiological measurements, ideally in a predictive sense, and under different input regimes in which neurons may operate in vivo. Here we present an approach to parameter estimation for a simple spiking neuron model mainly based on standard f-I curves obtained from in vitro recordings. Such recordings are routinely obtained in standard protocols and assess a neuron's response under a wide range of mean input currents. Our fitting procedure makes use of closed-form expressions for the firing rate derived from an approximation to the adaptive exponential integrate-and-fire (AdEx model. The resulting fitting process is simple and about two orders of magnitude faster compared to methods based on numerical integration of the differential equations. We probe this method on different cell types recorded from rodent prefrontal cortex. After fitting to the f-I current-clamp data, the model cells are tested on completely different sets of recordings obtained by fluctuating ('in-vivo-like' input currents. For a wide range of different input regimes, cell types, and cortical layers, the model could predict spike times on these test traces quite accurately within the bounds of physiological reliability, although no information from these distinct test sets was used for model fitting. Further analyses delineated some of the empirical factors constraining model fitting and the model's generalization performance. An even simpler adaptive LIF neuron was also examined in this context. Hence, we have developed a 'high-throughput' model fitting procedure which is simple and fast, with good prediction performance, and which relies only on firing rate information and standard physiological data widely and easily available.

  3. Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States.

    Science.gov (United States)

    Steimer, Andreas; Schindler, Kaspar

    2015-01-01

    Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational

  4. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    Science.gov (United States)

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing

  5. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    Science.gov (United States)

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Linking vegetation patterns to potential smoke production and fire hazard

    Science.gov (United States)

    Roger D. Ottmar; Ernesto Alvarado

    2004-01-01

    During the past 80 years, various disturbances (such as wildfire and wind events) and management actions (including fire exclusion, logging, and domestic livestock grazing) have significantly modified the composition and structure of forests and ranges across the western United States. The resulting fuel loadings directly influence potential smoke production from...

  7. Application of unfolding transformation in the random matrix theory to analyze in vivo neuronal spike firing during awake and anesthetized conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2018-03-01

    Full Text Available General anesthetics decrease the frequency and density of spike firing. This effect makes it difficult to detect spike regularity. To overcome this problem, we developed a method utilizing the unfolding transformation which analyzes the energy level statistics in the random matrix theory. We regarded the energy axis as time axis of neuron spike and analyzed the time series of cortical neural firing in vivo. Unfolding transformation detected regularities of neural firing while changes in firing densities were associated with pentobarbital. We found that unfolding transformation enables us to compare firing regularity between awake and anesthetic conditions on a universal scale. Keywords: Unfolding transformation, Spike-timing, Regularity

  8. Spatial patterns of FUS-immunoreactive neuronal cytoplasmic inclusions (NCI) in neuronal intermediate filament inclusion disease (NIFID).

    Science.gov (United States)

    Armstrong, Richard A; Gearing, Marla; Bigio, Eileen H; Cruz-Sanchez, Felix F; Duyckaerts, Charles; Mackenzie, Ian R A; Perry, Robert H; Skullerud, Kari; Yokoo, Hideaki; Cairns, Nigel J

    2011-11-01

    Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or α-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ΙΝΑ, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.

  9. The effect of correlated neuronal firing and neuronal heterogeneity on population coding accuracy in guinea pig inferior colliculus.

    Directory of Open Access Journals (Sweden)

    Oran Zohar

    Full Text Available It has been suggested that the considerable noise in single-cell responses to a stimulus can be overcome by pooling information from a large population. Theoretical studies indicated that correlations in trial-to-trial fluctuations in the responses of different neurons may limit the improvement due to pooling. Subsequent theoretical studies have suggested that inherent neuronal diversity, i.e., the heterogeneity of tuning curves and other response properties of neurons preferentially tuned to the same stimulus, can provide a means to overcome this limit. Here we study the effect of spike-count correlations and the inherent neuronal heterogeneity on the ability to extract information from large neural populations. We use electrophysiological data from the guinea pig Inferior-Colliculus to capture inherent neuronal heterogeneity and single cell statistics, and introduce response correlations artificially. To this end, we generate pseudo-population responses, based on single-cell recording of neurons responding to auditory stimuli with varying binaural correlations. Typically, when pseudo-populations are generated from single cell data, the responses within the population are statistically independent. As a result, the information content of the population will increase indefinitely with its size. In contrast, here we apply a simple algorithm that enables us to generate pseudo-population responses with variable spike-count correlations. This enables us to study the effect of neuronal correlations on the accuracy of conventional rate codes. We show that in a homogenous population, in the presence of even low-level correlations, information content is bounded. In contrast, utilizing a simple linear readout, that takes into account the natural heterogeneity, even of neurons preferentially tuned to the same stimulus, within the neural population, one can overcome the correlated noise and obtain a readout whose accuracy grows linearly with the size of

  10. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  11. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  12. Post-fire recovery of torpor and activity patterns of a small mammal.

    Science.gov (United States)

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  13. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Directory of Open Access Journals (Sweden)

    Judit Lecina-Diaz

    Full Text Available Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1 determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together and (2 ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires. The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn

  14. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Science.gov (United States)

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  15. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    Science.gov (United States)

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  16. Twentieth-century fire patterns in the Selway-Bitterroot Wilderness Area, Idaho/Montana, and the Gila/Aldo Leopold Wilderness Complex, New Mexico

    Science.gov (United States)

    Matthew Rollins; Tom Swetnam; Penelope Morgan

    2000-01-01

    Twentieth century fire patterns were analyzed for two large, disparate wilderness areas in the Rocky Mountains. Spatial and temporal patterns of fires were represented as GIS-based digital fire atlases compiled from archival Forest Service data. We find that spatial and temporal fire patterns are related to landscape features and changes in land use. The rate and...

  17. Nicotinic α4β2 Cholinergic Receptor Influences on Dorsolateral Prefrontal Cortical Neuronal Firing during a Working Memory Task.

    Science.gov (United States)

    Sun, Yongan; Yang, Yang; Galvin, Veronica C; Yang, Shengtao; Arnsten, Amy F; Wang, Min

    2017-05-24

    The primate dorsolateral prefrontal cortex (dlPFC) subserves top-down regulation of attention and working memory abilities. Depletion studies show that the neuromodulator acetylcholine (ACh) is essential to dlPFC working memory functions, but the receptor and cellular bases for cholinergic actions are just beginning to be understood. The current study found that nicotinic receptors comprised of α4 and β2 subunits (α4β2-nAChR) enhance the task-related firing of delay and fixation cells in the dlPFC of monkeys performing a working memory task. Iontophoresis of α4β2-nAChR agonists increased the neuronal firing and enhanced the spatial tuning of delay cells, neurons that represent visual space in the absence of sensory stimulation. These enhancing effects were reversed by coapplication of a α4β2-nAChR antagonist, consistent with actions at α4β2-nAChR. Delay cell firing was reduced when distractors were presented during the delay epoch, whereas stimulation of α4β2-nAChR protected delay cells from these deleterious effects. Iontophoresis of α4β2-nAChR agonists also enhanced the firing of fixation cells, neurons that increase firing when the monkey initiates a trial, and maintain firing until the trial is completed. These neurons are thought to contribute to sustained attention and top-down motor control and have never before been the subject of pharmacological inquiry. These findings begin to build a picture of the cellular actions underlying the beneficial effects of ACh on attention and working memory. The data may also help to explain why genetic insults to α4 subunits are associated with working memory and attentional deficits and why α4β2-nAChR agonists may have therapeutic potential. SIGNIFICANCE STATEMENT The acetylcholine (ACh) arousal system in the brain is needed for robust attention and working memory functions, but the receptor and cellular bases for its beneficial effects are poorly understood in the newly evolved primate brain. The current

  18. Forest and Land Fire Prevention Through the Hotspot Movement Pattern Approach

    Science.gov (United States)

    Turmudi, T.; Kardono, P.; Hartanto, P.; Ardhitasari, Y.

    2018-02-01

    Indonesia has experienced a great forest fire disaster in 2015. The losses incurred were enormous. But actually the incidence of forest and land fires occurs almost every year. Various efforts were made to cope with the fire disaster. The appearance of a hotspot becomes an early indication of the fire incident both location and time. By studying the location and time of the hotspot's appearance indicates that the hotspot has certain movement patterns from year to year. This study aims to show the pattern of movement of hotspots from year to year that can be used for the prevention of forest and land fires. The method used is time series analysis of land cover and hotspot distribution. The data used were land cover data from 2005 to 2016, hotspot data from 2005 to 2016. The location of this study is the territory of Meranti Kepulauan District. The results show that the highest hotspot is 425 hotspots occurs in the shrubs and bushes. From year to year, the pattern of hotspot movement occurs in the shrubs and bushes cover. The hotspot pattern follows the direction of unused land for cultivation and is dominated by shrubs. From these results, we need to pay more attentiont for the land with the cover of shrubs adjacent to the cultivated land.

  19. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    Science.gov (United States)

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  20. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  1. Activity patterns of cochlear ganglion neurones in the starling.

    Science.gov (United States)

    Manley, G A; Gleich, O; Leppelsack, H J; Oeckinghaus, H

    1985-09-01

    Spontaneous activity and responses to simple tonal stimuli were studied in cochlear ganglion neurones of the starling. Both regular and irregular spontaneous activity were recorded. Non-auditory cells have their origin in the macula lagenae. Mean spontaneous rate for auditory cells (all irregularly spiking) was 45 spikes s-1. In half the units having characteristic frequencies (CFs) less than 1.5 kHz, time-interval histograms (TIHs) of spontaneous activity showed regularly-spaced peaks or 'preferred' intervals. The spacing of the peak intervals was, on average, 15% greater than the CF-period interval of the respective units. In TIH of lower-frequency cells without preferred intervals, the modal interval was also on average about 15% longer than the CF-period interval. Apparently, the resting oscillation frequency of these cells lies below their CF. Tuning curves (TCs) of neurones to short tone bursts show no systematic asymmetry as in mammals. Below CF 1 kHz, the low-frequency flanks of the TCs are, on average, steeper than the high-frequency flanks. Above CF 1 kHz, the reverse is true. The cochlear ganglion and nerve are tonotopically organized. Low-frequency fibres arise apically in the papilla basilaris and are found near non-auditory (lagenar) fibres. Discharge rates to short tones were monotonically related to sound pressure level. Saturation rates often exceeded 300 spikes s-1. 'On-off' responses and primary suppression of spontaneous activity were observed. A direct comparison of spontaneous activity and tuning-curve symmetry revealed that, apart from quantitative differences, fundamental qualitative differences exist between starling and guinea-pig primary afferents.

  2. Effects of zoxazolamine and related centrally acting muscle relaxants on nigrostriatal dopaminergic neurons.

    Science.gov (United States)

    Matthews, R T; McMillen, B A; Speciale, S G; Jarrah, H; Shore, P A; Sanghera, M K; Shepard, P D; German, D C

    1984-05-01

    The effects of zoxazolamine (ZOX) and related centrally acting muscle relaxants on striatal dopamine (DA) metabolism and turnover, and substantia nigra zona compacta DA neuronal impulse flow were studied in rats. ZOX, chlorzoxazone and mephenesin, but not meprobamate, chloral hydrate, diazepam, pentobarbital, ethanol or dantrolene, decreased striatal DA metabolism without affecting striatal DA concentrations. More specifically, ZOX, as a representative muscle relaxant, was shown to decrease striatal DA turnover without directly affecting DA synthesis, catabolism, reuptake, or release. ZOX decreased nigral DA neuronal firing rates and dramatically decreased firing rate variability (normally many of the cells fire with bursting firing patterns but after ZOX the cells often fired with a very regular pacemaker-like firing pattern). ZOX and related centrally acting muscle relaxants appear to decrease striatal DA turnover by decreasing both neuronal firing rate and firing rate variability. The possible relationships between DA neuronal activity and muscle tone are discussed.

  3. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    Science.gov (United States)

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  4. Landscape Patterns of Burn Severity in the Soberanes Fire of 2016

    Science.gov (United States)

    Potter, Christopher

    2016-01-01

    The Soberanes Fire started on July 22, 2016 in Monterey County on the California Central Coast from an illegal campfire. This fire burned for 10 weeks at a record cost of more than $208 million for protection and control. A progressive analysis of the normalized burn ratio from the Landsat satellite showed that the final high burn severity (HBS) area for the Soberanes Fire comprised 22 percent of the total area burned, whereas final moderate burn severity (MBS) area comprised about 10 percent of the total area burned of approximately 53,470 ha (132,130 acres). The resulting landscape pattern of burn severity classes from the 2016 Soberanes Fire revealed that the majority of HBS area was located in the elevation zone between 500 and 1000 m, in the slope zone between 15 percent and 30 percent, or on south-facing aspects.

  5. Fire patterns in the range of the greater sage-grouse, 1984-2013 — Implications for conservation and management

    Science.gov (United States)

    Brooks, Matthew L.; Matchett, John R.; Shinneman, Douglas J.; Coates, Peter S.

    2015-09-10

    Fire ranks among the top three threats to the greater sage-grouse (Centrocercus urophasianus) throughout its range, and among the top two threats in the western part of its range. The national research strategy for this species and the recent U.S. Department of the Interior Secretarial Order 3336 call for science-based threats assessment of fire to inform conservation planning and fire management efforts. The cornerstone of such assessments is a clear understanding of where fires are occurring and what aspects of fire regimes may be shifting outside of their historical range of variation. This report fulfills this need by describing patterns of fire area, fire size, fire rotation, and fire season length and timing from 1984 to 2013 across the range of the greater sage-grouse. This information need is further addressed by evaluating the ecological and management implications of these fire patterns. Analyses are stratified by major vegetation types and the seven greater sage-grouse management zones, delineated regionally as four western and three eastern management zones. Soil temperature and moisture indicators of resilience to fire and resistance to cheatgrass invasion, and the potential for establishment of a grass/fire cycle, are used as unifying concepts in developing fire threat assessments for each analysis strata.

  6. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.

    Directory of Open Access Journals (Sweden)

    Erica A H Smithwick

    Full Text Available Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1 quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2 determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA. Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m. Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R²<0.29. Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st Century.

  7. Advantage of the Highly Restricted Odorant Receptor Expression Pattern in Chemosensory Neurons of Drosophila.

    Science.gov (United States)

    Tharadra, Sana Khalid; Medina, Adriana; Ray, Anandasankar

    2013-01-01

    A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.

  8. Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: Relevance for schizophrenia.

    Science.gov (United States)

    Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran

    2018-06-05

    Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.

  9. Landscape-scale patterns of fire and drought on the high plains, USA

    Science.gov (United States)

    Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner

    2015-01-01

    We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...

  10. Numerical approaches to model perturbation fire in turing pattern formations

    Science.gov (United States)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  11. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  12. Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons

    DEFF Research Database (Denmark)

    Golonzhka, Olga; Nord, Alex; Tang, Paul L F

    2015-01-01

    We demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2(+/-) sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient...

  13. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood.

    Science.gov (United States)

    Roland, Alison V; Moenter, Suzanne M

    2011-02-01

    Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.

  14. Fire and Spillage Risk Assessment Pattern in Scientific Laboratories

    OpenAIRE

    Manouchehr Omidvari; N. Mansouri

    2015-01-01

        Material hazards are the most important risk in scientific laboratories. In risk assessment processing, the potential impact of assessor personal judgment is the most important issue. This study tried to develop a risk assessment pattern based on Failure Mode and Effect Analysis (FMEA) and Analytical Hierarchy Process (AHP) logics and empirical data in scientific laboratories. The most important issues were high pressure reservoirs and hardware failure fuel. The other type of data about b...

  15. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

  16. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    Science.gov (United States)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  17. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation.

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2013-01-01

    Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.

  18. Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH neurons in an estrous cycle and endocannabinoid signaling dependent manner.

    Directory of Open Access Journals (Sweden)

    Imre Farkas

    Full Text Available The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+-imaging revealed a ghrelin-triggered increase of the Ca(2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10 µM suggesting direct action of ghrelin. Estradiol (1nM eliminated the ghrelin-evoked rise of Ca(2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40 nM-4 μM administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1 antagonist AM251 (1µM and the intracellularly applied DAG-lipase inhibitor THL (10 µM, indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.

  19. Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks

    Science.gov (United States)

    Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson

    2008-01-01

    We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...

  20. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  1. Effects of electrical stimulation of ventral septal area on firing rates of pyrogen-treated thermosensitive neurons in preoptic anterior hypothalamus from rabbits.

    Science.gov (United States)

    Dong, Jun; Xie, Xin-Hua; Lu, Da-Xiang; Fu, Yong-Mei

    2007-01-09

    Although there is considerable evidence supporting that fever evolved as a host defense response, it is important that the rise in body temperature would not be too high. Many endogenous cryogens or antipyretics that limit the rise in body temperature have been identified. Endogenous antipyretics attenuate fever by influencing the thermoregulatory neurons in the preoptic anterior hypothalamus (POAH) and in adjacent septal areas including ventral septal area (VSA). Our previous study showed that intracerebroventricular (I.C.V.) injection of interleukin-1beta (IL-1beta) affected electrophysiological activities of thermosensitive neurons in VSA regions, and electrical stimulation of POAH reversed the effect of IL-1beta. To further investigate the functional electrophysiological connection between POAH and VSA and its mechanisms in thermoregulation, the firing rates of thermosensitive neurons in POAH of forty-seven unit discharge were recorded by using extracellular microelectrode technique in New Zealand white rabbits. Our results show that the firing rates of the warm-sensitive neurons decreased significantly and those of the cold-sensitive neurons increased in POAH when the pyrogen (IL-1beta) was injected I.C.V. The effects of IL-1beta on firing rates in thermosensitive neurons of POAH were reversed by electrical stimulation of VSA. An arginine vasopressin (AVP) V1 antagonist abolished the regulatory effects of VSA on the firing rates in thermosensitive neurons of POAH evoked by IL-1beta. However, an AVP V2 antagonist had no effects. These data indicated that VSA regulates the activities of the thermosensitive neurons of POAH through AVP V1 but not AVP V2 receptor.

  2. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Science.gov (United States)

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  3. Remotely-sensed active fire data for protected area management: eight-year patterns in the Manas National Park, India.

    Science.gov (United States)

    Takahata, Chihiro; Amin, Rajan; Sarma, Pranjit; Banerjee, Gitanjali; Oliver, William; Fa, John E

    2010-02-01

    The Terai-Duar savanna and grasslands, which once extended along most of the Himalayan foothills, now only remain in a number of protected areas. Within these localities, grassland burning is a major issue, but data on frequency and distribution of fires are limited. Here, we analysed the incidence of active fires, which only occur during the dry season (Nov.-Mar.), within a significant area of Terai grasslands: the Manas National Park (MNP), India. We obtained locations of 781 fires during the 2000-2008 dry seasons, from the Fire Information for Resource Management System (FIRMS) that delivers global MODIS hotspot/fire locations using remote sensing and GIS technologies. Annual number of fires rose significantly from around 20 at the start of the study period to over 90 after 2002, with most (85%) detected between December and January. Over half of the fires occurred in tall grasslands, but fire density was highest in wetland and riverine vegetation, dry at the time. Most burning took place near rivers, roads and the park boundary, suggesting anthropogenic origins. A kernel density map of all recorded fires indicated three heavily burnt areas in the MNP, all within the tall grasslands. Our study demonstrates, despite some technical caveats linked to fire detection technology, which is improving, that remote fire data can be a practical tool in understanding fire concentration and burning temporal patterns in highly vulnerable habitats, useful in guiding management.

  4. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    Directory of Open Access Journals (Sweden)

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  5. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    Science.gov (United States)

    Lasaponara, R.

    2009-04-01

    fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal

  6. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple

    Directory of Open Access Journals (Sweden)

    Jensen Philip J

    2012-01-01

    Full Text Available Abstract Background Desirable apple varieties are clonally propagated by grafting vegetative scions onto rootstocks. Rootstocks influence many phenotypic traits of the scion, including resistance to pathogens such as Erwinia amylovora, which causes fire blight, the most serious bacterial disease of apple. The purpose of the present study was to quantify rootstock-mediated differences in scion fire blight susceptibility and to identify transcripts in the scion whose expression levels correlated with this response. Results Rootstock influence on scion fire blight resistance was quantified by inoculating three-year old, orchard-grown apple trees, consisting of 'Gala' scions grafted to a range of rootstocks, with E. amylovora. Disease severity was measured by the extent of shoot necrosis over time. 'Gala' scions grafted to G.30 or MM.111 rootstocks showed the lowest rates of necrosis, while 'Gala' on M.27 and B.9 showed the highest rates of necrosis. 'Gala' scions on M.7, S.4 or M.9F56 had intermediate necrosis rates. Using an apple DNA microarray representing 55,230 unique transcripts, gene expression patterns were compared in healthy, un-inoculated, greenhouse-grown 'Gala' scions on the same series of rootstocks. We identified 690 transcripts whose steady-state expression levels correlated with the degree of fire blight susceptibility of the scion/rootstock combinations. Transcripts known to be differentially expressed during E. amylovora infection were disproportionately represented among these transcripts. A second-generation apple microarray representing 26,000 transcripts was developed and was used to test these correlations in an orchard-grown population of trees segregating for fire blight resistance. Of the 690 transcripts originally identified using the first-generation array, 39 had expression levels that correlated with fire blight resistance in the breeding population. Conclusions Rootstocks had significant effects on the fire blight

  7. A hierarchical graph neuron scheme for real-time pattern recognition.

    Science.gov (United States)

    Nasution, B B; Khan, A I

    2008-02-01

    The hierarchical graph neuron (HGN) implements a single cycle memorization and recall operation through a novel algorithmic design. The HGN is an improvement on the already published original graph neuron (GN) algorithm. In this improved approach, it recognizes incomplete/noisy patterns. It also resolves the crosstalk problem, which is identified in the previous publications, within closely matched patterns. To accomplish this, the HGN links multiple GN networks for filtering noise and crosstalk out of pattern data inputs. Intrinsically, the HGN is a lightweight in-network processing algorithm which does not require expensive floating point computations; hence, it is very suitable for real-time applications and tiny devices such as the wireless sensor networks. This paper describes that the HGN's pattern matching capability and the small response time remain insensitive to the increases in the number of stored patterns. Moreover, the HGN does not require definition of rules or setting of thresholds by the operator to achieve the desired results nor does it require heuristics entailing iterative operations for memorization and recall of patterns.

  8. A signaling network for patterning of neuronal connectivity in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Mohammed Srahna

    2006-10-01

    Full Text Available The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF receptor, and Jun N-terminal kinase (JNK signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF-Breathless (FGF receptor axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.

  9. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    Science.gov (United States)

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service

  10. Responses of Nucleus Tractus Solitarius (NTS) early and late neurons to blood pressure changes in anesthetized F344 rats.

    Science.gov (United States)

    Kolpakova, Jenya; Li, Liang; Hatcher, Jeffrey T; Gu, He; Zhang, Xueguo; Chen, Jin; Cheng, Zixi Jack

    2017-01-01

    Previously, many different types of NTS barosensitive neurons were identified. However, the time course of NTS barosensitive neuronal activity (NA) in response to arterial pressure (AP) changes, and the relationship of NA-AP changes, have not yet been fully quantified. In this study, we made extracellular recordings of single NTS neurons firing in response to AP elevation induced by occlusion of the descending aorta in anesthetized rats. Our findings were that: 1) Thirty-five neurons (from 46 neurons) increased firing, whereas others neurons either decreased firing upon AP elevation, or were biphasic: first decreased firing upon AP elevation and then increased firing during AP decrease. 2) Fourteen neurons with excitatory responses were activated and rapidly increased their firing during the early phase of AP increase (early neurons); whereas 21 neurons did not increase firing until the mean arterial pressure changes (ΔMAP) reached near/after the peak (late neurons). 3) The early neurons had a significantly higher firing rate than late neurons during AP elevation at a similar rate. 4) Early neuron NA-ΔMAP relationship could be well fitted and characterized by the sigmoid logistic function with the maximal gain of 29.3. 5) The increase of early NA correlated linearly with the initial heart rate (HR) reduction. 6) The late neurons did not contribute to the initial HR reduction. However, the late NA could be well correlated with HR reduction during the late phase. Altogether, our study demonstrated that the NTS excitatory neurons could be grouped into early and late neurons based on their firing patterns. The early neurons could be characterized by the sigmoid logistic function, and different neurons may differently contribute to HR regulation. Importantly, the grouping and quantitative methods used in this study may provide a useful tool for future assessment of functional changes of early and late neurons in disease models.

  11. Expression Patterns of Odorant Receptors and Response Properties of Olfactory Sensory Neurons in Aged Mice

    OpenAIRE

    Lee, Anderson C.; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-01-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)—2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3–27 ...

  12. Neurons refine the Caenorhabditis elegans body plan by directing axial patterning by Wnts.

    Directory of Open Access Journals (Sweden)

    Katarzyna Modzelewska

    Full Text Available Metazoans display remarkable conservation of gene families, including growth factors, yet somehow these genes are used in different ways to generate tremendous morphological diversity. While variations in the magnitude and spatio-temporal aspects of signaling by a growth factor can generate different body patterns, how these signaling variations are organized and coordinated during development is unclear. Basic body plans are organized by the end of gastrulation and are refined as limbs, organs, and nervous systems co-develop. Despite their proximity to developing tissues, neurons are primarily thought to act after development, on behavior. Here, we show that in Caenorhabditis elegans, the axonal projections of neurons regulate tissue progenitor responses to Wnts so that certain organs develop with the correct morphology at the right axial positions. We find that foreshortening of the posteriorly directed axons of the two canal-associated neurons (CANs disrupts mid-body vulval morphology, and produces ectopic vulval tissue in the posterior epidermis, in a Wnt-dependent manner. We also provide evidence that suggests that the posterior CAN axons modulate the location and strength of Wnt signaling along the anterior-posterior axis by employing a Ror family Wnt receptor to bind posteriorly derived Wnts, and hence, refine their distributions. Surprisingly, despite high levels of Ror expression in many other cells, these cells cannot substitute for the CAN axons in patterning the epidermis, nor can cells expressing a secreted Wnt inhibitor, SFRP-1. Thus, unmyelinated axon tracts are critical for patterning the C. elegans body. Our findings suggest that the evolution of neurons not only improved metazoans by increasing behavioral complexity, but also by expanding the diversity of developmental patterns generated by growth factors such as Wnts.

  13. The relationship between landscape patterns and human-caused fire occurrence in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castafreda-Aumedes, S.; Garcia-Martin, A.; Vega-Garcia, C.

    2013-05-01

    Aim of study: Human settlements and activities have completely modified landscape structure in the Mediterranean region. Vegetation patterns show the interactions between human activities and natural processes on the territory, and allow understanding historical ecological processes and socioeconomic factors. The arrangement of land uses in the rural landscape can be perceived as a proxy for human activities that often lead to the use, and escape, of fire, the most important disturbance in our forest landscapes. In this context, we tried to predict human-caused fire occurrence in a 5-year period by quantifying landscape patterns. Area of study: This study analyses the Spanish territory included in the Iberian Peninsula and Balearic Islands (497,166 km{sup 2}). Material and Methods: We evaluated spatial pattern applying a set of commonly used landscape ecology metrics to landscape windows of 10x10 sq km (4751 units in the UTM grid) overlaid on the Forest Map of Spain, MFE200. Main results: The best logistic regression model obtained included Shannon's Diversity Index, Mean Patch Edge and Mean Shape Index as explicative variables and the global percentage of correct predictions was 66.3 %. Research highlights: Our results suggested that the highest probability of fire occurrence at that time was associated with areas with a greater diversity of land uses and with more compact patches with fewer edges. (Author) 58 refs.

  14. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    the patterning factors that direct neurons toward forebrain and midbrain fates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. HNT neurons patterned on a parylene-C/silicon dioxide interface

    International Nuclear Information System (INIS)

    Unsworth, C.P.; Graham, E.S.; Dragunow, M.; Delivopoulos, E.; Murray, A.F.

    2010-01-01

    Full text: In this article, we describe how we have successfully patterned lines of human teratocarcinoma cell line-derived (HNT) neurons on silicon chip. The silicon chips used in this study were created by depositing lines of the biomaterial Parylene-C onto a silicon dioxide substrate using photolithographic techniques. The chips were then immersed in a range of serums and the HNT neurons cultured for different periods of time. It was found that chips immersed in Foetal Bovine Serum (FBS) and then plated with 70 cells per square mm for 3 h on a Parylene-C thickness of 100 nm provided excellent patterning on the Parylene-C material with a very sharp contrast to the silicon dioxide substrate. The human HNT neuron was chosen as it provides the closest model to adult human neural tissue. The breakthrough in patterning such cells on silicon chip has widespread implication and value as a platform technology; to enable a detailed study of adult human brain circuits for a range of adult human brain pathologies. This could eventually lead to potential new treatments and lead to the development of new drug assays. (author)

  16. Deterministic integer multiple firing depending on initial state in Wang model

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yong [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: yxie@mail.xjtu.edu.cn; Xu Jianxue [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang Jun [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)

    2006-12-15

    We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables.

  17. Deterministic integer multiple firing depending on initial state in Wang model

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Jiang Jun

    2006-01-01

    We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables

  18. Criticality in Neuronal Networks

    Science.gov (United States)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; Deville, R. E. Lee; Beggs, John M.; Dahmen, Karin A.; Butler, Tom C.

    2012-02-01

    In recent years, experiments detecting the electrical firing patterns in slices of in vitro brain tissue have been analyzed to suggest the presence of scale invariance and possibly criticality in the brain. Much of the work done however has been limited in two ways: 1) the data collected is from local field potentials that do not represent the firing of individual neurons; 2) the analysis has been primarily limited to histograms. In our work we examine data based on the firing of individual neurons (spike data), and greatly extend the analysis by considering shape collapse and exponents. Our results strongly suggest that the brain operates near a tuned critical point of a highly distinctive universality class.

  19. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    Science.gov (United States)

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    Science.gov (United States)

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  1. Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET.

    Science.gov (United States)

    Dutta, Sangya; Kumar, Vinay; Shukla, Aditya; Mohapatra, Nihar R; Ganguly, Udayan

    2017-08-15

    Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in area and power compared to conventional analog circuit implementations was observed. In this paper, we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted (PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization (II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate spiking frequency dependence on input. MHz operation enables attractive hardware acceleration compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-integration (VLSI) which is essential for biology scale (~10 11 neuron based) large neural networks.

  2. Span: spike pattern association neuron for learning spatio-temporal spike patterns.

    Science.gov (United States)

    Mohemmed, Ammar; Schliebs, Stefan; Matsuda, Satoshi; Kasabov, Nikola

    2012-08-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.

  3. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns

    Science.gov (United States)

    Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA

    2015-01-01

    Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184

  4. Spatial and Temporal Patterns of Unburned Areas within Fire Perimeters in the Northwestern United States from 1984 to 2014

    Science.gov (United States)

    Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.

    2016-12-01

    Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.

  5. The Effect of Single Pyramidal Neuron Firing Within Layer 2/3 and Layer 4 in Mouse V1.

    Science.gov (United States)

    Meyer, Jochen F; Golshani, Peyman; Smirnakis, Stelios M

    2018-01-01

    The influence of cortical cell spiking activity on nearby cells has been studied extensively in vitro . Less is known, however, about the impact of single cell firing on local cortical networks in vivo . In a pioneering study, Kwan and Dan (Kwan and Dan, 2012) reported that in mouse layer 2/3 (L2/3), under anesthesia , stimulating a single pyramidal cell recruits ~2.1% of neighboring units. Here we employ two-photon calcium imaging in layer 2/3 of mouse V1, in conjunction with single-cell patch clamp stimulation in layer 2/3 or layer 4, to probe, in both the awake and lightly anesthetized states , how (i) activating single L2/3 pyramidal neurons recruits neighboring units within L2/3 and from layer 4 (L4) to L2/3, and whether (ii) activating single pyramidal neurons changes population activity in local circuit. To do this, it was essential to develop an algorithm capable of quantifying how sensitive the calcium signal is at detecting effectively recruited units ("followers"). This algorithm allowed us to estimate the chance of detecting a follower as a function of the probability that an epoch of stimulation elicits one extra action potential (AP) in the follower cell. Using this approach, we found only a small fraction (layer-2/3 or layer-4 pyramidal neurons produces few (<1% of local units) reliable single-cell followers in L2/3 of mouse area V1, either under light anesthesia or in quiet wakefulness: instead, single cell stimulation was found to elevate aggregate population activity in a weak but highly distributed fashion.

  6. Expression pattern of neuronal intermediate filament α-internexin in anterior pituitary gland and related tumors.

    Science.gov (United States)

    Schult, D; Hölsken, A; Buchfelder, M; Schlaffer, S-M; Siegel, S; Kreitschmann-Andermahr, I; Fahlbusch, R; Buslei, R

    2015-08-01

    α-Internexin (INA) is a class IV neuronal intermediate filament protein that maintains the morphogenesis of neurons. It is expressed in developing neuroblasts and represents the major component of the cytoskeleton in cerebellar granule cells of adult central nervous system tissue. Data concerning INA expression in the human frontal pituitary lobe and related adenomas (PA) is missing. Using immunohistochemistry we examined the distribution pattern of INA in a large cohort of 152 PA, 11 atypical PA, 4 pituitary carcinomas and 20 normal pituitaries (overall n = 187). Quantity of INA protein expression was semi-quantitatively evaluated and grouped into five categories (0 = 0%; 1 = >0-5%; 2 = >5-35%; 3 = >35-80%; 4 = >80% of cells). Cellular staining intensity of INA appeared significantly higher in gonadotropinomas (Go, n = 62), null cell adenomas (NC, n = 7) and thyrotropinomas (TSHomas, n = 7) compared to the other tumor subtypes (p ≤ 0.001). Furthermore, Go and NC showed a peculiar pseudorosette-like staining pattern surrounding blood vessels in 85.5% (59/69) of cases. Interestingly, areas exhibiting homogenous INA staining were often associated with oncocytic cell changes and decreased immunohistochemically detectable hormone expression. Only 8.5% (8/94) of other PA showed a comparable INA distribution (p ≤ 0.001). Go, NC as well as TSHomas exhibit high levels of intracellular INA protein indicating neuronal transdifferentiation. A possible impact on pathogenesis and endocrine activity needs further investigation.

  7. Bayesian Ising approximation for learning dictionaries of multispike timing patterns in premotor neurons

    Science.gov (United States)

    Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya

    Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.

  8. Spatial Patterns of Fire Recurrence Using Remote Sensing and GIS in the Brazilian Savanna: Serra do Tombador Nature Reserve, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Antunes Daldegan

    2014-10-01

    Full Text Available The Cerrado is the second largest biome in Brazil after the Amazon and is the savanna with the highest biodiversity in the world. Serra Tombador Natural Reserve (STNR is the largest private reserve located in Goiás State, and the fourth largest in the Cerrado biome. The present study aimed to map the burnt areas and to describe the spatial patterns of fire recurrence and its interactions with the classes of land-cover that occurred in STNR and its surroundings in the period between 2001 and 2010. Several Landsat TM images acquired around the months of July, August and September, coinciding with the region’s dry season when fire events intensify, were employed to monitor burnt areas. Fire scars were mapped using the supervised Mahalanobis-distance classifier and further refined using expert visual interpretation. Burnt area patterns were described by spatial landscape metrics. The effects of fire on landscape structure were obtained by comparing results among different land-cover classes, and results summarized in terms of fire history and frequencies. During the years covered by the study, 69% of the areas analyzed had fire events. The year with the largest burnt area was 2004, followed by 2001, 2007 and 2010. Thus, the largest fire events occurred in a 3-year cycle, which is compatible with other areas of the Brazilian savanna. The regions with higher annual probabilities of fire recurrence occur in the buffer zone around the park. The year 2004 also had the highest number of burnt area patches (831. In contrast, the burnt area in 2007 showed the most extensive fires with low number of patches (82. The physiognomies that suffered most fires were the native savanna formations. The study also identified areas where fires are frequently recurrent, highlighting priority areas requiring special attention. Thus, the methodology adopted in this study assists in monitoring and recovery of areas affected by fire over time.

  9. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex.

    Science.gov (United States)

    Takahashi, Yuji K; Roesch, Matthew R; Wilson, Robert C; Toreson, Kathy; O'Donnell, Patricio; Niv, Yael; Schoenbaum, Geoffrey

    2011-10-30

    The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information is essential for associative learning, which relies on comparisons between expected and obtained reward for generating instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to reflect internal information about the impending response that distinguished externally similar states leading to differently valued future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based behavior and suggest an unexpected role for this information in dopaminergic error signaling.

  10. Errors in estimation of the input signal for integrate-and-fire neuronal models

    Czech Academy of Sciences Publication Activity Database

    Bibbona, E.; Lánský, Petr; Sacerdote, L.; Sirovich, R.

    2008-01-01

    Roč. 78, č. 1 (2008), s. 1-10 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Grant - others:EC(XE) MIUR PRIN 2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic neuronal model Subject RIV: BO - Biophysics Impact factor: 2.508, year: 2008 http://link.aps.org/abstract/PRE/v78/e011918

  11. Transition of spiral calcium waves between multiple stable patterns can be triggered by a single calcium spark in a fire-diffuse-fire model

    Science.gov (United States)

    Tang, Ai-Hui; Wang, Shi-Qiang

    2009-01-01

    Spiral patterns have been found in various nonequilibrium systems. The Ca2+-induced Ca2+ release system in single cardiac cells is unique for highly discrete reaction elements, each giving rise to a Ca2+ spark upon excitation. We imaged the spiral Ca2+ waves in isolated cardiac cells and numerically studied the effect of system excitability on spiral patterns using a two-dimensional fire-diffuse-fire model. We found that under certain conditions, the system was able to display multiple stable patterns of spiral waves, each exhibiting different periods and distinct routines of spiral tips. Transition between these different patterns could be triggered by an internal fluctuation in the form of a single Ca2+ spark. PMID:19792039

  12. Transition of spiral calcium waves between multiple stable patterns can be triggered by a single calcium spark in a fire-diffuse-fire model.

    Science.gov (United States)

    Tang, Ai-Hui; Wang, Shi-Qiang

    2009-09-01

    Spiral patterns have been found in various nonequilibrium systems. The Ca(2+)-induced Ca(2+) release system in single cardiac cells is unique for highly discrete reaction elements, each giving rise to a Ca(2+) spark upon excitation. We imaged the spiral Ca(2+) waves in isolated cardiac cells and numerically studied the effect of system excitability on spiral patterns using a two-dimensional fire-diffuse-fire model. We found that under certain conditions, the system was able to display multiple stable patterns of spiral waves, each exhibiting different periods and distinct routines of spiral tips. Transition between these different patterns could be triggered by an internal fluctuation in the form of a single Ca(2+) spark.

  13. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    Science.gov (United States)

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  14. Exploring associations between gaze patterns and putative human mirror neuron system activity

    Directory of Open Access Journals (Sweden)

    Peter Hugh Donaldson

    2015-07-01

    Full Text Available The human mirror neuron system (MNS is hypothesised to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity, healthy right-handed participants aged 18-40 (n = 26 viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation (TMS. Motor-evoked potentials (MEPs recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze (PG and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  15. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury

    DEFF Research Database (Denmark)

    Lee, I. Hui; Lindqvist, Eva; Kiehn, Ole

    2005-01-01

    Spinal cord injury induces a complex cascade of degenerative and remodeling events evolving over time. The possible roles of changed intercellular communication via gap junctions after spinal cord injury (SCI) have remained relatively unexplored. We investigated the temporospatial expression...... patterns of gap junctional genes and proteins, connexin 43 (Cx43), Cx36, and Cx32, by in situ hybridization and immunohistochemistry in the rat neonatal, adult normal, and adult injured spinal cord. Cx36 was strongly expressed in immature neurons, and levels declined markedly during development, whereas Cx...

  16. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.

    Science.gov (United States)

    Connelly, William M; Crunelli, Vincenzo; Errington, Adam C

    2017-05-24

    Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of

  17. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  18. Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons.

    Science.gov (United States)

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2015-05-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.

  19. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity.

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    Full Text Available In the adult hippocampus dentate gyrus (DG, newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP was induced at 12, 16, or 21 days postinfection (dpi, at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.

  20. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2012-08-01

    Full Text Available Abstract Background Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2 lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP Gsat embryos were isolated to > 99% purity and profiled. Results We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97% were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. Conclusions This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways, and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.

  1. Spider Trait Assembly Patterns and Resilience under Fire-Induced Vegetation Change in South Brazilian Grasslands

    Science.gov (United States)

    Podgaiski, Luciana R.; Joner, Fernando; Lavorel, Sandra; Moretti, Marco; Ibanez, Sebastien; Mendonça, Milton de S.; Pillar, Valério D.

    2013-01-01

    Disturbances induce changes on habitat proprieties that may filter organism's functional traits thereby shaping the structure and interactions of many trophic levels. We tested if communities of predators with foraging traits dependent on habitat structure respond to environmental change through cascades affecting the functional traits of plants. We monitored the response of spider and plant communities to fire in South Brazilian Grasslands using pairs of burned and unburned plots. Spiders were determined to the family level and described in feeding behavioral and morphological traits measured on each individual. Life form and morphological traits were recorded for plant species. One month after fire the abundance of vegetation hunters and the mean size of the chelicera increased due to the presence of suitable feeding sites in the regrowing vegetation, but irregular web builders decreased due to the absence of microhabitats and dense foliage into which they build their webs. Six months after fire rosette-form plants with broader leaves increased, creating a favourable habitat for orb web builders which became more abundant, while graminoids and tall plants were reduced, resulting in a decrease of proper shelters and microclimate in soil surface to ground hunters which became less abundant. Hence, fire triggered changes in vegetation structure that lead both to trait-convergence and trait-divergence assembly patterns of spiders along gradients of plant biomass and functional diversity. Spider individuals occurring in more functionally diverse plant communities were more diverse in their traits probably because increased possibility of resource exploitation, following the habitat heterogeneity hypothesis. Finally, as an indication of resilience, after twelve months spider communities did not differ from those of unburned plots. Our findings show that functional traits provide a mechanistic understanding of the response of communities to environmental change

  2. Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks

    International Nuclear Information System (INIS)

    Huang Xu-Hui; Hu Gang

    2014-01-01

    Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)

  3. On the number of preganglionic neurones driving human postganglionic sympathetic neurones: a comparison of modelling and empirical data

    Directory of Open Access Journals (Sweden)

    Vaughan G Macefield

    2011-12-01

    Full Text Available Postganglionic sympathetic axons in awake healthy human subjects, regardless of their identity as muscle vasoconstrictor, cutaneous vasoconstrictor or sudomotor neurones, discharge with a low firing probability (~30%, generate low firing rates (~0.5 Hz and typically fire only once per cardiac interval. The purpose of the present study was to use modelling of spike trains in an attempt to define the number of preganglionic neurones that drive an individual postganglionic neurone. Artificial spike trains were generated in 1-3 preganglionic neurones converging onto a single postganglionic neurone. Each preganglionic input fired with a mean interval distribution of either 1000, 1500, 2000, 2500 or 3000 ms and the standard deviation varied between 0.5, 1.0 and 2.0 x the mean interval; the discharge frequency of each preganglionic neurone exhibited positive skewness and kurtosis. Of the 45 patterns examined, the mean discharge properties of the postganglionic neurone could only be explained by it being driven by, on average, two preganglionic neurones firing with a mean interspike interval of 2500 ms and SD of 5000 ms. The mean firing rate resulting from this pattern was 0.22 Hz, comparable to that of spontaneously active muscle vasoconstrictor neurones in healthy subjects (0.40 Hz. Likewise, the distribution of the number of spikes per cardiac interval was similar between the modelled and actual data: 0 spikes (69.5 vs 66.6 %, 1 spike (25.6 vs 21.2 %, 2 spikes (4.3 vs 6.4 %, 3 spikes (0.5 vs 1.7 % and 4 spikes (0.1 vs 0.7 %. Although some features of the firing patterns could be explained by the postganglionic neurone being driven by a single preganglionic neurone, none of the emulated firing patterns generated by the firing of three preganglionic neurones matched the discharge of the real neurones. These modelling data indicate that, on average, human postganglionic sympathetic neurones are driven by two preganglionic inputs.

  4. Histomorphological patterns in osseous rests exposed at fire; Patrones histomorfologicos en restos oseos expuestos al fuego

    Energy Technology Data Exchange (ETDEWEB)

    Medina, C.; Tiesler, V. [Facultad de Ciencias Antropologicas, UADY, 97000 Merida, Yucatan (Mexico); Oliva, A.I.; Quintana, P. [CINVESTAV, IPN Unidad Merida, Depto. Fisica Aplicada, 97310 Merida (Mexico)

    2005-07-01

    Histomorphology as part of morphological research studies bony structure on the tissue level. Its methods are applied in this investigation to evaluate histomorphological impact patterns in heat-exposed bony material, particularly color changes, fissure patterns, volumetric reduction, and changes in the size of Haversian canals. These variables were evaluated in exposed thin sections of porcine long bones, obtained during two experimental series. The first one was conducted under stable thermal conditions in a furnace by measuring heat impact in stepped time (I to S hours) and temperature intervals (200 to 800 C). During a second experimental phase, bony samples were exposed to direct fire in defined time and heat intervals. The treated specimens were then sectioned and microscopically scrutinized. The results presented here were designed to offer new analytical, measurable standards in the investigation of forms of heat exposition of the human body, applicable in forensics and the study of ancient Maya posthumous body treatments. (Author)

  5. Multi-channels coupling-induced pattern transition in a tri-layer neuronal network

    Science.gov (United States)

    Wu, Fuqiang; Wang, Ya; Ma, Jun; Jin, Wuyin; Hobiny, Aatef

    2018-03-01

    Neurons in nerve system show complex electrical behaviors due to complex connection types and diversity in excitability. A tri-layer network is constructed to investigate the signal propagation and pattern formation by selecting different coupling channels between layers. Each layer is set as different states, and the local kinetics is described by Hindmarsh-Rose neuron model. By changing the number of coupling channels between layers and the state of the first layer, the collective behaviors of each layer and synchronization pattern of network are investigated. A statistical factor of synchronization on each layer is calculated. It is found that quiescent state in the second layer can be excited and disordered state in the third layer is suppressed when the first layer is controlled by a pacemaker, and the developed state is dependent on the number of coupling channels. Furthermore, the collapse in the first layer can cause breakdown of other layers in the network, and the mechanism is that disordered state in the third layer is enhanced when sampled signals from the collapsed layer can impose continuous disturbance on the next layer.

  6. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons

    Directory of Open Access Journals (Sweden)

    Chengxu Zhuang

    2017-10-01

    Full Text Available Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1. However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised, receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.

  7. Change in sympathetic nerve firing pattern associated with dietary weight loss in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth Annie Lambert

    2011-08-01

    Full Text Available Sympathetic activation in subjects with the metabolic syndrome (MS plays a role in the pathogenesis of cardiovascular disease development. Diet-induced weight loss decreases sympathetic outflow. However the mechanisms that account for sympathetic inhibition are not known. We sought to provide a detailed description of the sympathetic response to diet by analyzing the firing behavior of single-unit sympathetic nerve fibres. Fourteen subjects (57±2 years, 9 men, 5 females fulfilling ATP III criteria for the MS underwent a 3-month low calorie diet. Metabolic profile, hemodynamic parameters and multi-unit and single unit muscle sympathetic nerve activity (MSNA, microneurography were assessed prior to and at the end of the diet. Patients’ weight dropped from 96±4 to 88±3 kg (P<0.001. This was associated with a decrease in systolic and diastolic blood pressure (-12 ±3 and -5±2 mmHg, P<0.05, and in heart rate (-7±2 bpm, P<0.01 and an improvement in all metabolic parameters (fasting glucose: -0.302.1±0.118 mmol/l, total cholesterol: -0.564±0.164 mmol/l, triglycerides: -0.414±0.137 mmol/l, P<0.05. Multi-unit MSNA decreased from 68±4 to 59±5 bursts per 100 heartbeats (P<0.05. Single-unit MSNA indicated that the firing rate of individual vasoconstrictor fibres decreased from 59±10 to 32±4 spikes per 100 heart beats (P<0.05. The probability of firing decreased from 34±5 to 23±3 % of heartbeats (P<0.05, and the incidence of multiple firing decreased from 14±4 to 6±1 % of heartbeats (P<0.05. Cardiac and sympathetic baroreflex function were significantly improved (cardiac slope: 6.57±0.69 to 9.57±1.20 msec.mmHg-1; sympathetic slope: -3.86±0.34 to -5.05±0.47 bursts per 100 heartbeats.mmHg-1 P<0.05 for both. Hypocaloric diet decreased sympathetic activity and improved hemodynamic and metabolic parameters. The sympathoinhibition associated with weight loss involves marked changes, not only in the rate but also in the firing pattern of

  8. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    Science.gov (United States)

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  9. Underlying mechanism of regulatory actions of diclofenac, a nonsteroidal anti-inflammatory agent, on neuronal potassium channels and firing: an experimental and theoretical study.

    Science.gov (United States)

    Huang, C W; Hung, T Y; Liao, Y K; Hsu, M C; Wu, S N

    2013-06-01

    Diclofenac (DIC), a nonsteroidal anti-inflammatory drug, is known to exert anti-nociceptive and anti-convulsant actions; however, its effects on ion currents, in neurons remain debatable. We aimed to investigate (1) potential effects of diclofenac on membrane potential and potassium currents in differentiated NSC-34 neuronal cells and dorsal root ganglion (DRG) neurons with whole-cell patch-clamp technology, and (2) firing of action potentials (APs), using a simulation model from hippocampal CA1 pyramidal neurons based on diclofenac's effects on potassium currents. In the NSC-34 cells, diclofenac exerted an inhibitory effect on delayed-rectifier K⁺ current (I(KDR)) with an IC₅₀ value of 73 μM. Diclofenac not merely inhibited the I(KDR) amplitude in response to membrane depolarization, but also accelerated the process of current inactivation. The inhibition by diclofenac of IK(DR) was not reversed by subsequent application of either naloxone. Importantly, diclofenac (300 μM) increased the amplitude of M-type K⁺ current (I)(KM)), while flupirtine (10 μM) or meclofenamic acid (10 μM) enhanced it effectively. Consistently, diclofenac (100 μM) increased the amplitude of I(KM) and diminished the I(KDR) amplitude, with a shortening of inactivation time constant in DRG neurons. Furthermore, by using the simulation modeling, we demonstrated the potential electrophysiological mechanisms underlying changes in AP firing caused by diclofenac. During the exposure to diclofenac, the actions on both I(KM) and I(KDR) could be potential mechanism through which it influences the excitability of fast-spiking neurons. Caution needs to be made in attributing the effects of diclofenac primarily to those produced by the activation of I(KM).

  10. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex.

    Science.gov (United States)

    Sun, Ninglei; Chi, Ning; Lauzon, Nicole; Bishop, Stephanie; Tan, Huibing; Laviolette, Steven R

    2011-12-01

    The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.

  11. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice.

    Science.gov (United States)

    Lee, Anderson C; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-10-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)-2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3-27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed.

  12. Tree Regeneration Spatial Patterns in Ponderosa Pine Forests Following Stand-Replacing Fire: Influence of Topography and Neighbors

    Directory of Open Access Journals (Sweden)

    Justin P. Ziegler

    2017-10-01

    Full Text Available Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses to examine the spatial pattern of tree locations and heights as well as the influence of tree interactions and topography on tree patterns. In these sparse, early-seral forests, we found that all species were spatially aggregated, partly attributable to the influence of (1 aspect and slope on conifers; (2 topographic position on quaking aspen; and (3 interspecific attraction between ponderosa pine and other species. Specifically, tree interactions were related to finer-scale patterns whereas topographic effects influenced coarse-scale patterns. Spatial structures of heights revealed conspecific size hierarchies with taller trees in denser neighborhoods. Topography and heterospecific tree interactions had nominal effect on tree height spatial structure. Our results demonstrate how stand-replacing fires create heterogeneous forest structures and suggest that scale-dependent, and often facilitatory, rather than competitive, processes act on regenerating trees. These early-seral processes will establish potential pathways of stand development, affecting future forest dynamics and management options.

  13. Diverse coupling of neurons to populations in sensory cortex.

    Science.gov (United States)

    Okun, Michael; Steinmetz, Nicholas; Cossell, Lee; Iacaruso, M Florencia; Ko, Ho; Barthó, Péter; Moore, Tirin; Hofer, Sonja B; Mrsic-Flogel, Thomas D; Carandini, Matteo; Harris, Kenneth D

    2015-05-28

    A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.

  14. Phase-locking and chaos in a silent Hodgkin-Huxley neuron exposed to sinusoidal electric field

    International Nuclear Information System (INIS)

    Che Yanqiu; Wang Jiang; Si Wenjie; Fei Xiangyang

    2009-01-01

    Neuronal firing patterns are related to the information processing in neural system. This paper investigates the response characteristics of a silent Hodgkin-Huxley neuron to the stimulation of externally-applied sinusoidal electric field. The neuron exhibits both p:q phase-locked (i.e. a periodic oscillation defined as p action potentials generated by q cycle stimulations) and chaotic behaviors, depending on the values of stimulus frequencies and amplitudes. In one-parameter space, a rich bifurcation structure including period-adding without chaos and phase-locking alternated with chaos suggests frequency discrimination of the neuronal firing patterns. Furthermore, by mapping out Arnold tongues, we partition the amplitude-frequency parameter space in terms of the qualitative behaviors of the neuron. Thus the neuron's information (firing patterns) encodes the stimulus information (amplitude and frequency), and vice versa

  15. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.

    Science.gov (United States)

    Garcia-Garcia, Martha G; Bergquist, Austin J; Vargas-Perez, Hector; Nagai, Mary K; Zariffa, Jose; Marquez-Chin, Cesar; Popovic, Milos R

    2017-11-01

    Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications. Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility. The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.

  16. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs.

    Science.gov (United States)

    Roberts, Brandon L; Zhu, Mingyan; Zhao, Huan; Dillon, Crystal; Appleyard, Suzanne M

    2017-09-01

    Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT 3 Rs. Decreasing the glucose concentration also decreased both basal and 5-HT 3 R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT 3 R activity, and glucokinase. Copyright © 2017 the American Physiological Society.

  17. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro.

    Science.gov (United States)

    Tang, Alexander D; Hong, Ivan; Boddington, Laura J; Garrett, Andrew R; Etherington, Sarah; Reynolds, John N J; Rodger, Jennifer

    2016-10-29

    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n=9 cells from 7 animals) or sham (n=10 cells from 9 animals), immediately after stimulation, as well as 10 and 20min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity. Copyright © 2016 IBRO. All rights reserved.

  18. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness.

    Science.gov (United States)

    Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H

    2016-03-01

    Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum: A New "Leave Me Alone" Lesion with a Characteristic Imaging Pattern.

    Science.gov (United States)

    Nunes, R H; Hsu, C C; da Rocha, A J; do Amaral, L L F; Godoy, L F S; Watkins, T W; Marussi, V H; Warmuth-Metz, M; Alves, H C; Goncalves, F G; Kleinschmidt-DeMasters, B K; Osborn, A G

    2017-10-01

    Multinodular and vacuolating neuronal tumor of the cerebrum is a recently reported benign, mixed glial neuronal lesion that is included in the 2016 updated World Health Organization classification of brain neoplasms as a unique cytoarchitectural pattern of gangliocytoma. We report 33 cases of presumed multinodular and vacuolating neuronal tumor of the cerebrum that exhibit a remarkably similar pattern of imaging findings consisting of a subcortical cluster of nodular lesions located on the inner surface of an otherwise normal-appearing cortex, principally within the deep cortical ribbon and superficial subcortical white matter, which is hyperintense on FLAIR. Only 4 of our cases are biopsy-proven because most were asymptomatic and incidentally discovered. The remaining were followed for a minimum of 24 months (mean, 3 years) without interval change. We demonstrate that these are benign, nonaggressive lesions that do not require biopsy in asymptomatic patients and behave more like a malformative process than a true neoplasm. © 2017 by American Journal of Neuroradiology.

  20. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    Science.gov (United States)

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  1. Global vegetation-fire pattern under different land use and climate conditions

    Science.gov (United States)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  2. Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA

    Science.gov (United States)

    Kirk M. Stueve; Dawna L. Cerney; Regina M. Rochefort; Laurie L. Kurth

    2009-01-01

    Questions: Does tree establishment: (1) occur at a treeline depressed by fire, (2) cause the forest line to ascend upslope, and/or (3) alter landscape heterogeneity? (4) What abiotic and biotic local site conditions are most important in structuring establishment patterns? (5) Does the abiotic setting become more important with increasing upslope distance from the...

  3. Fire patterns of South Eastern Queensland in a global context: A review

    Science.gov (United States)

    Philip Le C. F. Stewart; Patrick T. Moss

    2015-01-01

    Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...

  4. Wildfire and Spatial Patterns in Forests in Northwestern Mexico: The United States Wishes It Had Similar Fire Problems

    Directory of Open Access Journals (Sweden)

    Scott L. Stephens

    2008-12-01

    Full Text Available Knowledge of the ecological effect of wildfire is important to resource managers, especially from forests in which past anthropogenic influences, e.g., fire suppression and timber harvesting, have been limited. Changes to forest structure and regeneration patterns were documented in a relatively unique old-growth Jeffrey pine-mixed conifer forest in northwestern Mexico after a July 2003 wildfire. This forested area has never been harvested and fire suppression did not begin until the 1970s. Fire effects were moderate especially considering that the wildfire occurred at the end of a severe, multi-year (1999-2003 drought. Shrub consumption was an important factor in tree mortality and the dominance of Jeffrey pine increased after fire. The Baja California wildfire enhanced or maintained a patchy forest structure; similar spatial heterogeneity should be included in US forest restoration plans. Most US forest restoration plans include thinning from below to separate tree crowns and attain a narrow range for residual basal area/ha. This essentially produces uniform forest conditions over broad areas that are in strong contrast to the resilient forests in northern Baja California. In addition to producing more spatial heterogeneity in restoration plans of forests that once experienced frequent, low-moderate intensity fire regimes, increased use of US wildfire management options such as wildland fire use as well as appropriate management responses to non-natural ignitions could also be implemented at broader spatial scales to increase the amount of burning in western US forests.

  5. Electrophysiological and pharmacological evidence for the existence of distinct subpopulations of nigrostriatal dopaminergic neuron in the rat.

    Science.gov (United States)

    Shepard, P D; German, D C

    1988-11-01

    The electrophysiological and pharmacological properties of dopaminergic neurons were systematically examined throughout the anterior-posterior extent of the substantia nigra zona compacta in the rat. Cells were characterized in terms of their (1) firing pattern, (2) firing rate, (3) antidromic response properties, and (4) inhibition in firing rate following dopaminergic agonist administration. These properties were then related to the cell's position within one of four anterior-posterior segments of the nucleus. There were three types of neuronal discharge pattern encountered; irregular, burst and regular. Cells which exhibited different firing patterns exhibited different firing rates and anatomical locations within the substantia nigra zona compacta. All neurons were antidromically activated from the striatum, however, the burst- and regular-firing cells exhibited significantly faster estimated conduction velocities than irregular-firing cells. The irregular-firing cells were most sensitive to dopaminergic autoreceptor agonists whereas the burst-firing cells were most sensitive to an indirect-acting dopaminergic agonist. These experiments provide both electrophysiological and pharmacological evidence to indicate that nigrostriatal dopaminergic neurons are composed of distinct subpopulations which are characterized by their firing pattern.

  6. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    Science.gov (United States)

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  7. Mechanisms for multiple activity modes of VTA dopamine neurons

    Directory of Open Access Journals (Sweden)

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  8. Dysregulated neuronal activity patterns implicate corticostriatal circuit dysfunction in multiple rodent models of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Benjamin R. Miller

    2011-05-01

    Full Text Available Huntington’s disease (HD is an autosomal dominant neurodegenerative disorder that targets the corticostriatal system and results in progressive deterioration of cognitive, emotional, and motor skills. Although cortical and striatal neurons are widely studied in animal models of HD, there is little information on neuronal function during expression of the HD behavioral phenotype. To address this knowledge gap, we used chronically implanted micro-wire bundles to record extracellular spikes and local field potentials (LFPs in truncated (R6/1 and R6/2 and full-length (knock-in, KI mouse models as well as in tgHD rats behaving in an open-field arena. Spike activity was recorded in the striatum of all models and in prefrontal cortex (PFC of R6/2 and KI mice, and in primary motor cortex (M1 of R6/2 mice. We also recorded LFP activity in R6/2 striatum. All HD models exhibited altered neuronal activity relative to wild-type (WT controls. Although there was no consistent effect on firing rate across models and brain areas, burst firing was reduced in striatum, PFC, and M1 of R6/2 mice, and in striatum of KI mice. Consistent with a decline in bursting, the interspike-interval coefficient of variation was reduced in all regions of all models, except PFC of KI mice and striatum of tgHD rats. Among simultaneously recorded neuron pairs, correlated firing was reduced in all brain regions of all models, while coincident bursting, which measures the temporal overlap between bursting pairs, was reduced in striatum of all models as well as in M1 of R6/2's. Preliminary analysis of striatal LFPs revealed aberrant behavior-related oscillations in the delta to theta range and in gamma activity. Collectively, our results indicate that disrupted corticostriatal processing occurs across multiple HD models despite differences in the severity of the behavioral phenotype. Efforts aimed at normalizing corticostriatal activity may hold the key to developing new HD

  9. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  10. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  11. Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain from 1978 to 2010

    Directory of Open Access Journals (Sweden)

    A. Cardil

    2013-05-01

    Full Text Available This work analyzes the effects of high temperature days on large wildland fires during 1978–2010 in Aragón (NE Spain. A high temperature day was established when air temperature was higher than 20 °C at 850 hPa. Temperature at 850 hPa was chosen because it properly characterizes the low troposphere state, and some of the problems that affect surface reanalysis do not occur. High temperature days were analyzed from April to October in the study period, and the number of these extreme days increased significantly. This temporal trend implied more frequent adverse weather conditions in later years that could facilitate extreme fire behavior. The effects of those high temperatures days in large wildland fire patterns have been increasingly important in the last years of the series.

  12. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  13. Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion

    Science.gov (United States)

    Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.

    2010-01-01

    In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243

  14. Electrical coupled Morris-Lecar neurons: From design to pattern analysis

    Science.gov (United States)

    Binczak, S.; Behdad, R.; Nekorkin, V. I.; Dmitrichev, A. S.; Rossé, M.; Bilbault, J. M.

    2016-06-01

    In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. A weak coupling of such neurons under Multisim Software can generate clusters based on the boundary conditions of the neurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles. In this region two limit cycles exist, one of the cycles is stable and another one is unstable.

  15. Electrical coupled Morris-Lecar neurons: From design to pattern analysis

    International Nuclear Information System (INIS)

    Binczak, S.; Behdad, R.; Rossé, M.; Bilbault, J. M.; Nekorkin, V. I.; Dmitrichev, A. S.

    2016-01-01

    In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. A weak coupling of such neurons under Multisim Software can generate clusters based on the boundary conditions of the neurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles. In this region two limit cycles exist, one of the cycles is stable and another one is unstable.

  16. Electrical coupled Morris-Lecar neurons: From design to pattern analysis

    Energy Technology Data Exchange (ETDEWEB)

    Binczak, S.; Behdad, R.; Rossé, M.; Bilbault, J. M. [Laboratoire LE2I CNRS UMR 6306, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon (France); Nekorkin, V. I.; Dmitrichev, A. S. [Institute of Applied Physics of RAS, 603950, Ulyanova Str 46, Nizhny Novgorod (Russian Federation)

    2016-06-08

    In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. A weak coupling of such neurons under Multisim Software can generate clusters based on the boundary conditions of the neurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles. In this region two limit cycles exist, one of the cycles is stable and another one is unstable.

  17. Respiratory Neuron Activity in the Mesencephalon, Diencephalon and Cerebellum of the Carp

    NARCIS (Netherlands)

    Ballintijn, C.M.; Luiten, P.G.M.; Jüch, P.J.W.

    1979-01-01

    The functional properties, localization and connections of neurons with a respiratory-rhythmic firing pattern in the mesencephalon, diencephalon and cerebellum of the carp were studied. Some neurons acquire respiratory rhythm only as a side effect of respiration via sensory stimulation by movements

  18. Social Isolation Modulates CLOCK Protein and Beta-Catenin Expression Pattern in Gonadotropin-Inhibitory Hormone Neurons in Male Rats

    Directory of Open Access Journals (Sweden)

    Chuin Hau Teo

    2017-09-01

    Full Text Available Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH. The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin—which has been shown to be affected by circadian proteins such as Bmal1—in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.

  19. Social Isolation Modulates CLOCK Protein and Beta-Catenin Expression Pattern in Gonadotropin-Inhibitory Hormone Neurons in Male Rats.

    Science.gov (United States)

    Teo, Chuin Hau; Soga, Tomoko; Parhar, Ishwar S

    2017-01-01

    Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH) acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH). The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH) in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin-which has been shown to be affected by circadian proteins such as Bmal1-in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.

  20. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    Science.gov (United States)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  1. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  2. Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability.

    Science.gov (United States)

    Wiegand, Jean-Paul L; Gray, Daniel T; Schimanski, Lesley A; Lipa, Peter; Barnes, C A; Cowen, Stephen L

    2016-05-18

    Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced "vocabulary" of available representational states. The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats

  3. Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013

    Science.gov (United States)

    David I. Board; Jeanne C. Chambers; Richard F. Miller; Peter J. Weisberg

    2018-01-01

    Increases in area burned and fire size have been reported across a wide range of forest and shrubland types in the Western United States in recent decades, but little is known about potential changes in fire regimes of piñon and juniper land cover types. We evaluated spatio-temporal patterns of fire in piñon and juniper land cover types from the National Gap Analysis...

  4. Temporal patterns of fire sequences observed in Canton of Ticino (southern Switzerland

    Directory of Open Access Journals (Sweden)

    L. Telesca

    2010-04-01

    Full Text Available Temporal dynamical analysis in fire sequences recorded from 1969 to 2008 in Canton Ticino (Switzerland was carried out by using the Allan Factor statistics. The obtained results show the presence of daily periodicities, superimposed to two time-scaling regimes. The daily cycle vanishes for sequences of higher altitude fires, for which a single scaling behaviour is observed.

  5. Fire in the Vegetation and Peatlands of Borneo, 1997-2007: Patterns, Drivers and Emissions from Biomass Burning

    Science.gov (United States)

    Spessa, Allan; Weber, Ulrich; Langner, Andreas; Siegert, Florian; Heil, Angelika

    2010-05-01

    The peatland forests of equatorial SE Asia cover over 20 Mha with most located in Indonesia. Indonesian peatlands are globally one of the largest near-surface reserves of terrestrial organic carbon, with peat deposits of up to 20m thick and an estimated carbon storage of 55-61 Gt. The destructive fires in Indonesia during the exceptionally strong drought of late 1997 and early 1998 mark some of the largest peak emissions events in recorded history of global fires. Past studies estimate that about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997- equivalent to 14% of the average global annual fossil fuel emissions released during the 1990s. Previous studies have established a non-linear negative correlation between fires and antecedent rainfall in Borneo, with ENSO-driven droughts being identified as the main cause of below-average rainfall events over the past decade or so. However, while these studies suggest that this non-linear relationship is mediated by ignitions associated with land use and land cover change (LULCC), they have not demonstrated it. A clear link between fires and logging in Borneo has been reported, but this work was restricted to eastern Kalimantan and the period 1997-98. The relationship between fires, emissions, rainfall and LULCC across the island of Borneo therefore remains to be examined using available fine resolution data over a multi-year period. Using rainfall data, up-to-date peat maps and state-of-the art satellite sensor data to determine burnt area and deforestation patterns over the decade 1997-2007, we show at a pixel working resolution of 0.25 degrees the following: Burning across Borneo predominated in southern Kalimantan. Fire activity is negatively and non-linearly correlated to rainfall mainly in pixels that have undergone a significant reduction in forest cover, and that the bigger the reduction, the stronger the correlation. Such pixels occur overwhelmingly in southern Kalimantan. These

  6. Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector.

    Science.gov (United States)

    Sakai, Seiichiro; Ueno, Kenichi; Ishizuka, Toru; Yawo, Hiromu

    2013-01-01

    Optical manipulation technologies greatly advanced the understanding of the neuronal network and its dysfunctions. To achieve patterned and parallel optical switching, we developed a microscopic illumination system using a commercial DMD-based projector and a software program. The spatiotemporal patterning of the system was evaluated using acute slices of the hippocampus. The neural activity was optically manipulated, positively by the combination of channelrhodopsin-2 (ChR2) and blue light, and negatively by the combination of archaerhodopsin-T (ArchT) and green light. It is suggested that our projector-managing optical system (PMOS) would effectively facilitate the optogenetic analyses of neurons and their circuits. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  7. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity

  8. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention.

    Science.gov (United States)

    Kayser, Jürgen; Tenke, Craig E; Abraham, Karen S; Alschuler, Daniel M; Alvarenga, Jorge E; Skipper, Jamie; Warner, Virginia; Bruder, Gerard E; Weissman, Myrna M

    2016-11-15

    Event-related potential (ERP) studies have provided evidence for an allocation of attentional resources to enhance perceptual processing of motivationally salient stimuli. Emotional modulation affects several consecutive components associated with stages of affective-cognitive processing, beginning as early as 100-200ms after stimulus onset. In agreement with the notion that the right parietotemporal region is critically involved during the perception of arousing affective stimuli, some ERP studies have reported asymmetric emotional ERP effects. However, it is difficult to separate emotional from non-emotional effects because differences in stimulus content unrelated to affective salience or task demands may also be associated with lateralized function or promote cognitive processing. Other concerns pertain to the operational definition and statistical independence of ERP component measures, their dependence on an EEG reference, and spatial smearing due to volume conduction, all of which impede the identification of distinct scalp activation patterns associated with affective processing. Building on prior research using a visual half-field paradigm with highly controlled emotional stimuli (pictures of cosmetic surgery patients showing disordered [negative] or healed [neutral] facial areas before or after treatment), 72-channel ERPs recorded from 152 individuals (ages 13-68years; 81 female) were transformed into reference-free current source density (CSD) waveforms and submitted to temporal principal components analysis (PCA) to identify their underlying neuronal generator patterns. Using both nonparametric randomization tests and repeated measures ANOVA, robust effects of emotional content were found over parietooccipital regions for CSD factors corresponding to N2 sink (212ms peak latency), P3 source (385ms) and a late centroparietal source (630ms), all indicative of greater positivity for negative than neutral stimuli. For the N2 sink, emotional effects were

  9. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  10. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  11. Interaction function of coupled bursting neurons

    International Nuclear Information System (INIS)

    Shi Xia; Zhang Jiadong

    2016-01-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. (paper)

  12. Firing patterns and synchronization in nonsynaptic epileptiform activity: the effect of gap junctions modulated by potassium accumulation

    International Nuclear Information System (INIS)

    Santos, D O C; Dickman, R; Rodrigues, A M; De Almeida, A C G

    2009-01-01

    Several lines of evidence point to the modification of firing patterns and of synchronization due to gap junctions (GJs) as having a role in the establishment of epileptiform activity (EA). However, previous studies consider GJs as ohmic resistors, ignoring the effects of intense variations in ionic concentration known to occur during seizures. In addition to GJs, extracellular potassium is regarded as a further important factor involved in seizure initiation and sustainment. To analyze how these two mechanisms act together to shape firing and synchronization, we use a detailed computational model for in vitro high-K + and low-Ca 2+ nonsynaptic EA. The model permits us to explore the modulation of electrotonic interactions under ionic concentration changes caused by electrodiffusion in the extracellular space, altered by tortuosity. In addition, we investigate the special case of null GJ current. Increased electrotonic interaction alters bursts and action potential frequencies, favoring synchronization. The particularities of pattern changes depend on the tortuosity and array size. Extracellular potassium accumulation alone modifies firing and synchronization when the GJ coupling is null

  13. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  14. Serotonin Regulates the Firing of Principal Cells of the Subiculum by Inhibiting a T-type Ca(2+) Current

    DEFF Research Database (Denmark)

    Petersen, Anders V; Jensen, Camilla S; Crépel, Valérie

    2017-01-01

    The subiculum is the main output of the hippocampal formation. A high proportion of its principal neurons fire action potentials in bursts triggered by the activation of low threshold calcium currents. This firing pattern promotes synaptic release and regulates spike-timing-dependent plasticity. ...... of epileptiform discharges induced in in vitro models for temporal lobe epilepsy (TLE)....

  15. Contrasting patterns of connectivity among endemic and widespread fire coral species ( Millepora spp.) in the tropical Southwestern Atlantic

    Science.gov (United States)

    de Souza, Júlia N.; Nunes, Flávia L. D.; Zilberberg, Carla; Sanchez, Juan A.; Migotto, Alvaro E.; Hoeksema, Bert W.; Serrano, Xaymara M.; Baker, Andrew C.; Lindner, Alberto

    2017-09-01

    Fire corals are the only branching corals in the South Atlantic and provide an important ecological role as habitat-builders in the region. With three endemic species ( Millepora brazilensis, M. nitida and M. laboreli) and one amphi-Atlantic species ( M. alcicornis), fire coral diversity in the Brazilian Province rivals that of the Caribbean Province. Phylogenetic relationships and patterns of population genetic structure and diversity were investigated in all four fire coral species occurring in the Brazilian Province to understand patterns of speciation and biogeography in the genus. A total of 273 colonies from the four species were collected from 17 locations spanning their geographic ranges. Sequences from the 16S ribosomal DNA (rDNA) were used to evaluate phylogenetic relationships. Patterns in genetic diversity and connectivity were inferred by measures of molecular diversity, analyses of molecular variance, pairwise differentiation, and by spatial analyses of molecular variance. Morphometrics of the endemic species M. braziliensis and M. nitida were evaluated by discriminant function analysis; macro-morphological characters were not sufficient to distinguish the two species. Genetic analyses showed that, although they are closely related, each species forms a well-supported clade. Furthermore, the endemic species characterized a distinct biogeographic barrier: M. braziliensis is restricted to the north of the São Francisco River, whereas M. nitida occurs only to the south. Millepora laboreli is restricted to a single location and has low genetic diversity. In contrast, the amphi-Atlantic species M. alcicornis shows high genetic connectivity within the Brazilian Province, and within the Caribbean Province (including Bermuda), despite low levels of gene flow between these populations and across the tropical Atlantic. These patterns reflect the importance of the Amazon-Orinoco Plume and the Mid-Atlantic Barrier as biogeographic barriers, and suggest that

  16. Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain.

    Science.gov (United States)

    Guidolin, D; Zunarelli, E; Genedani, S; Trentini, G P; De Gaetani, C; Fuxe, K; Benegiamo, C; Agnati, L F

    2008-06-01

    In an autopsy series of 19 individuals, age-ranged 24-94, a relatively age-spared region, the anterior-ventral thalamus, was analyzed by immunohistochemical techniques to visualize neurons (neurofilament protein), astrocytes (glial fibrillary acidic protein), microglial cells (CD68) and amyloid precursor protein. The pattern of immunoreactivity was determined by surface fractal dimension and lacunarity, the size by the field area (FA) and the spatial uniformity by the uniformity index. From the normalized FA values of immunoreactivity for the four markers studied, a global parameter was defined to give an overall characterization of the age-dependent changes in the glio-neuronal networks. A significant exponential decline of the GP was observed with increasing age. This finding suggests that early in life (ageage>70 years) could be due to the non-trophic reserve still available.

  17. Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons.

    Science.gov (United States)

    Avelar, Alicia J; Cao, Jianjing; Newman, Amy Hauck; Beckstead, Michael J

    2017-09-01

    Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed "atypical DAT inhibitors" has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  19. Topographic Patterns of Mortality and Succession in the Alpine Treeline Ecotone Suggest Hydrologic Controls on Post-Fire Tree Establishment

    Science.gov (United States)

    McCaffrey, D. R.; Hopkinson, C.

    2017-12-01

    Alpine Treeline Ecotone (ATE), the transition zone between closed canopy forest and alpine tundra, is a prominent vegetation pattern in mountain regions. At continental scales, the elevation of ATE is negatively correlated with latitude and is generally explained by thermal limitations. However, at landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability and patterning in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Observing change in the ATE at sufficient spatial resolution and temporal extent to identify correlations between topographic variables and disturbance agents has proved challenging. Recent advances in monoplotting have enabled the extraction of canopy cover information from oblique photography, at a resolution of 20 m. Using airborne lidar and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; 103 km2; 49.3° N, 114.4° W) over a 92-year period (i.e. 1914-2006). Two wildfires, occurring 1934 and 1936, affected 63% of the watershed area, providing an opportunity to contrast topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Slope aspect was a strong predictor of mortality and succession: the frequency of mortality was four times higher in fire-exposed areas, with 72% of all mortality occurring on south- and east-facing slope aspects; the frequency of succession was balanced between fire-exposed and unexposed areas, with 66% of all succession occurred on north- and east-facing slope aspects. Given previous experiments have demonstrated that moisture limitation inhibits tree establishment, suppressing elevation of ATE below thermal growth boundaries, we hypothesize

  20. A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models

    Czech Academy of Sciences Publication Activity Database

    Lánský, Petr; Ditlevsen, S.

    2008-01-01

    Roč. 99, 4-5 (2008), s. 253-262 ISSN 0340-1200 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic diffusion neuronal model Subject RIV: BO - Biophysics Impact factor: 1.935, year: 2008

  1. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area

    NARCIS (Netherlands)

    Dremencov, Eliyahu; El Mansari, Mostafa; Blier, Pierre

    Background: Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are efficacious in depression because of their ability to increase 5-HT neurotransmission. However, owing to a purported inhibitory effect of 5- HT on dopamine (DA) neuronal activity in the ventral tegmental area (VTA), this increase

  2. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube.

    Science.gov (United States)

    Kaul-Strehlow, Sabrina; Urata, Makoto; Praher, Daniela; Wanninger, Andreas

    2017-08-01

    A tubular nervous system is present in the deuterostome groups Chordata (cephalochordates, tunicates, vertebrates) and in the non-chordate Enteropneusta. However, the worm-shaped enteropneusts possess a less complex nervous system featuring only a short hollow neural tube, whereby homology to its chordate counterpart remains elusive. Since the majority of data on enteropneusts stem from the harrimaniid Saccoglossus kowalevskii, putative interspecific variations remain undetected resulting in an unreliable ground pattern that impedes homology assessments. In order to complement the missing data from another enteropneust family, we investigated expression of key neuronal patterning genes in the ptychoderid Balanoglossus misakiensis. The collar cord of B. misakiensis shows anterior Six3/6 and posterior Otx + Engrailed expression, in a region corresponding to the chordate brain. Neuronal Nk2.1/Nk2.2 expression is absent. Interestingly, we found median Dlx and lateral Pax6 expression domains, i.e., a condition that is reversed compared to chordates. Comparative analyses reveal that adult nervous system patterning is highly conserved among the enteropneust families Harrimaniidae, Spengelidae and Ptychoderidae. BmiDlx and BmiPax6 have no corresponding expression domains in the chordate brain, which may be indicative of independent acquisition of a tubular nervous system in Enteropneusta and Chordata.

  3. Differential Patterns of Dysconnectivity in Mirror Neuron and Mentalizing Networks in Schizophrenia

    NARCIS (Netherlands)

    Schilbach, Leonhard; Derntl, Birgit; Aleman, Andre; Caspers, Svenja; Clos, Mareike; Diederen, Kelly M J; Gruber, Oliver; Kogler, Lydia; Liemburg, Edith J; Sommer, Iris E; Müller, Veronika I; Cieslik, Edna C; Eickhoff, Simon B

    Impairments of social cognition are well documented in patients with schizophrenia (SCZ), but the neural basis remains poorly understood. In light of evidence that suggests that the "mirror neuron system" (MNS) and the "mentalizing network" (MENT) are key substrates of intersubjectivity and joint

  4. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Czech Academy of Sciences Publication Activity Database

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    2016-01-01

    Roč. 132, č. 1 (2016), s. 13-20 ISSN 1874-3919 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.914, year: 2016

  5. Multilayer perceptron classification of unknown volatile chemicals from the firing rates of insect olfactory sensory neurons and its application to biosensor design.

    Science.gov (United States)

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D; Crampin, Edmund J

    2013-01-01

    In this letter, we use the firing rates from an array of olfactory sensory neurons (OSNs) of the fruit fly, Drosophila melanogaster, to train an artificial neural network (ANN) to distinguish different chemical classes of volatile odorants. Bootstrapping is implemented for the optimized networks, providing an accurate estimate of a network's predicted values. Initially a simple linear predictor was used to assess the complexity of the data and was found to provide low prediction performance. A nonlinear ANN in the form of a single multilayer perceptron (MLP) was also used, providing a significant increase in prediction performance. The effect of the number of hidden layers and hidden neurons of the MLP was investigated and found to be effective in enhancing network performance with both a single and a double hidden layer investigated separately. A hybrid array of MLPs was investigated and compared against the single MLP architecture. The hybrid MLPs were found to classify all vectors of the validation set, presenting the highest degree of prediction accuracy. Adjustment of the number of hidden neurons was investigated, providing further performance gain. In addition, noise injection was investigated, proving successful for certain network designs. It was found that the best-performing MLP was that of the double-hidden-layer hybrid MLP network without the use of noise injection. Furthermore, the level of performance was examined when different numbers of OSNs used were varied from the maximum of 24 to only 5 OSNs. Finally, the ideal OSNs were identified that optimized network performance. The results obtained from this study provide strong evidence of the usefulness of ANNs in the field of olfaction for the future realization of a signal processing back end for an artificial olfactory biosensor.

  6. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event

    Science.gov (United States)

    Susan J. Prichard; Maureen C. Kennedy

    2014-01-01

    Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State...

  7. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Science.gov (United States)

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  8. Oak decline in the Boston Mountains, Arkansas, USA: Spatial and temporal patterns under two fire regimes

    Science.gov (United States)

    Martin A. Spetich; Hong S. He

    2008-01-01

    A spatially explicit forest succession and disturbance model is used to delineate the extent and dispersion of oak decline under two fire regimes over a 150-year period. The objectives of this study are to delineate potential current and future oak decline areas using species composition and age structure data in combination with ecological land types, and to...

  9. Post-spike hyperpolarization participates in the formation of auditory behavior-related response patterns of inferior collicular neurons in Hipposideros pratti.

    Science.gov (United States)

    Li, Y-L; Fu, Z-Y; Yang, M-J; Wang, J; Peng, K; Yang, L-J; Tang, J; Chen, Q-C

    2015-03-19

    To probe the mechanism underlying the auditory behavior-related response patterns of inferior collicular neurons to constant frequency-frequency modulation (CF-FM) stimulus in Hipposideros pratti, we studied the role of post-spike hyperpolarization (PSH) in the formation of response patterns. Neurons obtained by in vivo extracellular (N=145) and intracellular (N=171) recordings could be consistently classified into single-on (SO) and double-on (DO) neurons. Using intracellular recording, we found that both SO and DO neurons have a PSH with different durations. Statistical analysis showed that most SO neurons had a longer PSH duration than DO neurons (p<0.01). These data suggested that the PSH directly participated in the formation of SO and DO neurons, and the PSH elicited by the CF component was the main synaptic mechanism underlying the SO and DO response patterns. The possible biological significance of these findings relevant to bat echolocation is discussed. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Polarized cellular patterns of endocannabinoid production and detection shape cannabinoid signaling in neurons

    Directory of Open Access Journals (Sweden)

    Delphine eLadarre

    2015-01-01

    Full Text Available Neurons display important differences in plasma membrane composition between somatodendritic and axonal compartments, potentially leading to currently unexplored consequences in G-protein-coupled-receptor signaling. Here, by using highly-resolved biosensor imaging to measure local changes in basal levels of key signaling components, we explored features of type-1 cannabinoid receptor (CB1R signaling in individual axons and dendrites of cultured rat hippocampal neurons. Activation of endogenous CB1Rs led to rapid, Gi/o-protein- and cAMP-mediated decrease of cyclic-AMP-dependent protein kinase (PKA activity in the somatodendritic compartment. In axons, PKA inhibition was significantly stronger, in line with axonally-polarized distribution of CB1Rs. Conversely, inverse agonist AM281 produced marked rapid increase of basal PKA activation in somata and dendrites, but not in axons, removing constitutive activation of CB1Rs generated by local production of the endocannabinoid 2-arachidonoylglycerol (2-AG. Interestingly, somatodendritic 2-AG levels differently modified signaling responses to CB1R activation by Δ9-THC, the psychoactive compound of marijuana, and by the synthetic cannabinoids WIN55,212-2 and CP55,940. These highly contrasted differences in sub-neuronal signaling responses warrant caution in extrapolating pharmacological profiles, which are typically obtained in non-polarized cells, to predict in vivo responses of axonal (i.e. presynaptic GPCRs. Therefore, our results suggest that enhanced comprehension of GPCR signaling constraints imposed by neuronal cell biology may improve the understanding of neuropharmacological action.

  11. SPAN: spike pattern association neuron for learning spatio-temporal sequences

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2012-01-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN — a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the prec...

  12. Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality.

    Directory of Open Access Journals (Sweden)

    Jasleen Gundh

    Full Text Available We study the domain ordering kinetics in d = 2 ferromagnets which corresponds to populated neuron activities with both long-ranged interactions, V(r ∼ r-n and short-ranged interactions. We present the results from comprehensive Monte Carlo (MC simulations for the nonconserved Ising model with n ≥ 2, interaction range considering near and far neighbors. Our model results could represent the long-ranged neuron kinetics (n ≤ 4 in consistent with the same dynamical behaviour of short-ranged case (n ≥ 4 at far below and near criticality. We found that emergence of fast and slow kinetics of long and short ranged case could imitate the formation of connections among near and distant neurons. The calculated characteristic length scale in long-ranged interaction is found to be n independent (L(t ∼ t1/(n-2, whereas short-ranged interaction follows L(t ∼ t1/2 law and approximately preserve universality in domain kinetics. Further, we did the comparative study of phase ordering near the critical temperature which follows different behaviours of domain ordering near and far critical temperature but follows universal scaling law.

  13. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks

    Science.gov (United States)

    Knöpfel, Thomas; Leech, Robert

    2018-01-01

    Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654

  14. Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Josef H.L.P. Sadowski

    2016-03-01

    Full Text Available Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep.

  15. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  16. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  17. Multistability in a neuron model with extracellular potassium dynamics

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  18. Neurons in the Amygdala with Response-Selectivity for Anxiety in Two Ethologically Based Tests

    Science.gov (United States)

    Wang, Dong V.; Wang, Fang; Liu, Jun; Zhang, Lu; Wang, Zhiru; Lin, Longnian

    2011-01-01

    The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA) fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors. PMID:21494567

  19. Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests.

    Directory of Open Access Journals (Sweden)

    Dong V Wang

    Full Text Available The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors.

  20. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling

    Science.gov (United States)

    Tian, Chang-Hai; Zhang, Xi-Yun; Wang, Zhen-Hua; Liu, Zong-Hua

    2017-06-01

    Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.

  1. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    Science.gov (United States)

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  2. Robust emergence of small-world structure in networks of spiking neurons.

    Science.gov (United States)

    Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees

    2007-03-01

    Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.

  3. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    Science.gov (United States)

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  4. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    Science.gov (United States)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    LPJ-GUESS vegetation model. Recently, SPIFTIRE has been coupled to the Ecosystem Demography (ED) model, which simulates global vegetation dynamics as part of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). This study forms part of on-going work to further improve and test the ability of JULES to accurately simulate the terrestrial carbon cycle and land-atmosphere exchanges under different climates. Using the JULES (ED-SPITFIRE) model driven by observed climate (1901-2002), and focusing on large-scale rainfall gradients in the tropical savannas of west Africa, the Northern Territory (Australia) and central-southern Brazil, this study assesses: i) simulated versus observed vegetation dynamics and distributions, and ii) the relative importance of fire versus rainfall in determining vegetation patterns. A sensitivity analysis approach was used.

  5. Collective firing regularity of a scale-free Hodgkin–Huxley neuronal network in response to a subthreshold signal

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ergin, E-mail: erginyilmaz@yahoo.com [Department of Biomedical Engineering, Engineering Faculty, Bülent Ecevit University, 67100 Zonguldak (Turkey); Ozer, Mahmut [Department of Electrical and Electronics Engineering, Engineering Faculty, Bülent Ecevit University, 67100 Zonguldak (Turkey)

    2013-08-01

    We consider a scale-free network of stochastic HH neurons driven by a subthreshold periodic stimulus and investigate how the collective spiking regularity or the collective temporal coherence changes with the stimulus frequency, the intrinsic noise (or the cell size), the network average degree and the coupling strength. We show that the best temporal coherence is obtained for a certain level of the intrinsic noise when the frequencies of the external stimulus and the subthreshold oscillations of the network elements match. We also find that the collective regularity exhibits a resonance-like behavior depending on both the coupling strength and the network average degree at the optimal values of the stimulus frequency and the cell size, indicating that the best temporal coherence also requires an optimal coupling strength and an optimal average degree of the connectivity.

  6. Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna

    2018-05-01

    We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.

  7. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    Science.gov (United States)

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    OpenAIRE

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  9. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase

    Science.gov (United States)

    Engelmann, Alexander J.; Aparicio, Mark B.; Kim, Airee; Sobieraj, Jeffery C.; Yuan, Clara J.; Grant, Yanabel

    2013-01-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake

  10. Monoaminergic tone supports conductance correlations and stabilizes activity features in pattern generating neurons of the lobster, Panulirus interruptus

    Directory of Open Access Journals (Sweden)

    Wulf-Dieter C. Krenz

    2015-10-01

    Full Text Available Experimental and computational studies demonstrate that different sets of intrinsic and synaptic conductances can give rise to equivalent activity patterns. This is because the balance of conductances, not their absolute values, defines a given activity feature. Activity-dependent feedback mechanisms maintain neuronal conductance correlations and their corresponding activity features. This study demonstrates that tonic nM concentrations of monoamines enable slow, activity-dependent processes that can maintain a correlation between the transient potassium current (IA and the hyperpolarization activated current (Ih over the long-term (i.e., regulatory change persists for hours after removal of modulator. Tonic 5nM DA acted through an RNA interference silencing complex (RISC- and RNA polymerase II-dependent mechanism to maintain a long-term positive correlation between IA and Ih in the lateral pyloric neuron (LP but not in the pyloric dilator neuron (PD. In contrast, tonic 5nM 5HT maintained a RISC-dependent positive correlation between IA and Ih in PD but not LP over the long-term. Tonic 5nM OCT maintained a long-term negative correlation between IA and Ih in PD but not LP; however, it was only revealed when RISC was inhibited. This study also demonstrated that monoaminergic tone can also preserve activity features over the long-term: The timing of LP activity, LP duty cycle and LP spike number per burst were maintained by tonic 5nM DA. The data suggest that low-level monoaminergic tone acts through multiple slow processes to permit cell-specific, activity-dependent regulation of ionic conductances to maintain conductance correlations and their corresponding activity features over the long-term.

  11. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats.

    Science.gov (United States)

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.

  12. Analysis of In-Flight Collision Process During V-Type Firing Pattern in Surface Blasting Using Simple Physics

    Science.gov (United States)

    Chouhan, Lalit Singh; Raina, Avtar K.

    2015-10-01

    Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V- or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.

  13. Diverse Intrinsic Properties Shape Functional Phenotype of Low-Frequency Neurons in the Auditory Brainstem

    Directory of Open Access Journals (Sweden)

    Hui Hong

    2018-06-01

    Full Text Available In the auditory system, tonotopy is the spatial arrangement of where sounds of different frequencies are processed. Defined by the organization of neurons and their inputs, tonotopy emphasizes distinctions in neuronal structure and function across topographic gradients and is a common feature shared among vertebrates. In this study we characterized action potential firing patterns and ion channel properties from neurons located in the extremely low-frequency region of the chicken nucleus magnocellularis (NM, an auditory brainstem structure. We found that NM neurons responsible for encoding the lowest sound frequencies (termed NMc neurons have enhanced excitability and fired bursts of action potentials to sinusoidal inputs ≤10 Hz; a distinct firing pattern compared to higher-frequency neurons. This response property was due to lower amounts of voltage dependent potassium (KV conductances, unique combination of KV subunits and specialized sodium (NaV channel properties. Particularly, NMc neurons had significantly lower KV1 and KV3 currents, but higher KV2 current. NMc neurons also showed larger and faster transient NaV current (INaT with different voltage dependence of inactivation from higher-frequency neurons. In contrast, significantly smaller resurgent sodium current (INaR was present in NMc with kinetics and voltage dependence that differed from higher-frequency neurons. Immunohistochemistry showed expression of NaV1.6 channel subtypes across the tonotopic axis. However, various immunoreactive patterns were observed between regions, likely underlying some tonotopic differences in INaT and INaR. Finally, using pharmacology and computational modeling, we concluded that KV3, KV2 channels and INaR work synergistically to regulate burst firing in NMc.

  14. Distinct types of feeding related neurons in mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Yan eTang

    2016-05-01

    Full Text Available The last two decades of research provided evidence for a substantial heterogeneity among feeding-related neurons (FRNs in the hypothalamus. However, it remains unclear how FRNs differ in their firing patterns during food intake. Here, we investigated the relationship between the activity of neurons in mouse hypothalamus and their feeding behavior. Using tetrode-based in vivo recording technique, we identified various firing patterns of hypothalamic FRNs, which, after the initiation of food intake, can be sorted into four types: sharp increase (type I, slow increase (type II, sharp decrease (type III and sustained decrease (type IV of firing rates. The feeding-related firing response of FRNs was rigidly related to the duration of food intake and, to a less extent, associated with the type of food. The majority of these FRNs responded to glucose and leptin and exhibited electrophysiological characteristics of putative GABAergic neurons. In conclusion, our study demonstrated the diversity of neurons in the complex hypothalamic network coordinating food intake.

  15. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    Science.gov (United States)

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Recruitment pattern of sympathetic muscle neurons during premature ventricular contractions in heart failure patients and controls.

    Science.gov (United States)

    Maslov, Petra Zubin; Breskovic, Toni; Brewer, Danielle N; Shoemaker, J Kevin; Dujic, Zeljko

    2012-12-01

    Premature ventricular contractions (PVC) elicit larger bursts of multiunit muscle sympathetic nerve activity (MSNA), reflecting the ability to increase postganglionic axonal recruitment. We tested the hypothesis that chronic heart failure (CHF) limits the ability to recruit postganglionic sympathetic neurons as a response to PVC due to the excessive sympathetic activation in these patients. Sympathetic neurograms of sufficient signal-to-noise ratio were obtained from six CHF patients and from six similarly aged control individuals. Action potentials (APs) were extracted from the multiunit sympathetic neurograms during sinus rhythm bursts and during the post-PVC bursts. These APs were classified on the basis of the frequency per second, the content per burst, and the peak-to-peak amplitude, which formed the basis of binning the APs into active clusters. Compared with controls, CHF had higher APs per burst and higher number of active clusters per sinus rhythm burst (P < 0.05). Compared with sinus rhythm bursts, both groups increased AP frequency and the number of active clusters in the post-PVC burst (P < 0.05). However, compared with controls, the increase in burst integral, AP frequency, and APs per burst during the post-PVC burst was less in CHF patients. Nonetheless, the PVC-induced increase in active clusters per burst was similar between the groups. Thus, these CHF patients retained the ability to recruit larger APs but had a diminished ability to increase overall AP content.

  17. Default activity patterns at the neocortical microcircuit level

    Directory of Open Access Journals (Sweden)

    Artur eLuczak

    2012-06-01

    Full Text Available Even in absence of sensory stimuli cortical networks exhibit complex, self-organized activity patterns. While the function of those spontaneous patterns of activation remains poorly understood, recent studies both in vivo and in vitro have demonstrated that neocortical neurons activate in a surprisingly similar sequential order both spontaneously and following input into cortex. For example, neurons that tend to fire earlier within spontaneous bursts of activity also fire earlier than other neurons in response to sensory stimuli. These 'default patterns' can last hundreds of milliseconds and are strongly conserved under a variety of conditions. In this paper we will review recent evidence for these default patterns at the local cortical level. We speculate that cortical architecture imposes common constraints on spontaneous and evoked activity flow, which result in the similarity of the patterns.

  18. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  19. Effect of different glucose supply conditions on neuronal energy metabolism

    OpenAIRE

    Zheng, Hongwen; Wang, Rubin; Qu, Jingyi

    2016-01-01

    The glucose-excited neurons in brain can sense blood glucose levels and reflect different firing states, which are mainly associated with regulation of blood glucose and energy demand in the brain. In this paper, a new model of glucose-excited neuron in hypothalamus is proposed. The firing properties and energy consumption of this type of neuron under conditions of different glucose levels are simulated and analyzed. The results show that the firing rate and firing duration of the neuron both...

  20. In search of a periodic table of the neurons: Axonal-dendritic circuitry as the organizing principle: Patterns of axons and dendrites within distinct anatomical parcels provide the blueprint for circuit-based neuronal classification.

    Science.gov (United States)

    Ascoli, Giorgio A; Wheeler, Diek W

    2016-10-01

    No one knows yet how to organize, in a simple yet predictive form, the knowledge concerning the anatomical, biophysical, and molecular properties of neurons that are accumulating in thousands of publications every year. The situation is not dissimilar to the state of Chemistry prior to Mendeleev's tabulation of the elements. We propose that the patterns of presence or absence of axons and dendrites within known anatomical parcels may serve as the key principle to define neuron types. Just as the positions of the elements in the periodic table indicate their potential to combine into molecules, axonal and dendritic distributions provide the blueprint for network connectivity. Furthermore, among the features commonly employed to describe neurons, morphology is considerably robust to experimental conditions. At the same time, this core classification scheme is suitable for aggregating biochemical, physiological, and synaptic information. © 2016 WILEY Periodicals, Inc.

  1. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, Christine K.

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were

  2. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    Science.gov (United States)

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID

  3. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Samantha J Fung

    Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in

  4. Species-abundance distribution patterns of soil fungi: contribution to the ecological understanding of their response to experimental fire in Mediterranean maquis (southern Italy).

    Science.gov (United States)

    Persiani, Anna Maria; Maggi, Oriana

    2013-01-01

    Experimental fires, of both low and high intensity, were lit during summer 2000 and the following 2 y in the Castel Volturno Nature Reserve, southern Italy. Soil samples were collected Jul 2000-Jul 2002 to analyze the soil fungal community dynamics. Species abundance distribution patterns (geometric, logarithmic, log normal, broken-stick) were compared. We plotted datasets with information both on species richness and abundance for total, xerotolerant and heat-stimulated soil microfungi. The xerotolerant fungi conformed to a broken-stick model for both the low- and high intensity fires at 7 and 84 d after the fire; their distribution subsequently followed logarithmic models in the 2 y following the fire. The distribution of the heat-stimulated fungi changed from broken-stick to logarithmic models and eventually to a log-normal model during the post-fire recovery. Xerotolerant and, to a far greater extent, heat-stimulated soil fungi acquire an important functional role following soil water stress and/or fire disturbance; these disturbances let them occupy unsaturated habitats and become increasingly abundant over time.

  5. En masse in vitro functional profiling of the axonal mechanosensitivity of sensory neurons.

    Science.gov (United States)

    Usoskin, Dmitry; Zilberter, Misha; Linnarsson, Sten; Hjerling-Leffler, Jens; Uhlén, Per; Harkany, Tibor; Ernfors, Patrik

    2010-09-14

    Perception of the environment relies on somatosensory neurons. Mechanosensory, proprioceptor and many nociceptor subtypes of these neurons have specific mechanosensitivity profiles to adequately differentiate stimulus patterns. Nevertheless, the cellular basis of differential mechanosensation remains largely elusive. Successful transduction of sensory information relies on the recruitment of sensory neurons and mechanosensation occurring at their peripheral axonal endings in vivo. Conspicuously, existing in vitro models aimed to decipher molecular mechanisms of mechanosensation test single sensory neuron somata at any one time. Here, we introduce a compartmental in vitro chamber design to deliver precisely controlled mechanical stimulation of sensory axons with synchronous real-time imaging of Ca(2+) transients in neuronal somata that reliably reflect action potential firing patterns. We report of three previously not characterized types of mechanosensitive neuron subpopulations with distinct intrinsic axonal properties tuned specifically to static indentation or vibration stimuli, showing that different classes of sensory neurons are tuned to specific types of mechanical stimuli. Primary receptor currents of vibration neurons display rapidly adapting conductance reliably detected for every single stimulus during vibration and are consistently converted into action potentials. This result allows for the characterization of two critical steps of mechanosensation in vivo: primary signal detection and signal conversion into specific action potential firing patterns in axons.

  6. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    DEFF Research Database (Denmark)

    Jimenez, Samuel; Mordillo-Mateos, Laura; Dileone, Michele

    2018-01-01

    obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short......Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS....... In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H...

  7. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus

    Science.gov (United States)

    Ito, Tetsufumi; Oliver, Douglas L.

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671

  8. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study

    International Nuclear Information System (INIS)

    Phelps, P.E.; Barber, R.P.; Vaughn, J.E.

    1988-01-01

    This report examines the generation of cholinergic neurons in the spinal cord in order to determine whether the transmitter phenotype of neurons is associated with specific patterns of neurogenesis. Previous immunocytochemical studies identified four groups of choline acetyltransferase (ChAT)-positive neurons in the cervical enlargement of the rat spinal cord. These cell groups vary in both somatic size and location along the previously described ventrodorsal neurogenic gradient of the spinal cord. Thus, large (and small) motoneurons are located in the ventral horn, medium-sized partition cells are found in the intermediate gray matter, small central canal cluster cells are situated within lamina X, and small dorsal horn neurons are scattered predominantly through laminae III-V. The relationships among the birthdays of these four subsets of cholinergic neurons have been examined by combining 3H-thymidine autoradiography and ChAT immunocytochemistry. Embryonic day 11 was the earliest time that neurons were generated within the cervical enlargement. Large and small ChAT-positive motoneurons were produced on E11 and 12, with 70% of both groups being born on E11. ChAT-positive partition cells were produced between E11 and 13, with their peak generation occurring on E12. Approximately 70% of the cholinergic central canal cluster and dorsal horn cells were born on E13, and the remainder of each of these groups was generated on E14. Other investigators have shown that all neurons within the rat cervical spinal cord are produced in a ventrodorsal sequence between E11 and E16. In contrast, ChAT-positive neurons are born only from E11 to E14 and are among the earliest cells generated in the ventral, intermediate, and dorsal subdivisions of the spinal cord

  9. Metabolic sensing neurons and the control of energy homeostasis.

    Science.gov (United States)

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  10. Multiplicative multifractal modeling and discrimination of human neuronal activity

    International Nuclear Information System (INIS)

    Zheng Yi; Gao Jianbo; Sanchez, Justin C.; Principe, Jose C.; Okun, Michael S.

    2005-01-01

    Understanding neuronal firing patterns is one of the most important problems in theoretical neuroscience. It is also very important for clinical neurosurgery. In this Letter, we introduce a computational procedure to examine whether neuronal firing recordings could be characterized by cascade multiplicative multifractals. By analyzing raw recording data as well as generated spike train data from 3 patients collected in two brain areas, the globus pallidus externa (GPe) and the globus pallidus interna (GPi), we show that the neural firings are consistent with a multifractal process over certain time scale range (t 1 ,t 2 ), where t 1 is argued to be not smaller than the mean inter-spike-interval of neuronal firings, while t 2 may be related to the time that neuronal signals propagate in the major neural branching structures pertinent to GPi and GPe. The generalized dimension spectrum D q effectively differentiates the two brain areas, both intra- and inter-patients. For distinguishing between GPe and GPi, it is further shown that the cascade model is more effective than the methods recently examined by Schiff et al. as well as the Fano factor analysis. Therefore, the methodology may be useful in developing computer aided tools to help clinicians perform precision neurosurgery in the operating room

  11. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  12. Individual Neurons Confined to Distinct Antennal-Lobe Tracts in the Heliothine Moth: Morphological Characteristics and Global Projection Patterns

    Science.gov (United States)

    Ian, Elena; Zhao, Xin C.; Lande, Andreas; Berg, Bente G.

    2016-01-01

    To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum. PMID:27822181

  13. Motoneuron firing in amyotrophic lateral sclerosis (ALS

    Directory of Open Access Journals (Sweden)

    Mamede eDe Carvalho

    2014-09-01

    Full Text Available Amyotrophic lateral sclerosis is an inexorably progressive neurodegenerative disorder involving the classical motor system and the frontal effector brain, causing muscular weakness and atrophy, with variable upper motor neuron signs and often an associated fronto-temporal dementia. The physiological disturbance consequent on the motor system degeneration is beginning to be well understood. In this review we describe aspects of the motor cortical, neuronal and lower motor neuron dysfunction. We show how studies of the changes in the pattern of motor unit firing help delineate the underlying pathophysiological disturbance as the disease progresses. Such studies are beginning to illuminate the underlying disordered pathophysiological processes in the disease, and are important in designing new approaches to therapy and especially for clinical trials.

  14. Impact and Recovery Pattern of a Spring Fire on a Pacific Coast Marsh - Observations and Implications for Endangered Species

    Science.gov (United States)

    Brown, L. N.; Willis, K. S.; Ambrose, R. F.; MacDonald, G. M.

    2015-12-01

    The flammability of California coastal marsh vegetation is highest in winter and spring when dominant high marsh plants such as Sarcocornia pacifica are dormant. With climate change the number of cool-season fires are increasing in the state, and marsh systems are becoming more vulnerable to fire disturbance. Very little information exists in peer-reviewed or grey literature on the presence of fire in Pacific Coast tidal marshes. In 1993, the Green Meadows fire in Ventura County, California burned a small portion of tidally influenced Sarcocornia­-dominated marsh at Point Mugu. After the May 2013 Springs Fire burned a similar portion of the salt marsh vegetation, we conducted a two-year vegetation recovery survey using transects of surface vegetation plots and MODIS derived NDVI remote sensing monitoring. Recovery during the first year was limited. Sixteen months into the recovery period, percent plant coverage reached an average of approximately 60% for all plots in the burned area, as opposed to an average of 100% in control plots, and remained at that level for the duration of the study. NDVI did not approach near pre-fire conditions until 19 months after the fire. While recovery may have been influenced by California's current extreme drought conditions, the recurrence of fire and rate of recovery raise many important questions as to the role of fire in Pacific coast tidal marshes. For example, the lack of Salicornia cover over more than an entire breeding season would be detrimental to protected species such as Rallus obsoletus. Fire adds new vulnerabilities on critical tidal marsh habitat already taxed by the threat of sea-level rise, coastal squeeze and invasive species.

  15. Asynchronous Rate Chaos in Spiking Neuronal Circuits.

    Directory of Open Access Journals (Sweden)

    Omri Harish

    2015-07-01

    Full Text Available The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.

  16. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    Science.gov (United States)

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  17. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex.

    Science.gov (United States)

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-07-06

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

  18. Specific responses of human hippocampal neurons are associated with better memory.

    Science.gov (United States)

    Suthana, Nanthia A; Parikshak, Neelroop N; Ekstrom, Arne D; Ison, Matias J; Knowlton, Barbara J; Bookheimer, Susan Y; Fried, Itzhak

    2015-08-18

    A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory.

  19. An 800-year fire history

    Science.gov (United States)

    Stanley G. Kitchen

    2010-01-01

    "Fire in the woods!" The words are a real heart stopper. Yet in spite of its capacity to destroy, fire plays an essential role in shaping plant communities. Knowledge of the patterns of fire over long time periods is critical for understanding this role. Trees often retain evidence of nonlethal fires in the form of injuries or scars in the annual growth rings...

  20. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  1. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H2O2 via Flufenamic Acid-Sensitive Channels and KATP Channels

    Science.gov (United States)

    Lee, Christian R.; Witkovsky, Paul; Rice, Margaret E.

    2011-01-01

    Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels to regulate SNr output. PMID:21503158

  2. Dehydration-induced modulation of κ-opioid inhibition of vasopressin neurone activity

    Science.gov (United States)

    Scott, Victoria; Bishop, Valerie R; Leng, Gareth; Brown, Colin H

    2009-01-01

    Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s−1) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s−1), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s−1) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s−1), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation. PMID:19822541

  3. Persistent Neuronal Firing in Primary Somatosensory Cortex in the Absence of Working Memory of Trial-Specific Features of the Sample Stimuli in a Haptic Working Memory Task

    Science.gov (United States)

    Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di

    2012-01-01

    Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…

  4. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    Science.gov (United States)

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  6. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal.

    Science.gov (United States)

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an I h current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt

  7. Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire.

    Science.gov (United States)

    Choi, Sung-Deuk

    2014-02-01

    Forest fires are known as an important natural source of polycyclic aromatic hydrocarbons (PAHs), but time trends of PAH levels and patterns in various environmental compartments after forest fires have not been thoroughly studied yet. In this study, 16 US-EPA priority PAHs were analyzed for pine bark, litter, and soil samples collected one, three, five, and seven months after a forest fire in Pohang, South Korea. At the first sampling event, the highest levels of ∑16 PAHs were measured for the three types of samples (pine bark: 5,920 ng/g, litter: 1,540 ng/g, and soil: 133 ng/g). Thereafter, there were apparent decreasing trends in PAH levels; the control samples showed the lowest levels (pine bark: 124 ng/g, litter: 75 ng/g, and soil: 26 ng/g). The levels of PAHs in the litter and soil samples normalized by organic carbon (OC) fractions also showed decreasing trends, indicating a direct influence of the forest fire. Among the 16 target PAHs, naphthalene was a dominant compound for all types of samples. Light PAHs with 2-4 rings significantly contributed to the total concentration, and their contribution decreased in the course of time. Runoff by heavy precipitation, evaporation, and degradation of PAHs in the summer were probably the main reasons for the observed time trends. The results of principal component analysis (PCA) and diagnostic ratio also supported that the forest fire was indeed an important source of PAHs in the study area. © 2013.

  8. Connectivity and dynamics of neuronal networks as defined by the shape of individual neurons

    International Nuclear Information System (INIS)

    Ahnert, Sebastian E; A N Travencolo, Bruno; Costa, Luciano da Fontoura

    2009-01-01

    Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.

  9. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Directory of Open Access Journals (Sweden)

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  10. Spiking patterns of a hippocampus model in electric fields

    International Nuclear Information System (INIS)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Deng Bin; Che Yan-Qiu

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective. Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study. The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity. It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field. Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude. These findings are qualitatively in accordance with the results of relevant experimental and numerical studies. It is implied that the external or endogenous electric field can modulate the neural code in the brain. Furthermore, it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy. (interdisciplinary physics and related areas of science and technology)

  11. Results on a Binding Neuron Model and Their Implications for Modified Hourglass Model for Neuronal Network

    Directory of Open Access Journals (Sweden)

    Viswanathan Arunachalam

    2013-01-01

    Full Text Available The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008 in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.

  12. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  13. Beyond Critical Exponents in Neuronal Avalanches

    Science.gov (United States)

    Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin

    2011-03-01

    Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.

  14. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  15. Mechanisms of Winner-Take-All and Group Selection in Neuronal Spiking Networks.

    Science.gov (United States)

    Chen, Yanqing

    2017-01-01

    A major function of central nervous systems is to discriminate different categories or types of sensory input. Neuronal networks accomplish such tasks by learning different sensory maps at several stages of neural hierarchy, such that different neurons fire selectively to reflect different internal or external patterns and states. The exact mechanisms of such map formation processes in the brain are not completely understood. Here we study the mechanism by which a simple recurrent/reentrant neuronal network accomplish group selection and discrimination to different inputs in order to generate sensory maps. We describe the conditions and mechanism of transition from a rhythmic epileptic state (in which all neurons fire synchronized and indiscriminately to any input) to a winner-take-all state in which only a subset of neurons fire for a specific input. We prove an analytic condition under which a stable bump solution and a winner-take-all state can emerge from the local recurrent excitation-inhibition interactions in a three-layer spiking network with distinct excitatory and inhibitory populations, and demonstrate the importance of surround inhibitory connection topology on the stability of dynamic patterns in spiking neural network.

  16. Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris

    2015-11-01

    Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network

  17. Morphology and intrinsic excitability of regenerating sensory and motor neurons grown on a line micropattern.

    Directory of Open Access Journals (Sweden)

    Ouafa Benzina

    Full Text Available Axonal regeneration is one of the greatest challenges in severe injuries of peripheral nerve. To provide the bridge needed for regeneration, biological or synthetic tubular nerve constructs with aligned architecture have been developed. A key point for improving axonal regeneration is assessing the effects of substrate geometry on neuronal behavior. In the present study, we used an extracellular matrix-micropatterned substrate comprising 3 µm wide lines aimed to physically mimic the in vivo longitudinal axonal growth of mice peripheral sensory and motor neurons. Adult sensory neurons or embryonic motoneurons were seeded and processed for morphological and electrical activity analyses after two days in vitro. We show that micropattern-guided sensory neurons grow one or two axons without secondary branching. Motoneurons polarity was kept on micropattern with a long axon and small dendrites. The micro-patterned substrate maintains the growth promoting effects of conditioning injury and demonstrates, for the first time, that neurite initiation and extension could be differentially regulated by conditioning injury among DRG sensory neuron subpopulations. The micro-patterned substrate impacts the excitability of sensory neurons and promotes the apparition of firing action potentials characteristic for a subclass of mechanosensitive neurons. The line pattern is quite relevant for assessing the regenerative and developmental growth of sensory and motoneurons and offers a unique model for the analysis of the impact of geometry on the expression and the activity of mechanosensitive channels in DRG sensory neurons.

  18. Medial septal dysfunction by Aβ-induced KCNQ channel-block in glutamatergic neurons

    DEFF Research Database (Denmark)

    Leão, Richardson N.; Colom, Luis V.; Borgius, Lotta

    2012-01-01

    (MS) neurons in mice. In glutamatergic neurons Aβ increases firing frequency and blocks the A- and the M-current (IA and IM, respectively). While the IA block is similar in other MS neuron classes, the block of IM is specific to glutamatergic neurons. IM block and a simulated Aβ block mimic the Aβ......-induced increase in spontaneous firing in glutamatergic neurons. Calcium imaging shows that under control conditions glutamatergic neurons rarely fire while nonglutamatergic neurons fire coherently at theta frequencies. Aβ increases the firing rate of glutamatergic neurons while nonglutamatergic neurons lose theta...... firing coherence. Our results demonstrate that Aβ-induced dysfunction of glutamatergic neurons via IM decrease diminishes MS rhythmicity, which may negatively affect hippocampal rhythmogenesis and underlie the memory loss observed in Alzheimer's disease....

  19. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  20. Detection of 5-hydroxytryptamine (5-HT) in vitro using a hippocampal neuronal network-based biosensor with extracellular potential analysis of neurons.

    Science.gov (United States)

    Hu, Liang; Wang, Qin; Qin, Zhen; Su, Kaiqi; Huang, Liquan; Hu, Ning; Wang, Ping

    2015-04-15

    5-hydroxytryptamine (5-HT) is an important neurotransmitter in regulating emotions and related behaviors in mammals. To detect and monitor the 5-HT, effective and convenient methods are demanded in investigation of neuronal network. In this study, hippocampal neuronal networks (HNNs) endogenously expressing 5-HT receptors were employed as sensing elements to build an in vitro neuronal network-based biosensor. The electrophysiological characteristics were analyzed in both neuron and network levels. The firing rates and amplitudes were derived from signal to determine the biosensor response characteristics. The experimental results demonstrate a dose-dependent inhibitory effect of 5-HT on hippocampal neuron activities, indicating the effectiveness of this hybrid biosensor in detecting 5-HT with a response range from 0.01μmol/L to 10μmol/L. In addition, the cross-correlation analysis of HNNs activities suggests 5-HT could weaken HNN connectivity reversibly, providing more specificity of this biosensor in detecting 5-HT. Moreover, 5-HT induced spatiotemporal firing pattern alterations could be monitored in neuron and network levels simultaneously by this hybrid biosensor in a convenient and direct way. With those merits, this neuronal network-based biosensor will be promising to be a valuable and utility platform for the study of neurotransmitter in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.

    Directory of Open Access Journals (Sweden)

    Maria C Quintero

    2017-12-01

    Full Text Available Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC. We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes, in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously

  2. Development of the preoptic area: time and site of origin, migratory routes, and settling patterns of its neurons

    International Nuclear Information System (INIS)

    Bayer, S.A.; Altman, J.

    1987-01-01

    Neurogenesis and morphogenesis in the rat preoptic area were examined with [ 3 H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [ 3 H]thymidine on two consecutive gestational days. Nine groups were exposed to [ 3 H]thymidine on embryonic days E13-E14, E14-E15, E21-E22, respectively. On postnatal day P5, the percentage of labeled cells and the proportion of cells originating during 24-hr periods were quantified at four anteroposterior levels in the preoptic area. Throughout most of the preoptic area there is a lateral to medial neurogenetic gradient. Neurons originate between E12-E15 in the lateral preoptic area, between E13-E16 in the medial preoptic area, between E14-E17 in the medial preoptic nucleus, and between E15-E18 in the periventricular nucleus. These structures also have intrinsic dorsal to ventral neurogenetic gradients. There are two atypical structures: (1) the sexually dimorphic nucleus originates exceptionally late (E15-E19) and is located more lateral to the ventricle than older neurons; (2) in the median preoptic nucleus, where older neurons (E13-E14) are located closer to the third ventricle than younger neurons (E14-E17). For an autoradiographic study of morphogenesis, pregnant females were given a single injection of [ 3 H]thymidine during gestation, and their embryos were removed either two hrs later (short survival) or in successive 24-hr periods (sequential survival). Short-survival autoradiography was used to locate the putative neuroepithelial sources of preoptic nuclei, and sequential survival autoradiography was used to trace the migratory waves of young neurons and their final settling locations. The preoptic neuroepithelium is located anterior to and in the front wall of the optic recess

  3. Neurons in Primary Motor Cortex Encode Hand Orientation in a Reach-to-Grasp Task.

    Science.gov (United States)

    Ma, Chaolin; Ma, Xuan; Fan, Jing; He, Jiping

    2017-08-01

    It is disputed whether those neurons in the primary motor cortex (M1) that encode hand orientation constitute an independent channel for orientation control in reach-to-grasp behaviors. Here, we trained two monkeys to reach forward and grasp objects positioned in the frontal plane at different orientation angles, and simultaneously recorded the activity of M1 neurons. Among the 2235 neurons recorded in M1, we found that 18.7% had a high correlation exclusively with hand orientation, 15.9% with movement direction, and 29.5% with both movement direction and hand orientation. The distributions of neurons encoding hand orientation and those encoding movement direction were not uniform but coexisted in the same region. The trajectory of hand rotation was reproduced by the firing patterns of the orientation-related neurons independent of the hand reaching direction. These results suggest that hand orientation is an independent component for the control of reaching and grasping activity.

  4. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.

    Science.gov (United States)

    Kim, Sei Eun; Lee, Seul Yi; Blanco, Cynthia L; Kim, Jun Hee

    2014-08-20

    The human fetus starts to hear and undergoes major developmental changes in the auditory system during the third trimester of pregnancy. Although there are significant data regarding development of the auditory system in rodents, changes in intrinsic properties and synaptic function of auditory neurons in developing primate brain at hearing onset are poorly understood. We performed whole-cell patch-clamp recordings of principal neurons in the medial nucleus of trapezoid body (MNTB) in preterm and term baboon brainstem slices to study the structural and functional maturation of auditory synapses. Each MNTB principal neuron received an excitatory input from a single calyx of Held terminal, and this one-to-one pattern of innervation was already formed in preterm baboons delivered at 67% of normal gestation. There was no difference in frequency or amplitude of spontaneous excitatory postsynaptic synaptic currents between preterm and term MNTB neurons. In contrast, the frequency of spontaneous GABA(A)/glycine receptor-mediated inhibitory postsynaptic synaptic currents, which were prevalent in preterm MNTB neurons, was significantly reduced in term MNTB neurons. Preterm MNTB neurons had a higher input resistance than term neurons and fired in bursts, whereas term MNTB neurons fired a single action potential in response to suprathreshold current injection. The maturation of intrinsic properties and dominance of excitatory inputs in the primate MNTB allow it to take on its mature role as a fast and reliable relay synapse. Copyright © 2014 the authors 0270-6474/14/3411399-06$15.00/0.

  5. A Review of Fire Interactions and Mass Fires

    Directory of Open Access Journals (Sweden)

    Mark A. Finney

    2011-01-01

    Full Text Available The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.

  6. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  7. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  8. Feedback Enhances Feedforward Figure-Ground Segmentation by Changing Firing Mode

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons. PMID:21738747

  9. Floristic patterns and disturbance history in karri ( Eucalyptus diversicolor: Myrtaceae) forest, south-western Australia: 2. Origin, growth form and fire response

    Science.gov (United States)

    Wardell-Johnson, Grant W.; Williams, M. R.; Mellican, A. E.; Annells, A.

    2007-03-01

    We examined the influence of disturbance history on the floristic composition of a single community type in karri forest, south-western Australia. Cover-abundance of 224 plant species and six disturbance and site-based environmental variables were recorded in 91, 20 m × 20 m quadrats. Numerical taxonomic and correlation approaches were used to relate these and 10 plant species-group variables based on origin, growth form and fire response. Ordination revealed no discernable pattern of sites based on floristic composition. However, all 10 species-group variables were significantly correlated with the ordination axes. Species richness within these groups varied with category and with respect to many of the disturbance and site variables. We encountered low diversity of vascular plants at the community level and limited diversity of growth forms. Thus most species were herbs (62.1%) or shrubs (30.3%), and there were no epiphytes and few species of trees or climbers. Although many introduced species were recorded (18.3% of all taxa), virtually all (83%) were herbs that demonstrated little persistence in the community, and there was limited evidence of transformer species. Time-since-fire (and other disturbance) influenced species richness more than the number of recent past fires because of a high proportion of ephemerals associated with the immediate post-fire period. Long-lived shrubs with soil stored seed dominate numerically, and in understorey biomass in comparison with neighboring vegetation types because of their greater flexibility of response following irregular, but intense disturbance events. However, interactions between nutrient status, regeneration mechanisms and community composition may be worthy of further investigation.

  10. Fire Perimeters

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  11. Fire History

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  12. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  13. A Computational Model of Pattern Separation Efficiency in the Dentate Gyrus with Implications in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-03-01

    Full Text Available Information processing in the hippocampus begins by transferring spiking activity of the Entorhinal Cortex (EC into the Dentate Gyrus (DG. Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modelled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of neuron in the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking. This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed.

  14. Volatile Hydrocarbon Analysis in Blood by Headspace Solid-Phase Microextraction: The Interpretation of VHC Patterns in Fire-Related Incidents.

    Science.gov (United States)

    Waters, Brian; Hara, Kenji; Ikematsu, Natsuki; Takayama, Mio; Kashiwagi, Masayuki; Matsusue, Aya; Kubo, Shin-Ichi

    2017-05-01

    A headspace solid-phase microextraction (HS-SPME) technique was used to quantitate the concentration of volatile hydrocarbons from the blood of cadavers by cryogenic gas chromatography-mass spectroscopy. A total of 24 compounds including aromatic and aliphatic volatile hydrocarbons were analyzed by this method. The analytes in the headspace of 0.1 g of blood mixed with 1.0 mL of distilled water plus 1 µL of an internal standard solution were adsorbed onto a 100-µm polydimethylsiloxane fiber at 0°C for 15 min, and measured using a GC-MS full scan method. The limit of quantitation for the analytes ranged from 6.8 to 10 ng per 1 g of blood. This method was applied to actual autopsy cases to quantitate the level of volatile hydrocarbons (VHCs) in the blood of cadavers who died in fire-related incidents. The patterns of the VHCs revealed the presence or absence of accelerants. Petroleum-based fuels such as gasoline and kerosene were differentiated. The detection of C8-C13 aliphatic hydrocarbons indicated the presence of kerosene; the detection of C3 alkylbenzenes in the absence of C8-C13 aliphatic hydrocarbons was indicative of gasoline; and elevated levels of styrene or benzene in the absence of C3/C4 alkylbenzenes and aliphatic hydrocarbons indicated a normal construction fire. This sensitive HS-SPME method could help aid the investigation of fire-related deaths by providing a simple pattern to use for the interpretation of VHCs in human blood. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    Science.gov (United States)

    Spencer, William C; Deneris, Evan S

    2017-01-01

    The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling

  16. Noise focusing and the emergence of coherent activity in neuronal cultures

    Science.gov (United States)

    Orlandi, Javier G.; Soriano, Jordi; Alvarez-Lacalle, Enrique; Teller, Sara; Casademunt, Jaume

    2013-09-01

    At early stages of development, neuronal cultures in vitro spontaneously reach a coherent state of collective firing in a pattern of nearly periodic global bursts. Although understanding the spontaneous activity of neuronal networks is of chief importance in neuroscience, the origin and nature of that pulsation has remained elusive. By combining high-resolution calcium imaging with modelling in silico, we show that this behaviour is controlled by the propagation of waves that nucleate randomly in a set of points that is specific to each culture and is selected by a non-trivial interplay between dynamics and topology. The phenomenon is explained by the noise focusing effect--a strong spatio-temporal localization of the noise dynamics that originates in the complex structure of avalanches of spontaneous activity. Results are relevant to neuronal tissues and to complex networks with integrate-and-fire dynamics and metric correlations, for instance, in rumour spreading on social networks.

  17. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.

    Science.gov (United States)

    Buhusi, Catalin V; Oprisan, Sorinel A

    2013-05-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Future perspectives in imaging human brain function: A theoretical analysis of techniques that could be used to image neuronal firing in the human brain

    International Nuclear Information System (INIS)

    Holder, D.S.

    1986-01-01

    There have been enormous advances in the applications of computerised tomography since its inception just over a decade ago, and, as may be seen in many of the other presentations in this symposium, imaging techniques such as PET and NMR can be used to give three dimensional images of various types of metabolic activity. However, attempts to use these techniques to produce images of neuronal functional activity in the sense of neuronal discharge rate have proved to be more difficult, largely because the only parameters that can be measured at present are metabolic, and these have an uncertain relation to the underlying neuronal electrical activity. There appears to be a linear relationship between metabolic activity and the rate of neuronal discharge for lower rates of discharge but it is non-linear over the whole range, and only applies to the steady state. For clinical and neurophysiological applications, it would be very useful to have an imaging device that could produce images of neuronal electrical activity directly, with a high temporal resolution of the order of the action potential, so that individual spikes could be distinguished. This paper is a summary of recent theoretical work which represents an attempt to determine whether such a device could be constructed in the forseeable future. The results are based on an extensive review of the literature and recalculation of data where appropriate. The conclusions are, perhaps surprisingly, positive, and two techniques are put forward as suitable candidates. However, the work is naturally speculative, and is intended more as a basis for discussion with respect to directions for future research than as a statement of certain fact

  19. Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model

    Directory of Open Access Journals (Sweden)

    Ying Du

    2014-01-01

    Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.

  20. A digital implementation of neuron-astrocyte interaction for neuromorphic applications.

    Science.gov (United States)

    Nazari, Soheila; Faez, Karim; Amiri, Mahmood; Karami, Ehsan

    2015-06-01

    Recent neurophysiologic findings have shown that astrocytes play important roles in information processing and modulation of neuronal activity. Motivated by these findings, in the present research, a digital neuromorphic circuit to study neuron-astrocyte interaction is proposed. In this digital circuit, the firing dynamics of the neuron is described by Izhikevich model and the calcium dynamics of a single astrocyte is explained by a functional model introduced by Postnov and colleagues. For digital implementation of the neuron-astrocyte signaling, Single Constant Multiply (SCM) technique and several linear approximations are used for efficient low-cost hardware implementation on digital platforms. Using the proposed neuron-astrocyte circuit and based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the proposed digital astrocyte is able to change the firing patterns of the neuron through bidirectional communication. Utilizing the proposed digital circuit, it will be illustrated that information processing in synaptic clefts is strongly regulated by astrocyte. Moreover, our results suggest that the digital circuit of neuron-astrocyte crosstalk produces diverse neural responses and therefore enhances the information processing capabilities of the neuromorphic circuits. This is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Burst firing and modulation of functional connectivity in cat striate cortex.

    Science.gov (United States)

    Snider, R K; Kabara, J F; Roig, B R; Bonds, A B

    1998-08-01

    We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of neuron, was analyzed in terms of its effectiveness in eliciting a spike from a second, driven neuron. We defined effectiveness as the percentage of spikes from the driving neuron that are time related to spikes of the driven neuron. The effectiveness of bursts (of any length) in eliciting a time-related response spike averaged 18.53% across all measurements as compared with the effectiveness of single spikes, which averaged 9.53%. Longer bursts were more effective than shorter ones. Effectiveness was reduced with spatially nonoptimal, as opposed to optimal, stimuli. The effectiveness of both bursts and single spikes decreased by the same amount across measurements with nonoptimal orientations, spatial frequencies and contrasts. At similar firing rates and burst lengths, the decrease was more pronounced for nonoptimal orientations than for lower contrasts, suggesting the existence of a mechanism that reduces effectiveness at nonoptimal orientations. These results support the hypothesis that neural information can be emphasized via instantaneous rate coding that is not preserved over long intervals or over trials. This is consistent with the integrate and fire model, where bursts participate in temporal integration.

  2. The role of fuels for understanding fire behavior and fire effects

    Science.gov (United States)

    E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien

    2018-01-01

    Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...

  3. Shal/K(v4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yong Ping

    2011-01-01

    Full Text Available Rhythmic behaviors, such as walking and breathing, involve the coordinated activity of central pattern generators in the CNS, sensory feedback from the PNS, to motoneuron output to muscles. Unraveling the intrinsic electrical properties of these cellular components is essential to understanding this coordinated activity. Here, we examine the significance of the transient A-type K(+ current (I(A, encoded by the highly conserved Shal/K(v4 gene, in neuronal firing patterns and repetitive behaviors. While I(A is present in nearly all neurons across species, elimination of I(A has been complicated in mammals because of multiple genes underlying I(A, and/or electrical remodeling that occurs in response to affecting one gene.In Drosophila, the single Shal/K(v4 gene encodes the predominant I(A current in many neuronal cell bodies. Using a transgenically expressed dominant-negative subunit (DNK(v4, we show that I(A is completely eliminated from cell bodies, with no effect on other currents. Most notably, DNK(v4 neurons display multiple defects during prolonged stimuli. DNK(v4 neurons display shortened latency to firing, a lower threshold for repetitive firing, and a progressive decrement in AP amplitude to an adapted state. We record from identified motoneurons and show that Shal/K(v4 channels are similarly required for maintaining excitability during repetitive firing. We then examine larval crawling, and adult climbing and grooming, all behaviors that rely on repetitive firing. We show that all are defective in the absence of Shal/K(v4 function. Further, knock-out of Shal/K(v4 function specifically in motoneurons significantly affects the locomotion behaviors tested.Based on our results, Shal/K(v4 channels regulate the initiation of firing, enable neurons to continuously fire throughout a prolonged stimulus, and also influence firing frequency. This study shows that Shal/K(v4 channels play a key role in repetitively firing neurons during prolonged

  4. Mouse visual neocortex supports multiple stereotyped patterns of microcircuit activity.

    Science.gov (United States)

    Sadovsky, Alexander J; MacLean, Jason N

    2014-06-04

    Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical microcircuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs, indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of neurons. Copyright © 2014 the authors 0270-6474/14/347769-09$15.00/0.

  5. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    Science.gov (United States)

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  6. Different patterns of neuronal activities in the infralimbic and prelimbic cortices and behavioral expression in response to two affective odors, 2,5-dihydro-2,4,5-trimethylthiazoline and a mixture of cis-3-hexenol and trans-2-hexenal, in the freely moving rat.

    Science.gov (United States)

    Nikaido, Y; Nakashima, T

    2011-03-17

    The medial prefrontal cortex (mPFC) is involved in stimulus perception, attentional control, emotional behavior, and the stress response. These functions are thought to be mediated by the infralimbic (IL) and prelimbic (PL) subregions of mPFC; however, few studies have examined the roles of IL and PL cortices in olfactory cognition. In the present study, we investigated the acute effects of two odors, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) and a mixture of cis-3-hexenol and trans-2-hexenal (green odor: GO), on behavioral responses and IL and PL neuronal activities using extracellular single-unit recordings in a freely moving rat. We found that the total number of spike firings in IL and PL neurons did not change with 10s presentation of odors. TMT presentation induced significant changes in burst firing activity in IL and PL neurons, while GO presentation induced changes in burst firing only in IL neurons. In the temporal profile of the firing activity of IL neurons, TMT exposure induced transient activation and GO exposure induced sustained activation. Those of PL neurons showed sustained activation during TMT exposure and transient activations during GO exposure. GO exposure induced a stretch-attend posture, whereas TMT exposure induced immobility. Furthermore, multiple regression analysis indicated that the property of the odor and neuronal activities of IL and PL regions were correlated with behavioral responses. These findings reveal that olfaction-related neurons exist in IL and PL regions, and that the neurons in these regions might temporarily encode odor information in order to modulate motor outputs by tuning firing properties in the early stage of cognition according to the odor property. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Fire in the Earth System

    NARCIS (Netherlands)

    Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D'Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; Kull, C.A.; Marston, J.B.; Moritz, M.A.; Prentice, I.C.; Roos, C.I.; Scott, A.C.; Swetnam, T.W.; van der Werf, G.R.; Pyne, S.J.

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always

  8. The use of ATSR active fire counts for estimating relative patterns of biomass burning - A study from the boreal forest region

    NARCIS (Netherlands)

    Kasischke, Eric S.; Hewson, Jennifer H.; Stocks, Brian; van der Werf, Guido; Randerson, James T.

    2003-01-01

    Satellite fire products have the potential to construct inter-annual time series of fire activity, but estimating area burned requires considering biases introduced by orbiting geometry, fire behavior, and the presence of clouds and smoke. Here we evaluated the performance of fire counts from the

  9. A Repeated Signal Difference for Recognising Patterns

    Directory of Open Access Journals (Sweden)

    Kieran Greer

    2016-08-01

    Full Text Available This paper describes a new mechanism that might help with defining pattern sequences, by the fact that it can produce an upper bound on the ensemble value that can persistently oscillate with the actual values produced from each pattern. With every firing event, a node also receives an on/off feedback switch. If the node fires then it sends a feedback result depending on the input signal strength. If the input signal is positive or larger, it can store an ‘on’ switch feedback for the next iteration. If the signal is negative or smaller it can store an ‘off’ switch feedback for the next iteration. If the node does not fire, then it does not affect the current feedback situation and receives the switch command produced by the last active pattern event for the same neuron. The upper bound therefore also represents the largest or most enclosing pattern set and the lower value is for the actual set of firing patterns. If the pattern sequence repeats, it will oscillate between the two values, allowing them to be recognised and measured more easily, over time. Tests show that changing the sequence ordering produces different value sets, which can also be measured.

  10. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  11. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  12. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  13. Mode-locking behavior of Izhikevich neurons under periodic external forcing

    Science.gov (United States)

    Farokhniaee, AmirAli; Large, Edward W.

    2017-06-01

    Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic stimulation display rich dynamical states including mode locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated sounds can lead to various forms of n :m mode-locked states, in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of the coupled nonlinear differential equations compared with other existing models, but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for the Izhikevich neurons. Arnold tongue analysis provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. We find these tongues for both class-1 and class-2 excitable neurons in both deterministic and noisy regimes.

  14. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    Science.gov (United States)

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  15. Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation

    Directory of Open Access Journals (Sweden)

    Volodymyr Krotov

    2017-11-01

    Full Text Available Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent. The tissue preparation has been also probed using Ca2+ imaging with fluorescent Ca2+ dyes (membrane-impermeable or -permeable to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.

  16. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    Science.gov (United States)

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  17. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  18. A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophrenia

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed. PMID:25859189

  19. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    Science.gov (United States)

    Xie, Rou-Gang; Chu, Wen-Guang; Hu, San-Jue; Luo, Ceng

    2018-01-01

    Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics. PMID:29303989

  20. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    2018-01-01

    Full Text Available Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.

  1. Hip position and sex differences in motor unit firing patterns of the vastus medialis and vastus medialis oblique in healthy individuals.

    Science.gov (United States)

    Peng, Yi-Ling; Tenan, Matthew S; Griffin, Lisa

    2018-06-01

    Weakness of the vastus medialis oblique (VMO) has been proposed to explain the high prevalence of knee pain in female subjects. Clinicians commonly use exercises in an attempt to preferentially activate the VMO. Recently, our group found evidence to support clinical theory that the VMO is neurologically distinct from the vastus medialis (VM). However, the ability to voluntarily activate these muscle subsections is still disputed. The aim of this study was to determine if VM and VMO activation varies between sexes and if control of the two muscles is different between rehabilitation exercises. Thirteen men and 13 women performed isometric straight leg raises in two hip positions, neutral hip rotation and 30 degrees lateral hip rotation. Bipolar intramuscular fine-wire electrodes were inserted into the VM and VMO to obtain motor unit recruitment thresholds and initial firing rates at recruitment. Linear mixed models and Tukey post hoc tests were used to assess significant differences in 654 motor units. Women demonstrated faster motor unit firing rate at recruitment, 1.18 ± 0.56 Hz higher than men. Motor units fired 0.47 ± 0.19 Hz faster during neutral hip rotation compared with lateral hip rotation. The VMO motor units were recruited 2.92 ± 1.28% earlier than the VM. All motor units were recruited 3.74 ± 1.27% earlier during neutral hip rotation than lateral hip rotation. Thus the VM and the VMO can be activated differentially, and their motor unit recruitment properties are affected by sex and hip position. NEW & NOTEWORTHY This is the first study to reveal differential activation of the vastus medialis oblique from the vastus medialis in clinical exercise protocols. Our research group used fine-wire electrodes to examine EMG signals of the vastus medialis oblique and vastus medialis to avoid possible cross talk. We also consider the effect of sex on motor unit firing patterns because of higher prevalence of knee pain in women, and yet few

  2. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    Energy Technology Data Exchange (ETDEWEB)

    Genethliou, Nicholas; Panayiotou, Elena [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Gasperi, Rita De; Elder, Gregory [James J. Peters VA Medical Center, Research and Development (3F22), 130 West Kingsbridge Road, Bronx, NY 10468 (United States); Kessaris, Nicoletta; Richardson, William D. [Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  3. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  4. Slack channels expressed in sensory neurons control neuropathic pain in mice.

    Science.gov (United States)

    Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim

    2015-01-21

    Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.

  5. Parallel optical control of spatiotemporal neuronal spike activity using high-frequency digital light processingtechnology

    Directory of Open Access Journals (Sweden)

    Jason eJerome

    2011-08-01

    Full Text Available Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses Digital-Light-Processing (DLP technology to generate 2-dimensional (2D stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 µm and temporal (>13kHz resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 x 2.07 mm2 of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  6. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  7. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  8. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  9. Precise temperature compensation of phase in a rhythmic motor pattern.

    Directory of Open Access Journals (Sweden)

    Lamont S Tang

    2010-08-01

    Full Text Available Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD, Lateral Pyloric (LP, and Pyloric (PY neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10 approximately 2.3 as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10's of the input conductance, synaptic currents, transient outward current (I(A, and the hyperpolarization-activated inward current (I(h, all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10's close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10's of the processes that contribute to temperature compensation of neuronal circuits.

  10. Glutamatergic synaptic currents of nigral dopaminergic neurons follow a postnatal developmental sequence

    Directory of Open Access Journals (Sweden)

    Edouard ePearlstein

    2015-05-01

    Full Text Available The spontaneous activity pattern of adult dopaminergic (DA neurons of the substantia nigra pars compacta (SNc results from interactions between intrinsic membrane conductances and afferent inputs. In adult SNc DA neurons, low-frequency tonic background activity is generated by intrinsic pacemaker mechanisms, whereas burst generation depends on intact synaptic inputs in particular the glutamatergic ones. Tonic DA release in the striatum during pacemaking is required to maintain motor activity, and burst firing evokes phasic DA release, necessary for cue-dependent learning tasks. However, it is still unknown how the firing properties of SNc DA neurons mature during postnatal development before reaching the adult state. We studied the postnatal developmental profile of spontaneous and evoked AMPA and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs in SNc DA neurons in brain slices from immature (postnatal days P4-10 and young adult (P30-50 tyrosine hydroxylase (TH-GFP mice. We found that somato-dendritic fields of SNc DA neurons are already mature at P4-10. In contrast, spontaneous glutamatergic EPSCs show a developmental sequence. Spontaneous NMDA EPSCs in particular are larger and more frequent in immature SNc DA neurons than in young adult ones and have a bursty pattern. They are mediated by GluN2B and GluN2D subunit-containing NMDA receptors. The latter generate long-lasting, DQP1105-sensitive, spontaneous EPSCs, which are transiently recorded during this early period. Due to high NMDA activity, immature SNc DA neurons generate large and long lasting NMDA receptor-dependent (APV-sensitive bursts in response to the stimulation of the subthalamic nucleus. We conclude that the transient high NMDA activity allows calcium influx into the dendrites of developing SNc DA neurons.

  11. The straintronic spin-neuron

    International Nuclear Information System (INIS)

    Biswas, Ayan K; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2015-01-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. (paper)

  12. Comparing Realistic Subthalamic Nucleus Neuron Models

    Science.gov (United States)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  13. Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity.

    Science.gov (United States)

    Feng, Zhouyan; Durand, Dominique M

    2006-04-01

    It has been shown that a low-calcium high-potassium solution can generate ictal-like epileptiform activity in vitro and in vivo. Moreover, during status epileptiform activity, the concentration of [K+]o increases, and the concentration of [Ca2+]o decreases in brain tissue. Therefore we tested the hypothesis that long-lasting persistent spike activity, similar to one of the patterns of status epilepticus, could be generated by a high-potassium, low-calcium solution in the hippocampus in vivo. Artificial cerebrospinal fluid was perfused over the surface of the exposed left dorsal hippocampus of anesthetized rats. A stimulating electrode and a recording probe were placed in the CA1 region. By elevating K+ concentration from 6 to 12 mM in the perfusate solution, the typical firing pattern of low-calcium ictal bursts was transformed into persistent spike activity in the CA1 region with synaptic transmission being suppressed by calcium chelator EGTA. The activity was characterized by double spikes repeated at a frequency approximately 4 Hz that could last for >1 h. The analysis of multiple unit activity showed that both elevating [K+]o and lowering [Ca2+]o decreased the inhibition period after the response of paired-pulse stimulation, indicating a suppression of the after-hyperpolarization (AHP) activity. These results suggest that persistent status epilepticus-like spike activity can be induced by nonsynaptic mechanisms when synaptic transmission is blocked. The unique double-spike pattern of this activity is presumably caused by higher K+ concentration augmenting the frequency of typical low-calcium nonsynaptic burst activity.

  14. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  15. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  16. MODIS NDVI Response Following Fires in Siberia

    Science.gov (United States)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  17. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  18. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  19. Climatic and weather factors affecting fire occurrence and behavior

    Science.gov (United States)

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  20. Simulating synchronization in neuronal networks

    Science.gov (United States)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  1. Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat

    Directory of Open Access Journals (Sweden)

    Dorin eYael

    2013-12-01

    Full Text Available The striatum is the main input structure of the basal ganglia, integrating input from the cerebral cortex and the thalamus, which is modulated by midbrain dopaminergic input. Dopamine modulators, including agonists and antagonists, are widely used to relieve motor and psychiatric symptoms in a variety of pathological conditions. Haloperidol, a dopamine D2 antagonist, is commonly used in multiple psychiatric conditions and motor abnormalities. This article reports the effects of haloperidol on the activity of three major striatal subpopulations: medium spiny projection neurons (MSNs, fast spiking interneurons (FSIs and tonically active neurons (TANs. We implanted multi-wire electrode arrays in the rat dorsal striatum and recorded the activity of multiple single units in freely moving animals before and after systemic haloperidol injection. Haloperidol decreased the firing rate of FSIs and MSNs while increasing their tendency to fire in an oscillatory manner in the high voltage spindle (HVS frequency range of 7-9 Hz. Haloperidol led to an increased firing rate of TANs but did not affect their non-oscillatory firing pattern and their typical correlated firing activity. Our results suggest that dopamine plays a key role in tuning both single unit activity and the interactions within and between different subpopulations in the striatum in a differential manner. These findings highlight the heterogeneous striatal effects of tonic dopamine regulation via D2 receptors which potentially enable the treatment of diverse pathological states associated with basal ganglia dysfunction.

  2. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  3. Fire protection

    International Nuclear Information System (INIS)

    Janetzky, E.

    1980-01-01

    Safety and fire prevention measurements have to be treated like the activities developing, planning, construction and erection. Therefore it is necessary that these measurements have to be integrated into the activities mentioned above at an early stage in order to guarantee their effectiveness. With regard to fire accidents the statistics of the insurance companies concerned show that the damage caused increased in the last years mainly due to high concentration of material. Organization of fire prevention and fire fighting, reasons of fire break out, characteristics and behaviour of fire, smoke and fire detection, smoke and heat venting, fire extinguishers (portable and stationary), construction material in presence of fire, respiratory protection etc. will be discussed. (orig./RW)

  4. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    Science.gov (United States)

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  5. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression

    Science.gov (United States)

    Sean A. Parks; Lisa M. Holsinger; Carol Miller; Cara R. Nelson

    2015-01-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-...

  6. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Science.gov (United States)

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  7. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  8. Influence of singlet oxygen (1O2) generated by a lipophilic photosensitizer (Pyropheophorbide-a, PPa) on membrane and firing properties of cultured hippocampus neurons

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen; Lambert, John D. C.

    2008-01-01

    . The spiking pattern was altered significantly, reflected by changes in spike threshold, frequency and tendency for fast APs to be followed by a plateau phase. These effects were correlated with the intensity and/or duration of illumination. Since we have previously documented that the lifetime and diffusion...... range of singlet oxygen are very small, its effects will be restricted.