WorldWideScience

Sample records for neuroimaging pathological pharmacotherapeutic

  1. Neuroimaging of consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Cavanna, Andrea Eugenio [Birmingham Univ. (United Kingdom). Dept. of Neuropsychiatry; UCL Institute of Neurology, London (United Kingdom). Sobell Dept. of Motor, Neuroscience and Movement Disorders; Nani, Andrea [Birmingham Univ. (United Kingdom). Research Group BSMHFT; Blumenfeld, Hal [Yale University School of Medicine, New Haven, CT (United States). Depts. of Neurology, Neurobiology and Neurosurgery; Laureys, Steven (ed.) [Liege Univ. (Belgium). Cyclotron Research Centre

    2013-07-01

    An important reference work on a multidisciplinary and rapidly expanding area. Particular focus on the relevance of neuroimaging for the diagnosis and treatment of common neuropsychiatric disorders affecting consciousness. Written by world-class experts in the field. Relevant for clinicians, researchers, and scholars across different specialties. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This book presents the state of the art in neuroimaging exploration of the brain correlates of the alterations in consciousness across these conditions, with a particular focus on the potential applications for diagnosis and management. Although the book has a practical approach and is primarily targeted at neurologists, neuroradiologists, and psychiatrists, a wide range of researchers and health care professionals will find it an essential reference that explains the significance of neuroimaging of consciousness for clinical practice. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This

  2. Neuroimaging of consciousness

    International Nuclear Information System (INIS)

    Cavanna, Andrea Eugenio; UCL Institute of Neurology, London; Nani, Andrea; Blumenfeld, Hal; Laureys, Steven

    2013-01-01

    An important reference work on a multidisciplinary and rapidly expanding area. Particular focus on the relevance of neuroimaging for the diagnosis and treatment of common neuropsychiatric disorders affecting consciousness. Written by world-class experts in the field. Relevant for clinicians, researchers, and scholars across different specialties. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This book presents the state of the art in neuroimaging exploration of the brain correlates of the alterations in consciousness across these conditions, with a particular focus on the potential applications for diagnosis and management. Although the book has a practical approach and is primarily targeted at neurologists, neuroradiologists, and psychiatrists, a wide range of researchers and health care professionals will find it an essential reference that explains the significance of neuroimaging of consciousness for clinical practice. Within the field of neuroscience, the past few decades have witnessed an exponential growth of research into the brain mechanisms underlying both normal and pathological states of consciousness in humans. The development of sophisticated imaging techniques (above all fMRI and PET) to visualize and map brain activity in vivo has opened new avenues in our understanding of the pathological processes involved in common neuropsychiatric disorders affecting consciousness, such as epilepsy, coma, vegetative states, dissociative disorders, and dementia. This

  3. Neuroimaging in childhood headache: a systematic review

    International Nuclear Information System (INIS)

    Alexiou, George A.; Argyropoulou, Maria I.

    2013-01-01

    Headache is a common complaint in children, one that gives rise to considerable parental concern and fear of the presence of a space-occupying lesion. The evaluation and diagnosis of headache is very challenging for paediatricians, and neuroimaging by means of CT or MRI is often requested as part of the investigation. CT exposes children to radiation, while MRI is costly and sometimes requires sedation or general anaesthesia, especially in children younger than 6 years. This review of the literature on the value of neuroimaging in children with headache showed that the rate of pathological findings is generally low. Imaging findings that led to a change in patient management were in almost all cases reported in children with abnormal signs on neurological examination. Neuroimaging should be limited to children with a suspicious clinical history, abnormal neurological findings or other physical signs suggestive of intracranial pathology. Well-designed prospective studies are needed to better define the clinical findings that warrant neuroimaging in children with headache. (orig.)

  4. Neuroimaging in childhood headache: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, George A. [University of Ioannina, Department of Neurosurgery, Medical School, P.O. Box 103, Ioannina (Greece); Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece)

    2013-07-15

    Headache is a common complaint in children, one that gives rise to considerable parental concern and fear of the presence of a space-occupying lesion. The evaluation and diagnosis of headache is very challenging for paediatricians, and neuroimaging by means of CT or MRI is often requested as part of the investigation. CT exposes children to radiation, while MRI is costly and sometimes requires sedation or general anaesthesia, especially in children younger than 6 years. This review of the literature on the value of neuroimaging in children with headache showed that the rate of pathological findings is generally low. Imaging findings that led to a change in patient management were in almost all cases reported in children with abnormal signs on neurological examination. Neuroimaging should be limited to children with a suspicious clinical history, abnormal neurological findings or other physical signs suggestive of intracranial pathology. Well-designed prospective studies are needed to better define the clinical findings that warrant neuroimaging in children with headache. (orig.)

  5. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    OpenAIRE

    Risacher, Shannon L.; Saykin, Andrew J.

    2013-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, famili...

  6. Occipital headaches and neuroimaging in children.

    Science.gov (United States)

    Bear, Joshua J; Gelfand, Amy A; Goadsby, Peter J; Bass, Nancy

    2017-08-01

    To investigate the common thinking, as reinforced by the International Classification of Headache Disorders, 3rd edition (beta), that occipital headaches in children are rare and suggestive of serious intracranial pathology. We performed a retrospective chart review cohort study of all patients ≤18 years of age referred to a university child neurology clinic for headache in 2009. Patients were stratified by headache location: solely occipital, occipital plus other area(s) of head pain, or no occipital involvement. Children with abnormal neurologic examinations were excluded. We assessed location as a predictor of whether neuroimaging was ordered and whether intracranial pathology was found. Analyses were performed with cohort study tools in Stata/SE 13.0 (StataCorp, College Station, TX). A total of 308 patients were included. Median age was 12 years (32 months-18 years), and 57% were female. Headaches were solely occipital in 7% and occipital-plus in 14%. Patients with occipital head pain were more likely to undergo neuroimaging than those without occipital involvement (solely occipital: 95%, relative risk [RR] 10.5, 95% confidence interval [CI] 1.4-77.3; occipital-plus: 88%, RR 3.7, 95% CI 1.5-9.2; no occipital pain: 63%, referent). Occipital pain alone or with other locations was not significantly associated with radiographic evidence of clinically significant intracranial pathology. Children with occipital headache are more likely to undergo neuroimaging. In the absence of concerning features on the history and in the setting of a normal neurologic examination, neuroimaging can be deferred in most pediatric patients when occipital pain is present. © 2017 American Academy of Neurology.

  7. Academic performance in a pharmacotherapeutics course sequence taught synchronously on two campuses using distance education technology.

    Science.gov (United States)

    Steinberg, Michael; Morin, Anna K

    2011-10-10

    To compare the academic performance of campus-based students in a pharmacotherapeutics course with that of students at a distant campus taught via synchronous teleconferencing. Examination scores and final course grades for campus-based and distant students completing the case-based pharmacotherapeutics course sequence over a 5-year period were collected and analyzed. The mean examination scores and final course grades were not significantly different between students on the 2 campuses. The use of synchronous distance education technology to teach students does not affect students' academic performance when used in an active-learning, case-based pharmacotherapeutics course.

  8. Pathophysiological and pharmacotherapeutic aspects of serotonin and serotonergic drugs

    NARCIS (Netherlands)

    van Zwieten, P. A.; Blauw, G. J.; van Brummelen, P.

    1990-01-01

    A survey shall be given on the physiological, pathophysiological and pharmacotherapeutic backgrounds of the biogenic amine 5-hydroxytryptamine (serotonin; 5HT), to be preceded by a few historical remarks. 5HT is biosynthesized from L-tryptophan via hydroxylation and subsequent decarboxylation. 5HT

  9. Pharmacotherapeutic directions of iodine herbal remedies use for different groups of thyroid deseases treatment

    Directory of Open Access Journals (Sweden)

    Інна Миколаївна Владимирова

    2015-11-01

    Full Text Available Recently, the increase of endocrine diseases is observed worldwide. Diabetes mellitus and thyroid gland pathologies are the most widespread. Endocrine diseases can be acute or chronic. In some cases, they are life threatening.There are different reasons of thyroid gland pathologies development. Both poor nutrition and poor quality water use, and unfavorable environmental conditions, including radiation, are among them. Iodine deficiency is determined to be one of the main reasons of these diseases.Aim. Determination of the pharmacotherapeutic directions of iodine herbal remedies use for different groups of thyroid diseases treatment.Methods. Thyroid stimulating action determination (primary screening and model pathology has been carried out by the method of “goiter reaction” in rats at the Central Scientific-Research Laboratory of National University of Pharmacy. Determination of thyroid hormone blood level in rats has been carried out at the Laboratory of Radioactive Endocrinology of the State Institution “Grigoriev Institute for medical Radiology NAMS of Ukraine”.Results. According to the research results generalization, correctness of developed algorithms was confirmed; peculiarities of the influence on pathological processes in thyroid, and prospects of implementation and use of herbs and herbal remedies for thyroid diseases prevention and treatment were determined.Conclusion. Obtained experimental data are actual for the modern medicine, and new scientific research, specifying their place in etiology, pathogenesis and peculiarities of clinical course of many diseases, will improve the efficiency of treatment and prevention of thyroid diseases

  10. The Power of Neuroimaging Biomarkers for Screening Frontotemporal Dementia

    OpenAIRE

    McMillan, Corey T.; Avants, Brian B.; Cook, Philip; Ungar, Lyle; Trojanowski, John Q.; Grossman, Murray

    2014-01-01

    Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative disease that can result from either frontotemporal lobar degeneration (FTLD) or Alzheimer’s disease (AD) pathology. It is critical to establish statistically powerful biomarkers that can achieve substantial cost-savings and increase feasibility of clinical trials. We assessed three broad categories of neuroimaging methods to screen underlying FTLD and AD pathology in a clinical FTD series: global ...

  11. Pharmacological Treatments in Pathological Gambling

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Schreiber, Liana R N

    2012-01-01

    AIMS: Pathological gambling (PG) is a relatively common and often disabling psychiatric condition characterized by intrusive urges to engage in deleterious gambling behavior. Although common and financially devastating to individuals and families, there currently exist no formally approved...... pharmacotherapeutic interventions for this disorder. This review seeks to examine the history of medication treatments for PG. METHODS: A systematic review of the 18 double-blind, placebo-controlled pharmacotherapy studies conducted for the treatment of pathological gambling was conducted. Study outcome and the mean...... demonstrated mixed results in controlled clinical trials. Although limited information is available, opioid antagonists and glutamatergic agents have demonstrated efficacious outcomes, especially for individuals with PG suffering from intense urges to engage in the behavior. CONCLUSIONS: Given that several...

  12. Correlation analysis of findings from neuroimaging and histopathology in focal cortical dysplasia

    International Nuclear Information System (INIS)

    Ma Mingping; Fan Jianzhong; Jiang Zirong; Bao Qiang; Du Ruibin; Ritter, J.L.

    2009-01-01

    Objective: To characterize neuroimaging features of focal cortical dysplasia (FCD) retrospectively and correlate those with pathological findings, which may improve our understanding of neuroimaging characteristics of FCD. Methods: Clinical information and neuroimaging findings of 28 cases with FCD proved by pathology were retrospectively reviewed, and neuroimaging features of FCD were correlated with the pathological changes. Results: MRI revealed abnormal changes in 24 of 28 patients (85.7%) and no abnormalities were observed in 4 cases. Focal cortical thickening and blurring of the gray- white matter junction were the major features of FCD on MRI. Accompanied abnormal MR signals can also be observed in cortical or subcortical white matter in FCD. The radial band of hyperintensity in subcortical white matter tapering to the ventricle is one of the characteristic features of FCD on MRI. On FDG-PET examination, focal hypometabolism were revealed in 9 of 14 cases (64.3%). Histologically, cortical dyslamination was accompanied by various degrees of dysmorphic neurons and balloon cells in cortical and subcortical areas. Subcortical white matter dysmyelination and spongiotic necrotic changes were found in some cases with FCD. Conclusion: High resolution MRI can reveal most of the lesions in FCD, including abnormal changes of cortical and subcortical white matter, which makes MRI the best pre-operation examination for FCD. (authors)

  13. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    Directory of Open Access Journals (Sweden)

    Lucas R. Watterson

    2013-12-01

    Full Text Available Positive allosteric modulators (PAMs of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

  14. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases.

    Science.gov (United States)

    Cole, James H

    2018-07-01

    The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health. © 2018 WILEY Periodicals, Inc.

  15. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence.

    Science.gov (United States)

    Cerasa, Antonio; Quattrone, Aldo

    2016-06-01

    Essential tremor (ET) is the most common pathological tremor disorder in the world, and post-mortem evidence has shown that the cerebellum is the most consistent area of pathology in ET. In the last few years, advanced neuroimaging has tried to confirm this evidence. The aim of the present review is to discuss to what extent the evidence provided by this field of study may be generalised. We performed a systematic literature search combining the terms ET with the following keywords: MRI, VBM, MRS, DTI, fMRI, PET and SPECT. We summarised and discussed each study and placed the results in the context of existing knowledge regarding the cerebellar involvement in ET. A total of 51 neuroimaging studies met our search criteria, roughly divided into 19 structural and 32 functional studies. Despite clinical and methodological differences, both functional and structural imaging studies showed similar findings but without defining a clear topography of neurodegeneration. Indeed, the vast majority of studies found functional and structural abnormalities in several parts of the anterior and posterior cerebellar lobules, but it remains to be established to what degree these neural changes contribute to clinical symptoms of ET. Currently, advanced neuroimaging has confirmed the involvement of the cerebellum in pathophysiological processes of ET, although a high variability in results persists. For this reason, the translation of this knowledge into daily clinical practice is again partially limited, although new advanced multivariate neuroimaging approaches (machine-learning) are proving interesting changes of perspective.

  16. A systematic and critical review of model-based economic evaluations of pharmacotherapeutics in patients with bipolar disorder.

    Science.gov (United States)

    Mohiuddin, Syed

    2014-08-01

    Bipolar disorder (BD) is a chronic and relapsing mental illness with a considerable health-related and economic burden. The primary goal of pharmacotherapeutics for BD is to improve patients' well-being. The use of decision-analytic models is key in assessing the added value of the pharmacotherapeutics aimed at treating the illness, but concerns have been expressed about the appropriateness of different modelling techniques and about the transparency in the reporting of economic evaluations. This paper aimed to identify and critically appraise published model-based economic evaluations of pharmacotherapeutics in BD patients. A systematic review combining common terms for BD and economic evaluation was conducted in MEDLINE, EMBASE, PSYCINFO and ECONLIT. Studies identified were summarised and critically appraised in terms of the use of modelling technique, model structure and data sources. Considering the prognosis and management of BD, the possible benefits and limitations of each modelling technique are discussed. Fourteen studies were identified using model-based economic evaluations of pharmacotherapeutics in BD patients. Of these 14 studies, nine used Markov, three used discrete-event simulation (DES) and two used decision-tree models. Most of the studies (n = 11) did not include the rationale for the choice of modelling technique undertaken. Half of the studies did not include the risk of mortality. Surprisingly, no study considered the risk of having a mixed bipolar episode. This review identified various modelling issues that could potentially reduce the comparability of one pharmacotherapeutic intervention with another. Better use and reporting of the modelling techniques in the future studies are essential. DES modelling appears to be a flexible and comprehensive technique for evaluating the comparability of BD treatment options because of its greater flexibility of depicting the disease progression over time. However, depending on the research question

  17. Cross-View Neuroimage Pattern Analysis for Alzheimer's Disease Staging

    Directory of Open Access Journals (Sweden)

    Sidong eLiu

    2016-02-01

    Full Text Available The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer's disease (AD, is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed 9 types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.

  18. Suitability of teriparatide and level of acceptance of pharmacotherapeutic recommendations in a healthcare management areaSuitability of teriparatide and level of acceptance of pharmacotherapeutic recommendations in a healthcare management area DOI:\t10.7399/fh.2016.40.4.9953

    Directory of Open Access Journals (Sweden)

    Maria Rosa Cantudo-Cuenca

    2016-07-01

    Full Text Available Objective: To analyse the suitability of teriparatide prescriptions for osteoporosis treatment in a health management area, as well as the level of acceptance of pharmacotherapeutic recommendations made to physicians. Design: A prospective interventional study conducted from february 2015 to june 2015. Setting: South Seville Health Management Area. Participants: Patients receiving teriparatide. Main measurements: Suitability of teriparatide prescriptions according to Clinical Practice Guidelines and level of acceptance of pharmacotherapeutic recommendations. Results: Teriparatide prescriptions were unsuitable in 45 patients (68.2%; 11 due to no indication, 17 patients did not have previous treatments with first-line drugs, 6 due to contraindications and 9 patients were treated for more than 24 months with the drug. Besides, 4 prescriptions were unsuitable because of combination with other therapies. The acceptance of pharmacotherapeutic recommendations was 64.4%, leading to teriparatide discontinuation in 21 patients (72.4%, and a switch to alendronate or ibandronate in another 8 patients. Conclusions: A high percentage of teriparatide prescriptions is unsuitable in our health care management area, but it has decreased after pharmacist intervention.

  19. What do people with dementia and their carers want to know about neuroimaging for dementia?

    Science.gov (United States)

    Featherstone, Hannah; Butler, Marie-Louise; Ciblis, Aurelia; Bokde, Arun L; Mullins, Paul G; McNulty, Jonathan P

    2017-05-01

    Neuroimaging forms an important part of dementia diagnosis. Provision of information on neuroimaging to people with dementia and their carers may aid understanding of the pathological, physiological and psychosocial changes of the disease, and increase understanding of symptoms. This qualitative study aimed to investigate participants' knowledge of the dementia diagnosis pathway, their understanding of neuroimaging and its use in diagnosis, and to determine content requirements for a website providing neuroimaging information. Structured interviews and a focus group were conducted with carers and people with dementia. The findings demonstrate an unmet need for information on neuroimaging both before and after the examination. Carers were keen to know about neuroimaging at a practical and technical level to help avoid diagnosis denial. People with dementia requested greater information, but with a caveat to avoid overwhelming detail, and were less likely to favour an Internet resource.

  20. Developing a search engine for pharmacotherapeutic information that is not published in biomedical journals.

    Science.gov (United States)

    Do Pazo-Oubiña, F; Calvo Pita, C; Puigventós Latorre, F; Periañez-Párraga, L; Ventayol Bosch, P

    2011-01-01

    To identify publishers of pharmacotherapeutic information not found in biomedical journals that focuses on evaluating and providing advice on medicines and to develop a search engine to access this information. Compiling web sites that publish information on the rational use of medicines and have no commercial interests. Free-access web sites in Spanish, Galician, Catalan or English. Designing a search engine using the Google "custom search" application. Overall 159 internet addresses were compiled and were classified into 9 labels. We were able to recover the information from the selected sources using a search engine, which is called "AlquimiA" and available from http://www.elcomprimido.com/FARHSD/AlquimiA.htm. The main sources of pharmacotherapeutic information not published in biomedical journals were identified. The search engine is a useful tool for searching and accessing "grey literature" on the internet. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.

  1. Potential neuroimaging biomarkers of pathologic brain changes in Mild Cognitive Impairment and Alzheimer's disease: a systematic review.

    Science.gov (United States)

    Ruan, Qingwei; D'Onofrio, Grazia; Sancarlo, Daniele; Bao, Zhijun; Greco, Antonio; Yu, Zhuowei

    2016-05-16

    Neuroimaging-biomarkers of Mild Cognitive Impairment (MCI) allow an early diagnosis in preclinical stages of Alzheimer's disease (AD). The goal in this paper was to review of biomarkers for Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD), with emphasis on neuroimaging biomarkers. A systematic review was conducted from existing literature that draws on markers and evidence for new measurement techniques of neuroimaging in AD, MCI and non-demented subjects. Selection criteria included: 1) age ≥ 60 years; 2) diagnosis of AD according to NIAAA criteria, 3) diagnosis of MCI according to NIAAA criteria with a confirmed progression to AD assessed by clinical follow-up, and 4) acceptable clinical measures of cognitive impairment, disability, quality of life, and global clinical assessments. Seventy-two articles were included in the review. With the development of new radioligands of neuroimaging, today it is possible to measure different aspects of AD neuropathology, early diagnosis of MCI and AD become probable from preclinical stage of AD to AD dementia and non-AD dementia. The panel of noninvasive neuroimaging-biomarkers reviewed provides a set methods to measure brain structural and functional pathophysiological changes in vivo, which are closely associated with preclinical AD, MCI and non-AD dementia. The dynamic measures of these imaging biomarkers are used to predict the disease progression in the early stages and improve the assessment of therapeutic efficacy in these diseases in future clinical trials.

  2. A baseline assessment by healthcare professionals of Dutch pharmacotherapeutic care for the elderly with polypharmacy.

    NARCIS (Netherlands)

    Bakker, L.; Kemper, P.F.; Wagner, C.; Delwel, G.O.; Bruijne, M.C. de

    2017-01-01

    Background: Polypharmacy is common in the elderly population and is associated with an increased risk of adverse drug events. To diminish this risk, the guideline ‘Polypharmacy in the Elderly’ has been developed in 2012. This study examines, to what extent Dutch pharmacotherapeutic practice amongst

  3. Neuroimaging of Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2005-01-01

    Main purposes of neuroimaging in Alzheimer's disease have been moved from diagnosis of advanced Alzheimer's disease to diagnosis of very early Alzheimer's disease at a prodromal stage of mild cognitive impairment, prediction of conversion from mild cognitive impairment to Alzheimer's disease, and differential diagnosis from other diseases causing dementia. Structural MRI studies and functional studies using fluorodeoxyglucose (FDG)-PET and brain perfusion SPECT are widely used in diagnosis of Alzheimer's disease. Outstanding progress in diagnostic accuracy of these neuroimaging modalities has been obtained using statistical analysis on a voxel-by-voxel basis after spatial normalization of individual scans to a standardized brain-volume template instead of visual inspection or a conventional region of interest technique. In a very early stage of Alzheimer's disease, this statistical approach revealed gray matter loss in the entorhinal and hippocampal areas and hypometabolism or hypoperfusion in the posterior cingulate cortex. These two findings might be related in view of anatomical knowledge that the regions are linked through the circuit of Papez. This statistical approach also offers accurate evaluation of therapeutical effects on brain metabolism or perfusion. The latest development in functional imaging relates to the final pathological hallmark of Alzheimer's disease-amyloid plaques. Amyloid imaging might be an important surrogate marker for trials of disease-modifying agents. (author)

  4. Pharmacotherapeutical strategies in the prevention of acute, vaso-occlusive pain in sickle cell disease: a systematic review

    NARCIS (Netherlands)

    Sins, Joep W. R.; Mager, David J.; Davis, Shyrin C. A. T.; Biemond, Bart J.; Fijnvandraat, Karin

    2017-01-01

    Sickle-cell disease (SCD) is characterized by frequent and painful vaso-occlusive crises (VOCs). Various treatments have been evaluated over the years. However, a clear overview is lacking. The objective of this study was to systematically review all pharmacotherapeutical strategies in the

  5. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    Science.gov (United States)

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  6. Neuroimaging of aggressive and violent behaviour in children and adolescents

    Directory of Open Access Journals (Sweden)

    Philipp Sterzer

    2009-10-01

    Full Text Available In recent years, a number of functional and structural neuroimaging studies have investigated the neural bases of aggressive and violent behaviour in children and adolescents. Most functional neuroimaging studies have persued the hypothesis that pathological aggression is a consequence of deficits in the neural circuits involved in emotion processing. There is converging evidence for deficient neural responses to emotional stimuli in youths with a propensity towards aggressive behaviour. In addition, recent neuroimaging work has suggested that aggressive behaviour is also associated with abnormalities in neural processes that subserve both the inhibitory control of behaviour and the flexible adaptation of behaviour in accord with reinforcement information. Structural neuroimaging studies in children and adolescents with conduct problems are still scarce, but point to deficits in brain structures in volved in the processing of social information and in the regulation of social and goal directed behaviour. The indisputable progress that this research field has made in recent years notwithstanding, the overall picture is still rather patchy and there are inconsistencies between studies that await clarification. Despite this, we attempt to provide an integrated view on the neural abnormalities that may contribute to various forms of juvenile aggression and violence, and discuss research strategies that may help to provide a more profound understanding of these important issues in the future.

  7. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE

    Directory of Open Access Journals (Sweden)

    Mark eSundman

    2015-09-01

    Full Text Available Traumatic brain injury (TBI has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE. The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc., and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau, review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.

  8. Functional neuroimaging in the assessment of cerebral ischaemia

    International Nuclear Information System (INIS)

    Sartor, K.; Heiland, S.

    1997-01-01

    Cerebral infarct causes over 170, 000 deaths per year in the United States. Recent developments in neuroimaging are providing an insight into focal cerebral ischaemia, including its pathophysiology and the area of brain at risk. Perfusion-weighted magnetic resonance (MR) allows evaluation of the blood supply to the ischaemic area, and diffusion-weighted MR permits assessment of tissue damage. Although both functional imaging techniques require some refinement, it is likely that they will soon become part of the normal clinical routine and allow accurate characterisation of pathology. It is expected that this may eventually lead to the development of new treatments. (orig.)

  9. Neuroimaging for psychotherapy research: current trends.

    Science.gov (United States)

    Weingarten, Carol P; Strauman, Timothy J

    2015-01-01

    This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive compulsive disorder (OCD), and schizophrenia. The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research.

  10. Neuroimaging in aging: brain maintenance [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lars Nyberg

    2017-07-01

    Full Text Available Neuroimaging studies of the aging brain provide support that the strongest predictor of preserved memory and cognition in older age is brain maintenance, or relative lack of brain pathology. Evidence for brain maintenance comes from different levels of examination, but up to now relatively few studies have used a longitudinal design. Examining factors that promote brain maintenance in aging is a critical task for the future and may be combined with the use of new techniques for multimodal imaging.

  11. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  12. Neuroimaging in Antisocial Personality Disorder

    Directory of Open Access Journals (Sweden)

    Abdullah Yildirim

    2015-03-01

    Full Text Available Neuroimaging has been used in antisocial personality disorder since the invention of computed tomography and new modalities are introduced as technology advances. Magnetic resonance imaging, diffusion tensor imaging, functional magnetic resonance imaging and radionuclide imaging are such techniques that are currently used in neuroimaging. Although neuroimaging is an indispensible tool for psychiatric reseach, its clinical utility is questionable until new modalities become more accessible and regularly used in clinical practice. The aim of this paper is to provide clinicians with an introductory knowledge on neuroimaging in antisocial personality disorder including basic physics principles, current contributions to general understanding of pathophysiology in antisocial personality disorder and possible future applications of neuroimaging. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2015; 7(1: 98-108

  13. Practical management of heterogeneous neuroimaging metadata by global neuroimaging data repositories.

    Science.gov (United States)

    Neu, Scott C; Crawford, Karen L; Toga, Arthur W

    2012-01-01

    Rapidly evolving neuroimaging techniques are producing unprecedented quantities of digital data at the same time that many research studies are evolving into global, multi-disciplinary collaborations between geographically distributed scientists. While networked computers have made it almost trivial to transmit data across long distances, collecting and analyzing this data requires extensive metadata if the data is to be maximally shared. Though it is typically straightforward to encode text and numerical values into files and send content between different locations, it is often difficult to attach context and implicit assumptions to the content. As the number of and geographic separation between data contributors grows to national and global scales, the heterogeneity of the collected metadata increases and conformance to a single standardization becomes implausible. Neuroimaging data repositories must then not only accumulate data but must also consolidate disparate metadata into an integrated view. In this article, using specific examples from our experiences, we demonstrate how standardization alone cannot achieve full integration of neuroimaging data from multiple heterogeneous sources and why a fundamental change in the architecture of neuroimaging data repositories is needed instead.

  14. Investigating the neuroanatomical substrate of pathological laughing and crying in amyotrophic lateral sclerosis with multimodal neuroimaging techniques.

    Science.gov (United States)

    Christidi, Foteini; Karavasilis, Efstratios; Ferentinos, Panagiotis; Xirou, Sophia; Velonakis, Georgios; Rentzos, Michalis; Zouvelou, Vasiliki; Zalonis, Ioannis; Efstathopoulos, Efstathios; Kelekis, Nikolaos; Evdokimidis, Ioannis

    2018-02-01

    Pathological laughing and crying (PLC) is common in several neurological and psychiatric diseases and is associated with a distributed network involving the frontal cortex, the brainstem and cortico-pontine-cerebellar circuits. By applying multimodal neuroimaging approach, we examined the neuroanatomical substrate of PLC in a sample of patients with amyotrophic lateral sclerosis (ALS). We studied 56 non-demented ALS patients and 25 healthy controls (HC). PLC was measured in ALS using the Center of Neurologic Study Lability Scale (CNS-LS; cutoff score: 13). All participants underwent 3D-T1-weighted and 30-directional diffusion-weighted imaging at 3T. Voxel-based morphometry and tract-based spatial-statistics analysis was used to examine gray matter (GM) and white matter (WM) differences between ALS patients with and without PLC (ALS-PLC and ALS-nonPLC, respectively). Comparisons were restricted to regions with detected differences between ALS and HC, controlling for age, gender, total intracranial volume and depressive symptoms. In regions with significant differences between ALS and HC, ALS-PLC patients showed decreased GM volume in left orbitofrontal cortex, frontal operculum, and putamen and bilateral frontal poles, compared to ALS-nonPLC. They also had decreased fractional anisotropy in left cingulum bundle and posterior corona radiata. WM abnormalities were additionally detected in WM associative and ponto-cerebellar tracts (using a more liberal threshold). PLC in ALS is driven by both GM and WM abnormalities which highlight the role of circuits rather than isolated centers in the emergence of this condition. ALS is suggested as a useful natural experimental model to study PLC.

  15. Neuroimaging in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Barkhof, Frederik [VU Univ. Medical Center, Amsterdam (NL). Dept. of Radiology and Image Analysis Center (IAC); Fox, Nick C. [UCL Institute of Neurology, London (United Kingdom). Dementia Research Centre; VU Univ. Medical Center, Amsterdam (Netherlands); Bastos-Leite, Antonio J. [Porto Univ. (Portugal). Dept. of Medical Imaging; Scheltens, Philip [VU Univ. Medical Center, Amsterdam (Netherlands). Dept. of Neurology and Alzheimer Center

    2011-07-01

    Against a background of an ever-increasing number of patients, new management options, and novel imaging modalities, neuroimaging is playing an increasingly important role in the diagnosis of dementia. This up-to-date, superbly illustrated book aims to provide a practical guide to the effective use of neuroimaging in the patient with cognitive decline. It sets out the key clinical and imaging features of the wide range of causes of dementia and directs the reader from clinical presentation to neuroimaging and on to an accurate diagnosis whenever possible. After an introductory chapter on the clinical background, the available ''toolbox'' of structural and functional neuroimaging techniques is reviewed in detail, including CT, MRI and advanced MR techniques, SPECT and PET, and image analysis methods. The imaging findings in normal ageing are then discussed, followed by a series of chapters that carefully present and analyze the key imaging findings in patients with dementias. A structured path of analysis follows the main presenting feature: disorders associated with primary gray matter loss, with white matter changes, with brain swelling, etc. Throughout, a practical approach is adopted, geared specifically to the needs of clinicians (neurologists, radiologists, psychiatrists, geriatricians) working in the field of dementia, for whom this book should prove an invaluable resource. (orig.)

  16. Looking for truth and finding lies: the prospects for a nascent neuroimaging of deception.

    Science.gov (United States)

    Spence, Sean A; Kaylor-Hughes, Catherine J

    2008-01-01

    Lying is ubiquitous and has acquired many names. In 'natural experiments', both pathological lying and truthfulness implicate prefrontal cortices. Recently, the advent of functional neuroimaging has allowed investigators to study deception in the non-pathological state. Prefrontal cortices are again implicated, although the regions identified vary across experiments. Forensic application of such technology (to the detection of deceit) requires the solution of tractable technical problems. Whether we 'should' detect deception remains an ethical problem: one for societies to resolve. However, such a procedure would only appear to be ethical when subjects volunteer to participate, as might occur during the investigation of alleged miscarriages of justice. We demonstrate how this might be approached.

  17. The Power of Neuroimaging Biomarkers for Screening Frontotemporal Dementia

    Science.gov (United States)

    McMillan, Corey T.; Avants, Brian B.; Cook, Philip; Ungar, Lyle; Trojanowski, John Q.; Grossman, Murray

    2014-01-01

    Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative disease that can result from either frontotemporal lobar degeneration (FTLD) or Alzheimer’s disease (AD) pathology. It is critical to establish statistically powerful biomarkers that can achieve substantial cost-savings and increase feasibility of clinical trials. We assessed three broad categories of neuroimaging methods to screen underlying FTLD and AD pathology in a clinical FTD series: global measures (e.g., ventricular volume), anatomical volumes of interest (VOIs) (e.g., hippocampus) using a standard atlas, and data-driven VOIs using Eigenanatomy. We evaluated clinical FTD patients (N=93) with cerebrospinal fluid, gray matter (GM) MRI, and diffusion tensor imaging (DTI) to assess whether they had underlying FTLD or AD pathology. Linear regression was performed to identify the optimal VOIs for each method in a training dataset and then we evaluated classification sensitivity and specificity in an independent test cohort. Power was evaluated by calculating minimum sample sizes (mSS) required in the test classification analyses for each model. The data-driven VOI analysis using a multimodal combination of GM MRI and DTI achieved the greatest classification accuracy (89% SENSITIVE; 89% SPECIFIC) and required a lower minimum sample size (N=26) relative to anatomical VOI and global measures. We conclude that a data-driven VOI approach employing Eigenanatomy provides more accurate classification, benefits from increased statistical power in unseen datasets, and therefore provides a robust method for screening underlying pathology in FTD patients for entry into clinical trials. PMID:24687814

  18. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  19. Sociodemographic profile and habits of life of pregnant women for conducting the pharmacotherapeutic monitoring of a pregnant woman

    Directory of Open Access Journals (Sweden)

    Rivelilson Mendes de Freitas

    2014-01-01

    Full Text Available The main activity of pharmaceutical care is to detect drug related problems (DRP. The gestation by their biological peculiarities, makes the woman and fetus at particular exposed to DRPs, among which stand out the ones associated with consumption of drugs. The aim of the study was the pharmacotherapeutic monitoring (PTM of a pregnant women hypertensive service users prenatal Institute of Perinatology Social as well as identify, record and solve DRPs. A study was conducted an exploratory quantitative approach, using the Dáder methodology. During the first phase, we interviewed 62 woman. At this phase was observed predominantly of women in the age group 21-30 years and living with her husband and son that do not consume alcohol, do not smoke and do not perform physical activity. Of these, 99% used at least one drug, and the drugs most commonly used prescription vitamins, minerals and antianemics and medications used by self-medication, dipyrone. Already during the second phase of the study was the pharmacotherapeutic monitoring of a pregnant woman hypertensive selected between interviewed and identified four Negative Outcomes Associated of Drug (NOAD. After the process of pharmaceutical intervention, we obtained 100% efficiency, which demonstrates the need for pharmacist with the team of health service in prenatal care

  20. Neuroimaging Endophenotypes in Autism Spectrum Disorder

    Science.gov (United States)

    Mahajan, Rajneesh; Mostofsky, Stewart H.

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response and lead to the development of new therapies. PMID:26234701

  1. Visual attention and the neuroimage bias.

    Directory of Open Access Journals (Sweden)

    D A Baker

    Full Text Available Several highly-cited experiments have presented evidence suggesting that neuroimages may unduly bias laypeople's judgments of scientific research. This finding has been especially worrisome to the legal community in which neuroimage techniques may be used to produce evidence of a person's mental state. However, a more recent body of work that has looked directly at the independent impact of neuroimages on layperson decision-making (both in legal and more general arenas, and has failed to find evidence of bias. To help resolve these conflicting findings, this research uses eye tracking technology to provide a measure of attention to different visual representations of neuroscientific data. Finding an effect of neuroimages on the distribution of attention would provide a potential mechanism for the influence of neuroimages on higher-level decisions. In the present experiment, a sample of laypeople viewed a vignette that briefly described a court case in which the defendant's actions might have been explained by a neurological defect. Accompanying these vignettes was either an MRI image of the defendant's brain, or a bar graph depicting levels of brain activity-two competing visualizations that have been the focus of much of the previous research on the neuroimage bias. We found that, while laypeople differentially attended to neuroimagery relative to the bar graph, this did not translate into differential judgments in a way that would support the idea of a neuroimage bias.

  2. Neural correlates of fear: insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Garfinkel SN

    2014-12-01

    Full Text Available Sarah N Garfinkel,1,2 Hugo D Critchley1,2 1Sackler Centre for Consciousness Science, 2Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Brighton, UK Abstract: Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions, and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of

  3. SOCIODEMOGRAPHIC PROFILE AND HABITS OF LIFE OF PREGNANT WOMEN FOR CONDUCTING THE PHARMACOTHERAPEUTIC MONITORING OF A PREGNANT WOMAN

    Directory of Open Access Journals (Sweden)

    Rivelilson Mendes de Freitas

    2013-09-01

    Full Text Available The main activity of pharmaceutical care is to detect drug related problems (DRP. The gestation by their biological peculiarities, makes the woman and fetus at particular exposed to DRPs, among which stand out the ones associated with consumption of drugs. The aim of the study was the pharmacotherapeutic monitoring (PTM of a pregnant women hypertensive service users prenatal Institute of Perinatology Social as well as identify, record and solve DRPs. A study was conducted an exploratory quantitative approach, using the Dáder methodology. During the first phase, we interviewed 62 woman. At this phase was observed predominantly Perfil de gestantes e acompanhamento farmacoterapêutico of women in the age group 21-30 years and living with her husband and son that do not consume alcohol, do not smoke and do not perform physical activity. Of these, 99% used at least one drug, and the drugs most commonly used prescription vitamins, minerals and antianemics and medications used by self-medication, dipyrone. Already during the second phase of the study was the pharmacotherapeutic monitoring of a pregnant woman hypertensive selected between interviewed and identified four Negative Outcomes Associated of Drug (NOAD. After the process of pharmaceutical intervention, we obtained 100% efficiency, which demonstrates the need for pharmacist with the team of health service in prenatal care.

  4. Position paper: appropriate use of pharmacotherapeutic agents by the orofacial pain dentist.

    Science.gov (United States)

    Heir, Gary M; Haddox, J David; Crandall, Jeffrey; Eliav, Eli; Radford, Steven Graff; Schwartz, Anthony; Jaeger, Bernadette; Ganzberg, Steven; Aquino, Carlos M; Benoliel, Rafael

    2011-01-01

    Orofacial Pain Dentistry is concerned with the prevention, evaluation, diagnosis, treatment, and management of persistent and recurrent orofacial pain disorders. The American Dental Association, through the Commission on Dental Accreditation (CODA), now recognizes Orofacial Pain as an area of advanced education in Dentistry. It is mandated by CODA that postgraduate orofacial pain programs be designed to provide advanced knowledge and skills beyond those of the standard curriculum leading to the DDS or DMD degrees. Postgraduate programs in orofacial pain must include specific curricular content to comply with CODA standards. The intent of CODA standards is to assure that training programs develop specific educational goals and objectives that describe the student/resident’s expected knowledge and skills upon successful completion of the program. A standardized core curriculum, required for accreditation of dental orofacial pain training programs, has now been adopted.Among the various topics mandated in the curriculum are pharmacology and, specifically, pharmacotherapeutics. The American Academy of Orofacial Pain (AAOP) recommends, and the American Board of Orofacial Pain (ABOP) requires, that the minimally competent orofacial pain dentist* be knowledgeable in the management of orofacial pain conditions using medications when indicated. Basic knowledge of the appropriate use of pharmacotherapeutics is essential for the orofacial pain dentist and, therefore, constitutes part of the examination specifications of the ABOP. The minimally competent orofacial pain clinician must demonstrate knowledge, diagnostic skills, and treatment expertise in many areas, such as musculoskeletal, neurovascular, and neuropathic pain syndromes; sleep disorders related to orofacial pain; orofacial dystonias; and intraoral, intracranial, extracranial, and systemic disorders that cause orofacial pain or dysfunction. The orofacial pain dentist has the responsibility to diagnose and treat

  5. Neuroimaging in psychiatry: from bench to bedside

    Directory of Open Access Journals (Sweden)

    David E Linden

    2009-12-01

    Full Text Available This perspective considers the present and the future role of different neuroimaging techniques in the field of psychiatry. After identifying shortcomings of the mainly symptom-focussed diagnostic processes and treatment decisions in modern psychiatry, we suggest topics where neuroimaging methods have the potential to help. These include better understanding of the pathophysiology, improved diagnoses, assistance in therapeutic decisions and the supervision of treatment success by direct assessment of improvement in disease-related brain functions. These different questions are illustrated by examples from neuroimaging studies, with a focus on severe mental and neuropsychiatric illnesses such as schizophrenia, depression and dementia. Despite all reservations addressed in the article, we are optimistic, that neuroimaging has a huge potential with regard to the above-mentioned questions. We expect that neuroimaging will play an increasing role in the future refinement of the diagnostic process and aid in the development of new therapies in the field of psychiatry.

  6. The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features

    NARCIS (Netherlands)

    Ossenkoppele, R.; Pijnenburg, Y.A.L.; Perry, D.C.; Cohn-Sheehy, B.I.; Scheltens, N.M.E.; Vogel, J.W.; Kramer, J.H.; van der Vlies, A.E.; La Joie, R.; Rosen, H.J.; van der Flier, W.M.; Grinberg, L.T.; Rozemuller, A.J.M.; Huang, E.J.; van Berckel, B.N.M.; Miller, B.L.; Barkhof, F.; Jagust, W.J.; Scheltens, P.; Seeley, W.W.; Rabinovici, G.D.

    2015-01-01

    A 'frontal variant of Alzheimer's disease' has been described in patients with predominant behavioural or dysexecutive deficits caused by Alzheimer's disease pathology. The description of this rare Alzheimer's disease phenotype has been limited to case reports and small series, and many clinical,

  7. Neuroimaging findings in pediatric sports-related concussion.

    Science.gov (United States)

    Ellis, Michael J; Leiter, Jeff; Hall, Thomas; McDonald, Patrick J; Sawyer, Scott; Silver, Norm; Bunge, Martin; Essig, Marco

    2015-09-01

    The goal in this review was to summarize the results of clinical neuroimaging studies performed in patients with sports-related concussion (SRC) who were referred to a multidisciplinar ypediatric concussion program. The authors conducted a retrospective review of medical records and neuroimaging findings for all patients referred to a multidisciplinary pediatric concussion program between September 2013 and July 2014. Inclusion criteria were as follows: 1) age ≤ 19 years; and 2) physician-diagnosed SRC. All patients underwent evaluation and follow-up by the same neurosurgeon. The 2 outcomes examined in this review were the frequency of neuroimaging studies performed in this population (including CT and MRI) and the findings of those studies. Clinical indications for neuroimaging and the impact of neuroimaging findings on clinical decision making were summarized where available. This investigation was approved by the local institutional ethics review board. A total of 151 patients (mean age 14 years, 59% female) were included this study. Overall, 36 patients (24%) underwent neuroimaging studies, the results of which were normal in 78% of cases. Sixteen percent of patients underwent CT imaging; results were normal in 79% of cases. Abnormal CT findings included the following: arachnoid cyst (1 patient), skull fracture (2 patients), suspected intracranial hemorrhage (1 patient), and suspected hemorrhage into an arachnoid cyst (1 patient). Eleven percent of patients underwent MRI; results were normal in 75% of cases. Abnormal MRI findings included the following: intraparenchymal hemorrhage and sylvian fissure arachnoid cyst (1 patient); nonhemorrhagic contusion (1 patient); demyelinating disease (1 patient); and posterior fossa arachnoid cyst, cerebellar volume loss, and nonspecific white matter changes (1 patient). Results of clinical neuroimaging studies are normal in the majority of pediatric patients with SRC. However, in selected cases neuroimaging can provide

  8. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  9. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    International Nuclear Information System (INIS)

    Stippich, Christoph

    2015-01-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  10. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, Christoph (ed.) [Univ. Hospitals Basel (Switzerland). Division of Diagnostic and Inventional Neuroradiology

    2015-06-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  11. Obesity: Current and Potential Pharmacotherapeutics and Targets

    Science.gov (United States)

    Narayanaswami, Vidya; Dwoskin, Linda P.

    2016-01-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed. PMID:27773782

  12. [Evaluation of depressive symptoms and resilience in patients on pharmacotherapeutic follow-up].

    Science.gov (United States)

    Gomes, N C; Abrão, P H O; Fernandes, M R; Beijo, L A; Marques, L A M

    This study aimed to carry out the pharmacotherapeutic follow-up of patients with depression and to assess its impact on the resilience of the patients. Patients were followed-up for 8 months. The pharmacist evaluated depressive symptoms, resilience, and the need for pharmaceutical intervention. The measurement tools used were the Dader method, PHQ-9, and a resilience scale. Data were analysed using BioStat 5.0 software and the performing of the Wilcoxon and Pearson correlation tests. There was a reduction in the rate of depressive symptoms from 12.9 to 5.2 (P<.0001), and an increase in the resilience score from 112.4 to 149.0 (P<.0001). Pharmaceutical interventions were made to resolve the drug related problems in the form of oral communication between pharmacist-patient or pharmacist-patient-doctor. The pharmaceutical care was effective in decreasing depression and contributed to the increased resilience of patients. Copyright © 2017 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Applications of Neuroimaging to Disease-Modification Trials in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Adam S. Fleisher

    2009-01-01

    Full Text Available Critical to development of new therapies for Alzheimer’s disease (AD is the ability to detect clinical or pathological change over time. Clinical outcome measures typically used in therapeutic trials have unfortunately proven to be relatively variable and somewhat insensitive to change in this slowly progressive disease. For this reason, development of surrogate biomarkers that identify significant disease-associated brain changes are necessary to expedite treatment development in AD. Since AD pathology is present in the brain many years prior to clinical manifestation, ideally we want to develop biomarkers of disease that identify abnormal brain structure or function even prior to cognitive decline. Magnetic resonance imaging, fluorodeoxyglucose positron emission tomography, new amyloid imaging techniques, and spinal fluid markers of AD all have great potential to provide surrogate endpoint measures for AD pathology. The Alzheimer’s disease neuroimaging initiative (ADNI was developed for the distinct purpose of evaluating surrogate biomarkers for drug development in AD. Recent evidence from ADNI demonstrates that imaging may provide more sensitive, and earlier, measures of disease progression than traditional clinical measures for powering clinical drug trials in Alzheimer's disease. This review discusses recently presented data from the ADNI dataset, and the importance of imaging in the future of drug development in AD.

  14. Neuroimaging findings in movement disorders

    International Nuclear Information System (INIS)

    Topalov, N.

    2015-01-01

    Full text: Neuroimaging methods are of great importance for the differential diagnostic delimitation of movement disorders associated with structural damage (neoplasms, ischemic lesions, neuroinfections) from those associated with specific pathophysiological mechanisms (dysmetabolic disorders, neurotransmitter disorders). Learning objective: Presentation of typical imaging findings contributing to nosological differentiation in groups of movement disorders with similar clinical signs. In this presentation are discussed neuroimaging findings in Parkinson‘s disease, atypical parkinsonian syndromes (multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration), parkinsonism in genetically mediated diseases (Wilson’s disease, pantothenate kinase-associated neurodegeneration – PKAN), vascular parkinsonism, hyperkinetic movement disorders (palatal tremor, Huntington‘s chorea, symptomatic chorea in ischemic stroke and diabetes, rubral tremor, ballismus, hemifacial spasm). Contemporary neuroimaging methods enable support for diagnostic and differential diagnostic precision of a number of hypo- and hyperkinetic movement disorders, which is essential for neurological clinical practice

  15. Neuromarketing: the hope and hype of neuroimaging in business.

    Science.gov (United States)

    Ariely, Dan; Berns, Gregory S

    2010-04-01

    The application of neuroimaging methods to product marketing - neuromarketing - has recently gained considerable popularity. We propose that there are two main reasons for this trend. First, the possibility that neuroimaging will become cheaper and faster than other marketing methods; and second, the hope that neuroimaging will provide marketers with information that is not obtainable through conventional marketing methods. Although neuroimaging is unlikely to be cheaper than other tools in the near future, there is growing evidence that it may provide hidden information about the consumer experience. The most promising application of neuroimaging methods to marketing may come before a product is even released - when it is just an idea being developed.

  16. Neuroimaging features of Cornelia de Lange syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Matthew T. [Department of Radiology, Washington, DC (United States); Nagaraj, Usha D. [Department of Radiology, Washington, DC (United States); Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Pearl, Phillip L. [Department of Radiology, Washington, DC (United States); Boston Children' s Hospital, Department of Neurology, Boston, MA (United States)

    2015-08-15

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms ''Cornelia'', ''Brachmann'' and ''de Lange.'' The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present. (orig.)

  17. Neuroimaging features of Cornelia de Lange syndrome

    International Nuclear Information System (INIS)

    Whitehead, Matthew T.; Nagaraj, Usha D.; Pearl, Phillip L.

    2015-01-01

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms ''Cornelia'', ''Brachmann'' and ''de Lange.'' The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present. (orig.)

  18. Students' perception of an integrated approach of teaching entire sequence of medicinal chemistry, pharmacology, and pharmacotherapeutics courses in PharmD curriculum.

    Science.gov (United States)

    Islam, Mohammed A; Schweiger, Teresa A

    2015-04-01

    To develop an integrated approach of teaching medicinal chemistry, pharmacology, and pharmacotherapeutics and to evaluate students' perceptions of integration as they progress through the PharmD curriculum. Instructors from each discipline jointly mapped the course contents and sequenced the course delivery based on organ systems/disease states. Medicinal chemistry and pharmacology contents were integrated and aligned with respective pharmacotherapeutics contents to deliver throughout second and third year of the curriculum. In addition to classroom lectures, active learning strategies such as recitation, case studies, online-discussion boards, open book quizzes, and writing patient progress notes were incorporated to enhance student learning. Student learning was assessed by examination scores, patient progress notes, and writing assignments. The impact of course integration was evaluated by a Web-based survey. One hundred and sixty-nine students completed the survey. Students exhibited positive attitude toward the integrated approach of teaching medicinal chemistry, pharmacology, and therapeutics. The P3 and P4 students better appreciated the benefits of integration compared to P2 students (P < .05). Students perceived the course integration as an effective way of learning. This study supports course improvement and the viability of expanding the concept of integration to other courses in the curriculum. © The Author(s) 2014.

  19. Retrospective study on structural neuroimaging in first-episode psychosis

    Directory of Open Access Journals (Sweden)

    Ricardo Coentre

    2016-05-01

    Full Text Available Background. No consensus between guidelines exists regarding neuroimaging in first-episode psychosis. The purpose of this study is to assess anomalies found in structural neuroimaging exams (brain computed tomography (CT and magnetic resonance imaging (MRI in the initial medical work-up of patients presenting first-episode psychosis. Methods. The study subjects were 32 patients aged 18–48 years (mean age: 29.6 years, consecutively admitted with first-episode psychosis diagnosis. Socio-demographic and clinical data and neuroimaging exams (CT and MRI were retrospectively studied. Diagnostic assessments were made using the Operational Criteria Checklist +. Neuroimaging images (CT and MRI and respective reports were analysed by an experienced consultant psychiatrist. Results. None of the patients had abnormalities in neuroimaging exams responsible for psychotic symptoms. Thirty-seven percent of patients had incidental brain findings not causally related to the psychosis (brain atrophy, arachnoid cyst, asymmetric lateral ventricles, dilated lateral ventricles, plagiocephaly and falx cerebri calcification. No further medical referral was needed for any of these patients. No significant differences regarding gender, age, diagnosis, duration of untreated psychosis, in-stay and cannabis use were found between patients who had neuroimaging abnormalities versus those without. Discussion. This study suggests that structural neuroimaging exams reveal scarce abnormalities in young patients with first-episode psychosis. Structural neuroimaging is especially useful in first-episode psychosis patients with neurological symptoms, atypical clinical picture and old age.

  20. Neuroimaging in Psychiatry: A Review of the Background and ...

    African Journals Online (AJOL)

    There are two different types of neuroimaging of value in clinical psychiatry, namely: structural neuroimaging techniques (e.g., CT, MRI) which provide static images of the skull, and brain, and funnctional neuroimaging techniques (e.g., single photon emission CT [SPECT], positron emission tomography [PET], functional MRI ...

  1. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  2. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics

    Directory of Open Access Journals (Sweden)

    Emma D. Spikol

    2016-03-01

    Full Text Available Prader-Willi syndrome (PWS is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.

  3. Pharmacotherapeutic Aspects of Space Medicine

    Science.gov (United States)

    Putcha, Lakshmi

    2004-01-01

    produced by any drug depend upon rates of absorption, distribution, metabolism, and elimination of the drug; space flight-induced changes in blood flow and the function of the gastrointestinal (GI) tract, liver, or kidneys may alter these processes. Another important aspect of clinical efficacy of medications in space is the stability of pharmaceuticals. As the U.S. space program is moving toward extended Space Shuttle flights and beyond, to space station missions and planetary explorations, understanding how space flight affects organ systems and clinical pharmacology is necessary to optimize pharmacotherapeutics in space and ensure adequate safety and health of crewmembers.

  4. Neuroimaging in Mental Health Care: Voices in Translation

    Directory of Open Access Journals (Sweden)

    Emily L. Borgelt

    2012-10-01

    Full Text Available Images of brain function, popularly called neuroimages, have become a mainstay of contemporary communication about neuroscience and mental health. Paralleling media coverage of neuroimaging research and the high visibility of clinics selling scans is pressure from sponsors to move basic research about brain function along the translational pathway. Indeed, neuroimaging benefit mental health care with early or tailored intervention, opportunities for education and planning, and access to resources afforded by objectification of disorder. However, risks of premature technology transfer, such as misinterpretation, misrepresentation, and increased stigmatization, could compromise patient care.Stakeholder views on neuroimaging for mental health care are a largely untapped resource of information and guidance for translational efforts. We argue that the insights of key stakeholders – researchers, healthcare providers, patients, and families - have an essential role to play upstream in professional, critical, and ethical discourse about neuroimaging in mental health. Here we integrate previously orthogonal lines of inquiry involving stakeholder research to describe the translational landscape as well as challenges on its horizon.

  5. [How to start a neuroimaging study].

    Science.gov (United States)

    Narumoto, Jin

    2012-06-01

    In order to help researchers understand how to start a neuroimaging study, several tips are described in this paper. These include 1) Choice of an imaging modality, 2) Statistical method, and 3) Interpretation of the results. 1) There are several imaging modalities available in clinical research. Advantages and disadvantages of each modality are described. 2) Statistical Parametric Mapping, which is the most common statistical software for neuroimaging analysis, is described in terms of parameter setting in normalization and level of significance. 3) In the discussion section, the region which shows a significant difference between patients and normal controls should be discussed in relation to the neurophysiology of the disease, making reference to previous reports from neuroimaging studies in normal controls, lesion studies and animal studies. A typical pattern of discussion is described.

  6. Turner Syndrome: Neuroimaging Findings--Structural and Functional

    Science.gov (United States)

    Mullaney, Ronan; Murphy, Declan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including…

  7. In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology

    Science.gov (United States)

    Caso, Francesca; Mandelli, Maria Luisa; Henry, Maya; Gesierich, Benno; Bettcher, Brianne M.; Ogar, Jennifer; Filippi, Massimo; Comi, Giancarlo; Magnani, Giuseppe; Sidhu, Manu; Trojanowski, John Q.; Huang, Eric J.; Grinberg, Lea T.; Miller, Bruce L.; Dronkers, Nina; Seeley, William W.

    2014-01-01

    Objective: To identify early cognitive and neuroimaging features of sporadic nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA) caused by frontotemporal lobar degeneration (FTLD) subtypes. Methods: We prospectively collected clinical, neuroimaging, and neuropathologic data in 11 patients with sporadic nfvPPA with FTLD-tau (nfvPPA-tau, n = 9) or FTLD–transactive response DNA binding protein pathology of 43 kD type A (nfvPPA-TDP, n = 2). We analyzed patterns of cognitive and gray matter (GM) and white matter (WM) atrophy at presentation in the whole group and in each pathologic subtype separately. We also considered longitudinal clinical data. Results: At first evaluation, regardless of pathologic FTLD subtype, apraxia of speech (AOS) was the most common cognitive feature and atrophy involved the left posterior frontal lobe. Each pathologic subtype showed few distinctive features. At presentation, patients with nfvPPA-tau presented with mild to moderate AOS, mixed dysarthria with prominent hypokinetic features, clear agrammatism, and atrophy in the GM of the left posterior frontal regions and in left frontal WM. While speech and language deficits were prominent early, within 3 years of symptom onset, all patients with nfvPPA-tau developed significant extrapyramidal motor signs. At presentation, patients with nfvPPA-TDP had severe AOS, dysarthria with spastic features, mild agrammatism, and atrophy in left posterior frontal GM only. Selective mutism occurred early, when general neurologic examination only showed mild decrease in finger dexterity in the right hand. Conclusions: Clinical features in sporadic nfvPPA caused by FTLD subtypes relate to neurodegeneration of GM and WM in frontal motor speech and language networks. We propose that early WM atrophy in nfvPPA is suggestive of FTLD-tau pathology while early selective GM loss might be indicative of FTLD-TDP. PMID:24353332

  8. Neuroimaging in eating disorders

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2011-09-01

    Full Text Available Ignacio Jáuregui-LoberaBehavioral Sciences Institute and Pablo de Olavide University, Seville, SpainAbstract: Neuroimaging techniques have been useful tools for accurate investigation of brain structure and function in eating disorders. Computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy, and voxel-based morphometry have been the most relevant technologies in this regard. The purpose of this review is to update the existing data on neuroimaging in eating disorders. The main brain changes seem to be reversible to some extent after adequate weight restoration. Brain changes in bulimia nervosa seem to be less pronounced than in anorexia nervosa and are mainly due to chronic dietary restrictions. Different subtypes of eating disorders might be correlated with specific brain functional changes. Moreover, anorectic patients who binge/purge may have different functional brain changes compared with those who do not binge/purge. Functional changes in the brain might have prognostic value, and different changes with respect to the binding potential of 5-HT1A, 5-HT2A, and D2/D3 receptors may be persistent after recovering from an eating disorder.Keywords: neuroimaging, brain changes, brain receptors, anorexia nervosa, bulimia nervosa, eating disorders

  9. Introduction to neuroimaging

    International Nuclear Information System (INIS)

    Orrison, W.W.

    1989-01-01

    The author focuses on neuroradiology with emphasis on the current imaging modalities. There are chapters on angiography, myelography, nuclear medicine, ultrasonography, computer tomography (CT), and magnetic resonance (MR) imaging. The other chapters are dedicated to the spine, skull, head and neck, and pediatric neuroimaging

  10. Neuroimaging: do we really need new contrast agents for MRI?

    International Nuclear Information System (INIS)

    Roberts, T.P.L.; Chuang, N.; Roberts, H.C.

    2000-01-01

    The use of exogenous contrast media in magnetic resonance imaging of the brain has brought dramatic improvement in the sensitivity of detection and delineation of pathological structures, such as primary and metastatic brain tumors, inflammation and ischemia. Disruption of the blood brain barrier leads to accumulation of the intravenously injected contrast material in the extravascular space, leading to signal enhancement. Magnetic resonance angiography benefits from T 1 -shortening effects of contrast agent, improving small vessel depiction and providing vascular visualization even in situations of slow flow. High speed dynamic MRI after bolus injection of contrast media allows tracer kinetic modeling of cerebral perfusion. Progressive enhancement over serial post-contrast imaging allows modeling of vascular permeability and thus quantitative estimation of the severity of blood brain barrier disruption. With such an array of capabilities and ever improving technical abilities, it seems that the role of contrast agents in MR neuroimaging is established and the development of new agents may be superfluous. However, new agents are being developed with prolonged intravascular residence times, and with in-vivo binding of ever-increasing specificity. Intravascular, or blood pool, agents are likely to benefit magnetic resonance angiography of the carotid and cerebral vessels; future agents may allow the visualization of therapeutic drug delivery, the monitoring of, for example, gene expression, and the imaging evaluation of treatment efficacy. So while there is a substantial body of work that can be performed with currently available contrast agents, especially in conjunction with optimized image acquisition strategies, post processing, and mathematical analysis, there are still unrealized opportunities for novel contrast agent introduction, particularly those exploiting biological specificity. This article reviews the current use of contrast media in magnetic resonance

  11. Neuroimaging and Research into Second Language Acquisition

    Science.gov (United States)

    Sabourin, Laura

    2009-01-01

    Neuroimaging techniques are becoming not only more and more sophisticated but are also coming to be increasingly accessible to researchers. One thing that one should take note of is the potential of neuroimaging research within second language acquisition (SLA) to contribute to issues pertaining to the plasticity of the adult brain and to general…

  12. Big Data and Neuroimaging.

    Science.gov (United States)

    Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron; Mejia, Amanda; Xu, Yuting; Crainiceanu, Ciprian; Caffo, Brian; Lindquist, Martin A

    2017-12-01

    Big Data are of increasing importance in a variety of areas, especially in the biosciences. There is an emerging critical need for Big Data tools and methods, because of the potential impact of advancements in these areas. Importantly, statisticians and statistical thinking have a major role to play in creating meaningful progress in this arena. We would like to emphasize this point in this special issue, as it highlights both the dramatic need for statistical input for Big Data analysis and for a greater number of statisticians working on Big Data problems. We use the field of statistical neuroimaging to demonstrate these points. As such, this paper covers several applications and novel methodological developments of Big Data tools applied to neuroimaging data.

  13. Paediatric population neuroimaging and the Generation R Study

    DEFF Research Database (Denmark)

    White, Tonya; Muetzel, Ryan L.; El Marroun, Hanan

    2018-01-01

    Paediatric population neuroimaging is an emerging field that falls at the intersection between developmental neuroscience and epidemiology. A key feature of population neuroimaging studies involves large-scale recruitment that is representative of the general population. One successful approach f...

  14. Molecular neuroimaging of emotional decision-making.

    Science.gov (United States)

    Takahashi, Hidehiko

    2013-04-01

    With the dissemination of non-invasive human neuroimaging techniques such as fMRI and the advancement of cognitive science, neuroimaging studies focusing on emotions and social cognition have become established. Along with this advancement, behavioral economics taking emotional and social factors into account for economic decisions has been merged with neuroscientific studies, and this interdisciplinary approach is called neuroeconomics. Past neuroeconomics studies have demonstrated that subcortical emotion-related brain structures play an important role in "irrational" decision-making. The research field that investigates the role of central neurotransmitters in this process is worthy of further development. Here, we provide an overview of recent molecular neuroimaging studies to further the understanding of the neurochemical basis of "irrational" or emotional decision-making and the future direction, including clinical implications, of the field. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  15. The Neuro-Image: Alain Resnais's Digital Cinema without the Digits

    NARCIS (Netherlands)

    Pisters, P.

    2011-01-01

    This paper proposes to read cinema in the digital age as a new type of image, the neuroimage. Going back to Gilles Deleuze's cinema books and it is argued that the neuro-image is based in the future. The cinema of Alain Resnais is analyzed as a neuro-image and digital cinema .

  16. Structural neuroimaging in neuropsychology: History and contemporary applications.

    Science.gov (United States)

    Bigler, Erin D

    2017-11-01

    Neuropsychology's origins began long before there were any in vivo methods to image the brain. That changed with the advent of computed tomography in the 1970s and magnetic resonance imaging in the early 1980s. Now computed tomography and magnetic resonance imaging are routinely a part of neuropsychological investigations with an increasing number of sophisticated methods for image analysis. This review examines the history of neuroimaging utilization in neuropsychological investigations, highlighting the basic methods that go into image quantification and the various metrics that can be derived. Neuroimaging methods and limitations for identify what constitutes a lesion are discussed. Likewise, the influence of various demographic and developmental factors that influence quantification of brain structure are reviewed. Neuroimaging is an integral part of 21st Century neuropsychology. The importance of neuroimaging to advancing neuropsychology is emphasized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Statin Selection in Qatar Based on Multi-indication Pharmacotherapeutic Multi-criteria Scoring Model, and Clinician Preference.

    Science.gov (United States)

    Al-Badriyeh, Daoud; Fahey, Michael; Alabbadi, Ibrahim; Al-Khal, Abdullatif; Zaidan, Manal

    2015-12-01

    Statin selection for the largest hospital formulary in Qatar is not systematic, not comparative, and does not consider the multi-indication nature of statins. There are no reports in the literature of multi-indication-based comparative scoring models of statins or of statin selection criteria weights that are based primarily on local clinicians' preferences and experiences. This study sought to comparatively evaluate statins for first-line therapy in Qatar, and to quantify the economic impact of this. An evidence-based, multi-indication, multi-criteria pharmacotherapeutic model was developed for the scoring of statins from the perspective of the main health care provider in Qatar. The literature and an expert panel informed the selection criteria of statins. Relative weighting of selection criteria was based on the input of the relevant local clinician population. Statins were comparatively scored based on literature evidence, with those exceeding a defined scoring threshold being recommended for use. With 95% CI and 5% margin of error, the scoring model was successfully developed. Selection criteria comprised 28 subcriteria under the following main criteria: clinical efficacy, best publish evidence and experience, adverse effects, drug interaction, dosing time, and fixed dose combination availability. Outcome measures for multiple indications were related to effects on LDL cholesterol, HDL cholesterol, triglyceride, total cholesterol, and C-reactive protein. Atorvastatin, pravastatin, and rosuvastatin exceeded defined pharmacotherapeutic thresholds. Atorvastatin and pravastatin were recommended as first-line use and rosuvastatin as a nonformulary alternative. It was estimated that this would produce a 17.6% cost savings in statins expenditure. Sensitivity analyses confirmed the robustness of the evaluation's outcomes against input uncertainties. Incorporating a comparative evaluation of statins in Qatari practices based on a locally developed, transparent, multi

  18. The Co-evolution of Neuroimaging and Psychiatric Neurosurgery.

    Science.gov (United States)

    Dyster, Timothy G; Mikell, Charles B; Sheth, Sameer A

    2016-01-01

    The role of neuroimaging in psychiatric neurosurgery has evolved significantly throughout the field's history. Psychiatric neurosurgery initially developed without the benefit of information provided by modern imaging modalities, and thus lesion targets were selected based on contemporary theories of frontal lobe dysfunction in psychiatric disease. However, by the end of the 20th century, the availability of structural and functional magnetic resonance imaging (fMRI) allowed for the development of mechanistic theories attempting to explain the anatamofunctional basis of these disorders, as well as the efficacy of stereotactic neuromodulatory treatments. Neuroimaging now plays a central and ever-expanding role in the neurosurgical management of psychiatric disorders, by influencing the determination of surgical candidates, allowing individualized surgical targeting and planning, and identifying network-level changes in the brain following surgery. In this review, we aim to describe the coevolution of psychiatric neurosurgery and neuroimaging, including ways in which neuroimaging has proved useful in elucidating the therapeutic mechanisms of neuromodulatory procedures. We focus on ablative over stimulation-based procedures given their historical precedence and the greater opportunity they afford for post-operative re-imaging, but also discuss important contributions from the deep brain stimulation (DBS) literature. We conclude with a discussion of how neuroimaging will transition the field of psychiatric neurosurgery into the era of precision medicine.

  19. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  20. Machine Learning for Neuroimaging with Scikit-Learn

    Directory of Open Access Journals (Sweden)

    Alexandre eAbraham

    2014-02-01

    Full Text Available Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  1. Machine learning for neuroimaging with scikit-learn.

    Science.gov (United States)

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  2. The progress and clinical application of radionuclide neuroimaging

    International Nuclear Information System (INIS)

    Chen Wenxin; He Pinyu

    2008-01-01

    Development of site-specific brain radiopharmaceuticals extends the the functional neuroimaging applications in the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. This article highlights recent advances and clinical applications of the functional neuroimaging in Parkinson disease, epilepsy, dementia, substance abuse, psychiatric disorders and brain functional research. (authors)

  3. Pituitary gland in psychiatric disorders: a review of neuroimaging findings.

    Science.gov (United States)

    Atmaca, Murad

    2014-08-01

    In this paper, it was reviewed neuroimaging results of the pituitary gland in psychiatric disorders, particularly schizophrenia, mood disorders, anxiety disorders, and somatoform disorders. The author made internet search in detail by using PubMed database including the period between 1980 and 2012 October. It was included in the articles in English, Turkish and French languages on pituitary gland in psychiatric disorders through structural or functional neuroimaging results. After searching mentioned in the Methods section in detail, investigations were obtained on pituitary gland neuroimaging in a variety of psychiatric disorders. There have been so limited investigations on pituitary neuroimaging in psychiatric disorders including major psychiatric illnesses like schizophrenia and mood disorders. Current findings are so far from the generalizability of the results. For this reason, it is required to perform much more neuroimaging studies of pituitary gland in all psychiatric disorders to reach the diagnostic importance of measuring it.

  4. Neural correlates of the LSD experience revealed by multimodal neuroimaging.

    Science.gov (United States)

    Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J

    2016-04-26

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

  5. Relevance of neuroimaging for neurocognitive and behavioral outcome after pediatric traumatic brain injury.

    Science.gov (United States)

    Königs, Marsh; Pouwels, Petra Jw; Ernest van Heurn, L W; Bakx, Roel; Jeroen Vermeulen, R; Carel Goslings, J; Poll-The, Bwee Tien; van der Wees, Marleen; Catsman-Berrevoets, Coriene E; Oosterlaan, Jaap

    2018-02-01

    This study aims to (1) investigate the neuropathology of mild to severe pediatric TBI and (2) elucidate the predictive value of conventional and innovative neuroimaging for functional outcome. Children aged 8-14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mild RF+ , n = 20) or moderate/severe TBI (n = 17) at 2.8 years post-injury. Neuroimaging measures included: acute computed tomography (CT), volumetric analysis on post-acute conventional T1-weighted magnetic resonance imaging (MRI) and post-acute diffusion tensor imaging (DTI, analyzed using tract-based spatial statistics and voxel-wise regression). Functional outcome was measured using Common Data Elements for neurocognitive and behavioral functioning. The results show that intracranial pathology on acute CT-scans was more prevalent after moderate/severe TBI (65%) than after mild RF+ TBI (35%; p = .035), while both groups had decreased white matter volume on conventional MRI (ps ≤ .029, ds ≥ -0.74). The moderate/severe TBI group further showed decreased fractional anisotropy (FA) in a widespread cluster affecting all white matter tracts, in which regional associations with neurocognitive functioning were observed (FSIQ, Digit Span and RAVLT Encoding) that consistently involved the corpus callosum. FA had superior predictive value for functional outcome (i.e. intelligence, attention and working memory, encoding in verbal memory and internalizing problems) relative to acute CT-scanning (i.e. internalizing problems) and conventional MRI (no predictive value). We conclude that children with mild RF+ TBI and moderate/severe TBI are at risk of persistent white matter abnormality. Furthermore, DTI has superior predictive value for neurocognitive out-come relative to conventional neuroimaging.

  6. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study.

    Science.gov (United States)

    Hart, John; Kraut, Michael A; Womack, Kyle B; Strain, Jeremy; Didehbani, Nyaz; Bartz, Elizabeth; Conover, Heather; Mansinghani, Sethesh; Lu, Hanzhang; Cullum, C Munro

    2013-03-01

    OBJECTIVES To assess cognitive impairment and depression in aging former professional football (National Football League [NFL]) players and to identify neuroimaging correlates of these dysfunctions. DESIGN We compared former NFL players with cognitive impairment and depression, cognitively normal retired players who were not depressed, and matched healthy control subjects. SETTING Research center in the North Texas region of the United States. PATIENTS Cross-sectional sample of former NFL players with and without a history of concussion recruited from the North Texas region and age-, education-, and IQ-matched controls. Thirty-four retired NFL players (mean age, 61.8 years) underwent neurological and neuropsychological assessment. A subset of 26 players also underwent detailed neuroimaging; imaging data in this subset were compared with imaging data acquired in 26 healthy matched controls. MAIN OUTCOME MEASURES Neuropsychological measures, clinical diagnoses of depression, neuroimaging mea-sures of white matter pathology, and a measure of cerebral blood flow. RESULTS Of the 34 former NFL players, 20 were cognitively normal. Four were diagnosed as having a fixed cognitive deficit; 8, mild cognitive impairment; 2, dementia; and 8, depression. Of the subgroup in whom neuroimaging data were acquired, cognitively impaired participants showed the greatest deficits on tests of naming, word finding, and visual/verbal episodic memory. We found significant differences in white matter abnormalities in cognitively impaired and depressed retired players compared with their respective controls. Regional blood flow differences in the cognitively impaired group (left temporal pole, inferior parietal lobule, and superior temporal gyrus) corresponded to regions associated with impaired neurocognitive performance (problems with memory, naming, and word finding). CONCLUSIONS Cognitive deficits and depression appear to be more common in aging former NFL players compared with healthy

  7. Neuroimaging studies of self-reflection

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying

    2004-01-01

    This paper reviews some basic findings and methodological issues in neuroimaging studies of self-referential processing.As a general rule,making judgments about one's self,inclusive of personality trait adjectives or current mental states(person's prefer ences,norms,aesthetic values and feeling)uniformly generates medial prefrontal activations,regardless of stimulus materials(words or pictures)and modality(visual or auditory).Cingulate activations are also observed in association with most self-referential processing.Methodological issues include treating self-referential processing as either representing one's own personality traits or representing one's own current mental states.Finally,self-referential processing could Be considered as implement of "I think therefore I am" approach to neuroimaging the self.

  8. Terminology development towards harmonizing multiple clinical neuroimaging research repositories.

    Science.gov (United States)

    Turner, Jessica A; Pasquerello, Danielle; Turner, Matthew D; Keator, David B; Alpert, Kathryn; King, Margaret; Landis, Drew; Calhoun, Vince D; Potkin, Steven G; Tallis, Marcelo; Ambite, Jose Luis; Wang, Lei

    2015-07-01

    Data sharing and mediation across disparate neuroimaging repositories requires extensive effort to ensure that the different domains of data types are referred to by commonly agreed upon terms. Within the SchizConnect project, which enables querying across decentralized databases of neuroimaging, clinical, and cognitive data from various studies of schizophrenia, we developed a model for each data domain, identified common usable terms that could be agreed upon across the repositories, and linked them to standard ontological terms where possible. We had the goal of facilitating both the current user experience in querying and future automated computations and reasoning regarding the data. We found that existing terminologies are incomplete for these purposes, even with the history of neuroimaging data sharing in the field; and we provide a model for efforts focused on querying multiple clinical neuroimaging repositories.

  9. 25 years of neuroimaging in amyotrophic lateral sclerosis

    Science.gov (United States)

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  10. Alternation learning in pathological gamblers: an fMRI Study.

    Science.gov (United States)

    Dannon, Pinhas N; Kushnir, Tammar; Aizer, Anat; Gross-Isseroff, Ruth; Kotler, Moshe; Manor, David

    2011-03-01

    We have previously reported that pathological gamblers have impaired performance on the Stroop color word naming task, go-no-go task and speed accuracy tradeoff performance, tasks used to assess executive function and interference control. The aim of the present neuroimaging study was to explore the relationship between frontal cortex function and gambling severity in pathological gamblers. Functional MRI (fMRI) was used to estimate brain activity of ten male medication-free pathological gamblers during performance of an alternation learning task. Performance of this task has been shown to depend on the function of regions in the frontal cortex. The executive functions needed to perform the alternation learning task were expressed as brain activation in lateral and medial frontal as well as parietal and occipital regions. By correlating the level of local brain activation to task performance, parietal regions and lateral frontal and orbitofrontal regions were demonstrated. A higher score in SOGS was associated with intrusion on the task-specific activation in the left hemisphere, to some extant in parietal regions and even more pronouncedly in left frontal and orbitofrontal regions. Our preliminary data suggests that pathological gambling may be characterized by specific neuro-cognitive changes related to the frontal cortex.

  11. Neuropsychological and neuroimaging underpinnings of schizoaffective disorder: a systematic review.

    Science.gov (United States)

    Madre, M; Canales-Rodríguez, E J; Ortiz-Gil, J; Murru, A; Torrent, C; Bramon, E; Perez, V; Orth, M; Brambilla, P; Vieta, E; Amann, B L

    2016-07-01

    The neurobiological basis and nosological status of schizoaffective disorder remains elusive and controversial. This study provides a systematic review of neurocognitive and neuroimaging findings in the disorder. A comprehensive literature search was conducted via PubMed, ScienceDirect, Scopus and Web of Knowledge (from 1949 to 31st March 2015) using the keyword 'schizoaffective disorder' and any of the following terms: 'neuropsychology', 'cognition', 'structural neuroimaging', 'functional neuroimaging', 'multimodal', 'DTI' and 'VBM'. Only studies that explicitly examined a well defined sample, or subsample, of patients with schizoaffective disorder were included. Twenty-two of 43 neuropsychological and 19 of 51 neuroimaging articles fulfilled inclusion criteria. We found a general trend towards schizophrenia and schizoaffective disorder being related to worse cognitive performance than bipolar disorder. Grey matter volume loss in schizoaffective disorder is also more comparable to schizophrenia than to bipolar disorder which seems consistent across further neuroimaging techniques. Neurocognitive and neuroimaging abnormalities in schizoaffective disorder resemble more schizophrenia than bipolar disorder. This is suggestive for schizoaffective disorder being a subtype of schizophrenia or being part of the continuum spectrum model of psychosis, with schizoaffective disorder being more skewed towards schizophrenia than bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  13. Update on neuroimaging phenotypes of mid-hindbrain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Jissendi-Tchofo, Patrice [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); CHU Saint-Pierre, Radiology Department, Pediatric Neuroradiology Section, Brussels (Belgium); Severino, Mariasavina [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Nguema-Edzang, Beatrice; Toure, Cisse; Soto Ares, Gustavo [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); Barkovich, Anthony James [University of California, Neuroradiology Section, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-10-23

    Neuroimaging techniques including structural magnetic resonance imaging (MRI) and functional positron emission tomography (PET) are useful in categorizing various midbrain-hindbrain (MHB) malformations, both in allowing diagnosis and in helping to understand the developmental processes that were disturbed. Brain imaging phenotypes of numerous malformations are characteristic features that help in guiding the genetic testing in case of direct neuroimaging-genotype correlation or, at least, to differentiate among MHB malformations entities. The present review aims to provide the reader with an update of the use of neuroimaging applications in the fine analysis of MHB malformations, using a comprehensive, recently proposed developmental and genetic classification. We have performed an extensive systematic review of the literature, from the embryology main steps of MHB development through the malformations entities, with regard to their molecular and genetic basis, conventional MRI features, and other neuroimaging characteristics. We discuss disorders in which imaging features are distinctive and how these features reflect the structural and functional impairment of the brain. Recognition of specific MRI phenotypes, including advanced imaging features, is useful to recognize the MHB malformation entities, to suggest genetic investigations, and, eventually, to monitor the disease outcome after supportive therapies. (orig.)

  14. Nipype: A flexible, lightweight and extensible neuroimaging data processing framework

    Directory of Open Access Journals (Sweden)

    Krzysztof eGorgolewski

    2011-08-01

    Full Text Available Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM are used to process and analyze large and often diverse (highly multi-dimensional data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient and optimal use of neuroimaging analysis approaches: 1 No uniform access to neuroimaging analysis software and usage information; 2 No framework for comparative algorithm development and dissemination; 3 Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; 4 Neuroimaging software packages do not address computational efficiency; and 5 Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype, an open-source, community-developed, software package and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is BSD licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.

  15. Effect of CLU genetic variants on cerebrospinal fluid and neuroimaging markers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts

    OpenAIRE

    Tan, Lin; Wang, Hui-Fu; Tan, Meng-Shan; Tan, Chen-Chen; Zhu, Xi-Chen; Miao, Dan; Yu, Wan-Jiang; Jiang, Teng; Tan, Lan; Yu, Jin-Tai; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William

    2016-01-01

    The Clusterin (CLU) gene, also known as apolipoprotein J (ApoJ), is currently the third most associated late-onset Alzheimer’s disease (LOAD) risk gene. However, little was known about the possible effect of CLU genetic variants on AD pathology in brain. Here, we evaluated the interaction between 7 CLU SNPs (covering 95% of genetic variations) and the role of CLU in β-amyloid (Aβ) deposition, AD-related structure atrophy, abnormal glucose metabolism on neuroimaging and CSF markers to clarify ...

  16. NeuroDebian Virtual Machine Deployment Facilitates Trainee-Driven Bedside Neuroimaging Research.

    Science.gov (United States)

    Cohen, Alexander; Kenney-Jung, Daniel; Botha, Hugo; Tillema, Jan-Mendelt

    2017-01-01

    Freely available software, derived from the past 2 decades of neuroimaging research, is significantly more flexible for research purposes than presently available clinical tools. Here, we describe and demonstrate the utility of rapidly deployable analysis software to facilitate trainee-driven translational neuroimaging research. A recipe and video tutorial were created to guide the creation of a NeuroDebian-based virtual computer that conforms to current neuroimaging research standards and can exist within a HIPAA-compliant system. This allows for retrieval of clinical imaging data, conversion to standard file formats, and rapid visualization and quantification of individual patients' cortical and subcortical anatomy. As an example, we apply this pipeline to a pediatric patient's data to illustrate the advantages of research-derived neuroimaging tools in asking quantitative questions "at the bedside." Our goal is to provide a path of entry for trainees to become familiar with common neuroimaging tools and foster an increased interest in translational research.

  17. Meeting Curation Challenges in a Neuroimaging Group

    Directory of Open Access Journals (Sweden)

    Angus Whyte

    2008-08-01

    Full Text Available The SCARP project is a series of short studies with two aims; firstly to discover more about disciplinary approaches and attitudes to digital curation through ‘immersion’ in selected cases; secondly to apply known good practice, and where possible, identify new lessons from practice in the selected discipline areas. The study summarised here is of the Neuroimaging Group in the University of Edinburgh’s Division of Psychiatry, which plays a leading role in eScience collaborations to improve the infrastructure for neuroimaging data integration and reuse. The Group also aims to address growing data storage and curation needs, given the capabilities afforded by new infrastructure. The study briefly reviews the policy context and current challenges to data integration and sharing in the neuroimaging field. It then describes how curation and preservation risks and opportunities for change were identified throughout the curation lifecycle; and their context appreciated through field study in the research site. The results are consistent with studies of neuroimaging eInfrastructure that emphasise the role of local data sharing and reuse practices. These sustain mutual awareness of datasets and experimental protocols through sharing peer to peer, and among senior researchers and students, enabling continuity in research and flexibility in project work. This “human infrastructure” is taken into account in considering next steps for curation and preservation of the Group’s datasets and a phased approach to supporting data documentation.

  18. Turner syndrome: neuroimaging findings: structural and functional.

    LENUS (Irish Health Repository)

    Mullaney, Ronan

    2009-01-01

    Neuroimaging studies of Turner syndrome can advance our understanding of the X chromosome in brain development, and the modulatory influence of endocrine factors. There is increasing evidence from neuroimaging studies that TX individuals have significant differences in the anatomy, function, and metabolism of a number of brain regions; including the parietal lobe; cerebellum, amygdala, hippocampus; and basal ganglia; and perhaps differences in "connectivity" between frontal and parieto-occipital regions. Finally, there is preliminary evidence that genomic imprinting, sex hormones and growth hormone have significant modulatory effects on brain maturation in TS.

  19. Functional neuroimaging of emotional learning and autonomic reactions.

    Science.gov (United States)

    Peper, Martin; Herpers, Martin; Spreer, Joachim; Hennig, Jürgen; Zentner, Josef

    2006-06-01

    This article provides a selective overview of the functional neuroimaging literature with an emphasis on emotional activation processes. Emotions are fast and flexible response systems that provide basic tendencies for adaptive action. From the range of involved component functions, we first discuss selected automatic mechanisms that control basic adaptational changes. Second, we illustrate how neuroimaging work has contributed to the mapping of the network components associated with basic emotion families (fear, anger, disgust, happiness), and secondary dimensional concepts that organise the meaning space for subjective experience and verbal labels (emotional valence, activity/intensity, approach/withdrawal, etc.). Third, results and methodological difficulties are discussed in view of own neuroimaging experiments that investigated the component functions involved in emotional learning. The amygdala, prefrontal cortex, and striatum form a network of reciprocal connections that show topographically distinct patterns of activity as a correlate of up and down regulation processes during an emotional episode. Emotional modulations of other brain systems have attracted recent research interests. Emotional neuroimaging calls for more representative designs that highlight the modulatory influences of regulation strategies and socio-cultural factors responsible for inhibitory control and extinction. We conclude by emphasising the relevance of the temporal process dynamics of emotional activations that may provide improved prediction of individual differences in emotionality.

  20. Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.

    Science.gov (United States)

    Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn

    2013-11-01

    The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.

  1. Neuroimaging for spine and spinal cord surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi [Hokkaido Neurosurgical Memorial Hospital (Japan); Iwasaki, Yoshinobu; Hida, Kazutoshi

    2001-01-01

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  2. Pharmacotherapeutic Problems and Pharmacist Interventions in a Medical Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Tae Yun Park

    2015-05-01

    Full Text Available Background: Interest in pharmacist participation in the multidisciplinary intensive care team is increasing. However, studies examining pharmacist interventions in the medical intensive care unit (MICU are limited in Korea. The aim of this study was to describe the current status of pharmacist interventions and to identify common pharmacologic problems requiring pharmacist intervention in the MICU. Methods: Between September 2013 and August 2014, a retrospective, observational study was conducted in the 22-bed MICU at a university hospital. Data were obtained from two trained pharmacists who participated in MICU rounds three times a week. In addition to patient characteristics, data on the cause, type, related drug, and acceptance rate of interventions were collected. Results: In 340 patients, a total of 1211 pharmacologic interventions were performed. The majority of pharmacologic interventions were suggested by pharmacists at multidisciplinary rounds in the MICU. The most common pharmacologic interventions were adjustment of dosage and administration (n = 328, 26.0%, followed by parenteral/enteral nutritional support (n = 228, 18.1%, the provision of drug information (n = 228, 18.1%, and advice regarding pharmacokinetics (n = 118, 9.3%. Antimicrobial agents (n = 516, 42.6% were the most frequent type of drug associated with pharmacist interventions. The acceptance rate of interventions was 84.1% with most accepted by physicians within 24 hours (n = 602, 92.8%. Conclusions: Medication and nutritional problems are frequently encountered pharmacotherapeutic problems in the MICU. Pharmacist interventions play an important role in the management of these problems.

  3. Finding related functional neuroimaging volumes

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2004-01-01

    We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving ea...

  4. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling

    NARCIS (Netherlands)

    van Holst, Ruth J.; van den Brink, Wim; Veltman, Dick J.; Goudriaan, Anna E.

    2010-01-01

    The purpose of this review is to gain more insight in the neuropathology of pathological gambling (PG) and problem gambling, and to discuss challenges in this research area. Results from the reviewed PG studies show that PG is more than just an impulse control disorder. PG seems to fit very well

  5. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    Science.gov (United States)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  6. Surgical treatment of patients with single and dual pathology: relevance of lesion and of hippocampal atrophy to seizure outcome.

    Science.gov (United States)

    Li, L M; Cendes, F; Watson, C; Andermann, F; Fish, D R; Dubeau, F; Free, S; Olivier, A; Harkness, W; Thomas, D G; Duncan, J S; Sander, J W; Shorvon, S D; Cook, M J; Arnold, D L

    1997-02-01

    Modern neuroimaging can disclose epileptogenic lesions in many patients with partial epilepsy and, at times, display the coexistence of hippocampal atrophy in addition to an extrahippocampal lesion (dual pathology). We studied the postoperative seizure outcome of 64 patients with lesional epilepsy (median follow-up, 30 months) and considered separately the surgical results in the 51 patients with a single lesion and in the 13 who had dual pathology. In patients with a single lesion, 85% were seizure free or significantly improved (Engel's class I-II) when the lesion was totally removed compared with only 40% when there was incomplete resection (p dual pathology who had both the lesion and the atrophic hippocampus removed became seizure free. In contrast, only 2 of the 10 patients with dual pathology undergoing surgery aimed at the lesion or at the hippocampus alone became seizure free (p dual pathology, surgery should, if possible, include resection of both the lesion and the atrophic hippocampus.

  7. Looking inside the brain the power of neuroimaging

    CERN Document Server

    Le Bihan, Denis

    2014-01-01

    It is now possible to witness human brain activity while we are talking, reading, or thinking, thanks to revolutionary neuroimaging techniques like magnetic resonance imaging (MRI). These groundbreaking advances have opened infinite fields of investigation—into such areas as musical perception, brain development in utero, and faulty brain connections leading to psychiatric disorders—and have raised unprecedented ethical issues. In Looking Inside the Brain, one of the leading pioneers of the field, Denis Le Bihan, offers an engaging account of the sophisticated interdisciplinary research in physics, neuroscience, and medicine that have led to the remarkable neuroimaging methods that give us a detailed look into the human brain. Introducing neurological anatomy and physiology, Le Bihan walks readers through the historical evolution of imaging technology—from the x-ray and CT scan to the PET scan and MRI—and he explains how neuroimaging uncovers afflictions like stroke or cancer and the workings of high...

  8. The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome.

    Science.gov (United States)

    Manley, Andrew T; Maertens, Paul M

    2015-01-01

    By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound. Copyright © 2014 by the American Society of Neuroimaging.

  9. Responsible Reporting: Neuroimaging News in the Age of Responsible Research and Innovation.

    Science.gov (United States)

    de Jong, Irja Marije; Kupper, Frank; Arentshorst, Marlous; Broerse, Jacqueline

    2016-08-01

    Besides offering opportunities in both clinical and non-clinical domains, the application of novel neuroimaging technologies raises pressing dilemmas. 'Responsible Research and Innovation' (RRI) aims to stimulate research and innovation activities that take ethical and social considerations into account from the outset. We previously identified that Dutch neuroscientists interpret "responsible innovation" as educating the public on neuroimaging technologies via the popular press. Their aim is to mitigate (neuro)hype, an aim shared with the wider emerging RRI community. Here, we present results of a media-analysis undertaken to establish whether the body of articles in the Dutch popular press presents balanced conversations on neuroimaging research to the public. We found that reporting was mostly positive and framed in terms of (healthcare) progress. There was rarely a balance between technology opportunities and limitations, and even fewer articles addressed societal or ethical aspects of neuroimaging research. Furthermore, neuroimaging metaphors seem to favour oversimplification. Current reporting is therefore more likely to enable hype than to mitigate it. How can neuroscientists, given their self-ascribed social responsibility, address this conundrum? We make a case for a collective and shared responsibility among neuroscientists, journalists and other stakeholders, including funders, committed to responsible reporting on neuroimaging research.

  10. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model. In this ...

  11. The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging

    Science.gov (United States)

    Schirner, Michael; McIntosh, Anthony R.; Jirsa, Viktor K.

    2013-01-01

    Abstract Brain function is thought to emerge from the interactions among neuronal populations. Apart from traditional efforts to reproduce brain dynamics from the micro- to macroscopic scales, complementary approaches develop phenomenological models of lower complexity. Such macroscopic models typically generate only a few selected—ideally functionally relevant—aspects of the brain dynamics. Importantly, they often allow an understanding of the underlying mechanisms beyond computational reproduction. Adding detail to these models will widen their ability to reproduce a broader range of dynamic features of the brain. For instance, such models allow for the exploration of consequences of focal and distributed pathological changes in the system, enabling us to identify and develop approaches to counteract those unfavorable processes. Toward this end, The Virtual Brain (TVB) (www.thevirtualbrain.org), a neuroinformatics platform with a brain simulator that incorporates a range of neuronal models and dynamics at its core, has been developed. This integrated framework allows the model-based simulation, analysis, and inference of neurophysiological mechanisms over several brain scales that underlie the generation of macroscopic neuroimaging signals. In this article, we describe how TVB works, and we present the first proof of concept. PMID:23442172

  12. When Should Neuroimaging be Applied in the Criminal Court?

    DEFF Research Database (Denmark)

    Ryberg, Jesper

    2014-01-01

    When does neuroimaging constitute a sufficiently developed technology to be put into use in the work of determining whether or not a defendant is guilty of crime? This question constitutes the starting point of the present paper. First, it is suggested that an overall answer is provided by what i......-suited for delivering the sort of theoretical guidance that is required for assessing the desirability of using neuroimaging in the work of the criminal court....

  13. Neuroimaging and the search for a cure for Alzheimer disease.

    Science.gov (United States)

    Petrella, Jeffrey R

    2013-12-01

    As radiologists, our role in the workup of the dementia patient has long been limited by the sensitivity of our imaging tools and lack of effective treatment options. Over the past 30 years, we have made tremendous strides in understanding the genetic, molecular, and cellular basis of Alzheimer disease (AD). We now know that the pathologic features of AD are present 1 to 2 decades prior to development of symptoms, though currently approved symptomatic therapies are administered much later in the disease course. The search for true disease-modifying therapy continues and many clinical trials are underway. Current outcome measures, based on cognitive tests, are relatively insensitive to pathologic disease progression, requiring long, expensive trials with large numbers of participants. Biomarkers, including neuroimaging, have great potential to increase the power of trials by matching imaging methodology with therapeutic mechanism. One of the most important advances over the past decade has been the development of in vivo imaging probes targeted to amyloid beta protein, and one agent is already available for clinical use. Additional advances include automated volumetric imaging methods to quantitate cerebral volume loss. Use of such techniques in small, early phase trials are expected to significantly increase the number and quality of candidate drugs for testing in larger trials. In addition to a critical role in trials, structural, molecular, and functional imaging techniques can give us a window on the etiology of AD and other neurodegenerative diseases. This combination of developments has potential to bring diagnostic radiology to the forefront in AD research, therapeutic trials, and patient care. ©RSNA, 2013.

  14. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    International Nuclear Information System (INIS)

    Lavoie-Courchesne, S; Chouinard-Decorte, F; Doyon, J; Bellec, P; Rioux, P; Sherif, T; Rousseau, M-E; Das, S; Adalat, R; Evans, A C; Craddock, C; Margulies, D; Chu, C; Lyttelton, O

    2012-01-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  15. Neurobiological narratives: Experiences of mood disorder through the lens of neuroimaging

    DEFF Research Database (Denmark)

    Buchman, Daniel Z; Borgelt, Emily L; Whiteley, Louise Emma

    2013-01-01

    of receiving neuroimaging for prediction, diagnosis and planning treatment. The participants discussed the potential role of neuroimages in (i) mitigating stigma; (ii) supporting morally loaded explanations of mental illness due to an imbalance of brain chemistry; (iii) legitimising psychiatric symptoms, which...... illness view functional neuroimaging, or of the potential psychological impacts of its clinical use. We conducted 12 semi-structured interviews with adults diagnosed with major depression or bipolar disorder, probing their experiences with mental health care and their perspectives on the prospect...... to biologisation of mental illness, and argue for bringing these voices into upstream ethics discussion....

  16. Running Neuroimaging Applications on Amazon Web Services: How, When, and at What Cost?

    Directory of Open Access Journals (Sweden)

    Tara M. Madhyastha

    2017-11-01

    Full Text Available The contribution of this paper is to identify and describe current best practices for using Amazon Web Services (AWS to execute neuroimaging workflows “in the cloud.” Neuroimaging offers a vast set of techniques by which to interrogate the structure and function of the living brain. However, many of the scientists for whom neuroimaging is an extremely important tool have limited training in parallel computation. At the same time, the field is experiencing a surge in computational demands, driven by a combination of data-sharing efforts, improvements in scanner technology that allow acquisition of images with higher image resolution, and by the desire to use statistical techniques that stress processing requirements. Most neuroimaging workflows can be executed as independent parallel jobs and are therefore excellent candidates for running on AWS, but the overhead of learning to do so and determining whether it is worth the cost can be prohibitive. In this paper we describe how to identify neuroimaging workloads that are appropriate for running on AWS, how to benchmark execution time, and how to estimate cost of running on AWS. By benchmarking common neuroimaging applications, we show that cloud computing can be a viable alternative to on-premises hardware. We present guidelines that neuroimaging labs can use to provide a cluster-on-demand type of service that should be familiar to users, and scripts to estimate cost and create such a cluster.

  17. Diagnostic and therapeutic utility of neuroimaging in depression: an overview.

    Science.gov (United States)

    Wise, Toby; Cleare, Anthony J; Herane, Andrés; Young, Allan H; Arnone, Danilo

    2014-01-01

    A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, "machine learning" methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level.

  18. Contributions of neuroimaging in singing voice studies: a systematic review

    Directory of Open Access Journals (Sweden)

    Geová Oliveira de Amorim

    Full Text Available ABSTRACT It is assumed that singing is a highly complex activity, which requires the activation and interconnection of sensorimotor areas. The aim of the current research was to present the evidence from neuroimaging studies in the performance of the motor and sensory system in the process of singing. Research articles on the characteristics of human singing analyzed by neuroimaging, which were published between 1990 and 2016, and indexed and listed in databases such as PubMed, BIREME, Lilacs, Web of Science, Scopus, and EBSCO were chosen for this systematic review. A total of 9 articles, employing magnetoencephalography, functional magnetic resonance imaging, positron emission tomography, and electrocorticography were chosen. These neuroimaging approaches enabled the identification of a neural network interconnecting the spoken and singing voice, to identify, modulate, and correct pitch. This network changed with the singer's training, variations in melodic structure and harmonized singing, amusia, and the relationship among the brain areas that are responsible for speech, singing, and the persistence of musicality. Since knowledge of the neural networks that control singing is still scarce, the use of neuroimaging methods to elucidate these pathways should be a focus of future research.

  19. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    Science.gov (United States)

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  20. Functional Neuroimaging in Psychopathy.

    Science.gov (United States)

    Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Di Pietro, Simone; Alessi, Maria Chiara; Di Cesare, Gianluigi; Criscuolo, Silvia; De Rossi, Pietro; Tatarelli, Roberto; Girardi, Paolo; Ferracuti, Stefano

    2015-01-01

    Psychopathy is associated with cognitive and affective deficits causing disruptive, harmful and selfish behaviour. These have considerable societal costs due to recurrent crime and property damage. A better understanding of the neurobiological bases of psychopathy could improve therapeutic interventions, reducing the related social costs. To analyse the major functional neural correlates of psychopathy, we reviewed functional neuroimaging studies conducted on persons with this condition. We searched the PubMed database for papers dealing with functional neuroimaging and psychopathy, with a specific focus on how neural functional changes may correlate with task performances and human behaviour. Psychopathy-related behavioural disorders consistently correlated with dysfunctions in brain areas of the orbitofrontal-limbic (emotional processing and somatic reaction to emotions; behavioural planning and responsibility taking), anterior cingulate-orbitofrontal (correct assignment of emotional valence to social stimuli; violent/aggressive behaviour and challenging attitude) and prefrontal-temporal-limbic (emotional stimuli processing/response) networks. Dysfunctional areas more consistently included the inferior frontal, orbitofrontal, dorsolateral prefrontal, ventromedial prefrontal, temporal (mainly the superior temporal sulcus) and cingulated cortices, the insula, amygdala, ventral striatum and other basal ganglia. Emotional processing and learning, and several social and affective decision-making functions are impaired in psychopathy, which correlates with specific changes in neural functions. © 2015 S. Karger AG, Basel.

  1. Diagnostic and therapeutic utility of neuroimaging in depression: an overview

    Directory of Open Access Journals (Sweden)

    Wise T

    2014-08-01

    Full Text Available Toby Wise,1 Anthony J Cleare,1 Andrés Herane,1,2 Allan H Young,1 Danilo Arnone1 1King’s College London, Institute of Psychiatry, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom; 2Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile Abstract: A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, “machine learning” methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level. Keywords: depression, mood disorder, neuroimaging, diagnosis, treatment

  2. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.

    Science.gov (United States)

    Nemoto, Kiyotaka; Dan, Ippeita; Rorden, Christopher; Ohnishi, Takashi; Tsuzuki, Daisuke; Okamoto, Masako; Yamashita, Fumio; Asada, Takashi

    2011-01-25

    A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites.

  3. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction.

    Science.gov (United States)

    Hayhow, Bradleigh D; Hassan, Islam; Looi, Jeffrey C L; Gaillard, Francesco; Velakoulis, Dennis; Walterfang, Mark

    2013-01-01

    Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  4. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  5. Abnormalities of Functional Brain Networks in Pathological Gambling: A Graph-Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Melanie eTschernegg

    2013-09-01

    Full Text Available Functional neuroimaging studies of pathological gambling demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in pathological gambling. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional MRI data in pathological gambling. We compared 19 patients with pathological gambling to 19 healthy controls using the Graph Analysis Toolbox (GAT. None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (SMA, reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients.These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that pathological gambling is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in pathological gambling cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders.

  6. [Physiopathology of autobiographical memory in aging: episodic and semantic distinction, clinical findings and neuroimaging studies].

    Science.gov (United States)

    Piolino, Pascale; Martinelli, Pénélope; Viard, Armelle; Noulhiane, Marion; Eustache, Francis; Desgranges, Béatrice

    2010-01-01

    From an early age, autobiographical memory models our feeling of identity and continuity. It grows throughout lifetime with our experiences and is built up from general self-knowledge and specific memories. The study of autobiographical memory depicts the dynamic and reconstructive features of this type of long-term memory, combining both semantic and episodic aspects, its strength and fragility. In this article, we propose to illustrate the properties of autobiographical memory from the field of cognitive psychology, neuropsychology and neuroimaging research through the analysis of the mechanisms of disturbance in normal and Alzheimer's disease. We show that the cognitive and neural bases of autobiographical memory are distinct in both cases. In normal aging, autobiographical memory retrieval is mainly dependent on frontal/executive function and on sense of reexperiencing specific context connected to hippocampal regions regardless of memory remoteness. In Alzheimer's disease, autobiographical memory deficit, characterized by a Ribot's temporal gradient, is connected to different regions according to memory remoteness. Our functional neuroimaging results suggest that patients at the early stage can compensate for their massive deficit of episodic recent memories correlated to hippocampal alteration with over general remote memories related to prefrontal regions. On the whole, the research findings allowed initiating new autobiographical memory studies by comparing normal and pathological aging and developing cognitive methods of memory rehabilitation in patients based on preserved personal semantic capacity. © Société de Biologie, 2010.

  7. Recent progress of neuroimaging studies on sleeping brain

    International Nuclear Information System (INIS)

    Sasaki, Yuka

    2012-01-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed. (author)

  8. [Recent progress of neuroimaging studies on sleeping brain].

    Science.gov (United States)

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  9. Patient-tailored multimodal neuroimaging, visualization and quantification of human intra-cerebral hemorrhage

    Science.gov (United States)

    Goh, Sheng-Yang M.; Irimia, Andrei; Vespa, Paul M.; Van Horn, John D.

    2016-03-01

    In traumatic brain injury (TBI) and intracerebral hemorrhage (ICH), the heterogeneity of lesion sizes and types necessitates a variety of imaging modalities to acquire a comprehensive perspective on injury extent. Although it is advantageous to combine imaging modalities and to leverage their complementary benefits, there are difficulties in integrating information across imaging types. Thus, it is important that efforts be dedicated to the creation and sustained refinement of resources for multimodal data integration. Here, we propose a novel approach to the integration of neuroimaging data acquired from human patients with TBI/ICH using various modalities; we also demonstrate the integrated use of multimodal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data for TBI analysis based on both visual observations and quantitative metrics. 3D models of healthy-appearing tissues and TBIrelated pathology are generated, both of which are derived from multimodal imaging data. MRI volumes acquired using FLAIR, SWI, and T2 GRE are used to segment pathology. Healthy tissues are segmented using user-supervised tools, and results are visualized using a novel graphical approach called a `connectogram', where brain connectivity information is depicted within a circle of radially aligned elements. Inter-region connectivity and its strength are represented by links of variable opacities drawn between regions, where opacity reflects the percentage longitudinal change in brain connectivity density. Our method for integrating, analyzing and visualizing structural brain changes due to TBI and ICH can promote knowledge extraction and enhance the understanding of mechanisms underlying recovery.

  10. GENE X ENVIRONMENT INTERACTIONS IN SCHIZOPHRENIA AND BIPOLAR DISORDER:EVIDENCE FROM NEUROIMAGING

    Directory of Open Access Journals (Sweden)

    Pierre Alexis Geoffroy

    2013-10-01

    Full Text Available Introduction: Schizophrenia (SZ and Bipolar disorder (BD are considered as severe multifactorial diseases, stemming from genetic and environmental influences. Growing evidence supports gene x environment (GxE interactions in these disorders and neuroimaging studies can help us to understand how those factors mechanistically interact. No reviews synthesized the existing data of neuroimaging studies in these issues.Methods: We conduct a systematic review on the neuroimaging studies exploring GxE interactions relative to SZ or BD in PubMed.Results: First results of the influence of genetic and environmental risks on brain structures came from monozygotic twin pairs concordant and discordant for SZ or BD. Few structural magnetic resonance imaging (sMRI studies have explored the GxE interactions. No other imaging methods were found. Two main GxE interactions on brain volumes have arisen. First, an interaction between genetic liability to SZ and obstetric complications on gray matter, cerebrospinal fluid and hippocampal volumes. Second, cannabis use and genetic liability interaction effects on cortical thickness and white matter volumes.Conclusion: Combining GxE interactions and neuroimaging domains is a promising approach. Genetic risk and environmental exposures such as cannabis or obstetrical complications seem to interact leading to specific neuroimaging cerebral alterations in SZ. They are suggestive of GxE interactions that confer phenotypic abnormalities in SZ and possibly BD. We need further, larger neuroimaging studies of GxE interactions for which we may propose a framework focusing on GxE interactions data already known to have a clinical effect such as infections, early stress, urbanicity and substance abuse.

  11. ORIGINAL ARTICLE EEG changes and neuroimaging abnormalities ...

    African Journals Online (AJOL)

    salah

    Clinical Genetics Department, Human Genetics & Genome Research Division, ... neuroimaging changes of the brain and EEG abnormalities in correlation to the ... level and by developmental changes2. .... for IQ as a confounding factor.30.

  12. PET radioligand injection for pig neuroimaging

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Munk, Ole Lajord; Landau, Anne M.

    2018-01-01

    Pigs are useful models in neuroimaging studies with positron emission tomography. Radiolabeled ligands are injected intravenously at the start of the scan and in pigs, the most easily accessible route of administration is the ear vein. However, in brain studies the short distance between the brai...

  13. PET-based molecular nuclear neuro-imaging

    International Nuclear Information System (INIS)

    Kim, Jong Ho

    2004-01-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy

  14. PET-based molecular nuclear neuro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho [Gil Medical Center, Gachon (Korea, Republic of)

    2004-04-01

    Molecular nuclear neuro-imaging in CNS drug discovery and development can be divided into four categories that are clearly inter-related. (1) Neuroreceptor mapping to examine the involvement of specific neurotransmitter system in CNS diseases, drug occupancy characteristics and perhaps examine mechanisms of action;(2) Structural and spectroscopic imaging to examine morphological changes and their consequences;(3) Metabolic mapping to provide evidence of central activity and CNS fingerprinting the neuroanatomy of drug effects;(4) Functional mapping to examine disease-drug interactions. In addition, targeted delivery of therapeutic agents could be achieved by modifying stem cells to release specific drugs at the site of transplantation('stem cell pharmacology'). Future exploitation of stem cell biology, including enhanced release of therapeutic factors through genetic stem cell engineering might thus constitute promising pharmaceutical approaches to treating diseases of the nervous system. With continued improvements in instrumentation, identification of better imaging probes by innovative chemistry, molecular nuclear neuro-imaging promise to play increasingly important roles in disease diagnosis and therapy.

  15. Mathematical modeling and visualization of functional neuroimages

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup

    This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...

  16. A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Puri, Basant K

    2018-04-01

    There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.

  17. What's new in neuroimaging methods?

    Science.gov (United States)

    Bandettini, Peter A.

    2009-01-01

    The rapid advancement of neuroimaging methodology and availability has transformed neuroscience research. The answers to many questions that we ask about how the brain is organized depend on the quality of data that we are able to obtain about the locations, dynamics, fluctuations, magnitudes, and types of brain activity and structural changes. In this review, an attempt is made to take a snapshot of the cutting edge of a small component of the very rapidly evolving field of neuroimaging. For each area covered, a brief context is provided along with a summary of a few of the current developments and issues. Then, several outstanding papers, published in the past year or so, are described, providing an example of the directions in which each area is progressing. The areas covered include functional MRI (fMRI), voxel based morphometry (VBM), diffusion tensor imaging (DTI), electroencephalography (EEG), magnetoencephalography (MEG), optical imaging, and positron emission tomography (PET). More detail is included on fMRI, as subsections include: functional MRI interpretation, new functional MRI contrasts, MRI technology, MRI paradigms and processing, and endogenous oscillations in functional MRI. PMID:19338512

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  19. Online open neuroimaging mass meta-analysis

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Kempton, Matthew J.; Williams, Steven C. R.

    We describe a system for meta-analysis where a wiki stores numerical data in a simple format and a web service performs the numerical computation. We initially apply the system on multiple meta-analyses of structural neuroimaging data results. The described system allows for mass meta-analysis, e...

  20. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.

    Science.gov (United States)

    Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  1. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    Science.gov (United States)

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations

    Directory of Open Access Journals (Sweden)

    Lawrence Leung

    2013-01-01

    Full Text Available With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract with a suggested protocol of approach.

  3. Incidental Findings in Neuroimaging: Ethical and Medicolegal Considerations.

    Science.gov (United States)

    Leung, Lawrence

    2013-01-01

    With the rapid advances in neurosciences in the last three decades, there has been an exponential increase in the use of neuroimaging both in basic sciences and clinical research involving human subjects. During routine neuroimaging, incidental findings that are not part of the protocol or scope of research agenda can occur and they often pose a challenge as to how they should be handled to abide by the medicolegal principles of research ethics. This paper reviews the issue from various ethical (do no harm, general duty to rescue, and mutual benefits and owing) and medicolegal perspectives (legal liability, fiduciary duties, Law of Tort, and Law of Contract) with a suggested protocol of approach.

  4. Hirayama disease: diagnostic essentials in neuroimaging.

    Science.gov (United States)

    Kapetanakis, Stylianos; Chourmouzi, Danae; Terzoudi, Aikaterini; Georgiou, Nikiforos; Giovannopoulou, Eirini

    2017-12-01

    A 22-year-old male presented with progressive muscular weakness of the upper extremities. MRI of the cervical spine established the final diagnosis of Hirayama disease (HD). HD is a rare disease with benign progress. Neurologists and radiologists should be aware of the specific neuroimaging signs of this rare clinical entity.

  5. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  6. Neuroimaging in nuclear medicine: drug addicted brain

    International Nuclear Information System (INIS)

    Chung, Yong-An; Kim, Dae-Jin

    2006-01-01

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further

  7. Functional neuroimaging in Tourette syndrome: recent perspectives

    Directory of Open Access Journals (Sweden)

    Debes NM

    2017-04-01

    Full Text Available Nanette Mol Debes, Marie Préel, Liselotte Skov Pediatric Department, Tourette Clinic, Herlev University Hospital, Herlev, DenmarkAbstract: The most recent functional neuroimaging studies on Tourette syndrome (TS are reviewed in this paper. Although it can be difficult to compare functional neuroimaging studies due to differences in methods, differences in age of the included subjects, and differences in the extent to which the presence of comorbidity, medical treatment, and severity of tics are considered in the various studies; most studies show that the cortico-striato-thalamo-cortical circuit seems to be involved in the generation of tics. Changes in this circuit seem to be correlated with tic severity. Correlations have been found between the presence of tics and hypermetabolism in various brain regions. Abnormalities of GABAergic, serotonergic, and dopaminergic neurotransmission in patients with TS have been suggested. During tic suppression, increased activity in the inferior frontal gyrus is seen. The premotor cortex might be involved in inhibition of motor control in subjects with TS. The right anterior insula is suggested to be a part of the urge–tic network. Several studies have shown altered motor network activations and sensorimotor gating deficits in subjects with TS. In future studies, inclusion of more well-defined subjects and further examination of premonitory urge and tic suppression is needed in order to increase the knowledge about the pathophysiology and treatment possibilities of TS. Keywords: functional neuroimaging, Tourette syndrome

  8. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research.

    Science.gov (United States)

    Fox, Andrew S; Shackman, Alexander J

    2017-11-30

    Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies. Copyright © 2017. Published by Elsevier B.V.

  9. Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging

    International Nuclear Information System (INIS)

    Kulkami, Makarand

    2011-01-01

    Full text: High spatial resolution is one of the major problems in neuroimaging, par ticularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve patholo gies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.

  10. Mind-Body Practices and the Adolescent Brain: Clinical Neuroimaging Studies.

    Science.gov (United States)

    Sharma, Anup; Newberg, Andrew B

    Mind-Body practices constitute a large and diverse group of practices that can substantially affect neurophysiology in both healthy individuals and those with various psychiatric disorders. In spite of the growing literature on the clinical and physiological effects of mind-body practices, very little is known about their impact on central nervous system (CNS) structure and function in adolescents with psychiatric disorders. This overview highlights findings in a select group of mind-body practices including yoga postures, yoga breathing techniques and meditation practices. Mind-body practices offer novel therapeutic approaches for adolescents with psychiatric disorders. Findings from these studies provide insights into the design and implementation of neuroimaging studies for adolescents with psychiatric disorders. Clinical neuroimaging studies will be critical in understanding how different practices affect disease pathogenesis and symptomatology in adolescents. Neuroimaging of mind-body practices on adolescents with psychiatric disorders will certainly be an open and exciting area of investigation.

  11. The pathology and pathophysiology of vascular dementia.

    Science.gov (United States)

    Kalaria, Raj N

    2017-12-19

    Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Conceptual and methodological challenges for neuroimaging studies of autistic spectrum disorders

    OpenAIRE

    Mazzone, Luigi; Curatolo, Paolo

    2010-01-01

    Abstract Autistic Spectrum Disorders (ASDs) are a set of complex developmental disabilities defined by impairment in social interaction and communication, as well as by restricted interests or repetitive behaviors. Neuroimaging studies have substantially advanced our understanding of the neural mechanisms that underlie the core symptoms of ASDs. Nevertheless, a number of challenges still remain in the application of neuroimaging techniques to the study of ASDs. We review three major conceptua...

  13. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Science.gov (United States)

    Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.

    2015-01-01

    With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746

  14. Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing

    Directory of Open Access Journals (Sweden)

    Anwar S. Shatil

    2015-01-01

    Full Text Available With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1 inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2 highlight their main advantages; 3 discuss when it may (and may not be advisable to use them; 4 review some of their potential problems and barriers to access; and finally 5 give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc., a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.

  15. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    Science.gov (United States)

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  16. The search for neuroimaging and cognitive endophenotypes

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W.; Kjærstad, Hanne L; Meluken, Iselin

    2017-01-01

    and structural neuroimaging. Seventy-seven cross-sectional studies met the inclusion criteria. The present review revealed that URs in comparison with HCs showed: (i) widespread deficits in verbal memory, sustained attention, and executive function; (ii) abnormalities in the reactivity to and regulation...

  17. Geriatric medicine, Japanese Alzheimer's disease neuroimaging initiative and biomarker development

    International Nuclear Information System (INIS)

    Arai, Hiroyuki; Furukawa, Katsutoshi; Okamura, Nobuyuki; Kudo, Yukitsuka

    2010-01-01

    Due to a change in disease spectrum in aged countries, the primary role of geriatricians should be directed to an appropriate management and prevention of cognitive decline and dementia, swallowing and aspiration pneumonia and falls and fractures. Management of dementia constitutes a central part in the practice of geriatric medicine in order to support independence of life in elderly people. The current paradigm of cognitive function-based testing for the diagnosis and treatment of Alzheimer's disease (AD) is going to drastically shift to a biomarker-based test approach, a shift that will correspond to the emergence of disease-modifying drugs. In addition, a new molecular imaging technique that visualizes neuronal protein deposits or pathological features has been developed in Japan and the U.S.A. Based on these achievements, the Alzheimer's Disease Neuroimaging Initiative (ADNI) was proposed and initiated in 2005. The ADNI is a long-term observational study being conducted in the U.S.A., Europe, Australia, and Japan using identical protocols. The objectives of ADNI are: to establish methodology which will allow standard values related to long-term changes in imaging data, such as MRI and positron emission tomography (PET), in patients with AD and mild cognitive impairment and normal elderly persons; to obtain clinical indices, psychological test data, and blood/cerebrospinal fluid biomarkers to demonstrate the validity of image-based surrogate markers; and to establish optimum methods to monitor the therapeutic effects of disease-modifying drugs for AD. Patient enrollment in the Japanese ADNI has begun in July 2008. Imaging of AD pathology not only acts as a reliable biomarker with which to assay curative drug development by novel pharmaceutical companies, but it also helps health promotion toward AD prevention. (author)

  18. Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: An ADNI study.

    Science.gov (United States)

    Kruggel, Frithjof; Masaki, Fumitaro; Solodkin, Ana

    2017-02-15

    The widely used framework of voxel-based morphometry for analyzing neuroimages is extended here to model longitudinal imaging data by exchanging the linear model with a linear mixed-effects model. The new approach is employed for analyzing a large longitudinal sample of 756 diffusion-weighted images acquired in 177 subjects of the Alzheimer's Disease Neuroimaging initiative (ADNI). While sample- and group-level results from both approaches are equivalent, the mixed-effect model yields information at the single subject level. Interestingly, the neurobiological relevance of the relevant parameter at the individual level describes specific differences associated with aging. In addition, our approach highlights white matter areas that reliably discriminate between patients with Alzheimer's disease and healthy controls with a predictive power of 0.99 and include the hippocampal alveus, the para-hippocampal white matter, the white matter of the posterior cingulate, and optic tracts. In this context, notably the classifier includes a sub-population of patients with minimal cognitive impairment into the pathological domain. Our classifier offers promising features for an accessible biomarker that predicts the risk of conversion to Alzheimer's disease. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf. Significance statement This study assesses neuro-degenerative processes in the brain's white matter as revealed by diffusion-weighted imaging, in order to discriminate healthy from pathological aging in a large sample of elderly subjects. The analysis of time

  19. Neuroimaging Measures as Endophenotypes in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Meredith N. Braskie

    2011-01-01

    Full Text Available Late onset Alzheimer's disease (AD is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4 has been replicated consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by which proposed risk factors influence the brain.

  20. Partial Least Squares tutorial for analyzing neuroimaging data

    Directory of Open Access Journals (Sweden)

    Patricia Van Roon

    2014-09-01

    Full Text Available Partial least squares (PLS has become a respected and meaningful soft modeling analysis technique that can be applied to very large datasets where the number of factors or variables is greater than the number of observations. Current biometric studies (e.g., eye movements, EKG, body movements, EEG are often of this nature. PLS eliminates the multiple linear regression issues of over-fitting data by finding a few underlying or latent variables (factors that account for most of the variation in the data. In real-world applications, where linear models do not always apply, PLS can model the non-linear relationship well. This tutorial introduces two PLS methods, PLS Correlation (PLSC and PLS Regression (PLSR and their applications in data analysis which are illustrated with neuroimaging examples. Both methods provide straightforward and comprehensible techniques for determining and modeling relationships between two multivariate data blocks by finding latent variables that best describes the relationships. In the examples, the PLSC will analyze the relationship between neuroimaging data such as Event-Related Potential (ERP amplitude averages from different locations on the scalp with their corresponding behavioural data. Using the same data, the PLSR will be used to model the relationship between neuroimaging and behavioural data. This model will be able to predict future behaviour solely from available neuroimaging data. To find latent variables, Singular Value Decomposition (SVD for PLSC and Non-linear Iterative PArtial Least Squares (NIPALS for PLSR are implemented in this tutorial. SVD decomposes the large data block into three manageable matrices containing a diagonal set of singular values, as well as left and right singular vectors. For PLSR, NIPALS algorithms are used because it provides amore precise estimation of the latent variables. Mathematica notebooks are provided for each PLS method with clearly labeled sections and subsections. The

  1. Machine learning patterns for neuroimaging-genetic studies in the cloud.

    Science.gov (United States)

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines.

  2. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

    Science.gov (United States)

    Cole, James H; Franke, Katja

    2017-12-01

    The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reading the Freudian theory of sexual drives from a functional neuroimaging perspective

    Directory of Open Access Journals (Sweden)

    Serge eStoléru

    2014-03-01

    Full Text Available One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentally consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of sexual arousal. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character.

  4. Statistical Challenges in "Big Data" Human Neuroimaging.

    Science.gov (United States)

    Smith, Stephen M; Nichols, Thomas E

    2018-01-17

    Smith and Nichols discuss "big data" human neuroimaging studies, with very large subject numbers and amounts of data. These studies provide great opportunities for making new discoveries about the brain but raise many new analytical challenges and interpretational risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    Science.gov (United States)

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional

  6. Neuroimaging in human MDMA (Ecstasy) users: A cortical model

    Science.gov (United States)

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2009-01-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. MDMA and Ecstasy are often used synonymously but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and non-human primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research. PMID:18991874

  7. Neuroimaging. Recent issues and future progresses

    International Nuclear Information System (INIS)

    Fukuyama, Hidenao

    2002-01-01

    Recent advances in the technology of non-invasive neuroimaging techniques, include X-ray CT, magnetic resonance imaging, positron CT, etc. The trend of neuroimaging is from the diagnosis of the brain structural change to the functional localization of the brain function with accurate topographical data. Brain activation studies disclosed the responsible regions in the brain for various kinds of paradigms, including motor, sensory, cognitive functions. Another aspect of brain imaging shows the pathophysiological changes of the neurological disorders, such as Alzheimer's disease by abnormal CBF or metabolism changes. It is very important to note that the neurotransmitter receptor imaging is now available for various kinds of transmitters. We recently developed a new tracer for nicotinic type acetylcholine receptor, which might be involved in the pathophysiology of Alzheimer's disease and its treatment. In the near future, we will be able to visualize the proteins in the brain such as amyloid protein, which will make us to diagnose Alzheimer's patients accurately, and with respect to neuroscience research, not only neuronal functional localizations but also relationship between them will become important to disclose the functional aspects of the brain. (author)

  8. Pineal yolk sac tumor: correlation between neuroimaging and pathological findings Tumor do seio endodérmico da pineal: correlação entre os achados patológicos e de neuroimagem

    Directory of Open Access Journals (Sweden)

    Taísa Davaus

    2007-06-01

    Full Text Available A 17-year-old boy presented with somnolence and mental confusion. Physical examination demonstrated motor disturbances. Laboratorial investigation showed elevated levels of alpha-fetoprotein in serum and cerebrospinal fluid. The CT scan revealed a heterogeneous mass at the pineal region. At the MRI, this lesion was hypointense on T1 and hyperintense on T2-weighted images, enhancing after contrast administration. The patient underwent a surgical biopsy, which defined the diagnosis of yolk sac tumor. We emphasize the correlation of neuroimaging and pathological findings of this rare pineal region tumor.Um menino de 17 anos de idade apresentou-se com sonolência e confusão mental. O exame físico demonstrou distúrbios motores. A investigação laboratorial revelou aumento dos níveis de alfafetoproteína no soro e no líquor. A TC de crânio revelou massa heterogênea na região pineal. À RM, a lesão era hipointensa em T1 e hiperintensa em T2, com realce após a administração de contraste. O paciente foi submetido a biópsia cirúrgica, a qual definiu o diagnóstico de tumor do seio endodérmico. Enfatizamos a correlação entre os achados patológicos e de neuroimagem deste raro tumor da região pineal.

  9. Prefrontal Control and Internet Addiction: A Theoretical Model and Review of Neuropsychological and Neuroimaging Findings

    Science.gov (United States)

    Brand, Matthias; Young, Kimberly S.; Laier, Christian

    2014-01-01

    Most people use the Internet as a functional tool to perform their personal goals in everyday-life such as making airline or hotel reservations. However, some individuals suffer from a loss of control over their Internet use resulting in personal distress, symptoms of psychological dependence, and diverse negative consequences. This phenomenon is often referred to as Internet addiction. Only Internet Gaming Disorder has been included in the appendix of the DSM-5, but it has already been argued that Internet addiction could also comprise problematic use of other applications with cybersex, online relations, shopping, and information search being Internet facets at risk for developing an addictive behavior. Neuropsychological investigations have pointed out that certain prefrontal functions in particular executive control functions are related to symptoms of Internet addiction, which is in line with recent theoretical models on the development and maintenance of the addictive use of the Internet. Control processes are particularly reduced when individuals with Internet addiction are confronted with Internet-related cues representing their first choice use. For example, processing Internet-related cues interferes with working memory performance and decision making. Consistent with this, results from functional neuroimaging and other neuropsychological studies demonstrate that cue-reactivity, craving, and decision making are important concepts for understanding Internet addiction. The findings on reductions in executive control are consistent with other behavioral addictions, such as pathological gambling. They also emphasize the classification of the phenomenon as an addiction, because there are also several similarities with findings in substance dependency. The neuropsychological and neuroimaging results have important clinical impact, as one therapy goal should enhance control over the Internet use by modifying specific cognitions and Internet use expectancies

  10. Prefrontal control and internet addiction: a theoretical model and review of neuropsychological and neuroimaging findings.

    Science.gov (United States)

    Brand, Matthias; Young, Kimberly S; Laier, Christian

    2014-01-01

    Most people use the Internet as a functional tool to perform their personal goals in everyday-life such as making airline or hotel reservations. However, some individuals suffer from a loss of control over their Internet use resulting in personal distress, symptoms of psychological dependence, and diverse negative consequences. This phenomenon is often referred to as Internet addiction. Only Internet Gaming Disorder has been included in the appendix of the DSM-5, but it has already been argued that Internet addiction could also comprise problematic use of other applications with cybersex, online relations, shopping, and information search being Internet facets at risk for developing an addictive behavior. Neuropsychological investigations have pointed out that certain prefrontal functions in particular executive control functions are related to symptoms of Internet addiction, which is in line with recent theoretical models on the development and maintenance of the addictive use of the Internet. Control processes are particularly reduced when individuals with Internet addiction are confronted with Internet-related cues representing their first choice use. For example, processing Internet-related cues interferes with working memory performance and decision making. Consistent with this, results from functional neuroimaging and other neuropsychological studies demonstrate that cue-reactivity, craving, and decision making are important concepts for understanding Internet addiction. The findings on reductions in executive control are consistent with other behavioral addictions, such as pathological gambling. They also emphasize the classification of the phenomenon as an addiction, because there are also several similarities with findings in substance dependency. The neuropsychological and neuroimaging results have important clinical impact, as one therapy goal should enhance control over the Internet use by modifying specific cognitions and Internet use expectancies.

  11. Can Neuroimaging Markers of Vascular Pathology Explain Cognitive Performance in Adults with Sickle Cell Anemia? A Review of the Literature

    Science.gov (United States)

    Jorgensen, Dana R.; Rosano, Caterina; Novelli, Enrico M.

    2017-01-01

    Adults with homozygous sickle cell anemia have, on average, lower cognitive function than unaffected controls. The mechanisms underlying cognitive deterioration in this population are poorly understood, but cerebral small vessel disease (CSVD) is likely to be implicated. We conducted a systematic review using the Prisma Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of articles that included both measures of cognitive function and magnetic resonance imaging (MRI) neuroimaging markers of small vessel disease. While all five studies identified small vessel disease by MRI, only two of them found a significant relationship between structural changes and cognitive performance. Differences in methodologies and small sample sizes likely accounted for the discrepancies between the studies. We conclude that while MRI is a valuable tool to identify markers of CSVD in this population, larger studies are needed to definitely establish a link between MRI-detectable abnormalities and cognitive function in sickle cell anemia. PMID:27689914

  12. [Functional neuroimaging in the diagnosis of patients with Parkinsonism: Update and recommendations for clinical use].

    Science.gov (United States)

    Arbizu, J; Luquin, M R; Abella, J; de la Fuente-Fernández, R; Fernandez-Torrón, R; García-Solís, D; Garrastachu, P; Jiménez-Hoyuela, J M; Llaneza, M; Lomeña, F; Lorenzo-Bosquet, C; Martí, M J; Martinez-Castrillo, J C; Mir, P; Mitjavila, M; Ruiz-Martínez, J; Vela, L

    2014-01-01

    Functional Neuroimaging has been traditionally used in research for patients with different Parkinsonian syndromes. However, the emergence of commercial radiotracers together with the availability of single photon emission computed tomography (SPECT) and, more recently, positron emission tomography (PET) have made them available for clinical practice. Particularly, the development of clinical evidence achieved by functional neuroimaging techniques over the past two decades have motivated a progressive inclusion of several biomarkers in the clinical diagnostic criteria for neurodegenerative diseases that occur with Parkinsonism. However, the wide range of radiotracers designed to assess the involvement of different pathways in the neurodegenerative process underlying Parkinsonian syndromes (dopaminergic nigrostriatal pathway integrity, basal ganglia and cortical neuronal activity, myocardial sympathetic innervation), and the different neuroimaging techniques currently available (scintigraphy, SPECT and PET), have generated some controversy concerning the best neuroimaging test that should be indicated for the differential diagnosis of Parkinsonism. In this article, a panel of nuclear medicine and neurology experts has evaluated the functional neuroimaging techniques emphazising practical considerations related to the diagnosis of patients with uncertain origin parkinsonism and the assessment Parkinson's disease progression. Copyright © 2014 Elsevier España, S.L. and SEMNIM. All rights reserved.

  13. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.

    Science.gov (United States)

    Janssen, Ronald J; Mourão-Miranda, Janaina; Schnack, Hugo G

    2018-04-22

    Psychiatric prognosis is a difficult problem. Making a prognosis requires looking far into the future, as opposed to making a diagnosis, which is concerned with the current state. During the follow-up period, many factors will influence the course of the disease. Combined with the usually scarcer longitudinal data and the variability in the definition of outcomes/transition, this makes prognostic predictions a challenging endeavor. Employing neuroimaging data in this endeavor introduces the additional hurdle of high dimensionality. Machine-learning techniques are especially suited to tackle this challenging problem. This review starts with a brief introduction to machine learning in the context of its application to clinical neuroimaging data. We highlight a few issues that are especially relevant for prediction of outcome and transition using neuroimaging. We then review the literature that discusses the application of machine learning for this purpose. Critical examination of the studies and their results with respect to the relevant issues revealed the following: 1) there is growing evidence for the prognostic capability of machine-learning-based models using neuroimaging; and 2) reported accuracies may be too optimistic owing to small sample sizes and the lack of independent test samples. Finally, we discuss options to improve the reliability of (prognostic) prediction models. These include new methodologies and multimodal modeling. Paramount, however, is our conclusion that future work will need to provide properly (cross-)validated accuracy estimates of models trained on sufficiently large datasets. Nevertheless, with the technological advances enabling acquisition of large databases of patients and healthy subjects, machine learning represents a powerful tool in the search for psychiatric biomarkers. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Neuroimaging of autism

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, Judith S; Cock, Paul de; Lagae, Lieven [University Hospitals of the Catholic University of Leuven, Department of Pediatrics, Leuven (Belgium); Sunaert, Stefan [University Hospitals of the Catholic University of Leuven, Department of Radiology, Leuven (Belgium)

    2010-01-15

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  15. Neuroimaging of autism

    International Nuclear Information System (INIS)

    Verhoeven, Judith S.; Cock, Paul de; Lagae, Lieven; Sunaert, Stefan

    2010-01-01

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  16. Porcupine : A visual pipeline tool for neuroimaging analysis

    NARCIS (Netherlands)

    van Mourik, Tim; Snoek, Lukas; Knapen, T; Norris, David G

    The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer

  17. SHIWA workflow interoperability solutions for neuroimaging data analysis

    NARCIS (Netherlands)

    Korkhov, Vladimir; Krefting, Dagmar; Montagnat, Johan; Truong Huu, Tram; Kukla, Tamas; Terstyanszky, Gabor; Manset, David; Caan, Matthan; Olabarriaga, Silvia

    2012-01-01

    Neuroimaging is a field that benefits from distributed computing infrastructures (DCIs) to perform data- and compute-intensive processing and analysis. Using grid workflow systems not only automates the processing pipelines, but also enables domain researchers to implement their expertise on how to

  18. Generic Machine Learning Pattern for Neuroimaging-Genetic Studies in the Cloud

    Directory of Open Access Journals (Sweden)

    Benoit eDa Mota

    2014-04-01

    Full Text Available Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB with machine learning algorithms (Scikit-learn library, we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a two weeks deployment on hundreds of virtual machines.

  19. Neuroimaging and advanced social living

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    Background: Snow stated in 1959 a modern conflict between classical hermeneutic humanism and natural science which recently has been renewed by Kensei Hiwaki [2011]. However, the last decade has brought a breakthrough in the study of the neural base of mental processes by neuroimaging which may...... patients. Further, this healing principle explains classical relaxation procedures as yoga and meditation as coping techniques. 2. Mental balance between L(x) and NC is not a continued but a discrete variable of general risk attitude differentiating 4 sub-groups corresponding to the classical tempers which...

  20. Human fear conditioning and extinction in neuroimaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Christina Sehlmeyer

    Full Text Available Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance

  1. EEG changes and neuroimaging abnormalities in relevance to ...

    African Journals Online (AJOL)

    Background: Autism is currently viewed as a genetically determined neurodevelopmental disorder although its defi nite underlying etiology remains to be established. Aim of the Study: Our purpose was to assess autism related morphological neuroimaging changes of the brain and EEG abnormalities in correlation to the ...

  2. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.

  3. Publication trends in neuroimaging of minimally conscious states

    Directory of Open Access Journals (Sweden)

    Alex Garnett

    2013-09-01

    Full Text Available We used existing and customized bibliometric and scientometric methods to analyze publication trends in neuroimaging research of minimally conscious states and describe the domain in terms of its geographic, contributor, and content features. We considered publication rates for the years 2002–2011, author interconnections, the rate at which new authors are added, and the domains that inform the work of author contributors. We also provided a content analysis of clinical and ethical themes within the relevant literature. We found a 27% growth in the number of papers over the period of study, professional diversity among a wide range of peripheral author contributors but only few authors who dominate the field, and few new technical paradigms and clinical themes that would fundamentally expand the landscape. The results inform both the science of consciousness as well as parallel ethics and policy studies of the potential for translational challenges of neuroimaging in research and health care of people with disordered states of consciousness.

  4. Understanding the impact of TV commercials: electrical neuroimaging.

    Science.gov (United States)

    Vecchiato, Giovanni; Kong, Wanzeng; Maglione, Anton Giulio; Wei, Daming

    2012-01-01

    Today, there is a greater interest in the marketing world in using neuroimaging tools to evaluate the efficacy of TV commercials. This field of research is known as neuromarketing. In this article, we illustrate some applications of electrical neuroimaging, a discipline that uses electroencephalography (EEG) and intensive signal processing techniques for the evaluation of marketing stimuli. We also show how the proper usage of these methodologies can provide information related to memorization and attention while people are watching marketing-relevant stimuli. We note that temporal and frequency patterns of EEG signals are able to provide possible descriptors that convey information about the cognitive process in subjects observing commercial advertisements (ads). Such information could be unobtainable through common tools used in standard marketing research. Evidence of this research shows how EEG methodologies could be employed to better design new products that marketers are going to promote and to analyze the global impact of video commercials already broadcast on TV.

  5. Neuroimaging of nonaccidental head trauma: pitfalls and controversies

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Sujan [University of Missouri-Kansas School of Medicine, Department of Medicine, Kansas City, MO (United States); Obaldo, Ruby E. [The University of Kansas Medical Center, Department of Radiology, Kansas City, MO (United States); Walsh, Irene R. [The University of Missouri-Kansas City, Children' s Mercy Hospitals and Clinics, Department of Emergency Medicine, Kansas City, MO (United States); Lowe, Lisa H. [The University of Missouri-Kansas City, Children' s Mercy Hospitals and Clinics, Department of Radiology, Kansas City, MO (United States)

    2008-08-15

    Although certain neuroimaging appearances are highly suggestive of abuse, radiological findings are often nonspecific. The objective of this review is to discuss pitfalls, controversies, and mimics occurring in neuroimaging of nonaccidental head trauma in order to allow the reader to establish an increased level of comfort in distinguishing between nonaccidental and accidental head trauma. Specific topics discussed include risk factors, general biomechanics and imaging strategies in nonaccidental head trauma, followed by the characteristics of skull fractures, normal prominent tentorium and falx versus subdural hematoma, birth trauma versus nonaccidental head trauma, hyperacute versus acute on chronic subdural hematomas, expanded subarachnoid space versus subdural hemorrhage, controversy regarding subdural hematomas associated with benign enlarged subarachnoid spaces, controversy regarding hypoxia as a cause of subdural hematoma and/or retinal hemorrhages without trauma, controversy regarding the significance of retinal hemorrhages related to nonaccidental head trauma, controversy regarding the significance of subdural hematomas in general, and pitfalls of glutaric aciduria type 1 and hemophagocytic lymphohistiocytosis mimicking nonaccidental head trauma. (orig.)

  6. Neuroimaging the Effectiveness of Substance Use Disorder Treatments.

    Science.gov (United States)

    Cabrera, Elizabeth A; Wiers, Corinde E; Lindgren, Elsa; Miller, Gregg; Volkow, Nora D; Wang, Gene-Jack

    2016-09-01

    Neuroimaging techniques to measure the function and biochemistry of the human brain such as positron emission tomography (PET), proton magnetic resonance spectroscopy ((1)H MRS), and functional magnetic resonance imaging (fMRI), are powerful tools for assessing neurobiological mechanisms underlying the response to treatments in substance use disorders. Here, we review the neuroimaging literature on pharmacological and behavioral treatment in substance use disorder. We focus on neural effects of medications that reduce craving (e.g., naltrexone, bupropion hydrochloride, baclofen, methadone, varenicline) and that improve cognitive control (e.g., modafinil, N-acetylcysteine), of behavioral treatments for substance use disorders (e.g., cognitive bias modification training, virtual reality, motivational interventions) and neuromodulatory interventions such as neurofeedback and transcranial magnetic stimulation. A consistent finding for the effectiveness of therapeutic interventions identifies the improvement of executive control networks and the dampening of limbic activation, highlighting their values as targets for therapeutic interventions in substance use disorders.

  7. Multiple comparison procedures for neuroimaging genomewide association studies.

    Science.gov (United States)

    Hua, Wen-Yu; Nichols, Thomas E; Ghosh, Debashis

    2015-01-01

    Recent research in neuroimaging has focused on assessing associations between genetic variants that are measured on a genomewide scale and brain imaging phenotypes. A large number of works in the area apply massively univariate analyses on a genomewide basis to find single nucleotide polymorphisms that influence brain structure. In this paper, we propose using various dimensionality reduction methods on both brain structural MRI scans and genomic data, motivated by the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We also consider a new multiple testing adjustment method and compare it with two existing false discovery rate (FDR) adjustment methods. The simulation results suggest an increase in power for the proposed method. The real-data analysis suggests that the proposed procedure is able to find associations between genetic variants and brain volume differences that offer potentially new biological insights. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Neuroimaging in the Diagnostic Evaluation of Eye Pain.

    Science.gov (United States)

    Szatmáry, Gabriella

    2016-09-01

    Ocular or eye pain is a frequent complaint encountered not only by eye care providers but neurologists. Isolated eye pain is non-specific and non-localizing; therefore, it poses significant differential diagnostic problems. A wide range of neurologic and ophthalmic disorders may cause pain in, around, or behind the eye. These include ocular and orbital diseases and primary and secondary headaches. In patients presenting with an isolated and chronic eye pain, neuroimaging is usually normal. However, at the beginning of a disease process or in low-grade disease, the eye may appear "quiet," misleading a provider lacking familiarity with underlying disorders and high index of clinical suspicion. Delayed diagnosis of some neuro-ophthalmic causes of eye pain could result in significant neurologic and ophthalmic morbidity, conceivably even mortality. This article reviews some recent advances in imaging of the eye, the orbit, and the brain, as well as research in which neuroimaging has advanced the discovery of the underlying pathophysiology and the complex differential diagnosis of eye pain.

  9. [Neuropsychology of Tourette's disorder: cognition, neuroimaging and creativity].

    Science.gov (United States)

    Espert, R; Gadea, M; Alino, M; Oltra-Cucarella, J

    2017-02-24

    Tourette's disorder is the result of fronto-striatal brain dysfunction affecting people of all ages, with a debut in early childhood and continuing into adolescence and adulthood. This article reviews the main cognitive, functional neuroimaging and creativity-related studies in a disorder characterized by an excess of dopamine in the brain. Given the special cerebral configuration of these patients, neuropsychological alterations, especially in executive functions, should be expected. However, the findings are inconclusive and are conditioned by factors such as comorbidity with attention deficit hyperactivity disorder and obsessive-compulsive disorder, age or methodological variables. On the other hand, the neuroimaging studies carried out over the last decade have been able to explain the clinical symptoms of Tourette's disorder patients, with special relevance for the supplementary motor area and the anterior cingulate gyrus. Finally, although there is no linear relationship between excess of dopamine and creativity, the scientific literature emphasizes an association between Tourette's disorder and musical creativity, which could be translated into intervention programs based on music.

  10. Neuroimaging of nonaccidental head trauma: pitfalls and controversies

    International Nuclear Information System (INIS)

    Fernando, Sujan; Obaldo, Ruby E.; Walsh, Irene R.; Lowe, Lisa H.

    2008-01-01

    Although certain neuroimaging appearances are highly suggestive of abuse, radiological findings are often nonspecific. The objective of this review is to discuss pitfalls, controversies, and mimics occurring in neuroimaging of nonaccidental head trauma in order to allow the reader to establish an increased level of comfort in distinguishing between nonaccidental and accidental head trauma. Specific topics discussed include risk factors, general biomechanics and imaging strategies in nonaccidental head trauma, followed by the characteristics of skull fractures, normal prominent tentorium and falx versus subdural hematoma, birth trauma versus nonaccidental head trauma, hyperacute versus acute on chronic subdural hematomas, expanded subarachnoid space versus subdural hemorrhage, controversy regarding subdural hematomas associated with benign enlarged subarachnoid spaces, controversy regarding hypoxia as a cause of subdural hematoma and/or retinal hemorrhages without trauma, controversy regarding the significance of retinal hemorrhages related to nonaccidental head trauma, controversy regarding the significance of subdural hematomas in general, and pitfalls of glutaric aciduria type 1 and hemophagocytic lymphohistiocytosis mimicking nonaccidental head trauma. (orig.)

  11. Temporal Explorations in Cosmic Consciousness: Intra-Agential Entanglements and the Neuro-Image

    Directory of Open Access Journals (Sweden)

    Patricia Pisters

    2015-11-01

    Full Text Available When Deleuze in the 1980s argued that ‘the brain is the screen’ he introduced the concepts of movement-image and time-image, two different modes of cinema with particular ontological and aesthetic characteristics. Contemporary cinema, however, has moved into yet another aesthetic mode, which I have proposed to call the neuro-image. One of the characteristics of the neuro-image is that we no longer follow the movements and actions of characters in a certain space (as in the movement-image, nor see the world coloured through their eyes (as in the time-image, but we (often quite literally experience brain worlds more directly, from within mental landscapes. In this essay I will investigate in which ways these brain worlds aesthetically express an embodied and embedded brain, addressing the new materialist dimensions of the neuro-image in a journey of cosmic cinema and, to speak with Barad, ‘meeting the universe halfway.’

  12. Prefrontal control and Internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings

    Directory of Open Access Journals (Sweden)

    Matthias eBrand

    2014-05-01

    Full Text Available Most people use the Internet as a functional tool to perform their personal goals in everyday-life such as making airline or hotel reservations. However, some individuals suffer from a loss of control over their Internet use resulting in personal distress, symptoms of psychological dependence, and diverse negative consequences. This phenomenon is often referred to as Internet addiction. Only Internet Gaming Disorder has been included in the appendix of the DSM-5, but it has already been argued that Internet addiction could also comprise problematic use of other applications with cybersex, online relations, shopping, and information search being Internet facets at risk for developing an addictive behavior. Neuropsychological investigations have pointed out that certain prefrontal functions in particular executive control functions are related to symptoms of Internet addiction, which is in line with recent theoretical models on the development and maintenance of the addictive use of the Internet. Control processes are particularly reduced when individuals with Internet addiction are confronted with Internet-related cues representing their first choice use. For example, processing Internet-related cues interferes with working memory performance and decision making. Consistent with this, results from functional neuroimaging and other neuropsychological studies demonstrate that cue-reactivity, craving, and decision making are important concepts for understanding Internet addiction. The findings on reductions in executive control are consistent with other behavioral addictions, such as pathological gambling. They also emphasize the classification of the phenomenon as an addiction, because there are also several similarities with findings in substance dependency. The neuropsychological and neuroimaging results have important clinical impact, as one therapy goal should be to enhance control over the Internet use by modifying specific cognitions and

  13. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  14. Key performance indicators for the assessment of pediatric pharmacotherapeutic guidance.

    Science.gov (United States)

    Barrett, Jeffrey S; Patel, Dimple; Jayaraman, Bhuvana; Narayan, Mahesh; Zuppa, Athena

    2008-07-01

    -specific pharmacotherapy guidance as part of our pediatric knowledgebase initiative. For the top 25 most utilized agents at our institution over the last 6 years, KPI score ranged from 35 (dexamethasone) to 77 (cefazolin and ampicillin) with an average score of 55. Prototype DSS for tacrolimus and methotrexate are strongly supported by the KPI scoring which ranks their selection in the top 5% of drugs on formulary. KPI metrics provide an objective means of ranking agents for which pediatric pharmacotherapeutic guidance is clearly needed.

  15. Neuroimaging of herpesvirus infections in children

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Henry J. [Cincinnati Children' s Medical Center, Department of Radiology, Cincinnati, OH (United States); Hedlund, Gary [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States)

    2007-10-15

    Six members of the herpesvirus family cause well-described neurologic disease in children: herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella-zoster (VZV), Epstein-Barr (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6). When herpesviruses infect the central nervous system (CNS), the clinical presentation is non-specific and often confounding. The clinical urgency is often underscored by progressive neurologic deficits, seizures, or even death, and prompt diagnosis and treatment rely heavily on neuroimaging. This review focuses on the spectrum of cerebral manifestations caused by these viruses, particularly on non-congenital presentations. Recent advances in our understanding of these viruses are discussed, including new polymerase chain reaction techniques that allow parallel detection, which has improved our recognition that the herpesviruses are neurotropic and involve the CNS more often than previously thought. Evolving knowledge has also better elucidated viral neuropathology, particularly the role of VZV vasculitis in the brain, HHV-6 in febrile seizures, and herpesvirus reactivation in immunosuppressed patients. The virology, clinical course, and CNS manifestations of each virus are reviewed, followed by descriptions of neuroimaging findings when these agents infect the brain. Characteristic but often subtle imaging findings are discussed, as well as technical pearls covering appropriate use of MRI and MRI adjuncts to help differentiate viral infection from mimics. (orig.)

  16. Neuroimaging of herpesvirus infections in children

    International Nuclear Information System (INIS)

    Baskin, Henry J.; Hedlund, Gary

    2007-01-01

    Six members of the herpesvirus family cause well-described neurologic disease in children: herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella-zoster (VZV), Epstein-Barr (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6). When herpesviruses infect the central nervous system (CNS), the clinical presentation is non-specific and often confounding. The clinical urgency is often underscored by progressive neurologic deficits, seizures, or even death, and prompt diagnosis and treatment rely heavily on neuroimaging. This review focuses on the spectrum of cerebral manifestations caused by these viruses, particularly on non-congenital presentations. Recent advances in our understanding of these viruses are discussed, including new polymerase chain reaction techniques that allow parallel detection, which has improved our recognition that the herpesviruses are neurotropic and involve the CNS more often than previously thought. Evolving knowledge has also better elucidated viral neuropathology, particularly the role of VZV vasculitis in the brain, HHV-6 in febrile seizures, and herpesvirus reactivation in immunosuppressed patients. The virology, clinical course, and CNS manifestations of each virus are reviewed, followed by descriptions of neuroimaging findings when these agents infect the brain. Characteristic but often subtle imaging findings are discussed, as well as technical pearls covering appropriate use of MRI and MRI adjuncts to help differentiate viral infection from mimics. (orig.)

  17. Guidelines for the ethical use of neuroimages in medical testimony: report of a multidisciplinary consensus conference.

    Science.gov (United States)

    Meltzer, C C; Sze, G; Rommelfanger, K S; Kinlaw, K; Banja, J D; Wolpe, P R

    2014-04-01

    With rapid advances in neuroimaging technology, there is growing concern over potential misuse of neuroradiologic imaging data in legal matters. On December 7 and 8, 2012, a multidisciplinary consensus conference, Use and Abuse of Neuroimaging in the Courtroom, was held at Emory University in Atlanta, Georgia. Through this interactive forum, a highly select group of experts-including neuroradiologists, neurologists, forensic psychiatrists, neuropsychologists, neuroscientists, legal scholars, imaging statisticians, judges, practicing attorneys, and neuroethicists-discussed the complex issues involved in the use of neuroimaging data entered into legal evidence and for associated expert testimony. The specific contexts of criminal cases, child abuse, and head trauma were especially considered. The purpose of the conference was to inform the development of guidelines on expert testimony for the American Society of Neuroradiology and to provide principles for courts on the ethical use of neuroimaging data as evidence. This report summarizes the conference and resulting recommendations.

  18. Neuroimaging in the Differential Diagnosis of Primary Progressive Aphasia – Illustrative Case Series in the Light of New Diagnostic Criteria

    International Nuclear Information System (INIS)

    Sitek, Emilia J.; Narożańska, Ewa; Brockhuis, Bogna; Muraszko-Klaudel, Anna; Lass, Piotr; Harciarek, Michał; Sławek, Jarosław

    2014-01-01

    Primary progressive aphasia (PPA) is a progressive language disorder associated with atrophy of the dominant language hemisphere, typically left. Current PPA criteria divide PPA into three variants: non-fluent (nfvPPA), semantic (svPPA) and logopenic (lvPPA). The classification of PPA into one of the three variants may be performed at 3 levels: I) clinical, II) imaging-supported, III) definite pathologic diagnosis. This paper aimed at assessing the feasibility of the imaging-supported diagnostics of PPA variants in the Polish clinical setting with access to magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) examinations. We present the clinical and neuroimaging data on 6 patients (4 women, 2 men) clinically diagnosed with PPA (3 with nfvPPA and 3 with lvPPA) in whom MRI and SPECT were performed in order to determine if imaging-supported diagnosis could be established in those cases. In 4 individuals (2 with nfvPPA and 2 with lvPPA) clinical diagnosis was supported by neuroimaging (SPECT, albeit not MRI), thus level II of PPA diagnosis could be established in those cases. MRI results were either inconsistent with the clinical diagnosis (Patients 1 and 2) or a mixed pattern of atrophy was observed (Patients 3–6). Imaging-supported diagnosis of PPA variant is more feasible with quantitative analysis of SPECT images than with purely qualitative visual analysis of MRI. Hypoperfusion abnormalities evidenced by SPECT are more variant-specific than patterns of atrophy

  19. Pain as a fact and heuristic: how pain neuroimaging illuminates moral dimensions of law.

    Science.gov (United States)

    Pustilnik, Amanda C

    2012-05-01

    In legal domains ranging from tort to torture, pain and its degree do important definitional work by delimiting boundaries of lawfulness and of entitlements. Yet, for all the work done by pain as a term in legal texts and practice, it has a confounding lack of external verifiability. Now, neuroimaging is rendering pain and myriad other subjective states at least partly ascertainable. This emerging ability to ascertain and quantify subjective states is prompting a "hedonic" or a "subjectivist" turn in legal scholarship, which has sparked a vigorous debate as to whether the quantification of subjective states might affect legal theory and practice. Subjectivists contend that much values-talk in law has been a necessary but poor substitute for quantitative determinations of subjective states--determinations that will be possible in the law's "experiential future." This Article argues the converse: that pain discourse in law frequently is a heuristic for values. Drawing on interviews and laboratory visits with neuroimaging researchers, this Article shows current and in-principle limitations of pain quantification through neuroimaging. It then presents case studies on torture-murder, torture, the death penalty, and abortion to show the largely heuristic role of pain discourse in law. Introducing the theory of "embodied morality," the Article describes how moral conceptions of rights and duties are informed by human physicality and constrained by the limits of empathic identification. Pain neuroimaging helps reveal this dual factual and heuristic nature of pain in the law, and thus itself points to the translational work required for neuroimaging to influence, much less transform, legal practice and doctrine.

  20. Attention to spoken word planning: Chronometric and neuroimaging evidence

    NARCIS (Netherlands)

    Roelofs, A.P.A.

    2008-01-01

    This article reviews chronometric and neuroimaging evidence on attention to spoken word planning, using the WEAVER++ model as theoretical framework. First, chronometric studies on the time to initiate vocal responding and gaze shifting suggest that spoken word planning may require some attention,

  1. The iconography of mourning and its neural correlates: a functional neuroimaging study.

    Science.gov (United States)

    Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C; Viviani, Roberto

    2017-08-01

    The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. © The Author (2017). Published by Oxford University Press.

  2. Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.

    Science.gov (United States)

    Pfeifer, Jennifer H; Peake, Shannon J

    2012-01-01

    This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  4. Pathology informatics fellowship training: Focus on molecular pathology

    Directory of Open Access Journals (Sweden)

    Diana Mandelker

    2014-01-01

    Full Text Available Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program′s core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  5. Pathology informatics fellowship training: Focus on molecular pathology.

    Science.gov (United States)

    Mandelker, Diana; Lee, Roy E; Platt, Mia Y; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K F; Klepeis, Veronica E; Mahowald, Michael; Lane, William J; Beckwith, Bruce A; Baron, Jason M; McClintock, David S; Kuo, Frank C; Lebo, Matthew S; Gilbertson, John R

    2014-01-01

    Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  6. Altered Brain Activity in Unipolar Depression Revisited: Meta-analyses of Neuroimaging Studies.

    Science.gov (United States)

    Müller, Veronika I; Cieslik, Edna C; Serbanescu, Ilinca; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2017-01-01

    During the past 20 years, numerous neuroimaging experiments have investigated aberrant brain activation during cognitive and emotional processing in patients with unipolar depression (UD). The results of those investigations, however, vary considerably; moreover, previous meta-analyses also yielded inconsistent findings. To readdress aberrant brain activation in UD as evidenced by neuroimaging experiments on cognitive and/or emotional processing. Neuroimaging experiments published from January 1, 1997, to October 1, 2015, were identified by a literature search of PubMed, Web of Science, and Google Scholar using different combinations of the terms fMRI (functional magnetic resonance imaging), PET (positron emission tomography), neural, major depression, depression, major depressive disorder, unipolar depression, dysthymia, emotion, emotional, affective, cognitive, task, memory, working memory, inhibition, control, n-back, and Stroop. Neuroimaging experiments (using fMRI or PET) reporting whole-brain results of group comparisons between adults with UD and healthy control individuals as coordinates in a standard anatomic reference space and using an emotional or/and cognitive challenging task were selected. Coordinates reported to show significant activation differences between UD and healthy controls during emotional or cognitive processing were extracted. By using the revised activation likelihood estimation algorithm, different meta-analyses were calculated. Meta-analyses tested for brain regions consistently found to show aberrant brain activation in UD compared with controls. Analyses were calculated across all emotional processing experiments, all cognitive processing experiments, positive emotion processing, negative emotion processing, experiments using emotional face stimuli, experiments with a sex discrimination task, and memory processing. All meta-analyses were calculated across experiments independent of reporting an increase or decrease of activity in

  7. Pharmacotherapeutic education through problem based learning and its impact on cognitive and motivational attitude of Indian students.

    Science.gov (United States)

    Chandra, D; Sharma, S; Sethi, G; Dkhar, S

    1996-01-01

    The cognitive and motivational attitudes to problem based learning (i.e., simple didactic problem stated in written form and Programmed Patient) has been compared with those to didactic lectures (DL), the traditional teaching method. The change in recall performance measured in MCQ tests was considered as a change in the cognitive domain. The first test was conducted one week after completion of the topic and second test was taken 3 months later, without prior information. The motivational change was recorded by open-ended questions about the learning method. Three groups of students at second MBBS professional year level consisting of 55, 57 and 59 people, were assigned a simple didactic problem stated in written form (SDP), programmed patients (PP), and didactic lecture (DL), respectively. The average scores obtained by the learners in problem based learning (PBL) groups were similar to the students in the DL group in both the tests. Most of the students in PBL groups appreciated the exercise and suggested including more such exercises in the curriculum. These exercises helped them to better understand patient problems and prescribing behaviour as well as in development of communication skills. However, these exercises were time consuming and were not examination oriented. Pharmacotherapeutic teaching through PBL could be used within a traditional curriculum to develop relevant and rational use of drugs, provided the evaluation method was also modified.

  8. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    Science.gov (United States)

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  9. Is the statistic value all we should care about in neuroimaging?

    Science.gov (United States)

    Chen, Gang; Taylor, Paul A; Cox, Robert W

    2017-02-15

    Here we address an important issue that has been embedded within the neuroimaging community for a long time: the absence of effect estimates in results reporting in the literature. The statistic value itself, as a dimensionless measure, does not provide information on the biophysical interpretation of a study, and it certainly does not represent the whole picture of a study. Unfortunately, in contrast to standard practice in most scientific fields, effect (or amplitude) estimates are usually not provided in most results reporting in the current neuroimaging publications and presentations. Possible reasons underlying this general trend include (1) lack of general awareness, (2) software limitations, (3) inaccurate estimation of the BOLD response, and (4) poor modeling due to our relatively limited understanding of FMRI signal components. However, as we discuss here, such reporting damages the reliability and interpretability of the scientific findings themselves, and there is in fact no overwhelming reason for such a practice to persist. In order to promote meaningful interpretation, cross validation, reproducibility, meta and power analyses in neuroimaging, we strongly suggest that, as part of good scientific practice, effect estimates should be reported together with their corresponding statistic values. We provide several easily adaptable recommendations for facilitating this process. Published by Elsevier Inc.

  10. NeuroVault and the vision for data sharing in neuroimaging

    OpenAIRE

    Gorgolewski, Chris

    2017-01-01

    Talk from the 14 January 2014 "GlaxoSmithKline - Neurophysics Workshop on Skeptical Neuroimaging", an activity hosted at Imperial College and coordinated with the Neurophysics Marie Curie Initial Training Network of which GSK is a participant.

  11. Neuroimaging and electroconvulsive therapy

    DEFF Research Database (Denmark)

    Bolwig, Tom G

    2014-01-01

    BACKGROUND: Since the 1970s, a number of neuroimaging studies of electroconvulsive therapy (ECT) have been conducted to elucidate the working action of this highly efficacious treatment modality. The technologies used are single photon emission tomography, positron emission tomography, magnetic...... in localized cortical and subcortical areas of the brain and have revealed differences in neurophysiology and metabolism between the hyperactive ictal state and the restorative interictal/postictal periods. Recent magnetic resonance imaging studies seem to pave way for new insights into ECT's effects...... on increased connectivity in the brain during depression. CONCLUSION: The existing data reveal considerable variations among studies and therefore do not yet allow the formulation of a unified hypothesis for the mechanism of ECT. The rapid developments in imaging technology, however, hold promises for further...

  12. The utility of neuroimaging in the management of dementia

    Directory of Open Access Journals (Sweden)

    Uduak E Williams

    2015-01-01

    Full Text Available Dementia is a syndrome of progressive dysfunction of two or more cognitive domains associated with impairment of activities of daily living. An understanding of the pathophysiology of dementia and its early diagnosis is important in the pursuit of possible disease modifying therapy for dementia. Neuroimaging has greatly transformed this field of research as its function has changed from a mere tool for diagnosing treatable causes of dementia to an instrument for pre-symptomatic diagnosis of dementia. This review focuses on the diagnostic utility of neuroimaging in the management of progressive dementias. Structural imaging techniques like computerized tomography scan and magnetic resonance imaging highlights the anatomical, structural and volumetric details of the brain; while functional imaging techniques such as positron emission tomography, arterial spin labeling, single photon emission computerized tomography and blood oxygen level-dependent functional magnetic resonance imaging focuses on chemistry, circulatory status and physiology of the different brain structures and regions.

  13. Cognitive and emotional processes during dreaming: a neuroimaging view.

    Science.gov (United States)

    Desseilles, Martin; Dang-Vu, Thien Thanh; Sterpenich, Virginie; Schwartz, Sophie

    2011-12-01

    Dream is a state of consciousness characterized by internally-generated sensory, cognitive and emotional experiences occurring during sleep. Dream reports tend to be particularly abundant, with complex, emotional, and perceptually vivid experiences after awakenings from rapid eye movement (REM) sleep. This is why our current knowledge of the cerebral correlates of dreaming, mainly derives from studies of REM sleep. Neuroimaging results show that REM sleep is characterized by a specific pattern of regional brain activity. We demonstrate that this heterogeneous distribution of brain activity during sleep explains many typical features in dreams. Reciprocally, specific dream characteristics suggest the activation of selective brain regions during sleep. Such an integration of neuroimaging data of human sleep, mental imagery, and the content of dreams is critical for current models of dreaming; it also provides neurobiological support for an implication of sleep and dreaming in some important functions such as emotional regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Nervous System Injury and Neuroimaging of Zika Virus Infection

    Science.gov (United States)

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383

  15. Design and rationale for examining neuroimaging genetics in ischemic stroke

    Science.gov (United States)

    Giese, Anne-Katrin; Schirmer, Markus D.; Donahue, Kathleen L.; Cloonan, Lisa; Irie, Robert; Winzeck, Stefan; Bouts, Mark J.R.J.; McIntosh, Elissa C.; Mocking, Steven J.; Dalca, Adrian V.; Sridharan, Ramesh; Xu, Huichun; Frid, Petrea; Giralt-Steinhauer, Eva; Holmegaard, Lukas; Roquer, Jaume; Wasselius, Johan; Cole, John W.; McArdle, Patrick F.; Broderick, Joseph P.; Jimenez-Conde, Jordi; Jern, Christina; Kissela, Brett M.; Kleindorfer, Dawn O.; Lemmens, Robin; Lindgren, Arne; Meschia, James F.; Rundek, Tatjana; Sacco, Ralph L.; Schmidt, Reinhold; Sharma, Pankaj; Slowik, Agnieszka; Thijs, Vincent; Woo, Daniel; Worrall, Bradford B.; Kittner, Steven J.; Mitchell, Braxton D.; Rosand, Jonathan; Golland, Polina; Wu, Ona

    2017-01-01

    Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI–GENetics Interface Exploration (MRI-GENIE) study. Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment. PMID:28852707

  16. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.

    Science.gov (United States)

    Thompson, Paul M; Stein, Jason L; Medland, Sarah E; Hibar, Derrek P; Vasquez, Alejandro Arias; Renteria, Miguel E; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J; Martin, Nicholas G; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C; Andreassen, Ole A; Apostolova, Liana G; Appel, Katja; Armstrong, Nicola J; Aribisala, Benjamin; Bastin, Mark E; Bauer, Michael; Bearden, Carrie E; Bergmann, Orjan; Binder, Elisabeth B; Blangero, John; Bockholt, Henry J; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I; Booth, Tom; Bowman, Ian J; Bralten, Janita; Brouwer, Rachel M; Brunner, Han G; Brohawn, David G; Buckner, Randy L; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R; Calhoun, Vince D; Cannon, Dara M; Cantor, Rita M; Carless, Melanie A; Caseras, Xavier; Cavalleri, Gianpiero L; Chakravarty, M Mallar; Chang, Kiki D; Ching, Christopher R K; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Deary, Ian J; de Geus, Eco J C; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E; Foroud, Tatiana; Fox, Peter T; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C; Godlewska, Beata; Goldstein, Rita Z; Gollub, Randy L; Grabe, Hans J; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E; Gur, Ruben C; Göring, Harald H H; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B; Hall, Jeremy; Hardy, John; Hartman, Catharina A; Hass, Johanna; Hatton, Sean N; Haukvik, Unn K; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J; Hollinshead, Marisa; Holmes, Avram J; Homuth, Georg; Hoogman, Martine; Hong, L Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Hwang, Kristy S; Jack, Clifford R; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G; Kahn, René S; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B J; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A; Lauriello, John; Lawrie, Stephen M; Lee, Phil H; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D; Li, Chiang-Shan; Liberg, Benny; Liewald, David C; Liu, Xinmin; Lopez, Lorna M; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W J; Macqueen, Glenda M; Malt, Ulrik F; Mandl, René; Manoach, Dara S; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Moses, Eric K; Mueller, Bryon A; Muñoz Maniega, Susana; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E; Nilsson, Lars-Göran; Nugent, Allison C; Nyberg, Lars; Olvera, Rene L; Oosterlaan, Jaap; Ophoff, Roel A; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D; Penninx, Brenda W; Peterson, Charles P; Pfennig, Andrea; Phillips, Mary; Pike, G Bruce; Poline, Jean-Baptiste; Potkin, Steven G; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L; Roffman, Joshua L; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J; Royle, Natalie A; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S; Salami, Alireza; Satterthwaite, Theodore D; Savitz, Jonathan; Saykin, Andrew J; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G; Schork, Andrew J; Schulz, S Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M; Simmons, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soares, Jair C; Sponheim, Scott R; Sprooten, Emma; Starr, John M; Steen, Vidar M; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G; Teumer, Alexander; Toga, Arthur W; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J; van Eijk, Kristel; van Erp, Theo G M; van Haren, Neeltje E M; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C; Veltman, Dick J; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M; Weale, Michael E; Weiner, Michael W; Wen, Wei; Westlye, Lars T; Whalley, Heather C; Whelan, Christopher D; White, Tonya; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P; Thalamuthu, Anbupalam; Schofield, Peter R; Freimer, Nelson B; Lawrence, Natalia S; Drevets, Wayne

    2014-06-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.

  17. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study.

    Science.gov (United States)

    Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J

    2017-01-01

    Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.

  18. Dizziness in a community hospital: central neurological causes, clinical predictors, and diagnostic yield and cost of neuroimaging studies.

    Science.gov (United States)

    Ammar, Hussam; Govindu, Rukma; Fouda, Ragai; Zohdy, Wael; Supsupin, Emilio

    2017-03-01

    Objectives : Neuroimaging is contributing to the rising costs of dizziness evaluation. This study examined the rate of central neurological causes of dizziness, relevant clinical predictors, and the costs and diagnostic yields of neuroimaging in dizziness assessment. Methods : We retrospectively reviewed the records of 521 adult patients who visited the hospital during a 12-month period with dizziness as the chief complaint. Clinical findings were analyzed using Fisher's exact test to determine how they correlated with central neurological causes of dizziness identified by neuroimaging. Costs and diagnostic yields of neuroimaging were calculated. Results : Of the 521 patients, 1.5% had dizziness produced by central neurological causes. Gait abnormalities, limb ataxia, diabetes mellitus, and the existence of multiple neurological findings predicted central causes. Cases were associated with gait abnormalities, limb ataxia, diabetes mellitus, and the existence of multiple neurological findings . Brain computed tomography (CT) and magnetic resonance imaging (MRI) were performed in 42% and 9.5% of the examined cases, respectively, with diagnostic yields of 3.6% and 12%, respectively. Nine cases of dizziness were diagnosed from 269 brain scans, costing $607 914. Conclusion : Clinical evaluation can predict the presence of central neurological causes of dizziness, whereas neuroimaging is a costly and low-yield approach. Guidelines are needed for physicians, regarding the appropriateness of ordering neuroimaging studies. Abbreviations : OR: odds ratio; CI: confidence interval; ED: emergency department; CT: computed tomography; MRI: magnetic resonance imaging; HINTS: Head impulse, Nystagmus, Test of skew.

  19. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies.

    Science.gov (United States)

    Torta, D M; Legrain, V; Mouraux, A; Valentini, E

    2017-04-01

    Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional neuroimaging studies of episodic memory. Functional dissociation in the medial temporal lobe structures

    International Nuclear Information System (INIS)

    Tsukiura, Takashi

    2008-01-01

    Previous functional neuroimaging studies have demonstrated the critical role of the medial temporal lobe (MTL) regions in the encoding and retrieval of episodic memory. It has also been shown that an emotional factor in human memory enhances episodic encoding and retrieval. However, there is little evidence regarding the specific contribution of each MTL region to the relational, contextual, and emotional processes of episodic memory. The goal of this review article is to identify differential activation patterns of the processes between MTL regions. Results from functional neuroimaging studies of episodic memory show that the hippocampus is involved in encoding the relation between memory items, whereas the entorhinal and perirhinal cortices (anterior parahippocampal gyrus) contribute to the encoding of a single item. Additionally, the parahippocampal cortex (posterior parahippocampal gyrus) is selectively activated during the processing of contextual information of episodic memory. A similar pattern of functional dissociation is found in episodic memory retrieval. Functional neuroimaging has also shown that emotional information of episodic memory enhances amygdala-MTL correlations and that this enhancement is observed during both the encoding and retrieval of emotional memories. These findings from pervious neuroimaging studies suggest that different MTL regions could organize memory for personally experienced episodes via the 'relation' and 'context' factors of episodic memory, and that the emotional factor of episodes could modulate the functional organization in the MTL regions. (author)

  1. Computational Pathology

    Science.gov (United States)

    Louis, David N.; Feldman, Michael; Carter, Alexis B.; Dighe, Anand S.; Pfeifer, John D.; Bry, Lynn; Almeida, Jonas S.; Saltz, Joel; Braun, Jonathan; Tomaszewski, John E.; Gilbertson, John R.; Sinard, John H.; Gerber, Georg K.; Galli, Stephen J.; Golden, Jeffrey A.; Becich, Michael J.

    2016-01-01

    Context We define the scope and needs within the new discipline of computational pathology, a discipline critical to the future of both the practice of pathology and, more broadly, medical practice in general. Objective To define the scope and needs of computational pathology. Data Sources A meeting was convened in Boston, Massachusetts, in July 2014 prior to the annual Association of Pathology Chairs meeting, and it was attended by a variety of pathologists, including individuals highly invested in pathology informatics as well as chairs of pathology departments. Conclusions The meeting made recommendations to promote computational pathology, including clearly defining the field and articulating its value propositions; asserting that the value propositions for health care systems must include means to incorporate robust computational approaches to implement data-driven methods that aid in guiding individual and population health care; leveraging computational pathology as a center for data interpretation in modern health care systems; stating that realizing the value proposition will require working with institutional administrations, other departments, and pathology colleagues; declaring that a robust pipeline should be fostered that trains and develops future computational pathologists, for those with both pathology and non-pathology backgrounds; and deciding that computational pathology should serve as a hub for data-related research in health care systems. The dissemination of these recommendations to pathology and bioinformatics departments should help facilitate the development of computational pathology. PMID:26098131

  2. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

    Directory of Open Access Journals (Sweden)

    Simonetti, Patricia

    2015-03-01

    Full Text Available Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system. Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus. Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area. Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

  3. Neuroimaging markers associated with maintenance of optimal memory performance in late-life.

    Science.gov (United States)

    Dekhtyar, Maria; Papp, Kathryn V; Buckley, Rachel; Jacobs, Heidi I L; Schultz, Aaron P; Johnson, Keith A; Sperling, Reisa A; Rentz, Dorene M

    2017-06-01

    Age-related memory decline has been well-documented; however, some individuals reach their 8th-10th decade while maintaining strong memory performance. To determine which demographic and biomarker factors differentiated top memory performers (aged 75+, top 20% for memory) from their peers and whether top memory performance was maintained over 3 years. Clinically normal adults (n=125, CDR=0; age: 79.5±3.57 years) from the Harvard Aging Brain Study underwent cognitive testing and neuroimaging (amyloid PET, MRI) at baseline and 3-year follow-up. Participants were grouped into Optimal (n=25) vs. Typical (n=100) performers using performance on 3 challenging memory measures. Non-parametric tests were used to compare groups. There were no differences in age, sex, or education between Optimal vs. Typical performers. The Optimal group performed better in Processing Speed (p=0.016) and Executive Functioning (pmemory performance while 7 declined. Non-Maintainers additionally declined in Executive Functioning but not Processing Speed. Longitudinally, there were no hippocampal volume differences between Maintainers and Non-Maintainers, however Non-Maintainers exhibited higher amyloid burden at baseline in contrast with Maintainers (p=0.008). Excellent memory performance in late life does not guarantee protection against cognitive decline. Those who maintain an optimal memory into the 8th and 9th decades may have lower levels of AD pathology. Copyright © 2017. Published by Elsevier Ltd.

  4. Making MR Imaging Child's Play - Pediatric Neuroimaging Protocol, Guidelines and Procedure

    Science.gov (United States)

    Raschle, Nora M.; Lee, Michelle; Buechler, Roman; Christodoulou, Joanna A.; Chang, Maria; Vakil, Monica; Stering, Patrice L.; Gaab, Nadine

    2009-01-01

    Within the last decade there has been an increase in the use of structural and functional magnetic resonance imaging (fMRI) to investigate the neural basis of human perception, cognition and behavior 1, 2. Moreover, this non-invasive imaging method has grown into a tool for clinicians and researchers to explore typical and atypical brain development. Although advances in neuroimaging tools and techniques are apparent, (f)MRI in young pediatric populations remains relatively infrequent 2. Practical as well as technical challenges when imaging children present clinicians and research teams with a unique set of problems 3, 2. To name just a few, the child participants are challenged by a need for motivation, alertness and cooperation. Anxiety may be an additional factor to be addressed. Researchers or clinicians need to consider time constraints, movement restriction, scanner background noise and unfamiliarity with the MR scanner environment2,4-10. A progressive use of functional and structural neuroimaging in younger age groups, however, could further add to our understanding of brain development. As an example, several research groups are currently working towards early detection of developmental disorders, potentially even before children present associated behavioral characteristics e.g.11. Various strategies and techniques have been reported as a means to ensure comfort and cooperation of young children during neuroimaging sessions. Play therapy 12, behavioral approaches 13, 14,15, 16-18 and simulation 19, the use of mock scanner areas 20,21, basic relaxation 22 and a combination of these techniques 23 have all been shown to improve the participant's compliance and thus MRI data quality. Even more importantly, these strategies have proven to increase the comfort of families and children involved 12. One of the main advances of such techniques for the clinical practice is the possibility of avoiding sedation or general anesthesia (GA) as a way to manage children

  5. Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls

    Science.gov (United States)

    Arbabshirani, Mohammad R.; Plis, Sergey; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need

  6. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Directory of Open Access Journals (Sweden)

    Liana C L Portugal

    Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model

  7. Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Debesh Jha

    2017-01-01

    Full Text Available Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT for feature extraction, probabilistic principal component analysis (PPCA for dimensionality reduction, and a random subspace ensemble (RSE classifier along with the K-nearest neighbors (KNN algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV, the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.

  8. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    International Nuclear Information System (INIS)

    Li, Tie-Qiang; Wahlund, Lars-Olof

    2011-01-01

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  9. Neonatal Cerebral Sinovenous Thrombosis : Neuroimaging and Long-term Follow-up

    NARCIS (Netherlands)

    Kersbergen, Karina J.; Groenendaal, Floris; Benders, Manon J. N. L.; de Vries, Linda S.

    Neonates are known to have a higher risk of cerebral sinovenous thrombosis than children of other age groups. The exact incidence in neonates remains unknown and is likely to be underestimated, as clinical presentation is nonspecific and diagnosis can only be made when dedicated neuroimaging

  10. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard

    2011-01-01

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus on v...

  11. Identifying Predictors, Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches

    Science.gov (United States)

    Phillips, Mary L.; Chase, Henry W.; Sheline, Yvette I.; Etkin, Amit; Almeida, Jorge R.C.; Deckersbach, Thilo; Trivedi, Madhukar H.

    2015-01-01

    Objective Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. Method In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. Results The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Conclusions Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes. PMID:25640931

  12. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches.

    Science.gov (United States)

    Phillips, Mary L; Chase, Henry W; Sheline, Yvette I; Etkin, Amit; Almeida, Jorge R C; Deckersbach, Thilo; Trivedi, Madhukar H

    2015-02-01

    Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes.

  13. Neuroimaging of neurotic disorders

    International Nuclear Information System (INIS)

    Okubo, Yoshiro; Yahata, Noriaki

    2006-01-01

    Neuroimaging has been involved in recent biological approaches with evidence for neurotic disorders in place of diagnostic criteria on Freud theory hitherto. This review describes the present states of brain imaging in those disorders. Emotion has such three bases for environmental stimuli as recognition/evaluation of causable factors, manifestation, and its control, each of which occurs in various different regions connected by neuro-net work in the brain. The disorders are regarded as abnormality of the circuit that can be imaged. Documented and discussed are the actual regions imaged by MRI and PET in panic disorder, social phobia, phobias to specified things, posttraumatic stress disorder and obsessive-compulsive disorder. The approach is thought important for elucidating not only the pathogenesis of the disorders but also the human emotional functions and mechanism of the mind, which may lead to a better treatment of the disorders in future. (T.I)

  14. Curriculum Guidelines for Pathology and Oral Pathology.

    Science.gov (United States)

    Journal of Dental Education, 1985

    1985-01-01

    Guidelines for dental school pathology courses describe the interrelationships of general, systemic, and oral pathology; primary educational goals; prerequisites; a core curriculum outline and behavioral objectives for each type of pathology. Notes on sequencing, faculty, facilities, and occupational hazards are included. (MSE)

  15. Robust skull stripping using multiple MR image contrasts insensitive to pathology.

    Science.gov (United States)

    Roy, Snehashis; Butman, John A; Pham, Dzung L

    2017-02-01

    Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T 1 -w MR images of normal brains, especially because high resolution T 1 -w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T 1 -w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR), 2 where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T 1 -w, T 2 -w were used to skull-strip these datasets. We show significant improvement in stripping

  16. Functional neuroimaging of sleep disorders

    International Nuclear Information System (INIS)

    Qiu Chun; Zhao Jun; Guan Yihui

    2013-01-01

    Sleep disorders may affect the health and normal life of human badly. However, the pathophysiology underlying adult sleep disorders is still unclear. Functional neuroimaging can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. This paper reviews functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). Metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging) are mainly reviewed, as well as neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy). Meanwhile, here are some brief introduction of different kinds of sleep disorders. (authors)

  17. A systematic review of temporal discounting in eating disorders and obesity:behavioural and neuroimaging findings

    OpenAIRE

    McClelland, Jessica; Dalton, Bethan; Kekic, Maria; Bartholdy, Savani; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    OBJECTIVE: Eating Disorders (ED) and obesity are suggested to involve a spectrum of self-regulatory control difficulties. Temporal discounting (TD) tasks have been used to explore this idea. This systematic review examines behavioural and neuroimaging TD data in ED and obesity.METHOD: Using PRISMA guidelines, we reviewed relevant articles in MEDLINE, PsycINFO and Embase from inception until 17th August 2016. Studies that reported behavioural differences in TD and/or TD neuroimaging data in ED...

  18. Salvinorin A, a kappa-opioid receptor (KOP-r agonist hallucinogen: Pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Eduardo eButelman

    2015-09-01

    Full Text Available Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins in higher functions, including cognition, and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A- containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and drug reinforcers (including drugs of abuse. KOPr activation (including by salvinorin A can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike all other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects, with a reduced burden of undesirable effects associated with salvinorin A.

  19. Neuroimaging of amblyopia and binocular vision: a review.

    Science.gov (United States)

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  20. Reproducibility of neuroimaging analyses across operating systems.

    Science.gov (United States)

    Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.

  1. Imaging stress effects on memory: a review of neuroimaging studies

    NARCIS (Netherlands)

    van Stegeren, A.H.

    2009-01-01

    Objective: To review and give an overview of neuroimaging studies that look at the role of stress (hormones) on memory. Method: An overview will be given of imaging studies that looked at the role of stress (hormones) on memory. Stress is here defined as the acute provocation of the sympathetic

  2. Do Older Adults Need Sleep? A Review of Neuroimaging, Sleep, and Aging Studies.

    Science.gov (United States)

    Scullin, Michael K

    2017-09-01

    Sleep habits, sleep physiology, and sleep disorders change with increasing age. However, there is a longstanding debate regarding whether older adults need sleep to maintain health and daily functioning (reduced-sleep-need view). An alternative possibility is that all older adults need sleep, but that many older adults have lost the ability to obtain restorative sleep (reduced-sleep-ability view). Prior research using behavioral and polysomnography outcomes has not definitively disentangled the reduced-sleep-need and reduced-sleep-ability views. Therefore, this review examines the neuroimaging literature to determine whether age-related changes in sleep cause-or are caused by-age-related changes in brain structure, function, and pathology. In middle-aged and older adults, poorer sleep quality, greater nighttime hypoxia, and shorter sleep duration related to cortical thinning in frontal regions implicated in slow wave generation, in frontoparietal networks implicated in cognitive control, and in hippocampal regions implicated in memory consolidation. Furthermore, poor sleep quality was associated with higher amyloid burden and decreased connectivity in the default mode network, a network that is disrupted in the pathway to Alzheimer's disease. All adults need sleep, but cortical thinning and amyloidal deposition with advancing age may weaken the brain's ability to produce restorative sleep. Therefore, sleep in older adults may not always support identical functions for physical, mental, and cognitive health as in young adults.

  3. The diagnostic yield of neuroimaging in sixth nerve palsy - Sankara Nethralaya Abducens Palsy Study (SNAPS: Report 1

    Directory of Open Access Journals (Sweden)

    Akshay Gopinathan Nair

    2014-01-01

    Full Text Available Aims: The aim was to assess the etiology of sixth nerve palsy and on the basis of our data, to formulate a diagnostic algorithm for the management in sixth nerve palsy. Design: Retrospective chart review. Results: Of the 104 neurologically isolated cases, 9 cases were attributable to trauma, and 95 (86.36% cases were classified as nontraumatic, neurologically isolated cases. Of the 95 nontraumatic, isolated cases of sixth nerve palsy, 52 cases were associated with vasculopathic risk factors, namely diabetes and hypertension and were classified as vasculopathic sixth nerve palsy (54.7%, and those with a history of sixth nerve palsy from birth (6 cases were classified as congenital sixth nerve palsy (6.3%. Of the rest, neuroimaging alone yielded a cause in 18 of the 37 cases (48.64%. Of the other 19 cases where neuroimaging did not yield a cause, 6 cases were attributed to preceding history of infection (3 upper respiratory tract infection and 3 viral illnesses, 2 cases of sixth nerve palsy were found to be a false localizing sign in idiopathic intracranial hypertension and in 11 cases, the cause was undetermined. In these idiopathic cases of isolated sixth nerve palsy, neuroimaging yielded no positive findings. Conclusions: In the absence of risk factors, a suggestive history, or positive laboratory and clinical findings, neuroimaging can serve as a useful diagnostic tool in identifying the exact cause of sixth nerve palsy. Furthermore, we recommend an algorithm to assess the need for neuroimaging in sixth nerve palsy.

  4. EFNS Task Force on Teaching of Neuroimaging in Neurology Curricula in Europe : present status and recommendations for the future

    NARCIS (Netherlands)

    Pantano, P; Chollet, F; Paulson, O; von Kummer, R; Laihinen, A; Leenders, K; Yancheva, S

    A Task Force on 'Teaching of Neuroimaging in Neurology Curricula in Europe' was appointed in September 1998 by the education committee of the European Federation of Neurological Societies (EFNS) in order to: (1) examine the present status of teaching of neuroimaging in the training of neurology in

  5. EFNS Task Force on Teaching of Neuroimaging in Neurology Curricula in Europe : present status and recommendations for the future

    NARCIS (Netherlands)

    Pantano, P; Chollet, F; Paulson, O; von Kummer, R; Laihinen, A; Leenders, K; Yancheva, S

    2001-01-01

    A Task Force on 'Teaching of Neuroimaging in Neurology Curricula in Europe' was appointed in September 1998 by the education committee of the European Federation of Neurological Societies (EFNS) in order to: (1) examine the present status of teaching of neuroimaging in the training of neurology in

  6. Functional neuroimaging of Alzheimer's disease and other dementias

    International Nuclear Information System (INIS)

    Wang Ruimin

    2001-01-01

    Dementing illnesses comprise Alzheimer's disease (AD), Pick's disease, Multi-infarct dementia (MID) and other neurological disorders. These diseases have different clinical characters respectively. Neuropsychological examinations can help to diagnose and differential diagnose dementias. The development of neuroimaging dementias is more and more rapid. 18 F-FDG PET method shows neo-cortical hypometabolism occurring in the biparietal-temporal lobes and left-right asymmetry of AD patients in the early stage. It can also differential diagnose Ad from other dementias

  7. Pathology Gross Photography: The Beginning of Digital Pathology.

    Science.gov (United States)

    Rampy, B Alan; Glassy, Eric F

    2015-06-01

    The underutilized practice of photographing anatomic pathology specimens from surgical pathology and autopsies is an invaluable benefit to patients, clinicians, pathologists, and students. Photographic documentation of clinical specimens is essential for the effective practice of pathology. When considering what specimens to photograph, all grossly evident pathology, absent yet expected pathologic features, and gross-only specimens should be thoroughly documented. Specimen preparation prior to photography includes proper lighting and background, wiping surfaces of blood, removing material such as tubes or bandages, orienting the specimen in a logical fashion, framing the specimen to fill the screen, positioning of probes, and using the right-sized scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neuroimaging in dementia and Alzheimer's disease: Current protocols and practice in the Republic of Ireland

    International Nuclear Information System (INIS)

    Kelly, I.; Butler, M.-L.; Ciblis, A.; McNulty, J.P.

    2016-01-01

    Introduction: Neuroimaging plays an essential supportive role in the diagnosis of dementia, assisting in establishing the dementia subtype(s). This has significant value in both treatment and care decisions and has important implications for prognosis. This study aims to explore the development and nature of neuroimaging protocols currently used in the assessment of dementia and Alzheimer's disease (AD). Methods: An online questionnaire was designed and distributed to lead radiography personnel working in computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) departments (n = 94) in both hospital-based and out-patient imaging centres in the Republic of Ireland. Results: Response rates for each modality ranged from 42 to 44%. CT, MRI, and PET were used to specifically diagnose dementia or AD by 43%, 40% and 50% of responding centres respectively. Of these, dementia-specific neuroimaging protocols were utilised in 33%, 50% and 100% of CT, MRI and PET centres respectively, with the remainder using either standard or other non-specific protocols. Both radiologists and clinical specialist radiographers participated in the development of the majority of protocols. The Royal College of Radiologists (RCR) guidelines were most commonly referenced as informing protocol development, however, none of the MRI respondents were able to identify any guidelines used to inform MR protocol development. Conclusion: Currently there is no consensus in Ireland on optimal dementia/AD neuroimaging protocols, particularly for PET and MRI. Similarly the use of validated and published guidelines to inform protocols is not universal. - Highlights: • We examined the nature of neuroimaging protocols for dementia and Alzheimer's disease in Ireland. • Dementia or Alzheimer's disease-specific protocols were used by between 33 and 100% of centres depending on modality. • Stated dementia-specific protocols were identical for CT whereas

  9. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives.

    Science.gov (United States)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa; Thielscher, Axel; Siebner, Hartwig Roman

    2016-10-15

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation and "offline" NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework, emphasizing principal strategies and highlighting promising future directions to exploit the benefits of combining NTBS with neuroimaging or electrophysiology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The utility of neuroimaging in the management of dementia

    OpenAIRE

    Uduak E Williams; Ekanem E Philip Ephraim; Sidney K Oparah

    2015-01-01

    Dementia is a syndrome of progressive dysfunction of two or more cognitive domains associated with impairment of activities of daily living. An understanding of the pathophysiology of dementia and its early diagnosis is important in the pursuit of possible disease modifying therapy for dementia. Neuroimaging has greatly transformed this field of research as its function has changed from a mere tool for diagnosing treatable causes of demen...

  11. Pathology Assistant (C - Gamechanger Of Pathology Diagnostic

    Directory of Open Access Journals (Sweden)

    Asel Kudaybergenova

    2016-06-01

    When the competition ended, we received many favor- able reviews and we decided to start another project a little bit similar to the competition. Every month we show three interesting and difficult to diagnose cases provided by the leading Russian pathologists. The participants can look through the clinical data and digitized histological slides, and then discuss what they see among their professional society. There are 400  specialists  from  post  USSR countries.  Moreover, we get a few proposal of partnership to start a similar project in EU. And the last product in line is Pathology Assistant. It is a game changer. Pathology Assistant is a Digital Pathology©technology driven application for pathology diagnostics, tool to innovate pathology diagnostics in more simple, proven by analytical algo- rithm, automatically delivering anticipated support way. The service provides vast and structured database of validated cases, intuitive interface, fast and convenient system of analytical search. Pathology Assistant will streamline and simplify pathologist’s way to the right decision. Pathologists from Memorial Sloan Catering and biggest EU labs are working on preparing the con- tent for the project.  

  12. DFBIdb: a software package for neuroimaging data management.

    Science.gov (United States)

    Adamson, Christopher L; Wood, Amanda G

    2010-12-01

    We present DFBIdb: a suite of tools for efficient management of neuroimaging project data. Specifically, DFBIdb was designed to allow users to quickly perform routine management tasks of sorting, archiving, exploring, exporting and organising raw data. DFBIdb was implemented as a collection of Python scripts that maintain a project-based, centralised database that is based on the XCEDE 2 data model. Project data is imported from a filesystem hierarchy of raw files, which is an often-used convention of imaging devices, using a single script that catalogues meta-data into a modified XCEDE 2 data model. During the import process data are reversibly anonymised, archived and compressed. The import script was designed to support multiple file formats and features an extensible framework that can be adapted to novel file formats. An ACL-based security model, with accompanying graphical management tools, was implemented to provide a straightforward method to restrict access to raw and meta-data. Graphical user interfaces are provided for data exploration. DFBIdb includes facilities to export, convert and organise customisable subsets of project data according to user-specified criteria. The command-line interface was implemented to allow users to incorporate database commands into more complex scripts that may be utilised to automate data management tasks. By using DFBIdb, neuroimaging laboratories will be able to perform routine data management tasks in an efficient manner.

  13. Neuroimaging of amblyopia and binocular vision: a review

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-08-01

    Full Text Available Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia. Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarise the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging (fMRI. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence show that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterise the brain response changes associated with these treatments and help devise them.

  14. Approach to ''Mind'' using functional neuroimaging

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2006-01-01

    This review mainly describes authors' recent investigations concerning neuroimages approaching to even human ''mind'' using techniques of PET, SPECT and functional MRI (fMRI). Progress of such studies greatly owes to the development of image statistics of the brain like statistical parametric mapping (www.fil.ion.ucl.ac.uk/spm/), and brain standards (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html, and ric.uthscsa.edu/projects/talairach daemon.html). The author discusses and presents images in cases of hallucinations (SPECT and H 2 15 O-PET), autism (SPECT), sleep, depression, and its therapy by transcaranial magnetic stimulation. These studies are expected to contribute to diagnosis and therapy of endogenous neurological disorders. (T.I.)

  15. Approach to ''Mind'' using functional neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi [Saitama Medical School, Hospital, Moroyama, Saitama (Japan)

    2006-05-15

    This review mainly describes authors' recent investigations concerning neuroimages approaching to even human ''mind'' using techniques of PET, SPECT and functional MRI (fMRI). Progress of such studies greatly owes to the development of image statistics of the brain like statistical parametric mapping (www.fil.ion.ucl.ac.uk/spm/), and brain standards (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html, and ric.uthscsa.edu/projects/talairach daemon.html). The author discusses and presents images in cases of hallucinations (SPECT and H{sub 2}{sup 15}O-PET), autism (SPECT), sleep, depression, and its therapy by transcaranial magnetic stimulation. These studies are expected to contribute to diagnosis and therapy of endogenous neurological disorders. (T.I.)

  16. Silent stroke and advance in neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Yasushi; Sadoshima, Seizo; Hasuo, Kanehiro; Saku, Yoshisuke; Fujishima, Masatoshi (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1990-10-01

    Recently, silent strokes are more frequently demonstrated by CT and MRI with the advance of neuroimaging. The infarcted lesions unrelated to the neurological symptoms were detected in 8, 30, 28, 34, 60, 63% of the patients with cerebral infarction in 1977-78, 1982, 1985, 1986, 1987, 1988, respectively, by CT and/or MRI, and the asymptomatic patients with incidentally diagnosed cerebral infarction were amounted to 16% (8 of 51 cases) in 1988. Of the recent 50 patients with cerebral infarction examined by CT and MRI, asymptomatic cerebrovascular lesions were detected in 25 (50%) by CT and in 35 (70%) by MRI. MRI also revealed asymptomatic old hemorrhage in 7 (14%). The clinical significance of silent stroke was discussed. (author).

  17. Neuroimaging Features of San Luis Valley Syndrome

    Directory of Open Access Journals (Sweden)

    Matthew T. Whitehead

    2015-01-01

    Full Text Available A 14-month-old Hispanic female with a history of double-outlet right ventricle and developmental delay in the setting of recombinant chromosome 8 syndrome was referred for neurologic imaging. Brain MR revealed multiple abnormalities primarily affecting midline structures, including commissural dysgenesis, vermian and brainstem hypoplasia/dysplasia, an interhypothalamic adhesion, and an epidermoid between the frontal lobes that enlarged over time. Spine MR demonstrated hypoplastic C1 and C2 posterior elements, scoliosis, and a borderline low conus medullaris position. Presented herein is the first illustration of neuroimaging findings from a patient with San Luis Valley syndrome.

  18. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    Science.gov (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  19. Responsible Reporting : Neuroimaging News in the Age of Responsible Research and Innovation

    NARCIS (Netherlands)

    de Jong, Irja Marije; Arentshorst, Marlous; Broerse, Jacqueline; Kupper, J.F.H.

    Besides offering opportunities in both clinical and non-clinical domains, the application of novel neuroimaging technologies raises pressing dilemmas. 'Responsible Research and Innovation' (RRI) aims to stimulate research and innovation activities that take ethical and social considerations into

  20. A Neuroimaging Web Services Interface as a Cyber Physical System for Medical Imaging and Data Management in Brain Research: Design Study.

    Science.gov (United States)

    Lizarraga, Gabriel; Li, Chunfei; Cabrerizo, Mercedes; Barker, Warren; Loewenstein, David A; Duara, Ranjan; Adjouadi, Malek

    2018-04-26

    Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable

  1. Heterogeneity within autism spectrum disorders: what have we learned from neuroimaging studies?

    Directory of Open Access Journals (Sweden)

    Rhoshel Krystyna Lenroot

    2013-10-01

    Full Text Available Autism spectrum disorders (ASD display significant heterogeneity. Although most neuroimaging studies in ASD have been designed to identify commonalities among affected individuals, rather than differences, some studies have explored variation within ASD. There have been two general types of approaches used for this in the neuroimaging literature to date: comparison of subgroups within ASD, and analyses using dimensional measures to link clinical variation to brain differences. This review focuses on structural and functional magnetic resonance imaging studies that have used these approaches to begin to explore heterogeneity between individuals with ASD. Although this type of data is yet sparse, recognition is growing of the limitations of behaviourally defined categorical diagnoses for understanding neurobiology. Study designs that are more informative regarding the sources of heterogeneity in ASD have the potential to improve our understanding of the neurobiological processes underlying ASD.

  2. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging.

    Science.gov (United States)

    Pitman, R K; Shin, L M; Rauch, S L

    2001-01-01

    Rapidly evolving brain neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) are proving fruitful in exploring the pathogenesis and pathophysiology of posttraumatic stress disorder (PTSD). Structural abnormalities in PTSD found with MRI include nonspecific white matter lesions and decreased hippocampal volume. These abnormalities may reflect pretrauma vulnerability to develop PTSD, or they may be a consequence of traumatic exposure, PTSD, and/or PTSD sequelae. Functional neuroimaging symptom provocation and cognitive activation paradigms using PET measurement of regional cerebral blood flow have revealed greater activation of the amygdala and anterior paralimbic structures (which are known to be involved in processing negative emotions such as fear), greater deactivation of Broca's region (motor speech) and other nonlimbic cortical regions, and failure of activation of the cingulate cortex (which possibly plays an inhibitory role) in response to trauma-related stimuli in individuals with PTSD. Functional MRI research has shown the amygdala to be hyperresponsive to fear-related stimuli in this disorder. Research with PET suggests that cortical, notably hippocampal, metabolism is suppressed to a greater extent by pharmacologic stimulation of the noradrenergic system in persons with PTSD. The growth of knowledge concerning the anatomical and neurochemical basis of this important mental disorder will hopefully eventually lead to rational psychological and pharmacologic treatments.

  3. Data mining a functional neuroimaging database for functional segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  4. The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Boen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Hartman, Catharina A.; Hoekstra, Pieter J.; Penninx, Brenda W.; Schmaal, Lianne; van Tol, Marie-Jose

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  5. Data mining a functional neuroimaging database for functional|segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  6. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    Thompson, Paul M.; Stein, Jason L.; Medland, Sarah E.; Hibar, Derrek P.; Vasquez, Alejandro Arias; Renteria, Miguel E.; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J.; Martin, Nicholas G.; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C.; Andreassen, Ole A.; Apostolova, Liana G.; Appel, Katja; Armstrong, Nicola J.; Aribisala, Benjamin; Bastin, Mark E.; Bauer, Michael; Bearden, Carrie E.; Bergmann, Orjan; Binder, Elisabeth B.; Blangero, John; Bockholt, Henry J.; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I.; Booth, Tom; Bowman, Ian J.; Bralten, Janita; Brouwer, Rachel M.; Brunner, Han G.; Brohawn, David G.; Buckner, Randy L.; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R.; Calhoun, Vince D.; Cannon, Dara M.; Cantor, Rita M.; Carless, Melanie A.; Caseras, Xavier; Cavalleri, Gianpiero L.; Chakravarty, M. Mallar; Chang, Kiki D.; Ching, Christopher R. K.; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P.; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Deary, Ian J.; de Geus, Eco J. C.; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I.; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D.; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E.; Foroud, Tatiana; Fox, Peter T.; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C.; Godlewska, Beata; Goldstein, Rita Z.; Gollub, Randy L.; Grabe, Hans J.; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E.; Gur, Ruben C.; Göring, Harald H. H.; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B.; Hall, Jeremy; Hardy, John; Hartman, Catharina A.; Hass, Johanna; Hatton, Sean N.; Haukvik, Unn K.; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B.; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J.; Hollinshead, Marisa; Holmes, Avram J.; Homuth, Georg; Hoogman, Martine; Hong, L. Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E.; Hwang, Kristy S.; Jack, Clifford R.; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G.; Kahn, René S.; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B. J.; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A.; Lauriello, John; Lawrie, Stephen M.; Lee, Phil H.; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D.; Li, Chiang-Shan; Liberg, Benny; Liewald, David C.; Liu, Xinmin; Lopez, Lorna M.; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W. J.; Macqueen, Glenda M.; Malt, Ulrik F.; Mandl, René; Manoach, Dara S.; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Moses, Eric K.; Mueller, Bryon A.; Muñoz Maniega, Susana; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E.; Nilsson, Lars-Göran; Nugent, Allison C.; Nyberg, Lars; Olvera, Rene L.; Oosterlaan, Jaap; Ophoff, Roel A.; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D.; Penninx, Brenda W.; Peterson, Charles P.; Pfennig, Andrea; Phillips, Mary; Pike, G. Bruce; Poline, Jean-Baptiste; Potkin, Steven G.; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L.; Roffman, Joshua L.; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J.; Royle, Natalie A.; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S.; Salami, Alireza; Satterthwaite, Theodore D.; Savitz, Jonathan; Saykin, Andrew J.; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G.; Schork, Andrew J.; Schulz, S. Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M.; Simmons, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soares, Jair C.; Sponheim, Scott R.; Sprooten, Emma; Starr, John M.; Steen, Vidar M.; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G.; Teumer, Alexander; Toga, Arthur W.; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; van den Heuvel, Martijn; van der Wee, Nic J.; van Eijk, Kristel; van Erp, Theo G. M.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C.; Veltman, Dick J.; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M.; Weale, Michael E.; Weiner, Michael W.; Wen, Wei; Westlye, Lars T.; Whalley, Heather C.; Whelan, Christopher D.; White, Tonya; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P.; Thalamuthu, Anbupalam; Schofield, Peter R.; Freimer, Nelson B.; Lawrence, Natalia S.; Drevets, Wayne

    2014-01-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience,

  7. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data

    NARCIS (Netherlands)

    P.M. Thompson (Paul); J.L. Stein; S.E. Medland (Sarah Elizabeth); D.P. Hibar (Derrek); A.A. Vásquez (Arias); M.E. Rentería (Miguel); R. Toro (Roberto); N. Jahanshad (Neda); G. Schumann (Gunter); B. Franke (Barbara); M.J. Wright (Margaret); N.G. Martin (Nicholas); I. Agartz (Ingrid); M. Alda (Martin); S. Alhusaini (Saud); L. Almasy (Laura); K. Alpert (Kathryn); N.C. Andreasen; O.A. Andreassen (Ole); L.G. Apostolova (Liana); K. Appel (Katja); N.J. Armstrong (Nicola); B. Aribisala (Benjamin); M.E. Bastin (Mark); M. Bauer (Michael); C.E. Bearden (Carrie); Ø. Bergmann (Ørjan); E.B. Binder (Elisabeth); J. Blangero (John); H.J. Bockholt; E. Bøen (Erlend); M. Bois (Monique); D.I. Boomsma (Dorret); T. Booth (Tom); I.J. Bowman (Ian); L.B.C. Bralten (Linda); R.M. Brouwer (Rachel); H.G. Brunner; D.G. Brohawn (David); M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); J. Bustillo; V.D. Calhoun (Vince); D.M. Cannon (Dara); R.M. Cantor; M.A. Carless (Melanie); X. Caseras (Xavier); G. Cavalleri (Gianpiero); M.M. Chakravarty (M. Mallar); K.D. Chang (Kiki); C.R.K. Ching (Christopher); A. Christoforou (Andrea); S. Cichon (Sven); V.P. Clark; P. Conrod (Patricia); D. Coppola (Domenico); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); I.J. Deary (Ian); E.J.C. de Geus (Eco); A. den Braber (Anouk); G. Delvecchio (Giuseppe); C. Depondt (Chantal); L. de Haan (Lieuwe); G.I. de Zubicaray (Greig); D. Dima (Danai); R. Dimitrova (Rali); S. Djurovic (Srdjan); H. Dong (Hongwei); D.J. Donohoe (Dennis); A. Duggirala (Aparna); M.D. Dyer (Matthew); S.M. Ehrlich (Stefan); C.J. Ekman (Carl Johan); T. Elvsåshagen (Torbjørn); L. Emsell (Louise); S. Erk; T. Espeseth (Thomas); J. Fagerness (Jesen); S. Fears (Scott); I. Fedko (Iryna); G. Fernandez (Guillén); S.E. Fisher (Simon); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); S. Frangou (Sophia); E.M. Frey (Eva Maria); T. Frodl (Thomas); V. Frouin (Vincent); H. Garavan (Hugh); S. Giddaluru (Sudheer); D.C. Glahn (David); B. Godlewska (Beata); R.Z. Goldstein (Rita); R.L. Gollub (Randy); H.J. Grabe (Hans Jörgen); O. Grimm (Oliver); O. Gruber (Oliver); T. Guadalupe (Tulio); R.E. Gur (Raquel); R.C. Gur (Ruben); H.H.H. Göring (Harald); S. Hagenaars (Saskia); T. Hajek (Tomas); G.B. Hall (Garry); J. Hall (Jeremy); J. Hardy (John); C.A. Hartman (Catharina); J. Hass (Johanna); W. Hatton; U.K. Haukvik (Unn); K. Hegenscheid (Katrin); J. Heinz (Judith); I.B. Hickie (Ian); B.C. Ho (Beng ); D. Hoehn (David); P.J. Hoekstra (Pieter); M. Hollinshead (Marisa); A.J. Holmes (Avram); G. Homuth (Georg); M. Hoogman (Martine); L.E. Hong (L.Elliot); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); H.E. Hulshoff Pol (Hilleke); K.S. Hwang (Kristy); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); C. Johnston; E.G. Jönsson (Erik); R.S. Kahn (René); D. Kasperaviciute (Dalia); S. Kelly (Steve); S. Kim (Shinseog); P. Kochunov (Peter); L. Koenders (Laura); B. Krämer (Bernd); J.B.J. Kwok (John); J. Lagopoulos (Jim); G. Laje (Gonzalo); M. Landén (Mikael); B.A. Landman (Bennett); J. Lauriello; S. Lawrie (Stephen); P.H. Lee (Phil); S. Le Hellard (Stephanie); H. Lemaître (Herve); C.D. Leonardo (Cassandra); C.-S. Li (Chiang-shan); B. Liberg (Benny); D.C. Liewald (David C.); X. Liu (Xinmin); L.M. Lopez (Lorna); E. Loth (Eva); A. Lourdusamy (Anbarasu); M. Luciano (Michelle); F. MacCiardi (Fabio); M.W.J. Machielsen (Marise); G.M. MacQueen (Glenda); U.F. Malt (Ulrik); R. Mandl (René); D.S. Manoach (Dara); J.-L. Martinot (Jean-Luc); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); M. Mattingsdal (Morten); A. Meyer-Lindenberg; C. McDonald (Colm); A.M. McIntosh (Andrew); F.J. Mcmahon (Francis J); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); Y. Milaneschi (Yuri); S. Mohnke (Sebastian); G.W. Montgomery (Grant); D.W. Morris (Derek W); E.K. Moses (Eric); B.A. Mueller (Bryon ); S. Muñoz Maniega (Susana); T.W. Mühleisen (Thomas); B. Müller-Myhsok (Bertram); B. Mwangi (Benson); M. Nauck (Matthias); K. Nho (Kwangsik); T.E. Nichols (Thomas); L.G. Nilsson; A.C. Nugent (Allison); L. Nyberg (Lisa); R.L. Olvera (Rene); J. Oosterlaan (Jaap); R.A. Ophoff (Roel); M. Pandolfo (Massimo); M. Papalampropoulou-Tsiridou (Melina); M. Papmeyer (Martina); T. Paus (Tomas); Z. Pausova (Zdenka); G. Pearlson (Godfrey); B.W.J.H. Penninx (Brenda); C.P. Peterson (Charles); A. Pfennig (Andrea); M. Phillips (Mary); G.B. Pike (G Bruce); J.B. Poline (Jean Baptiste); S.G. Potkin (Steven); B. Pütz (Benno); A. Ramasamy (Adaikalavan); J. Rasmussen (Jerod); M. Rietschel (Marcella); M. Rijpkema (Mark); S.L. Risacher (Shannon); J.L. Roffman (Joshua); R. Roiz-Santiañez (Roberto); N. Romanczuk-Seiferth (Nina); E.J. Rose (Emma); N.A. Royle (Natalie); D. Rujescu (Dan); M. Ryten (Mina); P.S. Sachdev (Perminder); A. Salami (Alireza); T.D. Satterthwaite (Theodore); J. Savitz (Jonathan); A.J. Saykin (Andrew); C. Scanlon (Cathy); L. Schmaal (Lianne); H. Schnack (Hugo); N.J. Schork (Nicholas); S.C. Schulz (S.Charles); R. Schür (Remmelt); L.J. Seidman (Larry); L. Shen (Li); L. Shoemaker (Lawrence); A. Simmons (Andrew); S.M. Sisodiya (Sanjay); C. Smith (Colin); J.W. Smoller; J.C. Soares (Jair); S.R. Sponheim (Scott); R. Sprooten (Roy); J.M. Starr (John); V.M. Steen (Vidar); S. Strakowski (Stephen); L.T. Strike (Lachlan); J. Sussmann (Jessika); P.G. Sämann (Philipp); A. Teumer (Alexander); A.W. Toga (Arthur); D. Tordesillas-Gutierrez (Diana); D. Trabzuni (Danyah); S. Trost (Sarah); J. Turner (Jessica); M. van den Heuvel (Martijn); N.J. van der Wee (Nic); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); M.C. Valdés Hernández (Maria); D.J. Veltman (Dick); A. Versace (Amelia); H. Völzke (Henry); R. Walker (Robert); H.J. Walter (Henrik); L. Wang (Lei); J.M. Wardlaw (J.); M.E. Weale (Michael); M.W. Weiner (Michael); W. Wen (Wei); L.T. Westlye (Lars); H.C. Whalley (Heather); C.D. Whelan (Christopher); T.J.H. White (Tonya); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); D. Zilles (David); M.P. Zwiers (Marcel); A. Thalamuthu (Anbupalam); J.R. Almeida (Jorge); C.J. Schofield (Christopher); N.B. Freimer (Nelson); N.S. Lawrence (Natalia); D.A. Drevets (Douglas)

    2014-01-01

    textabstractThe Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in

  8. Longitudinal Effects of Metabolic Syndrome on Alzheimer and Vascular Related Brain Pathology

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2014-06-01

    Full Text Available Background/Aims: This study examines the longitudinal effect of metabolic syndrome (MetS on brain-aging indices among cognitively normal (CN and amnestic mild cognitive impairment (aMCI groups [single-domain aMCI (saMCI and multiple-domain aMCI (maMCI]. Methods: The study population included 739 participants (CN = 226, saMCI = 275, and maMCI = 238 from the Alzheimer's Disease Neuroimaging Initiative, a clinic-based, multi-center prospective cohort. Confirmatory factor analysis was employed to determine a MetS latent composite score using baseline data of vascular risk factors. We examined the changes of two Alzheimer's disease (AD biomarkers, namely [18F]fluorodeoxyglucose (FDG-positron emission tomography (PET regions of interest and medial temporal lobe volume over 5 years. A cerebrovascular aging index, cerebral white matter (cWM volume, was examined as a comparison. Results: The vascular risk was similar in all groups. Applying generalized estimating equation modeling, all brain-aging indices declined significantly over time. Higher MetS scores were associated with a faster decline of cWM in the CN and maMCI groups but with a slower decrement of regional glucose metabolism in FDG-PET in the saMCI and maMCI groups. Conclusion: At the very early stage of cognitive decline, the vascular burden such as MetS may be in parallel with or independent of AD pathology in contributing to cognitive impairment in terms of accelerating the disclosure of AD pathology.

  9. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email: tieqiang.li@karolinska.se; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))

    2011-02-15

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  10. A simple tool for neuroimaging data sharing

    Directory of Open Access Journals (Sweden)

    Christian eHaselgrove

    2014-05-01

    Full Text Available Data sharing is becoming increasingly common, but despite encouragement and facilitation by funding agencies, journals, and some research efforts, most neuroimaging data acquired today is still not shared due to political, financial, social, and technical barriers to sharing data that remain. In particular, technical solutions are few for researchers that are not a part of larger efforts with dedicated sharing infrastructures, and social barriers such as the time commitment required to share can keep data from becoming publicly available.We present a system for sharing neuroimaging data, designed to be simple to use and to provide benefit to the data provider. The system consists of a server at the International Neuroinformatics Coordinating Facility (INCF and user tools for uploading data to the server. The primary design principle for the user tools is ease of use: the user identifies a directory containing DICOM data, provides their INCF Portal authentication, and provides identifiers for the subject and imaging session. The user tool anonymizes the data and sends it to the server. The server then runs quality control routines on the data, and the data and the quality control reports are made public. The user retains control of the data and may change the sharing policy as they need. The result is that in a few minutes of the user’s time, DICOM data can be anonymized and made publicly available, and an initial quality control assessment can be performed on the data. The system is currently functional, and user tools and access to the public image database are available at http://xnat.incf.org/.

  11. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Veltman, Dick J.; Booij, Jan; Emmerik-van Oortmerssen, Katelijne; den Brink, Wim

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys) function in stimulant dependence, including cocaine, (meth-) amphetamine, ecstasy and nicotine

  12. Recent Advances in Pharmacotherapeutic Paradigm of Mild to Recalcitrant Atopic Dermatitis.

    Science.gov (United States)

    Hussain, Zahid; Sahudin, Shariza; Thu, Hnin Ei; Shuid, Ahmad Nazrun; Bukhari, Syed Nasir Abbas; Kumolosasi, Endang

    2016-01-01

    Atopic dermatitis (AD) is a common, chronic skin inflammatory disorder characterized by perivascular infiltration of immunoglobulin E (IgE), T lymphocytes, and mast cells. The key factors responsible for the pathophysiology of this disease are immunological disorders and defects in epidermal barrier properties. Pruritus, intense itching, psychological stress, deprived physical and mental performance, and sleep disturbance are the hallmark features of this dermatological disorder. Preventive interventions such as educational programs, avoidance of allergens, and exclusive care toward the skin could play a partial role in suppressing the symptoms. Based on the available clinical evidence, topical corticosteroids (TCs) are among the most commonly prescribed agents; however, these should be selected with care. In cases of steroid phobia, persistent adverse effects or chronic use, topical calcineurin inhibitors can be considered as a promising adjunct to TCs. Recent advances in the pharmacotherapeutic paradigm of atopic diseases exploring the therapeutic dominance of nanocarrier-mediated delivery is also discussed in this evidence-based review with regard to the treatment of AD. The present review summarizes the available clinical evidence, highlighting the current and emerging trends in the treatment of AD and providing evidence-based recommendations for the clinicians and health care professionals. Available evidence for the management of pediatric and adult atopic dermatitis (AD; atopic eczema) of all severities is explored. The management of other types of dermatitis, such as irritant contact dermatitis, seborrheic dermatitis, neurodermatitis, perioral dermatitis, stasis dermatitis, and allergic contact dermatitis are outside the scope of current review article. The presented studies were appraised using a unified system called the "Strength of Recommendation Taxonomy (SORT)", which was developed by the editors of several US family medicine and primary care journals

  13. Neuroimaging of Narcolepsy and Kleine-Levin Syndrome.

    Science.gov (United States)

    Hong, Seung Bong

    2017-09-01

    Narcolepsy is a chronic neurologic disorder with the abnormal regulation of the sleep-wake cycle, resulting in excessive daytime sleepiness, disturbed nocturnal sleep, and manifestations related to rapid eye movement sleep, such as cataplexy, sleep paralysis, and hypnagogic hallucination. Over the past decade, numerous neuroimaging studies have been performed to characterize the pathophysiology and various clinical features of narcolepsy. This article reviews structural and functional brain imaging findings in narcolepsy and Kleine-Levin syndrome. Based on the current state of research, brain imaging is a useful tool to investigate and understand the neuroanatomic correlates and brain abnormalities of narcolepsy and other hypersomnia. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research

    NARCIS (Netherlands)

    Crunelle, C.L.; Veltman, D.J.; Booij, J.; van Emmerik-van Oortmerssen, K.; van den Brink, W.

    2012-01-01

    Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence,

  15. Pathology in Greece.

    Science.gov (United States)

    Sakellariou, S; Patsouris, E

    2015-11-01

    Pathology is the field of medicine that studies diseases. Ancient Greece hosted some of the earliest societies that laid the structural foundations of pathology. Initially, knowledge was based on observations but later on the key elements of pathology were established based on the dissection of animals and the autopsy of human cadavers. Christianized Greece under Ottoman rule (1453-1821) was not conducive to the development of pathology. After liberation, however, a series of events took place that paved the way for the establishment and further development of the specialty. The appointment in 1849 of two Professors of Pathology at the Medical School of Athens for didactical purposes proved to be the most important step in fostering the field of pathology in modern Greece. Presently in Greece there are seven university departments and 74 pathology laboratories in public hospitals, employing 415 specialized pathologists and 90 residents. The First Department of Pathology at the Medical School of Athens University is the oldest (1849) and largest in Greece, encompassing most pathology subspecialties.

  16. Hypnosis and pain perception: An Activation Likelihood Estimation (ALE) meta-analysis of functional neuroimaging studies.

    Science.gov (United States)

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-12-01

    Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Restoring the Generalizability of SVM Based Decoding in High Dimensional Neuroimage Data

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2011-01-01

    Variance inflation is caused by a mismatch between linear projections of test and training data when projections are estimated on training sets smaller than the dimensionality of the feature space. We demonstrate that variance inflation can lead to an increased neuroimage decoding error rate...

  18. Online Open Neuroimaging Mass Meta-Analysis with a Wiki

    DEFF Research Database (Denmark)

    Nielsen, Finn Arup; Kempton, Matthew J.; Williams, Steven C. R.

    2015-01-01

    We describe a system for meta-analysis where a wiki stores numerical data in a simple comma-separated values format and a web service performs the numerical statistical computation. We initially apply the system on multiple meta-analyses of structural neuroimaging data results. The described system...... allows for mass meta-analysis, e.g., meta-analysis across multiple brain regions and multiple mental disorders providing an overview of important relationships and their uncertainties in a collaborative environment....

  19. Conceptual and methodological challenges for neuroimaging studies of autistic spectrum disorders

    Directory of Open Access Journals (Sweden)

    Mazzone Luigi

    2010-03-01

    Full Text Available Abstract Autistic Spectrum Disorders (ASDs are a set of complex developmental disabilities defined by impairment in social interaction and communication, as well as by restricted interests or repetitive behaviors. Neuroimaging studies have substantially advanced our understanding of the neural mechanisms that underlie the core symptoms of ASDs. Nevertheless, a number of challenges still remain in the application of neuroimaging techniques to the study of ASDs. We review three major conceptual and methodological challenges that complicate the interpretation of findings from neuroimaging studies in ASDs, and that future imaging studies should address through improved designs. These include: (1 identification and implementation of tasks that more specifically target the neural processes of interest, while avoiding the confusion that the symptoms of ASD may impose on both the performance of the task and the detection of brain activations; (2 the inconsistency that disease heterogeneity in persons with ASD can generate on research findings, particularly heterogeneity of symptoms, symptom severity, differences in IQ, total brain volume, and psychiatric comorbidity; and (3 the problems with interpretation of findings from cross-sectional studies of persons with ASD across differing age groups. Failure to address these challenges will continue to hinder our ability to distinguish findings that outline the causes of ASDs from brain processes that represent downstream or compensatory responses to the presence of the disease. Here we propose strategies to address these issues: 1 the use of simple and elementary tasks, that are easier to understand for autistic subjects; 2 the scanning of a more homogenous group of persons with ASDs, preferably at younger age; 3 the performance of longitudinal studies, that may provide more straight forward and reliable results. We believe that this would allow for a better understanding of both the central pathogenic

  20. Neuroimaging after mild traumatic brain injury: Review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Cyrus Eierud

    2014-01-01

    Full Text Available This paper broadly reviews the study of mild traumatic brain injury (mTBI, across the spectrum of neuroimaging modalities. Among the range of imaging methods, however, magnetic resonance imaging (MRI is unique in its applicability to studying both structure and function. Thus we additionally performed meta-analyses of MRI results to examine 1 the issue of anatomical variability and consistency for functional MRI (fMRI findings, 2 the analogous issue of anatomical consistency for white-matter findings, and 3 the importance of accounting for the time post injury in diffusion weighted imaging reports. As we discuss, the human neuroimaging literature consists of both small and large studies spanning acute to chronic time points that have examined both structural and functional changes with mTBI, using virtually every available medical imaging modality. Two key commonalities have been used across the majority of imaging studies. The first is the comparison between mTBI and control populations. The second is the attempt to link imaging results with neuropsychological assessments. Our fMRI meta-analysis demonstrates a frontal vulnerability to mTBI, demonstrated by decreased signal in prefrontal cortex compared to controls. This vulnerability is further highlighted by examining the frequency of reported mTBI white matter anisotropy, in which we show a strong anterior-to-posterior gradient (with anterior regions being more frequently reported in mTBI. Our final DTI meta-analysis examines a debated topic arising from inconsistent anisotropy findings across studies. Our results support the hypothesis that acute mTBI is associated with elevated anisotropy values and chronic mTBI complaints are correlated with depressed anisotropy. Thus, this review and set of meta-analyses demonstrate several important points about the ongoing use of neuroimaging to understand the functional and structural changes that occur throughout the time course of mTBI recovery

  1. Pediatric neuroimaging

    International Nuclear Information System (INIS)

    Tidwell, A.S.; Solano, M.; Schelling, S.H.

    1994-01-01

    In this article, some of the common and not-so-common neuropediatric disorders were discussed. As in the full-grown animal, abnormalities of the CNS in the pediatric animal patient may be classified according to the type of insult present (eg, malformation, injury, neoplasia, inflammation, or degeneration). To recognize the imaging manifestations of such disorders, an appreciation of normal anatomy, the pathological response of nervous system tissue to insult, and the principles of image interpretation is required. These fundamentals may then be applied to any CNS disease, regardless of frequency and to any animal patient, regardless of age

  2. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    Science.gov (United States)

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  3. Adolescent Schizophrenia: A Methodologic Review of the Current Neuroimaging and Neuropsychologic Literature.

    Science.gov (United States)

    Findling, Robert L.; And Others

    1995-01-01

    This paper reviews the methodology in articles that have reported structural neuroimaging or neuropsychological data in adolescent patients with schizophrenia. Identification of methodological issues led to the finding that, at present, no conclusions can be made regarding the presence or absence of neuropsychologic dysfunction or structural…

  4. [Exploring dream contents by neuroimaging].

    Science.gov (United States)

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2014-04-01

    Dreaming is a subjective experience during sleep that is often accompanied by vivid perceptual and emotional contents. Because of its fundamentally subjective nature, the objective study of dream contents has been challenging. However, since the discovery of rapid eye movements during sleep, scientific knowledge on the relationship between dreaming and physiological measures including brain activity has accumulated. Recent advances in neuroimaging analysis methods have made it possible to uncover direct links between specific dream contents and brain activity patterns. In this review, we first give a historical overview on dream researches with a focus on the neurophysiological and behavioral signatures of dreaming. We then discuss our recent study in which visual dream contents were predicted, or decoded, from brain activity during sleep onset periods using machine learning-based pattern recognition of functional MRI data. We suggest that advanced analytical tools combined with neural and behavioral databases will reveal the relevance of spontaneous brain activity during sleep to waking experiences.

  5. Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity.

    Science.gov (United States)

    Yalachkov, Yavor; Kaiser, Jochen; Naumer, Marcus J

    2012-02-01

    Neuroimaging studies on cue reactivity have substantially contributed to the understanding of addiction. In the majority of studies drug cues were presented in the visual modality. However, exposure to conditioned cues in real life occurs often simultaneously in more than one sensory modality. Therefore, multisensory cues should elicit cue reactivity more consistently than unisensory stimuli and increase the ecological validity and the reliability of brain activation measurements. This review includes the data from 44 whole-brain functional neuroimaging studies with a total of 1168 subjects (812 patients and 356 controls). Correlations between neural cue reactivity and clinical covariates such as craving have been reported significantly more often for multisensory than unisensory cues in the motor cortex, insula and posterior cingulate cortex. Thus, multisensory drug cues are particularly effective in revealing brain-behavior relationships in neurocircuits of addiction responsible for motivation, craving awareness and self-related processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Comparative study of the neuropsychological and neuroimaging evaluations in children with dyslexia.

    Science.gov (United States)

    Arduini, Rodrigo Genaro; Capellini, Simone Aparecida; Ciasca, Sylvia Maria

    2006-06-01

    We analyzed retrospectively the neuroimaging exams of children with a confirmed diagnosis of dyslexia and correlated our findings with the evaluation of higher cortical functions. We studied 34 medical files of patients of the Ambulatory of Neuro-difficulties in Learning, FCM/UNICAMP. All of them had been sent to the ambulatory with primary or secondary complaints of difficulties at school and were submitted to neuropsychological evaluation and imaging exam (SPECT). From the children evaluated 58.8% had exams presenting dysfunction with 47% presenting hypoperfusion in the temporal lobe. As for the higher cortical functions, the most affected abilities were reading, writing and memory. There was significance between the hypoperfused areas and the variables schooling, reading, writing, memory and mathematic reasoning. The SPECTs showed hypoperfusion in areas involved in the reading and writing processes. Both are equivalent in terms of involved functional areas and are similar in children with or without specific dysfunctions in neuroimaging.

  7. Neuroimaging in aphasia treatment research: Consensus and practical guidelines for data analysis

    Science.gov (United States)

    Meinzer, Marcus; Beeson, Pélagie M.; Cappa, Stefano; Crinion, Jenny; Kiran, Swathi; Saur, Dorothee; Parrish, Todd; Crosson, Bruce; Thompson, Cynthia K.

    2012-01-01

    Functional magnetic resonance imaging is the most widely used imaging technique to study treatment-induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to the challenges researchers face when studying patient populations with brain damage in cross-sectional settings. The present review focuses on issues specifically relevant to neuroimaging data analysis in aphasia treatment research identified in discussions among international researchers at the Neuroimaging in Aphasia Treatment Research Workshop held at Northwestern University (Evanston, Illinois, USA). In particular, we aim to provide the reader with a critical review of unique problems related to the pre-processing, statistical modeling and interpretation of such data sets. Despite the fact that data analysis procedures critically depend on specific design features of a given study, we aim to discuss and communicate a basic set of practical guidelines that should be applicable to a wide range of studies and useful as a reference for researchers pursuing this line of research. PMID:22387474

  8. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice.

    Science.gov (United States)

    Bufkin, Jana L; Luttrell, Vickie R

    2005-04-01

    With the availability of new functional and structural neuroimaging techniques, researchers have begun to localize brain areas that may be dysfunctional in offenders who are aggressive and violent. Our review of 17 neuroimaging studies reveals that the areas associated with aggressive and/or violent behavioral histories, particularly impulsive acts, are located in the prefrontal cortex and the medial temporal regions. These findings are explained in the context of negative emotion regulation, and suggestions are provided concerning how such findings may affect future theoretical frameworks in criminology, crime prevention efforts, and the functioning of the criminal justice system.

  9. Neuroimaging of child abuse: A critical review

    Directory of Open Access Journals (Sweden)

    Heledd eHart

    2012-03-01

    Full Text Available Childhood maltreatment is a severe stressor that can lead to the development of behaviour problems and affect brain structure and function. This review summarizes the current evidence for the effects of early childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, executive function and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, grey and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum. Diffusion tensor imaging studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during executive function and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioural and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity, independently of secondary

  10. Intention, false beliefs, and delusional jealousy: insights into the right hemisphere from neurological patients and neuroimaging studies.

    Science.gov (United States)

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2011-01-01

    Jealousy sits high atop of a list comprised of the most human emotional experiences, although its nature, rationale, and origin are poorly understood. In the past decade, a series of neurological case reports and neuroimaging findings have been particularly helpful in piecing together jealousy's puzzle. In order to understand and quantify the neurological factors that might be important in jealousy, we reviewed the current literature in this specific field. We made an electronic search, and examined all literature with at least an English abstract, through Mars 2010. The search identified a total of 20 neurological patients, who experienced jealousy in relation with a neurological disorder; and 22 healthy individuals, who experienced jealousy under experimental neuroimaging settings. Most of the clinical cases of reported jealousy after a stroke had delusional-type jealousy. Right hemispheric stroke was the most frequently reported neurological disorder in these patients, although there was a wide range of more diffuse neurological disorders that may be reported to be associated with different other types of jealousy. This is in line with recent neuroimaging data on false beliefs, moral judgments, and intention [mis]understanding. Together the present findings provide physicians and psychologists with a potential for high impact in understanding the neural mechanisms and treatment of jealousy. By combining findings from case reports and neuroimaging data, the present article allows for a novel and unique perspective, and explores new directions into the neurological jealous mind.

  11. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    Science.gov (United States)

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  12. Advances on functional neuroimaging in substance misuse

    International Nuclear Information System (INIS)

    Lv Rongbin; Liu Xingdang; Han Mei

    2009-01-01

    Over the past decade, functional neuroimaging has contributed greatly to our knowledge about the neuropharmacology of substance misuse in man. In this review, discussed the application and the progress of the positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging in the substance misuse. After reading some papers, found that the dopamine transporter was significantly decreased in the brain of subjects with heroin abuse. Also observed a significant decrease of regional cerebral blood flow in bilateral cerebral frontal lobes, temporal lobes, the insula and the ipsilateral basal nuclei in substance misuse subjects. Taken together, functional images will lead the direction in future research formedication development of addiction treatment. (authors)

  13. The role of social stimuli content in neuroimaging studies investigating alcohol cue-reactivity

    NARCIS (Netherlands)

    Groefsema, M.M.; Engels, R.C.M.E.; Luijten, M.

    2016-01-01

    Introduction: Cue-reactivity is thought to play a fundamental role in the maintenance of addiction. The incentive sensitization theory proposes that conditioned responses are related to increased sensitivity of the reward-related dopaminergic pathways in the brain. However, neuroimaging studies on

  14. Hypomyelination and congenital cataract: neuroimaging features of a novel inherited white matter disorder

    NARCIS (Netherlands)

    Rossi, A.; Biancheri, R.; Zara, F.; Bruno, C.; Uziel, G.; van der Knaap, M.S.; Minetti, C.; Tortori-Donati, P.

    2008-01-01

    BACKGROUND AND PURPOSE: Hypomyelination and congenital cataract (HCC) is an autosomal recessive white matter disease caused by deficiency of hyccin, a membrane protein implicated in both central and peripheral myelination. We aimed to describe the neuroimaging features of this novel entity.

  15. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    Science.gov (United States)

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  16. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    Science.gov (United States)

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  17. Frequency Constrained ShiftCP Modeling of Neuroimaging Data

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai; Madsen, Kristoffer H.

    2011-01-01

    The shift invariant multi-linear model based on the CandeComp/PARAFAC (CP) model denoted ShiftCP has proven useful for the modeling of latency changes in trial based neuroimaging data[17]. In order to facilitate component interpretation we presently extend the shiftCP model such that the extracted...... components can be constrained to pertain to predefined frequency ranges such as alpha, beta and gamma activity. To infer the number of components in the model we propose to apply automatic relevance determination by imposing priors that define the range of variation of each component of the shiftCP model...

  18. Validation of Alzheimer's disease CSF and plasma biological markers: the multicentre reliability study of the pilot European Alzheimer's Disease Neuroimaging Initiative (E-ADNI)

    DEFF Research Database (Denmark)

    Buerger, Katharina; Frisoni, Giovanni; Uspenskaya, Olga

    2009-01-01

    BACKGROUND: Alzheimer's Disease Neuroimaging Initiatives ("ADNI") aim to validate neuroimaging and biochemical markers of Alzheimer's disease (AD). Data of the pilot European-ADNI (E-ADNI) biological marker programme of cerebrospinal fluid (CSF) and plasma candidate biomarkers are reported. METHO...

  19. Pathological jealousy and pathological love: Apples to apples or apples to oranges?

    Science.gov (United States)

    Stravogiannis, Andrea Lorena da C; Kim, Hyoun S; Sophia, Eglacy C; Sanches, Cíntia; Zilberman, Monica L; Tavares, Hermano

    2018-01-01

    Pathological jealousy evokes emotions, thoughts, and behaviors that cause damage to social and interpersonal relationships. On the other hand, pathological love is the uncontrollable behavior of caring for a partner that results in neglecting the needs of the self. The aim of the present research was to assess the similarities and differences between the two psychopathologies of love. To this end, thirty-two individuals with pathological jealousy and 33 individuals with pathological love were compared on demographics, aspects of romantic relationship (jealousy, satisfaction, love style), psychiatric co-morbidities, personality and psychological characteristics (e.g., impulsivity). In a univariate analysis individuals with pathological jealousy were more likely to be in a current relationship and reported greater satisfaction. The avoidant attachment and the ludus love style were associated with pathological jealousy whereas the secure attachment and agape love style was associated with pathological love. Almost three-quarters (72.3%) of the sample met criteria for a current psychiatric disorder, however no differences emerged between the pathological jealousy and pathological love groups. In a binary logistic regression, relationship status and impairments in parenting significantly differentiated the groups. While both pathological jealousy and pathological love share similarities, they also present with unique differences, which may have important treatment implications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016.

    Science.gov (United States)

    Etchell, Andrew C; Civier, Oren; Ballard, Kirrie J; Sowman, Paul F

    2018-03-01

    Stuttering is a disorder that affects millions of people all over the world. Over the past two decades, there has been a great deal of interest in investigating the neural basis of the disorder. This systematic literature review is intended to provide a comprehensive summary of the neuroimaging literature on developmental stuttering. It is a resource for researchers to quickly and easily identify relevant studies for their areas of interest and enable them to determine the most appropriate methodology to utilize in their work. The review also highlights gaps in the literature in terms of methodology and areas of research. We conducted a systematic literature review on neuroimaging studies on developmental stuttering according to the PRISMA guidelines. We searched for articles in the pubmed database containing "stuttering" OR "stammering" AND either "MRI", "PET", "EEG", "MEG", "TMS"or "brain" that were published between 1995/​01/​01 and 2016/​01/​01. The search returned a total of 359 items with an additional 26 identified from a manual search. Of these, there were a total of 111 full text articles that met criteria for inclusion in the systematic literature review. We also discuss neuroimaging studies on developmental stuttering published throughout 2016. The discussion of the results is organized first by methodology and second by population (i.e., adults or children) and includes tables that contain all items returned by the search. There are widespread abnormalities in the structural architecture and functional organization of the brains of adults and children who stutter. These are evident not only in speech tasks, but also non-speech tasks. Future research should make greater use of functional neuroimaging and noninvasive brain stimulation, and employ structural methodologies that have greater sensitivity. Newly planned studies should also investigate sex differences, focus on augmenting treatment, examine moments of dysfluency and longitudinally or

  1. Sparse multivariate measures of similarity between intra-modal neuroimaging datasets

    Directory of Open Access Journals (Sweden)

    Maria J. Rosa

    2015-10-01

    Full Text Available An increasing number of neuroimaging studies are now based on either combining more than one data modality (inter-modal or combining more than one measurement from the same modality (intra-modal. To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA. However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA, overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labelling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  2. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  3. New developments in digital pathology: from telepathology to virtual pathology laboratory.

    Science.gov (United States)

    Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander

    2004-01-01

    To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under

  4. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...

  5. Cognitive dysfunction in urban elderly people: an exploratory study using neuropsychological and neuroimaging perspective

    Directory of Open Access Journals (Sweden)

    Sreerupa Ghose

    2017-06-01

    Full Text Available Background: Cognitive impairment is an integral part of old age as well as it is a part of many neurodegenerative disorders. Early identification of cognitive impairment is necessary in order to make treatment and rehabilitation possible. Materials and methods: Keeping in mind that early identification of cognitive impairment is necessary, a sample of 20 elderly patients with memory complaints who were referred for magnetic resonance imaging (MRI with symptoms of peripheral nervous system disorder by neurologists have been assessed using neuropsychological tests and MRI, and results have been analysed using IBM SPSS 21 and DICOM software. Results: Neuropsychological test findings suggest that age, sex, and education are related to performance of the participants on different tests of cognitive functions in different ways. Scores on the tests of delayed memory and verbal fluency emerged as positive predictors of activity level. On the basis of MRI, the elderly people were identified with periventricular hyper-intensity of white matter and global cortical atrophy. A comparison of the two groups (on the basis of MRI findings suggest that elderly people with global cortical atrophy were found to be significantly more impaired on visuospatial tasks in comparison to the group with periventricular hyper-intensity of white matter, among other tests of cognitive functions. Conclusion: In spite of the absence of manifestation of dementing illness at clinical level, the participants actually exhibited underlying pathological process which can be detected with neuropsychological testing in conjunction with neuroimaging.

  6. Electrophysiological and pathological study of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Hodozuka, Akira; Hashizume, Kiyotaka; Hayashi, Yoshimitsu; Tanaka, Tatsuya

    2008-01-01

    Clinical and experimental studies on focal cortical dysplasia (FCD) were carried out. For the experimental study, an experimental FCD model of rats was developed. Twenty Wistar rats at 0-2 days after birth were used for the study. Kainic acid (KA) solution was injected stereotaxically into medial and lateral sites of the sensori-motor cortex. Bipolar electrodes were inserted. The behavior of the rats and electroencephalography (EEG) were recorded using a digital video-EEG monitoring system. After observation periods of 1, 2 and 6 months, the rats were perfused for pathological study. FCD was observed adjacent to the site of KA injection in all rats more than one month after the injection. EEG recording demonstrated focal spike discharges in and around the site of injection. However, clinical seizure was not observed. Pathological studies showed decrease in gamma aminobutyric acid (GABA)-A receptors and increase in GABA-B receptors not only in the lesion but also in perilesional areas. Fifteen surgical cases of FCD with intractable epilepsy were included in the clinical study. Neuro-imaging studies including high-resolution MRI and single photon emission computed tomography (SPECT) were performed. Conventional EEG studies demonstrated focal EEG abnormalities with epileptic phenomena. At surgery, intraoperative electrocorticography (ECoG) was performed in order to localize epileptic foci under neuroleptanalgesia. Fourteen patients showed epileptiform discharges on preresection ECoG. All foci in non-eloquent areas were resected. Pathological studies including immunohistochemical staining were performed, and characteristics of the FCD in relation to EEG findings were analyzed. Electrophysiological examination revealed epileptogenecity not only in the lesions but also in perilesional areas. In the lesions, immunohistochemical studies showed decrease in GABA-A receptors and increase in GABA-B receptors in both the lesions and perilesional areas, but N

  7. Exploring responsible innovation : Dutch public perceptions of the future of medical neuroimaging technology

    NARCIS (Netherlands)

    Arentshorst, Marlous E.; Broerse, Jacqueline E W; de Cock Buning, J.T.

    2016-01-01

    Insight into public perceptions provides opportunities to take public desires and concerns into account in an early phase of innovation development in order to maximise the potential benefits for users of the future. Public perceptions of neuroimaging in health care are presented in this article,

  8. Application of neuroanatomical ontologies for neuroimaging data annotation

    Directory of Open Access Journals (Sweden)

    Jessica A Turner

    2010-06-01

    Full Text Available The annotation of functional neuroimaging results for data sharing and reuse is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus. This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are “part of” which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a sub-part of the middle frontal gyrus to more general (how many activations were found in areas connected via a known white matter tract?. In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuranatomical ontology is publicly available as a view of FMA at the Bioportal website at http://rest.bioontology.org/bioportal/ontologies/download/10005. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.

  9. [Complex febrile seizures: study of the associated pathology and practical use of complementary tests].

    Science.gov (United States)

    Berzosa López, R; Ramos Fernández, J M; Martínez Antón, J; Espinosa Fernández, M G; Urda Cardona, A

    2014-06-01

    Although one third of febrile seizures are complex, a consensus has still not been reached on how to manage them, as is the case with simple febrile seizures. The objective of this study is to estimate the usefulness of complementary examinations and the risk of associated serious intracranial pathology. A retrospective review was conducted from 2003 until 2011 on patients from 6 months to 6 years presenting with a complex febrile seizure admitted to a tertiary care hospital, excluding the cases with previous neurological disease. Epidemiological and clinic variables were collected, as well as complementary tests and complications. We found 65 patients (31 females and 34 males), of whom 44 had repeated seizures in the first 24 hours, with 15 having focal seizures. The vast majority (90%) of the recurrences occurred before 15 hours. The mean age was 20.7 months and temperature was 39.1 ± 0.12°C. None of the patients had severe intracranial pathology. The electroencephalogram gave no helpful information for the diagnosis. Neuroimaging was normal in all studied cases. The incidence of complications in complex febrile seizure in our series did not justify the systematic admission or the systematic study with complementary tests when the neurological examination was normal. The routine electroencephalogram does not appear to be justified. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  10. Disorders of Consciousness: Painless or Painful Conditions?—Evidence from Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Francesca Pistoia

    2016-10-01

    Full Text Available The experience of pain in disorders of consciousness is still debated. Neuroimaging studies, using functional Magnetic Resonance Imaging (fMRI, Positron Emission Tomography (PET, multichannel electroencephalography (EEG and laser-evoked potentials, suggest that the perception of pain increases with the level of consciousness. Brain activation in response to noxious stimuli has been observed in patients with unresponsive wakefulness syndrome (UWS, which is also referred to as a vegetative state (VS, as well as those in a minimally conscious state (MCS. However, all of these techniques suggest that pain-related brain activation patterns of patients in MCS more closely resemble those of healthy subjects. This is further supported by fMRI findings showing a much greater functional connectivity within the structures of the so-called pain matrix in MCS as compared to UWS/VS patients. Nonetheless, when interpreting the results, a distinction is necessary between autonomic responses to potentially harmful stimuli and conscious experience of the unpleasantness of pain. Even more so if we consider that the degree of residual functioning and cortical connectivity necessary for the somatosensory, affective and cognitive-evaluative components of pain processing are not yet clear. Although procedurally challenging, the particular value of the aforementioned techniques in the assessment of pain in disorders of consciousness has been clearly demonstrated. The study of pain-related brain activation and functioning can contribute to a better understanding of the networks underlying pain perception while addressing clinical and ethical questions concerning patient care. Further development of technology and methods should aim to increase the availability of neuroimaging, objective assessment of functional connectivity and analysis at the level of individual cases as well as group comparisons. This will enable neuroimaging to truly become a clinical tool to

  11. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...... are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS...... experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation...

  12. Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology.

    Science.gov (United States)

    Höfer, Peter; Lanzenberger, Rupert; Kasper, Siegfried

    2013-02-01

    Testosterone plays a substantial role in a number of physiological processes in the brain. It is able to modulate the expression of certain genes by binding to androgen receptors. Acting via neurotransmitter receptors, testosterone shows the potential to mediate a non-genomic so-called "neuroactive effect". Various neurotransmitter systems are also influenced by the aromatized form of testosterone, estradiol. The following article summarizes the findings of preclinical and clinical neuroimaging studies including structural and functional magnetic resonance imaging (MRI/fMRI), voxel based morphometry (VBM), as well as pharmacological fMRI (phfMRI) and positron emission tomography (PET) regarding the effects of testosterone on the human brain. The impact of testosterone on the pathogenesis of psychiatric disorders and on sex-related prevalence differences have been supported by a wide range of clinical studies. An antidepressant effect of testosterone can be implicitly explained by its effects on the limbic system--especially amygdala, a major target in the treatment of depression--solidly demonstrated by a large body of neuroimaging findings. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  13. Design and rationale for examining neuroimaging genetics in ischemic stroke: The MRI-GENIE study.

    Science.gov (United States)

    Giese, Anne-Katrin; Schirmer, Markus D; Donahue, Kathleen L; Cloonan, Lisa; Irie, Robert; Winzeck, Stefan; Bouts, Mark J R J; McIntosh, Elissa C; Mocking, Steven J; Dalca, Adrian V; Sridharan, Ramesh; Xu, Huichun; Frid, Petrea; Giralt-Steinhauer, Eva; Holmegaard, Lukas; Roquer, Jaume; Wasselius, Johan; Cole, John W; McArdle, Patrick F; Broderick, Joseph P; Jimenez-Conde, Jordi; Jern, Christina; Kissela, Brett M; Kleindorfer, Dawn O; Lemmens, Robin; Lindgren, Arne; Meschia, James F; Rundek, Tatjana; Sacco, Ralph L; Schmidt, Reinhold; Sharma, Pankaj; Slowik, Agnieszka; Thijs, Vincent; Woo, Daniel; Worrall, Bradford B; Kittner, Steven J; Mitchell, Braxton D; Rosand, Jonathan; Golland, Polina; Wu, Ona; Rost, Natalia S

    2017-10-01

    To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.

  14. Neuroimaging of Fear-Associated Learning

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  15. Clinical and pathological analysis of benign brain tumors resected after Gamma Knife surgery.

    Science.gov (United States)

    Liu, Ali; Wang, Jun-Mei; Li, Gui-Lin; Sun, Yi-Lin; Sun, Shi-Bin; Luo, Bin; Wang, Mei-Hua

    2014-12-01

    The goal of this study was to assess the clinical and pathological features of benign brain tumors that had been treated with Gamma Knife surgery (GKS) followed by resection. In this retrospective chart review, the authors identified 61 patients with intracranial benign tumors who had undergone neurosurgical intervention after GKS. Of these 61 patients, 27 were male and 34 were female; mean age was 49.1 years (range 19-73 years). There were 24 meningiomas, 18 schwannomas, 14 pituitary adenomas, 3 hemangioblastomas, and 2 craniopharyngiomas. The interval between GKS and craniotomy was 2-168 months, with a median of 24 months; for 7 patients, the interval was 10 years or longer. For 21 patients, a craniotomy was performed before and after GKS; in 9 patients, pathological specimens were obtained before and after GKS. A total of 29 patients underwent GKS at the Beijing Tiantan Hospital. All specimens obtained by surgical intervention underwent histopathological examination. Most patients underwent craniotomy because of tumor recurrence and/or exacerbation of clinical signs and symptoms. Neuroimaging analyses indicated tumor growth in 42 patients, hydrocephalus in 10 patients with vestibular schwannoma, cystic formation with mass effect in 7 patients, and tumor hemorrhage in 13 patients, of whom 10 had pituitary adenoma. Pathological examination demonstrated that, regardless of the type of tumor, GKS mainly induced coagulative necrosis of tumor parenchyma and stroma with some apoptosis and, ultimately, scar formation. In addition, irradiation induced vasculature stenosis and occlusion and tumor degeneration as a result of reduced blood supply. GKS-induced vasculature reaction was rarely observed in patients with pituitary adenoma. Pathological analysis of tumor specimens obtained before and after GKS did not indicate increased tumor proliferation after GKS. Radiosurgery is effective for intracranial benign tumors of small size and deep location and for tumor recurrence

  16. The impacts of cognitive-behavioral therapy on the treatment of phobic disorders measured by functional neuroimaging techniques: a systematic review

    Directory of Open Access Journals (Sweden)

    Amanda Galvao-de Almeida

    2013-09-01

    Full Text Available Objective: Functional neuroimaging techniques represent fundamental tools in the context of translational research integrating neurobiology, psychopathology, neuropsychology, and therapeutics. In addition, cognitive-behavioral therapy (CBT has proven its efficacy in the treatment of anxiety disorders and may be useful in phobias. The literature has shown that feelings and behaviors are mediated by specific brain circuits, and changes in patterns of interaction should be associated with cerebral alterations. Based on these concepts, a systematic review was conducted aiming to evaluate the impact of CBT on phobic disorders measured by functional neuroimaging techniques. Methods: A systematic review of the literature was conducted including studies published between January 1980 and April 2012. Studies written in English, Spanish or Portuguese evaluating changes in the pattern of functional neuroimaging before and after CBT in patients with phobic disorders were included. Results: The initial search strategy retrieved 45 studies. Six of these studies met all inclusion criteria. Significant deactivations in the amygdala, insula, thalamus and hippocampus, as well as activation of the medial orbitofrontal cortex, were observed after CBT in phobic patients when compared with controls. Conclusion: In spite of their technical limitations, neuroimaging techniques provide neurobiological support for the efficacy of CBT in the treatment of phobic disorders. Further studies are needed to confirm this conclusion.

  17. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    Directory of Open Access Journals (Sweden)

    Guido eGerig

    2011-10-01

    Full Text Available The use of structural magnetic resonance imaging (sMRI and diffusion tensor imaging (DTI in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain structural and white matter pathway abnormalities via sMRI and DTI, as advanced MR imaging technology is readily available and automated image analysis methodology have recently been transferred from the human to animal imaging setting. For this purpose, we developed a synergistic, parallel approach to imaging and image analysis for the human and the rodent branch of our study. We propose an equivalent design in both the selection of the developmental assessment stage and the neuroimaging setup. This approach brings significant advantages to study neurobiological features of early brain development that are common to animals and humans but also preserve analysis capabilities only possible in animal research. This paper presents the main framework and individual methods for the proposed cross-species study design, as well as preliminary DTI cross-species comparative results in the intra-uterine cocaine exposure study.

  18. Behavioural, computational, and neuroimaging studies of acquired apraxia of speech

    Directory of Open Access Journals (Sweden)

    Kirrie J Ballard

    2014-11-01

    Full Text Available A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions - the speech motor programming disorder apraxia of speech (AOS and the linguistic / grammatical disorder of Broca’s aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca's area and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localised lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally.

  19. Teaching digital pathology: The international school of digital pathology and proposed syllabus

    Directory of Open Access Journals (Sweden)

    Vincenzo Della Mea

    2017-01-01

    Full Text Available Digital pathology is an interdisciplinary field where competency in pathology, laboratory techniques, informatics, computer science, information systems, engineering, and even biology converge. This implies that teaching students about digital pathology requires coverage, expertise, and hands-on experience in all these disciplines. With this in mind, a syllabus was developed for a digital pathology summer school aimed at professionals in the aforementioned fields, as well as trainees and doctoral students. The aim of this communication is to share the context, rationale, and syllabus for this school of digital pathology.

  20. Automatic analysis (aa: efficient neuroimaging workflows and parallel processing using Matlab and XML

    Directory of Open Access Journals (Sweden)

    Rhodri eCusack

    2015-01-01

    Full Text Available Recent years have seen neuroimaging data becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complex to set up and run (increasing the risk of human error and time consuming to execute (restricting what analyses are attempted. Here we present an open-source framework, automatic analysis (aa, to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (redone. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA. However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast and efficient, for simple single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  1. COINS: An innovative informatics and neuroimaging tool suite built for large heterogeneous datasets

    Directory of Open Access Journals (Sweden)

    Adam eScott

    2011-12-01

    Full Text Available The availability of well-characterized neuroimaging data with large numbers of subjects, especially for clinical populations, is critical to advancing our understanding of the healthy and diseased brain. Such data enables questions to be answered in a much more generalizable manner and also has the potential to yield solutions derived from novel methods that were conceived after the original studies' implementation. Though there is currently growing interest in data sharing, the neuroimaging community has been struggling for years with how to best encourage sharing data across brain imaging studies. With the advent of studies that are much more consistent across sites (e.g., resting fMRI, diffusion tensor imaging, and structural imaging the potential of pooling data across studies continues to gain momentum.At the Mind Research Network (MRN, we have developed the COllaborative Informatics and Neuroimaging Suite (COINS; http://coins.mrn.org to provide researchers with an information system based on an open-source model that includes web-based tools to manage studies, subjects, imaging, clinical data and other assessments. The system currently hosts data from 9 institutions, over 300 studies, over 14,000 subjects, and over 19,000 MRI, MEG, and EEG scan sessions in addition to more than 180,000 clinical assessments. In this paper we provide a description of COINS with comparison to a valuable and popular system known as XNAT. Although there are many similarities between COINS and other electronic data management systems, the differences that may concern researchers in the context of multi-site, multi-organizational data-sharing environments with intuitive ease of use and PHI security are emphasized as important attributes.

  2. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML.

    Science.gov (United States)

    Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J; Wild, Conor J; Auer, Tibor; Linke, Annika C; Peelle, Jonathan E

    2014-01-01

    Recent years have seen neuroimaging data sets becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complicated to set up and run (increasing the risk of human error) and time consuming to execute (restricting what analyses are attempted). Here we present an open-source framework, automatic analysis (aa), to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (re)done. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.

  3. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine.

    Science.gov (United States)

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the

  4. The Danish Pathology Register

    DEFF Research Database (Denmark)

    Bjerregaard, Beth; Larsen, Ole B

    2011-01-01

    The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established.......The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established....

  5. Pathological gambling and criminality.

    Science.gov (United States)

    Folino, Jorge Oscar; Abait, Patricia Estela

    2009-09-01

    To review research results on the relationship between pathological gambling and criminality, published in 2007 and 2008, in English and in Spanish. An important association between pathological gambling and criminality was confirmed in populations of anonymous gamblers, helpline callers and substance abusers. Helplines provide a timely service to gamblers who have not reached the maximum stages in the development of a pathological gambling pattern. Pathological gambling is associated with violence in couples and dysfunctional families. Inversely, violence is also an antecedent promoting vulnerability toward pathological gambling. Impulsiveness shows diverse relationships with pathological gambling and violence as well. A pathological gambler's involvement in crime is exceptionally considered without responsibility by justice, but it may be an indicator of the disorder severity and the need for special therapeutic tactics. While reviewing the present study, research work was published that contributed to a better understanding of the association between pathological gambling and criminality and went further into their complex relationship and the formulation of explanatory models related to impulsiveness.

  6. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    International Nuclear Information System (INIS)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D.

    2003-01-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting

  7. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D

    2003-03-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting.

  8. Efeitos cerebrais da maconha: resultados dos estudos de neuroimagem Brain effects of cannabis: neuroimaging findings

    Directory of Open Access Journals (Sweden)

    José Alexandre Crippa

    2005-03-01

    Full Text Available A maconha é a droga ilícita mais utilizada. Apesar disto, apenas um pequeno número de estudos investigaram as conseqüências neurotóxicas de longo prazo do uso de cannabis. As técnicas de neuroimagem se constituem em poderosos instrumentos para investigar alterações neuroanatômicas e neurofuncionais e suas correlações clínicas e neuropsicológicas. Uma revisão computadorizada da literatura foi conduzida nos indexadores MEDLINE e PsycLIT entre 1966 e novembro de 2004 com os termos 'cannabis', 'marijuana', 'neuroimaging', 'magnetic resonance', 'computed tomography', 'positron emission tomography', 'single photon emission computed tomography", 'SPET', 'MRI' e 'CT'. Estudos de neuroimagem estrutural apresentam resultados conflitantes, com a maioria dos estudos não relatando atrofia cerebral ou alterações volumétricas regionais. Contudo, há uma pequena evidência de que usuários de longo prazo que iniciaram um uso regular no início da adolescência apresentam atrofia cerebral assim como redução na substância cinzenta. Estudos de neuroimagem funcional relatam aumento na atividade neural em regiões que podem estar relacionadas com intoxicação por cannabis e alteração do humor (lobos frontais mesial e orbital e redução na atividade de regiões relacionadas com funções cognitivas prejudicadas durante a intoxicação aguda. A questão crucial se efeitos neurotóxicos residuais ocorrem após o uso prolongado e regular de maconha permanece obscura, não existindo até então estudo endereçando esta questão diretamente. Estudos de neuroimagem com melhores desenhos, combinados com avaliação cognitiva, podem ser elucidativos neste aspecto.Cannabis is the most widely used illicit drug. Despite this, only a small number of studies have investigated the long-term neurotoxic consequences of cannabis use. Structural and functional neuroimaging techniques are powerful research tools to investigate possible cannabis

  9. Porcupine: A visual pipeline tool for neuroimaging analysis.

    Directory of Open Access Journals (Sweden)

    Tim van Mourik

    2018-05-01

    Full Text Available The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer analysis scripts, spanning different tools across multiple programming languages. This makes it more difficult to share or recreate code, reducing the reproducibility of the analysis. We present a tool, Porcupine, that constructs one's analysis visually and automatically produces analysis code. The graphical representation improves understanding of the performed analysis, while retaining the flexibility of modifying the produced code manually to custom needs. Not only does Porcupine produce the analysis code, it also creates a shareable environment for running the code in the form of a Docker image. Together, this forms a reproducible way of constructing, visualising and sharing one's analysis. Currently, Porcupine links to Nipype functionalities, which in turn accesses most standard neuroimaging analysis tools. Our goal is to release researchers from the constraints of specific implementation details, thereby freeing them to think about novel and creative ways to solve a given problem. Porcupine improves the overview researchers have of their processing pipelines, and facilitates both the development and communication of their work. This will reduce the threshold at which less expert users can generate reusable pipelines. With Porcupine, we bridge the gap between a conceptual and an implementational level of analysis and make it easier for researchers to create reproducible and shareable science. We provide a wide range of examples and documentation, as well as installer files for all platforms on our website: https://timvanmourik.github.io/Porcupine. Porcupine is free, open source, and released under the GNU General Public License v3.0.

  10. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives.

    Science.gov (United States)

    Cardoso de Almeida, Jorge Renner; Phillips, Mary Louise

    2013-01-15

    Differentiating bipolar disorder (BD) from recurrent unipolar depression (UD) is a major clinical challenge. Main reasons for this include the higher prevalence of depressive relative to hypo/manic symptoms during the course of BD illness and the high prevalence of subthreshold manic symptoms in both BD and UD depression. Identifying objective markers of BD might help improve accuracy in differentiating between BD and UD depression, to ultimately optimize clinical and functional outcome for all depressed individuals. Yet, only eight neuroimaging studies to date have directly compared UD and BD depressed individuals. Findings from these studies suggest more widespread abnormalities in white matter connectivity and white matter hyperintensities in BD than UD depression, habenula volume reductions in BD but not UD depression, and differential patterns of functional abnormalities in emotion regulation and attentional control neural circuitry in the two depression types. These findings suggest different pathophysiologic processes, especially in emotion regulation, reward, and attentional control neural circuitry in BD versus UD depression. This review thereby serves as a call to action to highlight the pressing need for more neuroimaging studies, using larger samples sizes, comparing BD and UD depressed individuals. These future studies should also include dimensional approaches, studies of at-risk individuals, and more novel neuroimaging approaches, such as connectivity analysis and machine learning. Ultimately, these approaches might provide biomarkers to identify individuals at future risk for BD versus UD and biological targets for more personalized treatment and new treatment developments for BD and UD depression. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. The teen brain: insights from neuroimaging.

    Science.gov (United States)

    Giedd, Jay N

    2008-04-01

    Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.

  12. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    Science.gov (United States)

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  13. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  14. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies.

    Science.gov (United States)

    Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten

    2016-02-01

    This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Methodological aspects of functional neuroimaging at high field strength: a critical review

    International Nuclear Information System (INIS)

    Scheef, L.; Landsberg, M.W.; Boecker, H.

    2007-01-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications. (orig.)

  16. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives.

    Science.gov (United States)

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J; Faraone, Stephen V; Hartman, Catharina; Buitelaar, Jan

    2015-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of ADHD. The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) project. It is a multi-site prospective cohort study designed to investigate the course of ADHD, its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and its consequences in adolescence and adulthood. From the original 365 ADHD families and 148 control (CON) IMAGE families, consisting of 506 participants with an ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls, 79 % participated in the NeuroIMAGE follow-up study. Combined with newly recruited participants the NeuroIMAGE study comprehends an assessment of 1,069 children (751 from ADHD families; 318 from CON families) and 848 parents (582 from ADHD families; 266 from CON families). For most families, data for more than one child (82 %) and both parents (82 %) were available. Collected data include a diagnostic interview, behavioural questionnaires, cognitive measures, structural and functional neuroimaging, and genome-wide genetic information. The NeuroIMAGE dataset allows examining the course of ADHD over adolescence into young adulthood, identifying phenotypic, cognitive, and neural mechanisms associated with the persistence versus remission of ADHD, and studying their genetic and environmental underpinnings. The inclusion of siblings of ADHD probands and controls allows modelling of shared familial influences on the ADHD phenotype.

  17. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  18. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    Science.gov (United States)

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  19. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging.

    Science.gov (United States)

    Eugene, Andy R; Masiak, Jolanta

    2016-06-01

    Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants.

  20. NEUROIMAGING AND PATTERN RECOGNITION TECHNIQUES FOR AUTOMATIC DETECTION OF ALZHEIMER’S DISEASE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Rupali Kamathe

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia with currently unavailable firm treatments that can stop or reverse the disease progression. A combination of brain imaging and clinical tests for checking the signs of memory impairment is used to identify patients with AD. In recent years, Neuroimaging techniques combined with machine learning algorithms have received lot of attention in this field. There is a need for development of automated techniques to detect the disease well before patient suffers from irreversible loss. This paper is about the review of such semi or fully automatic techniques with detail comparison of methods implemented, class labels considered, data base used and the results obtained for related study. This review provides detailed comparison of different Neuroimaging techniques and reveals potential application of machine learning algorithms in medical image analysis; particularly in AD enabling even the early detection of the disease- the class labelled as Multiple Cognitive Impairment.

  1. Pathology in Undergraduate Training Program

    Directory of Open Access Journals (Sweden)

    Shiva Raj K.C.

    2018-04-01

    Full Text Available Pathology is a study of disease which deals with etiology, pathogenesis and morphological features and the associated clinical features. Pathology acts as a bridge that fills the gap between basic sciences and clinical medicine. With proper understanding of pathological processes, one can understand the disease process. In Nepal, since the beginning of medical school teaching, Pathology as a basic science discipline and is a component of the preclinical medical school curriculum.Pathology teaching in 19th century was vague, disorganized and very little, though precious. The lectures used to be conducted by surgeons. At Barts, surgeon Sir James Paget had taught surgical pathology. The real revolution in pathology teaching began in the early 1900s when, spurred on by increasing understanding of disease mechanisms, pathology began to be accepted as a specialty in its own right.During the early and mid of 20th century, pathology teaching was a part of clinical teaching with daily, autopsy demonstration. By the late 1980s, significant change had taken place. In many medical schools, debate started regarding relevance of vigorous preclinical teaching. Then system-based approach was incorporated and traditional preclinical course had been abandoned. With this pathology teaching also began to change with pathologists being involved in teaching histology, often alongside pathology to highlight its clinical relevance. In medical schools the pathology teaching time was cut. Autopsy demonstrations, which had been so popular with generations of medical students, were becoming irregular and less well attended.Though teaching of pathology in blocks to ‘avoid fragmentation’ has disappeared in western countries; it is still practice in Nepal. In western countries there was traditional practice of teaching general pathology in the first two years and systemic pathology in the clinical years. Now pathology teaching is integrated throughout the course. A

  2. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine

    NARCIS (Netherlands)

    Pettersson-Yeo, W.; Benetti, S.; Marquand, A.F.; Joules, R.; Catani, M.; Williams, S.C.; Allen, P.; McGuire, P.; Mechelli, A.

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification

  3. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  4. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    Science.gov (United States)

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Accelerating Neuroimage Registration through Parallel Computation of Similarity Metric.

    Directory of Open Access Journals (Sweden)

    Yun-Gang Luo

    Full Text Available Neuroimage registration is crucial for brain morphometric analysis and treatment efficacy evaluation. However, existing advanced registration algorithms such as FLIRT and ANTs are not efficient enough for clinical use. In this paper, a GPU implementation of FLIRT with the correlation ratio (CR as the similarity metric and a GPU accelerated correlation coefficient (CC calculation for the symmetric diffeomorphic registration of ANTs have been developed. The comparison with their corresponding original tools shows that our accelerated algorithms can greatly outperform the original algorithm in terms of computational efficiency. This paper demonstrates the great potential of applying these registration tools in clinical applications.

  6. Risk-taking decisions in pathological gamblers is not a result of their impaired inhibition ability.

    Science.gov (United States)

    Kertzman, Semion; Lidogoster, Helena; Aizer, Anat; Kotler, Moshe; Dannon, Pinhas N

    2011-06-30

    This work investigates whether inhibition impairments influence the decision making process in pathological gamblers (PGs). The PG (N=51) subjects performed the Iowa Gambling Task (IGT as the measure of the decision making process) and two tests of inhibition: the Stroop (interference inhibition), and the Go/NoGo (response inhibition), and were compared with demographically matched healthy subjects (N=57). Performance in the IGT block 1 and block 2 did not differ between the groups, but the differences between the PGs and healthy controls began to be significant in block 3, block 4 and block 5. PGs learned the IGT task more slowly than the healthy controls and had non-optimal outcomes (more disadvantageous choices). Impaired IGT performance in PGs was not related to an inhibition ability measured by the Stroop (interference response time) and the Go/NoGo (number of commission errors) parameters. Further controlled studies with neuroimaging techniques may help to clarify the particular brain mechanisms underlying the impaired decision making process in PGs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

    NARCIS (Netherlands)

    Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O'Brien, J. T.; Barkhof, F.; Benavente, O.R.; Black, S.E.; Brayne, C.; Breteler, M.; Chabriat, H.; deCarli, C.; de Leeuw, F.E.; Doubal, F.; Duering, M.; Fox, N.C.; Greenberg, S.; Hachinski, V.; Kilimann, I.; Mok, V.; van Oostenbrugge, R.; Pantoni, L.; Speck, O.; Stephan, B.C.M.; Teipel, S.; Viswanathan, A.; Werring, D.; Chen, C.; Smith, C.; van Buchem, M.; Norrving, B.; Gorelick, P.B.; Dichgans, M.

    2013-01-01

    Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have

  8. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and roadmap for future research

    Science.gov (United States)

    Phillips, Mary L; Swartz, Holly A.

    2014-01-01

    Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual

  9. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  10. Neuroimaging Studies of Essential Tremor: How Well Do These Studies Support/Refute the Neurodegenerative Hypothesis?

    Directory of Open Access Journals (Sweden)

    Elan D. Louis

    2014-05-01

    Full Text Available Background: Tissue‐based research has recently led to a new patho‐mechanistic model of essential tremor (ET—the cerebellar degenerative model. We are not aware of a study that has reviewed the current neuroimaging evidence, focusing on whether the studies support or refute the neurodegenerative hypothesis of ET. This was our aim.Methods: References for this review were identified by searches of PubMed (1966 to February 2014.Results: Several neuroimaging methods have been used to study ET, most of them based on magnetic resonance imaging (MRI. The methods most specific to address the question of neurodegeneration are MRI‐based volumetry, magnetic resonance spectroscopy, and diffusion‐weighted imaging. Studies using each of these methods provide support for the presence of cerebellar degeneration in ET, finding reduced cerebellar brain volumes, consistent decreases in cerebellar N‐acetylaspartate, and increased mean diffusivity. Other neuroimaging techniques, such as functional MRI and positron emission tomography (PET are less specific, but still sensitive to potential neurodegeneration. These techniques are used for measuring a variety of brain functions and their impairment. Studies using these modalities also largely support cerebellar neuronal impairment. In particular, changes in 11C‐flumazenil binding in PET studies and changes in iron deposition in an MRI study provide evidence along these lines. The composite data point to neuronal impairment and likely neuronal degeneration in ET.Discussion: Recent years have seen a marked increase in the number of imaging studies of ET. As a whole, the combined data provide support for the presence of cerebellar neuronal degeneration in this disease.

  11. Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Royal, Jason M; Peterson, Bradley S

    2007-01-01

    BACKGROUND: Tourette syndrome (TS) and Attention-Deficit/Hyperactivity Disorder (ADHD) are common and debilitating neuropsychiatric illnesses that typically onset in the preschool years. Recently, both conditions have been subject to neuroimaging studies, with the aim of understanding...... contrast these findings with those in ADHD without comorbid tic disorders. RESULTS: The frequent comorbidity of TS and ADHD may reflect a common underlying neurobiological substrate, and studies confirm the hypothesized involvement of fronto-striatal circuits in both TS and ADHD. However, poor inhibitory...

  12. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    OpenAIRE

    Daria J. Kuss; Mark D. Griffiths

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gami...

  13. Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Pradat, Pierre-François; El Mendili, Mohamed-Mounir

    2014-01-01

    Neuroimaging allows investigating the extent of neurological systems degeneration in amyotrophic lateral sclerosis (ALS). Advanced MRI methods can detect changes related to the degeneration of upper motor neurons but have also demonstrated the participation of other systems such as the sensory system or basal ganglia, demonstrating in vivo that ALS is a multisystem disorder. Structural and functional imaging also allows studying dysfunction of brain areas associated with cognitive signs. From a biomarker perspective, numerous studies using diffusion tensor imaging showed a decrease of fractional anisotropy in the intracranial portion of the corticospinal tract but its diagnostic value at the individual level remains limited. A multiparametric approach will be required to use MRI in the diagnostic workup of ALS. A promising avenue is the new methodological developments of spinal cord imaging that has the advantage to investigate the two motor system components that are involved in ALS, that is, the lower and upper motor neuron. For all neuroimaging modalities, due to the intrinsic heterogeneity of ALS, larger pooled banks of images with standardized image acquisition and analysis procedures are needed. In this paper, we will review the main findings obtained with MRI, PET, SPECT, and nuclear magnetic resonance spectroscopy in ALS. PMID:24949452

  14. Ethical concepts and future challenges of neuroimaging: an Islamic perspective.

    Science.gov (United States)

    Al-Delaimy, Wael K

    2012-09-01

    Neuroscience is advancing at a rapid pace, with new technologies and approaches that are creating ethical challenges not easily addressed by current ethical frameworks and guidelines. One fascinating technology is neuroimaging, especially functional Magnetic Resonance Imaging (fMRI). Although still in its infancy, fMRI is breaking new ground in neuroscience, potentially offering increased understanding of brain function. Different populations and faith traditions will likely have different reactions to these new technologies and the ethical challenges they bring with them. Muslims are approximately one-fifth of world population and they have a specific and highly regulated ethical and moral code, which helps them deal with scientific advances and decision making processes in an Islamically ethical manner. From this ethical perspective, in light of the relevant tenets of Islam, neuroimaging poses various challenges. The privacy of spirituality and the thought process, the requirement to put community interest before individual interest, and emphasis on conscious confession in legal situations are Islamic concepts that can pose a challenge for the use of something intrusive such as an fMRI. Muslim moral concepts such as There shall be no harm inflicted or reciprocated in Islam and Necessities overrule prohibitions are some of the criteria that might appropriately be used to guide advancing neuroscience. Neuroscientists should be particularly prudent and well prepared in implementing neuroscience advances that are breaking new scientific and ethical ground. Neuroscientists should also be prepared to assist in setting the ethical frameworks in place in advance of what might be perceived as runaway applications of technology.

  15. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  16. Mindcontrol: Organize, quality control, annotate, edit, and collaborate on neuroimaging processing results

    OpenAIRE

    Keshavan, Anisha; Madan, Christopher; Datta, Esha; McDonough, Ian

    2017-01-01

    Mindcontrol is an open-source web-based dashboard to quality control and curate neuroimaging data. At Neurohackweek 2016, a group assembled to add new features to the Mindcontrol interface. Contributors used Python, Javascript, and Git to configure Mindcontrol for the ABIDE and CoRR open datasets, and add new types of plots to the interface. All contributions are freely available online, and the code is being actively maintained at http://www.github.com/akeshavan/mindcontrol.

  17. Multimodal Neuroimaging Differences in Nicotine Abstinent vs. Satiated Smokers.

    Science.gov (United States)

    Chaarani, Bader; Spechler, Philip A; Ivanciu, Alexandra; Snowe, Mitchell; Nickerson, Joshua P; Higgins, Stephen T; Garavan, Hugh

    2018-04-06

    Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared to non-smokers when assessing neurobiological markers of nicotine dependence. Smokers(N=15) and sociodemographically matched non-smokers(N=15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence, and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudo-continuous arterial spin labeling to measure cerebral blood flow (CBF). Whole brain voxel-wise ANCOVAs were carried out on stop success and stop fail SST contrasts and CBF maps to assess differences among non-, abstinent and satiated smokers. Cluster-correction was performed using AFNI's 3dClustSim to achieve a significance of pSmokers exhibited higher brain activation in bilateral inferior frontal gyrus (IFG), a brain region known to be involved in inhibitory control, during successful response inhibitions relative to non-smokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral IFG than non-smokers. These hypo-perfusions were not different between abstinence and satiety. These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. Our multi-modal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggest targets for assessing the efficacy of therapeutic interventions.

  18. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies

    NARCIS (Netherlands)

    Peper, J.S.; Hulshoff Pol, H.E.; Crone, E.A.; van Honk, J.

    2011-01-01

    Puberty is an important period during development hallmarked by increases in sex steroid levels. Human neuroimaging studies have consistently reported that in typically developing pubertal children, cortical and subcortical gray matter is decreasing, whereas white matter increases well into

  19. The clinical outcome and neuroimaging of acute encephalopathy after status epilepticus in Dravet syndrome.

    Science.gov (United States)

    Tian, Xiaojuan; Ye, Jintang; Zeng, Qi; Zhang, Jing; Yang, Xiaoling; Liu, Aijie; Yang, Zhixian; Liu, Xiaoyan; Wu, Xiru; Zhang, Yuehua

    2018-06-01

    To analyze the clinical outcome and neuroimaging over a long duration follow-up in the currently largest series of acute encephalopathy after status epilepticus in patients with Dravet syndrome. Clinical and neuroimaging data of patients with Dravet syndrome with a history of acute encephalopathy (coma >24h) after status epilepticus from February 2005 to December 2016 at Peking University First Hospital were reviewed retrospectively. Thirty-five patients (15 males, 20 females) with a history of acute encephalopathy were enrolled from a total of 624 patients with Dravet syndrome (5.6%). The median onset age of acute encephalopathy was 3 years 1 month. The duration of status epilepticus varied between 40 minutes to 12 hours. Thirty-four patients had a high fever when status epilepticus occurred, and only one had a normal temperature. Coma lasted from 2 to 20 days. Twelve patients died and 23 survived with massive neurological regression. The median follow-up time was 2 years 1 month. Neuroimaging of 20 out of 23 survivors during the recovery phase showed diverse degrees of cortical atrophy with or without subcortical lesions. Acute encephalopathy after status epilepticus is more prone to occur in patients with Dravet syndrome who had a high fever. The mortality rate is high in severe cases. Survivors are left with severe neurological sequelae but often with either no seizure or low seizure frequency. Acute encephalopathy is more prone to occur in patients with Dravet syndrome with a high fever. The mortality rate is high for acute encephalopathy after status epilepticus in patients with Dravet syndrome. Survivors have neurological sequelae. © 2018 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  20. Stem Cell Pathology.

    Science.gov (United States)

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  1. Predictive modelling using neuroimaging data in the presence of confounds.

    Science.gov (United States)

    Rao, Anil; Monteiro, Joao M; Mourao-Miranda, Janaina

    2017-04-15

    When training predictive models from neuroimaging data, we typically have available non-imaging variables such as age and gender that affect the imaging data but which we may be uninterested in from a clinical perspective. Such variables are commonly referred to as 'confounds'. In this work, we firstly give a working definition for confound in the context of training predictive models from samples of neuroimaging data. We define a confound as a variable which affects the imaging data and has an association with the target variable in the sample that differs from that in the population-of-interest, i.e., the population over which we intend to apply the estimated predictive model. The focus of this paper is the scenario in which the confound and target variable are independent in the population-of-interest, but the training sample is biased due to a sample association between the target and confound. We then discuss standard approaches for dealing with confounds in predictive modelling such as image adjustment and including the confound as a predictor, before deriving and motivating an Instance Weighting scheme that attempts to account for confounds by focusing model training so that it is optimal for the population-of-interest. We evaluate the standard approaches and Instance Weighting in two regression problems with neuroimaging data in which we train models in the presence of confounding, and predict samples that are representative of the population-of-interest. For comparison, these models are also evaluated when there is no confounding present. In the first experiment we predict the MMSE score using structural MRI from the ADNI database with gender as the confound, while in the second we predict age using structural MRI from the IXI database with acquisition site as the confound. Considered over both datasets we find that none of the methods for dealing with confounding gives more accurate predictions than a baseline model which ignores confounding, although

  2. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods.

    Directory of Open Access Journals (Sweden)

    Krzysztof J Gorgolewski

    2017-03-01

    Full Text Available The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS. The portability of these applications (BIDS Apps is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.

  3. Multisite, multimodal neuroimaging of chronic urological pelvic pain: Methodology of the MAPP Research Network

    Directory of Open Access Journals (Sweden)

    Jeffry R. Alger

    2016-01-01

    Full Text Available The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network is an ongoing multi-center collaborative research group established to conduct integrated studies in participants with urologic chronic pelvic pain syndrome (UCPPS. The goal of these investigations is to provide new insights into the etiology, natural history, clinical, demographic and behavioral characteristics, search for new and evaluate candidate biomarkers, systematically test for contributions of infectious agents to symptoms, and conduct animal studies to understand underlying mechanisms for UCPPS. Study participants were enrolled in a one-year observational study and evaluated through a multisite, collaborative neuroimaging study to evaluate the association between UCPPS and brain structure and function. 3D T1-weighted structural images, resting-state fMRI, and high angular resolution diffusion MRI were acquired in five participating MAPP Network sites using 8 separate MRI hardware and software configurations. We describe the neuroimaging methods and procedures used to scan participants, the challenges encountered in obtaining data from multiple sites with different equipment/software, and our efforts to minimize site-to-site variation.

  4. The Oral Pathology Related Articles Published in Iranian Journal of Pathology from 2006 to 2015.

    Science.gov (United States)

    Shamim, Thorakkal

    2016-01-01

    There is a paucity of information about the oral pathology related articles published in a pathology journal. This study aimed to audit the oral pathology related articles published in Iranian Journal of Pathology (Iran J Pathol) from 2006 to 2015. Bibliometric analysis of issues of Iran J Pathol from 2006 to 2015 was performed using web-based search. The articles published were analyzed for type of article and individual topic of oral pathology. The articles published were also checked for authorship trends. Out of the total 49 published articles related to oral pathology, case reports (21) and original articles (18) contributed the major share. The highest number of oral pathology related articles was published in 2011, 2014 and 2015 with 8 articles each and the least published year was 2012 with 1 article. Among the oral pathology related articles published, spindle cell neoplasms (7) followed by salivary gland tumors (5), jaw tumors (4), oral granulomatous conditions (4), lymphomas (4), oral cancer (3) and odontogenic cysts (3) form the major attraction of the contributors. The largest numbers of published articles related to oral pathology were received from Tehran University of Medical Sciences; Tehran (7) followed by Mashhad University of Medical Sciences, Mashhad (6) and Shahid Beheshti University of Medical Sciences, Tehran (5). This paper may be considered as a baseline study for the bibliometric information regarding oral pathology related articles published in a pathology journal.

  5. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    Science.gov (United States)

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Neuroimaging of post-traumatic higher brain dysfunction using 123I-Iomazenil (IMZ) SPECT

    International Nuclear Information System (INIS)

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2010-01-01

    In patients with mild traumatic brain injury (MTBI), higher brain dysfunctions which consist of cognitive impairments such as memory, attention, performance and social behavioral disturbances could be rarely apparent. However, higher brain dysfunctions should be identified by neuropsychological tests and supported by a social welfare for handicapped patients. Acknowledgement of higher brain dysfunctions after MTBI without obvious brain damages on morphological neuroimagings could be a social issue under controversy. An imaging of cortical neuron damages in patients with higher brain dysfunctions after MTBI was studied by functional neuroimaging using 123 I-Iomazenil (IMZ) single photon emission computed tomography (SPECT). Statistical imaging analyses using 3 dimensional stereotactic surface projections (3D-SSP) for 123 I-IMZ SPECT and 123 I-IMP SPECT as cerebral blood flow (CBF) studies were performed in 11 patients with higher brain dysfunctions after MTBI. In all patients with higher brain dysfunctions defined by neuropsychological tests, cortical neuron damages were observed in bilateral medial frontal lobes, but reduction of CBF in bilateral medial frontal lobes were less obviously showed in 8 patients (apparent in 3 and little in 5). Group comparison of 3D-SSP of 123 I-IMZ SPECT between 11 patients and 18 normal controls demonstrated significant selective loss of cortical neuron in bilateral medial frontal gyrus (MFG). Extent of abnormal pixels on each cortical gyrus using stereotactic extraction estimation (SEE) for 3D-SSP of 123 I-IMZ SPECT confirmed that 8 patients had abnormal pixel extent >10% in bilateral MFG and 5 patients had abnormal pixel extent >10% in bilateral anterior cingulate gyrus. In patients with MTBI, higher brain dysfunctions seems to correlate with selective loss of cortical neuron within bilateral MFG which could be caused by Wallerian degeneration as secondary phenomena after diffuse axonal injury within corpus callosum. Statistical

  7. Multi-indication Pharmacotherapeutic Multicriteria Decision Analytic Model for the Comparative Formulary Inclusion of Proton Pump Inhibitors in Qatar.

    Science.gov (United States)

    Al-Badriyeh, Daoud; Alabbadi, Ibrahim; Fahey, Michael; Al-Khal, Abdullatif; Zaidan, Manal

    2016-05-01

    The formulary inclusion of proton pump inhibitors (PPIs) in the government hospital health services in Qatar is not comparative or restricted. Requests to include a PPI in the formulary are typically accepted if evidence of efficacy and tolerability is presented. There are no literature reports of a PPI scoring model that is based on comparatively weighted multiple indications and no reports of PPI selection in Qatar or the Middle East. This study aims to compare first-line use of the PPIs that exist in Qatar. The economic effect of the study recommendations was also quantified. A comparative, evidence-based multicriteria decision analysis (MCDA) model was constructed to follow the multiple indications and pharmacotherapeutic criteria of PPIs. Literature and an expert panel informed the selection criteria of PPIs. Input from the relevant local clinician population steered the relative weighting of selection criteria. Comparatively scored PPIs, exceeding a defined score threshold, were recommended for selection. Weighted model scores were successfully developed, with 95% CI and 5% margin of error. The model comprised 7 main criteria and 38 subcriteria. Main criteria are indication, dosage frequency, treatment duration, best published evidence, available formulations, drug interactions, and pharmacokinetic and pharmacodynamic properties. Most weight was achieved for the indications selection criteria. Esomeprazole and rabeprazole were suggested as formulary options, followed by lansoprazole for nonformulary use. The estimated effect of the study recommendations was up to a 15.3% reduction in the annual PPI expenditure. Robustness of study conclusions against variabilities in study inputs was confirmed via sensitivity analyses. The implementation of a locally developed PPI-specific comparative MCDA scoring model, which is multiweighted indication and criteria based, into the Qatari formulary selection practices is a successful evidence-based cost-cutting exercise

  8. How Shakespeare tempests the brain: neuroimaging insights.

    Science.gov (United States)

    Keidel, James L; Davis, Philip M; Gonzalez-Diaz, Victorina; Martin, Clara D; Thierry, Guillaume

    2013-04-01

    Shakespeare made extensive use of the functional shift (FS), a rhetorical device involving a change in the grammatical status of words, e.g., using nouns as verbs. Previous work using event-related brain potentials showed how FS triggers a surprise effect inviting mental re-evaluation, seemingly independent of semantic processing. Here, we used functional magnetic resonance imaging to investigate brain activation in participants making judgements on the semantic relationship between sentences -some containing a Shakespearean FS- and subsequently presented words. Behavioural performance in the semantic decision task was high and unaffected by sentence type. However, neuroimaging results showed that sentences featuring FS elicited significant activation beyond regions classically activated by typical language tasks, including the left caudate nucleus, the right inferior frontal gyrus and the right inferior temporal gyrus. These findings show how Shakespeare's grammatical exploration forces the listener to take a more active role in integrating the meaning of what is said. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Neuroimaging for drug addiction and related behaviors

    International Nuclear Information System (INIS)

    Parvaz, M.A.; Alia-Klein, N.; Woicik, P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-01-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  10. The experience of art: insights from neuroimaging.

    Science.gov (United States)

    Nadal, Marcos

    2013-01-01

    The experience of art is a complex one. It emerges from the interaction of multiple cognitive and affective processes. Neuropsychological and neuroimaging studies are revealing the broadly distributed network of brain regions upon which it relies. This network can be divided into three functional components: (i) prefrontal, parietal, and temporal cortical regions support evaluative judgment, attentional processing, and memory retrieval; (ii) the reward circuit, including cortical, subcortical regions, and some of its regulators, is involved in the generation of pleasurable feelings and emotions, and the valuation and anticipation of reward; and (iii) attentional modulation of activity in low-, mid-, and high-level cortical sensory regions enhances the perceptual processing of certain features, relations, locations, or objects. Understanding how these regions act in concert to produce unique and moving art experiences and determining the impact of personal and cultural meaning and context on this network the biological foundation of the experience of art--remain future challenges. © 2013 Elsevier B.V. All rights reserved.

  11. Neuroimaging for drug addiction and related behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Parvaz M. A.; Parvaz, M.A.; Alia-Klein, N.; Woicik,P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-10-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  12. Brain connectivity in pathological and pharmacological coma

    Directory of Open Access Journals (Sweden)

    Quentin Noirhomme

    2010-12-01

    Full Text Available Recent studies in patients with disorders of consciousness (DOC tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low level cortical activation in response to external stimulation in patients in a vegetative state or unresponsive wakefulness syndrome. While activation of these primary sensory cortices does not necessarily reflect conscious awareness, activation in higher order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread fronto-parietal global neuronal workspace in DOC patients including the midline default mode network, ‘intrinsic’ system, and the lateral frontoparietal cortices or ‘extrinsic system’. Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between intrinsic and extrinsic brain networks.

  13. Pathology of the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    De Foer, Bert [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: bert.defoer@GZA.be; Kenis, Christoph [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: christophkenis@hotmail.com; Van Melkebeke, Deborah [Department of Neurology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Deborah.vanmelkebeke@Ugent.be; Vercruysse, Jean-Philippe [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: jphver@yahoo.com; Somers, Thomas [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Thomas.somers@GZA.be; Pouillon, Marc [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: marc.pouillon@GZA.be; Offeciers, Erwin [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Erwin.offeciers@GZA.be; Casselman, Jan W. [Department of Radiology, AZ Sint-Jan AV Hospital, Ruddershove 10, Bruges (Belgium); Consultant Radiologist, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium); Academic Consultent, University of Ghent (Belgium)], E-mail: jan.casselman@azbrugge.be

    2010-05-15

    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  14. Pathology of the vestibulocochlear nerve

    International Nuclear Information System (INIS)

    De Foer, Bert; Kenis, Christoph; Van Melkebeke, Deborah; Vercruysse, Jean-Philippe; Somers, Thomas; Pouillon, Marc; Offeciers, Erwin; Casselman, Jan W.

    2010-01-01

    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  15. Digital pathology in nephrology clinical trials, research, and pathology practice.

    Science.gov (United States)

    Barisoni, Laura; Hodgin, Jeffrey B

    2017-11-01

    In this review, we will discuss (i) how the recent advancements in digital technology and computational engineering are currently applied to nephropathology in the setting of clinical research, trials, and practice; (ii) the benefits of the new digital environment; (iii) how recognizing its challenges provides opportunities for transformation; and (iv) nephropathology in the upcoming era of kidney precision and predictive medicine. Recent studies highlighted how new standardized protocols facilitate the harmonization of digital pathology database infrastructure and morphologic, morphometric, and computer-aided quantitative analyses. Digital pathology enables robust protocols for clinical trials and research, with the potential to identify previously underused or unrecognized clinically useful parameters. The integration of digital pathology with molecular signatures is leading the way to establishing clinically relevant morpho-omic taxonomies of renal diseases. The introduction of digital pathology in clinical research and trials, and the progressive implementation of the modern software ecosystem, opens opportunities for the development of new predictive diagnostic paradigms and computer-aided algorithms, transforming the practice of renal disease into a modern computational science.

  16. Mindcontrol: Organize, quality control, annotate, edit, and collaborate on neuroimaging processing results

    Directory of Open Access Journals (Sweden)

    Anisha Keshavan

    2017-02-01

    Full Text Available Mindcontrol is an open-source web-based dashboard to quality control and curate neuroimaging data. At Neurohackweek 2016, a group assembled to add new features to the Mindcontrol interface. Contributors used Python, Javascript, and Git to configure Mindcontrol for the ABIDE and CoRR open datasets, and add new types of plots to the interface. All contributions are freely available online, and the code is being actively maintained at http://www.github.com/akeshavan/mindcontrol.

  17. [Adolescent pathological gambling].

    Science.gov (United States)

    Petit, A; Karila, L; Lejoyeux, M

    2015-05-01

    Although experts have long thought that the problems of gambling involved only adults, recent studies tend to show that teenagers are also affected. The objective of this paper is to show the characteristics of pathological gambling in adolescents. This review focuses on the clinical features, prevalence, psychopathology, prevention and treatment of this disorder. A review of the medical literature was conducted, using PubMed, using the following keywords alone or combined: pathological gambling, dependence, addiction and adolescents. We selected 12 English articles from 1997 to 2014. Recent work estimate that between 4 and 8% of adolescents suffer from problem gambling, and the prevalence of pathological gambling is 2-4 times higher in adolescents than in adults. The term adolescent pathological gambler starts early around the age of 10-12 years, with a quick change of status from casual to that of problem gambler and player. Complications appear quickly and comorbidities are common. There is no curative pharmacological treatment approved by health authorities. Pathological gambling among adolescents has grown significantly in recent years and should be promptly taken care of. Further studies must be performed to improve our understanding of this problem among adolescents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Future-proofing pathology: the case for clinical adoption of digital pathology.

    Science.gov (United States)

    Williams, Bethany Jill; Bottoms, David; Treanor, Darren

    2017-12-01

    This document clarifies the strategic context of digital pathology adoption, defines the different use cases a healthcare provider may wish to consider as part of a digital adoption and summarises existing reasons for digital adoption and its potential benefits. The reader is provided with references to the relevant literature, and illustrative case studies. The authors hope this report will be of interest to healthcare providers, pathology managers, departmental heads, pathologists and biomedical scientists that are considering digital pathology, deployments or preparing business cases for digital pathology adoption in clinical settings. The information contained in this document can be shared and used in any documentation the reader wishes to present for their own institutional case for adoption report or business case. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Next-Generation Pathology.

    Science.gov (United States)

    Caie, Peter D; Harrison, David J

    2016-01-01

    The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

  20. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Stefan [University of Rostock, Department of Psychosomatic Medicine, Rostock (Germany); DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States); Grothe, Michel J. [DZNE, German Center for Neurodegenerative Diseases, Rostock (Germany); Alzheimer' s Disease Neuroimaging Initiative (United States)

    2016-03-15

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  1. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease?

    International Nuclear Information System (INIS)

    Teipel, Stefan; Grothe, Michel J.

    2016-01-01

    Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia.We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions. (orig.)

  2. Acute disseminated encephalomyelitis complicating dengue infection with neuroimaging mimicking multiple sclerosis: A report of two cases.

    Science.gov (United States)

    Viswanathan, S; Botross, N; Rusli, B N; Riad, A

    2016-11-01

    Acute disseminated encephalomyelitis (ADEM) complicating dengue infection is still exceedingly rare even in endemic countries such as Malaysia. Here we report two such cases, the first in an elderly female patient and the second in a young man. Both presented with encephalopathy, brainstem involvement and worsening upper and lower limb weakness. Initial magnetic resonance imaging (MRI) of the brain was normal in the first case. Serum for dengue Ig M and NS-1 was positive in both cases. Cerebrospinal fluid (CSF) showed pleocytosis in both with Dengue IgM and NS-1 positive in the second case but not done in the first. MRI brain showed changes of perpendicular subcortical palisading white matter, callosal and brainstem disease mimicking multiple sclerosis (MS) in both patients though in the former case there was a lag between the onset of clinical symptoms and MRI changes which was only clarified on reimaging. The temporal evolution and duration of the clinical symptoms, CSF changes and neuroimaging were more suggestive of Dengue ADEM rather than an encephalitis though initially the first case began as dengue encephalitis. Furthermore in dengue encephalitis neuroimaging is usually normal or rarely edema, haemorrhage, brainstem, thalamic or focal lesions are seen. Therefore, early recognition of ADEM as a sequelae of dengue infection with neuroimaging mimicking MS and repeat imaging helped in identifying these two cases. Treatment with intravenous steroids followed by maintenance oral steroids produced good outcome in both patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Outcome of oligodendroglioma treatment in the era of modern neuroimaging

    International Nuclear Information System (INIS)

    Kleinberg, Lawrence R.; Silverman, Edward; Brem, Henry; Wharam, Moody D.

    1997-01-01

    Purpose/Objective: The benefit of routine postoperative radiotherapy for low grade oligodendroglioma remains controversial. Most published series include many patients treated before the availability of CT or MRI scans which allow early diagnosis, guide surgery, detect residual disease, improve radiotherapy, and detect asymptomatic recurrences. The purpose of this analysis is to determine whether observation rather than radiation continues to be an appropriate option for selected patients with the availability of modern neuroimaging. Materials and Methods: 58 patients (age 2-67 years, 6 pts. =2 poor prognostic factor (p=.04). Results: Two and five year actuarial freedom from local progression was 93 +/- 4% and 75% +/- 8% whereas 2 and 5 year overall survival was 94% +/- 3% and 80% +/- 7%. Despite the imbalance of prognostic factors, there was no significant difference whether or not postoperative RT was given. With RT, 2 and 4 year actuarial freedom from progression was 94% +/- 4% and 78% +/- 8%, whereas without RT it was 94% +/- 6% at 2 and 4 years. Similarly, 2 and 4 year actuarial survival was 94% +/- 4% and 78% +/- 8% with RT and was 91% +/- 8% without RT. (5(10)) recurrences were detected radiologically without new or progressive clinical symptoms. Conclusion: These data support the hypothesis that, in the era of modern neuroimaging, the initial observation of good risk patients and immediate irradiation of poor risk patients is an appropriate treatment approach which results in good medium term control and survival for low grade oligodendroglioma patients. A policy of treatment vs. observation based on selected prognostic factors will be tested prospectively in an intergroup trial for low grade glioma histologies

  4. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  5. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2017-11-01

    Full Text Available Traumatic brain injury (TBI is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key

  6. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  7. Cranial neuroimaging in pregnancy and the post-partum period

    International Nuclear Information System (INIS)

    Mortimer, A.M.; Bradley, M.D.; Likeman, M.; Stoodley, N.G.; Renowden, S.A.

    2013-01-01

    Several diverse neurological conditions may be seen during pregnancy and the post partum period. These usually require neuroimaging for definitive diagnosis and range from a predisposition to neurovascular abnormalities, such as acute ischaemic stroke and cerebral venous sinus thrombosis, through to more specific pregnancy-related conditions, such as eclampsia/posterior reversible leukoencephalopathy and post-partum angiopathy. Additionally, the pregnant patient is predisposed to pituitary disease. It is necessary that the radiologist has an awareness of these conditions to allow swift specific diagnoses or suggest the most appropriate diagnosis when imaging findings are non-specific. We describe epidemiological and radiological features to allow the radiologist to guide the clinician in management, and review guidelines for safe cranial imaging of the pregnant patient

  8. Functional neuroimaging in Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2006-01-01

    Recent progress in the title is reviewed often referring to authors' investigations. The method eZIS developed by them is for automated diagnosis of brain perfusion SPECT, where voxel-based analysis can be done using a Z-score map calculable from patient's data and standard database with 3D-stereotactic surface projection. Decreases of regional cerebral blood flow (rCBF) and of glucose metabolism detectable in specified brain regions by PET or SPECT in patients with mild cognitive impairment (MCI), are found useful for predicting the stage progression of MCI to Alzheimer disease (AD) in future. Partial volume correction method, essentially the division of images of a gray matter SPECT by MR, has elevated the precision of cerebral image analysis. Differential diagnosis of AD and dementia with Lewy bodies, the second most common form of dementia, is possible by the difference of occipital perfusion or glucose metabolism. Evidences by rCBF SPECT as well as by symptomatic ones have been accumulated recently for the therapeutic effect of donepezil, an inhibitor of acetylcholine esterase used for AD treatment. PET and SPECT imaging for the assessment of rCBF and metabolism has thus played very important roles in AD diagnosis, staging, differentiation, prediction and drug effect assessment. Recent advance in voxel-based statistical analysis of PET and SPECT images has raised the value of neuroimaging in dementia. (T.I.)

  9. Developments in functional neuroimaging techniques

    International Nuclear Information System (INIS)

    Aine, C.J.

    1995-01-01

    A recent review of neuroimaging techniques indicates that new developments have primarily occurred in the area of data acquisition hardware/software technology. For example, new pulse sequences on standard clinical imagers and high-powered, rapidly oscillating magnetic field gradients used in echo planar imaging (EPI) have advanced MRI into the functional imaging arena. Significant developments in tomograph design have also been achieved for monitoring the distribution of positron-emitting radioactive tracers in the body (PET). Detector sizes, which pose a limit on spatial resolution, have become smaller (e.g., 3--5 mm wide) and a new emphasis on volumetric imaging has emerged which affords greater sensitivity for determining locations of positron annihilations and permits smaller doses to be utilized. Electromagnetic techniques have also witnessed growth in the ability to acquire data from the whole head simultaneously. EEG techniques have increased their electrode coverage (e.g., 128 channels rather than 16 or 32) and new whole-head systems are now in use for MEG. But the real challenge now is in the design and implementation of more sophisticated analyses to effectively handle the tremendous amount of physiological/anatomical data that can be acquired. Furthermore, such analyses will be necessary for integrating data across techniques in order to provide a truly comprehensive understanding of the functional organization of the human brain

  10. Linking variability in brain chemistry and circuit function through multimodal human neuroimaging

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, A R

    2012-01-01

    and dopamine system and its effects on threat- and reward-related brain function, we review evidence for how such a multimodal neuroimaging strategy can be successfully implemented. Furthermore, we discuss how multimodal PET-fMRI can be integrated with techniques such as imaging genetics, pharmacological......Identifying neurobiological mechanisms mediating the emergence of individual differences in behavior is critical for advancing our understanding of relative risk for psychopathology. Neuroreceptor positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) can be used...

  11. Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer's disease in younger and older age cohorts

    NARCIS (Netherlands)

    Schmand, B.; Eikelenboom, P.; van Gool, W.A.

    2011-01-01

    OBJECTIVES: To examine the influence of age on the value of four techniques for diagnosing Alzheimer's disease (AD). DESIGN: Observational cohort study. SETTING: Alzheimer's Disease Neuroimaging Initiative. PARTICIPANTS: Individuals with mild cognitive impairment (MCI; n=179), individuals with AD

  12. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  13. Neuroimaging findings in the at-risk mental state: a review of recent literature.

    Science.gov (United States)

    Wood, Stephen J; Reniers, Renate L E P; Heinze, Kareen

    2013-01-01

    The at-risk mental state (ARMS) has been the subject of much interest during the past 15 years. A great deal of effort has been expended to identify neuroimaging markers that can inform our understanding of the risk state and to help predict who will transition to frank psychotic illness. Recently, there has been an explosion of neuroimaging literature from people with an ARMS, which has meant that reviews and meta-analyses lack currency. Here we review papers published in the past 2 years, and contrast their findings with previous reports. While it is clear that people in the ARMS do show brain alterations when compared with healthy control subjects, there is an overall lack of consistency as to which of these alterations predict the development of psychosis. This problem arises because of variations in methodology (in patient recruitment, region of interest, method of analysis, and functional task employed), but there has also been too little effort put into replicating previous research. Nonetheless, there are areas of promise, notably that activation of the stress system and increased striatal dopamine synthesis seem to mark out patients in the ARMS most at risk for later transition. Future studies should focus on these areas, and on network-level analysis, incorporating graph theoretical approaches and intrinsic connectivity networks.

  14. Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative.

    Science.gov (United States)

    Gomar, Jesus J; Bobes-Bascaran, Maria T; Conejero-Goldberg, Concepcion; Davies, Peter; Goldberg, Terry E

    2011-09-01

    Biomarkers have become increasingly important in understanding neurodegenerative processes associated with Alzheimer disease. Markers include regional brain volumes, cerebrospinal fluid measures of pathological Aβ1-42 and total tau, cognitive measures, and individual risk factors. To determine the discriminative utility of different classes of biomarkers and cognitive markers by examining their ability to predict a change in diagnostic status from mild cognitive impairment to Alzheimer disease. Longitudinal study. We analyzed the Alzheimer's Disease Neuroimaging Initiative database to study patients with mild cognitive impairment who converted to Alzheimer disease (n = 116) and those who did not convert (n = 204) within a 2-year period. We determined the predictive utility of 25 variables from all classes of markers, biomarkers, and risk factors in a series of logistic regression models and effect size analyses. The Alzheimer's Disease Neuroimaging Initiative public database. Primary outcome measures were odds ratios, pseudo- R(2)s, and effect sizes. In comprehensive stepwise logistic regression models that thus included variables from all classes of markers, the following baseline variables predicted conversion within a 2-year period: 2 measures of delayed verbal memory and middle temporal lobe cortical thickness. In an effect size analysis that examined rates of decline, change scores for biomarkers were modest for 2 years, but a change in an everyday functional activities measure (Functional Assessment Questionnaire) was considerably larger. Decline in scores on the Functional Assessment Questionnaire and Trail Making Test, part B, accounted for approximately 50% of the predictive variance in conversion from mild cognitive impairment to Alzheimer disease. Cognitive markers at baseline were more robust predictors of conversion than most biomarkers. Longitudinal analyses suggested that conversion appeared to be driven less by changes in the neurobiologic

  15. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    Science.gov (United States)

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.

  16. Pharmacotherapeutic management of chronic noncancer pain in primary care: lessons for pharmacists

    Directory of Open Access Journals (Sweden)

    Jouini G

    2014-03-01

    Full Text Available Ghaya Jouini,1–3 Manon Choinière,3,4 Elisabeth Martin,2,3 Sylvie Perreault,1,5 Djamal Berbiche,2,3 David Lussier,6–8 Eveline Hudon,2,3,9 Lyne Lalonde1–3,101Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada; 2Équipe de recherche en soins de première ligne, Centre de santé et de services sociaux de Laval, Laval, Quebec, Canada; 3Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM, Montreal, Quebec, Canada; 4Department of Anesthesiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; 5Sanofi-Aventis Endowment Research Chair in Optimal Drug Use, Université de Montréal, Montreal, Quebec, Canada; 6Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada; 7Division of Geriatric Medicine and Alan-Edwards Center for Research on Pain, McGill University, Montreal, Quebec, Canada; 8Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; 9Department of Family Medicine and Emergency, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; 10Sanofi-Aventis Endowment Research Chair in Ambulatory Pharmaceutical Care, Université de Montréal and Centre de santé et de services sociaux de Laval, Quebec, CanadaPurpose: Describe the pharmacotherapeutic management of primary-care patients with chronic noncancer pain, assess their satisfaction with pain treatment, and identify the determinants of their satisfaction.Methods: A cohort study was conducted in Quebec (Canada. Patients reporting chronic noncancer pain with an average pain intensity of at least 4 on a 0–10 scale (10= worst possible pain and having an active analgesic prescription from a primary-care physician were recruited. They completed a telephone interview and a self-administered questionnaire to document their pain, emotional well-being, satisfaction with treatment, and barriers/beliefs/attitudes about pain and its treatment. Information

  17. The same analysis approach: Practical protection against the pitfalls of novel neuroimaging analysis methods.

    Science.gov (United States)

    Görgen, Kai; Hebart, Martin N; Allefeld, Carsten; Haynes, John-Dylan

    2017-12-27

    Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    Directory of Open Access Journals (Sweden)

    D. Val-Laillet

    2015-01-01

    Full Text Available Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI, positron emission tomography (PET, single photon emission computed tomography (SPECT, pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS and transcranial direct-current stimulation (tDCS. Converging evidence points at

  19. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    Science.gov (United States)

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  20. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    Science.gov (United States)

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of

  1. Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging

    OpenAIRE

    Natalia Y Bilenko; Jack L Gallant; Jack L Gallant

    2016-01-01

    In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Py...

  2. Maternal Relationship, Social Skills and Parental Behavior Through Neuroimaging Techniques and Behavioral Studies

    OpenAIRE

    Serra, Mauro

    2015-01-01

    Mother child relationship is the first and the most important social relationship as it has implications on psychological and neural development of the individual. Here we investigated mother child relationship focusing on different aspects and using a combination of behavioural and neuroimaging techniques. In the first study we addressed the association between brain connectivity and interpersonal competences which are at the basis of every social interaction including the ones involved in m...

  3. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    Science.gov (United States)

    Kuss, Daria J.; Griffiths, Mark D.

    2012-01-01

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches. PMID:24961198

  4. Internet and Gaming Addiction: A Systematic Literature Review of Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2012-09-01

    Full Text Available In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  5. Internet and gaming addiction: a systematic literature review of neuroimaging studies.

    Science.gov (United States)

    Kuss, Daria J; Griffiths, Mark D

    2012-09-05

    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches.

  6. Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer's disease in younger and older age cohorts

    NARCIS (Netherlands)

    Schmand, Ben; Eikelenboom, Piet; van Gool, Willem A.

    2011-01-01

    To examine the influence of age on the value of four techniques for diagnosing Alzheimer's disease (AD). Observational cohort study. Alzheimer's Disease Neuroimaging Initiative. Individuals with mild cognitive impairment (MCI; n = 179), individuals with AD (n = 91), and normal controls (n = 105).

  7. Neuroimaging patterns of cerebral hyperperfusion

    Science.gov (United States)

    Semenov, S.; Portnov, Yu; Semenov, A.; Korotkevich, A.; Kokov, A.

    2017-08-01

    Cerebral hyperperfusion syndrome (CHS) after revascularization is a rare phenomenon associated with post-ischemic (reactive) hyperemia and acute pathological hyperperfusion. First described on perfusion CT as a very often moderate CBF increase, MTT/TTP decrease within 30% like a temporary effect, according to a short-time deterioration of neurological symptoms (vestibular ataxia - 58%, vegetative dysfunction - 100%, asthenic syndrome - 100%) in early postoperative period in patients with cardiac ischemia who had undergone coronary artery bypass surgery. The acute pathological hyperperfusion carotid revascularization is a casuistic phenomenon with two- or three-fold CBV and MTT/TTP increase and high hemorrhage risk. Besides, we detected similar exchanges via perfusion CT called benign hyperemia, which marks extension of MTT/TTP and an increase of CBV from 27% to 48% (average 30%), but with normal CBF-parameters, indicating that venous stasis in acute venous ischemic stroke due cerebral venous sinus-trombosis (68%), only 6% in cardioembolic stroke and appears never in arterial stroke. Territorial coincidence registered for perifocal of necrosis zones of benign hyperemia and vasogenic edema accompanied on MRI (DWI, ADC). Secondary hemorrhagic transformation registered for primary non-hemorrhagic venous stroke in 27%, only in 9% for arterial stroke and in 60% for cardioembolic stroke. Probably, congestion is an increasingly predisposing factor secondary hemorrhaging than necrosis.

  8. Neuroimaging in status epilepticus secondary to paraneoplastic autoimmune encephalitis

    International Nuclear Information System (INIS)

    Sarria-Estrada, S.; Toledo, M.; Lorenzo-Bosquet, C.; Cuberas-Borrós, G.; Auger, C.; Siurana, S.; Rovira, À.

    2014-01-01

    Aim: To describe the characteristic magnetic resonance imaging (MRI) findings of paraneoplastic autoimmune encephalitis in patients with new-onset status epilepticus. Materials and methods: The neuroimaging and clinical data of five patients with paraneoplastic autoimmune encephalitis debuting as status epilepticus were retrospectively reviewed. All patients met the criteria for definite paraneoplastic syndrome and all underwent brain MRI during the status epilepticus episode or immediately after recovery. Results: All patients showed hyperintense lesions on T2-weighted imaging (WI) involving the limbic structures, specifically the hippocampus. Three of them showed additional extra-limbic areas of signal abnormalities. The areas of T2 hyperintensity were related to the electroclinical onset of the seizures. In three patients, various techniques were used to study cerebral perfusion, such as arterial spin labelling MRI, single photon-emission computed tomography (SPECT) and 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron-emission tomography (PET). Arterial spin labelling showed hyperperfusion overlapping the inflammatory lesions, whereas PET and SPECT disclosed increased perfusion and increased metabolism. The subtraction SPECT co-registered to MRI (SISCOM) demonstrated hypermetabolism outside the areas of encephalitis. After clinical recovery, follow-up MRI revealed the development of atrophy in the initially affected hippocampus. Two patients who had recurrent paraneoplastic autoimmune encephalitis manifesting as status epilepticus showed new T2 lesions involving different structures. Conclusion: The presence of limbic and extra-limbic T2 signal abnormalities in new-onset status epilepticus should suggest the diagnosis of a paraneoplastic syndrome, especially when status epilepticus is refractory to treatment. The lesions are consistently seen as hyperintense on T2WI. - Highlights: • New onset status epilepticus can be caused by paraneoplastic encephalitis.

  9. Neuroimaging in status epilepticus secondary to paraneoplastic autoimmune encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Sarria-Estrada, S., E-mail: ssarria@idi-cat.org [Magnetic Resonance Unit, Radiology Department, Vall d' Hebrón University Hospital, Barcelona (Spain); Toledo, M. [Epilepsy Unit, Neurology Department, Vall d' Hebrón University Hospital, Barcelona (Spain); Lorenzo-Bosquet, C.; Cuberas-Borrós, G. [Nuclear Medicine Department, Vall d' Hebrón University Hospital, Barcelona (Spain); Auger, C.; Siurana, S.; Rovira, À. [Magnetic Resonance Unit, Radiology Department, Vall d' Hebrón University Hospital, Barcelona (Spain)

    2014-08-15

    Aim: To describe the characteristic magnetic resonance imaging (MRI) findings of paraneoplastic autoimmune encephalitis in patients with new-onset status epilepticus. Materials and methods: The neuroimaging and clinical data of five patients with paraneoplastic autoimmune encephalitis debuting as status epilepticus were retrospectively reviewed. All patients met the criteria for definite paraneoplastic syndrome and all underwent brain MRI during the status epilepticus episode or immediately after recovery. Results: All patients showed hyperintense lesions on T2-weighted imaging (WI) involving the limbic structures, specifically the hippocampus. Three of them showed additional extra-limbic areas of signal abnormalities. The areas of T2 hyperintensity were related to the electroclinical onset of the seizures. In three patients, various techniques were used to study cerebral perfusion, such as arterial spin labelling MRI, single photon-emission computed tomography (SPECT) and 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG)-positron-emission tomography (PET). Arterial spin labelling showed hyperperfusion overlapping the inflammatory lesions, whereas PET and SPECT disclosed increased perfusion and increased metabolism. The subtraction SPECT co-registered to MRI (SISCOM) demonstrated hypermetabolism outside the areas of encephalitis. After clinical recovery, follow-up MRI revealed the development of atrophy in the initially affected hippocampus. Two patients who had recurrent paraneoplastic autoimmune encephalitis manifesting as status epilepticus showed new T2 lesions involving different structures. Conclusion: The presence of limbic and extra-limbic T2 signal abnormalities in new-onset status epilepticus should suggest the diagnosis of a paraneoplastic syndrome, especially when status epilepticus is refractory to treatment. The lesions are consistently seen as hyperintense on T2WI. - Highlights: • New onset status epilepticus can be caused by paraneoplastic encephalitis

  10. Neuroimaging revolutionizes therapeutic approaches to chronic pain

    Directory of Open Access Journals (Sweden)

    Borsook David

    2007-09-01

    Full Text Available Abstract An understanding of how the brain changes in chronic pain or responds to pharmacological or other therapeutic interventions has been significantly changed as a result of developments in neuroimaging of the CNS. These developments have occurred in 3 domains : (1 Anatomical Imaging which has demonstrated changes in brain volume in chronic pain; (2 Functional Imaging (fMRI that has demonstrated an altered state in the brain in chronic pain conditions including back pain, neuropathic pain, and complex regional pain syndromes. In addition the response of the brain to drugs has provided new insights into how these may modify normal and abnormal circuits (phMRI or pharmacological MRI; (3 Chemical Imaging (Magnetic Resonance Spectroscopy or MRS has helped our understanding of measures of chemical changes in chronic pain. Taken together these three domains have already changed the way in which we think of pain – it should now be considered an altered brain state in which there may be altered functional connections or systems and a state that has components of degenerative aspects of the CNS.

  11. Neuroimaging studies in people with gender incongruence.

    Science.gov (United States)

    Kreukels, Baudewijntje P C; Guillamon, Antonio

    2016-01-01

    The current review gives an overview of brain studies in transgender people. First, we describe studies into the aetiology of feelings of gender incongruence, primarily addressing the sexual differentiation hypothesis: does the brain of transgender individuals resemble that of their natal sex, or that of their experienced gender? Findings from neuroimaging studies focusing on brain structure suggest that the brain phenotypes of trans women (MtF) and trans men (FtM) differ in various ways from control men and women with feminine, masculine, demasculinized and defeminized features. The brain phenotypes of people with feelings of gender incongruence may help us to figure out whether sex differentiation of the brain is atypical in these individuals, and shed light on gender identity development. Task-related imaging studies may show whether brain activation and task performance in transgender people is sex-atypical. Second, we review studies that evaluate the effects of cross-sex hormone treatment on the brain. This type of research provides knowledge on how changes in sex hormone levels may affect brain structure and function.

  12. The Rise of Forensic Pathology in Human Medicine: Lessons for Veterinary Forensic Pathology.

    Science.gov (United States)

    Pollanen, M S

    2016-09-01

    The rise of forensic pathology in human medicine has greatly contributed to the administration of justice, public safety and security, and medical knowledge. However, the evolution of human forensic pathology has been challenging. Veterinary forensic pathologists can learn from some of the lessons that have informed the growth and development of human forensic pathology. Three main observations have emerged in the past decade. First, wrongful convictions tell us to use a truth-seeking stance rather than an a priori "think dirty" stance when investigating obscure death. Second, missed homicides and concealed homicides tell us that training and certification are the beginning of reliable forensic pathology. Third, failure of a sustainable institutional arrangement that fosters a combination of service, research, and teaching will lead to stagnation of knowledge. Forensic pathology of humans and animals will flourish, help protect society, and support justice if we embrace a modern biomedical scientific model for our practice. We must build training programs, contribute to the published literature, and forge strong collaborative institutions. © The Author(s) 2016.

  13. Neuroimaging of psychopathy and antisocial behavior: a targeted review.

    Science.gov (United States)

    Blair, R J R

    2010-02-01

    The goal of this article is to provide a selective and targeted review of the neuroimaging literature on psychopathic tendencies and antisocial behavior and to explore the extent to which this literature supports recent cognitive neuroscientific models of psychopathy and antisocial behavior. The literature reveals that individuals who present with an increased risk for reactive, but not instrumental, aggression show increased amygdala responses to emotionally evocative stimuli. This is consistent with suggestions that such individuals are primed to respond strongly to an inappropriate extent to threatening or frustrating events. In contrast, individuals with psychopathic tendencies show decreased amygdala and orbitofrontal cortex responses to emotionally provocative stimuli or during emotional learning paradigms. This is consistent with suggestions that such individuals face difficulties with basic forms of emotional learning and decision making.

  14. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies

    NARCIS (Netherlands)

    Sescousse, G.T.; Caldu, X.; Segura, B.; Dreher, J.C.

    2013-01-01

    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human

  15. Pathological video-gaming among Singaporean youth.

    Science.gov (United States)

    Choo, Hyekyung; Gentile, Douglas A; Sim, Timothy; Li, Dongdong; Khoo, Angeline; Liau, Albert K

    2010-11-01

    Increase in internet use and video-gaming contributes to public concern on pathological or obsessive play of video games among children and adolescents worldwide. Nevertheless, little is known about the prevalence of pathological symptoms in video-gaming among Singaporean youth and the psychometric properties of instruments measuring pathological symptoms in video-gaming. A total of 2998 children and adolescents from 6 primary and 6 secondary schools in Singapore responded to a comprehensive survey questionnaire on sociodemographic characteristics, video-gaming habits, school performance, somatic symptoms, various psychological traits, social functioning and pathological symptoms of video-gaming. After weighting, the survey data were analysed to determine the prevalence of pathological video-gaming among Singaporean youth and gender differences in the prevalence. The construct validity of instrument used to measure pathological symptoms of video-gaming was tested. Of all the study participants, 8.7% were classified as pathological players with more boys reporting more pathological symptoms than girls. All variables, including impulse control problem, social competence, hostility, academic performance, and damages to social functioning, tested for construct validity, were significantly associated with pathological status, providing good evidence for the construct validity of the instrument used. The prevalence rate of pathological video-gaming among Singaporean youth is comparable with that from other countries studied thus far, and gender differences are also consistent with the findings of prior research. The positive evidence of construct validity supports the potential use of the instrument for future research and clinical screening on Singapore children and adolescents' pathological video-gaming.

  16. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning.

    Science.gov (United States)

    Chein, Jason M; Schneider, Walter

    2005-12-01

    Functional magnetic resonance imaging and a meta-analysis of prior neuroimaging studies were used to characterize cortical changes resulting from extensive practice and to evaluate a dual-processing account of the neural mechanisms underlying human learning. Three core predictions of the dual processing theory are evaluated: 1) that practice elicits generalized reductions in regional activity by reducing the load on the cognitive control mechanisms that scaffold early learning; 2) that these control mechanisms are domain-general; and 3) that no separate processing pathway emerges as skill develops. To evaluate these predictions, a meta-analysis of prior neuroimaging studies and a within-subjects fMRI experiment contrasting unpracticed to practiced performance in a paired-associate task were conducted. The principal effect of practice was found to be a reduction in the extent and magnitude of activity in a cortical network spanning bilateral dorsal prefrontal, left ventral prefrontal, medial frontal (anterior cingulate), left insular, bilateral parietal, and occipito-temporal (fusiform) areas. These activity reductions are shown to occur in common regions across prior neuroimaging studies and for both verbal and nonverbal paired-associate learning in the present fMRI experiment. The implicated network of brain regions is interpreted as a domain-general system engaged specifically to support novice, but not practiced, performance.

  17. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    Science.gov (United States)

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  18. Learning Neuroimaging. 100 essential cases

    International Nuclear Information System (INIS)

    Asis Bravo-Rodriguez, Francisco de; Diaz-Aguilera, Rocio; Hygino da Cruz, Luiz Celso

    2012-01-01

    Neuroradiology is the branch of radiology that comprises both imaging and invasive procedures related to the brain, spine and spinal cord, head, neck, organs of special sense (eyes, ears, nose), cranial and spinal nerves, and cranial, cervical, and spinal vessels. Special training and skills are required to enable the neuroradiologist to function as an expert diagnostic and therapeutic consultant and practitioner. In addition to knowledge of imaging findings, the neuroradiologist is required to learn the fundamentals of structural and functional neuroanatomy, neuropathology, and neuropathophysiology as well as the clinical manifestations of diseases of the brain, spine and spinal cord, head, neck, and organs of special sense. This book is intended as an introduction to neuroradiology and aims to provide the reader with a comprehensive overview of this highly specialized radiological subspecialty. One hundred illustrated cases from clinical practice are presented in a standard way. Each case is supported by representative images and is divided into three parts: a brief summary of the patient's medical history, a discussion of the disease, and a description of the most characteristic imaging features of the disorder. The focus is not only on common neuroradiological entities such as stroke and acute head trauma but also on less frequent disorders that the practitioner should recognize. Learning Neuroimaging: 100 Essential Cases is an ideal resource for neuroradiology and radiology residents, neurology residents, neurosurgery residents, nurses, radiology technicians, and medical students. (orig.)

  19. Learning Neuroimaging. 100 essential cases

    Energy Technology Data Exchange (ETDEWEB)

    Asis Bravo-Rodriguez, Francisco de [Reina Sofia University Hospital, Cordoba (Spain). Diagnostic and Therapeutics Neuroradiology; Diaz-Aguilera, Rocio [Alto Guadalquivir Hospital, Andujar, Jaen (Spain). Dept. of Radiology; Hygino da Cruz, Luiz Celso [Universidade Federal do Rio de Janeiro (Brazil). CDPI and IRM Ressonancia Magnetica

    2012-07-01

    Neuroradiology is the branch of radiology that comprises both imaging and invasive procedures related to the brain, spine and spinal cord, head, neck, organs of special sense (eyes, ears, nose), cranial and spinal nerves, and cranial, cervical, and spinal vessels. Special training and skills are required to enable the neuroradiologist to function as an expert diagnostic and therapeutic consultant and practitioner. In addition to knowledge of imaging findings, the neuroradiologist is required to learn the fundamentals of structural and functional neuroanatomy, neuropathology, and neuropathophysiology as well as the clinical manifestations of diseases of the brain, spine and spinal cord, head, neck, and organs of special sense. This book is intended as an introduction to neuroradiology and aims to provide the reader with a comprehensive overview of this highly specialized radiological subspecialty. One hundred illustrated cases from clinical practice are presented in a standard way. Each case is supported by representative images and is divided into three parts: a brief summary of the patient's medical history, a discussion of the disease, and a description of the most characteristic imaging features of the disorder. The focus is not only on common neuroradiological entities such as stroke and acute head trauma but also on less frequent disorders that the practitioner should recognize. Learning Neuroimaging: 100 Essential Cases is an ideal resource for neuroradiology and radiology residents, neurology residents, neurosurgery residents, nurses, radiology technicians, and medical students. (orig.)

  20. Neuroimaging Evidence of Comprehension Monitoring

    Directory of Open Access Journals (Sweden)

    Linda Baker

    2014-04-01

    Full Text Available The purpose of this article is to synthesize the emerging neuroimaging literature that reveals how the brain responds when readers and listeners encounter texts that demand monitoring of their ongoing comprehension processes. Much of this research has been undertaken by cognitive scientists who do not frame their work in metacognitive terms, and therefore it is less likely to be familiar to psychologists who study metacognition in educational contexts. The important role of metacognition in the development and use of academic skills is widely recognized. Metacognition is typically defined as the awareness and control of one's own cognitive processes. In the domain of reading, the most important metacognitive skill is comprehension monitoring, the evaluation and regulation of comprehension. Readers who monitor their understanding realize when they have encountered difficulty making sense of the text, and they apply error correction procedures to attempt to resolve the difficulty. Metacognition depends on executive control skills that continue to develop into early adulthood, in parallel with the maturation of the executive control regions of the prefrontal cortex. Functional magnetic resonance imaging (fMRI and event-related potentials (ERP have been used for some time to study neural correlates of basic reading processes such as word identification, but it is only within recent years that researchers have turned to the higher-level processes of text comprehension. The article describes illustrative studies that reveal changes in neural activity when adults apply lexical, syntactic, or semantic standards to evaluate their understanding.

  1. Effect of Spatial Alignment Transformations in PCA and ICA of Functional Neuroimages

    DEFF Research Database (Denmark)

    Lukic, Ana S.; Wernick, Miles N.; Yang, Yongui

    2007-01-01

    this observation is true, not only for spatial ICA, but also for temporal ICA and for principal component analysis (PCA). In each case we find conditions that the spatial alignment operator must satisfy to ensure invariance of the results. We illustrate our findings using functional magnetic-resonance imaging (f......It has been previously observed that spatial independent component analysis (ICA), if applied to data pooled in a particular way, may lessen the need for spatial alignment of scans in a functional neuroimaging study. In this paper we seek to determine analytically the conditions under which...

  2. Emerging Global Initiatives in Neurogenetics: The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium.

    Science.gov (United States)

    Bearden, Carrie E; Thompson, Paul M

    2017-04-19

    The Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) Consortium is a global team science effort, now including over 800 scientists spread across 340 institutions in 35 countries, with the shared goal of understanding disease and genetic influences on the brain. This "crowdsourcing" approach to team neuroscience has unprecedented power for advancing our understanding of both typical and atypical human brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The effect of image enhancement on the statistical analysis of functional neuroimages : Wavelet-based denoising and Gaussian smoothing

    NARCIS (Netherlands)

    Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM

    2003-01-01

    The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising

  4. Stroop performance in pathological gamblers.

    Science.gov (United States)

    Kertzman, Semion; Lowengrub, Katherine; Aizer, Anat; Nahum, Zeev Ben; Kotler, Moshe; Dannon, Pinhas N

    2006-05-30

    Pathological gambling is a relatively prevalent psychiatric disorder that typically leads to severe family, social, legal, and occupational problems and is associated with a high rate of suicide attempts. Understanding the neurobiological basis of pathological gambling is a current focus of research, and emerging data have demonstrated that pathological gamblers may have impaired decision-making because of an inability to inhibit irrelevant information. In this study, we examined pathological gamblers by using the Stroop Color-Word Test, a neurocognitive task used to assess interference control. The "reverse" variant of the Stroop Color-Word Test was administered to a cohort of medication-free pathological gamblers (n=62) and a cohort of age-matched controls (n=83). In the reverse variant of the Stroop task, subjects are asked to read the meaning of the word rather than name the ink color. The reverse Stroop task was chosen because it highly discriminates ability to inhibit interference in a population of psychiatric patients. In our study, performance on the reverse Stroop task in the pathological gamblers was significantly slower and less accurate than in the healthy subjects. A new finding in our study was that for pathological gamblers, the average reaction time in the neutral condition (where the color names are displayed in black letters) was slower than the average reaction time in the incongruent condition (where the meaning of the color name and the color of the printed letters are different). This controlled study extends previous findings by showing that performance on the Stroop task is impaired in a sample of medication-free pathological gamblers.

  5. Neuroimaging of person perception: A social-visual interface.

    Science.gov (United States)

    Brooks, Jeffrey A; Freeman, Jonathan B

    2017-12-21

    The visual system is able to extract an enormous amount of socially relevant information from the face, including social categories, personality traits, and emotion. While facial features may be directly tied to certain perceptions, emerging research suggests that top-down social cognitive factors (e.g., stereotypes, social-conceptual knowledge, prejudice) considerably influence and shape the perceptual process. The rapid integration of higher-order social cognitive processes into visual perception can give rise to systematic biases in face perception and may potentially act as a mediating factor for intergroup behavioral and evaluative biases. Drawing on neuroimaging evidence, we review the ways that top-down social cognitive factors shape visual perception of facial features. This emerging work in social and affective neuroscience builds upon work on predictive coding and perceptual priors in cognitive neuroscience and visual cognition, suggesting domain-general mechanisms that underlie a social-visual interface through which social cognition affects visual perception. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Neuroimaging and the neurobiology of obsessive-compulsive disorder].

    Science.gov (United States)

    Schiepek, Günter; Tominschek, Igor; Karch, Susanne; Mulert, Christoph; Pogarell, Oliver

    2007-01-01

    The following review is focusing on results of functional neuroimaging. After some introductory remarks on the phenomenology, epidemiology, and psychotherapy approaches of obsessive-compulsive disorders (OCD) the most important OCD-related brain regions are presented. Obviously, not only the prominent cortico-striato-thalamo-cortical feedback loops are involved, as functional brain imaging studies tell us, but also other regions as the inferior parietal lobe, the anterior and posterior cingulate gyrus, insula, amygdala, cerebellum, and others. Subclassifications using factor-analysis methods support the hypothesis, that most important subtypes ("washing/contamination fear", "obsessions/checking", "symmetry/ordering", "hoarding") involve different, but partially overlapping brain areas. Stimulation paradigms in fMRI-research are commonly based on symptom provocation by visual or tactile stimuli, or on action-monitoring and error-monitoring tasks. Deficits in action-monitoring and planning are discussed to be one of the basic dysfunctions of OCD. Finally, results of psychotherapeutic induced variations of brain activations in OCD are presented.

  7. Integrated Pathology Informatics Enables High-Quality Personalized and Precision Medicine: Digital Pathology and Beyond.

    Science.gov (United States)

    Volynskaya, Zoya; Chow, Hung; Evans, Andrew; Wolff, Alan; Lagmay-Traya, Cecilia; Asa, Sylvia L

    2018-03-01

    - The critical role of pathology in diagnosis, prognosis, and prediction demands high-quality subspecialty diagnostics that integrates information from multiple laboratories. - To identify key requirements and to establish a systematic approach to providing high-quality pathology in a health care system that is responsible for services across a large geographic area. - This report focuses on the development of a multisite pathology informatics platform to support high-quality surgical pathology and hematopathology using a sophisticated laboratory information system and whole slide imaging for histology and immunohistochemistry, integrated with ancillary tools, including electron microscopy, flow cytometry, cytogenetics, and molecular diagnostics. - These tools enable patients in numerous geographic locations access to a model of subspecialty pathology that allows reporting of every specimen by the right pathologist at the right time. The use of whole slide imaging for multidisciplinary case conferences enables better communication among members of patient care teams. The system encourages data collection using a discrete data synoptic reporting module, has implemented documentation of quality assurance activities, and allows workload measurement, providing examples of additional benefits that can be gained by this electronic approach to pathology. - This approach builds the foundation for accurate big data collection and high-quality personalized and precision medicine.

  8. Longitudinal Diffusion Tensor Imaging Resembles Patterns of Pathology Progression in Behavioral Variant Frontotemporal Dementia (bvFTD

    Directory of Open Access Journals (Sweden)

    Jan Kassubek

    2018-03-01

    Full Text Available Objective: Recently, the characteristic longitudinal distribution pattern of the underlying phosphorylated TDP-43 (pTDP-43 pathology in the behavioral variant of frontotemporal dementia (bvFTD excluding Pick's disease (PiD across specific brain regions was described. The aim of the present study was to investigate whether in vivo investigations of bvFTD patients by use of diffusion tensor imaging (DTI were consistent with these proposed patterns of progression.Methods: Sixty-two bvFTD patients and 47 controls underwent DTI in a multicenter study design. Of these, 49 bvFTD patients and 34 controls had a follow-up scan after ~12 months. Cross-sectional and longitudinal alterations were assessed by a two-fold analysis, i.e., voxelwise comparison of fractional anisotropy (FA maps and a tract of interest-based (TOI approach, which identifies tract structures that could be assigned to brain regions associated with disease progression.Results: Whole brain-based spatial statistics showed white matter alterations predominantly in the frontal lobes cross-sectionally and longitudinally. The TOIs of bvFTD neuroimaging stages 1 and 2 (uncinate fascicle—bvFTD pattern I; corticostriatal pathway—bvFTD pattern II showed highly significant differences between bvFTD patients and controls. The corticospinal tract-associated TOI (bvFTD pattern III did not differ between groups, whereas the differences in the optic radiation (bvFTD pattern IV reached significance. The findings in the corticospinal tract were due to a “dichotomous” behavior of FA changes there.Conclusion: Longitudinal TOI analysis demonstrated a pattern of white matter pathways alterations consistent with patterns of pTDP-43 pathology.

  9. Food addiction and neuroimaging.

    Science.gov (United States)

    Zhang, Yi; von Deneen, Karen M; Tian, Jie; Gold, Mark S; Liu, Yijun

    2011-01-01

    Obesity has become a serious epidemic and one of the leading global health problems. However, much of the current debate has been fractious, and etiologies of obesity have been attributed to eating behavior (i.e. fast food consumption), personality, depression, addiction or genetics. One of the interesting new hypotheses for explaining the development of obesity involves a food addiction model, which suggests that food is not eaten as much for survival as pleasure and that hedonic overeating is relevant to both substance-related disorders and eating disorders. Accumulating evidence has shown that there are a number of shared neural and hormonal pathways as well as distinct differences in these pathways that may help researchers discover why certain individuals continue to overeat despite health and other consequences, and becomes more and more obese. Functional neuroimaging studies have further revealed that pleasant smelling, looking, and tasting food has reinforcing characteristics similar to drugs of abuse. Many of the brain changes reported for hedonic eating and obesity are also seen in various types of addictions. Most importantly, overeating and obesity may have an acquired drive similar to drug addiction with respect to motivation and incentive craving. In both cases, the desire and continued satisfaction occur after early and repeated exposure to stimuli. The acquired drive for eating food and relative weakness of the satiety signal would cause an imbalance between the drive and hunger/reward centers in the brain and their regulation. In the current paper, we first provide a summary of literature on food addition from eight different perspectives, and then we proposed a research paradigm that may allow screening of new pharmacological treatment on the basis of functional magnetic resonance imaging (fMRI).

  10. Prediction of Driving Safety in Individuals with Homonymous Hemianopia and Quadrantanopia from Clinical Neuroimaging

    Directory of Open Access Journals (Sweden)

    Michael S. Vaphiades

    2014-01-01

    Full Text Available Background. This study aimed to determine whether it is possible to predict driving safety of individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuroimages that are routinely available in clinical practice. Methods. Two experienced neuroophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which indicated the site and extent of the lesion and they made predictions regarding whether participants would be safe/unsafe to drive. Driving safety was independently defined at the time of the study using state-recorded motor vehicle crashes (all crashes and at-fault for the previous 5 years and ratings of driving safety determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. Results. The ability to predict driving safety was highly variable regardless of the driving safety measure, ranging from 31% to 63% (kappa levels ranged from −0.29 to 0.04. The level of agreement between the neuroophthalmologists was only fair (kappa = 0.28. Conclusions. Clinical evaluation of summary reports of currently available neuroimages by neuroophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.

  11. Prediction of driving safety in individuals with homonymous hemianopia and quadrantanopia from clinical neuroimaging.

    Science.gov (United States)

    Vaphiades, Michael S; Kline, Lanning B; McGwin, Gerald; Owsley, Cynthia; Shah, Ritu; Wood, Joanne M

    2014-01-01

    Background. This study aimed to determine whether it is possible to predict driving safety of individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuroimages that are routinely available in clinical practice. Methods. Two experienced neuroophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which indicated the site and extent of the lesion and they made predictions regarding whether participants would be safe/unsafe to drive. Driving safety was independently defined at the time of the study using state-recorded motor vehicle crashes (all crashes and at-fault) for the previous 5 years and ratings of driving safety determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. Results. The ability to predict driving safety was highly variable regardless of the driving safety measure, ranging from 31% to 63% (kappa levels ranged from -0.29 to 0.04). The level of agreement between the neuroophthalmologists was only fair (kappa = 0.28). Conclusions. Clinical evaluation of summary reports of currently available neuroimages by neuroophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.

  12. A systemic literature review of neuroimaging studies in women with breast cancer treated with adjuvant chemotherapy

    Directory of Open Access Journals (Sweden)

    Paulina Andryszak

    2017-03-01

    Full Text Available Chemotherapy-induced cognitive deficits in patients with breast cancer, predominantly in attention and verbal memory, have been observed in numerous studies. These neuropsychological findings are corroborated by the results of neuroimaging studies. The aim of this paper was to survey the reports on cerebral structural and functional alterations in women with breast cancer treated with chemotherapy (CTx. First, we discuss the host-related and disease-related mechanisms underlying cognitive impairment after CTx. We point out the direct and indirect neurotoxic effect of cytostatics, which may cause: a damage to neurons or glial cells, changes in neurotransmitter levels, deregulation of the immune system and/or cytokine release. Second, we focus on the results of neuroimaging studies on brain structure and function that revealed decreased: density of grey matter, integrity of white matter and volume of multiple brain regions, as well as their lower activation during cognitive task performance. Finally, we concentrate on compensatory mechanisms, which activate additional brain areas or neural connection to reach the premorbid cognitive efficiency.

  13. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  14. The clinical value of large neuroimaging data sets in Alzheimer's disease.

    Science.gov (United States)

    Toga, Arthur W

    2012-02-01

    Rapid advances in neuroimaging and cyberinfrastructure technologies have brought explosive growth in the Web-based warehousing, availability, and accessibility of imaging data on a variety of neurodegenerative and neuropsychiatric disorders and conditions. There has been a prolific development and emergence of complex computational infrastructures that serve as repositories of databases and provide critical functionalities such as sophisticated image analysis algorithm pipelines and powerful three-dimensional visualization and statistical tools. The statistical and operational advantages of collaborative, distributed team science in the form of multisite consortia push this approach in a diverse range of population-based investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Neurosonology and neuroimaging of stroke

    Energy Technology Data Exchange (ETDEWEB)

    Valdueza, Jose M. [Segeberger Clinic Group, Bad Segeberg (Germany). Center for Neurology; Schreiber, Stephan J.; Roehl, Jens-Eric [Charite University Hospital, Berlin (Germany). Dept. of Neurology; Klingebiel, Randolf [Charite University Hospital, Berlin (Germany). Dept. of Neuroradiology

    2008-07-01

    The monograph is systematically organized: the first part contains the basic principles of neurosonology and cerebrovascular diseases. Ultrasound principles are described and illustrated with diagrams and images. The anatomy, pathophysiology (intracranial hemodynamics and functional tests, pathogenesis of stroke, vascular pathology) and the cervico-cranial arteries are discussed. Other vascular imaging techniques (CT and MR angiography and dye contrast catheter angiography) are also discussed and compared. The second part contains 30 case scenarios grouped according to the expected difficulty of neurosonology exploration and interpretation.

  16. Antecedents and neuroimaging patterns in cerebral palsy with epilepsy and cognitive impairment: a population-based study in children born at term.

    Science.gov (United States)

    Ahlin, Kristina; Jacobsson, Bo; Nilsson, Staffan; Himmelmann, Kate

    2017-07-01

    Antecedents of accompanying impairments in cerebral palsy and their relation to neuroimaging patterns need to be explored. A population-based study of 309 children with cerebral palsy born at term between 1983 and 1994. Prepartum, intrapartum, and postpartum variables previously studied as antecedents of cerebral palsy type and motor severity were analyzed in children with cerebral palsy and cognitive impairment and/or epilepsy, and in children with cerebral palsy without these accompanying impairments. Neuroimaging patterns and their relation to identified antecedents were analyzed. Data were retrieved from the cerebral palsy register of western Sweden, and from obstetric and neonatal records. Children with cerebral palsy and accompanying impairments more often had low birthweight (kg) (odds ratio 0.5, 95% confidence interval 0.3-0.8), brain maldevelopment known at birth (p = 0.007, odds ratio ∞) and neonatal infection (odds ratio 5.4, 95% confidence interval 1.04-28.4). Moreover, neuroimaging patterns of maldevelopment (odds ratio 7.2, 95% confidence interval 2.9-17.2), cortical/subcortical lesions (odds ratio 5.3, 95% confidence interval 2.3-12.2) and basal ganglia lesions (odds ratio 7.6, 95% confidence interval 1.4-41.3) were more common, wheras white matter injury was found significantly less often (odds ratio 0.2, 95% confidence interval 0.1-0.5). In most children with maldevelopment, the intrapartum and postpartum periods were uneventful (p Cerebral maldevelopment was associated with prepartum antecedents, whereas subcortical/cortical and basal ganglia lesions were associated with intrapartum and postpartum antecedents. No additional factor other than those related to motor impairment was associated with epilepsy and cognitive impairment in cerebral palsy. Timing of antecedents deemed important for the development of cerebral palsy with accompanying impairments were supported by neuroimaging patterns. © 2017 Nordic Federation of Societies of Obstetrics

  17. Social cost of pathological gambling.

    Science.gov (United States)

    Ladouceur, R; Boisvert, J M; Pépin, M; Loranger, M; Sylvain, C

    1994-12-01

    Pathological gambling creates enormous problems for the afflicted individuals, their families, employers, and society, and has numerous disastrous financial consequences. The present study evaluates the financial burdens of pathological gambling by questioning pathological gamblers in treatment in Gamblers Anonymous (n=60; 56 males, 4 females; mean age = 40 years old) about personal debts, loss of productivity at work, illegal activities, medical costs and the presence of other dependencies. Results show that important debts, loss of productivity at work and legal problems are associated with pathological gambling. Discussion is formulated in terms of the social cost of adopting a liberal attitude toward the legalization of various gambling activities.

  18. Systems pathology: a critical review.

    Science.gov (United States)

    Costa, Jose

    2012-02-01

    The technological advances of the last twenty years together with the dramatic increase in computational power have injected new life into systems-level thinking in Medicine. This review emphasizes the close relationship of Systems Pathology to Systems Biology and delineates the differences between Systems Pathology and Clinical Systems Pathology. It also suggests an algorithm to support the application of systems-level thinking to clinical research, proposes applying systems-level thinking to the health care systems and forecasts an acceleration of preventive medicine as a result of the coupling of personal genomics with systems pathology. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. PathBot: A Radiology-Pathology Correlation Dashboard.

    Science.gov (United States)

    Kelahan, Linda C; Kalaria, Amit D; Filice, Ross W

    2017-12-01

    Pathology is considered the "gold standard" of diagnostic medicine. The importance of radiology-pathology correlation is seen in interdepartmental patient conferences such as "tumor boards" and by the tradition of radiology resident immersion in a radiologic-pathology course at the American Institute of Radiologic Pathology. In practice, consistent pathology follow-up can be difficult due to time constraints and cumbersome electronic medical records. We present a radiology-pathology correlation dashboard that presents radiologists with pathology reports matched to their dictations, for both diagnostic imaging and image-guided procedures. In creating our dashboard, we utilized the RadLex ontology and National Center for Biomedical Ontology (NCBO) Annotator to identify anatomic concepts in pathology reports that could subsequently be mapped to relevant radiology reports, providing an automated method to match related radiology and pathology reports. Radiology-pathology matches are presented to the radiologist on a web-based dashboard. We found that our algorithm was highly specific in detecting matches. Our sensitivity was slightly lower than expected and could be attributed to missing anatomy concepts in the RadLex ontology, as well as limitations in our parent term hierarchical mapping and synonym recognition algorithms. By automating radiology-pathology correlation and presenting matches in a user-friendly dashboard format, we hope to encourage pathology follow-up in clinical radiology practice for purposes of self-education and to augment peer review. We also hope to provide a tool to facilitate the production of quality teaching files, lectures, and publications. Diagnostic images have a richer educational value when they are backed up by the gold standard of pathology.

  20. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    International Nuclear Information System (INIS)

    Tam, Allison; Barker, Jocelyn; Rubin, Daniel

    2016-01-01

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline

  1. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Allison [Stanford Institutes of Medical Research Program, Stanford University School of Medicine, Stanford, California 94305 (United States); Barker, Jocelyn [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 (United States); Rubin, Daniel [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 and Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, California 94305 (United States)

    2016-01-15

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.

  2. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    . This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...... in individuals with exacerbated pathological gambling symptoms. These findings may have important implications for detecting behaviors underlying pathological gambling....

  3. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users.

    Science.gov (United States)

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; den Heeten, Gerard J; van den Brink, Wim

    2008-11-01

    Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained effects of ecstasy use on the brain in novel ecstasy users using repeated measurements with a combination of different neuroimaging parameters of neurotoxicity. At baseline, 188 ecstasy-naive volunteers with high probability of first ecstasy use were examined. After a mean period of 17 months follow-up, neuroimaging was repeated in 59 incident ecstasy users and 56 matched persistent ecstasy-naives and their outcomes were compared. Neuroimaging included [(123)I]beta-carbomethoxy-3beta-(4-iodophenyl)tropane (CIT) SPECT to measure serotonin transporter densities as indicators of serotonergic function; (1)H-MR spectroscopy ((1)H-MRS) to measure brain metabolites as indicators of neuronal damage; diffusion tensor imaging (DTI) to measure the apparent diffusion coefficient and fractional anisotropy (FA) of the diffusional motion of water molecules in the brain as indicators of axonal integrity; and perfusion weighted imaging (PWI) to measure regional relative cerebral blood volume (rrCBV) which indicates brain perfusion. With this approach, both structural ((1)H-MRS and DTI) and functional ([(123)I]beta-CIT SPECT and PWI) aspects of neurotoxicity were combined. Compared to persistent ecstasy-naives, novel low-dose ecstasy users (mean 6.0, median 2.0 tablets) showed decreased rrCBV in the globus pallidus and putamen; decreased FA in thalamus and frontoparietal white matter; increased FA in globus pallidus; and increased apparent diffusion coefficient in the thalamus. No changes in serotonin transporter densities and brain metabolites were observed. These findings suggest sustained effects of ecstasy on brain microvasculature, white

  4. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    Science.gov (United States)

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of

  5. Pathology annual. Part 2

    International Nuclear Information System (INIS)

    Rosen, P.P.

    1987-01-01

    This book contains 11 selections. Some of the titles are: Applications of in situ DNA hybridization technology to diagnostic surgical pathology; Neoplasms associated with immune deficiencies; Chronic gastritis: The pathologists's role; Necrosis in lymph nodes; Pathologic changes of osteochondrodysplasia in infancy: A review; and Immunoglobulin light chain nephropathies

  6. Wat onhoudt een consument van een tv-commercial? Een kijkje in het brein met neuro-imaging technieken

    NARCIS (Netherlands)

    A. Smidts (Ale)

    2002-01-01

    textabstractMet een nieuwe neuro-imaging techniek om de activiteit in de hersenen te meten, de zogenaamde steady-state probe topography (SSPT), kan opgespoord worden welke scènes uit een tv-commercial door consumenten goed herinnerd worden. Uit een experiment blijkt dat scènes die langer dan 1,5

  7. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    Slot machines are among the most addictive forms of gambling, and pathological gambling slot machine players represent the largest group of treatment seekers, accounting for 35% to 93% of the population. Pathological gambling sufferers have significantly higher response frequency (games / time......) on slot machines compared with non-problem gamblers, which may suggest increased reinforcement of the gambling behavior in pathological gambling. However, to date it is unknown whether or not the increased response frequency in pathological gambling is associated with symptom severity of the disorder....... This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...

  8. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Furtado, Andre [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Lepore, Natasha [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Center for Fetal and Neonatal Medicine, Los Angeles, CA (United States); Bluml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Department of Biomedical Engineering, Los Angeles, CA (United States)

    2012-01-15

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long

  9. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2012-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental

  10. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Toledo Eduardo

    2007-10-01

    Full Text Available Abstract Background The presence of antiphospholipid antibodies (APLA in multiple sclerosis (MS patients has been reported frequently but no clear relationship between APLA and the clinical and neuroimaging features of MS have heretofore been shown. We assessed the clinical and neuroimaging features of MS patients with plasma APLA. Methods A consecutive cohort of 24 subjects with relapsing-remitting (RR MS were studied of whom 7 were in remission (Rem and 17 in exacerbation (Exc. All subjects were examined and underwent MRI of brain. Patients' plasma was tested by standard ELISA for the presence of both IgM and IgG antibodies using a panel of 6 targets: cardiolipin (CL, β2 glycoprotein I (β2GPI, Factor VII/VIIa (FVIIa, phosphatidylcholine (PC, phosphatidylserine (PS and phosphatidylethanolamine (PE. Results In exacerbation up to 80% of MS subjects had elevated titers of IgM antibodies directed against the above antigens. However, in remission, less than half of MS patients had elevated titers of IgM antibodies against one or more of the above antigens. This difference was significant, p Conclusion The findings of this preliminary study show that increased APLA IgM is associated with exacerbations of MS. Currently, the significance of this association in pathogenesis of MS remains unknown. However, systematic longitudinal studies to measure APLA in larger cohorts of patients with relapsing-remitting MS, particularly before and after treatment with immunomodulatory agents, are needed to confirm these preliminary findings.

  11. The segmentation of the human brain; a message to the neuroimaging community from an adjacent domain of the neurosciences

    NARCIS (Netherlands)

    Nieuwenhuys, R.

    2018-01-01

    Morphological and genoarchitectonic studies have conclusively shown that the human brain (and that of all vertebrates) is segmented i. e. is fundamentally composed of a number of rostrocaudally arranged brain segments or neuromeres. However in the current neuroimaging literature the term

  12. Self-reflection and the brain : A theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia

    NARCIS (Netherlands)

    van der Meer, Lisette; Costafreda, Sergi; Aleman, Andre; David, Anthony S.

    Several studies have investigated the neural correlates of self-reflection. In the paradigm most commonly used to address this concept, a subject is presented with trait adjectives or sentences and asked whether they describe him or her. Functional neuroimaging research has revealed a set of regions

  13. 42 CFR 493.853 - Condition: Pathology.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Pathology. 493.853 Section 493.853 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.853 Condition: Pathology. The specialty of pathology includes, for purposes of...

  14. The speed of passionate love, as a subliminal prime: A high-density electrical neuroimaging stud

    OpenAIRE

    Cacioppo Stephanie; Grafton Scott T.; Bianchi-Demicheli F

    2012-01-01

    In line with the psychological model of self expansion recent neuroimaging evidence shows an overlap between the brain network mediating passionate love and that involved in self representation. Nevertheless little remains known about the temporal dynamics of these brain areas. To address this question we recorded brain activity from 20 healthy participants using high density electrophysiological recordings while participants were performing a cognitive priming paradigm known to activate the ...

  15. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective

    OpenAIRE

    Brumback, T.; Castro, N.; Jacobus, J.; Tapert, S.

    2016-01-01

    Marijuana, behind only tobacco and alcohol, is the most popular recreational drug in America with prevalence rates of use rising over the past decade. A wide range of research has highlighted neurocognitive deficits associated with marijuana use, particularly when initiated during childhood or adolescence. Neuroimaging, describing alterations to brain structure and function, has begun to provide a picture of possible mechanisms associated with the deleterious effects of marijuana use. This ch...

  16. Pathological fractures in children

    Science.gov (United States)

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  17. The Nun Study: risk factors for pathology and clinical-pathologic correlations.

    Science.gov (United States)

    Mortimer, James A

    2012-07-01

    The Nun Study was the first cohort study to enroll and follow a large, well-defined population that included demented and non-demented participants, all of whom agreed to donate their brains for research. The inclusion of systematic neuropathologic analysis in this study has resulted in a greater understanding of the role of Alzheimer and vascular pathology in the expression of memory deficits and dementia and has provided data showing that biomarkers for the pathology may be evident many decades earlier in adult life. Findings related to neuropathology in this study have included the following: (1) Although clinical outcomes were strongly correlated with Alzheimer neuropathology, about one-third of the participants fulfilling criteria for neuropathologic Alzheimer's disease (AD) were not demented at the time of death. (2) Brain infarcts by themselves had little effect on cognitive status, but played an important role in increasing the risk of dementia associated with Alzheimer pathology. (3) Hippocampal volume was strongly correlated with Braak neurofibrillary stage even in participants with normal cognitive function. (4) A linguistic characteristic of essays written in early adult life, idea density, had a strong association with not only clinical outcomes in late life, but the severity of Alzheimer neuropathology as well. (5) The effect of apolipoprotein E-e4 on dementia was mediated through Alzheimer, but not vascular pathology.

  18. [Leigh's encephalopathy (subacute necrotizing encephalopathy). Documentation of its evolution through neuroimaging].

    Science.gov (United States)

    Pena, J A; González-Ferrer, S; Martínez, C; Prieto-Carrasquero, M; Delgado, W; Mora La Cruz, E

    1996-09-01

    A 30 months-old boy developed bilateral nistagmus, tremor, gait disturbance, hypotonia and disartria. The diagnose of Leigh encephalopathy was suggested on the basis of clinical, neuroimaging and laboratory findings. Computed tomography and magnetic resonance imaging (MRI) at an early stage revealed bilateral and symmetric lesions in the putamen, appearing as hyperintense signal on T2-weighted images. Twelve months later a relatively large hypertense area in the posterior brainstem was observed. At this stage, the patient exhibited marked deterioration, dystonic manifestations, rigidity and respiratory disturbances. He died 6 months later for respiratory arrest during bronconeumonic infection. We believe MRI is a valuable means to allow assessment of the evolution of the disease.

  19. Communication skills in diagnostic pathology.

    Science.gov (United States)

    Lehr, Hans-Anton; Bosman, Fred T

    2016-01-01

    Communication is an essential element of good medical practice also in pathology. In contrast to technical or diagnostic skills, communication skills are not easy to define, teach, or assess. Rules almost do not exist. In this paper, which has a rather personal character and cannot be taken as a set of guidelines, important aspects of communication in pathology are explored. This includes what should be communicated to the pathologist on the pathology request form, communication between pathologists during internal (interpathologist) consultation, communication around frozen section diagnoses, modalities of communication of a final diagnosis, with whom and how critical and unexpected findings should be communicated, (in-)adequate routes of communication for pathology diagnoses, who will (or might) receive pathology reports, and what should be communicated and how in case of an error or a technical problem. An earlier more formal description of what the responsibilities are of a pathologist as communicator and as collaborator in a medical team is added in separate tables. The intention of the paper is to stimulate reflection and discussion rather than to formulate strict rules.

  20. The pilot European Alzheimer's Disease Neuroimaging Initiative of the European Alzheimer's Disease Consortium

    DEFF Research Database (Denmark)

    Frisoni, G.B.; Henneman, W.J.; Weiner, M.W.

    2008-01-01

    BACKGROUND: In North America, the Alzheimer's Disease Neuroimaging Initiative (ADNI) has established a platform to track the brain changes of Alzheimer's disease. A pilot study has been carried out in Europe to test the feasibility of the adoption of the ADNI platform (pilot E-ADNI). METHODS: Seven...... academic sites of the European Alzheimer's Disease Consortium (EADC) enrolled 19 patients with mild cognitive impairment (MCI), 22 with AD, and 18 older healthy persons by using the ADNI clinical and neuropsychological battery. ADNI compliant magnetic resonance imaging (MRI) scans, cerebrospinal fluid...

  1. Evolution of the Pathology Residency Curriculum

    Directory of Open Access Journals (Sweden)

    Wesley Y. Naritoku MD, PhD

    2016-10-01

    Full Text Available The required medical knowledge and skill set for the pathologist of 2020 are different than in 2005. Pathology residency training curriculum must accordingly change to fulfill the needs of these ever-changing requirements. In order to make rational curricular adjustments, it is important for us to know the current trajectory of resident training in pathology—where we have been, what our actual current training curriculum is now—to understand how that might change in anticipation of meeting the needs of a changing patient and provider population and to fit within the evolving future biomedical and socioeconomic health-care setting. In 2013, there were 143 Accreditation Council for Graduate Medical Education-accredited pathology residency training programs in the United States, with approximately 2400 residents. There is diversity among residency training programs not only with respect to the number of residents but also in training venue(s. To characterize this diversity among pathology residency training programs, a curriculum survey was conducted of pathology residency program directors in 2013 and compared with a similar survey taken almost 9 years previously in 2005 to identify trends in pathology residency curriculum. Clinical pathology has not changed significantly in the number of rotations over 9 years; however, anatomic pathology has changed dramatically, with an increase in the number of surgical pathology rotations coupled with a decline in stand-alone autopsy rotations. With ever-expanding medical knowledge that the graduating pathology resident must know, it is necessary to (1 reflect upon what are the critical need subjects, (2 identify areas that have become of lesser importance, and then (3 prioritize training accordingly.

  2. Evolution of the Pathology Residency Curriculum

    Science.gov (United States)

    Powell, Suzanne Z.; Black-Schaffer, W. Stephen

    2016-01-01

    The required medical knowledge and skill set for the pathologist of 2020 are different than in 2005. Pathology residency training curriculum must accordingly change to fulfill the needs of these ever-changing requirements. In order to make rational curricular adjustments, it is important for us to know the current trajectory of resident training in pathology—where we have been, what our actual current training curriculum is now—to understand how that might change in anticipation of meeting the needs of a changing patient and provider population and to fit within the evolving future biomedical and socioeconomic health-care setting. In 2013, there were 143 Accreditation Council for Graduate Medical Education-accredited pathology residency training programs in the United States, with approximately 2400 residents. There is diversity among residency training programs not only with respect to the number of residents but also in training venue(s). To characterize this diversity among pathology residency training programs, a curriculum survey was conducted of pathology residency program directors in 2013 and compared with a similar survey taken almost 9 years previously in 2005 to identify trends in pathology residency curriculum. Clinical pathology has not changed significantly in the number of rotations over 9 years; however, anatomic pathology has changed dramatically, with an increase in the number of surgical pathology rotations coupled with a decline in stand-alone autopsy rotations. With ever-expanding medical knowledge that the graduating pathology resident must know, it is necessary to (1) reflect upon what are the critical need subjects, (2) identify areas that have become of lesser importance, and then (3) prioritize training accordingly. PMID:28725779

  3. Radiographic pathology for technologists

    International Nuclear Information System (INIS)

    Mace, J.D.; Kowalczyk, N.

    1988-01-01

    This book explains the fundamentals of disease mechanisms and relates this to the practice of radiologic science. Each chapter begins with a discussion of normal anatomy and physiology, then covers pathology and demonstrates how the pathology appears on film. Imaging modalities such as computed tomography, MRI, and ultrasound are also discussed. Clinical case studies are included

  4. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    Results from functional neuroimaging such as positron emission tomography and functional magnetic resonance are often reported as sets of 3-dimensional coordinates in Talairach stereotactic space. By utilizing data collected in the BrainMap database and from our own small XML database we can...... data matrix. By conditioning on elements in the databases other than the coordinate data, e.g., anatomical labels associated with many coordinates we can make conditional novelty detection identifying outliers in the database that might be errorneous entries or seldom occuring patterns. In the Brain......Map database we found errors, e.g., stemming from confusion of centimeters and millimeters during entering and errors in the original article. Conditional probability density modeling also enables generation of probabilistic atlases and automatic probabilistic anatomical labeling of new coordinates...

  5. A Functional Neuroimaging Analysis of the Trail Making Test-B: Implications for Clinical Application

    Directory of Open Access Journals (Sweden)

    Mark D. Allen

    2011-01-01

    Full Text Available Recent progress has been made using fMRI as a clinical assessment tool, often employing analogues of traditional “paper and pencil” tests. The Trail Making Test (TMT, popular for years as a neuropsychological exam, has been largely ignored in the realm of neuroimaging, most likely because its physical format and administration does not lend itself to straightforward adaptation as an fMRI paradigm. Likewise, there is relatively more ambiguity about the neural systems associated with this test than many other tests of comparable clinical use. In this study, we describe an fMRI version of Trail Making Test-B (TMTB that maintains the core functionality of the TMT while optimizing its use for both research and clinical settings. Subjects (N = 32 were administered the Functional Trail Making Test-B (f-TMTB. Brain region activations elicited by the f-TMTB were consistent with expectations given by prior TMT neurophysiological studies, including significant activations in the ventral and dorsal visual pathways and the medial pre-supplementary motor area. The f-TMTB was further evaluated for concurrent validity with the traditional TMTB using an additional sample of control subjects (N = 100. Together, these results support the f-TMTB as a viable neuroimaging adaptation of the TMT that is optimized to evoke maximally robust fMRI activation with minimal time and equipment requirements.

  6. Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation.

    Science.gov (United States)

    Sarwate, Anand D; Plis, Sergey M; Turner, Jessica A; Arbabshirani, Mohammad R; Calhoun, Vince D

    2014-01-01

    The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the "small N" problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in the function of the brain. When it is possible, open data sharing provides the most benefits. However, some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs) which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries-the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy.

  7. Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation

    Directory of Open Access Journals (Sweden)

    Anand D. Sarwate

    2014-04-01

    Full Text Available The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the ``small $N$'' problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in in the function of the brain. When it is possible, open data sharing provides the most benefits. However some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries -- the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy.

  8. Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation

    Science.gov (United States)

    Sarwate, Anand D.; Plis, Sergey M.; Turner, Jessica A.; Arbabshirani, Mohammad R.; Calhoun, Vince D.

    2014-01-01

    The growth of data sharing initiatives for neuroimaging and genomics represents an exciting opportunity to confront the “small N” problem that plagues contemporary neuroimaging studies while further understanding the role genetic markers play in the function of the brain. When it is possible, open data sharing provides the most benefits. However, some data cannot be shared at all due to privacy concerns and/or risk of re-identification. Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs) which preclude truly automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects; though many do permit direct access to data, they often require a cumbersome approval process that can take months. An alternative approach is to only share data derivatives such as statistical summaries—the challenges here are to reformulate computational methods to quantify the privacy risks associated with sharing the results of those computations. For example, a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative approaches to accessing data are needed. This paper reviews the relevant literature on differential privacy, a framework for measuring and tracking privacy loss in these settings, and demonstrates the feasibility of using this framework to calculate statistics on data distributed at many sites while still providing privacy. PMID:24778614

  9. Endocrine pathology: past, present and future.

    Science.gov (United States)

    Asa, Sylvia L; Mete, Ozgur

    2018-01-01

    Endocrine pathology is the subspecialty of diagnostic pathology which deals with the diagnosis and characterisation of neoplastic and non-neoplastic diseases of the endocrine system. This relatively young subspecialty was initially focused mainly on thyroid and parathyroid pathology, with some participants also involved in studies of the pituitary, the endocrine pancreas, and the adrenal glands. However, the endocrine system involves much more than these traditional endocrine organs and the discipline has grown to encompass lesions of the dispersed neuroendocrine cells, including neuroendocrine tumours (NETs) of the lungs, gastrointestinal tract, thymus, breast and prostate, as well as paraganglia throughout the body, not just in the adrenals. Indeed, the production of hormones is the hallmark of the endocrine system, and some aspects of gynecological/testicular, bone and liver pathology also fall into the realm of this specialty. Many of the lesions that are the focus of this discipline are increasing in incidence and their pathology is becoming more complex with increased understanding of molecular pathology and a high incidence of familial disease. The future of endocrine pathology will demand a depth of understanding of structure, function, prognosis and prediction as pathologists play a key role in the multidisciplinary care team of patients with endocrine diseases. It is anticipated that new technologies will allow increased subspecialisation in pathology and growth of this important area of expertise. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  10. [Dual pathology].

    Science.gov (United States)

    Rougier, A

    2008-05-01

    Dual pathology is defined as the association of two potentially epileptogenic lesions, hippocampal (sclerosis, neuronal loss) and extrahippocampal (temporal or extratemporal). Epileptic activity may be generated by either lesion and the relative importance of every lesion's epileptogenicity conditions the surgical strategy adopted. Most frequently associated with hippocampal sclerosis are cortical dysplasias. The common physiopathology of the two lesions is not clearly established. Extrahippocampal lesions may be undetectable on MRI (microdysgenesis, for example) and ictal discharge patterns may vary among dual pathology patients. The surgical strategy depends on the location of the extrahippocampal lesion and its relative role in seizure generation; however, reported surgical results suggest that simultaneous resection of mesial temporal structures along with the extrahippocampal lesion should be performed.

  11. The challenge of aging and pharmacoterapeutic complexity in the HIV + patient

    Directory of Open Access Journals (Sweden)

    Ramón Morillo-Verdugo

    2018-05-01

    Full Text Available Objective: To describe the current knowledge and management of aging and pharmacotherapeutic complexity in HIV + patients. Method: A review of literature was carried out, including articles, originals or reviews, published in English or Spanish, from 2007 to 2017, which analysed the aging and pharmacotherapeutic complexity in HIV + patients. The terms «Polypharmacy»/»Polypharmacy», «Aging»/»Aging», «Frailty»/»Fragility», «Pharmacotherapeutic Complexity»/»Medication Regimen Complexity» and «HIV»/”HIV» were combined. The review was carried out independently by two authors. The degree of agreement, according to the Kappa index, was analysed. Results: A total of 208 references were analysed, including, finally, only 68. An aging of the population and an increase in associated comorbidities have been identified, especially over 50 years-old. Immunological changes similar to those that are generated in a non-infected elderly population have been described. These conditions influencing the prescription of antiretroviral treatment, according to studies identified. In parallel, polypharmacy is increasingly present, being defined exclusively by the concomitant use of five drugs. Pharmacotherapeutic complexity, through the Medication Regimen Complexity Index, has begun to analyse and relate to health outcomes. There has been a need to know and apply concepts already known in non-HIV-aged population, such as de-prescription, potentially inappropriate medication, cholinergic risk, although few results are available. Conclusions: There is a growing interest to know about the relationship between HIV and aging. Pharmacotherapeutic complexity is beginning to be used as a pharmacotherapeutic follow-up criterion due to its influence on health outcomes. It is necessary to manage and incorporate new concepts that help pharmacotherapeutic optimization in this population

  12. The Effects of Tai Chi Intervention on Healthy Elderly by Means of Neuroimaging and EEG: A Systematic Review.

    Science.gov (United States)

    Pan, Zhujun; Su, Xiwen; Fang, Qun; Hou, Lijuan; Lee, Younghan; Chen, Chih C; Lamberth, John; Kim, Mi-Lyang

    2018-01-01

    Aging is a process associated with a decline in cognitive and motor functions, which can be attributed to neurological changes in the brain. Tai Chi, a multimodal mind-body exercise, can be practiced by people across all ages. Previous research identified effects of Tai Chi practice on delaying cognitive and motor degeneration. Benefits in behavioral performance included improved fine and gross motor skills, postural control, muscle strength, and so forth. Neural plasticity remained in the aging brain implies that Tai Chi-associated benefits may not be limited to the behavioral level. Instead, neurological changes in the human brain play a significant role in corresponding to the behavioral improvement. However, previous studies mainly focused on the effects of behavioral performance, leaving neurological changes largely unknown. This systematic review summarized extant studies that used brain imaging techniques and EEG to examine the effects of Tai Chi on older adults. Eleven articles were eligible for the final review. Three neuroimaging techniques including fMRI ( N = 6), EEG ( N = 4), and MRI ( N = 1), were employed for different study interests. Significant changes were reported on subjects' cortical thickness, functional connectivity and homogeneity of the brain, and executive network neural function after Tai Chi intervention. The findings suggested that Tai Chi intervention give rise to beneficial neurological changes in the human brain. Future research should develop valid and convincing study design by applying neuroimaging techniques to detect effects of Tai Chi intervention on the central nervous system of older adults. By integrating neuroimaging techniques into randomized controlled trials involved with Tai Chi intervention, researchers can extend the current research focus from behavioral domain to neurological level.

  13. Hip joint pathology

    DEFF Research Database (Denmark)

    Tijssen, M; van Cingel, R E H; de Visser, E

    2017-01-01

    The purpose of this retrospective cohort study was to (a) describe the clinical presentation of femoroacetabular impingement (FAI) and hip labral pathology; (b) describe the accuracy of patient history and physical tests for FAI and labral pathology as confirmed by hip arthroscopy. Patients (18......-65 years) were included if they were referred to a physical therapist to gather pre-operative data and were then diagnosed during arthroscopy. Results of pre-operative patient history and physical tests were collected and compared to arthroscopy. Data of 77 active patients (mean age: 37 years) were...

  14. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.

    Science.gov (United States)

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-06-06

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.

  15. Evaluation of the contribution of the importance of neuroimaging for the diagnostics of dementias - comparison to the psychological diagnostics

    International Nuclear Information System (INIS)

    Hentschel, F.; Kreis, M.; Damian, M.; Syren, M.; Krumm, B.

    2003-01-01

    Objective: While psychology is accepted as a necessary component of the dementia diagnostics, the extended clinical diagnostics with neuroimaging is differently estimated. The goal of the study is the quantification of the individual contribution of the two different methods. Methods: Of 100 patient the diagnosis of entrance, the neurological, the psychological, and the final clinical diagnosis were documented. For both imaging and psychology the sensitivity, specificity, and the positive predictive value were computed. The diagnostic of each method was determined from the change of the final in relation to the initial clinical diagnosis. The neuroradiological investigation took place with MRI, the psychological examination used both usual power and special speed tests. Results: The extended clinical diagnostics led for 26% of the patients to the change of the clinical diagnosis. Imaging and psychology supplied different own but supplementing contributions. In the case of annihilation imaging contributed with 73.3%, psychology with 54.1% to the diagnosis of a neurodegenerative dementia, whereas the contributions to the diagnosis of a vascular dementia were 83.3% and 70.8%, respectively. However psychology diagnosed and quantified the dementia. The contribution of neuroimaging consisted in the differential diagnosis of the dementias organic causes of symptomatic clementias and vascular encephalopathy without dementia but with consequences for a secondary prophylaxis were additional information also. Conclusion: Psychology improves the diagnostic accuracy of dementias. Neuroimaging improves the differential diagnosis of dementias and supplies additional clinically relevant findings. In the qualified diagnostics and differential diagnostics of the dementias both methods are indispensable. (orig.) [de

  16. Neuroimaging experience in pediatric Horner syndrome

    International Nuclear Information System (INIS)

    Kadom, Nadja; Rosman, N.P.; Jubouri, Shams; Trofimova, Anna; Egloff, Alexia M.; Zein, Wadih M.

    2015-01-01

    Horner syndrome in children is rare. The frequency and spectrum of malignancy as the cause of Horner syndrome in children remains unclear. Also unclear is whether the imaging work-up should include the entire oculo-sympathetic pathway or should be more targeted. In addition, the value of cross-sectional angiographic imaging in Horner syndrome is uncertain. To review imaging pathology in a cohort of children with Horner syndrome at a major academic pediatric medical center. We reviewed a 22-year period of CT and MR imaging studies in children with a clinical diagnosis of Horner syndrome referred for imaging. We found 38 patients who fulfilled study criteria of Horner syndrome and 6/38 had relevant imaging findings: 2/6 etiologies were neoplastic (congenital neuroblastoma and central astrocytoma), 1/6 had a vascular abnormality (hypoplastic carotid artery), 1/6 had maldevelopment (Chiari I malformation), and 2/6 had inflammatory/traumatic etiology (viral cervical lymphadenopathy, post jugular vein cannulation). There was a similar number of congenital and acquired pathologies. The malignancies were found at any level of the oculosympathetic pathway. There are treatable causes, including malignancies, in children presenting with Horner syndrome, which justify imaging work-up of the entire oculosympathetic pathway, unless the lesion level can be determined clinically. (orig.)

  17. Neuroimaging experience in pediatric Horner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kadom, Nadja [Boston University School of Medicine, Department of Radiology, Boston University Medical Center, Boston, MA (United States); Rosman, N.P. [Boston Medical Center, Division of Pediatric Neurology, Departments of Pediatrics and Neurology, Boston University School of Medicine, Boston, MA (United States); Jubouri, Shams; Trofimova, Anna; Egloff, Alexia M. [Children' s National Medical Center, Department of Radiology and Diagnostic Imaging, Washington, DC (United States); Zein, Wadih M. [National Eye Institute (NEI), Bethesda, MD (United States)

    2015-09-15

    Horner syndrome in children is rare. The frequency and spectrum of malignancy as the cause of Horner syndrome in children remains unclear. Also unclear is whether the imaging work-up should include the entire oculo-sympathetic pathway or should be more targeted. In addition, the value of cross-sectional angiographic imaging in Horner syndrome is uncertain. To review imaging pathology in a cohort of children with Horner syndrome at a major academic pediatric medical center. We reviewed a 22-year period of CT and MR imaging studies in children with a clinical diagnosis of Horner syndrome referred for imaging. We found 38 patients who fulfilled study criteria of Horner syndrome and 6/38 had relevant imaging findings: 2/6 etiologies were neoplastic (congenital neuroblastoma and central astrocytoma), 1/6 had a vascular abnormality (hypoplastic carotid artery), 1/6 had maldevelopment (Chiari I malformation), and 2/6 had inflammatory/traumatic etiology (viral cervical lymphadenopathy, post jugular vein cannulation). There was a similar number of congenital and acquired pathologies. The malignancies were found at any level of the oculosympathetic pathway. There are treatable causes, including malignancies, in children presenting with Horner syndrome, which justify imaging work-up of the entire oculosympathetic pathway, unless the lesion level can be determined clinically. (orig.)

  18. The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence.

    Science.gov (United States)

    Bressan, Rodrigo A; Quarantini, Lucas C; Andreoli, Sérgio B; Araújo, Celia; Breen, Gerome; Guindalini, Camila; Hoexter, Marcelo; Jackowski, Andrea P; Jorge, Miguel R; Lacerda, Acioly L T; Lara, Diogo R; Malta, Stella; Moriyama, Tais S; Quintana, Maria I; Ribeiro, Wagner S; Ruiz, Juliana; Schoedl, Aline F; Shih, Ming C; Figueira, Ivan; Koenen, Karestan C; Mello, Marcelo F; Mari, Jair J

    2009-06-01

    Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies. Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases) will be compared to resilient victims of traumatic life experiences without PTSD (controls) aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured Clinical Interview for DSM-IV and the Clinician

  19. The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence

    Directory of Open Access Journals (Sweden)

    Bressan Rodrigo A

    2009-06-01

    Full Text Available Abstract Background Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies. Methods and design Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases will be compared to resilient victims of traumatic life experiences without PTSD (controls aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured

  20. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    OpenAIRE

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary

    2016-01-01

    International audience; The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment....

  1. Molecular neuroimaging in degenerative dementias.

    Science.gov (United States)

    Jiménez Bonilla, J F; Carril Carril, J M

    2013-01-01

    In the context of the limitations of structural imaging, brain perfusion and metabolism using SPECT and PET have provided relevant information for the study of cognitive decline. The introduction of the radiotracers for cerebral amyloid imaging has changed the diagnostic strategy regarding Alzheimer's disease, which is currently considered to be a "continuum." According to this new paradigm, the increasing amyloid load would be associated to the preclinical phase and mild cognitive impairment. It has been possible to observe "in vivo" images using 11C-PIB and PET scans. The characteristics of the 11C-PIB image include specific high brain cortical area retention in the positive cases with typical distribution pattern and no retention in the negative cases. This, in combination with 18F-FDG PET, is the basis of molecular neuroimaging as a biomarker. At present, its prognostic value is being evaluated in longitudinal studies. 11C-PIB-PET has become the reference radiotracer to evaluate the presence of cerebral amyloid. However, its availability is limited due to the need for a nearby cyclotron. Therefore, 18F labeled radiotracers are being introduced. Our experience in the last two years with 11C-PIB, first in the research phase and then as being clinically applied, has shown the utility of the technique in the clinical field, either alone or in combination with FDG. Thus, amyloid image is a useful tool for the differential diagnosis of dementia and it is a potentially useful method for early diagnosis and evaluation of future treatments. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  2. Pathological gambling: a general overview.

    Science.gov (United States)

    Ashley, Larry L; Boehlke, Karmen K

    2012-01-01

    Throughout the course of history, gambling has been a popular activity across most cultures. In the United States, gambling has transitioned from early acceptance to prohibition to widespread proliferation. For most, gambling is a relaxing and recreational activity; however, for some individuals gambling becomes more than harmless fun. The most severe form of gambling, pathological gambling, is recognized as a mental health disorder. Pathological gambling is currently classified as an impulse control disorder in the DSM-IV-TR, but it shares many important features with substance use disorders, especially in terms of diagnostic criteria, clinical course, and treatment. Consequently, the DSM-V Task Force has suggested that pathological gambling be reclassified and included in a new category entitled "Addiction and Related Disorders." The category would include both substance-related and non-substance/behavioral addictions. This article provides a general overview of some of the available literature regarding pathological gambling and includes the presentation of a number of relevant topics including etiology, risk factors, comorbidity, prevention, and treatment. However, as with most complex, multifaceted, and multidimensional phenomena, more research is needed in order to improve both prevention and treatment efforts for pathological gambling.

  3. Oral Pathology in Forensic Investigation.

    Science.gov (United States)

    Shamim, Thorakkal

    2018-01-01

    Forensic odontology is the subdiscipline of dentistry which analyses dental evidence in the interest of justice. Oral pathology is the subdiscipline of dentistry that deals with the pathology affecting the oral and maxillofacial regions. This subdiscipline is utilized for identification through oral and maxillofacial pathologies with associated syndromes, enamel rod patterns, sex determination using exfoliative cytology, identification from occlusal morphology of teeth, and deoxyribonucleic acid profiling from teeth. This subdiscipline is also utilized for age estimation studies which include Gustafson's method, incremental lines of Retzius, perikymata, natal line formation in teeth, neonatal line, racemization of collagen in dentin, cemental incremental lines, thickness of the cementum, and translucency of dentin. Even though the expertise of an oral pathologist is not taken in forensic investigations, this paper aims to discuss the role of oral pathology in forensic investigation.

  4. Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB.

    Science.gov (United States)

    Thomas, Alan J; Attems, Johannes; Colloby, Sean J; O'Brien, John T; McKeith, Ian; Walker, Rodney; Lee, Lean; Burn, David; Lett, Debra J; Walker, Zuzana

    2017-01-17

    To conduct a validation study of 123 I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane ( 123 I-FP-CIT) SPECT dopaminergic imaging in the clinical diagnosis of dementia with Lewy bodies (DLB) with autopsy as the gold standard. Patients >60 years of age with dementia who had undergone 123 I-FP-CIT imaging in research studies and who had donated their brain tissue to the Newcastle Brain Tissue Resource were included. All had structured clinical research assessments, and clinical diagnoses were applied by consensus panels using international diagnostic criteria. All underwent 123 I-FP-CIT imaging at baseline, and scans were rated as normal or abnormal by blinded raters. Patients were reviewed in prospective studies and after death underwent detailed autopsy assessment, and neuropathologic diagnoses were applied with the use of standard international criteria. Fifty-five patients (33 with DLB and 22 with Alzheimer disease) were included. Against autopsy diagnosis, 123 I-FP-CIT had a balanced diagnostic accuracy of 86% (sensitivity 80%, specificity 92%) compared with clinical diagnosis, which had an accuracy of 79% (sensitivity 87%, specificity 72%). Among patients with DLB, 10% (3 patients) met pathologic criteria for Lewy body disease but had normal 123 I-FP-CIT imaging. This large autopsy analysis of 123 I-FP-CIT imaging in dementia demonstrates that it is a valid and accurate biomarker for DLB, and the high specificity compared with clinical diagnosis (20% higher) is clinically important. The results need to be replicated with patients recruited from a wider range of settings, including movement disorder clinics and general practice. While an abnormal 123 I-FP-CIT scan strongly supports Lewy body disease, a normal scan does not exclude DLB with minimal brainstem involvement. This study provides Class I evidence that 123 I-FP-CIT dopaminergic neuroimaging accurately identifies patients with DLB. Copyright © 2016 The Author(s). Published by Wolters Kluwer

  5. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  6. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  7. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  8. Pathologic conditions in pregnancy

    International Nuclear Information System (INIS)

    Beomonte Zobel, B.; Tella, S.; Innacoli, M.; D'Archivio, C.; Cardone, G.; Masciocchi, C.; Gallucci, M.; Passariello, R.; Cappa, F.

    1991-01-01

    Soma authors suggested that MR imaging could rapresent an effective diagnostic alternative in the study of pathologic conditions of mother and fetus during pregnancy. To verify the actual role of MR imaging, we examined 20 patients in the 2nd and 3rd trimester of gestation, after a preliminary US examination. Fifteen patients presented fetal or placental pathologies; in 4 patients the onset of the pathologic condition occurred during pregnancy; in 1 case of US diagnosis of fetal ascites, MR findings were nornal and the newborn was healty. As for placental pathologies, our series included a case of placental cyst, two hematomas between placenta and uterine wall, and two cases of partial placenta previa. As for fetal malformation, we evaluated a case of omphalocele, one of Prune-Belly syndrome, a case of femoral asimmetry, one of thanatophoric dwarfism, a case of thoracopagus twins with cardiovascular abnormalities, two fetal hydrocephali, and three cases of pyelo-ureteral stenosis. As for maternal pathologies during pregnancy, we observed a case of subserous uterine fibromyoma, one of of right hydronephrosis, one of protrusion of lumbar invertebral disk, and a large ovarian cyst. In our experience, MR imaging exhibited high sensitivity and a large field of view, which were both useful in the investigation of the different conditions occurring during pregnancy. In the evaluation of fetal and placental abnormalities, especially during the 3rd trimester, the diagnostic yieldof MR imaging suggested it as a complementary technique to US for the evaluation of fetal malformation and of intrauterine growth retardation

  9. Impaired decisional impulsivity in pathological videogamers.

    Directory of Open Access Journals (Sweden)

    Michael A Irvine

    Full Text Available Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort.Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice, and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task. We used stringent diagnostic criteria highlighting functional impairment.In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time.We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management.

  10. Neuroimaging in refractory epilepsy. Current practice and evolving trends

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, N. [Department of Biomedical Imaging, University Malaya Research Imaging Centre (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya Research Imaging Centre (Malaysia); Lim, K.S.; Tan, C.T. [Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Neuroimaging is imperative in diagnostic work up and therapeutic assessment of refractory epilepsy. • Identification of epileptogenic zone on EEG, MRI and functional imaging improves the success of surgery. • High performance MRI greatly enhanced metabolic information and elucidate brain functions. • Optimisation of epilepsy protocols in structural and functional MRI are presented in this article. - Abstract: Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.

  11. Neuroimaging in refractory epilepsy. Current practice and evolving trends

    International Nuclear Information System (INIS)

    Ramli, N.; Rahmat, K.; Lim, K.S.; Tan, C.T.

    2015-01-01

    Highlights: • Neuroimaging is imperative in diagnostic work up and therapeutic assessment of refractory epilepsy. • Identification of epileptogenic zone on EEG, MRI and functional imaging improves the success of surgery. • High performance MRI greatly enhanced metabolic information and elucidate brain functions. • Optimisation of epilepsy protocols in structural and functional MRI are presented in this article. - Abstract: Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed

  12. Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches.

    Science.gov (United States)

    Wang, Jiaojian; Yang, Yong; Fan, Lingzhong; Xu, Jinping; Li, Changhai; Liu, Yong; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2015-01-01

    The superior parietal lobule (SPL) plays a pivotal role in many cognitive, perceptive, and motor-related processes. This implies that a mosaic of distinct functional and structural subregions may exist in this area. Recent studies have demonstrated that the ongoing spontaneous fluctuations in the brain at rest are highly structured and, like coactivation patterns, reflect the integration of cortical locations into long-distance networks. This suggests that the internal differentiation of a complex brain region may be revealed by interaction patterns that are reflected in different neuroimaging modalities. On the basis of this perspective, we aimed to identify a convergent functional organization of the SPL using multimodal neuroimaging approaches. The SPL was first parcellated based on its structural connections as well as on its resting-state connectivity and coactivation patterns. Then, post hoc functional characterizations and connectivity analyses were performed for each subregion. The three types of connectivity-based parcellations consistently identified five subregions in the SPL of each hemisphere. The two anterior subregions were found to be primarily involved in action processes and in visually guided visuomotor functions, whereas the three posterior subregions were primarily associated with visual perception, spatial cognition, reasoning, working memory, and attention. This parcellation scheme for the SPL was further supported by revealing distinct connectivity patterns for each subregion in all the used modalities. These results thus indicate a convergent functional architecture of the SPL that can be revealed based on different types of connectivity and is reflected by different functions and interactions. © 2014 Wiley Periodicals, Inc.

  13. Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Royal, Jason M; Peterson, Bradley S

    2007-01-01

    BACKGROUND: Tourette syndrome (TS) and Attention-Deficit/Hyperactivity Disorder (ADHD) are common and debilitating neuropsychiatric illnesses that typically onset in the preschool years. Recently, both conditions have been subject to neuroimaging studies, with the aim of understanding...... contrast these findings with those in ADHD without comorbid tic disorders. RESULTS: The frequent comorbidity of TS and ADHD may reflect a common underlying neurobiological substrate, and studies confirm the hypothesized involvement of fronto-striatal circuits in both TS and ADHD. However, poor inhibitory...... their underlying neurobiological correlates. OBJECTIVE: The relation of TS and ADHD is discussed against the background of findings from previous Magnetic Resonance Imaging (MRI) studies. METHODS: We review the designs and major findings of previous studies that have examined TS with comorbid ADHD, and we briefly...

  14. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  15. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi; Audenaert, Kurt

    2004-01-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  16. Perinatal pathology: the role of the clinical pathological dialogue in problem solving

    Directory of Open Access Journals (Sweden)

    Gavino Faa

    2014-06-01

    Full Text Available Pathologists and clinicians come together and exchange views, they instil in one another doubts, they break down barriers. Asphyxia, respiratory distress, sepsis, multi-organ failure (MOF, cerebral ischemia and neuroprotection, necrotizing enteritis, renal and biliary pathology (including congenital nephrotic syndrome, injury caused by drugs, cardiac decompensation, placental pathology, neonatal issues in mothers with tumor: these are the topics debated, in the true sense of the word, by perinatologists and pathologists. In some pathologies (e.g. MOF the pathophysiology is surprisingly the same in the neonate and the adult.  Different disciplines deal for example with immunohistochemistry and metabolomics with the processing of thousands of data in search of something that cannot be found with the classic criteria of anamnesis, objective examination, laboratory tests and imaging. Big data and information science promise to change the world. To come to grips with the extreme biological complexity of our organism and each of our organs, the completeness of enormous amounts of data is of extraordinary value if assessed holistically with the “omic” disciplines. Thus we have the possibility of understanding our extraordinary interindividual variability. The new technologies and their application do not diminish the role of physicians: on the contrary, they represent a formidable instrument for extending their diagnostic potential and make possible 5-P medicine: personalized, prospective, predictive, preventive, participatory.  Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  17. FROM PHYSIOLOGICAL TO PATHOLOGICAL METEOSENSITIVITY

    Directory of Open Access Journals (Sweden)

    M. I. Yabluchanskiy

    2013-12-01

    Full Text Available This paper is dedicated to the problem of physiological and pathological meteosensitivity (meteodependency or meteopathy.We introduce and discuss the definition for individual meteodependency, define factors, mechanisms, clinical signs, diagnosis, and approaches to prophylaxy and treatment of individual pathological meteosensitivity.

  18. The blood-brain barrier is intact after levodopa-induced dyskinesias in parkinsonian primates--evidence from in vivo neuroimaging studies

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Jenkins, Bruce G; Choi, Ji-Kyung

    2009-01-01

    It has been suggested, based on rodent studies, that levodopa (L-dopa) induced dyskinesia is associated with a disrupted blood-brain barrier (BBB). We have investigated BBB integrity with in vivo neuroimaging techniques in six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned primates...

  19. Surgical Pathology Bootcamp: A Military Experience

    Science.gov (United States)

    2018-03-17

    CAP 2018, Vancouver, British Columbia, Canada, March 17-23, 2018 14. ABSTRACT Surgical Pathology Bootcamp: A Military Experience Nathaniel Smith...REPORT TYPE 3. DATES COVERED (From - To) 17/03/2018 poster 03/17/2018-03/23/2018 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Surgical Pathology ...or its Components. Background A common complaint among pathology department faculty is the variable medical knowledge and histological experience

  20. Genome-wide association study of pathological gambling.

    Science.gov (United States)

    Lang, M; Leménager, T; Streit, F; Fauth-Bühler, M; Frank, J; Juraeva, D; Witt, S H; Degenhardt, F; Hofmann, A; Heilmann-Heimbach, S; Kiefer, F; Brors, B; Grabe, H-J; John, U; Bischof, A; Bischof, G; Völker, U; Homuth, G; Beutel, M; Lind, P A; Medland, S E; Slutske, W S; Martin, N G; Völzke, H; Nöthen, M M; Meyer, C; Rumpf, H-J; Wurst, F M; Rietschel, M; Mann, K F

    2016-08-01

    Pathological gambling is a behavioural addiction with negative economic, social, and psychological consequences. Identification of contributing genes and pathways may improve understanding of aetiology and facilitate therapy and prevention. Here, we report the first genome-wide association study of pathological gambling. Our aims were to identify pathways involved in pathological gambling, and examine whether there is a genetic overlap between pathological gambling and alcohol dependence. Four hundred and forty-five individuals with a diagnosis of pathological gambling according to the Diagnostic and Statistical Manual of Mental Disorders were recruited in Germany, and 986 controls were drawn from a German general population sample. A genome-wide association study of pathological gambling comprising single marker, gene-based, and pathway analyses, was performed. Polygenic risk scores were generated using data from a German genome-wide association study of alcohol dependence. No genome-wide significant association with pathological gambling was found for single markers or genes. Pathways for Huntington's disease (P-value=6.63×10(-3)); 5'-adenosine monophosphate-activated protein kinase signalling (P-value=9.57×10(-3)); and apoptosis (P-value=1.75×10(-2)) were significant. Polygenic risk score analysis of the alcohol dependence dataset yielded a one-sided nominal significant P-value in subjects with pathological gambling, irrespective of comorbid alcohol dependence status. The present results accord with previous quantitative formal genetic studies which showed genetic overlap between non-substance- and substance-related addictions. Furthermore, pathway analysis suggests shared pathology between Huntington's disease and pathological gambling. This finding is consistent with previous imaging studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.