WorldWideScience

Sample records for neuroendocrine reproductive axis

  1. Reproductive disturbances in multiple neuroendocrine tumor syndromes.

    Science.gov (United States)

    Lytras, Aristides; Tolis, George

    2009-12-01

    In the context of multiple neuroendocrine tumor syndromes, reproductive abnormalities may occur via a number of different mechanisms, such as hyperprolactinemia, increased GH/IGF-1 levels, hypogonadotropic hypogonadism, hypercortisolism, hyperandrogenism, hyperthyroidism, gonadotropin hypersecretion, as well as, tumorigenesis or functional disturbances in gonads or other reproductive organs. Precocious puberty and/or male feminization is a feature of McCune-Albright syndrome (MAS), neurofibromatosis type 1 (NF1), Carney complex (CNC), and Peutz-Jeghers syndrome (PJS), while sperm maturation and ovulation defects have been described in MAS and CNC. Although tumorigenesis of reproductive organs due to a multiple neuroendocrine tumor syndrome is very rare, certain lesions are characteristic and very unusual in the general population. Awareness leading to their recognition is important especially when other endocrine abnormalities coexist, as occasionally they may even be the first manifestation of a syndrome. Lesions such as certain types of ovarian cysts (MAS, CNC), pseudogynecomastia due to neurofibromas of the nipple-areola area (NF1), breast disease (CNC and Cowden disease (CD)), cysts and 'hypernephroid' tumors of the epididymis or bilateral papillary cystadenomas (mesosalpinx cysts) and endometrioid cystadenomas of the broad ligament (von Hippel-Lindau disease), testicular Sertoli calcifying tumors (CNC, PJS) monolateral or bilateral macroochidism and microlithiasis (MAS) may offer diagnostic clues. In addition, multiple neuroendocrine tumor syndromes may be complicated by reproductive malignancies including ovarian cancer in CNC, breast and endometrial cancer in CD, breast malignancies in NF1, and malignant sex-cord stromal tumors in PJS.

  2. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1)

    Science.gov (United States)

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-01-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098

  3. Stress and the reproductive axis.

    Science.gov (United States)

    Toufexis, D; Rivarola, M A; Lara, H; Viau, V

    2014-09-01

    There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes, wherein the activation of one affects the function of the other and vice versa. For example, both testosterone and oestrogen modulate the response of the HPA axis, whereas activation of the stress axis, especially activation that is repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Alterations in maternal care can produce significant effects on both HPG and HPA physiology, as well as behaviour in the offspring at adulthood. For example, changes in reproductive behaviour induced by altered maternal care may alter the expression of sex hormone receptors such as oestrogen receptor (ER)α that govern sexual behaviour, and may be particularly important in determining the sexual strategies utilised by females. Stress in adulthood continues to mediate HPG activity in females through activation of a sympathetic neural pathway originating in the hypothalamus and releasing norepinephrine into the ovary, which produces a noncyclic anovulatory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hormones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress. Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet increases 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain the heightened stress HPA axis responses in females compared to males. Studies on female rhesus macaques show that chronic stress in socially subordinate female monkeys produces a distinct behavioural phenotype that is largely unaffected by oestrogen, a hyporesponsive HPA axis that is hypersensitive to the modulating effects

  4. Reproductive neuroendocrine pathways of social behavior

    Directory of Open Access Journals (Sweden)

    Ishwar eParhar

    2016-03-01

    Full Text Available Social behaviors are key components of reproduction because they are essential for successful fertilization. Social behaviors such as courtship, mating, and aggression are strongly associated with sex steroids, such as testosterone, estradiol and progesterone. Secretion of sex steroids from the gonads is regulated by the hypothalamus-pituitary-gonadal (HPG axis in vertebrates. Gonadotropin-releasing hormone (GnRH is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide peptides has been emphasized in vertebrate reproduction. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH, emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin stimulates GnRH release by directly acting on GnRH neurons, whereas GnIH inhibits gonadotropin release by inhibiting kisspeptin or GnRH neurons or pituitary gonadotropes. These neuropeptides can regulate social behavior by regulating the HPG axis. However, distribution of neuronal fibers of GnRH, kisspeptin and GnIH neurons are not limited within the hypothalamus, and the existence of extra-hypothalamic neuronal fibers suggests direct control of social behavior within the brain. It has traditionally been shown that central administration of GnRH can stimulate female sexual behavior in rats. Recently, it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear responses in zebrafish and GnIH inhibits socio-sexual behavior in birds. Here we highlight recent findings regarding the role of GnRH, kisspeptin and GnIH in the regulation of social behaviors in fish, birds and mammals and discuss their importance in future biological and biomedical research.

  5. Effect of antidepressants on neuroendocrine axis in humans.

    Science.gov (United States)

    Meltzer, H Y; Fang, V S; Tricou, B J; Robertson, A

    1982-01-01

    Unlike neuroleptic drugs, the effect of antidepressant drugs on the neuroendocrine axis in man is highly variable and may or may not be intimately related to their antidepressant action. However, the limited neuroendocrine data available does shed some light on the mechanism of action of these agents and raises some important questions, particularly about the regulation of PRL secretion and the interaction between various neurotransmitter systems. At one end of the spectrum, the ability of nomifensine and buproprion to lower serum PRL levels, presumably due to their ability to block the reuptake of DA by tuberoinfundibular DA neurons, suggests that it may be necessary to reconsider the conclusion that these neurons lack a DA reuptake mechanism or that these two agents are antidepressant by virtue of their ability to block DA uptake. Similarly, the inability of amphetamine or methylphenidate to decrease serum PRL levels in man suggests important differences between the tuberoinfundibular DA neurons in man and the rat. These findings also call into question the ability of these agents to block DA uptake or increase DA release in the tuberoinfundibular DA neurons. The finding that fluoxetine raises serum PRL levels, even in one subject, whereas zimelidine has not yet been shown to do so, and that fluoxetine does not potentiate the ability of 5-HTP to stimulate PRL secretion, has raised important questions about the role of 5-HT in PRL and GH regulation in man and the relationship between 5-HT and DA neurons in man. The occasional increase in serum PRL levels found in patients treated with lithium or the MAO inhibitor phenelzine are suggestive of important interindividual differences which may be revealed by neuroendocrine studies, differences which could be valuable in understanding the mechanism of action of these agents - e.g., does lithium decrease DA receptor sensitivity? - and fundamental aspects of neuroendocrine regulation - e.g., do the MAO inhibitors

  6. A lamprey view on the origins of neuroendocrine regulation of the thyroid axis.

    Science.gov (United States)

    Sower, Stacia A; Hausken, Krist N

    2017-04-13

    This mini review summarizes the current knowledge of the hypothalamic-pituitary-thyroid (HPT) endocrine system in lampreys, jawless vertebrates. Lampreys and hagfish are the only two extant members of the class of agnathans, the oldest lineage of vertebrates. The high conservation of the hypothalamic-pituitary-gonadal (HPG) axis in lampreys makes the lamprey model highly appropriate for comparative and evolutionary analyses. However, there are still many unknown questions concerning the hypothalamic-pituitary (HP) axis in its regulation of thyroid activities in lampreys. As an example, the hypothalamic and pituitary hormone(s) that regulate the HPT axis have not been confirmed and/or characterized. Similar to gnathostomes (jawed vertebrates), lampreys produce thyroxine (T4) and triiodothyronine (T3) from thyroid follicles that are suggested to be involved in larval development, metamorphosis, and reproduction. The existing data provide evidence of a primitive, overlapping yet functional HPG and HPT endocrine system in lamprey. We hypothesize that lampreys are in an evolutionary intermediate stage of hypothalamic-pituitary development, leading to the emergence of the highly specialized HPG and HPT endocrine axes in jawed vertebrates. Study of the ancient lineage of jawless vertebrates, the agnathans, is key to understanding the origins of the neuroendocrine system in vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Update on neuroendocrine regulation and medical intervention of reproduction in birds.

    Science.gov (United States)

    Mans, Christoph; Taylor, W Michael

    2008-01-01

    In avian species, reproductive disorders and undesirable behaviors commonly reflect abnormalities in the neuroendocrine regulation of the reproductive system. Current treatment options are often disappointing, show no long-lasting effect, or have significant side effects. A possible reason for our lack of success is a dearth of knowledge of the underlying neuroendocrine, behavioral, and autonomous physiology of the reproductive processes. Tremendous progress has been made in the last few years in our understanding of the neuroendocrine control of reproduction in birds. Advantage should be taken of these experimentally derived data to develop appropriate and safe treatment protocols for avian patients suffering from reproductive disorders.

  8. A dual-axis approach to understanding neuroendocrine development.

    Science.gov (United States)

    Shirtcliff, Elizabeth A; Dismukes, Andrew R; Marceau, Kristine; Ruttle, Paula L; Simmons, Julian G; Han, Georges

    2015-09-01

    This introduction sets out to present a series of paper about a novel perspective regarding stress and sex hormones, or what the authors within this special issue term "coupling" of hypothalamic-pituitary-adrenal and--gonadal axes. This view postulates that these axes do not necessarily operate in opposition, but can operate together as evidenced empirically as a positive within-person association between stress hormones like cortisol or sex hormones like testosterone. A wealth of papers within the special issue demonstrate positive coupling across acute, diurnal, basal, and longitudinal timeframes and across several different types of contexts. Reviews were meant to challenge whether this was physiologically plausible. Consistently, sophisticated statistical models were utilized in order to show a template for how to model positive coupling and to ensure that coupling was a within-person phenomenon. We cautiously considered positive coupling until the consistency of observing coupling was robust enough for us to consider challenging the prevailing oppositional view of these axes. We do so to acknowledge that there are contexts, moments and stages in which the function of these axes should work together: for example when contexts are both stressful and challenging or at developmental stages (like adolescence) in which the youth must grow up despite the storm and stress of youth. We hope that by putting forward a functional dual-axis approach, the field will be able to consider when and how these axes work together. © 2015 Wiley Periodicals, Inc.

  9. Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution.

    NARCIS (Netherlands)

    Koene, J.M.

    2010-01-01

    Invertebrates are used extensively as model species to investigate neuro-endocrine processes regulating behaviors, and many of these processes may be extrapolated to vertebrates. However, when it comes to reproductive processes, many of these model species differ notably in their mode of

  10. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction

    Science.gov (United States)

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H.; Ciofi, Philippe

    2014-02-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  11. A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism

    Science.gov (United States)

    Palamiuc, Lavinia; Noble, Tallie; Witham, Emily; Ratanpal, Harkaranveer; Vaughan, Megan; Srinivasan, Supriya

    2017-01-01

    Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity. PMID:28128367

  12. Neuro-endocrine correlations of hypothalamic-pituitary-thyroid axis in healthy humans.

    Science.gov (United States)

    Mazzoccoli, G; Carughi, S; Sperandeo, M; Pazienza, V; Giuliani, F; Tarquini, R

    2011-01-01

    Neuro-endocrine hormone secretion is characterized by circadian rhythmicity. Melatonin, GRH and GH are secreted during the night, CRH and ACTH secretion peak in the morning, determining the circadian rhythm of cortisol secretion, TRH and TSH show circadian variations with higher levels at night. Thyroxine levels do not change with clear circadian rhythmicity. In this paper we have considered a possible influence of cortisol and melatonin on hypothalamic-pituitary-thyroid axis function in humans. Melatonin, cortisol, TRH, TSH and FT4 serum levels were determined in blood samples obtained every four hours for 24 hours from ten healthy males, aged 36-51 years. We correlated hormone serum levels at each sampling time and evaluated the presence of circadian rhythmicity of hormone secretion. In the activity phase (06:00 h-10:00 h-14:00 h) cortisol correlated negatively with FT4, TSH correlated positively with TRH, TRH correlated positively with FT4 and melatonin correlated positively with TSH. In the resting phase (18:00 h-22:00 h-02:00 h) TRH correlated positively with FT4, melatonin correlated negatively with FT4, TSH correlated negatively with FT4, cortisol correlated positively with FT4 and TSH correlated positively with TRH. A clear circadian rhythm was validated for the time-qualified changes of melatonin and TSH secretion (with acrophase during the night), for cortisol serum levels (with acrophase in the morning), but not for TRH and FT4 serum level changes. In conclusion, the hypothalamic-pituitary-thyroid axis function may be modulated by cortisol and melatonin serum levels and by their circadian rhythmicity of variation.

  13. Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution

    Directory of Open Access Journals (Sweden)

    Joris M Koene

    2010-10-01

    Full Text Available Invertebrates are used extensively as model species to investigate neuro-endocrine processes regulating behaviours, and many of these processes may be extrapolated to vertebrates. However, when it comes to reproductive processes, many of these model species differ notably in their mode of reproduction. A point in case are simultaneously hermaphroditic molluscs. In this review I aim to achieve two things. On the one hand, I provide a comprehensive overview of the neuro-endocrine control of male and female reproductive processes in freshwater snails. Even though the focus will necessarily be on Lymnaea stagnalis, since this is the best-studied species in this respect, extensions to other species are made wherever possible. On the other hand, I will place these findings in the actual context of the whole animal, after all these are simultaneous hermaphrodites. By considering the hermaphroditic situation, I uncover a numbers of possible links between the regulation of the two reproductive systems that are present within this animal, and suggest a few possible mechanisms via which this animal can effectively switch between the two sexual roles in the flexible way that it does. Evidently, this opens up a number of new research questions and areas that explicitly integrate knowledge about behavioural decisions (e.g., mating, insemination, egg laying and sexual selection processes (e.g., mate choice, sperm allocation with the actual underlying neuronal and endocrine mechanisms required for these processes to act and function effectively.

  14. Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus).

    Science.gov (United States)

    Mennigen, Jan A; Martyniuk, Christopher J; Crump, Kate; Xiong, Huiling; Zhao, E; Popesku, Jason; Anisman, Hymie; Cossins, Andrew R; Xia, Xuhua; Trudeau, Vance L

    2008-11-12

    We investigated the effects of fluoxetine, a selective serotonin reuptake inhibitor, on neuroendocrine function and the reproductive axis in female goldfish. Fish were given intraperitoneal injections of fluoxetine twice a week for 14 days, resulting in five injections of 5 microg fluoxetine/g body wt. We measured the monoamine neurotransmitters serotonin, dopamine, and norepinephrine in addition to their metabolites with HPLC. Homovanillic acid, a metabolite in the dopaminergic pathway, increased significantly in the hypothalamus. Plasma estradiol levels were measured by radioimmunoassay and were significantly reduced approximately threefold after fluoxetine treatment. We found that fluoxetine also significantly reduced the expression of estrogen receptor (ER)beta1 mRNA by 4-fold in both the hypothalamus and the telencephalon and ERalpha mRNA by 1.7-fold in the telencephalon. Fluoxetine had no effect on the expression of ERbeta2 mRNA in the hypothalamus or telencephalon. Microarray analysis identified isotocin, a neuropeptide that stimulates reproductive behavior in fish, as a candidate gene affected by fluoxetine treatment. Real-time RT-PCR verified that isotocin mRNA was downregulated approximately sixfold in the hypothalamus and fivefold in the telencephalon. Intraperitoneal injection of isotocin (1 microg/g) increased plasma estradiol, providing a potential link between changes in isotocin gene expression and decreased circulating estrogen in fluoxetine-injected fish. Our results reveal targets of serotonergic modulation in the neuroendocrine brain and indicate that fluoxetine has the potential to affect sex hormones and modulate genes involved in reproductive function and behavior in the brain of female goldfish. We discuss these findings in the context of endocrine disruption because fluoxetine has been detected in the environment.

  15. Neuroendocrine stimulatory tests of hypothalamus-pituitary-adrenal axis in psoriasis and correlative implications with psychopathological and immune parameters.

    Science.gov (United States)

    Karanikas, Evangelos; Harsoulis, Faidon; Giouzepas, Ioannis; Griveas, Ioannis; Chrisomallis, Fotios

    2009-01-01

    Psoriasis constitutes one of the most representative examples of psychosomatic disorders. The published work investigating the psychological parameters and the way they interact during the course of the disease is extensive, whereas only a few studies have focused on the neuroendocrine framework of psoriasis. In the present study, the objective was to investigate the neuroendocrine parameters of psoriasis and the way they interact with psychopathological and immune variables. Patients with psoriasis (n=24) and the same number of matched healthy controls underwent psychiatric evaluation with interviews and psychometric questionnaires. Both of the groups underwent the corticotropin-releasing hormone (CRH) test and the dexamethasone suppression test (DST) to investigate functional parameters of the hypothalamus-pituitary-adrenal (HPA) axis. The evaluation of immune variables included the estimation of the distribution of T-cell and natural killer lymphocytes. Levels of depressive and anxiety features were increased within subjects with psoriasis and they were significantly correlated with stressful life events and the extent of the disease. The adrenocorticotrophic hormone and cortisol levels increased after CRH infusion without significant differences between the two groups and the psoriatic subjects' cortisol suppression after DST was within normal range, though relatively blunted. No significant correlations were identified among neuroendocrine, psychopathological and immune parameters. No particular neuroendocrine profile has been identified among psoriatic patients and the hypothesized interaction with psychopathological and immune parameters was not replicated. Nevertheless, it is still premature to exclude the possibility that a subtle latent alteration of the HPA axis function might exist, in psoriasis, either stemming from the psychopathology or from the disease per se.

  16. Risk-averse personalities have a systemically potentiated neuroendocrine stress axis: A multilevel experiment in Parus major.

    Science.gov (United States)

    Baugh, Alexander T; Senft, Rebecca A; Firke, Marian; Lauder, Abigail; Schroeder, Julia; Meddle, Simone L; van Oers, Kees; Hau, Michaela

    2017-07-01

    Hormonal pleiotropy-the simultaneous influence of a single hormone on multiple traits-has been hypothesized as an important mechanism underlying personality, and circulating glucocorticoids are central to this idea. A major gap in our understanding is the neural basis for this link. Here we examine the stability and structure of behavioral, endocrine and neuroendocrine traits in a population of songbirds (Parus major). Upon identifying stable and covarying behavioral and endocrine traits, we test the hypothesis that risk-averse personalities exhibit a neuroendocrine stress axis that is systemically potentiated-characterized by stronger glucocorticoid reactivity and weaker negative feedback. We show high among-individual variation and covariation (i.e. personality) in risk-taking behaviors and demonstrate that four aspects of glucocorticoid physiology (baseline, stress response, negative feedback strength and adrenal sensitivity) are also repeatable and covary. Further, we establish that high expression of mineralocorticoid and low expression of glucocorticoid receptor in the brain are linked with systemically elevated plasma glucocorticoid levels and more risk-averse personalities. Our findings support the hypothesis that steroid hormones can exert pleiotropic effects that organize behavioral phenotypes and provide novel evidence that neuroendocrine factors robustly explain a large fraction of endocrine and personality variation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Current Concepts in Neuroendocrine Disruption

    Science.gov (United States)

    2014-01-01

    In the last few years, it has become clear that a wide variety of environmental contaminants have specific effects on neuroendocrine systems in fish, amphibians, birds and mammals. While it is beyond the scope of this review to provide a comprehensive examination of all of these neuroendocrine disruptors, we will focus on select representative examples. Organochlorine pesticides bioaccumulate in neuroendocrine areas of the brain that directly regulate GnRH neurons, thereby altering the expression of genes downstream of GnRH signaling. Organochlorine pesticides can also agonize or antagonize hormone receptors, adversely affecting crosstalk between neurotransmitter systems. The impacts of polychlorinated biphenyls are varied and in many cases subtle. This is particularly true for neuroedocrine and behavioral effects of exposure. These effects impact sexual differentiation of the hypothalamic-pituitary-gonadal axis, and other neuroendocrine systems regulating the thyroid, metabolic, and stress axes and their physiological responses. Weakly estrogenic and anti-androgenic pollutants such as bisphenol A, phthalates, phytochemicals, and the fungicide vinclozolin can lead to severe and widespread neuroendocrine disruptions in discrete brain regions, including the hippocampus, amygdala, and hypothalamus, resulting in behavioral changes in a wide range of species. Behavioral features that have been shown to be affected by one or more these chemicals include cognitive deficits, heightened anxiety or anxiety-like, sociosexual, locomotor, and appetitive behaviors. Neuroactive pharmaceuticals are now widely detected in aquatic environments and water supplies through the release of wastewater treatment plant effluents. The antidepressant fluoxetine is one such pharmaceutical neuroendocrine disruptor. Fluoxetine is a selective serotonin reuptake inhibitor that can affect multiple neuroendocrine pathways and behavioral circuits, including disruptive effects on reproduction and

  18. Response of the nitrergic system to activation of the neuroendocrine stress axis

    Directory of Open Access Journals (Sweden)

    Hsiao-Jou Cortina eChen

    2015-01-01

    Full Text Available Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.

  19. Lack of anti-androgenic effects of equol on reproductive neuroendocrine function in the adult male rat.

    Science.gov (United States)

    Loutchanwoot, Panida; Srivilai, Prayook; Jarry, Hubertus

    2014-01-01

    Equol (EQ), a metabolite of the soy isoflavone daidzein, has well known estrogenic properties. Data from animal studies suggested that EQ may act also as an anti-androgen. However, data regarding how EQ may affect brain functions like the regulation of neuroendocrine activity and reproductive outcomes in adult male rats are still lacking. We therefore investigated the effects of EQ on sex-steroid regulated gene expression in the brain [medial preoptic area/anterior hypothalamus (MPOA/AH) and medial basal hypothalamus/median eminence (MBH/ME)], pituitary, and prostate as a reference androgen-dependent organ. Furthermore reproductive outcomes were evaluated. The anti-androgen flutamide (FLUT) served as reference compound. Male rats (n=12 per group) were treated by gavage for 5 days with either EQ (100 or 250 mg/kgBW/day), or FLUT 100 mg/kgBW/day. All vehicle- and EQ-treated males showed successful reproductive outcomes, whereas FLUT-exposed males had severe reproductive impairments resulted in infertility. FLUT decreased relative weights of prostate, seminal vesicles and epididymides, and increased serum levels of luteinizing hormone, follicle-stimulating hormone, testosterone and 5α-dihydrotestosterone without altering prolactin levels, whereas EQ exerted opposite effects. Both EQ and FLUT decreased gonadotropin releasing hormone (GnRH) expression in the MPOA/AH. Only FLUT upregulated levels of GnRH receptor expression both in the MBH/ME and pituitary. While EQ downregulated the hypothalamic ERα and ERβ expressions, but FLUT did not. In the prostate, only FLUT upregulated both ERα and AR mRNA expression levels. Taken together, our findings are the first data that EQ did not induce anti-androgenic effects on brain, prostate and male reproductive parameters, however, estrogenic neuroendocrine and reproductive effects of EQ were observed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Kisspeptins and the reproductive axis: potential applications to manage reproduction in farm animals.

    Science.gov (United States)

    Caraty, A; Decourt, C; Briant, C; Beltramo, M

    2012-08-01

    Kisspeptins (Kp) are a family of neuropeptides produced mainly by two hypothalamic neuronal cell populations. They have recently emerged as a major regulator of the gonadotropin axis and their action is located upstream of the gonadotropin-releasing hormone (GnRH) cell population. In less than 10 yr a growing body of literature has demonstrated the involvement of these peptides in most, if not all, aspects of reproductive axis maturation and function. In contrast to these abundant basic research studies, few experiments have evaluated the potential application of Kp as tools to manipulate reproduction in domestic animals. In mammals, exogenous Kp administration potently stimulates gonadotropin secretion. This action is exerted mainly, if not exclusively, through the stimulation of GnRH release. Intravenous, intraperitoneal, or subcutaneous administration of Kp induced a robust and rapid increase in plasma gonadotropins (luteinizing hormone [LH] and follicle-stimulating hormone [FSH]). However, this stimulatory effect is of short duration. Prolonged LH and FSH release over several hours can be achieved only when Kp are given as repeated multiple bolus or as an infusion. Kp administration was used in two experimental models, ewe and pony mare, with the aim of inducing well-timed and synchronized ovulations. During the breeding season, progesterone-synchronized ewes were given an intravenous infusion of Kp starting 30 h after the removal of progesterone implants. An LH surge was induced in all Kp-treated animals within 2 h of infusion onset. In contrast, in pony mares a constant infusion of Kp for 3 d in the the late follicular phase was unable to induce synchronized ovulation. Another set of studies showed that Kp could be used to activate reproductive function in acyclic animals. Pulsatile administration of Kp in prepubertal ewe lambs was shown to activate ovarian function, leading to enhanced ovarian steroidogenesis, stimulation of LH preovulatory surge, and

  1. Survival of egg-laying controlling neuroendocrine cells during reproductive senescence of a mollusc

    NARCIS (Netherlands)

    Janse, C.

    2004-01-01

    During brain aging neuronal degradation occurs. In some neurons this may result in degeneration and cell death, still other neurons may survive and maintain their basic properties. The present study deals with survival of the egg-laying controlling neuroendocrine caudodorsal cells (CDCs) during

  2. EFFECTS OF CADMIUM ON THE REPRODUCTIVE AXIS OF JAPANESE MEDAKA

    Science.gov (United States)

    Cadmium (Cd) is a ubquitous element and a significant inorganic pollutant that has previously been found to bioaccumulate in reproductive organs of fish and disrupt important endocrine processes, especially those involved in synthesis, release and metabolism of hormones. Clearly,...

  3. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wu, Y.; Liu, F.; Liu, Y.S.; Shen, L.; Lei, Y.Y.; Liu, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Qin, J. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhang, C. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Chen, L.B. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, J. [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, H., E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  4. Developmental exposure to ethinylestradiol affects reproductive physiology, the GnRH neuroendocrine network and behaviors in female mouse

    Directory of Open Access Journals (Sweden)

    Lyes eDerouiche

    2015-12-01

    Full Text Available During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2, the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR or pharmacological (PHARMACO doses (0.1 and 1 µg/kg (body weight/day respectively, from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.

  5. Reversal and Relapse of Hypogonadotropic Hypogonadism: Resilience and Fragility of the Reproductive Neuroendocrine System

    Science.gov (United States)

    Sidhoum, Valerie F.; Chan, Yee-Ming; Lippincott, Margaret F.; Balasubramanian, Ravikumar; Quinton, Richard; Plummer, Lacey; Dwyer, Andrew; Pitteloud, Nelly; Hayes, Frances J.; Hall, Janet E.; Martin, Kathryn A.; Boepple, Paul A.

    2014-01-01

    Context: A subset of patients diagnosed with idiopathic hypogonadotropic hypogonadism (IHH) later achieves activation of their hypothalamic-pituitary-gonadal axis with normalization of steroidogenesis and/or gametogenesis, a phenomenon termed reversal. Objective: The objective of this study was to determine the natural history of reversal and to identify associated phenotypes and genotypes. Design, Setting, and Subjects: This was a retrospective review of clinical, biochemical, and genetic features of patients with IHH evaluated at an academic medical center. Main Outcome Measures: History of spontaneous fertility, regular menses, testicular growth, or normalization of serum sex steroids, LH secretory profiles, brain imaging findings, and sequences of 14 genes associated with IHH were reviewed. Results: Of 308 patients with IHH, 44 underwent reversal. Time-to-event analysis estimated a lifetime incidence of reversal of 22%. There were no differences in the rates of cryptorchidism, micropenis, or partial pubertal development in patients with reversal vs IHH patients without reversal. Fifteen patients with reversal (30%) had Kallmann syndrome (IHH and anosmia); one had undetectable olfactory bulbs on a brain magnetic resonance imaging scan. Subjects with reversal were enriched for mutations affecting neurokinin B signaling compared with a cohort of IHH patients without reversal (10% vs 3%, P = .044), had comparable frequencies of mutations in FGFR1, PROKR2, and GNRHR, and had no mutations in KAL1. Five men did not sustain their reversal and again developed hypogonadotropism. Conclusions: Reversal of IHH may be more widespread than previously appreciated and occurs across a broad range of genotypes and phenotypes. Enrichment for mutations that disrupt neurokinin B signaling in patients who reversed indicates that, despite the importance of this signaling pathway for normal pubertal timing, its function is dispensable later in life. The occurrence of reversal in a

  6. Integrative neuroendocrine pathways in the control of reproduction in lamprey: a brief review

    Directory of Open Access Journals (Sweden)

    Mihael eFreamat

    2013-10-01

    Full Text Available The gonadotropin-releasing hormone (GnRH system is well known as the main regulator of reproductive physiology in vertebrates. It is also part of a network of brain structures and pathways that integrate information from the internal and external milieu and coordinate the adaptive behavioral and physiological responses to social and reproductive survival needs. In this paper we review the state of knowledge of the GnRH system in relation to the behavior, external and internal factors that control reproduction in one of the oldest lineage of vertebrates, the lampreys.

  7. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis.

    Science.gov (United States)

    Miranda, Leandro Andrés; Chalde, Tomás; Elisio, Mariano; Strüssmann, Carlos Augusto

    2013-10-01

    The ongoing of global warming trend has led to an increase in temperature of several water bodies. Reproduction in fish, compared with other physiological processes, only occurs in a bounded temperature range; therefore, small changes in water temperature could significantly affect this process. This review provides evidence that fish reproduction may be directly affected by further global warming and that abnormal high water temperature impairs the expression of important genes throughout the brain-pituitary-gonad axis. In all fishes studied, gonads seem to be the organ more readily damaged by heat treatments through the inhibition of the gene expression and subsequent synthesis of different gonadal steroidogenic enzymes. In view of the feedback role of sex steroids upon the synthesis and release of GnRH and GtHs in fish, it is possible that the inhibition observed at brain and pituitary levels in treated fish is consequence of the sharp decrease in plasma steroids levels. Results of in vitro studies on the inhibition of pejerrey gonad aromatase expression by high temperature corroborate that ovary functions are directly disrupted by high temperature independently of the brain-pituitary axis. For the reproductive responses obtained in laboratory fish studies, it is plausible to predict changes in the timing and magnitude of reproductive activity or even the total failure of spawning season may occur in warm years, reducing annual reproductive output and affecting future populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Modeling cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression, and post-traumatic stress disorder (PTSD in humans.

    Directory of Open Access Journals (Sweden)

    K Sriram

    strong negative feedback loop may cause hypersensitive neuro-endocrine axis that results in hypocortisolemia in PTSD.

  9. Chronic Stress and Limbic-Hypothalamopituitary-Adrenal Axis (LHPA Response in Female Reproductive system

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2009-12-01

    Full Text Available The hypothalamo-pituitary-adrenocortical (HPA axis is a critical adaptive system that maximizes survival potential in the face of physical or psychological challenge. The principal end products of the HPA axis, glucocorticoid hormones, act on multiple organ systems, including the brain, to maintain homeostatic balance. The brain is a target of stress, and the hippocampus is the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. These anatomical areas in brain are limbic system, and in particular the hippocampus, medial prefrontal cortex (mPFC and amigdal that have multiple control points in regulation of the hypothalamic–pituitary–adrenal (HPA axis. The studies show the prefrontal cortex (PFC plays an important role in the regulation of stress-induced hypothalamic–pituitary–adrenal (HPA activity and regulation of gonadal function in men and women is under the control of the HPA. This regulation is complex and sex steroids are important regulators of GnRH and gonadotropin release through classic feedback mechanisms in the hypothalamus and pituitary gland. Chronic stress can have a deleterious effect on the reproductive axis that, for females, is manifested in reduced pulsatile gonadotropin secretion and increased incidence of ovulatory abnormalities and infertility. The limbic–hypothalamic–pituitary–adrenal (LHPA axis suggests a functional role for gonadal steroids in the regulation of a female’s response to stress.

  10. Endocrine disrupting pesticides impair the neuroendocrine regulation of reproductive behaviors and secondary sexual characters of red munia (Amandava amandava).

    Science.gov (United States)

    Pandey, Surya Prakash; Tsutsui, Kazuyoshi; Mohanty, Banalata

    2017-05-01

    The exposure effects of two endocrine disrupting pesticides (EDPs), mancozeb/MCZ and imidacloprid/IMI of the group dithiocarbamate and neonicotinoid respectively, on reproductive behaviors and secondary sexual characters have been studied in a seasonally breeding wildlife bird, red munia (Amandava amandava). Adult male birds were exposed to both the pesticides individually (0.25% LD 50 of each) as well as co-exposed (MIX-I: 0.25% LD 50 of each and MIX-II: 0.5% LD 50 of each) through food for 30d in preparatory (July-August) and breeding (September-October) phase of reproductive cycle. Singing and pairing patterns started decreasing from 2nd week to complete disappearance during 4th week of pesticides exposures at both the phases of reproductive cycles. Similar trend was observed in the disappearance of spots on the plumage as well as color of both plumage and beak which turned black/gray from red. Pesticides caused impairment of the lactotropic as well as hypothalamic-pituitary-testicular (HPT) axes as there was increased plasma PRL and decreased LH, FSH and testosterone levels. Testicular expressions of GnRH and androgen receptor/AR were significantly decreased but that of GnIH significantly increased as compared to control. Significant differences among individually- and co-exposed groups were also present. Abnormalities in sexual behaviors and secondary sexual characteristics could be linked to inhibition of HPT axis and/or direct toxicity at the level of hypothalamus, pituitary and testis. In addition, pesticide-induced hyperprolactinemia as well as impaired thyroid hormones might have also affected maintenance of reproductive behaviors. On co-exposures, the more distinct impairments might be due to cumulative toxicity of pesticides. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Role of kisspeptin/GPR54 system in human reproductive axis.

    Science.gov (United States)

    Silveira, Leticia F G; Teles, Milena G; Trarbach, Ericka B; Latronico, Ana Claudia

    2010-01-01

    The kisspeptin-GPR54 signaling complex is a key gatekeeper of human sexual maturation. Kisspeptins, encoded by the KISS1 gene, constitute a powerful stimulus for gonadotropin-releasing hormone-induced gonadotropin secretion. In addition, the KISS1 gene is a target for regulation by gonadal steroids in both sexes. The increase in hypothalamic kisspeptin expression at puberty is believed to contribute to maturation of the reproductive axis. Homozygous or compound heterozygous loss-of-function mutations in the GPR54 gene have been identified in familial and sporadic patients with isolated hypogonadotropic hypogonadism without olfactory abnormalities. In addition, mice with targeted deletions of Kiss1 or Gpr54 have a similar failure of sexual maturation. Study of these mutations provides an important contribution in the understanding of the role of the kisspeptin/GPR54 system in the control of human puberty development and reproductive function. Copyright 2010 S. Karger AG, Basel.

  12. Neuro-endocrine effects of aqueous extract of Amaranthus viridis (Linn. leaf in male Wistar rat model of cyclophosphamide-induced reproductive toxicity

    Directory of Open Access Journals (Sweden)

    Ayoka Oladele Abiodun

    2016-01-01

    Full Text Available Cyclophosphamide (CP is a widely used cytotoxic alkylating agent with antitumor and immunosuppressant properties that is associated with various forms of reproductive toxicity. The significance of natural antioxidants of plant origin should be explored, especially in a world with increasing incidence of patients in need of chemotherapy. The neuro-endocrine effects of aqueous extract of Amaranthus viridis (Linn. leaf (AEAVL in Wistar rats with CP-induced reproductive toxicity was determined. Forty rats were used for this study such that graded doses of the extract were administered following CP-induced reproductive toxicity and comparisons were made against control, toxic and standard (vitamin E groups at p < 0.05. The synthetic drugs (CP, 65 mg/kg i.p. for 5 days; Vitamin E, 100 mg/kg p.o. for 30 days as well as the extract (100, 200 and 400 mg/kg p.o. for 30 days were administered to the rats at 0.2 mL/100 g. CP induced reproductive toxicity as evidenced by significantly lowered levels of FSH, LH and testosterone, perturbation of sperm characterization, deleterious disruptions of the antioxidant system as evidenced by decreased levels of GSH as well as elevation of TBARS activity. Histopathological examination showed hemorrhagic lesions with scanty and hypertrophied parenchymal cells in the pituitary while the testis showed ballooned seminiferous tubules with loosed connective tissues and vacuolation of testicular interstitium. These conditions were significantly reversed (p < 0.05 following administration of the graded doses of the extract. It was, therefore, concluded that AEAVL could potentially be a therapeutic choice in patients with CP-induced neuro-endocrine dysfunction and reproductive toxicity.

  13. Prolactin and natural killer cells: evaluating the neuroendocrine-immune axis in women with primary infertility and recurrent spontaneous abortion.

    Science.gov (United States)

    Triggianese, Paola; Perricone, Carlo; Perricone, Roberto; De Carolis, Caterina

    2015-01-01

    An association between serum prolactin (PRL) and peripheral blood natural killer (NK) cells has been described in healthy women. We explored for the first time the PRL response to the thyrotrophin-releasing hormone (TRH) test and the association between PRL and NK cells in women with reproductive failure. A total of 130 women [31 primary infertility, 69 recurrent spontaneous abortion (RSA), and 30 fertile women] were evaluated by a TRH test to analyze the following: basal PRL (bPRL), peak-time PRL, PRL absolute and relative increase, decline-time PRL. Hyperprolactinaemia (HPRL) was defined as bPRL ≥15 ng/mL. NK cells were characterized by immunophenotyping. Significantly higher bPRL levels were found in the infertile women than in controls. Both the infertile and the RSA women showed significantly elevated NK levels. bPRL levels correlated with NK cells in HPRL-infertile women. In patients with HPRL, an association between NK cell and bPRL results. The dynamic test in the infertile women would help in the management of the pregnancy impairment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The GPR54-Kisspeptin complex in reproductive biology: neuroendocrine significance and implications for ovulation induction and contraception.

    Science.gov (United States)

    Sills, Eric Scott; Walsh, Anthony P H

    2008-12-01

    KISS1 encodes the kisspeptin (KP) family of peptides which were originally characterised as potent antimetastatic agents in breast cancer and malignant melanoma cells. One member of this family of arginine-phenylalanine amide peptides, KP-54, was subsequently identified as the natural ligand for the G-protein coupled receptor-54 (GPR54). In addition to its importance as a metastatic suppressor, KP has been found to play a major neuroregulatory role in governing endogenous gonadotropin release by its modulation of the hypothalamic-pituitary-gonadal (HPG) axis. In humans, KISS1 mRNA has been localised to the hypothalamic anteroventral periventricular nucleus and arcuate nucleus. Although GPR54 is expressed in human pituitary cells, it is not presently known if gonadotrope cells themselves are targets for significant KP activity. It was recently shown that full disruption of the KP/GPR54 complex resulted in hypogonadotropic hypogonadism. Indeed, evidence now suggests that KP/GPR54 signalling during gestation is necessary for sexual differentiation and implicates activation of the KP/GPR54 complex as the single most important upstream event regulating GnRH release. Several compelling studies have placed KP as the leading candidate molecule responsible for initiating puberty, making this receptor-ligand complex of fundamental importance to the neuroendocrinology of reproduction. Here, we discuss key KP/GPR54 discovery events and present an evolution of KP biology in the context of recent animal and human experimental work. With evidence pointing to proper KP/GPR54 signalling as the principal trigger for activation of GnRH neurons and subsequent ovulation, elucidation of how this pathway is modulated is likely to bring novel pharmacologic strategies for fertility treatment (and contraception) within reach. Because the physiological significance KP is now acknowledged to extend well beyond cancer biology (and may also contribute to the pathophysiology of pre

  15. Neuroendocrine-immune interaction

    NARCIS (Netherlands)

    Kemenade, van Lidy; Cohen, Nicholas; Chadzinska, Magdalena

    2017-01-01

    It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only

  16. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts.

    Science.gov (United States)

    Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De

    2014-07-01

    People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.

  17. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    Science.gov (United States)

    Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.

    2015-01-01

    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263

  18. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain.

    Directory of Open Access Journals (Sweden)

    Rute S T Martins

    Full Text Available The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.

  19. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  20. Intermittent fasting dietary restriction regimen negatively influences reproduction in young rats: a study of hypothalamo-hypophysial-gonadal axis.

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    Full Text Available Nutritional infertility is very common in societies where women fail to eat enough to match their energy expenditure and such females often present as clinical cases of anorexia nervosa. The cellular and molecular mechanisms that link energy balance and central regulation of reproduction are still not well understood. Peripheral hormones such as estradiol, testosterone and leptin, as well as neuropeptides like kisspeptin and neuropeptides Y (NPY play a potential role in regulation of reproduction and energy balance with their primary target converging on the hypothalamic median eminence-arcuate region. The present study was aimed to explore the effects of negative energy state resulting from intermittent fasting dietary restriction (IF-DR regimen on complete hypothalamo-hypophysial-gonadal axis in Wistar strain young female and male rats. Significant changes in body weight, blood glucose, estrous cyclicity and serum estradiol, testosterone and LH level indicated the negative role of IF-DR regimen on reproduction in these young animals. Further, it was elucidated whether serum level of metabolic hormone, leptin plays a mechanistic role in suppressing hypothalamo-hypophysial-gonadal (HPG axis via energy regulators, kisspeptin and NPY in rats on IF-DR regimen. We also studied the effect of IF-DR regimen on structural remodeling of GnRH axon terminals in median eminence region of hypothalamus along with the glial cell marker, GFAP and neuronal plasticity marker, PSA-NCAM using immunostaining, Western blotting and RT-PCR. Together these data suggest that IF-DR regimen negatively influences reproduction in young animals due to its adverse effects on complete hypothalamus-hypophysial-gonadal axis and may explain underlying mechanism(s to understand the clinical basis of nutritional infertility.

  1. Intermittent fasting dietary restriction regimen negatively influences reproduction in young rats: a study of hypothalamo-hypophysial-gonadal axis.

    Science.gov (United States)

    Kumar, Sushil; Kaur, Gurcharan

    2013-01-01

    Nutritional infertility is very common in societies where women fail to eat enough to match their energy expenditure and such females often present as clinical cases of anorexia nervosa. The cellular and molecular mechanisms that link energy balance and central regulation of reproduction are still not well understood. Peripheral hormones such as estradiol, testosterone and leptin, as well as neuropeptides like kisspeptin and neuropeptides Y (NPY) play a potential role in regulation of reproduction and energy balance with their primary target converging on the hypothalamic median eminence-arcuate region. The present study was aimed to explore the effects of negative energy state resulting from intermittent fasting dietary restriction (IF-DR) regimen on complete hypothalamo-hypophysial-gonadal axis in Wistar strain young female and male rats. Significant changes in body weight, blood glucose, estrous cyclicity and serum estradiol, testosterone and LH level indicated the negative role of IF-DR regimen on reproduction in these young animals. Further, it was elucidated whether serum level of metabolic hormone, leptin plays a mechanistic role in suppressing hypothalamo-hypophysial-gonadal (HPG) axis via energy regulators, kisspeptin and NPY in rats on IF-DR regimen. We also studied the effect of IF-DR regimen on structural remodeling of GnRH axon terminals in median eminence region of hypothalamus along with the glial cell marker, GFAP and neuronal plasticity marker, PSA-NCAM using immunostaining, Western blotting and RT-PCR. Together these data suggest that IF-DR regimen negatively influences reproduction in young animals due to its adverse effects on complete hypothalamus-hypophysial-gonadal axis and may explain underlying mechanism(s) to understand the clinical basis of nutritional infertility.

  2. Chronic Stress and Limbic-Hypothalamopituitary-Adrenal Axis (LHPA) Response in Female Reproductive system

    OpenAIRE

    Farideh Zafari Zangeneh; Fatemeh Sarmast Shooshtary

    2009-01-01

    The hypothalamo-pituitary-adrenocortical (HPA) axis is a critical adaptive system that maximizes survival potential in the face of physical or psychological challenge. The principal end products of the HPA axis, glucocorticoid hormones, act on multiple organ systems, including the brain, to maintain homeostatic balance. The brain is a target of stress, and the hippocampus is the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. These anatomical are...

  3. Neuroendocrine Role for VGF

    Directory of Open Access Journals (Sweden)

    Jo Edward Lewis

    2015-02-01

    Full Text Available The vgf gene (non-acronymic is highly conserved and was identified on the basis of its rapid induction in vitro by nerve growth factor, although can also be induced by brain derived neurotrophic factor, and glial derived growth factor. The VGF gene gives rise to a 68kDa precursor polypeptide which is induced robustly, relatively selectively and is synthesized exclusively in neuronal and neuroendocrine cells. Post-translational processing by neuroendocrine specific pro-hormone convertases in these cells results in the production of a number of smaller peptides. The VGF gene and peptides are widely expressed throughout the brain, particularly the hypothalamus and hippocampus, and in peripheral tissues including the pituitary gland, the adrenal glands and the pancreas, and in the gastrointestinal tract in both the myenteric plexus and in endocrine cells. VGF peptides have been associated with a number of neuroendocrine roles and in this mini-review we aim to describe these roles to highlight the importance of VGF as therapeutic target for a number of disorders, particularly those associated with energy metabolism, pain, reproduction and cognition.

  4. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye.

    Science.gov (United States)

    Baxter, M; Joseph, N; Osborne, V R; Bédécarrats, G Y

    2014-05-01

    Photoperiod is essential in manipulating sexual maturity and reproductive performance in avian species. Light can be perceived by photoreceptors in the retina of the eye, pineal gland, and hypothalamus. However, the relative sensitivity and specificity of each organ to wavelength, and consequently the physiological effects, may differ. The purpose of this experiment was to test the impacts of light wavelengths on reproduction, growth, and stress in laying hens maintained in cages and to determine whether the retina of the eye is necessary. Individual cages in 3 optically isolated sections of a single room were equipped with LED strips providing either pure green, pure red or white light (red, green, and blue) set to 10 lx (hens levels). The involvement of the retina on mediating the effects of light wavelength was assessed by using a naturally blind line (Smoky Joe) of chickens. Red and white lights resulted in higher estradiol concentrations after photostimulation, indicating stronger ovarian activation, which translated into a significantly lower age at first egg when compared with the green light. Similarly, hens maintained under red and white lights had a longer and higher peak production and higher cumulative egg number than hens under green light. No significant difference in BW gain was observed until sexual maturation. However, from 23 wk of age onward, birds exposed to green light showed higher body growth, which may be the result of their lower egg production. Although corticosterone levels were higher at 20 wk of age in hens under red light, concentrations were below levels that can be considered indicative of stress. Because no significant differences were observed between blind and sighted birds maintained under red and white light, the retina of the eye did not participate in the activation of reproduction. In summary, red light was required to stimulate the reproductive axis whereas green light was ineffective, and the effects of stimulatory

  5. Leptin, ciliary neurotrophic factor, leukemia inhibitory factor and interleukin-6: class-I cytokines involved in the neuroendocrine regulation of the reproductive function.

    Science.gov (United States)

    Dozio, E; Ruscica, M; Galliera, E; Corsi, M M; Magni, P

    2009-12-01

    Class-I cytokines represent a large group of molecules involved in different physiological processes including host defence, immune regulation, food intake, energy metabolism and, relevant for this review, reproduction. In this latter respect, here, we focus the attention on four of these molecules, specifically leptin, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). These cytokines present similar three-dimensional fold structure, interact with related class-I receptors, which are expressed in the same regions (i.e., hypothalamus), and activate similar intracellular pathways. Leptin and CNTF share functional similarities, by acting at hypothalamic and pituitary levels, and their receptors are colocalized in the arcuate and paraventricular nuclei of the hypothalamus. For both these molecules, no effect on GnRH migration has been described. LIF has also been shown to affect gonadotropin secretion and here we present the novel observation that it is also able to stimulate GnRH secretion in vitro. Moreover, in the mouse, LIF is prenatally expressed in nasal regions where GnRH neurons originate and start their migration, and in vitro it stimulates intrinsic cell motility and directional migration. The role of the prototypical cytokine, IL-6, on the GnRH-LH axis is not fully clear and additional information seem necessary to better clarify this aspect. In conclusion, the data here discussed suggest that this family of cytokines appears to participate to the complex control of the reproductive function by affecting the development and function of the hypothalamus-pituitary system at different ontogenic times and anatomical sites.

  6. Neuromedin B and Its Receptor: Gene Cloning, Tissue Distribution and Expression Levels of the Reproductive Axis in Pigs.

    Science.gov (United States)

    Ma, Zhiyu; Su, Juan; Guo, Tingting; Jin, Mengmeng; Li, Xiang; Lei, Zhihai; Hou, Yuanlong; Li, Xiaoliang; Jia, Cuicui; Zhang, Zheng; Ahmed, Ejlal

    2016-01-01

    Neuromedin B is one member of a family of bombesin-like peptides, which performs a variety of physiological functions via their receptor (NMBR) in most mammals. However, the genes encoding NMB and NMBR and their functions especially reproduction of the pigs are currently not fully understood. To research the physiological functions of NMB, we cloned and analyzed the NMB and NMBR genes, and systematically investigated the expression levels of NMB and NMBR mRNA using relative real-time PCR and the distribution of NMBR by immunohistochemistry (IHC). Experimental results show that the sequences of the amino acid and gene of NMB and NMBR were highly conservative and homology in many species, Significantly, the relative RT-PCR results revealed that NMB was mainly expressed in the central nervous system (CNS), whereas NMBR is highly expressed in peripheral tissues and organs, such as endocrine tissues, glands and reproductive organs. The IHC results show that NMBR positive cells were widely distributed in the body, such as respiratory and circulatory system, digestive system, urogenital system, in lymphatic organs and in the endocrine system. We also systematically investigated expression levels of NMB and NMBR in the reproductive axis using relative real-time PCR. In sow estrous cycle, the hypothalamic levels of both NMB and NMBR mRAN were similar, but the expression levels of the pituitary were negatively correlated. Expression levels in the ovarian system are lowest in metestrus phases and highest in proestrus and estrus phases. In boar post-natal development stages, the hypothalamic, pituitary and testicular levels of NMB and NMBR mRNAs showed developmental changes on postnatal day 30, 60, 90 and 120. Taken together, this study provided molecular and morphological data necessary for further research of physiological function of NMB/NMBR system in the pigs.

  7. Neuromedin B and Its Receptor: Gene Cloning, Tissue Distribution and Expression Levels of the Reproductive Axis in Pigs.

    Directory of Open Access Journals (Sweden)

    Zhiyu Ma

    Full Text Available Neuromedin B is one member of a family of bombesin-like peptides, which performs a variety of physiological functions via their receptor (NMBR in most mammals. However, the genes encoding NMB and NMBR and their functions especially reproduction of the pigs are currently not fully understood. To research the physiological functions of NMB, we cloned and analyzed the NMB and NMBR genes, and systematically investigated the expression levels of NMB and NMBR mRNA using relative real-time PCR and the distribution of NMBR by immunohistochemistry (IHC. Experimental results show that the sequences of the amino acid and gene of NMB and NMBR were highly conservative and homology in many species, Significantly, the relative RT-PCR results revealed that NMB was mainly expressed in the central nervous system (CNS, whereas NMBR is highly expressed in peripheral tissues and organs, such as endocrine tissues, glands and reproductive organs. The IHC results show that NMBR positive cells were widely distributed in the body, such as respiratory and circulatory system, digestive system, urogenital system, in lymphatic organs and in the endocrine system. We also systematically investigated expression levels of NMB and NMBR in the reproductive axis using relative real-time PCR. In sow estrous cycle, the hypothalamic levels of both NMB and NMBR mRAN were similar, but the expression levels of the pituitary were negatively correlated. Expression levels in the ovarian system are lowest in metestrus phases and highest in proestrus and estrus phases. In boar post-natal development stages, the hypothalamic, pituitary and testicular levels of NMB and NMBR mRNAs showed developmental changes on postnatal day 30, 60, 90 and 120. Taken together, this study provided molecular and morphological data necessary for further research of physiological function of NMB/NMBR system in the pigs.

  8. Localization, accumulation, and toxic effects of mercuric chloride on the reproductive axis of the female hamster

    Energy Technology Data Exchange (ETDEWEB)

    Lamperti, A.A.; Printz, R.H.

    1974-01-01

    Experiments were performed to determine the mechanism for the effects of mercuric chloride on the reproductive system of the hamster. Tissue levels of mercury were determined in animals which were treated with daily subcutaneous doses of saline, 1 mg of HgCl/sub 2/, or 1 mg of HgCl/sub 2/ and 50 mg of N-acetyl-DL-penicillamine (NAP), throughout one 4-day estrous cycle. The relations between concentration of mercury in several organs were found to be kidney > liver > anterior pituitary > ovary > blood > uterus > hypothalamus > cerebral cortex. Animals which were injected with HgCl/sub 2/ and NAP had significantly less (p < 0.001) mercury than animals treated with HgCl/sub 2/ alone in all tissues except the cerebral cortex. Tissues from animals which were injected daily with 12 ..mu..Ci of /sup 203/HgCl/sub 2/ and 1 mg of HgCl/sub 2/ were prepared for radioautography. In the ovary, mercury was more concentrated in the corpora lutea than the follicles of interstitium. Mercury was also found lining the sinusoids of the pituitary and in some of the neurons of the arcuate nucleus of the hypothalamus. Explanations for possible alterations in gonadotropin secretion are discussed. When hamsters were given a total of 3 or 4 mg of HgCl/sub 2/ during the first cycle, 60% of the animals did not ovulate by Day 1 of the third cycle. 9 references, 8 figures, 2 tables.

  9. THE COCHLEA AS AN INDEPENDENT NEUROENDOCRINE ORGAN: EXPRESSION AND POSSIBLE ROLES OF A LOCAL HYPOTHALAMIC-PITUITARY-ADRENAL AXIS-EQUIVALENT SIGNALING SYSTEM

    Science.gov (United States)

    Basappa, Johnvesly; Graham, Christine E.; Turcan, Sevin; Vetter, Douglas E.

    2012-01-01

    A key property possessed by the mammalian cochlea is its ability to dynamically alter its own sensitivity. Because hair cells and ganglion cells are prone to damage following exposure to loud sound, extant mechanisms limiting cochlear damage include modulation involving both the mechanical (via outer hair cell motility) and neural signaling (via inner hair cell-ganglion cell synapses) steps of peripheral auditory processing. Feedback systems such as that embodied by the olivocochlear system can alter sensitivity, but respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear before sensitivity is adjusted. Less well characterized are potential cellular signaling systems involved in protection against metabolic stress and resultant damage. Although pharmacological manipulation of the olivocochlear system may hold some promise for attenuating cochlear damage, targeting this system may still allow damage to occur that does not depend on a fully functional feedback loop for its mitigation. Thus, understanding endogenous cell signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic-pituitary-adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. This system may represent a local cellular response system designed to mitigate damage arising from various types of insult. PMID:22484018

  10. Melatonin and hypothalamic-pituitary-gonadal axis.

    Science.gov (United States)

    Shi, L; Li, N; Bo, L; Xu, Z

    2013-01-01

    Melatonin (N-acetyl-5-methoxy-tryptamine), a principal product of the pineal gland, is produced mainly during the dark phase of the circadian cycle. This hormone plays a crucial role in the regulation of circadian and seasonal changes in various aspects of physiology and neuroendocrine functions. In mammals, melatonin can influence sexual maturation and reproductive functions via activation of its receptors and binding sites in the hypothalamic-pituitary-gonadal (HPG) axis. This review summarizes current knowledge of melatonin on the hypothalamus, pituitary gland, and gonads. We also review recent progress in clinical applications of melatonin or potentials of using melatonin, as a reducer of oxidative stress, to improve reproductive functions for the diseases such as women infertility.

  11. Neuroendocrine Tumor: Statistics

    Science.gov (United States)

    ... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 11/ ... the body. It is important to remember that statistics on the survival rates for people with a ...

  12. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  13. Epigenetic programming of the neuroendocrine stress response by adult life stress

    NARCIS (Netherlands)

    Dirven, B.C.J.; Homberg, J.R.; Kozicz, L.T.; Henckens, M.J.A.G.

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is critically involved in the neuroendocrine regulation of stress adaptation, and the restoration of homeostasis following stress exposure. Dysregulation of this axis is associated with stress-related pathologies like major depressive disorder,

  14. Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect.

    Science.gov (United States)

    Wang, Fan; Guo, Xiangmeng; Chen, Wanguang; Sun, Yaowen; Fan, Chaojie

    2017-12-01

    Triclosan (TCS), a member of the class of compounds called pharmaceutical and personal care products (PPCPs), is a broad antibacterial and antifungal agent found in a lot of consumer products. However, TCS hormone effect mechanism in teleost female fish is not clear. Female Yellow River carp (Cyprinus carpio) were exposed to 1/20, 1/10 and 1/5 LC 50 TCS (96h LC 50 of TCS to carp) under semi-static conditions for 42days. Vitellogenin (Vtg), 17β-estradiol (E 2 ), testosterone(T), estrogen receptor (Er), gonadotropin (GtH), and gonadotropin-releasing hormone (GnRH) levels were measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, we also examined the mRNA expressions of aromatase, GtHs-β, GnRH, and Er by quantitative real-time PCR (qRT-PCR). The results indicated that 1/5 LC 50 TCS induced Vtg in hepatopancreas of female carps by interference with the hypothalamic-pituitary-gonadal (HPG) axis at multiple potential loci through three mechanisms: (a) TCS exposure enhanced the mRNA expression of hypothalamus and gonadal aromatase which converts androgens into estrogens, subsequently increasing serum concentrations of E 2 to induce Vtg in hepatopancreas; (b) TCS treatment increased GnRH and GtH-β mRNA expression and secretion, causing the disturbance of reproductive endocrine and the increase of E 2 to induce Vtg in hepatopancreas; (c) TCS exposure enhanced synthesis and secretion of Er, then it bound to Er to active Vtg synthesis. These mechanisms showed that TCS may induce Vtg production in female Yellow River carp by Er-mediated and non-Er-mediated pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    Science.gov (United States)

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.

  16. Mechanisms linking energy balance and reproduction: impact of prenatal environment.

    Science.gov (United States)

    Rhinehart, Erin M

    2016-01-01

    The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.

  17. Relaxin-3/RXFP3 signaling and neuroendocrine function – A perspective on extrinsic hypothalamic control

    Directory of Open Access Journals (Sweden)

    Despina E Ganella

    2013-09-01

    Full Text Available Complex neural circuits within the hypothalamus that govern essential autonomic processes and associated behaviors signal using amino acid and monoamine transmitters and a variety of neuropeptide (hormone modulators, often via G-protein coupled receptors (GPCRs and associated cellular pathways. Relaxin-3 is a recently identified neuropeptide that is highly conserved throughout evolution. Neurons expressing relaxin-3 are located in the brainstem, but broadly innervate the entire limbic system including the hypothalamus. Extensive anatomical data in rodents and non-human primate, and recent regulatory and functional data, suggest relaxin-3 signaling via its cognate GPCR, RXFP3, has a broad range of effects on neuroendocrine function associated with stress responses, feeding and metabolism, motivation and reward, and possibly sexual behavior and reproduction. Therefore, this article aims to highlight the growing appreciation of the relaxin-3/RXFP3 system as an important ‘extrinsic’ regulator of the neuroendocrine axis by reviewing its neuroanatomy and its putative roles in arousal-, stress- and feeding-related behaviors and links to associated neural substrates and signaling networks. Current evidence identifies RXFP3 as a potential therapeutic target for treatment of neuroendocrine disorders and related behavioral dysfunction.

  18. GnIH Control of Feeding and Reproductive Behaviors

    Science.gov (United States)

    Tsutsui, Kazuyoshi; Ubuka, Takayoshi

    2016-01-01

    In 2000, Tsutsui and colleagues discovered a neuropeptide gonadotropin-inhibitory hormone (GnIH) that inhibits gonadotropin release in birds. Subsequently, extensive studies during the last 15 years have demonstrated that GnIH is a key neurohormone that regulates reproduction in vertebrates, acting in the brain and on the pituitary to modulate reproduction and reproductive behavior. On the other hand, deprivation of food and other metabolic challenges inhibit the reproductive axis as well as sexual motivation. Interestingly, recent studies have further indicated that GnIH controls feeding behavior in vertebrates, such as in birds and mammals. This review summarizes the discovery of GnIH and its conservation in vertebrates and the neuroendocrine control of feeding behavior and reproductive behavior by GnIH. PMID:28082949

  19. Taurine, energy drinks, and neuroendocrine effects.

    Science.gov (United States)

    Caine, Jonathan J; Geracioti, Thomas D

    2016-12-01

    Taurine is an amino acid found abundantly in brain, retina, heart, and reproductive organ cells, as well as in meat and seafood. But it is also a major ingredient in popular "energy drinks," which thus constitute a major source of taurine supplementation. Unfortunately, little is known about taurine's neuroendocrine effects. The authors review the sparse data and provide a basic background on the structure, synthesis, distribution, metabolism, mechanisms, effects, safety, and currently proposed therapeutic targets of taurine. Copyright © 2016 Cleveland Clinic.

  20. Pulmonary neuroendocrine (carcinoid) tumors

    DEFF Research Database (Denmark)

    Caplin, M E; Baudin, E; Ferolla, P

    2015-01-01

    BACKGROUND: Pulmonary carcinoids (PCs) are rare tumors. As there is a paucity of randomized studies, this expert consensus document represents an initiative by the European Neuroendocrine Tumor Society to provide guidance on their management. PATIENTS AND METHODS: Bibliographical searches were...... carried out in PubMed for the terms 'pulmonary neuroendocrine tumors', 'bronchial neuroendocrine tumors', 'bronchial carcinoid tumors', 'pulmonary carcinoid', 'pulmonary typical/atypical carcinoid', and 'pulmonary carcinoid and diagnosis/treatment/epidemiology/prognosis'. A systematic review...... of the relevant literature was carried out, followed by expert review. RESULTS: PCs are well-differentiated neuroendocrine tumors and include low- and intermediate-grade malignant tumors, i.e. typical (TC) and atypical carcinoid (AC), respectively. Contrast CT scan is the diagnostic gold standard for PCs...

  1. reproduction

    African Journals Online (AJOL)

    progress in terms of increasing healthy live births but decreasing multiple pregnancy rates.10. Development of assisted reproduction techniques. Alternatives to IVF and transcervical embryo transfer. Over the years IVF treatment has seen many modifications, and other options have been introduced. Prepared sperm may be ...

  2. reproduction

    African Journals Online (AJOL)

    Examination ofHurnan Semen and Semen-Cervical Mucus. Interaction.20 Furthermore, organisations such as the. WHO and the European Society of Human Reproduction and Embryology (ESHRE) now set up international training courses aiming at global standardisation. Micromanipulation of gametes and male infertility.

  3. Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Liu, Xiaoshan; Ji, Kyunghee; Jo, Areum; Moon, Hyo-Bang; Choi, Kyungho

    2013-06-15

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) belong to the group of triester organophosphate flame retardants (OPFRs), which have been used in a wide range of consumer products. These chemicals have been frequently detected in effluents, surface water, and fish, and hence their potential adverse effects on aquatic ecosystem are of concern. The present study was conducted to investigate the reproduction-related effects and possible molecular mechanisms of TDCPP and TPP using a 21 day reproduction test employing adult zebrafish (Danio rerio). After 21 d of exposure to TDCPP or TPP, significant decrease in fecundity along with significant increases of plasma 17β-estradiol (E2) concentrations, vitellogenin (VTG) levels, and E2/testosterone (T) and E2/11-ketotestosterone (11-KT) ratios were observed. The transcriptional profiles of several genes of the hypothalamus-pituitary-gonad (HPG) axis changed as well after the exposure, but the trend was sex-dependent. In male fish, gonadotropin-releasing hormone2 (GnRH2), GnRHR3, cytochrome P450 (CYP) 19B, estrogen receptor α (ERα), ER2 β1, and follicle stimulating hormone β (FSHβ) were upregulated in the brain, while luteinizing hormone β (LHβ) and androgen receptor (AR) were downregulated. Corresponding to the upregulation of FSHβ and downregulation of LHβ in the brain, FSHR was upregulated and LHR was downregulated in the testis. Among the genes that regulate the steroidogenesis pathway, transcription of hydroxyl methyl glutaryl CoA reductase (HMGRA), steroidogenic acute regulatory protein (StAR), and 17β-hydroxysteroid dehydrogenase (17βHSD) decreased, while transcription of CYP11A, CYP17, and CYP19A increased. In female fish, transcription ofGnRH2 and GnRHR3 decreased, but FSHβ, LHβ, CYP19B, ERα, ER2β1, and AR transcription increased in the brain. In the ovary, FSHR and LHR were significantly upregulated, and most steroidogenic genes were significantly upregulated. The observed

  4. Dissociative symptoms and neuroendocrine dysregulation in depression.

    Science.gov (United States)

    Bob, Petr; Fedor-Freybergh, Peter; Jasova, Denisa; Bizik, Gustav; Susta, Marek; Pavlat, Josef; Zima, Tomas; Benakova, Hana; Raboch, Jiri

    2008-10-01

    Dissociative symptoms are traditionally attributed to psychological stressors that produce dissociated memories related to stressful life events. Dissociative disorders and dissociative symptoms including psychogenic amnesia, fugue, dissociative identity-disorder, depersonalization, derealization and other symptoms or syndromes have been reported as an epidemic psychiatric condition that may be coexistent with various psychiatric diagnoses such as depression, schizophrenia, borderline personality disorder or anxiety disorders. According to recent findings also the somatic components of dissociation may occur and influence brain, autonomic and neuroendocrine functions. At this time there are only few studies examining neuroendocrine response related to dissociative symptoms that suggest significant dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis. The aim of the present study is to perform examination of HPA axis functioning indexed by basal cortisol and prolactin and test their relationship to psychic and somatoform dissociative symptoms. Basal cortisol and prolactin and psychic and somatoform dissociative symptoms were assessed in 40 consecutive inpatients with diagnosis of unipolar depression mean age 43.37 (SD=12.21). The results show that prolactin and cortisol as indices of HPA axis functioning manifest significant relationship to dissociative symptoms. Main results represent highly significant correlations obtained by simple regression between psychic dissociative symptoms (DES) and serum prolactin (R=0.55, p=0.00027), and between somatoform dissociation (SDQ-20) and serum cortisol (R=-0.38, p=0.015). These results indicate relationship between HPA-axis reactivity and dissociative symptoms in unipolar depressive patients that could reflect passive coping behavior and disengagement.

  5. Psychoneuroendocrine research in depression. I. Hormone levels of different neuroendocrine axes and the dexamethasone suppression test.

    Science.gov (United States)

    Rupprecht, R; Lesch, K P

    1989-01-01

    Psychoneuroendocrinology is of major importance in the biological research of depression. Most studies have focussed on the regulation of the hypothalamic-pituitary-adrenal (HPA) axis but other endocrine systems such as the hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-somatotropic (HPS), and the hypothalamic-pituitary-gonadal (HPG) axis have also been shown to be involved in the psychobiology of depression. There are close interrelations between various endocrine axes which possibly are affected during depressive illness. A variety of neuroendocrine abnormalities has been detected in depressive disorder but the pathophysiology of these derangements remains still unclear. Although the currently used neuroendocrine tests are not of diagnostic validity they may help to clarify the pathophysiological significance of the complex regulatory mechanisms of different neuroendocrine axes in affective disorders. Neuroendocrine regulation is determined both by peripheral and central mechanisms which both have to be adequately considered as well as potent interactions between various endocrine systems in further neuroendocrine depression research.

  6. Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction.

    Science.gov (United States)

    Lucy, M C

    2008-07-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) control growth and lactation in cattle and swine. Insulin participates in the endocrinology of growth and lactation because insulin and GH are antagonistic in their actions. Dairy cows experience a period of negative energy balance during the first 4-8 weeks post-partum. During this period, their somatotropic axis (comprised of GH, the GH receptor and IGF-I) becomes uncoupled and there is elevated GH and diminished IGF-I in the circulation. Blood insulin concentrations are low as well. Sows are different from dairy cows because their somatotropic axis remains coupled during lactation and both GH and IGF-I are elevated. Nonetheless, sows that become catabolic during lactation will have reduced IGF-I concentrations. Sows are inseminated after weaning so their metabolic state is different from post-partum beef and dairy cows that are inseminated when they are lactating. Dairy cows are fed ad libitum and naturally have low IGF-I during lactation. Sows have elevated IGF-I when they are well-fed. A threshold of IGF-I protein in follicular fluid may be met by local ovarian (paracrine/autocrine) and endocrine sources of IGF-I. Nutritionally induced changes in insulin and in liver IGF-I secretion that arise from perturbations of the somatotropic axis have a direct effect on the ovary through the endocrine actions of insulin and IGF-I. Sows and cows that are nutritionally compromised have low concentrations of insulin and IGF-I in their blood and this theoretically reduces ovarian responsiveness to gonadotropins. Although sows are inseminated after weaning, there appear to be carry-over effects of the previous lactation on the ovarian follicular populations that develop after the sow is weaned. Understanding the mechanisms through which metabolic hormones control ovarian function may lead to improved reproductive management of both pigs and cattle because lactation and post-partum reproduction are closely tied in

  7. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty.

    Science.gov (United States)

    Avendaño, M S; Vazquez, M J; Tena-Sempere, M

    2017-11-01

    Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly

  8. Development of the Neuroendocrine Hypothalamus.

    Science.gov (United States)

    Burbridge, Sarah; Stewart, Iain; Placzek, Marysia

    2016-03-15

    The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity. Copyright © 2016 John Wiley & Sons, Inc.

  9. Neuroendocrine Tumor, diagnostic difficulties

    Directory of Open Access Journals (Sweden)

    Pedro Oliveira

    2017-06-01

    Full Text Available Ectopic adrenocorticotropic hormone (ACTH secretion is a rare disease. A 51 years old woman, with a Cushing syndrome secondary to ectopic ACTH secretion, diagnosed in 2009, with mediastinal lymphadenopathy, whose biopsy was compatible with lung small cell carcinoma, staged as IIIB using TNM classification. No other lesions were found in patient study. The patient was submitted to chemotherapy, associated to ketoconazole 200 mg twice daily, with partial remission of both conditions. Three years later was admitted with an aggravation of Cushing syndrome. There was no evidence of progression of pulmonary disease. A cystic lesion in the pancreatic uncinated process was found by abdominal CT scan and with avid uptake by DOTANOC PET discreet in anterior mediastinal lymphadenopathy. Biopsy of pancreatic mass revealed a neuroendocrine tumor. Pulmonary masses were biopsied again and was in favor of neuroendocrine tumor. It was assumed the diagnosis of pancreatic neuroendocrine tumor with mediastinal metastasis. The patient initiated lanreotid (120 mg, monthly, subcutaneous in association with ketoconazole. After 5 months of therapy, patient died with sepsis secondary to pneumonia. Neuroendocrine tumours are rare, difficult to diagnose and with poor prognosis when associated with ectopic ACTH secreting Cushing syndrome.

  10. GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS ...

    African Journals Online (AJOL)

    INTRODUCTION. Neuroendocrine tumors comprise heterogeneous group of neoplasms which originate from endocrine cells, both within endocrine organs and within the cells of diffuse endocrine system. These tumors have vari- able clinical behavior ranging from well-differentiated, slow growing tumors to ...

  11. Gonadotropin releasing hormone in the primitive vertebrate family Myxinidae: reproductive neuroanatomy and evolutionary aspects.

    Science.gov (United States)

    Sills, Eric Scott; Palermo, Gianpiero D

    2013-01-01

    The family Myxinidae embraces all hagfish species, and occupies an evolutionary niche intermediate between ancestral vertebrates and the gnathostomes (jawed vertebrates). Gonadotropin releasing hormone (GnRH) modulates neuroendocrine activity in vertebrates and works in the context of the hypothalamic-pituitary (H-P) axis. The appearance of this neuroendocrine axis marks one of the most crucial developmental achievements in vertebrate evolution, because it enabled further diversification in general growth, metabolism, osmoregulation and reproduction as jawed vertebrates evolved. GnRH studies in hagfish draw attention because such work may be considered as providing proxy data for similar investigations conducted upon long extinct species. Indeed, the fossil record reveals little anatomical difference between those hagfish living 300 million years ago and their modern descendants. Accordingly, the hagfish can offer important evolutionary lessons as they have some highly unusual characteristics not seen in any other vertebrate; they retain many representative features of an ancestral state from which all vertebrates originated. Indeed, because central control of reproduction is perhaps the most basic function of the vertebrate H-P axis, and given the importance of GnRH in this network, research on GnRH in hagfish can help elucidate the early evolution of the H-P system itself. Like all vertebrates, hagfish have a functional hypothalamic area and a pituitary gland, constituting a basic H-P axis. But what role does GnRH play in the reproductive system of this "living fossil"? How can understanding GnRH in hagfish help advance the knowledge of vertebrate neuroendocrinology? Here, information on neuroendocrine function and the role of GnRH specifically in this very basal vertebrate is reviewed.

  12. Gut Microbiota-brain Axis.

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-10-05

    To systematically review the updated information about the gut microbiota-brain axis. All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of "gut microbiota", "gut-brain axis", and "neuroscience". All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future.

  13. Neuroendocrine breast cancer.

    Science.gov (United States)

    Graça, Susana; Esteves, Joana; Costa, Sílvia; Vale, Sílvio; Maciel, Jorge

    2012-08-13

    Neuroendocrine breast cancer is thought to account for about 1% of all breast cancers. This rare type of breast malignancy is more common in older women and presents as a low-grade, slow-growing cancer. The most definitive markers that indicate neuroendocrine carcinoma are the presence of chromogranin, synaptophysin or neuron-specific enolase, in at least 50% of malignant tumour cells. The authors present a case report of an 83-year-old woman, admitted to their institution with right breast lump. Physical examination, mammography and ultrasonography showed a 2.4 cm nodule, probably a benign lesion (BI-RADS 3). A fine needle aspiration biopsy was performed and revealed proliferative epithelial papillary lesion. She was submitted to excisional biopsy and histology showed endocrine breast cancer well differentiated (G1). Immunohistochemically, tumour cells were positive for synaptophysin. These breast cancers are characterised for their excellent prognosis and conservative treatment is almost always enough to obtain patient cure.

  14. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats.

    Science.gov (United States)

    Luo, Hanwen; Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng; Ping, Jie; Xu, Dan; Ma, Lu; Chen, Liaobin; Wang, Hui

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic-pituitary-adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Neuroendocrine Tumors of the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Fisseler-Eckhoff, Annette, E-mail: Annette.Fisseler-Eckhoff@hsk-wiesbaden.de; Demes, Melanie [Department of Pathology und Cytology, Dr. Horst-Schmidt-Kliniken (HSK), Wiesbaden 65199 (Germany)

    2012-07-31

    Neuroendocrine tumors may develop throughout the human body with the majority being found in the gastrointestinal tract and bronchopulmonary system. Neuroendocrine tumors are classified according to the grade of biological aggressiveness (G1–G3) and the extent of differentiation (well-differentiated/poorly-differentiated). The well-differentiated neoplasms comprise typical (G1) and atypical (G2) carcinoids. Large cell neuroendocrine carcinomas as well as small cell carcinomas (G3) are poorly-differentiated. The identification and differentiation of atypical from typical carcinoids or large cell neuroendocrine carcinomas and small cell carcinomas is essential for treatment options and prognosis. Pulmonary neuroendocrine tumors are characterized according to the proportion of necrosis, the mitotic activity, palisading, rosette-like structure, trabecular pattern and organoid nesting. The given information about the histopathological assessment, classification, prognosis, genetic aberration as well as treatment options of pulmonary neuroendocrine tumors are based on own experiences and reviewing the current literature available. Most disagreements among the classification of neuroendocrine tumor entities exist in the identification of typical versus atypical carcinoids, atypical versus large cell neuroendocrine carcinomas and large cell neuroendocrine carcinomas versus small cell carcinomas. Additionally, the classification is restricted in terms of limited specificity of immunohistochemical markers and possible artifacts in small biopsies which can be compressed in cytological specimens. Until now, pulmonary neuroendocrine tumors have been increasing in incidence. As compared to NSCLCs, only little research has been done with respect to new molecular targets as well as improving the classification and differential diagnosis of neuroendocrine tumors of the lung.

  16. Cognitive Performance and the Alteration of Neuroendocrine Hormones in Chronic Tension-Type Headache.

    Science.gov (United States)

    Qu, Ping; Yu, Jin-Xia; Xia, Lan; Chen, Gui-Hai

    2017-03-24

    Tension-type headache (TTH) is the most prevalent primary headache. Chronic TTH (CTTH), the most serious form of TTH, is refractory, with a high socio-economic burden. Research studies have shown patients with migraine often had cognitive impairment, but few studies have focused on the cognition in patients with CTTH. In this study, we assumed that patients with CTTH also have cognitive impairments, which are modulated by the neuroendocrine state. Participants were recruited, including patients with CTTH and healthy controls. Cognitive ability was evaluated using the Montreal Cognitive Assessment and the Nine Box Maze Test. The administration of neuroendocrine hormones has been established to be associated with cognitive performance, and we detected the hormonal changes in the hypothalamus-pituitary-adrenal axis, the hypothalamus-pituitary-thyroid axis, and gonadotropin-releasing hormone. These results showed that compared to the controls, significant cognitive impairment and neuroendocrine dysfunction were present in the patients with CTTH. We also assessed the correlations between the neuroendocrine hormones and Pittsburgh Sleep Quality Index score, 17-term Hamilton's Depression Scale score, pain intensity, and duration of pain to determine whether the neuroendocrine hormones had any associations with these symptoms of CTTH. These results showed that changes in neuroendocrine hormones were involved in these symptoms of CTTH. Intervention with the neuroendocrine state may be a strategy for CTTH treatment. © 2017 World Institute of Pain.

  17. Reproductive Hormones and Mood Disorders

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2010-12-01

    Full Text Available During the menstrual cycle, pregnancy and breast-feeding periods, as well as in menopausal and post-menopausal periods, the physiological and psychological processes that change according to the hormonal fluctuations influence every women similarly and each one differently. These physiological processes are controlled by neuroendocrine sequences, of which the hypothalamo-pituitary-adrenal axis and the hypothalamo-pituitary-gonadal axis are the most important ones. The hypothalamo-pituitary-gonadal axis affects mood, anxiety, cognition and pain. The interaction of these hormones with mood and behavior is bidirectional. The differences in phenomenology and epidemiology of mood disorders with regards to gender can be explained with the effects of hormones. All of the periods mentioned above are related with mood disorders at terms of risk factors, disease symptoms, progress of disease and response to treatment. Epidemiologic data supports the relationship between the mood disorders and reproductive processes. The prevalence of major depression increases in women with the menarche and ceases in post- menopausal period. Similarly, the initial symptoms of bipolar disorder begins around the menarche period in 50% of the cases. Despite proper treatment, some female patients with major depression experience recurrence during the premenstrual period of their menstrual cycles. The conformity and change in a woman’s brain during pregnancy is controlled dominantly by the neuroendocrine systems, while it is controlled by the external stimuli actively related to the baby during nursing period. The changes that occur are closely related to postpartum mood disorders. Again, all the changes and suspension of medication during this procedure are risk factors for early depressive and dysphoric situations. Variables of a wide range, from follicle stimulating hormone, melatonin, and sleep to body mass index interact with mood disorders in menopausal and post

  18. Anovulation in non-reproductive female Damaraland mole-rats (Cryptomys damarensis).

    Science.gov (United States)

    Molteno, A J; Bennett, N C

    2000-05-01

    Within colonies of Damaraland mole-rats (Cryptomys damarensis), anovulation in non-reproductive females is thought to play an important role in maintaining reproductive skew. Pituitary sensitivity and ovarian structure were examined in three groups of females that differed with respect to their social environment and breeding status to determine whether anovulation is due to inhibitory social cues or is merely the result of a lack of copulatory stimulation. The contribution of gonadal steroid negative feedback to neuroendocrine differences in the reproductive systems of the respective groups was also investigated. LH secretion after a 0.5 micrograms GnRH challenge in females that had been removed from the presence of the breeding individuals for at least 6 months (removed non-reproductive females) was significantly higher than in non-reproductive females in the colony, but significantly lower than in reproductive females. In both removed non-reproductive females and reproductive females, corpora lutea were observed in ovaries of seven of eight females, indicating that ovulation occurs spontaneously in subordinate females on removal from the breeding pair. Circulating progesterone concentrations in removed non-reproductive females were significantly higher than in non-reproductive females, indicating that circulating progesterone is not responsible for infertility in non-reproductive females. Indeed, after hystero-ovariectomy, reproductive females continued to show significantly greater GnRH-stimulated LH secretion than non-reproductive females. Thus, differential inhibition of gonadotrophin secretion in breeding and non-breeding females occurs independently of gonadal steroids. It is concluded that female Damaraland mole-rats are spontaneous ovulators and that anovulation results from inhibitory social cues within the colony, not a lack of copulatory stimulation. Since non-reproductive females are infertile, inhibition of the hypothalamo-pituitary-gonadal axis has

  19. Neuroendocrine axis of stress, metabolic syndrome and psychiatric disorders in cushing's sindrome Ejes neuroendocrinos del estrés, síndrome metabólico y alteraciones psiquiátricas del síndrome de Cushing

    Directory of Open Access Journals (Sweden)

    Leidy Alexandra Lezcano Tobón

    2005-04-01

    Full Text Available The role of abnormalities of the hypophysishypothalamus- adrenal gland axis (HHA in the ongoing stress and depression is analyzed. Besides, it is evidenced that some problems, until recently considered merely endocrine-metabolic such as Cushing's syndrome (either clinical or subclinical and obesity (mainly when it is part of the metabolic syndrome may have a common etiological basis, be it a primary event, a comorbidity or a trigger in individuals with genetic susceptibility to states of maladaptative chronic stress. Some harmful effects of severe and/or ongoing hypercortisolism on some brain areas and the possibility of permanent alterations in some neuronal circuits are described. Finally, and according to some clinical evidences, the potential therapeutic role of antiglucocorticoids in the management of refractory depression is explored, as well as the role that early psychiatric intervention and antidepressant pharmacological treatment may play in some patients with the metabolic syndrome or increased cardiovascular risk. Se analiza el papel de las anormalidades del eje hipotálamo-hipófisis-adrenales (HHA en el estrés sostenido y la depresión. Además se pone en evidencia que algunos problemas hasta hace poco considerados puramente endocrino-metabólicos como el síndrome de Cushing (SC (clínico o subclínico y la obesidad, principalmente cuando hace parte del síndrome metabólico (SM, pueden tener una base etiológica común, como evento primario, comorbilidad o disparador en individuos con susceptibilidad genética a los estados de estrés crónico maladaptativo. Se describen algunas acciones lesivas del hipercortisolismo severo y/o sostenido en algunas áreas cerebrales y la posibilidad de producir alteraciones permanentes en algunos circuitos neuronales. Por último se explora, de acuerdo con algunas evidencias clínicas, el papel terapéutico potencial de fármacos antiglucocorticoides en el manejo de la depresión refractaria y

  20. Stress and its influence on reproduction in pigs: a review

    Directory of Open Access Journals (Sweden)

    Madej Andrzej

    2008-12-01

    Full Text Available Abstract The manifestations of stress, defined as a biological response to an event that the individual perceives as a threat to its homeostasis, are commonly linked to enhanced activity of the hypothalamo-pituitary-adrenal (HPA axis and the activation of the sympathetic adreno-medullary (SA system. Activation of the HPA system results in the secretion of peptides from the hypothalamus, principally corticotropin releasing hormone (CRH, which stimulates the release of adrenocorticotropic hormone (ACTH and beta-endorphin. ACTH induces the secretion of corticosteroids from the adrenal cortex, which can be seen in pigs exposed to acute physical and/or psychological stressors. The present paper is a review of studies on the influence of stressors on reproduction in pigs. The effects of stress on reproduction depend on the critical timing of stress, the genetic predisposition to stress, and the type of stress. The effect of stress on reproduction is also influenced by the duration of the responses induced by various stressors. Prolonged or chronic stress usually results in inhibition of reproduction, while the effects of transient or acute stress in certain cases is stimulatory (e.g. anoestrus, but in most cases is of impairment for reproduction. Most sensitive of the reproductive process are ovulation, expression of sexual behaviour and implantation of the embryo, since they are directly controlled by the neuroendocrine system.

  1. Stress and its influence on reproduction in pigs: a review.

    Science.gov (United States)

    Einarsson, Stig; Brandt, Ylva; Lundeheim, Nils; Madej, Andrzej

    2008-12-10

    The manifestations of stress, defined as a biological response to an event that the individual perceives as a threat to its homeostasis, are commonly linked to enhanced activity of the hypothalamo-pituitary-adrenal (HPA) axis and the activation of the sympathetic adreno-medullary (SA) system. Activation of the HPA system results in the secretion of peptides from the hypothalamus, principally corticotropin releasing hormone (CRH), which stimulates the release of adrenocorticotropic hormone (ACTH) and beta-endorphin. ACTH induces the secretion of corticosteroids from the adrenal cortex, which can be seen in pigs exposed to acute physical and/or psychological stressors. The present paper is a review of studies on the influence of stressors on reproduction in pigs. The effects of stress on reproduction depend on the critical timing of stress, the genetic predisposition to stress, and the type of stress. The effect of stress on reproduction is also influenced by the duration of the responses induced by various stressors. Prolonged or chronic stress usually results in inhibition of reproduction, while the effects of transient or acute stress in certain cases is stimulatory (e.g. anoestrus), but in most cases is of impairment for reproduction. Most sensitive of the reproductive process are ovulation, expression of sexual behaviour and implantation of the embryo, since they are directly controlled by the neuroendocrine system.

  2. Stress and its influence on reproduction in pigs: a review

    Science.gov (United States)

    Einarsson, Stig; Brandt, Ylva; Lundeheim, Nils; Madej, Andrzej

    2008-01-01

    The manifestations of stress, defined as a biological response to an event that the individual perceives as a threat to its homeostasis, are commonly linked to enhanced activity of the hypothalamo-pituitary-adrenal (HPA) axis and the activation of the sympathetic adreno-medullary (SA) system. Activation of the HPA system results in the secretion of peptides from the hypothalamus, principally corticotropin releasing hormone (CRH), which stimulates the release of adrenocorticotropic hormone (ACTH) and beta-endorphin. ACTH induces the secretion of corticosteroids from the adrenal cortex, which can be seen in pigs exposed to acute physical and/or psychological stressors. The present paper is a review of studies on the influence of stressors on reproduction in pigs. The effects of stress on reproduction depend on the critical timing of stress, the genetic predisposition to stress, and the type of stress. The effect of stress on reproduction is also influenced by the duration of the responses induced by various stressors. Prolonged or chronic stress usually results in inhibition of reproduction, while the effects of transient or acute stress in certain cases is stimulatory (e.g. anoestrus), but in most cases is of impairment for reproduction. Most sensitive of the reproductive process are ovulation, expression of sexual behaviour and implantation of the embryo, since they are directly controlled by the neuroendocrine system. PMID:19077201

  3. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress

    Directory of Open Access Journals (Sweden)

    Sarah J Spencer

    2013-06-01

    Full Text Available Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA axis, the endocrine arm of the body’s response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and / or stressful events during critical windows of early development can alter glucocorticoid (GC regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.

  4. Neuroendocrine Immunoregulation in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Nathalie Deckx

    2013-01-01

    Full Text Available Currently, it is generally accepted that multiple sclerosis (MS is a complex multifactorial disease involving genetic and environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other autoimmune diseases.

  5. Gut Microbiota-brain Axis

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  6. Annual variation in the reproductive hormone and behavior rhythm in a population of the Asian short-toed lark: Can spring temperature influence activation of the HPG axis of wild birds?

    Science.gov (United States)

    Zhang, Shuping; Xu, Xianglong; Wang, Weiwei; Zhao, Lidan; Gao, Lijun; Yang, Wenyu

    2017-09-01

    Although a number of studies have demonstrated a correlation between ambient temperature and the timing of reproductive behavior in many bird species, the relationships between temperature, activation of the hypothalamus-pituitary-gonad (HPG) axis, laying, and hatching in free-living birds, remain unclear. We investigated the relationships between spring temperature, reproductive hormones, and behavior, in a population of the Asian short-toed lark (Calandrella cheleensis) on the Inner Mongolian Grasslands in 2014, 2015 and 2016. LH and T levels peaked earliest in the year with the highest April temperature (2014) and latest in the year with the lowest April temperature (2016), and rose faster in 2014 than in 2015 or 2016. Laying and hatching occurred earliest in 2014 and latest in 2016. E2 also peaked earlier in 2014 than in the other two years but there was no significant difference in peak E2 levels among the three years. The peak of hatching only coincided with the peak in grasshopper nymph (the main food of nestlings) abundance in 2015 and the nestling fledging rate in 2015 was significantly higher than that in 2014 and 2016. We also conducted a controlled experiment on the effect of temperature on plasma LH, T and E2 levels in wild-caught larks, which shows that mean plasma LH, T and E2 levels in the 16°C group all peaked 4days earlier than in the 13°C group. All these results suggest that activation of HPG endocrine axis in the Asia short-toed lark population is closely related to ambient temperature, and that this subsequently influences the timing of laying and hatching. The HPG axis' endocrine function is a physiological factor that mediates effects of ambient temperature on the timing of breeding. Temperature induced annual variation in the timing of hatching was, however, insufficient to synchronize the nestling period with the annual peak in grasshopper nymph abundance. Unusually warm, or cold, spring temperatures advanced, or delayed, grasshopper

  7. [Neuroendocrine neoplasms of the breast].

    Science.gov (United States)

    Anlauf, M; Neumann, M; Bomberg, S; Luczak, K; Heikaus, S; Gustmann, C; Antke, C; Ezziddin, S; Fottner, C; Pavel, M; Pape, U-F; Rinke, A; Lahner, H; Schott, M; Cremer, B; Hörsch, D; Baum, R P; Groh, U; Alkatout, I; Rudlowski, C; Scheler, P; Zirbes, T K; Hoffmann, J; Fehm, T; Gabbert, H E; Baldus, S E

    2015-05-01

    Neuroendocrine neoplasms (NEN) of the breast are specific tumor entities. According to the literature up to 5% of breast neoplasms are malignant epithelial neoplasms of the breast. They are defined by a neuroendocrine (NE) architecture and cytology combined with an expression of the neuroendocrine vesicle markers chromogranin A and/or synaptophysin. The diagnosis is supplemented by the receptor status and the proliferative activity. According to the World Health Organization (WHO) classification of 2012 the following groups of NEN are distinguished: (1) invasive breast carcinoma with NE differentiation, (2) well-differentiated neuroendocrine tumor (NET) and (3) poorly differentiated small cell carcinoma (NEC). This review article focuses on (1) the definition and basic principles of diagnostics, (2) the history, nomenclature and WHO classification from 2003 and 2012, (3) the frequency of breast NEN, (4) the hereditary background and functional activity, (5) the expression of receptors and (6) the possible clinical implications. In addition, the first results of a retrospective single center study (n = 465 patients with breast cancer over a time period of 4 years) on the frequency of NEN of the breast at the Breast Center of the University Hospital Düsseldorf are presented. In this study a frequency of 4.5% of NEN was found based on a diagnostic cut-off of > 50% Chromogranin A and/or synaptophysin positive tumor cells.

  8. Neuroendocrine aspects of the response to stress.

    Science.gov (United States)

    Miller, Diane B; O'Callaghan, James P

    2002-06-01

    Disruptions in homeostasis (ie, stress) place demands on the body that are met by the activation of 2 systems, the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). Stressor-induced activation of the HPA axis and the SNS results in a series of neural and endocrine adaptations known as the "stress response" or "stress cascade." The stress cascade is responsible for allowing the body to make the necessary physiological and metabolic changes required to cope with the demands of a homeostatic challenge. Here we discuss the key elements of the HPA axis and the neuroendocrine response to stress. A challenge to homeostasis (a stressor) initiates the release of corticotropin-releasing hormone (CRH) from the hypothalamus, which in turn results in release of adrenocortiotropin hormone (ACTH) into general circulation. ACTH then acts on the adrenal cortex resulting in release of a species-specific glucocorticoid into blood. Glucocorticoids act in a negative feedback fashion to terminate the release of CRH. The body strives to maintain glucocorticoid levels within certain boundaries and interference at any level of the axis will influence the other components via feedback loops. Over- or underproduction of cortisol can result in the devastating diseases of Cushing's and Addison's, respectively, but less severe dysregulation of the HPA axis can still have adverse health consequences. These include the deposition of visceral fat as well as cardiovascular disease (eg, atherosclerosis). Thus, chronic stress with its physical and psychological ramifications remains a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. To date, treatments have been based on the existing knowledge concerning the brain areas and neurobiological substrates that subserve the stress response. Thus, the CRH blocker, antalarmin, is being investigated as a treatment for chronic stress because it prevents CRH from having its

  9. Safety and Tolerability of Everolimus as Second-line Treatment in Poorly Differentiated Neuroendocrine Carcinoma / Neuroendocrine Carcinoma G3 (WHO 2010) and Neuroendocrine Tumor G3 - an Investigator Initiated Phase II Study

    Science.gov (United States)

    2017-01-05

    Poorly Differentiated Malignant Neuroendocrine Carcinoma; Neuroendocrine Carcinoma, Grade 3; Neuroendocrine Carcinoma, Grade 1 [Well-differentiated Neuroendocrine Carcinoma] That Switched to G3; Neuroendocrine Carcinoma, Grade 2 [Moderately Differentiated Neuroendocrine Carcinoma] That Switched to G3; Neuroendocrine Tumor, Grade 3 and Disease Progression as Measured by Response Evaluation Criteria in Solid Tumors (RECIST 1.1.)

  10. Functional imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Loft, Annika

    2010-01-01

    UNLABELLED: Functional techniques are playing a pivotal role in the imaging of cancer today. Our aim was to compare, on a head-to-head basis, 3 functional imaging techniques in patients with histologically verified neuroendocrine tumors: somatostatin receptor scintigraphy (SRS) with (111)In......-diethylenetriaminepentaacetic acid-octreotide, scintigraphy with (123)I-metaiodobenzylguanidine (MIBG), and (18)F-FDG PET. METHODS: Ninety-six prospectively enrolled patients with neuroendocrine tumors underwent SRS, (123)I-MIBG scintigraphy, and (18)F-FDG PET on average within 40 d. The functional images were fused with low......-positive, of which 3 were also (123)I-MIBG scintigraphy-positive, giving a combined overall sensitivity of 96%. SRS also exceeded (123)I-MIBG scintigraphy and (18)F-FDG PET based on the number of lesions detected (393, 185, and 225, respectively) and tumor subtypes. (123)I-MIBG scintigraphy was superior to (18)F...

  11. Immune-Neuroendocrine Interactions and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Luis J. Jara

    2006-01-01

    Full Text Available The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.

  12. Cowden Syndrome and Concomitant Pulmonary Neuroendocrine Tumor

    DEFF Research Database (Denmark)

    Langer, Seppo W; Ringholm, Lene; Dali, Christine I

    2015-01-01

    Cowden Syndrome is a rare autosomal dominantly inherited disorder. Patients with Cowden Syndrome are at increased risk of various benign and malignant neoplasms in breast, endometrium, thyroid, gastrointestinal tract, and genitourinary system. Neuroendocrine tumors are ubiquitous neoplasms that may...... occur anywhere in the human body. Bronchopulmonary neuroendocrine tumors include four different histological subtypes, among these, typical and atypical pulmonary carcinoids. No association between Cowden Syndrome and neuroendocrine tumors has previously been described. We present two cases of Cowden...

  13. Thyroid and male reproduction

    Directory of Open Access Journals (Sweden)

    Anand Kumar

    2014-01-01

    Full Text Available Male reproduction is governed by the classical hypothalamo-hypophyseal testicular axis: Hypothalamic gonadotropin releasing hormone (GnRH, pituitary luteinizing hormone (LH and follicle stimulating hormone (FSH and the gonadal steroid, principally, testosterone. Thyroid hormones have been shown to exert a modulatory influence on this axis and consequently the sexual and spermatogenic function of man. This review will examine the modulatory influence of thyroid hormones on male reproduction.

  14. Thyroid and male reproduction.

    Science.gov (United States)

    Kumar, Anand; Shekhar, Skand; Dhole, Bodhana

    2014-01-01

    Male reproduction is governed by the classical hypothalamo-hypophyseal testicular axis: Hypothalamic gonadotropin releasing hormone (GnRH), pituitary luteinizing hormone (LH) and follicle stimulating hormone (FSH) and the gonadal steroid, principally, testosterone. Thyroid hormones have been shown to exert a modulatory influence on this axis and consequently the sexual and spermatogenic function of man. This review will examine the modulatory influence of thyroid hormones on male reproduction.

  15. CD200 Expression in Neuroendocrine Neoplasms.

    Science.gov (United States)

    Love, Jason E; Thompson, Kimberly; Kilgore, Mark R; Westerhoff, Maria; Murphy, Claire E; Papanicolau-Sengos, Antonios; McCormick, Kinsey A; Shankaran, Veena; Vandeven, Natalie; Miller, Faith; Blom, Astrid; Nghiem, Paul T; Kussick, Steven J

    2017-09-01

    CD200 expression has been well studied in hematopoietic malignancies; however, CD200 expression has not been well-characterized in neuroendocrine neoplasms. We examined CD200 expression in 391 neuroendocrine neoplasms from various anatomic sites. Tissue blocks containing pulmonary small cell carcinoma, pulmonary carcinoid, large cell neuroendocrine carcinoma, pancreatic neuroendocrine tumor, gastrointestinal carcinoid, and Merkel cell carcinoma were evaluated for CD200 expression by immunohistochemistry. A set of nonneuroendocrine carcinomas was stained for comparison. CD200 was expressed in 87% of the neuroendocrine neoplasms studied, including 60 of 72 (83%) pulmonary small cell carcinomas, 15 of 22 (68%) pulmonary carcinoids, three of four (75%) pulmonary large cell neuroendocrine carcinomas, 125 of 146 (86%) Merkel cell carcinomas, 79 of 83 (95%) gastrointestinal luminal carcinoids, and 56 of 60 (93%) pancreatic neuroendocrine tumors. Thirty-two of 157 (20%) nonneuroendocrine carcinomas expressed CD200. In gastrointestinal carcinoid and pancreatic neuroendocrine neoplasms, CD200 negativity correlated with higher grade. CD200 is a relatively sensitive marker of neuroendocrine neoplasms and represents a potential therapeutic target in these difficult-to-treat malignancies.

  16. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    Directory of Open Access Journals (Sweden)

    Tessa K Solomon-Lane

    2013-11-01

    Full Text Available Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis. Through actions of both corticotropin-releasing factor and glucocorticoids (GCs, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli, a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  17. The frequency of neuroendocrine cell hyperplasia in patients with pulmonary neuroendocrine tumours and non-neuroendocrine cell carcinomas.

    Science.gov (United States)

    Rizvi, Selim M H; Goodwill, Joseph; Lim, Eric; Yap, Yoong K; Wells, Athol U; Hansell, David M; Davis, Peter; Selim, Abdel-Ghani; Abdel-Ghani, Syed; Goldstraw, Peter; Nicholson, Andrew G

    2009-09-01

    To evaluate the frequency of neuroendocrine cell hyperplasia (NEH) in resected neuroendocrine tumours and non-neuroendocrine cell carcinomas and to study its relationship to selected clinical parameters. Random blocks without tumour from resected typical carcinoids (TCs, n = 46), atypical carcinoids (ACs, n = 14), large cell neuroendocrine carcinomas (LCNECs, n = 18), small cell carcinomas (SCLCs, n = 22), adenocarcinomas (ADENOs, n = 26) and squamous cell carcinomas (SCCs, n = 18) were stained for CD56 and evaluated for linear proliferations, cell aggregates (>4 CD56+ cells), and tumourlets (<5 mm with basement membrane invasion). There was a statistically significant difference between the frequency of NEH in all neuroendocrine tumours (TC/AC/LCNEC/SCLC, 35/100, 35%) (P = 0.009) when compared with non-neuroendocrine carcinomas (ADENO/SCC, 6/44, 14%) and in the frequency of NEH in TC (21/46, 46%) versus all other tumours (AC/LCNEC/SCLC/SCC/ADENO, 20/98, 20%) (P = 0.001). There was increased frequency of NEH in peripheral TCs (8/13, 62%) compared with central TCs (14/33, 43%) (P = 0.33). There was no association between smoking history and NEH. Clinical and imaging data showed no evidence of an increased frequency of obliterative bronchiolitis in patients with NEH. NEH is significantly increased in the background lung of neuroendocrine tumours when compared with non-neuroendocrine carcinomas, supportive data for NEH having neoplastic potential.

  18. Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction

    Directory of Open Access Journals (Sweden)

    RENJITHA eGOPURAPPILLY

    2013-03-01

    Full Text Available Guanine nucleotide binding protein (G-protein-coupled receptors (GPCRs are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs. Kisspeptin (Kiss1 and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R, have recently been identified as a critical signalling system in the control of reproduction. The Kiss1/GPR54 system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signalling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signalling mechanisms, ligand interactions and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and will consider their physiological significance in the control of reproduction.

  19. Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction

    Science.gov (United States)

    Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S.

    2012-01-01

    Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction. PMID:23482509

  20. Gastrointestinal Surgery of Neuroendocrine Neoplasms

    DEFF Research Database (Denmark)

    Hansen, Carsten Palnæs; Olsen, Ingrid Marie Holst; Knigge, Ulrich

    2015-01-01

    Surgery is the only treatment that may cure the patient with gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) and should always be considered as the first-line treatment if radical resection can be achieved. Even in cases where radical surgery is not possible, palliative resection may...... be performed to reduce local or hormone-induced symptoms and to improve quality of life. The surgical procedures for GEP-NENs are accordingly described below. In most patients life-long follow-up is required, even following radical surgery, as recurrence may occur several years later....

  1. Stress and the hypothalamus-pituitary-gonadal axis in the cyclic rat

    NARCIS (Netherlands)

    Roozendaal, M.M.

    1997-01-01


    The influence of stress on reproductive functions has been subject of much research. Various kinds of stress are known to affect reproductive functions. In females, the complex regulation of the ovarian cycle relies on a series of neuroendocrine events whose temporal relationship is so

  2. Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow

    Science.gov (United States)

    Gamma aminobutyric acid (GABA) and GABA receptors play an important role in neuroendocrine regulation in fish. Disruption of the GABAergic system by environmental contaminants could interfere with normal regulation of the hypothalamic pituitary gonadal (HPG) axis, leading to imp...

  3. Sister Mary Joseph Nodules on 99mTc HYNIC-TOC scintigraphy in patients with neuroendocrine tumors.

    Science.gov (United States)

    Jing, Hongli; Zhang, Yingqiang; Li, Fang

    2015-02-01

    A Sister Mary Joseph nodule represents an umbilical metastasis, which is more commonly caused by a primary malignancy in gastrointestinal tract or from reproductive system. We report Sister Mary Joseph nodules caused by neuroendocrine tumor and revealed on Tc HYNIC-TOC scintigraphy.

  4. Breast Carcinoma With Unrecognized Neuroendocrine Differentiation Metastasizing to the Pancreas

    DEFF Research Database (Denmark)

    Christensen, Lene Svendstrup; Mortensen, Michael Bau; Detlefsen, Sönke

    2016-01-01

    , a second panel revealed positivity for estrogen receptors and GATA3. On review of the lumpectomy specimen, a significant neuroendocrine component was found, leading to the final diagnosis of breast carcinoma with neuroendocrine features metastasizing to the pancreas. Neuroendocrine markers...... are not routinely analyzed in breast tumors. Hence, metastases from breast carcinomas with unrecognized neuroendocrine features may lead to false diagnoses of primary neuroendocrine tumors at different metastatic sites, such as the pancreas....

  5. Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities

    Energy Technology Data Exchange (ETDEWEB)

    Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J

    2003-07-01

    The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)

  6. Somatostatin-Immunoreactive Pancreaticoduodenal Neuroendocrine Neoplasms

    DEFF Research Database (Denmark)

    Engelund Luna, Iben; Monrad, Nina; Binderup, Tina

    2016-01-01

    OBJECTIVE: Neuroendocrine neoplasms in the pancreas and duodenum with predominant or exclusive immunoreactivity for somatostatin (p-dSOMs) are rare, and knowledge on tumour biology, treatment, survival and prognostic factors is limited. This study aimes to describe clinical, pathological, and bio......OBJECTIVE: Neuroendocrine neoplasms in the pancreas and duodenum with predominant or exclusive immunoreactivity for somatostatin (p-dSOMs) are rare, and knowledge on tumour biology, treatment, survival and prognostic factors is limited. This study aimes to describe clinical, pathological...

  7. Contemporary nuclear medicine diagnostics of neuroendocrine tumors

    OpenAIRE

    Todorović-Tirnanić Mila; Artiko Vera; Pavlović Smiljana; Šobić-Šaranović Dragana; Obradović Vladimir

    2015-01-01

    The new positron emission tomography (PET/CT) methods for neuroendocrine tumors detection are presented and compared with classic, conventional methods. Conventional methods use a gamma scintillation camera for patients with neuroendocrine tumor imaging, after intravenous injection of one of the following radiopharmaceuticals: 1) somatostatin analogues labeled with indium-111 (111In-pentetreotide) or technetium-99m (99mTc-EDDA/HYNIC-TOC); 2) noradrenaline a...

  8. Neuroendocrine-immune (NEI) circuitry from neuron-glial interactions to function: Focus on gender and HPA-HPG interactions on early programming of the NEI system.

    Science.gov (United States)

    Morale, M C; Gallo, F; Tirolo, C; Testa, N; Caniglia, S; Marletta, N; Spina-Purrello, V; Avola, R; Caucci, F; Tomasi, P; Delitala, G; Barden, N; Marchetti, B

    2001-08-01

    Bidirectional communication between the neuroendocrine and immune systems during ontogeny plays a pivotal role in programming the development of neuroendocrine and immune responses in adult life. Signals generated by the hypothalamic-pituitary-gonadal axis (i.e. luteinizing hormone-releasing hormone, LHRH, and sex steroids), and by the hypothalamic-pituitary-adrenocortical axis (glucocorticoids (GC)), are major players coordinating the development of immune system function. Conversely, products generated by immune system activation exert a powerful and long-lasting regulation on neuroendocrine axes activity. The neuroendocrine-immune system is very sensitive to preperinatal experiences, including hormonal manipulations and immune challenges, which may influence the future predisposition to several disease entities. We review our work on the ongoing mutual regulation of neuroendocrine and immune cell activities, both at a cellular and molecular level. In the central nervous system, one chief compartment is represented by the astroglial cell and its mediators. Hence, neuron-glial signalling cascades dictate major changes in response to hormonal manipulations and pro-inflammatory triggers. The interplay between LHRH, sex steroids, GC and pro-inflammatory mediators in some physiological and pathological states, together with the potential clinical implications of these findings, are summarized. The overall study highlights the plasticity of this intersystem cross-talk for pharmacological targeting with drugs acting at the neuroendocrine-immune interface.

  9. [EGFR-expression in pulmonary neuroendocrine cell hyperplasia].

    Science.gov (United States)

    Kuhnen, C; Winter, B U

    2006-03-01

    15 cases of pulmonary neuroendocrine cell hyperplasia (carcinoid-tumorlets, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia/DIPNECH) and 20 neuroendocrine pulmonary tumors (10 carcinoid tumors, 5 large cell neuroendocrine, and 5 small cell neuroendocrine lung carcinomas) were immunohistochemically analyzed for the expression of epidermal growth factor receptor (EGFR, = HER-1). All cases of neuroendocrine cell hyperplasia exhibited a maximum EGFR expression (score 3 in 100% of cells) showing predominantly membranous, partly cytoplasmic staining. 4 ot the 10 carcinoid tumors were strongly positive for EGFR, whereas the other 6 were EGFR-negative. A total of 90% of large cell neuroendocrine and small cell neuroendocrine carcinomas were negative for EGFR. Overexpression of EGFR in pulmonary neuroendocrine cell hyperplasia might be significant for the pathogenesis of these lesions. As DIPNECH is characterized by clinical signs and symptoms including mild cough and obstructive functional impairment, a specific antagonistic therapeutic trial could aim at blocking EGFR/HER-1 or its subsequent signal transduction pathway.

  10. Evolution of the reproductive endocrine system in chordates.

    Science.gov (United States)

    Kubokawa, Kaoru; Tando, Yukiko; Roy, Sonali

    2010-07-01

    The cephalochordate, amphioxus, is phylogenetically placed at the most primitive position in the chordate clade. Despite many studies on the endocrine system of amphioxus, definitive evidence has not been reported for the presence an endocrine system comparable to the pituitary-gonadal axis, which is important in the regulation of reproduction in vertebrates. Recent genome analyses in the amphioxus, Branchiostoma floridae, showed that it does not have any pituitary hormone genes except the thyrostimulin gene. Thyrostimulin is a heterodimeric glycoprotein hormone consisting of α and β subunits, and is present in various organs of vertebrates. Analyses of a phylogenetic tree and a synteny suggest that amphioxus' thyrostimulin is an ancestral type of the glycoprotein hormones in chordates. In addition, genes for sex steroidogenic enzymes belonging to the CYP family were found in the genome sequences. The conversion pathway of sex steroids from cholesterol to estrogen, androgen, and major sex steroids was also identified in the gonads of amphioxus in vitro. Furthermore, we demonstrated the expression of genes encoding thyrostimulin and sex steroidogenic enzymes by an in situ hybridization technique. Here, we discuss the evolution of hormones and reproductive functions in the neuroendocrine control system of chordates. © The Author(s) 2010. Published by Oxford University Press.

  11. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    Science.gov (United States)

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Impact of Prenatal Stress on Neuroendocrine Programming

    Directory of Open Access Journals (Sweden)

    Odile Viltart

    2007-01-01

    programming strongly, notably when hormonal surges occur during sensitive periods of development, so-called developmental windows of vulnerability. Stressful events occurring during the perinatal period may impinge on various aspects of the neuroendocrine programming, subsequently amending the offspring's growth, metabolism, sexual maturation, stress responses, and immune system. Such prenatal stress-induced modifications of the phenotypic plasticity of the progeny might ultimately result in the development of long-term diseases, from metabolic syndromes to psychiatric disorders. Yet, we would like to consider the outcome of this neuroendocrine programming from an evolutionary perspective. Early stressful events during gestation might indeed shape internal parameters of the developing organisms in order to adapt the progeny to its everyday environment and thus contribute to an increased reproductive success, or fitness, of the species. Moreover, parental care, adoption, or enriched environments after birth have been shown to reverse negative long-term consequences of a disturbed gestational environment. In this view, considering the higher potential for neonatal plasticity within the brain in human beings as compared to other species, long-term consequences of prenatal stress might not be as inexorable as suggested in animal-based studies published to date.

  13. Reproduction Symposium: developmental programming of reproductive and metabolic health.

    Science.gov (United States)

    Padmanabhan, V; Veiga-Lopez, A

    2014-08-01

    Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of

  14. DIABETES MELLITUS IN NEUROENDOCRINE DISEASES

    Directory of Open Access Journals (Sweden)

    I. V. Trigolosova

    2014-01-01

    early disability and death of patients with neuroendocrine diseases.

  15. Secretagogin is a novel marker for neuroendocrine differentiation

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Wagner, Ludwig; Brandt Sørensen, Flemming

    2005-01-01

    , synaptophysin) in neuroendocrine cells in crypts of normal mucosa, and in tumor cells of carcinoids. Secretagogin was strongly expressed in the cytosol and the nucleus of 19 well-differentiated neuroendocrine carcinoids and carcinoid metastases, as well as in neuroendocrine tumors from the lung, pancreas...

  16. Incidental neuroendocrine tumor of the appendiceal base less ...

    African Journals Online (AJOL)

    Incidental neuroendocrine tumor of the appendiceal base less than20 mm in diameter: is appendectomy enough? Landolsi Sana, Mannai Saber. Abstract. The appendixis the second primary site for neuroendocrine tumors. The management of incidentelly discovered neuroendocrine tumor of the appendiceal base less ...

  17. Neuroendocrine regulation of feminine sexual behavior: lessons from rodent models and thoughts about humans.

    Science.gov (United States)

    Blaustein, Jeffrey D

    2008-01-01

    Much has been learned concerning the neuroendocrine processes and cellular mechanisms by which steroid hormones influence reproductive behaviors in rodents and other animals. In this review, a short discussion of hormones and feminine sexual behavior in some rodent species is followed by an outline of the main principles that have been learned from these studies. Examples are given of the importance of considering the timing of hormone treatments, dosage of hormone, use of a specific hormone, particular class of hormones, or form of hormone, interactions between hormones, route of administration, peripheral factors that influence hormonal response, and the possible mechanisms of action by which hormones and other factors influence sexual behaviors. Although cellular studies in humans are presently impossible to perform, mechanistic studies in rodents may provide clues about the neuroendocrine mechanisms by which hormones act and interact in the brain to influence behavior in all species, including humans.

  18. PET/CT in Neuroendocrine Tumors.

    Science.gov (United States)

    Castellucci, Paolo; Ambrosini, Valentina; Montini, Giancarlo

    2008-04-01

    Neuroendocrine tumors (NETs) are a rare group of neoplasms that originate from pluripotent stem cells or differentiated neuroendocrine cells, mostly localized in the bronchus, lungs, or gastroenteropancreatic tract. This issue reviews the results achieved with PET. The potential applications of the most commonly used receptor or metabolic positron-emitter radiopharmaceuticals in the field of NET to stage or restage disease, to detect unknown primary tumor, and to assess and monitor therapy response to different kind of treatments are analyzed. Copyright © 2008 Elsevier Inc. All rights reserved.

  19. Glucocorticoid Regulation of Reproduction.

    Science.gov (United States)

    Geraghty, Anna C; Kaufer, Daniela

    2015-01-01

    It is well accepted that stress, measured by increased glucocorticoid secretion, leads to profound reproductive dysfunction. In times of stress, glucocorticoids activate many parts of the fight or flight response, mobilizing energy and enhancing survival, while inhibiting metabolic processes that are not necessary for survival in the moment. This includes reproduction, an energetically costly procedure that is very finely regulated. In the short term, this is meant to be beneficial, so that the organism does not waste precious energy needed for survival. However, long-term inhibition can lead to persistent reproductive dysfunction, even if no longer stressed. This response is mediated by the increased levels of circulating glucocorticoids, which orchestrate complex inhibition of the entire reproductive axis. Stress and glucocorticoids exhibits both central and peripheral inhibition of the reproductive hormonal axis. While this has long been recognized as an issue, understanding the complex signaling mechanism behind this inhibition remains somewhat of a mystery. What makes this especially difficult is attempting to differentiate the many parts of both of these hormonal axes, and new neuropeptide discoveries in the last decade in the reproductive field have added even more complexity to an already complicated system. Glucocorticoids (GCs) and other hormones within the hypothalamic-pituitary-adrenal (HPA) axis (as well as contributors in the sympathetic system) can modulate the hypothalamic-pituitary-gonadal (HPG) axis at all levels-GCs can inhibit release of GnRH from the hypothalamus, inhibit gonadotropin synthesis and release in the pituitary, and inhibit testosterone synthesis and release from the gonads, while also influencing gametogenesis and sexual behavior. This chapter is not an exhaustive review of all the known literature, however is aimed at giving a brief look at both the central and peripheral effects of glucocorticoids on the reproductive function.

  20. Social stress contagion in rats: Behavioural, autonomic and neuroendocrine correlates.

    Science.gov (United States)

    Carnevali, Luca; Montano, Nicola; Statello, Rosario; Coudé, Gino; Vacondio, Federica; Rivara, Silvia; Ferrari, Pier Francesco; Sgoifo, Andrea

    2017-08-01

    The negative emotional consequences associated with life stress exposure in an individual can affect the emotional state of social partners. In this study, we describe an experimental rat model of social stress contagion and its effects on social behaviour and cardiac autonomic and neuroendocrine functions. Adult male Wistar rats were pair-housed and one animal (designated as "demonstrator" (DEM)) was submitted to either social defeat stress (STR) by an aggressive male Wild-type rat in a separate room or just exposed to an unfamiliar empty cage (control condition, CTR), once a day for 4 consecutive days. We evaluated the influence of cohabitation with a STR DEM on behavioural, cardiac autonomic and neuroendocrine outcomes in the cagemate (defined "observer" (OBS)). After repeated social stress, STR DEM rats showed clear signs of social avoidance when tested in a new social context compared to CTR DEM rats. Interestingly, also their cagemate STR OBSs showed higher levels of social avoidance compared to CTR OBSs. Moreover, STR OBS rats exhibited a higher heart rate and a larger shift of cardiac autonomic balance toward sympathetic prevalence (as indexed by heart rate variability analysis) immediately after the first reunification with their STR DEMs, compared to the control condition. This heightened cardiac autonomic responsiveness habituated over time. Finally, STR OBSs showed elevated plasma corticosterone levels at the end of the experimental protocol compared to CTR OBSs. These findings demonstrate that cohabitation with a DEM rat, which has experienced repeated social defeat stress, substantially disrupts social behaviour and induces short-lasting cardiac autonomic activation and hypothalamic-pituitary-adrenal axis hyperactivity in the OBS rat, thus suggesting emotional state-matching between the OBS and the DEM rats. We conclude that this rodent model may be further exploited for investigating the neurobiological bases of negative affective sharing between

  1. Gastroduodenal neuroendocrine neoplasms, including gastrinoma - management guidelines (recommended by the Polish Network of Neuroendocrine Tumours).

    Science.gov (United States)

    Lipiński, Michał; Rydzewska, Grażyna; Foltyn, Wanda; Andrysiak-Mamos, Elżbieta; Bałdys-Waligórska, Agata; Bednarczuk, Tomasz; Blicharz-Dorniak, Jolanta; Bolanowski, Marek; Boratyn-Nowicka, Agnieszka; Borowska, Małgorzata; Cichocki, Andrzej; Ćwikła, Jarosław B; Falconi, Massimo; Handkiewicz-Junak, Daria; Hubalewska-Dydejczyk, Alicja; Jarząb, Barbara; Junik, Roman; Kajdaniuk, Dariusz; Kamiński, Grzegorz; Kolasińska-Ćwikła, Agnieszka; Kowalska, Aldona; Król, Robert; Królicki, Leszek; Kunikowska, Jolanta; Kuśnierz, Katarzyna; Lampe, Paweł; Lange, Dariusz; Lewczuk-Myślicka, Anna; Lewiński, Andrzej; Londzin-Olesik, Magdalena; Marek, Bogdan; Nasierowska-Guttmejer, Anna; Nowakowska-Duława, Ewa; Pilch-Kowalczyk, Joanna; Poczkaj, Karolina; Rosiek, Violetta; Ruchała, Marek; Siemińska, Lucyna; Sowa-Staszczak, Anna; Starzyńska, Teresa; Steinhof-Radwańska, Katarzyna; Strzelczyk, Janusz; Sworczak, Krzysztof; Syrenicz, Anhelli; Szawłowski, Andrzej; Szczepkowski, Marek; Wachuła, Ewa; Zajęcki, Wojciech; Zemczak, Anna; Zgliczyński, Wojciech; Kos-Kudła, Beata

    2017-01-01

    This paper presents the updated Polish Neuroendocrine Tumour Network expert panel recommendations on the management of neuroendocrine neoplasms (NENs) of the stomach and duodenum, including gastrinoma. The recommendations discuss the epidemiology, pathogenesis, and clinical presentation of these tumours as well as their diagnosis, including biochemical, histopathological, and localisation diagnoses. The principles of treatment are discussed, including endoscopic, surgical, pharmacological, and radionuclide treatments. Finally, there are also recommendations on patient monitoring.

  2. Developmental stress and social phenotypes: integrating neuroendocrine, behavioural and evolutionary perspectives.

    Science.gov (United States)

    Spencer, Karen A

    2017-08-19

    The social world is filled with different types of interactions, and social experience interacts with stress on several different levels. Activation of the neuroendocrine axis that regulates the response to stress can have consequences for innumerable behavioural responses, including social decision-making and aspects of sociality, such as gregariousness and aggression. This is especially true for stress experienced during early life, when physiological systems are developing and highly sensitive to perturbation. Stress at this time can have persistent effects on social behaviours into adulthood. One important question remaining is to what extent these effects are adaptive. This paper initially reviews the current literature investigating the complex relationships between the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems and several aspects of social behaviour in vertebrates. In addition, the review explores the evidence surrounding the potential for 'social programming' via differential development and activation of the HPA axis, providing an insight into the potential for positive effects on fitness following early life stress. Finally, the paper provides a framework from which novel investigations could work to fully understand the adaptive significance of early life effects on social behaviours.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  3. Midgut neuroendocrine tumor presenting with acute intestinal ischemia.

    Science.gov (United States)

    Mantzoros, Ioannis; Savvala, Natalia Antigoni; Ioannidis, Orestis; Parpoudi, Styliani; Loutzidou, Lydia; Kyriakidou, Despoina; Cheva, Angeliki; Intzos, Vasileios; Tsalis, Konstantinos

    2017-12-07

    Neuroendocrine tumors represent a heterogeneous group of neoplasms that arise from neuroendocrine cells and secrete various peptides and bioamines. While gastrointestinal neuroendocrine tumors, commonly called carcinoids, account for about 2/3 of all neuroendocrine tumors, they are relatively rare. Small intestine neuroendocrine tumors originate from intestinal enterochromaffin cells and represent about 1/4 of small intestine neoplasms. They can be asymptomatic or cause nonspecific symptoms, which usually leads to a delayed diagnosis. Imaging modalities can aid diagnosis and surgery remains the mainstay of treatment. We present a case of a jejunal neuroendocrine tumor that caused nonspecific symptoms for about 1 year before manifesting with acute mesenteric ischemia. Abdominal X-rays revealed pneumatosis intestinalis and an abdominal ultrasound and computed tomography confirmed the diagnosis. The patient was submitted to segmental enterectomy. Histopathological study demonstrated a neuroendocrine tumor with perineural and arterial infiltration and lymph node metastasis. The postoperative course was uneventful and the patient denied any adjuvant treatment.

  4. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rinke, Anja, E-mail: sprengea@staff.uni-marburg.de; Michl, Patrick; Gress, Thomas [Department of Gastroenterology, University Hospital Marburg, Baldinger Strasse, Marburg D-35043 (Germany)

    2012-02-08

    Treatment of the clinically and prognostically heterogeneous neuroendocrine neoplasms (NEN) should be based on a multidisciplinary approach, including surgical, interventional, medical and nuclear medicine-based therapeutic options. Medical therapies include somatostatin analogues, interferon-α, mTOR inhibitors, multikinase inhibitors and systemic chemotherapy. For the selection of the appropriate medical treatment the hormonal activity, primary tumor localization, tumor grading and growth behaviour as well as the extent of the disease must be considered. Somatostatin analogues are mainly indicated in hormonally active tumors for symptomatic relief, but antiproliferative effects have also been demonstrated, especially in well-differentiated intestinal NET. The efficacy of everolimus and sunitinib in patients with pancreatic neuroendocrine tumors (pNET) has been demonstrated in large placebo-controlled clinical trials. pNETs are also chemosensitive. Streptozocin-based chemotherapeutic regimens are regarded as current standard of care. Temozolomide in combination with capecitabine is an alternative that has shown promising results that need to be confirmed in larger trials. Currently, no comparative studies and no molecular markers are established that predict the response to medical treatment. Therefore the choice of treatment for each pNET patient is based on individual parameters taking into account the patient’s preference, expected side effects and established response criteria such as proliferation rate and tumor load. Platin-based chemotherapy is still the standard treatment for poorly differentiated neuroendocrine carcinomas. Clearly, there is an unmet need for new systemic treatment options in patients with extrapancreatic neuroendocrine tumors.

  5. FDA Approves Lutathera for Neuroendocrine Tumors

    Science.gov (United States)

    FDA has approved Lutathera® for some people with neuroendocrine tumors (NETs) that affect the digestive tract. On January 29, FDA approved Lutathera® for adult patients with advanced NETs that affect the pancreas or gastrointestinal tract, known as GEP-NETs.

  6. A pancreatic neuroendocrine tumor diagnosed during the ...

    African Journals Online (AJOL)

    Pancreatic neuroendocrine tumors (PNET) are increasingly being discovered. A case of PNET diagnosed and treated during the management of acute appendicitis is presented and discussed. The importance of imaging modalities in patients with acute abdominal pain is emphasized. To the best our knowledge, this is the ...

  7. Nuclear Medicine Imaging of Neuroendocrine Tumors

    NARCIS (Netherlands)

    Brabander, Tessa; Kwekkeboom, Dik J.; Feelders, Richard A.; Brouwers, Adrienne H.; Teunissen, Jaap J. M.; Papotti, M; DeHerder, WW

    2015-01-01

    An important role is reserved for nuclear imaging techniques in the imaging of neuroendocrine tumors (NETs). Somatostatin receptor scintigraphy (SRS) with In-111-DTPA-octreotide is currently the most important tracer in the diagnosis, staging and selection for peptide receptor radionuclide therapy

  8. Molecular neuroendocrine targets for obesity therapy.

    Science.gov (United States)

    de Kloet, Annette D; Woods, Stephen C

    2010-10-01

    Although energy balance is tightly regulated in order to maintain a specific level of adiposity, the incidence of obesity continues to increase. Consequently, it is essential that effective therapeutics for the treatment and prevention of obesity be developed. This review provides a brief update on some recent advances in the characterization of neuroendocrine targets for obesity therapy. During the review period, considerable progress occurred in the understanding of previously described neuroendocrine regulators of energy balance, and several novel targets have been identified. Moreover, the understanding of the neural circuitry and molecular mechanisms of the neuroendocrine regulation of energy homeostasis has been expanded. Energy balance is maintained by neuroendocrine signals arising from many tissues including the gastrointestinal tract and adipose tissue. These signals are integral to the cessation of meals and to the ability of the brain to monitor energy status and respond accordingly. Many current targets for obesity therapy are based on manipulating the activity of these signals and their receptors; however, to date, clinical-weight loss based on this strategy has been minimal and alternative approaches such as combinatorial therapies are emerging.

  9. Other PET tracers for neuroendocrine tumors

    NARCIS (Netherlands)

    Koopmans, Klaas Pieter; Glaudemans, Andor W J M

    In this article the applicability of (124)I-MIBG and (11)C-5-HTP PET for the detection of abdominal gastro-enteropancreatic neuroendocrine tumors is discussed. (124)I-MIBG is a positron-emitting variant of (123)I-MIBG and therefore suited for PET imaging. Due to the better intrinsic characteristics

  10. Molecular neuroendocrine targets for obesity therapy

    Science.gov (United States)

    de Kloet, Annette D.; Woods, Stephen C.

    2013-01-01

    Purpose of review Although energy balance is tightly regulated in order to maintain a specific level of adiposity, the incidence of obesity continues to increase. Consequently, it is essential that effective therapeutics for the treatment and prevention of obesity be developed. This review provides a brief update on some recent advances in the characterization of neuroendocrine targets for obesity therapy. Recent findings During the review period, considerable progress occurred in the understanding of previously-described neuroendocrine regulators of energy balance, and several novel targets have been identified. Moreover, the understanding of the neural circuitry and molecular mechanisms of neuroendocrine regulators of energy homeostasis has been expanded. Summary Energy balance is maintained by neuroendocrine signals arising from many tissues including the gastrointestinal tract and adipose tissue. These signals are integral to the cessation of meals and to the ability of the brain to monitor energy status and respond accordingly. Many current targets for obesity therapy are based on manipulating the activity of these signals and their receptors; however, to date, clinical weight loss based on this strategy has been minimal and alternative approaches such as combinatorial therapies are emerging. PMID:20585249

  11. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Thomas Gress

    2012-02-01

    Full Text Available Treatment of the clinically and prognostically heterogeneous neuroendocrine neoplasms (NEN should be based on a multidisciplinary approach, including surgical, interventional, medical and nuclear medicine-based therapeutic options. Medical therapies include somatostatin analogues, interferon-a, mTOR inhibitors, multikinase inhibitors and systemic chemotherapy. For the selection of the appropriate medical treatment the hormonal activity, primary tumor localization, tumor grading and growth behaviour as well as the extent of the disease must be considered. Somatostatin analogues are mainly indicated in hormonally active tumors for symptomatic relief, but antiproliferative effects have also been demonstrated, especially in well-differentiated intestinal NET. The efficacy of everolimus and sunitinib in patients with pancreatic neuroendocrine tumors (pNET has been demonstrated in large placebo-controlled clinical trials. pNETs are also chemosensitive. Streptozocin-based chemotherapeutic regimens are regarded as current standard of care. Temozolomide in combination with capecitabine is an alternative that has shown promising results that need to be confirmed in larger trials. Currently, no comparative studies and no molecular markers are established that predict the response to medical treatment. Therefore the choice of treatment for each pNET patient is based on individual parameters taking into account the patient’s preference, expected side effects and established response criteria such as proliferation rate and tumor load. Platin-based chemotherapy is still the standard treatment for poorly differentiated neuroendocrine carcinomas. Clearly, there is an unmet need for new systemic treatment options in patients with extrapancreatic neuroendocrine tumors.

  12. Stress and Female Reproductive System: Disruption of Corticotropin-Releasing Hormone/Opiate Balance by Sympathetic Nerve Traffic

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2009-09-01

    Full Text Available Nowadays stress is an integral part of everyday living and the physiological and behavioral consequences of exposure to stressful situations have been extensively studied for decades. The stress response is a necessary mechanism but disrupts homeostatic process and it is sub served by a complex system located in both the central nervous system (CNS and the periphery. Stressor-induced activation of the hypothalamus–pituitary–adrenal (HPA axis and the sympathetic nervous system (SNS results in a series of neural and endocrine adaptations known as the "stress response" or "stress cascade." The stress cascade is responsible for allowing the body to make the necessary physiological and metabolic changes required to cope with the demands of a homeostatic challenge. Normal activation of the HPA axis is essential for reproduction, growth, metabolic homeostasis, and responses to stress and they are critical for adapting to changes in the external environment. The regulation of gonadal function in men and women is under the control of the HPA. This regulation is complex and sex steroids are important regulators of GnRH and gonadotropin release through classical feedback mechanisms in the hypothalamus and the pituitary. The present overview focuses on the neuroendocrine infrastructure of the adaptive response to stress and its effects on the female reproductive system. 

  13. A users guide to HPA axis research.

    Science.gov (United States)

    Spencer, Robert L; Deak, Terrence

    2017-09-01

    Glucocorticoid hormones (cortisol and corticosterone - CORT) are the effector hormones of the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system. CORT is a systemic intercellular signal whose level predictably varies with time of day and dynamically increases with environmental and psychological stressors. This hormonal signal is utilized by virtually every cell and physiological system of the body to optimize performance according to circadian, environmental and physiological demands. Disturbances in normal HPA axis activity profiles are associated with a wide variety of physiological and mental health disorders. Despite numerous studies to date that have identified molecular, cellular and systems-level glucocorticoid actions, new glucocorticoid actions and clinical status associations continue to be revealed at a brisk pace in the scientific literature. However, the breadth of investigators working in this area poses distinct challenges in ensuring common practices across investigators, and a full appreciation for the complexity of a system that is often reduced to a single dependent measure. This Users Guide is intended to provide a fundamental overview of conceptual, technical and practical knowledge that will assist individuals who engage in and evaluate HPA axis research. We begin with examination of the anatomical and hormonal components of the HPA axis and their physiological range of operation. We then examine strategies and best practices for systematic manipulation and accurate measurement of HPA axis activity. We feature use of experimental methods that will assist with better understanding of CORT's physiological actions, especially as those actions impact subsequent brain function. This research approach is instrumental for determining the mechanisms by which alterations of HPA axis function may contribute to pathophysiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [The relationship between neuroendocrine dysfunction and free-radical oxidation in old age alcoholism].

    Science.gov (United States)

    Vinogradov, D B; Mingazov, A Kh; Izarovskaya, I V; Babin, K A; Sinitsky, A I

    2015-01-01

    to study the relationship between dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and free-radical oxidation in old age alcoholism. Authors examined 46 men and women, aged 60-80 years, with alcoholism. Contents of cortisol, lipid peroxidation products and the level of an oxidatively modified protein were measured. A decrease in blood cortisol content and correlations between its level and activity of free-radical oxidation were identified. The severity of neuroendocrine dysfunction in old patients was sex-related. It has been suggested that the impairment of HPA system activity may be a cause of oxidative stress and development of alcoholism.

  15. Late neuro endocrinological sequelae of radiation therapy; Effets tardifs de la radiotherapie sur la sphere neuroendocrine

    Energy Technology Data Exchange (ETDEWEB)

    Bieri, S.; Bernier, J. [Ospedale San Giovanni (Switzerland); Sklar, C. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Constine, L. [Rochester Univ., NY (United States)

    1997-12-01

    When the hypothalamic-pituitary axis (HPA) is included in the treatment field in children and adults, a variety of neuroendocrine disturbances are more common than has been appreciated in the past. Clinical damage to the pituitary and thyroid glands usually occurs months to years after treatment, and is preceded by a long subclinical phase. Primary brain tumors represent the largest group of malignant solid tumors in children. The survival rates of 50 reported in the literature are achieved at the expense of late occurring effects. Radiation-induced abnormalities are generally dose-dependent. Growth hormone deficiency and premature sexual development can occur at doses as low as 18 Gy in conventional fractionation, and is the most common neuroendocrine problem in children. In patients treated with > 40 Gy on the HPA, deficiency of gonadotropins, thyroid stimulation hormone, and adrenocorticotropin (> 50 Gy), hyperprolactinemia can be seen, especially among young women. Most neuroendocrine disturbances that develop as a result of HPA can be treated efficiently, provided that an early detection of these endocrine dysfunctions abnormalities is done. (authors)

  16. Multiple neuroendocrine responses to chronic social stress: interaction between individual characteristics and situational factors.

    Science.gov (United States)

    Mormède, P; Lemaire, V; Castanon, N; Dulluc, J; Laval, M; Le Moal, M

    1990-06-01

    After four weeks of individual housing, male Wistar rats (selected for high or low spontaneous aggressiveness by multiple round-robin encounters) were housed three per cage and submitted to four weeks of chronic social stress consisting of changing membership in the social groups by daily rotation of the animals among cages every day according to a random permutation procedure. In addition, half the males in each condition were housed with three females. Each environmental condition triggered different neuroendocrine changes. Cohabitation with females increased the hypothalamo-pituitary-adrenocortical axis activity, including enlargement of adrenals and increased circulating corticosterone levels. On the other hand, daily rotation of the rats between different social groups activated part of the sympathetic nervous system, such as increased phenylethanolamine N-methyl transferase (PNMT) activity in the adrenals. The level of aggressiveness, however, had no direct influence but interacted with environmental factors on such neuroendocrine measures as circulating testosterone or plasma renin activity. These results indicate that during chronic stress, there is no single, unique response by the animal, but a highly complex set of neuroendocrine changes, dependent on the interaction between individual characteristics (the level of aggressiveness is an example) and situational factors.

  17. Neuroendocrine and immune characteristics of aging in avian species.

    Science.gov (United States)

    Ottinger, M A; Lavoie, E

    2007-01-01

    Avian species show a remarkable diversity in lifespan. The differing lifespan patterns are found across a number of birds, in spite of higher body temperature and apparent increased metabolic rate. These characteristics make study of age-related changes of great interest, especially for understanding the biology of aging associated with surprisingly long lifespan in some birds. Our studies have focused on a short-lived avian model, the Japanese quail in order to describe reproductive aging and the neuroendocrine characteristics leading to reproductive senescence. Biomarkers of aging used in mammalian species include telomere length, oxidative damage, and selected metabolic indicators. These markers provide confirming evidence that the long-lived birds appear to age more slowly. A corollary area of interest is that of immune function and aging. Immune responses have been studied in selected wild birds and there has been a range of studies that have considered the effects of stress in wild and domestic species. Our laboratory studies have specifically tested response to immune challenge relative to aging in the quail model and these studies indicate that there is an age-related change in the qualitative aspects of the response. However, there are also intriguing differences in the ability of the aging quail to respond that differ from mammalian data. Finally, another approach to understanding aging is to attempt to develop or test strategies that may extend lifespan and presumably health. One area of great interest has been to consider the effect of calorie restriction, which is a treatment shown to extend lifespan in a variety of species. This approach is routinely used in domestic poultry as a means for extending reproductive function and enhancing health. Our data indicate that moderate calorie restriction has beneficial effects, and that physiological and endocrine responses reflect these benefits. Copyright 2007 S. Karger AG, Basel.

  18. Neuroendocrine disruption of organizational and activational hormone programming in poikilothermic vertebrates.

    Science.gov (United States)

    Rosenfeld, Cheryl S; Denslow, Nancy D; Orlando, Edward F; Gutierrez-Villagomez, Juan Manuel; Trudeau, Vance L

    2017-01-01

    In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.

  19. Contemporary nuclear medicine diagnostics of neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Todorović-Tirnanić Mila

    2015-01-01

    Full Text Available The new positron emission tomography (PET/CT methods for neuroendocrine tumors detection are presented and compared with classic, conventional methods. Conventional methods use a gamma scintillation camera for patients with neuroendocrine tumor imaging, after intravenous injection of one of the following radiopharmaceuticals: 1 somatostatin analogues labeled with indium-111 (111In-pentetreotide or technetium-99m (99mTc-EDDA/HYNIC-TOC; 2 noradrenaline analogue labeled with iodine-131 or -123 (131I/123I-MIBG; or 3 99mTc(V-DMSA. Contemporary methods use PET/CT equipment for patients with neuroendocrine tumor imaging, after intravenous injection of pharmaceuticals labeled with positron emitters [fluorine-18 (18F, galium-68 (68Ga, or carbon-11 (11C]: 1 glucose analogue (18FDG; 2 somatostatin analogue (68Ga-DOTATOC/68Ga-DOTATATE/68Ga-DOTANOC; 3 aminoacid precursors of bioamines: [a dopamine precursor 18F-DOPA (6-18F-dihydroxyphenylalanine, b serotonin precursor 11C-5HTP (11C-5-hydroxytryptophan]; or 4 dopamine analogue 18F-DA (6-18F-fluorodopamine. Conventional and contemporary (PET/ CT somatostatin receptor detection showed identical high specificity (92%, but conventional had very low sensitivity (52% compared to PET/CT (97%. It means that almost every second neuroendocrine tumor detected by contemporary method cannot be discovered using conventional (classic method. In metastatic pheochromocytoma detection contemporary (PET/ CT methods (18F-DOPA and 18F-DA have higher sensitivity than conventional (131I/123I-MIBG. In medullary thyroid carcinoma diagnostics contemporary method (18F-DOPA is more sensitive than conventional 99mTc(V-DMSA method, and is similar to 18FDG, computed tomography and magnetic resonance. In carcinoid detection contemporary method (18F-DOPA shows similar results with contemporary somatostatin receptor detection, while for gastroenteropancreatic neuroendocrine tumors it is worse. To conclude, contemporary (PET/CT methods for

  20. A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction

    Science.gov (United States)

    2013-01-01

    The remarkable development and refinement of the Cre-loxP system coupled with the nonstop production of new mouse models and virus vectors have impelled the growth of various fields of investigation. In this article, I will discuss the data collected using these genetic tools in our area of interest, giving specific emphasis to the identification of the neuronal populations that relay leptin action in reproductive physiology. A series of mouse models that allow manipulation of the leptin receptor gene have been generated. Of those, I will discuss the use of two models of leptin receptor gene reexpression (LepRneo/neo and LepRloxTB/loxTB) and one model of leptin signaling blockade (LepRflox/flox). I will also highlight the differences of using stereotaxic delivery of virus vectors expressing DNA-recombinases (Flp and Cre) and mouse models expressing Cre-recombinase. Our findings indicate that leptin action in the ventral premammillary nucleus is sufficient, but not required, for leptin action in reproduction and that leptin action in Kiss1 neurons arises after pubertal maturation; therefore, direct leptin signaling in Kiss1 neurons is neither required nor sufficient for the permissive action of leptin in pubertal development. It also became evident that the full action of leptin in the reproductive neuroendocrine axis requires the engagement of an integrated circuitry, yet to be fully unveiled. PMID:24196667

  1. Quality and Timing of Stressors Differentially Impact on Brain Plasticity and Neuroendocrine-Immune Function in Mice

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    2013-01-01

    Full Text Available A growing body of evidence suggests that psychological stress is a major risk factor for psychiatric disorders. The basic mechanisms are still under investigation but involve changes in neuroendocrine-immune interactions, ultimately affecting brain plasticity. In this study we characterized central and peripheral effects of different stressors, applied for different time lengths, in adult male C57BL/6J mice. We compared the effects of repeated (7 versus 21 days restraint stress (RS and chronic disruption of social hierarchy (SS on neuroendocrine (corticosterone and immune function (cytokines and splenic apoptosis and on a marker of brain plasticity (brain-derived neurotrophic factor, BDNF . Neuroendocrine activation did not differ between SS and control subjects; by contrast, the RS group showed a strong neuroendocrine response characterized by a specific time-dependent profile. Immune function and hippocampal BDNF levels were inversely related to hypothalamic-pituitary-adrenal axis activation. These data show a fine modulation of the crosstalk between central and peripheral pathways of adaptation and plasticity and suggest that the length of stress exposure is crucial to determine its final outcome on health or disease.

  2. Colonic neuroendocrine carcinoma in a child

    Energy Technology Data Exchange (ETDEWEB)

    Sasi, Omai Al; Rifai, Ayman; Hugosson, Claes [King Faisal Specialist Hospital and Research Centre, Department of Radiology, MBC 28, Riyadh (Saudi Arabia); Sathiapalan, Rajeev; Kofide, Amani [King Faisal Specialist Hospital and Research Centre, Department of Paediatric Haematology and Oncology, Riyadh (Saudi Arabia); Tulbah, Asthma Mahmoud Mohamed [King Faisal Specialist Hospital and Research Centre, Department of Pathology, Riyadh (Saudi Arabia); Al-Mehaidib, Ali [King Faisal Specialist Hospital and Research Centre, Department of Paediatrics, Riyadh (Saudi Arabia)

    2005-03-01

    A 10-year-old boy with congenital immunodeficiency (X-linked agammaglobulinaemia) presented with loss of appetite and weight, right-sided abdominal pain, diarrhoea and low-grade fever. Radiological investigations with barium follow-through, CT, PET and octreotide scans revealed a primary caecal/ascending proximal colonic mass with liver and bony metastases. Urine screen for 5HIAA was positive. Percutaneous liver biopsy confirmed the diagnosis of neuroendocrine carcinoma. The radiological work-up and the usefulness of various imaging modalities in the diagnosis of this rare paediatric tumour are discussed. The PET scan demonstrated the primary tumour and the metastatic locations more vividly than the octreotide scan, which is currently considered to be the most specific imaging modality for neuroendocrine masses. (orig.)

  3. Interventional treatment of neuroendocrine liver metastases

    DEFF Research Database (Denmark)

    Knigge, U.; Hansen, C.P.; Stadil, F.

    2008-01-01

    Neuroendocrine gastroenteropancreatic tumours are rare with an incidence of 2-4/100.000 per year. More than 75% of the patients develop hepatic metastases, which reduce the five year survival from 70-80% to 30-40%. In addition to chemo- and biotherapy, interventional therapy of liver metastases s....... The symptomatic response rate is 90% with a mean duration of two years. Liver transplantation should be restricted to very few and highly selected patients without extrahepatic disease. Recurrence is inevitable in nearly all patients Udgivelsesdato: 2008/8......Neuroendocrine gastroenteropancreatic tumours are rare with an incidence of 2-4/100.000 per year. More than 75% of the patients develop hepatic metastases, which reduce the five year survival from 70-80% to 30-40%. In addition to chemo- and biotherapy, interventional therapy of liver metastases...

  4. Nuclear Image Analysis Study of Neuroendocrine Tumors

    OpenAIRE

    Park, Meeja; Baek, Taehwa; Baek, Jongho; Son, Hyunjin; Kang, Dongwook; Kim, Jooheon; Lee, Hyekyung

    2012-01-01

    Background There is a subjective disagreement about nuclear chromatin in the field of pathology. Objective values of red, green, and blue (RGB) light intensities for nuclear chromatin can be obtained through a quantitative analysis using digital images. Methods We examined 10 cases of well differentiated neuroendocrine tumors of the rectum, small cell lung carcinomas, and moderately differentiated squamous cell lung carcinomas respectively. For each case, we selected 30 representative cells a...

  5. Acute Disseminated Intravascular Coagulation in Neuroendocrine Carcinoma

    OpenAIRE

    Ru-Wen Teh; Tsoi, Daphne T.

    2012-01-01

    Malignancy is a common cause of disseminated intravascular coagulation and usually presents as a chronic disorder in solid organ tumours. We present a rare case of recurrent acute disseminated intravascular coagulation in neuroendocrine carcinoma after manipulation, firstly, by core biopsy and, later, by cytotoxic therapy causing a release of procoagulants and cytokines from lysed tumour cells. This is reminiscent of tumour lysis syndrome where massive quantities of intracellular electrolytes...

  6. Neuroendocrine carcinoma of the prostate gland.

    Science.gov (United States)

    Hoof, Pamela; Tsai-Nguyen, Ginger; Paulson, Scott; Syed, Almas; Mora, Adam

    2016-01-01

    Small cell prostate carcinoma (SCPC) has a clinical course and prognosis that is markedly different from that of common adenocarcinoma of the prostate. The patient in this case presented with fever of unknown origin, dyspnea, and near spinal cord compression. He was subsequently found to have widely metastatic high-grade neuroendocrine carcinoma of prostatic origin. This case emphasizes that despite the commonality of prostate cancer, there are rare presentations of this common disease.

  7. Left axis deviation.

    Science.gov (United States)

    MacKenzie, Ross

    2005-01-01

    Left axis deviation is one of the most commonly encountered ECG abnormalities. Its presence should alert medical directors and underwriters to the possibility of underlying structural heart disease. Many of the causes of left axis deviation are apparent from the clinical findings. Left anterior fascicular block is one of the commonest causes of left axis deviation and has specific ECG criteria for its diagnosis.

  8. [Surgical approach of gastroduodenal neuroendocrine neoplasms].

    Science.gov (United States)

    Fendrich, V; Bartsch, D K

    2016-04-01

    Gastroduodenal neuroendocrine tumors are rare but an increase in incidence has been recognized worldwide over the past 35 years. At the same time the prognosis of patients has substantially improved because the majority of these tumors can now be detected at an early stage. Neuroendocrine neoplasms (NENs) of the stomach are the most frequent neoplasms of neuroendocrine origin in the gastrointestinal tract. The therapeutic management of these tumors is complicated by the fact that they must be classified not only by staging and grading but also according to their pathophysiological background (types). These types differ in biological behavior and therefore have an influence on the therapeutic concept. Because more than 90 % of duodenal NENs are often asymptomatic and are as a rule identified at a curable stage, resection of the tumor should always be the first line of therapy. The therapeutic strategies vary from local endoscopic resection (duodenotomy with excision) up to pancreas retaining duodenectomy and pylorus retaining or classical Whipple procedures. This article presents the various surgical approaches to gastric and duodenal NENs.

  9. Large cell neuroendocrine carcinoma of the ampulla of Vater.

    LENUS (Irish Health Repository)

    Beggs, Rachel E

    2012-09-01

    Large cell neuroendocrine carcinomas of the ampulla of Vater are rare and confer a very poor prognosis despite aggressive therapy. There are few case reports of large cell neuroendocrine carcinomas of the ampulla of Vater in the literature and to date no studies have been done to establish optimal management. We describe a pooled case series from published reports of neuroendocrine carcinomas of the ampulla of Vater including a case which presented to our institution.

  10. Blunted neuroendocrine stress reactivity in young women with eating disorders.

    Science.gov (United States)

    Het, Serkan; Vocks, Silja; Wolf, Jutta M; Hammelstein, Philipp; Herpertz, Stephan; Wolf, Oliver T

    2015-03-01

    Stress is known to influence risk and progression of eating disorders (EDs). However, studies investigating physiological and psychological stress responses under laboratory conditions in patients with Anorexia nervosa or Bulimia nervosa are scarce and often produce conflicting findings. We therefore aimed to compare the neuroendocrine and affective stress response in ED inpatients and healthy controls. Twenty-eight female inpatients with Anorexia or Bulimia nervosa and 26 healthy women were exposed to the Trier Social Stress Test (TSST). Salivary cortisol and alpha-amylase (sAA) levels were assessed before as well as repeatedly after stress exposure, while heart rate and heart rate variability were determined before and during the TSST. Negative affective state was assessed at baseline and post-TSST. Compared to healthy controls, ED patients showed blunted cortisol stress responses combined with overall attenuated sAA levels. The latter was reflected in generally enhanced parasympathetic activity indicated by lower heart rate and stronger high-frequency heart rate variability throughout the TSST. Although patients reported more negative affect overall, they did not differ in their affective stress response. In summary, patients suffering from eating disorders show a blunted HPA axis reactivity to stress exposure and a generally reduced sympathetic/exaggerated parasympathetic nervous system activity. This combination may contribute to elevated health risks seen in eating disorder patients, such as enhanced inflammatory activity, and thus provide insight into the underlying stress-related mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Central Mechanisms Underlying Variability in the Behavioral and Neuroendocrine Responses to Stress in Fish

    DEFF Research Database (Denmark)

    Moltesen, Maria Møller

    . The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) also plays an important role in the neuroendocrine stress response by controlling CRF release in hypothalamus. The transmission of 5-HT and CRF are under feedback control of glucocorticoids and interact with the stress response by affecting processes...... in the limbic system. In fish, the telencephalon contains regions that are functional homologues to the mammalian limbic system including amygdala and hippocampus. However, the involvement of this brain region in the regulation of the hypothalamicpituitary- interrenal (HPI) axis, the homologue of the mammalian...... glucocorticoid in fish, and if these effects were related to changes in neurochemistry and gene expression in the telencephalon of rainbow trout (Oncorhynchus mykiss). The results showed that chronic stress affected HPI axis reactivity and serotonergic neurochemistry in the telencephalon. Moreover, effects...

  12. Benign Endometrial Polyp and Primary Endometrial Small Cell Neuroendocrine Carcinoma Confined to the Polyp: A Rare Association

    Directory of Open Access Journals (Sweden)

    Pembe Oltulu

    2016-03-01

    Full Text Available Neuroendocrine tumors (NETs are a heterogeneous group of tumoral lesions originating from diffuse endo­crine system cells. They occur mostly in the gastrointes­tinal system and the lung. Primary NETs of the female reproductive tract are rare. In a widely used classification, primary small cell neuroendocrine carcinomas (SCNECs and large cell neuroendocrine carcinomas (LCNECs of the endometrium were included in a subgroup of poorly differentiated neuroendocrine carcinomas. SCNECs of the endometrium are very rare and they are often com­bined with other epithelial neoplasms. Their myometrial and extrauterine invasions are common during the initial diagnosis due to their aggressive behaviors. In this ar­ticle, we present a rare case of primary endometrial SC­NEC detected within the benign endometrial polyp and without invasion of myometrium and extrauterine tissues in a 70-year-old female patient presenting with post­menopausal bleeding. Histopathologically, the tumor cells showed positive staining with Synaptophysin, the Ki-67 labeling index was 80-90%, the mitotic index was 15/10 per HPF and there was no necrosis and lymphovascular invasion. J Clin Exp Invest 2016; 7 (1: 107-110

  13. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion.

    Science.gov (United States)

    Barrios, Juliana; Patel, Kruti R; Aven, Linh; Achey, Rebecca; Minns, Martin S; Lee, Yoonjoo; Trinkaus-Randall, Vickery E; Ai, Xingbin

    2017-09-01

    Pulmonary neuroendocrine cells (PNECs) are the only innervated airway epithelial cells. To what extent neural innervation regulates PNEC secretion and function is unknown. Here, we discover that neurotrophin 4 (NT4) plays an essential role in mucus overproduction after early life allergen exposure by orchestrating PNEC innervation and secretion of GABA. We found that PNECs were the only cellular source of GABA in airways. In addition, PNECs expressed NT4 as a target-derived mechanism underlying PNEC innervation during development. Early life allergen exposure elevated the level of NT4 and caused PNEC hyperinnervation and nodose neuron hyperactivity. Associated with aberrant PNEC innervation, the authors discovered that GABA hypersecretion was required for the induction of mucin Muc5ac expression. In contrast, NT4-/- mice were protected from allergen-induced mucus overproduction and changes along the nerve-PNEC axis without any defects in inflammation. Last, GABA installation restored mucus overproduction in NT4-/- mice after early life allergen exposure. Together, our findings provide the first evidence for NT4-dependent neural regulation of PNEC secretion of GABA in a neonatal disease model. Targeting the nerve-PNEC axis may be a valid treatment strategy for mucus overproduction in airway diseases, such as childhood asthma.-Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y., Trinkaus-Randall, V. E., Ai, X. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. © FASEB.

  14. The medial amygdala modulates body weight but not neuroendocrine responses to chronic stress.

    Science.gov (United States)

    Solomon, M B; Jones, K; Packard, B A; Herman, J P

    2010-01-01

    Stress pathologies such as depression and eating disorders (i.e. anorexia nervosa) are associated with amygdalar dysfunction, which are linked with hypothalamic-pituitary-adrenal axis (HPA) axis hyperactivity. The medial amygdaloid nucleus (MeA), a key output nucleus of the amygdaloid complex, promotes HPA axis activation to acute psychogenic stress and is in a prime position to mediate the deleterious effects of chronic stress on physiology and behaviour. The present study tests the hypothesis that the MeA is necessary for the development of maladaptive physiological changes caused by prolonged stress exposure. Male rats received bilateral ibotenate or sham lesions targeting the MeA and one half underwent 2 weeks of chronic variable stress (CVS) or served as home cage controls. Sixteen hours post CVS, all animals were exposed to an acute restraint challenge. CVS induced thymic involution, adrenal hypertrophy, and attenuated body weight gain and up-regulation of hypothalamic corticotrophin-releasing hormone mRNA expression. Consistent with previous literature, lesions of the MeA dampened stress-induced increases in corticosterone after 30 min of exposure to acute restraint stress. However, this effect was independent of CVS exposure, suggesting that the MeA may not be critical for modulating neuroendocrine responses after chronic HPA axis drive. Interestingly, lesion of the MeA modestly exaggerated the stress-induced attenuation of weight gain. Overall, the data obtained suggest that the MeA modulates the neuroendocrine responses to acute but not chronic stress. In addition, the data suggest that the MeA may be an important neural component for the control of body weight in the face of chronic stress.

  15. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

    Science.gov (United States)

    Solomon, Matia B; Loftspring, Matthew; de Kloet, Annette D; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N; Wulsin, Aynara C; Krause, Eric G; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G; Herman, James P

    2015-08-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.

  16. Reproductive aging and its consequences for general health.

    Science.gov (United States)

    Traub, Michael L; Santoro, Nanette

    2010-08-01

    Reproductive aging coincides with endocrine changes that are not solely reproductive in nature and culminates in hypergonadotropic hypogonadism and amenorrhea. These changes are identifiable biochemically regardless of clinical manifestations. Changes in the hypothalamic-pituitary-ovarian axis are associated with changes in other hormonal axes, specifically the adrenal androgen and the somatotropic axis. A large body of literature indicates that reproductive aging is associated with a decline in the somatotropic axis. The interactions between reproductive aging and changes in the adrenal androgen axis are more complex and complicated by age-related declines in the adrenal axis early in the reproductive years. These changes may play an important role in overall health maintenance. Attempts to ameliorate hormonal declines with exogenous hormonal therapy have produced mixed results. Finally, the age-specific timing as well as the rapidity of the changes that occur with reproductive aging seems to have important consequences on metabolism, cardiovascular risk, cognition, bone density, and even mortality.

  17. Stress and the HPA Axis: Balancing Homeostasis and Fertility

    Directory of Open Access Journals (Sweden)

    Dana N. Joseph

    2017-10-01

    Full Text Available An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.

  18. Stress and the HPA Axis: Balancing Homeostasis and Fertility.

    Science.gov (United States)

    Joseph, Dana N; Whirledge, Shannon

    2017-10-24

    An organism's reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic-pituitary-adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.

  19. Axis instrumentation: surgical results

    Directory of Open Access Journals (Sweden)

    Andrei F. Joaquim

    2012-11-01

    Full Text Available OBJECTIVE: Evaluate the surgical results of axis screw instrumentation. METHODS: Retrospective evaluation of the clinical and radiological data of patients submitted to axis fixation using screws. RESULTS: Seventeen patients were surgically treated. The mean age was 41.8 years (range: 12-73. Spinal cord trauma was the most common cause of instability (8 patients - 47%. Bilateral axis fixation was performed in all cases, except one, with laminar screw (total of 33 axis screws. Seven patients (41.1% underwent bilateral pars screws; laminar screws were used in six cases and pedicular screws were used in two. In two cases, we performed a hybrid construction (laminar + pars and pedicle + pars. There was no neurological worsening or death, nor complications directly related to use axis screws. CONCLUSION: Axis instrumentation was effective and safe, regardless of the technique used for stabilization. Based on our learnt experience, we proposed an algorithm to choose the best technique for axis screw fixation.

  20. Photoperiod: Its importance as an impeller of pineal and seasonal reproductive rhythms

    Science.gov (United States)

    Reiter, R. J.

    1980-03-01

    A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.

  1. Personality and reproductive fitness.

    Science.gov (United States)

    Eaves, L J; Martin, N G; Heath, A C; Hewitt, J K; Neale, M C

    1990-09-01

    The relationship between reproductive success (number of biological children) and personality was explored in 1101 postmenopausal females from the Australian twin registry. The quadratic response surface relating fitness to extraversion (E) and neuroticism (N) showed a saddle point at intermediate levels of E and N. Selection was shown to be stabilizing, i.e., having an intermediate optimum, along the axis low E, low N-high E, high N and more mildly disruptive, having greater fitness in the extremes, along the axis low N, high E-high N, low E. Neither dimension of personality considered by itself showed a significant linear or quadratic relationship to reproductive success. Sections through the fitness surface, however, show selection tends to favor high neuroticism levels in introverts and low neuroticism levels in extroverts.

  2. Kolaviron protects against benzo[a]pyrene-induced functional alterations along the brain-pituitary-gonadal axis in male rats.

    Science.gov (United States)

    Adedara, Isaac A; Owoeye, Olatunde; Aiyegbusi, Motunrayo A; Dagunduro, Joshua O; Daramola, Yetunde M; Farombi, Ebenezer O

    2015-09-01

    Exposure to benzo[a]pyrene (B[a]P) is well reported to be associated with neurological and reproductive dysfunctions. The present study investigated the influence of kolaviron, an isolated biflavonoid from the seed of Garcinia kola, on functional alterations along the brain-pituitary-gonadal axis in male rats exposed to B[a]P. Benzo[a]pyrene was orally administered at a dose of 10mg/kg alone or orally co-administered with kolaviron at 100 and 200mg/kg for 15 consecutive days. Administration of B[a]P significantly (pbrain, testes and sperm of B[a]P-treated rats. Light microscopy revealed severe necrosis of the Purkinje cells in the cerebellum, neuronal degeneration of the cerebral cortex, neuronal necrosis of the hippocampus and testicular atrophy in B[a]P-treated rats. Kolaviron co-treatment significantly ameliorated B[a]P mediated damages by suppressing pro-inflammatory mediators and enhancing the antioxidant status, neuroendocrine function, sperm characteristics and improving the architecture of the brain and testes in B[a]P-treated rats. The findings in the present investigation highlight that kolaviron may be developed to novel therapeutic agent against toxicity resulting from B[a]P exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity

    Science.gov (United States)

    Geenen, Vincent; Bodart, Gwennaëlle; Henry, Séverine; Michaux, Hélène; Dardenne, Olivier; Charlet-Renard, Chantal; Martens, Henri; Hober, Didier

    2013-01-01

    For centuries after its first description by Galen, the thymus was considered as only a vestigial endocrine organ until the discovery in 1961 by Jacques FAP Miller of its essential role in the development of T (thymo-dependent) lymphocytes. A unique thymus first appeared in cartilaginous fishes some 500 million years ago, at the same time or shortly after the emergence of the adaptive (acquired) immune system. The thymus may be compared to a small brain or a computer highly specialized in the orchestration of central immunological self-tolerance. This was a necessity for the survival of species, given the potent evolutionary pressure imposed by the high risk of autotoxicity inherent in the stochastic generation of the diversity of immune cell receptors that characterize the adaptive immune response. A new paradigm of “neuroendocrine self-peptides” has been proposed, together with the definition of “neuroendocrine self.” Neuroendocrine self-peptides are secreted by thymic epithelial cells (TECs) not according to the classic model of neuroendocrine signaling, but are processed for presentation by, or in association with, the thymic major histocompatibility complex (MHC) proteins. The autoimmune regulator (AIRE) gene/protein controls the transcription of neuroendocrine genes in TECs. The presentation of self-peptides in the thymus is responsible for the clonal deletion of self-reactive T cells, which emerge during the random recombination of gene segments that encode variable parts of the T cell receptor for the antigen (TCR). At the same time, self-antigen presentation in the thymus generates regulatory T (Treg) cells that can inhibit, in the periphery, those self-reactive T cells that escaped negative selection in the thymus. Several arguments indicate that the origin of autoimmunity directed against neuroendocrine glands results primarily from a defect in the intrathymic programming of self-tolerance to neuroendocrine functions. This defect may be genetic

  4. Neuroendocrine tumour in a patient with neurofibromatosis type 1 ...

    African Journals Online (AJOL)

    2015-06-26

    Jun 26, 2015 ... concomitant gastrin-producing neuroendocrine tumour was found. Neuroendocrine tumours. (NETs) are very rare neoplasms originating from a wide variety of endocrine and nervous system tissue with the ability to produce different hormones. A somatostatin- and gastrin- secreting NET in a patient with HIV ...

  5. Diffuse Neuroendocrine Cell Hyperplasia: Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Cevriye Cansız Ersöz

    2016-01-01

    Full Text Available Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH is a rare pulmonary disorder characterised by a proliferation of neuroendocrine cells within the lung. It is believed that a minority of the patients with DIPNECH can develop carcinoid tumors. Here, we report two new cases of DIPNECH with coexisting carcinoid tumors.

  6. A short history of neuroendocrine tumours and their peptide hormones

    DEFF Research Database (Denmark)

    de Herder, Wouter W; Rehfeld, Jens F; Kidd, Mark

    2016-01-01

    The discovery of neuroendocrine tumours of the gastrointestinal tract and pancreas started in 1870, when Rudolf Heidenhain discovered the neuroendocrine cells, which can lead to the development of these tumours. Siegfried Oberndorfer was the first to introduce the term carcinoid in 1907. The panc...

  7. Recognition memory tasks in neuroendocrine research.

    Science.gov (United States)

    Luine, Victoria

    2015-05-15

    The recognition memory tasks, novel object and novel object location, have been beneficial to neuroendocrine research concerning the effects of gonadal and adrenal hormones on cognitive function. This review discusses the advantages of these tasks in comparison with other learning and memory tasks. Experiments conducted across a number of laboratories show that gonadal hormones, both estradiol and testosterone, promote memory while the adrenal hormone, corticosterone, impairs memory. The effects of these steroid hormones on spine density in the prefrontal cortex and hippocampus are also briefly presented. Overall, results show that these steroid hormones are potent modulators of memory consolidation in rodent models. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Asexual Reproduction in Holothurians

    Science.gov (United States)

    Dolmatov, Igor Yu.

    2014-01-01

    Aspects of asexual reproduction in holothurians are discussed. Holothurians are significant as fishery and aquaculture items and have high commercial value. The last review on holothurian asexual reproduction was published 18 years ago and included only 8 species. An analysis of the available literature shows that asexual reproduction has now been confirmed in 16 holothurian species. Five additional species are also most likely capable of fission. The recent discovery of new fissiparous holothurian species indicates that this reproduction mode is more widespread in Holothuroidea than previously believed. New data about the history of the discovery of asexual reproduction in holothurians, features of fission, and regeneration of anterior and posterior fragments are described here. Asexual reproduction is obviously controlled by the integrated systems of the organism, primarily the nervous system. Special molecular mechanisms appear to determine the location where fission occurs along the anterior-posterior axis of the body. Alteration of the connective tissue strength of the body wall may play an important role during fission of holothurians. The basic mechanism of fission is the interaction of matrix metalloproteinases, their inhibitors, and enzymes forming cross-link complexes between fibrils of collagen. The population dynamics of fissiparous holothurians are discussed. PMID:25405228

  9. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    Science.gov (United States)

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain. © 2014 British Society for Neuroendocrinology.

  10. Neuroendocrine effects of cytokines in the rat.

    Science.gov (United States)

    Rivier, C

    1993-01-01

    The necessity ot maintain and/or restore homeostasis is an essential feature of mammals. This requires complex interactions between body cells, such as those from the immune and neuroendocrine systems, and in particular implies that the occurrence of immune activation be conveyed to the brain. It is now widely recognized that following infection, injury or inflammation, some immune cells (particularly macrophages) produce polypeptides called cytokines, interleukins or lymphokines /48/. These proteins provide the basis for intercellular communication between leukocytes (hence the name "interleukins") and mediate the immunoinflammatory responses (in particular T and B lymphocyte proliferation) /4,177/. In addition, interleukins (IL) can enter the general circulation and reach cells of the neuroendocrine axes, a phenomenon which represents one arm of the bidirectional communication links between the immune and the endocrine systems /25/. The early events which take place after presentation of an antigen (the so-called "acute-phase response" /89/) include metabolic and endocrine changes, such as changes in the circulating levels of insulin, TSH, GH, LH and ACTH, as well as adrenal and gonadal steroids /7,14/. This article reviews our present state of knowledge with regard to the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes of the rodent in response to interleukins.

  11. Neuroendocrine control of ionic balance in zebrafish.

    Science.gov (United States)

    Kwong, Raymond W M; Kumai, Yusuke; Perry, Steve F

    2016-08-01

    Zebrafish (Danio rerio) is an emerging model for integrative physiological research. In this mini-review, we discuss recent advances in the neuroendocrine control of ionic balance in this species, and identify current knowledge gaps and issues that would benefit from further investigation. Zebrafish inhabit a hypo-ionic environment and therefore are challenged by a continual loss of ions to the water. To maintain ionic homeostasis, they must actively take up ions from the water and reduce passive ion loss. The adult gill or the skin of larvae are the primary sites of ionic regulation. Current models for the uptake of major ions in zebrafish incorporate at least three types of ion transporting cells (also called ionocytes); H(+)-ATPase-rich cells for Na(+) uptake, Na(+)/K(+)-ATPase-rich cells for Ca(2+) uptake, and Na(+)/Cl(-)-cotransporter expressing cells for both Na(+) and Cl(-) uptake. The precise molecular mechanisms regulating the paracellular loss of ions remain largely unknown. However, epithelial tight junction proteins, including claudins, are thought to play a critical role in reducing ion losses to the surrounding water. Using the zebrafish model, several key neuroendocrine factors were identified as regulators of epithelial ion movement, including the catecholamines (adrenaline and noradrenaline), cortisol, the renin-angiotensin system, parathyroid hormone and prolactin. Increasing evidence also suggests that gasotransmitters, such as H2S, are involved in regulating ion uptake. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gut-brain axis

    NARCIS (Netherlands)

    Romijn, Johannes A.; Corssmit, Eleonora P.; Havekes, Louis M.; Pijl, Hanno

    2008-01-01

    To summarize recent studies on the regulation and the functions of the gut-brain axis. Visual cues of food and food intake interact with the gut-brain axis at the level of the hypothalamus. However, the hypothalamic response to glucose intake is considerably altered in patients with type 2 diabetes

  13. Toxicology of male reproduction in animals and humans.

    Science.gov (United States)

    De Celis, R; Pedrón-Nuevo, N; Feria-Velasco, A

    1996-01-01

    Environmental contaminants can interfere with the male reproduction function. A review is presented of those pollutants with adverse effects on human reproduction. The possible effects of occupational and environmental exposure to various substances on male reproductive health are evaluated. This analysis considers studies showing damage of men exposed to halogenated hydrocarbons, other organic compounds, heavy metals and some physical agents, and some lifestyles, such as continuous stress, alcohol consumption, cigarette and marijuana smoking, and other addictions. Possible influences of these agents on the neuroendocrine system with the decrease of male fertility during the last decades are also discussed.

  14. Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54.

    Science.gov (United States)

    Tenenbaum-Rakover, Yardena; Commenges-Ducos, Monique; Iovane, André; Aumas, Chantal; Admoni, Osnat; de Roux, Nicolas

    2007-03-01

    Loss of function of the G protein-coupled receptor of kisspeptins (GPR54) was recently described as a new cause of isolated hypogonadotropic hypogonadism. In vivo studies performed in several species have confirmed the major role of kisspeptins in neuroendocrine regulation of the gonadotropic axis and therefore sexual maturation. The objective of this study was to specify the exact contribution of kisspeptins and GPR54 to the initiation of puberty in humans. Detailed neuroendocrine descriptions were performed in five patients with isolated hypogonadotropic hypogonadism bearing a new GPR54-inactivating mutation. A homozygous mutation (T305C) leading to a leucine substitution with proline (L102P) was found in the five affected patients. This substitution completely inhibited GPR54 signaling. Phenotypic analysis revealed variable expressivity in the same family, either partial or complete gonadotropic deficiency. LH pulsatility analysis showed peaks with normal frequency but low amplitude. Repeated GnRH tests performed between 12 and 21 yr of age in one affected male revealed progressive changes in pituitary response from an early pubertal to an almost full pubertal pattern. Double GnRH test stimulations performed at a 120-min interval showed reduced dynamic pituitary response in GPR54-mutated patients. GPR54 inactivation does not impede neuroendocrine onset of puberty; rather, it delays and slows down pubertal maturation of the gonadotropic axis. The L102P loss of function mutation in GPR54 results in a more quantitative than qualitative defect of gonadotropic axis activation.

  15. Neuroendocrine differentiation in prostate cancer – a review

    Directory of Open Access Journals (Sweden)

    R. Popescu

    2015-12-01

    Full Text Available Objectives: This review aims to provide practicing clinicians with the most recent knowledge of the biological nature of prostate cancer especially the information regarding neuroendocrine differentiation. Methods: Review of the literature using PubMed search and scientific journal publications. Results: Much progress has been made towards an understanding of the development and progression of prostate cancer. The prostate is a male accessory sex gland which produces a fraction of seminal fluid. The normal human prostate is composed of a stromal compartment (which contains: nerves, fibroblast, smooth muscle cells, macrophages surrounding glandular acins – epithelial cells. Neuroendocrine cells are one of the epithelial populations in the normal prostate and are believed to provide trophic signals trough the secretion of neuropeptides that diffuse and influence surrounding epithelial cells. Prostate cancer is the most frequently diagnosed malignancy in men. In prostate cancer, neuroendocrine cells can stimulate growth of surrounding prostate adenocarcinoma cells (proliferation of neighboring cancer cells in a paracrine manner by secretion of neuroendocrine products. Neuroendocrine prostate cancer is an aggressive variant of prostate cancer that commonly arises in later stages of castration resistant prostate cancer. The detection of neuroendocrine prostate cancer has clinical implications. These patients are often treated with platinum chemotherapy rather than with androgen receptor targeted therapies. Conclusion: This review shows the need to improve our knowledge regarding diagnostic and treatment methods of the Prostate Cancer, especially cancer cells with neuroendocrine phenotype.

  16. Neuroendocrine and behavioral response to social confrontation: residents versus intruders, active versus passive coping styles.

    Science.gov (United States)

    Ebner, Karl; Wotjak, Carsten T; Landgraf, Rainer; Engelmann, Mario

    2005-01-01

    We investigated in the present study the neuroendocrine correlates in intruder and resident rats of a social confrontation. Adult male Wistar rats (intruders) were introduced into the home cage of a well-trained resident to induce characteristic agonistic interactions including physical attacks prior to separation by a wire mesh. The hypothalamic-pituitary-adrenal (HPA) axis activity and the intrahypothalamic release of arginine vasopressin (AVP) were monitored via chronically implanted jugular venous catheters and microdialysis probes aimed at the hypothalamic paraventricular nucleus (PVN), respectively. Based on the behavioral data collected during the 30-min confrontation, intruders and residents were additionally classified into two different subgroups: intruders which showed almost no freezing behavior (active copers) versus those showing pronounced freezing behavior (passive copers) and residents which were either predominantly aggressive or non-aggressive. The neuroendocrine data show that social confrontation caused a significantly increased secretion of the adrenocorticotropic hormone (ACTH) into plasma in both intruder subgroups, independently of their coping strategy. In contrast, plasma ACTH in residents was increased in response to social confrontation in non-aggressive animals only, whereas aggressive residents failed to mount an ACTH response. Interestingly, plasma AVP decreased in response to social confrontation in active intruders. As measured in microdialysates, the two groups of residents and passive intruders failed to show significant changes of intra-PVN release of AVP. In contrast, an increased release of this neuropeptide within the PVN could be monitored for active intruders. The data of the present study suggest that the different interpretation of an aversive encounter results in differences in the neuroendocrine response and intrahypothalamic vasopressinergic signaling in intruders versus residents.

  17. Neuropeptides and the microbiota-gut-brain axis.

    Science.gov (United States)

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  18. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Richter, Catherine A.; Martyniuk, Christopher J.; Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.

  19. PET tracers for somatostatin receptor imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Johnbeck, Camilla Bardram; Knigge, Ulrich; Kjær, Andreas

    2014-01-01

    Neuroendocrine tumors have shown rising incidence mainly due to higher clinical awareness and better diagnostic tools over the last 30 years. Functional imaging of neuroendocrine tumors with PET tracers is an evolving field that is continuously refining the affinity of new tracers in the search...... for the perfect neuroendocrine tumor imaging tracer. (68)Ga-labeled tracers coupled to synthetic somatostatin analogs with differences in affinity for the five somatostatin receptor subtypes are now widely applied in Europe. Comparison of sensitivity between the most used tracers - (68)Ga-DOTA-Tyr3-octreotide...

  20. Mixed adenocarcinoma and neuroendocrine prostate cancer: a case report

    Directory of Open Access Journals (Sweden)

    Rittu Hingorani

    2014-11-01

    Full Text Available Background: Neuroendocrine prostate cancer is rare but lethal. It is one of the most common extra pulmonary manifestations of small cell cancer. Case presentation: Here we present a case report of a 53-year-old male who presents with a mixed adenocarcinoma and neuroendocrine prostate tumor on a background of previously normal prostate-specific antigen (PSA. His initial symptoms prior to diagnosis included decreased urine output and acute kidney injury (AKI. Conclusion: Neuroendocrine tumor does not elevate the PSA level and hence is often a late finding with a poor prognosis. Special staining on histopathogy is required to reveal this diagnosis.

  1. Neuroendocrine tumor of the inguinal node: A very rare presentation

    Directory of Open Access Journals (Sweden)

    Niharika Bisht

    2017-12-01

    Full Text Available Neuroendocrine tumors are a broad family of tumors arising most commonly in the gastrointestinal tract and the bronchus pulmonary tree. The other common sounds are the parathyroid, pituitary and adrenal gland. Inguinal node as a primary presentation of a neuroendocrine tumor is an extremely rare presentation. We present the case of a 43-year-old-male who presented with the complaints of an inguinal node swelling without any other symptoms and on further evaluation was diagnosed to have a non-metastatic neuroendocrine tumor of the inguinal node. He was treated with a combination of chemotherapy and surgery and is presently awaiting completion chemotherapy.

  2. Neuroendocrine tumor presenting like lymphoma: a case report

    Directory of Open Access Journals (Sweden)

    Vincenzi Bruno

    2011-10-01

    Full Text Available Abstract Introduction Neuroendocrine tumors are a rare but diverse group of malignancies that arise in a wide range of organ systems, including the mediastinum. Differential diagnosis includes other masses arising in the middle mediastinum such as lymphoma, pericardial, bronchogenic and enteric cysts, metastatic tumors, xanthogranuloma, systemic granuloma, diaphragmatic hernia, meningocele and paravertebral abscess. Case presentation We present a case of 42-year-old Caucasian man with a neuroendocrine tumor of the middle-posterior mediastinum and liver metastases, which resembled a lymphoma on magnetic resonance imaging. Conclusion The differential diagnosis in patients with mediastinal masses and liver lesions should include neuroendocrine tumor.

  3. Neuroendocrine regulation of somatic growth in fishes.

    Science.gov (United States)

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  4. Adipokines in human reproduction.

    Science.gov (United States)

    Dupont, Joëlle; Pollet-Villard, Xavier; Reverchon, Maxime; Mellouk, Namya; Levy, Rachel

    2015-10-01

    Adipose tissue communicates with other central and peripheral organs by the synthesis and release of substances called adipokines. The most studied adipokine is leptin but others have been recently identified including resistin, adiponectin, chemerin, omentin and visfatin. These adipokines have a critical role in the development of obesity-related complications and inflammatory conditions. However, they are also involved in other functions in the organism including reproductive functions. Indeed, many groups have demonstrated that adipokine receptors, such as adiponectin and chemerin, but also adipokines themselves (adiponectin, chemerin, resistin, visfatin and omentin) are expressed in human peripheral reproductive tissues and that these adipokines are likely to exert direct effects on these tissues. After a brief description of these new adipokines, an overview of their actions in different human reproductive organs (hypothalamus, pituitary, ovary, testis, uterus and placenta) will be presented. Finally, comments will be made on the eventual alterations of these adipokines in reproductive disorders, with special attention to polycystic ovary syndrome, a disease characterized by dysfunction of gonadal axis and systemic nerve endocrine metabolic network with a prevalence of up to 10% in women of reproductive age.

  5. Synchronous gastric neuroendocrine carcinoma and hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Henriksen, Birthe Merete; Hansen, Carsten Palnæs

    2009-01-01

    UNLABELLED: Gastric neuroendocrine carcinomas (NECs) are rare tumours that are divided into four subtypes depending on tumour characteristics. Patients with NECs are known to have an increased risk of synchronous and metachronous cancers mainly located in the gastrointestinal tract. A case...... of synchronous gastric NEC and hepatocellular carcinoma in a patient with several other precancerous lesions is presented. The patient had anaemia, and a gastric tumour and two duodenal polyps were identified on upper endoscopy. A CT scan of the abdomen revealed several lesions in the liver. The lesions were...... invisible on B-mode sonography and real-time sonography fused with CT was used to identify and biopsy one of the lesions. Histology showed hepatocellular carcinoma. A literature search showed that only one case of a hepatocellular carcinoma synchronous with a gastric NEC has been reported previously. TRIAL...

  6. Single-Axis Accelerometer

    Science.gov (United States)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  7. Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development

    Directory of Open Access Journals (Sweden)

    Raghavendra Rao

    2015-08-01

    Full Text Available Permanent brain injury is a complication of recurrent hypoglycemia during development. Recurrent hypoglycemia also has adverse consequences on the neuroendocrine system. Hypoglycemia-associated autonomic failure, characterized by ineffective glucose counterregulation during hypoglycemia, is well described in children and adults on insulin therapy for diabetes mellitus. Whether recurrent hypoglycemia also has a programming effect on the hypothalamus-pituitary-adrenal cortex (HPA axis has not been well studied. Hypoglycemia is a potent stress that leads to increased glucocorticoid secretion in all age groups, including the perinatal period. Other conditions associated with exposure to excess glucocorticoid in the perinatal period have a programming effect on the HPA axis activity. Limited animal data suggest the possibility of similar programming effect after recurrent hypoglycemia in the postnatal period. The age at exposure to hypoglycemia likely determines the HPA axis response in adulthood. Recurrent hypoglycemia in the early postnatal period likely leads to a hyperresponsive HPA axis, whereas recurrent hypoglycemia in the late postnatal period lead to a hyporesponsive HPA axis in adulthood. The age-specific programming effects may determine the neuroendocrine response during hypoglycemia and other stressful events in individuals with history of recurrent hypoglycemia during development.

  8. Targeted Therapies Improve Survival for Patients with Pancreatic Neuroendocrine Tumors

    Science.gov (United States)

    In 2011, based on initial findings from two clinical trials, the Food and Drug Administration approved sunitinib and everolimus for patients with pancreatic neuroendocrine tumors. Updated results from the everolimus trial were published in September 2016.

  9. Neuroendocrine tumors in the urinary bladder: a literature review

    Directory of Open Access Journals (Sweden)

    Monika Ulamec

    2016-03-01

    Full Text Available Neuroendocrine tumors (NETs can be found in most organs, as well as in the urinary bladder. Some of the clinical and pathologic features of these tumors may be characteristic of the organ of origin, but most of the properties are shared by neuroendocrine neoplasms regardless of their anatomic site. In the bladder, NETs comprise less than 1% of all bladder tumors and can be found in a pure form or intermixed with urothelial carcinoma and its variants. Bladder NETs are classified into 2 subtypes: carcinoid tumor and neuroendocrine carcinoma, which is further subdivided into small cell and large cell neuroendocrine carcinoma. Characteristics of bladder NETs and its differential diagnosis are discussed herein.

  10. Neuroendocrine, immune and oxidative stress in shift workers.

    Science.gov (United States)

    Faraut, Brice; Bayon, Virginie; Léger, Damien

    2013-12-01

    Shift work is commonly associated with disturbed life rhythms, resulting in chronic exposure to circadian desynchronization and sleep restriction. Epidemiological data have shown that shift workers are at an increased risk of cardiovascular disease and breast cancer. In this review, we will explore how observed increases in neuroendocrine stress, non-specific immune responses and pro-oxidative status could act as biological mediators for these damaging health risks in shift workers. To explain these risks, compelling evidence from laboratory studies links circadian misalignment but also sleep restriction to disruptions in the neuroendocrine, immune and oxidative stress systems. Assessment of neuroendocrine, oxidative and immune stress in the shift worker population is still a limited and novel field, which may have considerable clinical relevance. Finally, we will consider the potential benefits of a countermeasure, such as napping, in minimizing the neuroendocrine and immune stress and cardiovascular risk imposed by shift work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Gastroenteropancreatic Neuroendocrine Tumors in Multiple Endocrine Neoplasia Type 1

    Energy Technology Data Exchange (ETDEWEB)

    Tonelli, Francesco, E-mail: f.tonelli@dfc.unifi.it; Giudici, Francesco [Department of Clinical Physiopathology, Surgical Unit, Medical School, University of Florence, Largo Brambilla n° 3, Florence 50134 (Italy); Giusti, Francesca; Brandi, Maria Luisa [Department of Internal Medicine, Medical School and Regional Centre for Hereditary Endocrine Tumors, University of Florence, Largo Brambilla n° 3, Florence 50134 (Italy)

    2012-05-07

    We reviewed the literature about entero-pancreatic neuroendocrine tumors in Multiple Endocrine Neoplasia type 1 syndrome (MEN1) to clarify their demographic features, localization imaging, practice, and appropriate therapeutical strategies, analyzing the current approach to entero-pancreatic neuroendocrine tumors in MEN1. Despite the fact that hyperparathyroidism is usually the first manifestation of MEN1, the penetrance of these tumors is similar. They are characterized by multiplicity of lesions, variable expression of the tumors, and propensity for malignant degeneration. Both the histological type and the size of MEN1 neuroendocrine tumors correlate with malignancy. Monitoring of pancreatic peptides and use of imaging exams allow early diagnosis and prompt surgical treatment, resulting in prevention of metastatic disease and improvement of long-term survival. Surgery is often the treatment of choice for MEN1-neuroendocrine tumors. The rationale for surgical approach is to curtail malignant progression of the disease, and to cure the associated biochemical syndrome, should it be present.

  12. Primary Neuroendocrine Carcinoma of Breast: A Rare Case Report

    African Journals Online (AJOL)

    Department of Pathology, ESIC Medical College and PGIMSR, Rajajinagar, Bangalore, India. Abstract. Primary neuroendocrine carcinoma (PNEC) of breast was an unknown pathologic entity till recently due ... whole body computed tomography and magnetic resonance imaging revealed no extra mammary primary tumor.

  13. Differential Diagnosis in Neuroendocrine Neoplasms of the Larynx

    NARCIS (Netherlands)

    Hunt, Jennifer L; Ferlito, Alfio; Hellquist, Henrik; Rinaldo, Alessandra; Skálová, Alena; Slootweg, Pieter J; Willems, Stefan M; Cardesa, Antonio

    2017-01-01

    The differential diagnosis of neuroendocrine neoplasms of the larynx is broad and includes lesions of epithelial, mesenchymal, and neuroectodermal origin. These lesions have overlapping clinical and pathologic aspects and must be carefully considered in the differential diagnosis of laryngeal

  14. [The role of endoscopy in gastroenteropancreatic neuroendocrine tumors].

    Science.gov (United States)

    Magno, L; Sivero, L; Napolitano, V; Ruggiero, S; Fontanarosa, G; Massa, S

    2010-01-01

    Versione italiana Riassunto: Il ruolo dell'endoscopia nei tumori neuroendocrini gastroenteropancreatici. L. Magno, L. Sivero, V. Napolitano, S. Ruggiero, G. Fontanarosa, S. Massa I tumori neuroendocrini (NET) gastro-entero-pancreatici (GEP) sono neoplasie rare che originano dalle cellule neuroendocrine del tubo digerente e del pancreas. L'endoscopia digestiva e l'ecoendoscopia rivestono un ruolo importante nella diagnosi, stadiazione e sorveglianza dei pazienti con NET. Inoltre, in casi selezionati, le tecniche endoscopiche operative consentono il trattamento di queste neoplasie in fase precoce. English version Summary: The role of endoscopy in gastroenteropancreatic neuroendocrine tumors. L. Magno, L. Sivero, V. Napolitano, S. Ruggiero, G. Fontanarosa, S. Massa Gastroenteropancreatic (GEP) neuroendocrine tumors (NET) are rare neoplasia arisen from neuroendocrine cells present in the gut mucosa and pancreas. Digestive endoscopy and endoscopic ultrasonography play a relevant role in NET diagnosis, stadiation and surveillance. Moreover, in selected patients, surgical endoscopy allows the tratment of these cancers at an early stage.

  15. Calcitonin-negative primary neuroendocrine tumor of the thyroid ...

    African Journals Online (AJOL)

    nonmedullary" in humans is a rare tumor that arises primarily in the thyroid gland and may be mistaken for medullary thyroid carcinoma; it is characterized by the immunohistochemical (IHC) expression of neuroendocrine markers and the absence of ...

  16. Anxiety, Family Functioning and Neuroendocrine Biomarkers in Obese Children

    Directory of Open Access Journals (Sweden)

    Inês Pinto

    2017-04-01

    Conclusion: These results highlight the importance of taking into account family functioning, parental mental state and gender, when investigating neuroendocrine biomarkers in obese children associated with symptoms of anxiety and depression.

  17. Benign gastric neuroendocrine tumors in three snow leopards (Panthera uncia).

    Science.gov (United States)

    Dobson, Elizabeth C; Naydan, Dianne K; Raphael, Bonnie L; McAloose, Denise

    2013-06-01

    Neuroendocrine tumors are relatively rare neoplasms arising from neuroendocrine cells that are distributed throughout the body and are predominant in the gastrointestinal tract. This report describes benign, well-differentiated gastric neuroendocrine tumors in three captive snow leopards (Panthera uncia). All tumors were well circumscribed, were within the gastric mucosa or submucosa, and had histologic and immunohistochemical features of neuroendocrine tumors. Histologic features included packeted cuboidal to columnar epithelial cells that were arranged in palisades or pseudorosettes and contained finely granular cellular cytoplasm with centrally placed, round nuclei. Cytoplasmic granules of neoplastic cells strongly expressed chromogranin A, variably expressed neuron-specific enolase, and did not express synaptophysin or gastrin. Each leopard died or was euthanatized for reasons unrelated to its tumor.

  18. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity.

    Science.gov (United States)

    Wang, Ping; Yang, Hai-Peng; Tian, Shujun; Wang, Liwei; Wang, Stephani C; Zhang, Fengmin; Wang, Yu-Feng

    2015-12-15

    Interactions between the nervous system and immune system have been studied extensively. However, the mechanisms underlying the neural regulation of immune activity, particularly the neuroendocrine regulation of immunologic functions, remain elusive. In this review, we provide a comprehensive examination of current evidence on interactions between the immune system and hypothalamic oxytocin-secreting system. We highlight the fact that oxytocin may have significant effects in the body, beyond its classical functions in lactation and parturition. Similar to the hypothalamo-pituitary-adrenal axis, the oxytocin-secreting system closely interacts with classical immune system, integrating both neurochemical and immunologic signals in the central nervous system and in turn affects immunologic defense, homeostasis, and surveillance. Lastly, this review explores therapeutic potentials of oxytocin in treating immunologic disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dynamics of neuroendocrine stress response: bistability, timing, and control of hypocortisolism

    Science.gov (United States)

    D'Orsogna, Maria; Chou, Tom; Kim, Lae

    The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in its activity are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. We characterize ``normal'' and ``diseased'' states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones, corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH), by circulating glucocorticoids such as cortisol (CORT). Our model includes ultradian oscillations, CRH self-upregulation of CRH release, and distinguishes two components of negative feedback by cortisol on circulating CRH levels: a slow direct suppression of CRH synthesis and a fast indirect effect on CRH release. The slow regulation mechanism mediates external stress-driven transitions between the stable states in novel, intensity, duration, and timing-dependent ways. We find that the timing of traumatic events may be an important factor in determining if and how the hallmarks of depressive disorders will manifest. Our model also suggests a mechanism whereby exposure therapy of stress disorders may act to normalize downstream dysregulation of the HPA axis.

  20. Widespread endocrine disruption and reproductive impairment in an estuarine fish population exposed to seasonal hypoxia.

    Science.gov (United States)

    Thomas, Peter; Rahman, Md Saydur; Khan, Izhar A; Kummer, James A

    2007-11-07

    The long-term effects on marine fish populations of the recent increase worldwide in the incidence of coastal hypoxia are unknown. Here we show that chronic environmental exposure of Atlantic croaker (Micropogonias undulatus) to hypoxia in a Florida estuary caused marked suppression of ovarian and testicular growth which was accompanied by endocrine disruption. Laboratory hypoxia studies showed that the endocrine disruption was associated with impairment of reproductive neuroendocrine function and decreases in hypothalamic serotonin (5-HT) content and the activity of the 5-HT biosynthetic enzyme, tryptophan hydroxylase. Pharmacological restoration of hypothalamic 5-HT levels also restored neuroendocrine function, indicating that the stimulatory serotonergic neuroendocrine pathway is a major site of hypoxia-induced inhibition. Inhibition of tryptophan hydroxylase activity to downregulate reproductive activity could have evolved as an adaptive mechanism to survive periodic hypoxia, but in view of the recent increased incidence of coastal hypoxia could become maladaptive and potentially affect fish population abundance and threaten valuable fishery resources.

  1. High grade neuroendocrine neoplasm of the antrum and orbit.

    Science.gov (United States)

    MacIntosh, Peter W; Jakobiec, Frederick A; Stagner, Anna M; Gilani, Sapideh; Fay, Aaron

    2015-01-01

    Neuroendocrine malignancies-tumors characterized by the production of dense-core secretory granules-are most often encountered in the lungs and can also be found in extrapulmonary sites. Our patient had a primary neuroendocrine tumor of the antrum with an elusive cell of origin that secondarily invaded the inferior orbit. In the sinuses, neuroendocrine tumors may be confused with infectious sinusitis or squamous cell carcinoma. There are no known pathognomonic clinical or radiographic signs to distinguish these tumors from other conditions. Diagnosis depends on a biopsy with histopathologic and immunohistochemical analysis to identify biomarkers such as synaptophysin, chromogranin, CD56 and neuron specific enolase. Our patient's tumor defied precise immunohistochemical characterization because of its primitive character and erratic biomarker expression. The diagnosis oscillated between a neuroendocrine carcinoma and an ectopic esthesioneuroblastoma grade IV-hence the use of the more generic nosologic category of neuroendocrine neoplasm without specifying a neuronal or epithelial origin. Data to guide management are limited, particularly in the ophthalmic literature, and derive from experience with tumors of the sinonasal compartments. In the present case of a sino-orbital high grade neuroendocrine neoplasm, regional lymph node metastases developed shortly after presentation. The tumor has responded well to chemotherapy and radiation, but recurrence is often encountered within 2 years in this class of neoplasms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Clocks underneath: the role of peripheral clocks in the timing of female reproductive physiology

    Directory of Open Access Journals (Sweden)

    Michael T Sellix

    2013-07-01

    Full Text Available The central circadian pacemaker in the suprachiasmatic nucleus (SCN is a critical component of the neuroendocrine circuit controlling gonadotropin secretion from the pituitary gland. The SCN conveys photic information to hypothalamic targets including the gonadotropin releasing hormone (GnRH neurons. Many of these target cells are also cell autonomous clocks. It has been suggested that, rather then being singularly driven by the SCN, the timing of gonadotropin secretion depends on the activity of multiple hypothalamic oscillators. While this view provides a novel twist to an old story, it does little to diminish the central role of rhythmic hypothalamic output in this system. It is now clear that the pituitary, ovary, uterus and oviduct have functional molecular clocks. Evidence supports the notion that the clocks in these tissues contribute to the timing of events in reproductive physiology. The goal of this review is to highlight the current evidence for molecular clock function in the peripheral components of the female hypothalamo-pituitary-gonadal (HPG axis as it relates to the timing of gonadotropin secretion, ovulation and parturition.

  3. Brain-gut-microbiota axis in Parkinson's disease.

    Science.gov (United States)

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  4. Hypothalamic pituitary adrenal axis and prolactin abnormalities in suicidal behavior.

    Science.gov (United States)

    Pompili, Maurizio; Serafini, Gianluca; Palermo, Mario; Seretti, Maria Elena; Stefani, Henry; Angeletti, Gloria; Lester, David; Amore, Mario; Girardi, Paolo

    2013-11-01

    Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity measured with the dexamethasone suppression test and the dexamethesone/CRH test may have some predictive power for suicidal behavior in patients with mood disorders. Increased prolactin (PRL) levels may be related both to physiological and pathological conditions. HPA-axis abnormalities and increased levels of PRL may coexist, and common neuroendocrine changes may activate both HPA axis and PRL release. HPA-axis hyperactivity is presumably present in a large subpopulation of depressed subjects. Suicidal behavior is considered to be a form of inward-directed aggression, and aggressive behavior has been connected to high androgen levels. However, lower plasma total testosterone levels have also been reported in subjects with depression and higher suicidality. Lipid/immune dysregulations, the increased ratio of blood fatty acids, and increased PRL levels may each be associated with the increased production of pro-inflammatory cytokines, which have been reported in patients with major depression and patients engaging in suicidal behavior. Although no studies have been done to determine whether ante-mortem physical stress may be detected by raised post-mortem PRL, this would be of great interest for physicians.

  5. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  6. Effect of a synthetic appeasing pheromone on behavioral, neuroendocrine, immune, and acute-phase perioperative stress responses in dogs.

    Science.gov (United States)

    Siracusa, Carlo; Manteca, Xavier; Cuenca, Rafaela; del Mar Alcalá, Maria; Alba, Aurora; Lavín, Santiago; Pastor, Josep

    2010-09-15

    To study the effects of a synthetic, dog-appeasing pheromone (sDAP) on the behavioral, neuroendocrine, immune, and acute-phase perioperative stress responses in dogs undergoing elective orchiectomy or ovariohysterectomy. Randomized, controlled clinical trial. 46 dogs housed in animal shelters and undergoing elective orchiectomy or ovariohysterectomy. Intensive care unit cages were sprayed with sDAP solution or sham treated with the carrier used in the solution 20 minutes prior to use. Dogs (n = 24 and 22 in the sDAP and sham treatment exposure groups, respectively) were placed in treated cages for 30 minutes before and after surgery. Indicators of stress (ie, alterations in behavioral, neuroendocrine, immune, and acute-phase responses) were evaluated perioperatively. Behavioral response variables, salivary cortisol concentration, WBC count, and serum concentrations of glucose, prolactin, haptoglobin, and C-reactive protein were analyzed. Behavioral response variables and serum prolactin concentration were influenced by sDAP exposure. Dogs exposed to sDAP were more likely to have alertness and visual exploration behaviors after surgery than were dogs exposed to sham treatment. Decreases in serum prolactin concentrations in response to perioperative stress were significantly smaller in dogs exposed to sDAP, compared with findings in dogs exposed to the sham treatment. Variables examined to evaluate the hypothalamic-pituitary-adrenal axis, immune system, and acute-phase responses were unaffected by treatment. sDAP appeared to affect behavioral and neuroendocrine perioperative stress responses by modification of lactotropic axis activity. Use of sDAP in a clinical setting may improve the recovery and welfare of dogs undergoing surgery.

  7. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen

    2016-01-01

    Anderson type III fractures with a characteristic fracture pattern that we refer to as "oblique type axis body fracture." Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic "oblique...... was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion...

  8. Neuroendocrine Carcinoma: Immunohistochemistry Department Of Cancer Institute 1996 - 2000

    Directory of Open Access Journals (Sweden)

    Yazdani F

    2003-07-01

    Full Text Available Dispersed neuroendocrine system (D.N.S consists of a wide variety of cells that are present in the central and peripheral nervous system and in many classic endocrine organs and different tissues such as respiratory and gastrointestinal tracts, skin, prostate, breast and also their neoplasm show neuroendocrine differentiation by electron microscopy, immunohistochemistry or biochemical techniques:"nMaterials and Methods: The present study has been carried out by case-series method in order to evaluating the characteristics of all types of neuroendocrine carcinoma: different anatomical locations during 5 years period in immunohistochemistry department of cancer institute."nResults: The diagnosis of 109 cases of neuroendocrine carcinoma consisting of neuroendocrine carcinoma, small cell carcinoma, medullary carcinoma of thyroid, carcinoid tumor and merkel cell carcinoma are confirmed that among them the most common diagnosis was related to neuroendocrine carcinoma (50.5 percent. The most prevalent age group was 40-49 years and male to female distribution were 56 percent and 44 percent respectively. Anatomical distribution of tumor show that about 30 percent of cases were metastatic carcinoma, 30 percent in thyroid, respiratory tract and head and neck region and remainder in a variety of tissues. In over 50 percent of cases one of endocrinoid patterns as trabecular, organoid or mixed of them were seen."nConclusion: Immunohistochemically N.S.E (Neuron Specific Enolase show high sensitivity with 96 percent positive reaction and more specific endocrine markers as chromogranin A in 80 percent and synaptophysin only in 24 percent because of lesser application of the latter. Also epithelial markers such as cytokeratin and E.M.A."n(Epithelial Membrane Antigen were positive in 69 percent and 74 percent respectively. Mean survival rate of all neuroendocrine carcinoma reached to 4.8 years with lowest survival of 4.3 years among small cell carcinoma and

  9. GnIH Control of Feeding and Reproductive Behaviors

    OpenAIRE

    Tsutsui, Kazuyoshi; Ubuka, Takayoshi

    2016-01-01

    In 2000, Tsutsui and colleagues discovered a neuropeptide gonadotropin-inhibitory hormone (GnIH) that inhibits gonadotropin release in birds. Subsequently, extensive studies during the last 15 years have demonstrated that GnIH is a key neurohormone that regulates reproduction in vertebrates, acting in the brain and on the pituitary to modulate reproduction and reproductive behavior. On the other hand, deprivation of food and other metabolic challenges inhibit the reproductive axis as well as ...

  10. Seasonal Time Measurement During Reproduction

    Science.gov (United States)

    IKEGAMI, Keisuke; YOSHIMURA, Takashi

    2013-01-01

    Abstract Most species living outside the tropical zone undergo physiological adaptations to seasonal environmental changes and changing day length (photoperiod); this phenomenon is called photoperiodism. It is well known that the circadian clock is involved in the regulation of photoperiodism such as seasonal reproduction, but the mechanism underlying circadian clock regulation of photoperiodism remains unclear. Recent molecular analysis have revealed that, in mammals and birds, the pars tuberalis (PT) of the pituitary gland acts as the relay point from light receptors, which receive information about the photoperiod, to the endocrine responses. Long-day (LD)-induced thyroid-stimulating hormone (TSH) in the PT acts as a master regulator of seasonal reproduction in the ependymal cells (ECs) within the mediobasal hypothalamus (MBH) and activates thyroid hormone (TH) by inducing the expression of type 2 deiodinase in both LD and short-day (SD) breeding animals. Furthermore, the circadian clock has been found to be localized in the PT and ECs as well as in the circadian pacemaker(s). This review purposes to summarize the current knowledge concerning the involvement of the neuroendocrine system and circadian clock in seasonal reproduction. PMID:23965600

  11. Reproductive emergencies.

    Science.gov (United States)

    Jutkowitz, L Ari

    2005-03-01

    The emergency clinician is frequently called on to manage problems relating to the female reproductive tract. Because owners sel-dom have the medical knowledge needed to differentiate normal from abnormal reproductive behaviors, they frequently look to the emergency veterinarian for guidance and information during and after parturition. For this reason, it is essential that the veterinarian have a good understanding of the normal reproductive cycle as well as the common emergencies that may occur. This article reviews the events surrounding normal parturition in the dog and cat and the reproductive emergencies seen most commonly in practice.

  12. The immunomodulatory role of the hypothalamus-pituitary-gonad axis

    NARCIS (Netherlands)

    Segner, Helmut; Kemenade, van Lidy; Chadzinska, Magdalena

    2017-01-01

    The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i)

  13. Disruption of Reproductive Aging in Female and Male Rats by Gestational Exposure to Estrogenic Endocrine Disruptors

    OpenAIRE

    Walker, Deena M.; Kermath, Bailey A.; Woller, Michael J.; Gore, Andrea C.

    2013-01-01

    Polychlorinated biphenyls (PCBs) are industrial contaminants and known endocrine-disrupting chemicals. Previous work has shown that gestational exposure to PCBs cause changes in reproductive neuroendocrine processes. Here we extended work farther down the life spectrum and tested the hypothesis that early life exposure to Aroclor 1221 (A1221), a mixture of primarily estrogenic PCBs, results in sexually dimorphic aging-associated alterations to reproductive parameters in rats, and gene express...

  14. Psychological and neuroendocrine reactivity to ostracism.

    Science.gov (United States)

    Zwolinski, Jennifer

    2012-01-01

    This study used the ostracism detection theory to investigate how ostracism impacts individuals in two ways: (1) immediate poststressor needs, mood, ruminative thoughts, and desire to affiliate, and (2) short-term affective and cortisol reactivity. A total of 58 college students were randomly assigned to the inclusion or ostracism conditions of Cyberball, a virtual ball-tossing game. Immediately following the experimental manipulation, ostracized participants reported more thwarted psychological need states, more negative mood, and fewer positive ruminative thoughts, relative to their included counterparts. Ostracized participants reported a greater interest in affiliating with others in online or in-person settings. In the short-term, ostracized males reported more hostility than included males, although the scores were within expected norms for most males. There was no relation between Cyberball condition and gender across time for depression, anxiety, or positive affect. Approximately 20 min after the onset of the stressor, women in the luteal phase and women taking oral contraceptives in the ostracized group displayed higher cortisol than their counterparts in the included group. Relative to baseline, however, cortisol did not reliably increase after the onset of the stressor. Ostracized females taking oral contraceptives showed the greatest decline in cortisol, compared to included oral contraceptive users. Overall, results suggest that most of the negative effects of ostracism are immediate and limited to psychological, not neuroendocrine, responses. © 2012 Wiley Periodicals, Inc.

  15. [Neuroendocrine factors in hypertension during pregnancy].

    Science.gov (United States)

    Diaconu, Minodora; Ghiciuc, Cristina-Mihaela; Tarţău, Liliana; Lupuşoru, Cătălina-Elena

    2011-01-01

    Pregnancy induced hypertension is a condition of high blood pressure during early and mid-pregnancy. This type of hypertension is much like the chronic type, but it occurs only when the woman is pregnant and resolves completely after delivery. to evaluate some stress hormones in both normotensive and hypertensive pregnant women. The study investigated the correlation between pregnancy induced hypertension and different immune/inflammatory and other markers. This exploratory investigation was performed on pregnant women diagnosed with pregnancy-induced hypertension, admitted to the lasi Cuza Voda Hospital. The psychometric assessment was performed by using the daily stress test, daily hassle scale, blood pressure measurements, and determination of anthropometrical parameters. Some parameters, such as the neuroendocrine and immune/inflammatory ones, and specific parameters for pregnancy hypertension were determined. Our study revealed that blood pressure values presented significant differences between systolic, but not diastolic blood pressure values (p < 0.05). In 75% of subjects blood cortisol levels were not changed. Daily stress level assessment proved that low potential factors and an annoying environment had a high influence on both normotensive and hypertensive pregnant women. Hypertensive women also presented leukocytosis and thrombocytopenia. The research results showed that plasma cortisol level was higher in hypertensive pregnant women, compared with normotensives.

  16. Primary Neuroendocrine Carcinoma of Ocular Adnexa

    Directory of Open Access Journals (Sweden)

    Daisuke Yamanouchi

    2013-01-01

    Full Text Available We present our findings in a case of primary neuroendocrine carcinoma (NEC of the lacrimal gland and a case of primary Merkel cell carcinoma (MCC of the eyelid. An 86-year-old man noticed a swelling of the left upper eyelid three months earlier. We performed excision biopsy and histopathological examination indicated that he had a primary NEC of the left lacrimal gland. He underwent chemotherapy followed by excision including the clinically visible margins and 50 Gy radiotherapy of the surgical margins. He had neither recurrence nor metastasis for 6 months since the last radiotherapy. An 80-year-old man noticed a nodule in the right upper eyelid and was referred to our hospital because the size was increasing rapidly. A complete surgical excision of the margins of the tumor was performed with histopathological confirmation of negative margins. The final diagnosis was a primary MCC of the right upper eyelid. After surgery, he underwent 50 Gy radiotherapy on the neck to prevent metastasis. No recurrence or metastasis was found for two years. Although primary NEC of the ocular adnexa is extremely rare, the tumor has high malignancy and readily metastasizes. Thus, combined therapy including surgery, radiotherapy, and/or chemotherapy is needed for complete management of NEC.

  17. Management of neuroendocrine tumors of unknown primary.

    Science.gov (United States)

    Alexandraki, Krystallenia; Angelousi, Anna; Boutzios, Georgios; Kyriakopoulos, Georgios; Rontogianni, Dimitra; Kaltsas, Gregory

    2017-12-04

    Neuroendocrine neoplams (NENs) are mostly relatively indolent malignancies but a significant number have metastatic disease at diagnosis mainly to the liver. Although in the majority of such cases the primary origin of the tumor can be identified, in approximately 11-22% no primary tumor is found and such cases are designated as NENs of unknown primary origin (UPO). This has significant therapeutic implications with respect to potentially resectable hepatic disease and/or application of appropriate medical therapy, either chemotherapeutic agents or targeted treatment, as the response to various treatments varies according to the origin of the primary tumor. This lack of tumor specific orientated treatment may also account for the relatively poorer prognosis of NENs of UPO compared to metastatic NENs with a known primary site. In the majority of cases the primary tumors are located in the small bowel and the lung, but a number may still elude detection. Occasionally the presence of a functional syndrome may direct to the specific tissue of origin but in the majority of cases a number of biochemical, imaging, histopathological and molecular modalities are utilized to help identify the primary origin of the tumor and direct treatment accordingly. Several diagnostic algorithms have recently been developed to help localize an occult primary tumor; however, in a number of cases no lesion is identified even after prolonged follow-up. It is expected that the delineation of the molecular signature of the different NENs may help identify such cases and provide appropriate treatment.

  18. Pancreatic neuroendocrine neoplasms; Neuroendokrine Neoplasien des Pankreas

    Energy Technology Data Exchange (ETDEWEB)

    Beiderwellen, K.; Lauenstein, T.C. [Universitaetsklinikum Essen, Institut fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie, Essen (Germany); Sabet, A.; Poeppel, T.D. [Universitaetsklinikum Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Lahner, H. [Universitaetsklinikum Essen, Klinik fuer Endokrinologie und Stoffwechselerkrankungen, Essen (Germany)

    2016-04-15

    Pancreatic neuroendocrine neoplasms (NEN) account for 1-2 % of all pancreatic neoplasms and represent a rare differential diagnosis. While some pancreatic NEN are hormonally active and exhibit endocrine activity associated with characteristic symptoms, the majority are hormonally inactive. Imaging techniques such as ultrasound, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) or as combined PET/CT play a crucial role in the initial diagnosis, therapy planning and control. Endoscopic ultrasound (EUS) and multiphase CT represent the reference methods for localization of the primary pancreatic tumor. Particularly in the evaluation of small liver lesions MRI is the method of choice. Somatostatin receptor scintigraphy and somatostatin receptor PET/CT are of particular value for whole body staging and special aspects of further therapy planning. (orig.) [German] Neuroendokrine Neoplasien (NEN) des Pankreas stellen mit einem Anteil von 1-2 % aller pankreatischen Tumoren eine seltene Differenzialdiagnose dar. Ein Teil der Tumoren ist hormonell aktiv und faellt klinisch durch charakteristische Symptome auf, wohingegen der ueberwiegende Anteil hormonell inaktiv ist. Bildgebende Verfahren wie Sonographie, Computertomographie (CT), Magnetresonanztomographie (MRT) und nicht zuletzt Positronenemissionstomographie (PET oder kombiniert als PET/CT) spielen eine zentrale Rolle fuer Erstdiagnose, Therapieplanung und -kontrolle. Die Endosonographie und die multiphasische CT stellen die Referenzmethoden zur Lokalisation des Primaertumors dar. Fuer die Differenzierung insbesondere kleiner Leberlaesionen bietet die MRT die hoechste Aussagekraft. Fuer das Ganzkoerperstaging und bestimmte Aspekte der Therapieplanung lassen sich die Somatostatinrezeptorszintigraphie und v. a. die Somatostatinrezeptor-PET/CT heranziehen. (orig.)

  19. Relation among HPA and HPG neuroendocrine systems, transmissible risk and neighborhood quality on development of substance use disorder: results of a 10-year prospective study.

    Science.gov (United States)

    Tarter, Ralph E; Kirisci, Levent; Kirillova, Galina; Reynolds, Maureen; Gavaler, Judy; Ridenour, Ty; Horner, Michelle; Clark, Duncan; Vanyukov, Michael

    2013-01-01

    Research has shown involvement of hormones of the hypothalamic pituitary adrenal (HPA) axis and hypothalamic pituitary gonadal (HPG) axis in the regulation of behaviors that contribute to SUD risk and its intergenerational transmission. Neighborhood environment has also been shown to relate to hormones of these two neuroendocrine systems and behaviors associated with SUD liability. Accordingly, it was hypothesized that (1) parental SUD severity and neighborhood quality correlate with activity of the HPG axis (testosterone level) and HPA axis (cortisol stability), and (2) transmissible risk during childhood mediates these hormone variables on development of SUD measured in adulthood. Transmissible risk for SUD measured by the transmissible liability index (TLI; Vanyukov et al., 2009) along with saliva cortisol and plasma testosterone were prospectively measured in boys at ages 10-12 and 16. Neighborhood quality was measured using a composite score encompassing indicators of residential instability and economic disadvantage. SUD was assessed at age 22. Neither hormone variable cross-sectionally correlated with transmissible risk measured at ages 10-12 and 16. However, the TLI at age 10-12 predicted testosterone level and cortisol stability at age 16. Moreover, testosterone level, correlated with cortisol stability at age 16, predicted SUD at age 22. HPA and HPG axes activity do not underlie variation in TLI, however, high transmissible risk in childhood predicts neuroendocrine system activity presaging development of SUD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Relation Among HPA and HPG Neuroendocrine Systems, Transmissible Risk and Neighborhood Quality on Development of Substance Use Disorder: Results of a 10-year Prospective Study*

    Science.gov (United States)

    Tarter, Ralph E.; Kirisci, Levent; Kirillova, Galina; Reynolds, Maureen; Gavaler, Judy; Ridenour, Ty; Horner, Michelle; Clark, Duncan; Vanyukov, Michael

    2014-01-01

    Background Research has shown involvement of hormones of the hypothalamic pituitary adrenal (HPA) axis and hypothalamic pituitary gonadal (HPG) axis in the regulation of behaviors that also contribute to SUD risk and its intergenerational transmission. Neighborhood environment has also been shown to relate to hormones of these two neuroendocrine systems and behaviors associated with SUD liability. Accordingly, it was hypothesized that 1) parental SUD severity and neighborhood quality correlate with activity of the HPG axis (testosterone level) and HPA axis (cortisol stability), and 2) transmissible risk during childhood mediates these hormone variables on development of SUD measured in adulthood. Method Transmissible risk for SUD measured by the Transmissible Liability Index (TLI; Vanyukov et al., 2009) along with saliva cortisol and plasma testosterone were prospectively measured in boys at ages 10-12 and 16. Neighborhood quality was measured using a composite score encompassing indicators of residential instability and economic disadvantage. SUD was assessed at age 22. Results Neither hormone variable cross-sectionally correlated with transmissible risk measured at ages 10-12 and 16. However, the TLI at age 10-12 predicted testosterone level and cortisol stability at age 16. Moreover, testosterone level, correlated with cortisol stability at age 16, predicted SUD at age 22. Conclusion HPA and HPG axes activity do not underlie variation in TLI, however, high transmissible risk in childhood predicts neuroendocrine system activity presaging development of SUD. PMID:22867990

  1. Immunohistochemical evidence for an endocrine/paracrine role for ghrelin in the reproductive tissues of sheep

    Directory of Open Access Journals (Sweden)

    Brown Yvonne A

    2005-10-01

    Full Text Available Abstract Background The gut hormone, ghrelin, is involved in the neuroendocrine and metabolic responses to hunger. In monogastric species, circulating ghrelin levels show clear meal-related and body weight-related changes. The pattern of secretion and its role in ruminant species is less clear. Ghrelin acts via growth hormone secretagogue receptors (GHSR-1a to alter food intake, fat utilization, and cellular proliferation. There is also evidence that ghrelin is involved in reproductive function. In the present study we used immunohistochemistry to investigate the presence of ghrelin and GHSR-1a in sheep reproductive tissues. In addition, we examined whether ghrelin and GHSR-1a protein expression is developmentally regulated in the adult and fetal ovine testis, and whether there is an association with markers of cellular proliferation, i.e. stem cell factor (SCF and proliferating cell nuclear antigen (PCNA. Methods Antibodies raised against ghrelin and its functional receptor, GHSR-type 1a, were used in standard immunohistochemical protocols on various reproductive tissues collected from adult and fetal sheep. GHSR-1a mRNA presence was also confirmed by in situ hybridisation. SCF and PCNA immunoexpression was investigated in fetal testicular samples. Adult and fetal testicular immunostaining for ghrelin, GHSR-1a, SCF and PCNA was analysed using computer-aided image analysis. Image analysis data were subjected to one-way ANOVA, with differences in immunostaining between time-points determined by Fisher's least significant difference. Results In adult sheep tissue, ghrelin and GHSR-1a immunostaining was detected in the stomach (abomasum, anterior pituitary gland, testis, ovary, and hypothalamic and hindbrain regions of the brain. In the adult testis, there was a significant effect of season (photoperiod on the level of immunostaining for ghrelin (p Conclusion Evidence is presented for the presence of ghrelin and its receptor in various reproductive

  2. Skin under the (Spot)-Light: Cross-Talk with the Central Hypothalamic-Pituitary-Adrenal (HPA) Axis.

    Science.gov (United States)

    Jozic, Ivan; Stojadinovic, Olivera; Kirsner, Robert S F; Tomic-Canic, Marjana

    2015-06-01

    UV radiation is among the most prevalent stressors in humans and diurnal rodents, exerting direct and indirect DNA damage, free-radical production, and interaction with specific chromophores that affects numerous biological processes. In addition to its panoply of effects, UVB (290-320 nm) radiation can specifically affect various local neuroendocrine activities by stimulating the expression of corticotropin-releasing hormone (CRH), urocortin, proopiomelanocortin (POMC), and POMC-derived peptides. Although very little is known about the interplay between the central hypothalamic-pituitary-adrenal (HPA) axis and the skin HPA axis analog, in the current issue Skobowiat and Slominski propose a novel mechanism by which exposure to UVB activates a local HPA axis in skin, which in turn activates the central HPA axis, with the requirement of a functional pituitary gland. This is the first evidence of the local HPA axis in skin contributing to the central neuroendocrine response. This raises intriguing possibilities regarding how local production of cortisol and other HPA axis molecules in skin influence overall systemic levels of cortisol and help regulate local and central HPA axes in the context of homeostasis, skin injury, and inflammatory skin disorders.

  3. Concomitant Small Cell Neuroendocrine Carcinoma of Gallbladder and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paolo Aiello

    2014-01-01

    Full Text Available The neuroendocrine carcinoma is defined as a high-grade malignant neuroendocrine neoplasm arising from enterochromaffin cells, usually disposed in the mucosa of gastric and respiratory tracts. The localization in the gallbladder is rare. Knowledge of these gallbladder tumors is limited and based on isolated case reports. We describe a case of an incidental finding of small cell neuroendocrine carcinoma of the gallbladder, observed after cholecystectomy for cholelithiasis, in a 55-year-old female, who already underwent quadrantectomy and sentinel lymph-node biopsy for breast cancer. The patient underwent radiotherapy for breast cancer and six cycles of chemotherapy with cisplatin and etoposide. Eighteen months after surgery, the patient was free from disease. Small cell neuroendocrine carcinoma of the gallbladder has poor prognosis. Because of the rarity of the reported cases, specific prognostic factors have not been identified. The coexistence of small cell neuroendocrine carcinoma of the gallbladder with another malignancy has been reported only once. The contemporary presence of the two neoplasms could reflect that bioactive agents secreted by carcinoid can promote phenotypic changes in susceptible cells and induce neoplastic transformation.

  4. SPECTRUM OF NEUROENDOCRINE TUMOURS- A TERTIARY CARE CENTRE EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Pasupuleti Prathima

    2016-11-01

    Full Text Available BACKGROUND Neuroendocrine tumours occur at various sites in the human body. They are considered as one of the close differentials for many tumours. Various benign and malignant tumours undergo neuroendocrine differentiation. Its incidence is slightly increasing due to advanced imaging modalities. Although rare, they can be seen in breast, gallbladder and skin. The aim of the study is to study the spectrum of neuroendocrine tumours from various sites, their clinical presentation, histomorphological features with immunohistochemistry and review of literature. MATERIALS AND METHODS This is a retrospective study for a period of 3 years (June 2013-June 2016. Surgical resection specimens were included in the study. Out of the total specimens received, 24 cases were of neuroendocrine tumours. Differential diagnosis of small round cell tumours also was considered and a panel of immunohistochemical markers were included to rule out them. Biopsy specimens were excluded from the study. RESULTS Out of the 24 cases, 18 cases were benign lesions. 6 cases were malignant lesions. Female preponderance was noted. Peak incidence was seen in 20-30 years of age group. CONCLUSION Neuroendocrine tumours can occur anywhere in the body and it should be considered in one of the differential diagnosis. Diagnosis must be accurately made.

  5. Large-cell Neuroendocrine Carcinoma of the Lung: Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Serra Valdés

    2014-11-01

    Full Text Available Lung cancer is the leading cause of death among malignant tumors. Pulmonary neuroendocrine tumors encompass a broad spectrum of tumors including the large-cell neuroendocrine carcinoma. The case of a 57-year-old white housewife with a history of smoking, diabetes, hypothyroidism and hypertension who sought medical attention because of headache, vomiting, weight loss, neuropsychiatric symptoms and metastatic inguinal lymphadenopathy is presented. The symptoms resulted from the extrapulmonary metastases found. Imaging studies, histology and immunohistochemistry confirmed the diagnosis of large-cell carcinoma of the lung with neuroendocrine pattern. This type of highly aggressive tumor is usually diagnosed when there are already multiple metastases, which affects the short-term prognosis. The aim of this paper is to inform the medical community of this case due to the scarce reports in the literature.

  6. [Role of somatostatin analogs in the treatment of neuroendocrine tumours].

    Science.gov (United States)

    Cuccurullo, V; Cascini, G L; Rambaldi, P F; Mansi, L

    2001-09-01

    Current therapeutic approaches in neuroendocrine tumours include surgery, radiotherapy and polychemotherapy. Different metabolic patterns of neuroendocrine tumours allow the use of a wide range of diagnostic options in nuclear medicine, due to the presence of a wide spectrum of radiotracers electively concentrating in these neoplasms. Nuclear medicine, and in particular 111In Octreotide (OCT) scintigraphy, 123I Methaiodobenzylguanidine (MIBG) and pentavalent 99mTc-DMSA (V-DMSA), together with biohumoral markers, are currently able to locate tumours also not detectable using traditional diagnostic techniques. Somatostatin analogs, such as octreotide have become increasingly important over the years in the treatment of patients with neuroendocrine tumours. At present the therapeutic use of somatostatin analogs can be schematised as 1) pharmacological treatment (with cold octreotide); 2) surgical treatment (radioguided surgery); 3) radiometabolic treatment (with marked octreotide). The development of new synthetic molecules and new radiocompounds will probably open up interesting scenarios in the near future.

  7. Immune-Neuroendocrine Interactions: Evolution, Ecology, and Susceptibility to Illness.

    Science.gov (United States)

    Blom, Johanna M C; Ottaviani, Enzo

    2017-11-16

    The integration between immune and neuroendocrine systems is crucial for maintaining homeostasis from invertebrates to humans. In the first, the phagocytic cell, i.e., the immunocyte, is the main actor, while in the latter, the principle player is the lymphocyte. Immunocytes are characterized by the presence of pro-opiomelanocortin (POMC) peptides, CRH, and other molecules that display a significant similarity to their mammalian counterparts regarding their functions, as both are mainly involved in fundamental functions such as immune (chemotaxis, phagocytosis, cytotoxicity, etc.) and neuroendocrine (stress) responses. Furthermore, the immune-neuroendocrine system provides vital answers to ecological and immunological demands in terms of economy and efficiency. Finally, susceptibility to disease emerges as the result of a continuous dynamic interaction between the world within and the world outside. New fields such as ecological immunology study the susceptibility to pathogens in an evolutionary perspective while the field of neuro-endocrine-immunology studies the susceptibility from a more immediate perspective.

  8. HER2-Positive Neuroendocrine Breast Cancer: Case Report and Review of Literature.

    Science.gov (United States)

    Gevorgyan, Arpine; Bregni, Giacomo; Galli, Giulia; Zanardi, Elisa; de Braud, Filippo; Di Cosimo, Serena

    2016-12-01

    Neuroendocrine carcinoma is an uncommon histology for breast cancer. Our patient underwent right quadrantectomy for a neuroendocrine carcinoma in 1984 and had a bone relapse 30 years later. After thorough pathological and immunohistochemical analysis the diagnosis was confirmed and HER2 amplification was observed. Here we discuss the management, rationale and results of HER2-targeted therapy in advanced neuroendocrine breast carcinoma.

  9. Pancreas Bone Testis Axis

    Directory of Open Access Journals (Sweden)

    Gulfidan Coskun

    2015-09-01

    Full Text Available Bone which has movement and support functions, is the largest organ of the body. Bone is regulated by hormonal signal but it also acts as an endocrine organ. Many peptide hormones such as osteocalcin are secreted from bone. Osteocalcin which is an osteoblast derived hormone, has two forms: and ldquo;carboxylated (inactive osteocalcin and decarboxylated (active osteocalcin and rdquo;. While inactive osteocalcin is found in bone matrix, active osteocalcin is given to blood circulation and acts as a multifunctional hormone. In the past ten years, numerous epidemiological, genetic and biochemical studies have revealed hormonal links between bone and pancreas, adipose tissue, gonads via active osteocalcin. In this review, a newly defined pathway called pancreas-bone-testis axis which stimulates testosterone synthesis independent of hypothalamic hypophyseal testicular axis, is discussed. [Archives Medical Review Journal 2015; 24(3.000: 355-367

  10. Reproductive Health and Reproductive Vulnerability

    Directory of Open Access Journals (Sweden)

    Bojan Žikić

    2016-03-01

    Full Text Available Reproductive health represents, almost to an equal extent, a socio-cultural and a medical fact. What influences it, both positively and negatively, stems from the ways in which we culturally cognize and act with regard to reproductive behavior. These thoughts and actions are conditioned by a culturally contextualized conceptualization of human physiology which is, in turn, based on the conceptualization of sexuality, and especially, the normativization of gender roles. Therefore, reproductive health is, above all, female health, when viewed as a socio-cultural category, meaning that reproductive vulnerability mostly refers to those factors that negatively influence female reproductive health. These factors are social – they negatively influence reproductive health through the institutional and legally normative aspects, they are economic – they decrease the number of those who, in a certain socio-cultural context, have timely access to quality medical care, and they are cultural – they reinforce modes of thinking and behavior which do not take into consideration the right of every human being to his or her own sexual and reproductive life, but rather insist on conforming individual sexuality and reproductive desires and capacities to the dominant cultural norm.

  11. Post-traumatic intrahepatic splenosis mimicking a neuroendocrine tumour.

    Science.gov (United States)

    Leong, Chee Weng; Menon, Tulsi; Rao, Sudhakar

    2013-03-06

    A 52-year-old man presented with abdominal pain with a background of splenectomy 25 years previously. Initial investigations lead to suspicion of a neuroendocrine tumour. Positron emission tomography octreotide scanning and chromogranin were raised. He subsequently underwent a lateral segmentectomy. The histopathology was consistent with splenosis. 1. Splenosis must be considered as differential in any patient with abdominal symptoms post-traumatic splenectomy. 2. Positron emission tomography (PET) octreotide scanning can detect splenosis giving false positives for a neuroendocrine tumour. This is the first case to describe such an association.

  12. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    Science.gov (United States)

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  13. Metastatic breast cancer presenting as a primary hindgut neuroendocrine tumour.

    Science.gov (United States)

    Okines, Alicia F C; Hawkes, Eliza A; Rao, Sheela; VAN As, Nicholas; Marsh, Henry; Riddell, Angela; Wilson, Philip O G; Osin, Peter; Wotherspoon, Andrew C; Wetherspoon, Andrew C

    2010-07-01

    The examination of limited, potentially non-representative fragments of tumour tissue from a core biopsy can be misleading and misdirect subsequent treatment, especially in cases where a primary tumour has not been identified. This case report is of a 65-year-old woman presenting with a destructive sacral mass, diagnosed on radiological imaging and core biopsy as a hindgut neuroendocrine tumour, which on histopathological review of the subsequently resected tumour was found instead to represent a metastasis from an occult hormone-positive breast cancer with neuroendocrine features.

  14. (Revised The role of melatonin as a hormone and an antioxidant in the control of fish reproduction

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2016-05-01

    Full Text Available Reproduction in most fish is seasonal or periodic and the spawning occurs in an appropriate season to ensure maximum survival of the offspring. The sequence of reproductive events in an annual cycle is largely under the control of a species-specific endogenous timing system, which essentially relies on a well-equipped physiological response mechanism to changing environmental cues. The duration of solar light or photoperiod is one of the most predictable environmental signals used by a large number of animals including fish to coordinate their seasonal breeding. In vertebrates, the pineal gland is the major photo-neuroendocrine part of the brain that rhythmically synthesizes and releases melatonin (N-acetyl-5-methoxytryptamine into the circulation in synchronization with the environmental light-dark cycle. Past few decades witnessed an enormous progress in understanding the mechanisms by which melatonin regulates seasonal reproduction in fish and in other vertebrates. Most studies emphasized hormonal actions of melatonin through its high-affinity, pertussis toxin-sensitive G-protein (guanine nucleotide binding protein coupled receptors on the hypothalamus-pituitary-gonad (HPG axis of fish. However, the discovery that melatonin due to its lipophilic nature can easily cross the plasma membrane of all cells and may act as a potent scavenger of free radicals and stimulant of different antioxidants added a new dimension to the idea explaining mechanisms of melatonin actions in the regulation of ovarian functions. The basic concept on the actions of melatonin as an antioxidant emerged from mammalian studies. Recently, however, some new studies clearly suggested that melatonin, apart from playing the role of a hormone, may also be associated with the reduction in oxidative stress to augment ovarian functions during spawning. This review thus aims to bring together the current knowledge on the role of melatonin as a hormone as well as an antioxidant in

  15. Unusual apocrine carcinoma with neuroendocrine differentiation: a cutaneous neoplasm may be analogous to neuroendocrine carcinoma with apocrine differentiation of breast.

    Science.gov (United States)

    Li, Yang; Chen, Li-li; Li, Bin; Tian, Xiao-ying; Li, Zhi

    2015-06-10

    Cutaneous apocrine carcinoma (AC) is a rare adnexal neoplasm that histologically can mimic breast carcinoma metastatic to the skin or apocrine carcinoma arising in ectopic breast tissue. As extremely rare condition, neuroendocrine differentiation may be observed in AC although its etiology and pathogenesis is still unclear. We report here a case of unusual AC with neuroendocrine differentiation in right labium majus pudenda. A 43-year-old woman presented with a 6-month history of an asymptomatic pea-sized brownish nodule in right labium majus pudenda without enlargement of inguinal lymph nodes and bilateral breast nodules. The mass was totally resected. Microscopically, the tumor was solitary and located in the deep dermis without epidermal connection. Tumor cells were arranged in a micronodular or formed massive solid nests separated by densely fibroblastic stroma. Scattered glandular or rosette-like structures were identified within the tumor nodules. Immunohistochemically, the tumor cells were diffusely positive to CK7, CEA, GCDFP-15, synaptophysin, estrogen and progesterone receptors. Part of tumor cells expressed androgen receptor, but they were negative to CK20, CK5/6, p63 and S-100. Because of its rarity and histogenesis complexity, there exist diagnostic challenges for pathologists to differentiate cutaneous AC with neuroendocrine differentiation from other carcinomas with apocrine or neuroendocrine features. Our case demonstrates that the tumor shares some features with mammary carcinoma and might originate from mammary-like sweat gland in anogenital region. The results suggest that, for the first time, primary cutaneous AC with neuroendocrine differentiation may be analogous to the mammary neuroendocrine carcinoma with apocrine differentiation in histological feature and biological behavior. Virtual Slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7732276716685708.

  16. Food cues do not modulate the neuroendocrine response to a prolonged fast in healthy men.

    Science.gov (United States)

    Snel, Marieke; Wijngaarden, Marjolein A; Bizino, Maurice B; van der Grond, Jeroen; Teeuwisse, Wouter M; van Buchem, Mark A; Jazet, Ingrid M; Pijl, Hanno

    2012-01-01

    Dietary restriction benefits health and increases lifespan in several species. Food odorants restrain the beneficial effects of dietary restriction in Drosophila melanogaster. We hypothesized that the presence of visual and odorous food stimuli during a prolonged fast modifies the neuroendocrine and metabolic response to fasting in humans. In this randomized, crossover intervention study, healthy young men (n = 12) fasted twice for 60 h; once in the presence and once in the absence of food-related visual and odorous stimuli. At baseline and on the last morning of each intervention, an oral glucose tolerance test (OGTT) was performed. During the OGTT, blood was sampled and a functional MRI scan was made. The main effects of prolonged fasting were: (1) decreased plasma thyroid stimulating hormone and triiodothyronine levels; (2) downregulation of the pituitary-gonadal axis; (3) reduced plasma glucose and insulin concentrations, but increased glucose and insulin responses to glucose ingestion; (4) altered hypothalamic blood oxygenation level-dependent (BOLD) signal in response to the glucose load (particularly during the first 20 min after ingestion); (5) increased resting energy expenditure. Exposure to food cues did not affect these parameters. This study shows that 60 h of fasting in young men (1) decreases the hypothalamic BOLD signal in response to glucose ingestion; (2) induces glucose intolerance; (3) increases resting energy expenditure, and (4) downregulates the pituitary-thyroid and pituitary-gonadal axes. Exposure to visual and odorous food cues did not alter these metabolic and neuroendocrine adaptations to nutrient deprivation. Copyright © 2012 S. Karger AG, Basel.

  17. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling.

    Science.gov (United States)

    O'Neill, Casey E; Newsom, Ryan J; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C; Spencer, Robert L; Campeau, Serge; Bachtell, Ryan K

    2016-05-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased

  18. Adipose tissue and reproductive health.

    Science.gov (United States)

    Mathew, Hannah; Castracane, V Daniel; Mantzoros, Christos

    2017-11-16

    The understanding of adipose tissue role has evolved from that of a depot energy storage organ to a dynamic endocrine organ. While genetics, sexual phenotype and sex steroids can impact the mass and distribution of adipose tissue, there is a counter-influence of white adipocytes on reproduction. This primarily occurs via the secretion of adipokines, the most studied of which- leptin and adiponectin- are highlighted in this article. Leptin, the "satiety hormone" primarily acts on the hypothalamus via pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and agouti-related peptide (AgRP) neurons to translate acute changes in nutrition and energy expenditure, as well as chronic adipose accumulation into changes in appetite and potentially mediate insulin resistance via shared pathway and notably impacting reproductive health via influence on GnRH secreting neurons. Meanwhile, adiponectin is notable for its action in mediating insulin sensitivity, with receptors found at every level of the reproductive axis. Both have been examined in the context of physiologic and pathologic reproductive conditions. Leptin has been shown to influence puberty, pregnancy, hypothalamic amenorrhea, and lipodystrophy, and with a potential therapeutic role for both metabolic and reproductive health. Adiponectin mediates the relative state of insulin resistance in pregnancy, and has been implicated in conditions such as polycystic ovary syndrome and reproductive malignancies. There are numerous other adipokines, including resistin, visfatin, chemerin and retinol binding protein-4, which may also play roles in reproductive health and disease states. The continued examination of these and other adipokines in both normal reproduction and reproductive pathologies represents an important avenue for continued study. Here, we seek to provide a broad, yet comprehensive overview of many facets of these relationships and highlight areas of consideration for clinicians and future study. Copyright © 2017

  19. Kisspeptin and energy balance in reproduction.

    Science.gov (United States)

    De Bond, Julie-Ann P; Smith, Jeremy T

    2014-03-01

    Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.

  20. Activation of Progestin Receptors in Female Reproductive Behavior: Interactions with Neurotransmitters

    Science.gov (United States)

    Mani, Shaila; Portillo, Wendy

    2010-01-01

    The steroid hormone, progesterone (P), modulates neuroendocrine functions in the central nervous system resulting in alterations in physiology and reproductive behavior in female mammals. A wide body of evidence indicates that these neural effects of P are predominantly mediated via their intracellular progestin receptors (PRs) functioning as “ligand-dependent” transcription factors in the steroid-sensitive neurons regulating genes and genomic networks. In addition to P, intracellular PRs can be activated by neurotransmitters, growth factors and cyclic nucleotides in a ligand-independent manner via crosstalk and convergence of pathways. Furthermore, recent studies indicate that rapid signaling events associated with membrane PRs and/or extra-nuclear, cytoplasmic PRs converge with classical PR activated pathways in neuroendocrine regulation of female reproductive behavior. The molecular mechanisms, by which multiple signaling pathways converge on PRs to modulate PR-dependent female reproductive behavior, are discussed in this review. PMID:20116396

  1. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  2. Primary neuroendocrine carcinoma of the breast: report of 2 cases and literature review

    Directory of Open Access Journals (Sweden)

    Fernando Collado-Mesa, MD

    2017-03-01

    Full Text Available Neuroendocrine tumors of the breast are very rare accounting for less than 0.1% of all breast cancers and less than 1% of all neuroendocrine tumors. Focal neuroendocrine differentiation can be found in different histologic types of breast carcinoma including in situ and invasive ductal or invasive lobular. However, primary neuroendocrine carcinoma of the breast requires the expression of neuroendocrine markers in more than 50% of the cell population, the presence of ductal carcinoma in situ, and the absence of clinical evidence of concurrent primary neuroendocrine carcinoma of any other organ. Reports discussing the imaging characteristics of this rare carcinoma in different breast imaging modalities are scarce. We present 2 cases of primary neuroendocrine carcinoma of the breast for which mammography, ultrasound, and magnetic resonance imaging findings and pathology findings are described. A review of the medical literature on this particular topic was performed, and the results are presented.

  3. Genetic analysis of an orbital metastasis from a primary hepatic neuroendocrine carcinoma

    DEFF Research Database (Denmark)

    Rasmussen, Jacob Ø; von Holstein, Sarah L; Prause, Jan U

    2014-01-01

    hepatic neuroendocrine carcinoma. Primary hepatic neuroendocrine tumours are extremely rare, and the orbit is an extremely rare location for a neuroendocrine carcinoma metastasis. This is the first reported case of an orbital metastasis with origin from a primary hepatic neuroendocrine carcinoma.......A 71-year-old female with a known history of primary hepatic neuroendocrine carcinoma, presented with a visual defect, proptosis and restricted eye movements of the right eye. Biopsies from the orbit and from the primary hepatic neuroendocrine carcinoma showed similar morphological...... and immunohistochemical features, and high-resolution, array-based comparative genomic hybridization demonstrated loss of one copy each of chromosomes 3 and 18, and gain of 1q both in the primary hepatic neuroendocrine carcinoma and in the orbital tumour. The orbital mass was diagnosed as a metastasis from the primary...

  4. Heritability of reproductive hormones in adult male twins

    NARCIS (Netherlands)

    Kuijper, E.A.M.; Lambalk, C.B.; Boomsma, D.I.; van der Sluis, S.; Blankenstein, M.A.; de Geus, E.J.C.; Posthuma, D.

    2007-01-01

    Background: Proper functioning of the male reproductive axis depends on complex feedback systems between several hormones. In this study, the genetic contribution of various endocrine components of the hypothalamic-pituitary-testicular axis is evaluated and previously observed differences in FSH and

  5. Neuroendocrine differentiation in a case of cervical cancer | Rashed ...

    African Journals Online (AJOL)

    tumor; that further showed neuroendocrine differentiation, as demonstrated by chromogranin-A positivity. It is important to differentiate small cell carcinoma from other malignant tumors of the uterine cervix. Morphological features play an important role in making a diagnosis and the immunohistochemistry study can offer an ...

  6. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  7. Large-cell neuroendocrine carcinoma of the uterine cervix- a ...

    African Journals Online (AJOL)

    Objective. The present study describes 5 cases of large-cell neuroendocrine carcinoma (LCNEC) of the uterine cervix, evaluating their clinical features and pathological profiles. Methods. Clinical data were obtained from the patients' clinical files at the combined gynaecological-oncology unit of Johannesburg Hospital and ...

  8. Everolimus Effect on Gastrin and Glucagon in Pancreatic Neuroendocrine Tumors

    NARCIS (Netherlands)

    Pavel, Marianne E.; Chen, David; He, Wei; Cushman, Stephanie; Voi, Maurizio; de Vries, Elisabeth G. E.; Baudin, Eric; Yao, James C.

    Objectives: The pharmacodynamic effects of everolimus on gastrointestinal hormone levels have not been described in patients with pancreatic neuroendocrine tumors (pNETs). We report the effects of everolimus on gastrin and glucagon levels in patients with progressive pNETin RADIANT-1 (a single-arm

  9. Towards a unified model of neuroendocrine-immune interaction.

    Science.gov (United States)

    Petrovsky, N

    2001-08-01

    Although the neuroendocrine system has immunomodulating potential, studies examining the relationship between stress, immunity and infection have, until recently, largely been the preserve of behavioural psychologists. Over the last decade, however, immunologists have begun to increasingly appreciate that neuroendocrine-immune interactions hold the key to understanding the complex behaviour of the immune system in vivo. The nervous, endocrine and immune systems communicate bidirectionally via shared messenger molecules variously called neurotransmitters, cytokines or hormones. Their classification as neurotransmitters, cytokines or hormones is more serendipity than a true reflection of their sphere of influence. Rather than these systems being discrete entities we would propose that they constitute, in reality, a single higher-order entity. This paper reviews current knowledge of neuroendocrine-immune interaction and uses the example of T-cell subset differentiation to show the previously under-appreciated importance of neuroendocrine influences in the regulation of immune function and, in particular, Th1/Th2 balance and diurnal variation there of.

  10. Surgical Treatment of an Isolated Metastatic Myocardial Neuroendocrine Tumor.

    Science.gov (United States)

    Caldeira, Christiano C B; Sayad, Dany; Strosberg, Jonathan; Faber, Cristiano; Saouma, Samer; Michaud, Tabitha

    2016-02-01

    We describe a patient diagnosed with a neuroendocrine tumor of the small intestine metastatic to the heart who underwent successful cardiac metastasectomy. The tumor was located on the right ventricle free wall, obstructing the right ventricular outflow tract. There was no valvular involvement. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Is human papillomavirus involved in laryngeal neuroendocrine carcinoma?

    NARCIS (Netherlands)

    Halmos, Gyorgy B; van der Laan, Tom P; van Hemel, Bettien M; Dikkers, Frederik G; Slagter-Menkema, Lorian; van der Laan, Bernard F A M; Schuuring, Ed

    The purpose of this study was to detect human papillomavirus (HPV) infection in laryngeal neuroendocrine carcinoma (LNEC) and to explore the possible relationship between HPV-induced malignant transformation and prognosis in LNEC. Ten cases of LNEC from a tertiary referral hospital were

  12. Neuroendocrine Tumour in a Patient with Neurofibromatosis Type 1 ...

    African Journals Online (AJOL)

    We report the case of an HIV-positive female patient with neurofibromatosis type 1 who was treated for recurrent peptic ulcer disease and later developed diabetes mellitus and chronic diarrhoea. A metastasising somatostatinoma was histologically proven and evidence of a concomitant gastrin-producing neuroendocrine ...

  13. Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Hyoung Jung; Kim, Kyung Won; Byun, Jae Ho [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Song, Ki Byung [University of Ulsan College of Medicine, Department of Surgery, Asan Medical Center, Seoul (Korea, Republic of); Kim, Ji Hoon; Hong, Seung-Mo [University of Ulsan College of Medicine, Department of Pathology, Asan Medical Center, Seoul (Korea, Republic of)

    2015-05-01

    To identify the CT features in differentiating grade 3 neuroendocrine carcinomas from grade 1/2 neuroendocrine tumours. This study included 161 patients with surgically confirmed pancreatic neuroendocrine neoplasms. Pathology slides were reviewed to determine the tumour grade. CT image analysis included size, pattern, calcification, margin, pancreatic duct dilatation, bile duct dilatation, vascular invasion, arterial enhancement ratio, and portal enhancement ratio. We used 2 cm, 3 cm, and 4 cm as cutoff values of tumour size and 0.9 and 1.1 of enhancement ratio to determine the sensitivity and specificity. Pathology analysis identified 167 lesions in 161 patients. 154 lesions (92 %) were grade 1/2 and 13 (8 %) were grade 3. Portal enhancement ratio (< 1.1) showed high sensitivity and specificity 92.3 % and 80.5 %, respectively in differentiating grade 3 from grade 1/2. It showed the highest odds ratio (49.60), followed by poorly defined margin, size (> 3 cm), bile duct dilatation, and vascular invasion. When at least two of these five criteria were used in combination, the sensitivity and specificity for diagnosing grade 3 were 92.3 % (12/13) and 87.7 % (135/154), respectively. By using specific CT findings, grade 3 can be differentiated from grade 1/2 with a high diagnostic accuracy leading to an appropriate imaging staging. (orig.)

  14. Arbitrary mandibular hinge axis locations.

    Science.gov (United States)

    Simpson, J W; Hesby, R A; Pfeifer, D L; Pelleu, G B

    1984-06-01

    This study compared selected arbitrary hinge axis locations with the kinematic axis location. Fifty subjects were studied, and the data were statistically analyzed. Results showed significant differences between the location of experimental arbitrary axis point and those of Beyron, Gysi, and Bergstrom in relation to the kinematic axis. The arbitrary points of Beyron, Gysi, and Bergstrom showed directional tendencies, whereas the experimental arbitrary points were evenly distributed around the kinematic axis. This study indicates that the experimental arbitrary axis point more closely and consistently approximated the kinematic axis than the arbitrary points of Beyron, Gysi, and Bergstrom. The finding suggests that the clinical use of a point on Camper's line, 10 mm from the superior border of the tragus, results in a more accurate transfer of the maxillary cast to the articulator.

  15. Treatment Outcomes, Growth Height, and Neuroendocrine Functions in Patients With Intracranial Germ Cell Tumors Treated With Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Kazumasa, E-mail: t086016a@yokohama-cu.ac.jp [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama (Japan); Department of Radiology, Kanagawa Children' s Medical Center, Yokohama (Japan); Omura, Motoko [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama (Japan); Department of Radiology, Kanagawa Children' s Medical Center, Yokohama (Japan); Hata, Masaharu [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama (Japan); Aida, Noriko; Niwa, Tetsu [Department of Radiology, Kanagawa Children' s Medical Center, Yokohama (Japan); Ogino, Ichiro [Department of Radiology, Yokohama City University Medical Center, Yokohama (Japan); Kigasawa, Hisato [Division of Hemato-oncology/Regeneration Medicine, Kanagawa Children' s Medical Center, Yokohama (Japan); Ito, Susumu [Department of Neurosurgery, Kanagawa Children' s Medical Center, Yokohama (Japan); Adachi, Masataka [Department of Endocrinology, Kanagawa Children' s Medical Center, Yokohama (Japan); Inoue, Tomio [Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama (Japan)

    2012-11-01

    Purpose: We carried out a retrospective review of patients receiving chemoradiation therapy (CRT) for intracranial germ cell tumor (GCT) using a lower dose than those previously reported. To identify an optimal GCT treatment strategy, we evaluated treatment outcomes, growth height, and neuroendocrine functions. Methods and Materials: Twenty-two patients with GCT, including 4 patients with nongerminomatous GCT (NGGCT) were treated with CRT. The median age at initial diagnosis was 11.5 years (range, 6-19 years). Seventeen patients initially received whole brain irradiation (median dose, 19.8 Gy), and 5 patients, including 4 with NGGCT, received craniospinal irradiation (median dose, 30.6 Gy). The median radiation doses delivered to the primary site were 36 Gy for pure germinoma and 45 Gy for NGGCT. Seventeen patients had tumors adjacent to the hypothalamic-pituitary axis (HPA), and 5 had tumors away from the HPA. Results: The median follow-up time was 72 months (range, 18-203 months). The rates of both disease-free survival and overall survival were 100%. The standard deviation scores (SDSs) of final heights recorded at the last assessment tended to be lower than those at initial diagnosis. Even in all 5 patients with tumors located away from the HPA, final height SDSs decreased (p = 0.018). In 16 patients with tumors adjacent to the HPA, 8 showed metabolic changes suggestive of hypothalamic obesity and/or growth hormone deficiency, and 13 had other pituitary hormone deficiencies. In contrast, 4 of 5 patients with tumors away from the HPA did not show any neuroendocrine dysfunctions except for a tendency to short stature. Conclusions: CRT for GCT using limited radiation doses resulted in excellent treatment outcomes. Even after limited radiation doses, insufficient growth height was often observed that was independent of tumor location. Our study suggests that close follow-up of neuroendocrine functions, including growth hormone, is essential for all patients with

  16. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance.

    Science.gov (United States)

    True, Cadence; Grove, Kevin L; Smith, M Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

  17. Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours).

    Science.gov (United States)

    Kos-Kudła, Beata; Blicharz-Dorniak, Jolanta; Strzelczyk, Janusz; Bałdys-Waligórska, Agata; Bednarczuk, Tomasz; Bolanowski, Marek; Boratyn-Nowicka, Agnieszka; Borowska, Małgorzata; Cichocki, Andrzej; Ćwikła, Jarosław B; Falconi, Massimo; Foltyn, Wanda; Handkiewicz-Junak, Daria; Hubalewska-Dydejczyk, Alicja; Jarząb, Barbara; Junik, Roman; Kajdaniuk, Dariusz; Kamiński, Grzegorz; Kolasińska-Ćwikła, Agnieszka; Kowalska, Aldona; Król, Robert; Królicki, Leszek; Krzakowski, Maciej; Kunikowska, Jolanta; Kuśnierz, Katarzyna; Lampe, Paweł; Lange, Dariusz; Lewczuk-Myślicka, Anna; Lewiński, Andrzej; Lipiński, Michał; Londzin-Olesik, Magdalena; Marek, Bogdan; Nasierowska-Guttmejer, Anna; Nawrocki, Sergiusz; Nowakowska-Duława, Ewa; Pilch-Kowalczyk, Joanna; Rosiek, Violetta; Ruchała, Marek; Siemińska, Lucyna; Sowa-Staszczak, Anna; Starzyńska, Teresa; Steinhof-Radwańska, Katarzyna; Sworczak, Krzysztof; Syrenicz, Anhelli; Szawłowski, Andrzej; Szczepkowski, Marek; Wachuła, Ewa; Zajęcki, Wojciech; Zemczak, Anna; Zgliczyński, Wojciech; Zieniewicz, Krzysztof

    2017-01-01

    Progress in the diagnostics and therapy of gastro-entero-pancreatic (GEP) neuroendocrine neoplasms (NEN), the published results of new randomised clinical trials, and the new guidelines issued by the European Neuroendocrine Tumour Society (ENETS) have led the Polish Network of Neuroendocrine Tumours to update the 2013 guidelines regarding management of these neoplasms. We present the general recommendations for the management of NENs, developed by experts during the Third Round Table Conference - Diagnostics and therapy of gastro-entero-pancreatic neuroendocrine neoplasms: Polish recommendations in view of current European recommenda-tions, which took place in December 2016 in Żelechów near Warsaw. Drawing from the extensive experience of centres dealing with this type of neoplasms, we hope that we have managed to develop the optimal management system, applying the most recent achievements in the field of medicine, for these patients, and that it can be implemented effectively in Poland. These management guidelines have been arranged in the following order: gastric and duodenal NENs (including gastrinoma); pancreatic NENs; NENs of the small intestine and appendix, and colorectal NENs.

  18. Rapid effects of deep brain stimulation reactivation on symptoms and neuroendocrine parameters in obsessive-compulsive disorder.

    Science.gov (United States)

    de Koning, P P; Figee, M; Endert, E; van den Munckhof, P; Schuurman, P R; Storosum, J G; Denys, D; Fliers, E

    2016-01-26

    Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of the hypothalamus-pituitary adrenal axis. The aim of our present study was to evaluate the time course of rapid clinical changes following DBS reactivation in more detail and to assess their association with additional neuroendocrine parameters. We included therapy-refractory OCD patients treated with DBS (>1 year) and performed a baseline assessment of symptoms, as well as plasma concentrations of thyroid-stimulating hormone (TSH), prolactin, growth hormone, copeptin and homovanillic acid. This was repeated after a 1-week DBS OFF condition. Next, we assessed the rapid effects of DBS reactivation by measuring psychiatric symptom changes using visual analog scales as well as repeated neuroendocrine measures after 30 min, 2 h and 6 h. OCD, anxiety and depressive symptoms markedly increased during the 1-week OFF condition and decreased again to a similar extent already 2 h after DBS reactivation. We found lower plasma prolactin (41% decrease, P=0.003) and TSH (39% decrease, P=0.003) levels during DBS OFF, which increased significantly already 30 min after DBS reactivation. The rapid and simultaneous increase in TSH and prolactin is likely to result from stimulation of hypothalamic thyrotropin-releasing hormone (TRH), which may underlie the commonly observed transient mood elevation following DBS.

  19. Sex-Specific Effects of Combined Exposure to Chemical and Non-chemical Stressors on Neuroendocrine Development: a Review of Recent Findings and Putative Mechanisms.

    Science.gov (United States)

    Cowell, Whitney J; Wright, Rosalind J

    2017-12-01

    Environmental toxicants and psychosocial stressors share many biological substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-induced changes to the maternal milieu may prime rapidly developing physiological systems for disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we highlight putative mechanisms underlying sex-specific susceptibility of the developing neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants (bisphenol A, alcohol, phthalates, lead, chlorpyrifos, and traffic-related air pollution). We provide evidence indicating that concurrent or tandem exposure to chemical and non-chemical stressors during windows of rapid development is associated with sex-specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits, and innate immune function. We additionally identify gaps, such as the role that the endocrine-active placenta plays, in our understanding of these complex interactions. Finally, we discuss future research needs, including the investigation of non-hormonal biomarkers of stress. We demonstrate multiple physiologic systems are impacted by joint exposure to chemical and non-chemical stressors differentially among males and females. Collectively, the results highlight the importance of evaluating sex-specific endpoints when investigating the neuroendocrine system and underscore the need to examine exposure to chemical toxicants within the context of the social environment.

  20. Neuro-endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Holbech, Henrik; Bech Sanderhoff, Lene; Waller, Stine P.

    The Mollusca phylum is the second largest animal phylum with around 85,000 registered mollusc species and increasing attention to effects of chemicals on the molluscan endocrine system have been given during the last years. This includes initiation of the development of OECD test guidelines (TG......) to assess the effect of chemicals in molluscs. To date no endocrine specific mollusc biomarkers have though been validated and included in draft test guidelines due to lack of knowledge of the endocrine system. Here we investigate effects of pharmaceuticals targeting serotonin and dopamine in a cost...... efficient and fast in vivo system using embryos of the freshwater pulmonate gastropod Lymnaea stagnalis (the great pond snail). It is known that serotonin and dopamine are involved in many reproductive processes in molluscs Incl. egg maturation and spawning and that pedal ciliary activity causing L...

  1. The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction.

    Science.gov (United States)

    Michalakis, Konstantinos G; Segars, James H

    2010-11-01

    To summarize the effects of the adipokine adiponectin on the reproductive endocrine system, from the hypothalamic-pituitary axis to the gonads and target tissues of the reproductive system. A Medline computer search was performed to identify relevant articles. Research institution. None. Adiponectin is a hormone secreted by adipose tissue that acts to reduce insulin resistance and atherogenic damage, but it also exerts actions in other tissues. Adiponectin mediates its actions in the periphery mainly via two receptors, AdipoR1 and AdipoR2. Adiponectin receptors are present in many reproductive tissues, including the central nervous system, ovaries, oviduct, endometrium, and testes. Adiponectin influences gonadotropin release, normal pregnancy, and assisted reproduction outcomes. Adiponectin, a beneficial adipokine, represents a major link between obesity and reproduction. Higher levels of adiponectin are associated with improved menstrual function and better outcomes in assisted reproductive cycles. Published by Elsevier Inc.

  2. Does the degree of endocrine dyscrasia post-reproduction dictate post-reproductive lifespan? Lessons from semelparous and iteroparous species.

    Science.gov (United States)

    Atwood, Craig S; Hayashi, Kentaro; Meethal, Sivan Vadakkadath; Gonzales, Tina; Bowen, Richard L

    2017-02-01

    Post-reproductive lifespan varies greatly among species; human post-reproductive lifespan comprises ~30-50% of their total longevity, while semelparous salmon and dasyurid marsupials post-reproductive lifespan comprises reproductive senescence determines post-reproductive lifespan, we examined the difference between pre- and post-reproductive (1) circulating sex hormones and (2) the ratio of sex steroids to gonadotropins (e.g., 17β-estradiol/follicle-stimulating hormone (FSH)), an index of the dysregulation of the HPG axis and the level of dyotic (death) signaling post-reproduction. Animals with a shorter post-reproductive lifespan (reproductive lifespan (30-60% total longevity). In semelparous female salmon of short post-reproductive lifespan (1%), these divergent changes in circulating hormone concentration post-reproduction equated to a 711-fold decrease in the ratio of 17β-estradiol/FSH between the reproductive and post-reproductive periods. In contrast, the decrease in the ratio of 17β-estradiol/FSH in iteroparous female mammals with long post-reproductive lifespan was significantly less (1.7-34-fold) post-reproduction. Likewise, in male semelparous salmon, the decrease in the ratio of testosterone/FSH (82-fold) was considerably larger than for iteroparous species (1.3-11-fold). These results suggest that (1) organisms with greater reproductive endocrine dyscrasia more rapidly undergo senescence and die, and (2) the contribution post-reproduction by non-gonadal (and perhaps gonadal) tissues to circulating sex hormones dictates post-reproductive tissue health and longevity. In this way, reproduction and longevity are coupled, with the degree of non-gonadal tissue hormone production dictating the rate of somatic tissue demise post-reproduction and the differences in post-reproductive lifespans between species.

  3. Reproductive toxicity: Male and female reproductive systems as targets for chemical injury

    Energy Technology Data Exchange (ETDEWEB)

    Mattison, D.R.; Plowchalk, D.R.; Meadows, M.J.; Al-Juburi, A.Z.; Gandy, J.; Malek, A. (Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1990-03-01

    On the basis of current knowledge of reproductive biology and toxicology, it is apparent that chemicals affecting reproduction may elicit their effects at a number of sites in both the male and the female reproductive system. This multiplicity of targets is attributable to the dynamic nature of the reproductive system, in which the hypothalamic-pituitary-gonadal axis is controlled by precise positive and negative feedback mechanisms among its components. Interference by a xenobiotic at any level in either the male or the female reproductive system may ultimately impair hypothalamic or pituitary function. Normal gonadal processes such as spermatogenesis or oogenesis, ejaculation or ovulation, hormone production by Leydig or granulosa cells, and the structure or function of the accessory reproductive structures (e.g., epididymis, fallopian tube) also appear vulnerable to xenobiotics. The reproductive system is a complex one that requires local and circulating hormones for control. This brief review illustrates a system for characterizing the mechanism of action of reproductive toxicants, as well as for defining the sites available for disruption of reproduction. Unfortunately, at present, data addressing the actual vulnerability of reproduction are sorely lacking. However, when experiments have been conducted and combined with epidemiologic data or clinical observation, it has been possible to demonstrate impairment of reproductive processes by xenobiotics. The role of environmental exposure to xenobiotics in the increase in infertility that has been observed remains to be defined. 87 references.

  4. Reproductive epidemiology

    DEFF Research Database (Denmark)

    Olsen, Jørn; Nøhr, Ellen Aagaard

    2010-01-01

    Reproductive health covers a broad category of health and disease conditions, according to the Cairo Statement. This chapter focuses on subfecundity fertility, fetal death, malformations, pregnancy complications, sexual health, and diseases that may have their origin in fetal life, but which...

  5. Reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  6. Brain-gut-microbiota axis: challenges for translation in psychiatry.

    Science.gov (United States)

    Kelly, John R; Clarke, Gerard; Cryan, John F; Dinan, Timothy G

    2016-05-01

    The accruing data linking the gut microbiome to the development and function of the central nervous system has been proposed as a paradigm shift in neuroscience. The gut microbiota can communicate with the brain via neuroimmune, neuroendocrine, and neural pathways comprising the brain-gut-microbiota axis. Dysfunctional neuroimmune pathways are implicated in stress-related psychiatric disorders. Using depression as our primary example, we review both the preclinical and clinical evidence supporting the possible role played by the gut microbiota in stress-related psychiatric disorders. We consider how this can inform future treatment strategies and outline the challenges and necessary studies for moving the field forward. The role played by the gut microbiota has not been fully elucidated in psychiatric populations. Although tempting to speculate that psychiatric patients may benefit from therapeutic modulation of the brain-gut-microbiota axis, the translational applications of the results obtained in rodent studies have yet to be demonstrated. Evidence of altered gut microbiota composition and function in psychiatric patients is limited and cannot be regarded as proven. Moreover the efficacy of targeting the gut microbiota has not yet been established, and needs further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Men's Reproductive Health

    Science.gov (United States)

    ... Submit Cancel Close Email Share Dialog × Print Men's Reproductive Health Reproductive health is an important component of men's overall health ... often, males have been overlooked in discussions of reproductive health, especially when reproductive issues such as contraception and ...

  8. Male Reproductive System

    Science.gov (United States)

    ... Kidney Transplant Vision Facts and Myths Male Reproductive System KidsHealth > For Parents > Male Reproductive System Print A ... son's reproductive health. continue About the Male Reproductive System Most species have two sexes: male and female. ...

  9. [Surgical treatment of gastroentero-pancreatic neuroendocrine tumor].

    Science.gov (United States)

    Ohtsuka, Takao; Takahata, Shunichi; Ueda, Junji; Ueki, Takashi; Nagai, Eishi; Mizumoto, Kazuhiro; Shimizu, Shuji; Tanaka, Masao

    2013-07-01

    The treatment of choice for gastroentero-pancreatic neuroendocrine tumor(NET)is resection. Because it is difficult to determine the histological grade of NET before operation, the treatment strategy is usually made based on an imaging study including the tumor's size. Some selected gastrointestinal NETs are indicated for endoscopic resection, while others are resected surgically with lymph node dissection. The types of resections for pancreatic NETs vary from enucleation to pancreatectomy with or without regional lymph node dissection, based on the type of excessive hormone, tumor size, distance from the main pancreatic duct, and the presence of type 1 multiple endocrine neoplasia. Hepatic metastases are also resected, if indicated, and even in patients having unresectable metastatic lesions, multidisciplinary therapy including reduction surgery of over 90% of tumor volume might lead to a favorable prognosis. Postoperative adjuvant therapy is recommended for neuroendocrine carcinoma, while there is no evidence to support adjuvant therapy for curatively resected well-differentiated NET.

  10. Insulinoma and gastrinoma syndromes from a single intrapancreatic neuroendocrine tumor.

    Science.gov (United States)

    Lodish, Maya B; Powell, Anathea C; Abu-Asab, Mones; Cochran, Craig; Lenz, Petra; Libutti, Steven K; Pingpank, James F; Tsokos, Maria; Gorden, Phillip

    2008-04-01

    The insulinoma syndrome is marked by fasting hypoglycemia and inappropriate elevations of insulin. The gastrinoma syndrome is characterized by hypergastrinemia, ulcer disease, and/or diarrhea. Rarely, insulinoma and gastrinoma coexist in the same patient simultaneously. Our objective was to determine the cause of a patient's hypoglycemic episodes and peptic ulcer disease. This is a clinical case report from the Clinical Research Center of the National Institutes of Health. One patient with hypoglycemic episodes and peptic ulcer disease had a surgical resection of neuroendocrine tumor. The patient was found to have a single tumor cosecreting both insulin and gastrin. Resection of this single tumor was curative. A single pancreatic neuroendocrine tumor may lead to the expression of both the hyperinsulinemic and hypergastrinemic syndromes.

  11. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Josef Zihl

    2015-05-01

    Full Text Available Endocrine dysfunction is a common effect of traumatic brain injury (TBI. In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental functions, the consequences of TBI on mental health and neuroendocrine homeostasis, and the effects of hormone substitution on mental dysfunction caused by TBI. The available empirical evidence suggests that comprehensive assessment of mental functions should be standard in TBI subjects presenting with hormone deficiency and that hormone replacement therapy should be accompanied by pre- and post-assessments.

  12. Primary Malignant Neuroendocrine Tumour of Pleura: First Case Report

    Directory of Open Access Journals (Sweden)

    Anirban Das

    2016-01-01

    Full Text Available Metastatic tumours of pleura are the most common malignant tumours causing malignant pleural effusion. Lungs are the most common primary sites. Primary pleural tumours are rarely seen and diffuse malignant mesothelioma is the most common malignant tumour of pleura. Primary malignant neuroendocrine tumour of pleura is not reported in the literature. Here, we report a rare case of primary malignant neuroendocrine tumour of pleura in a fifty-two-year-old, nonsmoker female who presented with right-sided pleural effusion and ipsilateral, dull aching chest pain. Clinical presentations of inflammatory lesions like tuberculous pleuritis and benign and malignant neoplasms of pleura are indistinguishable; hence, fluid cytology, pleural biopsy, and immunohistochemistry are necessary for exact tissue diagnosis of the tumours, which is mandatory for correct treatment and prognostic assessment.

  13. Contemporary Incidence and Mortality Rates of Neuroendocrine Prostate Cancer.

    Science.gov (United States)

    Alanee, Shaheen; Moore, Aaron; Nutt, Max; Holland, Bradley; Dynda, Danuta; El-Zawahry, Ahmed; McVary, Kevin T

    2015-07-01

    The purpose of the study was to provide an update ever the incidence and mortality for neuroendocrine prostate cancer (NEPC) in the United States. Using a large national database, we examined changes in age-adjusted incidence (AAIR), mortality rates (MR) and 5-year cancer-specific survival (CSS) for 378 patients diagnosed with NEPC between 1992 and 2011. Analysis was performed for all NEPC and for its two major sub-groups [small cell carcinoma (SCC) and neuroendocrine carcinoma (NEC)]. AAIR of NEPC continues to rise in recent years (2004-2011:+6.8%/year, p>0.05). AAIR of SCC has been increasing significantly by 6.94%/year since 2001 (from 0.470 to 0.582/1,000,000 person years, pAAIR of SCC is increasing with no change in the MR of NEPC over the past 20 years. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Massive gastrointestinal bleed due to multiple gastric neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Vishal Sharma

    2015-01-01

    Full Text Available Gastric neuroendocrine tumors (G-NETs are uncommon lesions which are usually diagnosed on histological evaluation of gastric polyps. These may occur sporadically or due to hypergastrinemia in the setting of atrophic gastritis or Zollinger-Ellison Syndrome. Large lesions may ulcerate and result in gastrointestinal bleeding. However, massive gastrointestinal bleeding is rare in patients with NETs. We report a 60-year-old lady who presented with massive gastrointestinal bleeding due to multiple G-NETs.

  15. Assessment of intracranial metastases from neuroendocrine tumors/carcinoma

    Directory of Open Access Journals (Sweden)

    Ahmed M Ragab Shalaby

    2016-01-01

    Full Text Available Background: The most common sites of origin for neuroendocrine carcinoma are gastrointestinal tract and its accessory glands, and lungs. Materials and Methods: One-hundred fifty cases diagnosed with metastatic brain lesions were retrieved from hospital records within 5 years. For these cases, the primary neoplasm, histopathological classification, metastasis, treatment, and fate all were studied. Results: Intracranial deposits were detected in 10%. The primary lesion was in the lungs in 87% of patients, and 1 patient in the breast and 1 in esophagus. Pathological classification of the primary lesion was Grade 2 (MIB-1: 3–20% in 1 patient and neuroendocrine carcinoma (MIB-1: ≥21% in 14 patients. The median period from onset of the primary lesion up to diagnosis of brain metastasis was 12.8 months. About 33% of patients had a single metastasis whereas 67% patients had multiple metastases. Brain metastasis was extirpated in 33% of patients. Stereotactic radiotherapy alone was administered in 20% of patients, and brain metastasis was favorably controlled in most of the patients with coadministration of cranial irradiation as appropriate. The median survival period from diagnosis of brain metastasis was 8.1 months. Conclusion: Most of patients with brain metastasis from neuroendocrine carcinoma showed the primary lesion in the lungs, and they had multiple metastases to the liver, lymph nodes, bones, and so forth at the time of diagnosis of brain metastasis. The guidelines for accurate diagnosis and treatment of neuroendocrine carcinoma should be immediately established based on further analyses of those patients with brain metastasis.

  16. A Neuroendocrine Carcinoma of Undetermined Origin in a Dog

    OpenAIRE

    Kuwata, Kazunori; Shibutani, Makoto; Kemmochi, Yusuke; Taniai, Eriko; Morita, Reiko; Ogawa, Bunichiro; Mitsumori, Kunitoshi

    2010-01-01

    In this report, we describe a case of neuroendocrine carcinoma of undetermined origin in a dog. Necropsy revealed scattered small neoplastic nodules in the bilateral lungs and a small nodule in the parapancreatic lymph node. Histopathologically, both pulmonary and lymph nodal nodules showed a similar histologic pattern, with neoplastic cells being arranged in diffusely proliferating sheet-like cellular nests separated by variable amounts of fibrous septa, sometimes forming rosettes and duct-l...

  17. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  18. Effects of kisspeptin on parameters of the HPA axis.

    Science.gov (United States)

    Rao, Yathindar S; Mott, Natasha N; Pak, Toni R

    2011-06-01

    The hypothalamo-pituitary-adrenal (HPA) and hypothalamo-pituitary-gonadal (HPG) axes have an intricate cross talk that results in the inhibition of reproductive functions during periods of chronic physiological or psychological stress. Recent studies have shown that kisspeptin neurons have projections to many non-reproductive areas of the brain including the paraventricular nucleus (PVN) of the hypothalamus, thereby providing evidence of an anatomical framework for kisspeptin to regulate the HPA axis. In this study, we tested as to whether kisspeptin modulates the HPA axis at three potential levels of regulation: (1) transcription of stress-related genes CRH, AVP, and oxytocin (OXY); (2) release of neuropeptides from PVN-derived neuronal cells via mobilization of intracellular calcium stores; and (3) in vivo regulation of the HPA axis under basal and stress-induced conditions in adult male rats. Overall, our data showed that kisspeptin did not alter basal, or stress-induced HPA axis activity (plasma corticosterone (CORT) and adrenocorticotropin hormone (ACTH)) in adult male rats and had modest, yet significant effects on CRH, AVP, and OXY gene expressions.

  19. A Rare Case of Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia

    Directory of Open Access Journals (Sweden)

    Godwin Ofikwu

    2015-01-01

    Full Text Available Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH is a rare clinical condition with only about 100 cases reported in the literature. It is characterized by primary hyperplasia of pulmonary neuroendocrine cells (PNECs which are specialized epithelial cells located throughout the entire respiratory tract, from the trachea to the terminal airways. DIPNECH appears in various forms that include diffuse proliferation of scattered neuroendocrine cells, small nodules, or a linear proliferation. It is usually seen in middle-aged, nonsmoking women with symptoms of cough, dyspnea, and wheezing. We present a 45-year-old, nonsmoking woman who presented with symptoms of DIPNECH associated with bilateral pulmonary nodules and left hilar adenopathy. Of interest, DIPNECH in our patient was associated with metastatic pulmonary carcinoids, papillary carcinoma of the left breast, oncocytoma and angiomyolipoma of her left kidney, and cortical nodules suggestive of tuberous sclerosis. She had video assisted thoracoscopic surgery (VATS, modified radical mastectomy with reconstruction, and radical nephrectomy. She is currently symptom-free most of the time with over two years of follow-up.

  20. Neuroendocrine brake for the treatment of morbid obesity. Preliminary report

    Directory of Open Access Journals (Sweden)

    Aureo Ludovico de Paula

    2005-06-01

    Full Text Available Objectives: To demonstrate the preliminary results of a newtechnique named neuroendocrine brake, for surgical treatment ofmorbid obesity. Methods: In November 2003, three patientsunderwent the neuroendocrine brake operation performed by thelaparoscopic approach. The mean age was 46.4 years; all patientswere female. Mean BMI was 42.3 kg/m2. The patients selectedpresented some relative or absolute contraindications to the useof gastrointestinal bypass techniques, including gastric ulcer anda family history of gastric malignancy(1 and chronic anemia (2.All patients had associated diseases, including type II diabetesmellitus (2, hypertension (2, obstructive sleep apnea (1,dyslipidemia (3, cholecystolithiasis (1, gastric ulcer (1 andchronic anemia (2. The laparoscopic technique consisted of anileal interposition at the proximal jejunum and longitudinalgastrectomy. Results: There was no conversion to open surgery orpostoperative complications. Sixteen months later, the meanpercentage of initial body weight loss was 44.6% and the meanBMI was 24.3 kg/m2. Glucose, triglyceride and cholesterol levelswere normalized, and sleep apnea showed remission. Conclusion:In spite of the reduced number of patients and short term followup, the good results suggest that the neuroendocrine brake maybecome an option for surgical treatment of morbid obesity in thenear future.

  1. Unusual Paraneoplastic Syndrome Accompanies Neuroendocrine Tumours of the Pancreas

    Directory of Open Access Journals (Sweden)

    Helga Bertani

    2011-01-01

    Full Text Available Neuroendocrine tumours comprise a small percentage of pancreatic neoplasia (10% (1. Diagnosis of neuroendocrine tumours is difficult, especially if the tumours are small and nonfunctional. CT scans, MRI, and nuclear scans are sufficiently sensitive assessment tools for tumours with diameters of at least 2 cm; otherwise, the sensitivity and specificity of these techniques is less than 50% (2. Myasthenia gravis (MG is a heterogeneous neuromuscular junction disorder that is primarily caused when antibodies form against the acetylcholine receptors (Ab-AchR. MG can develop in conjunction with neoplasia, making MG a paraneoplastic disease. In those cases, MG is most commonly associated with thymomas and less frequently associated with extrathymic malignancies. The mechanism underlying this paraneoplastic syndrome has been hypothesized to involve an autoimmune response against the tumour cells (3. No published reports have linked malignant pancreatic diseases with MG. Here, we report the case of a young woman, negative for Ab-AchR, with a neuroendocrine tumour in the pancreatic head, who experienced a complete resolution of her MG-like syndrome after surgical enucleation of the tumour.

  2. A neuroendocrine carcinoma of undetermined origin in a dog.

    Science.gov (United States)

    Kuwata, Kazunori; Shibutani, Makoto; Kemmochi, Yusuke; Taniai, Eriko; Morita, Reiko; Ogawa, Bunichiro; Mitsumori, Kunitoshi

    2010-09-01

    In this report, we describe a case of neuroendocrine carcinoma of undetermined origin in a dog. Necropsy revealed scattered small neoplastic nodules in the bilateral lungs and a small nodule in the parapancreatic lymph node. Histopathologically, both pulmonary and lymph nodal nodules showed a similar histologic pattern, with neoplastic cells being arranged in diffusely proliferating sheet-like cellular nests separated by variable amounts of fibrous septa, sometimes forming rosettes and duct-like structures. Scattered small necrotic foci and invasion to fibrous septa were typically observed. Neoplastic cells showed round to oval-shaped nuclei with prominent nucleoli and abundant eosinophilic cytoplasm that were positive for Grimelius' silver impregnation staining and immunostaining with cytokeratin, synaptophysin, vasoactive intestinal peptide and chromogranin A, indicative of the development of a neuroendocrine carcinoma. However, judging from the distribution of tumors lacking the portion suggestive of the primary site in any organ examined, as well as no further indication of differentiation potential of neoplastic cells, this tumor has so far been diagnosed as neuroendocrine carcinoma of undetermined origin.

  3. Mucinous Carcinoma with Neuroendocrine Differentiation of Salivary Gland Origin.

    Science.gov (United States)

    Wong, Frankie K; Zumsteg, Zachary S; Langevin, Claude-Jean; Ali, Nabilah; Maclary, Shawn; Balzer, Bonnie L; Ho, Allen S

    2017-06-01

    Primary mucinous adenocarcinomas of the salivary gland are rare malignancies defined by aggregates of epithelial cells suspended in large pools of extracellular mucin. We report a case of a giant mucinous adenocarcinoma of salivary gland origin, with low-grade cytoarchitectural features and neuroendocrine differentiation arising in the submental region. Grossly, the tumor measured 12.5 × 13.4 × 8.2 cm and replaced the bone and soft tissues of the anterior oral cavity. Microscopically, the neoplasm was composed of large extracellular pools of mucin, which contained papillary and acinar aggregates, and small nodules of ductal type epithelium with minimal nuclear enlargement, powdery chromatin and little pleomorphism. The nodules comprised 20 % of the tumor and showed morphologic and immunohistochemical evidence of neuroendocrine differentiation. Examination revealed histologic features comparable to mammary gland analogues in mucin predominance, ductal type morphology, expression of estrogen and progesterone receptors, and GATA-3 positivity. This is the first case reported of mucin-rich carcinoma of salivary gland origin exhibiting neuroendocrine differentiation.

  4. Staging of gastroenteropancreatic neuroendocrine tumors: how we do it based on an evidence-based approach.

    LENUS (Irish Health Repository)

    McDermott, Shaunagh

    2013-01-01

    In contrast to other common types of malignant tumors, the vast majority of gastroenteropancreatic neuroendocrine tumors are well differentiated and slowly growing with only a minority showing aggressive behavior. It is important to accurately stage patients radiologically so the correct treatment can be implemented and to improve prognosis. In this article, we critically appraise the current literature in an effort to establish the current role of radiologic imaging in the staging of neuroendocrine tumors. We also discuss our protocol for staging neuroendocrine tumors.

  5. Mediators of compassionate goal intervention effects on human neuroendocrine responses to the Trier Social Stress Test.

    Science.gov (United States)

    Erickson, Thane M; Mayer, Stefanie E; Lopez-Duran, Nestor L; Scarsella, Gina M; McGuire, Adam P; Crocker, Jennifer; Abelson, James L

    2017-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis is thought to mediate the effects of stress on illness. Research has identified a limited number of psychological variables that modulate human HPA responses to stressors (e.g. perceived control and social support). Prosocial goals can reduce subjective stress, but have not been carefully examined in experimental settings where pathways of impact on biological stress markers may be traced. Recent work demonstrated that coaching individuals to strive to help others reduced HPA responses to the Trier Social Stress Test (TSST) relative to other cognitive interventions. However, identification of mediational pathways, which were not examined in the original study, is necessary to determine whether the HPA buffering effects were due to helping motivations (compassionate goals; CGs) rather than via previously identified variables such as control or support. In this new analysis, we combined the original cortisol data with novel observer ratings of interpersonal behavior and psychological variables during the stress task, and conducted new, theory-driven analyses to determine psychological mediators for the intervention's effect on cortisol responses (N = 54; 21 females, 33 males; 486 cortisol samples). Control, support, and task ego-threat failed to account for the effects of the intervention. As hypothesized, self and observer-rated CGs, as well as observer-rated perceptions of participants' interpersonal behavior as morally desirable (but not as dominant or affiliative) were significant mediators of neuroendocrine responses. The findings suggest that stress-reduction interventions based on prosocial behavior should target particular motivational and interpersonal features.

  6. Differential behavioral and neuroendocrine effects of repeated nicotine in adolescent and adult rats.

    Science.gov (United States)

    Cruz, Fábio C; Delucia, Roberto; Planeta, Cleopatra S

    2005-03-01

    Despite the high prevalence of tobacco abuse among adolescents, the neurobiology of nicotine addiction has been studied mainly in adult animals. Repeated administration of this drug to adult rats induces behavioral sensitization. Nicotine activates the HPA axis in adult rats as measured by drug-induced increases in ACTH and corticosterone. Both behavioral sensitization and corticosterone are implicated in drug addiction. We examined the expression of behavioral sensitization induced by nicotine as well as the changes in corticosterone levels after repeated injections of nicotine in adolescent and adult animals. Adolescent and adult rats received subcutaneous (s.c.) injections of saline or 0.4 mg/kg of nicotine once daily for 7 days. Three days after the last injection animals were challenged with saline or nicotine (0.4 mg/kg; s.c.). Nicotine-induced locomotion was recorded in an activity cage. Trunk blood samples were collected in a subset of adolescent and adult rats and plasma corticosterone levels were determined by radioimmunoassay. Adult, but not adolescent, rats expressed behavioral sensitization. Pretreatment with nicotine abolished corticosterone-activating effect of this drug only in adult animals, indicating the development of tolerance at this age. Our results provide evidence that adolescent rats exposed to repeated nicotine display behavioral and neuroendocrine adaptations distinct from that observed in adult animals.

  7. Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring

    Directory of Open Access Journals (Sweden)

    Clare M. Reynolds

    2017-09-01

    Full Text Available Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut–brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.

  8. Impact of scorpion venom as an acute stressor on the neuroendocrine-immunological network.

    Science.gov (United States)

    Santhosh, K N; Pavana, D; Thippeswamy, N B

    2016-11-01

    Although immunomodulatory property and many other pharmaceutical applications of scorpion venom have been addressed before, no studies were reported about its application as a neuroimmunomodulator at therapeutic dose. In this study, we conceptualized the property of scorpion venom, capable of inducing the acute pain and neurotoxicity can cause acute stress resulting in the modulation of immune cells through HPA axis. The whole venom from Hottentotta rugiscutis, a widely seen scorpion in the region of eastern Karnataka, was extracted and injected a single dose of 1 mg/kg b.w. to Swiss albino mice and then erythrocytes and leukogram were measured. Whole brain AChE activity, corticosterone, cytokines and NO levels in plasma were also evaluated at various time points. Hrv didn't show any histopathological changes in the lymphoid organs and at the site of injection. However, lymphocytes and neutrophils did get altered at 2 h post-injection. Plasma corticosterone, cytokine levels such as IL-1β, IL-6, TNF-α and IL-10 and the AChE activity were significantly increased in a time-dependent manner. Based on these results, it may be predicted, Hrv's ability to cause acute stress resulted in the activation of HPA axis, which stimulates the release of glucocorticoid hormones which in turn elicits the immunomodulation of leukocytes by altering the levels of pro and anti-inflammatory cytokines. Thus, we can conclude, the impact of acute stress induced by Hrv can intercommunicate the signals between neuroendocrine-immune systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Response of the hypothalamo-pituitary-adrenal axis to nicotine.

    Science.gov (United States)

    Matta, S G; Fu, Y; Valentine, J D; Sharp, B M

    1998-02-01

    Nicotine has been shown to be a potent stimulus for the secretion of the stress-responsive hormones, adrenocorticotropin (ACTH) and prolactin. This paper reviews the findings by our laboratory and others that demonstrate the polysynaptic pathways involved in the neuroendocrine responses to systemic nicotine. It will focus primarily on the hypothalamo-pituitary-adrenal (HPA) axis and the effect of nicotine on ACTH secretion, with supplementary information on prolactin secretion, where relevant. Data are presented demonstrating that nicotine acts via a central mechanism to stimulate indirectly the release of ACTH from the anterior pituitary corticotropes. Nicotine does not appear to act directly at the hypothalamic paraventricular nucleus (PVN), the site of the corticotropin-releasing hormone (CRH) neurons crucial to the regulation of ACTH. However, brainstem catecholaminergic regions projecting to the PVN showed a regionally selective and dose-dependent sensitivity to nicotine, particularly the noradrenergic/adrenergic nucleus tractus solitarius (NTS). A reduction in the modulatory effect of these catecholamines (by neurotoxic lesion, synthetic enzyme inhibitors or adrenergic receptor antagonists) resulted in an inhibition of nicotine-stimulated ACTH secretion. In addition, blockade of nicotinic cholinergic receptors (NAchRs) in the brainstem by the antagonist, mecamylamine, resulted in a dose-dependent reduction in norepinephrine (NE) release from terminals in the PVN, and a concomitant reduction in plasma ACTH. The differential sensitivity of these receptors to the nicotinic agonists, cytisine and nicotine, reflects the heterogeneity of the NAchR subtypes involved. The desensitization characteristics of the neuroendocrine responses to both acute and chronic nicotine exposure are indicative of an alteration in these NAchRs.

  10. Kisspeptin as a therapeutic target in reproduction.

    Science.gov (United States)

    Yang, Lisa; Dhillo, Waljit

    2016-01-01

    Kisspeptins are a family of neuropeptides whose identification has become one of the biggest discoveries in reproductive endocrinology during the past decade. Kisspeptins act upstream of GnRH as high-level mediators of the reproductive axis. The authors performed a search of all publications on kisspeptin since its discovery in 1996. A full appraisal of the expanding literature concerning kisspeptin is beyond the scope of this review. This article therefore aims to cover the principle human studies outlining kisspeptin action in human physiology and to discuss the key findings, describing kisspeptin's potential as a therapeutic target in human reproduction. The identification of the kisspeptin signaling pathway has greatly advanced the study of reproductive endocrinology. Building on a large body of animal data, a growing number of human studies have shown that exogenous kisspeptin can stimulate physiological gonadotropin responses in both healthy subjects and those with disorders of reproduction. There is an increasing appreciation that kisspeptin may act as a signal transmitter between metabolic status and reproductive function. Future work is likely to involve investigation of novel kisspeptin analogs and further exploration of role of neurokinin B and dynorphin on the kisspeptin-GnRH axis.

  11. Temozolomide as second or third line treatment of patients with neuroendocrine carcinomas

    DEFF Research Database (Denmark)

    Olsen, Ingrid Marie Holst; Sørensen, Jens B; Federspiel, Birgitte

    2012-01-01

    Knowledge of the clinical efficacy in recurrent neuroendocrine carcinomas is sparse. Treatment with temozolomide alone or in combination with capecitabine and bevacizumab has recently shown promising results....

  12. Association between Stress and the HPA Axis in the Atopic Dermatitis.

    Science.gov (United States)

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-10-12

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the body's neuroendocrine networks that responds to psychological stress (PS). In the skin, there exists a peripheral HPA axis similar to the central axis. Glucocorticoids (GCs) are key effector molecules of the HPA axis and are essential for cutaneous homeostasis. Atopic dermatitis (AD) is a condition typically characterized by a chronic relapsing course that often results in PS. HPA dysfunction is present in AD patients by the decreased response of GCs elevation to stress as compared to those unaffected by AD. Nevertheless, in skin, acute PS activates several metabolic responses that are of immediate benefit to the host. During the acute phase of PS, increased endogenous GCs have been shown to provide benefit rather than by aggravating cutaneous inflammatory dermatoses. However, a chronic T helper cell type 2 (Th2) predominant cytokine profile acts as a negative feedback loop to blunt the HPA axis response in AD. In this article, we reviewed the role of CRF, pro-opiomelanocortin (POMC)-derived peptides, GCs of the HPA, and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in AD, with a discussion of the pathogenetic mechanisms of inflammation and skin barrier functions, including antimicrobial defense, and their association with PS.

  13. Adversity-driven changes in hypothalamic-pituitary-adrenal axis functioning during adolescence. The trails study.

    Science.gov (United States)

    Laceulle, Odilia M; Nederhof, Esther; van Aken, Marcel A G; Ormel, Johan

    2017-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be a key mechanism underlying the link between adversity and mental health, but longitudinal studies on adversity and HPA-axis functioning are scarce. Here, we studied adversity-driven changes in HPA-axis functioning during adolescence (N=141). HPA-axis functioning (basal cortisol, cortisol awakening response, anticipation of, reaction to and recovery after a stress task) was measured twice, at age 16 and 19. Adversity (i.e., social defeat and loss/illness) since age 16 was measured extensively with the Life Stress Interview at age 19. Adolescents who reported being exposed to social defeat showed increases in basal cortisol (ɳ2=0.029) and decreases in reaction to the stress task (ɳ2=0.030) from age 16-19, compared to their peers in the loss/illness and no stress group. The current study provides unique longitudinal data on the role of adversity in HPA-axis functioning. Evidence is provided that adversity can affect the body's neuroendocrine response to stress, dependent on the nature of both the HPA-measures and adverse events under study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adrenal axis activation by chronic social stress fails to inhibit gonadal function in male rats.

    Science.gov (United States)

    Lemaire, V; Taylor, G T; Mormède, P

    1997-11-01

    Stress in males via the hypothalamic-pituitary-adrenal (HPA) axis may set into motion varied physiological alterations, including dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis. However, the influence of the HPA on the HPG axis may not always be inhibitory. Presence or absence of stimuli of sexual significance that typically activates the HPG axis may alter the influence of the adrenal axis on gonadal axes. In this project, we used male rats and chronic social stimulation that included brief or extended periods with female rats to examine HPA-HPG axes interactions. In experiment 1, we used intact males and a 'chronic social stress' paradigm developed in our previous research that induces social instability by daily changing the membership of group-housed males with females. Thymus weight was reduced and corticosterone levels were marginally increased by chronic social stress, indicating a HPA axis hyperactivity. The HPG axis was also activated as shown by the increased weight of the androgen-sensitive sex structures. These results indicate that when these two axes are stimulated together, neither interferes with nor suppresses activities of the other. Implants of corticosterone pellets to adrenalectomized animals that maintained constant, high corticosterone levels failed to reverse the gonadal hyperactivity induced by sexual stimulation. In a second experiment, we studied the influence of different intensity of sexual stimulations on HPA-HPG axes interactions. Increased corticosterone levels and adrenal weight, indicating a HPA hyperactivity, failed to inhibit HPG hyperactivity as measured by the increased sexual organs weight, whatever the sexual intensity of the stimulation. This work demonstrates that the gonadal axis is freed from suppression when sexual stimulation occurs together with stress. The general conclusion is that the nature of complex social settings is important in determining interactions between the two neuroendocrine axes.

  15. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants.

    Science.gov (United States)

    Pecoraro, Norman; Dallman, Mary F; Warne, James P; Ginsberg, Abigail B; Laugero, Kevin D; la Fleur, Susanne E; Houshyar, Hani; Gomez, Francisca; Bhargava, Aditi; Akana, Susan F

    2006-08-01

    The hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus

  16. Brain-gut axis and mucosal immunity: a perspective on mucosal psychoneuroimmunology.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    The role of the brain-gut axis has traditionally been investigated in relation to intestinal motility, secretion, and vascularity. More recently, the concept of brain-gut dialogue has extended to the relationship between the nervous system and mucosal immune function. There is compelling evidence for a reciprocal or bi-directional communication between the immune system and the neuroendocrine system. This is mediated, in part, by shared ligands (chemical messengers) and receptors that are common to the immune and nervous systems. Although the concept of psychoneuroimmunology and neuroimmune cross-talk has been studied primarily in the context of the systemic immune system, it is likely to have special significance in the gut. The mucosal immune system is anatomically, functionally, and operationally distinct from the systemic immune system and is subject to independent regulatory signals. Furthermore, the intestinal mucosal immune system operates in a local milieu that depends on a dense innervation for its integrity, with juxtaposition of neuroendocrine cells and mucosal immune cells. An overview of evidence for the biologic plausibility of a brain-gut-immune axis is presented and its potential relevance to mucosal inflammatory disorders is discussed.

  17. Kynurenine pathway metabolism and the microbiota-gut-brain axis.

    Science.gov (United States)

    Kennedy, P J; Cryan, J F; Dinan, T G; Clarke, G

    2017-01-01

    It has become increasingly clear that the gut microbiota influences not only gastrointestinal physiology but also central nervous system (CNS) function by modulating signalling pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms underpinning the influence exerted by the gut microbiota on brain function and behaviour has become a key research priority. Microbial regulation of tryptophan metabolism has become a focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the control of kynurenine pathway metabolism. Here, we focus in detail on the latter pathway and begin by outlining the structural and functional dynamics of the gut microbiota and the signalling pathways of the brain-gut axis. We summarise preclinical and clinical investigations demonstrating that the gut microbiota influences CNS physiology, anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn from neurogastroenterology demonstrating the importance of tryptophan and its metabolites in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may be regulated by microbial control of neuroendocrine function and components of the immune system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, with downstream effects on CNS function, is reviewed. Targeting the gut microbiota represents a tractable target to modulate kynurenine pathway metabolism. Efforts to develop this approach will markedly increase our understanding of how the gut microbiota shapes brain and behaviour and provide new insights towards successful translation of microbiota-gut-brain axis research from bench to bedside. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Autonomic, behavioral and neuroendocrine correlates of paternal behavior in male prairie voles.

    Science.gov (United States)

    Kenkel, William M; Suboc, Gessa; Carter, C Sue

    2014-04-10

    Socially monogamous prairie voles (Microtus ochrogaster) are biparental and alloparental. In the present study, we compared behavioral, cardiovascular and neuroendocrine parameters in male prairie voles with experience caring for pups (Fathers), versus reproductively inexperienced Virgin males. Father and Virgins showed generally similar responses to unrelated pups. However, in the Fathers studied prior to and during pup exposure, heart rate was lower and respiratory sinus arrhythmia tended to be higher than that in Virgins. Fathers also displayed comparatively lower levels of anxiety-related behaviors in an open field test. In Fathers, compared to Virgin males, we also found higher levels of oxytocin-immunoreactivity in the paraventricular hypothalamus and two brainstem regions involved in the autonomic regulation of the heart--the nucleus ambiguus and nucleus tractus solitarius. However, Fathers had less oxytocin in the bed nucleus of the stria terminalis. Vasopressin did not differ significantly in these regions. Fathers also weighed less and had less subcutaneous fat and larger testes as a percentage of bodyweight. In conjunction with earlier findings in this species, the present study supports the hypothesis that oxytocin may be involved in the adaptation to fatherhood. These findings also support the hypothesis that males, with or without prior pup experience, may show simultaneous patterns of behavioral nurturance and autonomic states compatible with mobilization and vigilance. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Gut Microbiota-brain Axis

    OpenAIRE

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of s...

  20. Circadian Tick-Talking Across the Neuroendocrine System and Suprachiasmatic Nuclei Circuits: The Enigmatic Communication Between the Molecular and Electrical Membrane Clocks.

    Science.gov (United States)

    Belle, M D C

    2015-07-01

    As with many processes in nature, appropriate timing in biological systems is of paramount importance. In the neuroendocrine system, the efficacy of hormonal influence on major bodily functions, such as reproduction, metabolism and growth, relies on timely communication within and across many of the brain's homeostatic systems. The activity of these circuits is tightly orchestrated with the animal's internal physiological demands and external solar cycle by a master circadian clock. In mammals, this master clock is located in the hypothalamic suprachiasmatic nucleus (SCN), where the ensemble activity of thousands of clock neurones generates and communicates circadian time cues to the rest of the brain and body. Many regions of the brain, including areas with neuroendocrine function, also contain local daily clocks that can provide feedback signals to the SCN. Although much is known about the molecular processes underpinning endogenous circadian rhythm generation in SCN neurones and, to a lesser extent, extra-SCN cells, the electrical membrane clock that acts in partnership with the molecular clockwork to communicate circadian timing across the brain is poorly understood. The present review focuses on some circadian aspects of reproductive neuroendocrinology and processes involved in circadian rhythm communication in the SCN, aiming to identify key gaps in our knowledge of cross-talk between our daily master clock and neuroendocrine function. The intention is to highlight our surprisingly limited understanding of their interaction in the hope that this will stimulate future work in these areas. © 2015 The Author. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of The British Society for Neuroendocrinology.

  1. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters

    Science.gov (United States)

    Weems, Peyton W.; Goodman, Robert L.; Lehman, Michael N.

    2015-01-01

    Seasonal reproduction is a common adaptive strategy among mammals that allows for breeding to occur at times of the year when it is most advantageous for the subsequent survival and growth of offspring. A major mechanism responsible for seasonal reproduction is a striking increase in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the negative feedback effects of estradiol. The neural and neuroendocrine circuitry responsible for mammalian seasonal reproduction has been primarily studied in three animal models: the sheep, and two species of hamsters. In this review, we first describe the afferent signals, neural circuitry and transmitters/peptides responsible for seasonal reproductive transitions in sheep, and then compare these mechanisms with those derived from studies in hamsters. The results suggest common principles as well as differences in the role of specific brain nuclei and neuropeptides, including that of kisspeptin cells of the hypothalamic arcuate nucleus, in regulating seasonal reproduction among mammals. PMID:25582913

  2. Selective Reproduction

    DEFF Research Database (Denmark)

    Svendsen, Mette N.

    2015-01-01

    This article employs a multi-species perspective in investigating how life's worth is negotiated in the field of neonatology in Denmark. It does so by comparing decision-making processes about human infants in the Danish neonatal intensive care unit with those associated with piglets who serve as...... as expectations within linear or predictive time frames are key markers in both sites. Exploring selective reproductive processes across human infants and research piglets can help us uncover aspects of the cultural production of viability that we would not otherwise see or acknowledge....

  3. Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.

    Science.gov (United States)

    Clément, Frédérique

    2016-07-01

    Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of

  4. Induction of Gonadotropins for Reproductive Control

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-10-01

    Full Text Available Much of the recent research on gonadotropin – related control processes of reproduction and reproductive maturation has concentrated on the neuronal and molecular biology of gonadotropin release. The reproductive development of healthy mammals requires appropriate fetal develompment and migration of the neural network controlling and including the gonadotropin releasing hormone (GnRH – producing neurons that are needed to regulate GnRH and luteinizing hormone (LH release. GnRH is also necessary for the development of the gonadotropin – producing pituitary gland. The fetal gonads respon to GnRH – induced LH production by producing the gonadal steroids required for further reproductive differentiation. Pubertal maturation is characterised by increases in LH levels, representing the corresponding pulsatile release of GnRH. This GnRH pulse generator appears to be an intrinsic property of the arcuate nucleus at the medial basal hypothalamus. The generator activity can be mediated by the neurotransmitter aspartate which activates neurons of the hypothalamus, inducing acuate releases of GnRH and hence initiates puberty. A major factor in human reproductive maturation is the decrease in the age of puberty, caused by improvement of nutritional conditions due to the socio – economic development. This implies that the pubertal activation of GnRH secretion depends on metabolic conditions. Of the substances that mediate the metabolic condition to the neuronal network regulating GnRH secretion, the role of the neuropeptide Y (NPY appears instrumental : for healthy mammals less food means more NPY, and accumulated NPY makes food to become sex. NPY does this by regulating the appropriate hypothalamic functions including the neuroendocrine control of gonadotropin release.

  5. Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms

    DEFF Research Database (Denmark)

    Janson, Eva Tiensuu; Sorbye, Halfdan; Welin, Staffan

    2014-01-01

    BACKGROUND: The diagnostic work-up and treatment of patients with neuroendocrine neoplasms (NENs) has undergone major recent advances and new methods are currently introduced into the clinic. An update of the WHO classification has resulted in a new nomenclature dividing NENs into neuroendocrine...

  6. Neuroendocrine dysregulations in sexually abused children and adolescents: a systematic review

    NARCIS (Netherlands)

    Bicanic, I. A. E.; Meijer, M.; Sinnema, G.; van de Putte, E. M.; Olff, M.

    2008-01-01

    Several studies provided evidence for neuroendocrine dysregulations in adults with a history of child sexual abuse. This review focuses on neuroendocrine studies in sexually abused children and adolescents, dating from January 1, 1990 to January 1, 2007 and obtained from a systematic Medline Indexed

  7. Tracer development for detection and characterization of neuroendocrine tumors with PET

    NARCIS (Netherlands)

    Neels, Olivier Christiaan

    2008-01-01

    Neuroendocrine tumors are slowly growing tumors which originate from neuroendocrine cells. These tumors can secrete several products. In case of overproduction of serotonin, symptoms such as flushing, diarrhea and right-sided heart disease can occur. Next to serotonin, other well known products are

  8. Neuroendocrine reactivity and recovery from work with different physical and mental demands

    NARCIS (Netherlands)

    Sluiter, JK; Frings-Dresen, MHW; van der Beek, AJ; Meijman, TF; Heisterkamp, SH

    Objectives The purpose of this study was to examine the extent to which the type or nature (physical, mental or mixed mental and physical) of work and work characteristics is related to the course of neuroendocrine reactivity and recovery from work. Methods Neuroendocrine reactivity and recovery

  9. Minichromosome Maintenance Expression Defines Slow-Growing Gastroenteropancreatic Neuroendocrine Neoplasms

    Directory of Open Access Journals (Sweden)

    Simon Schimmack

    2016-10-01

    Full Text Available BACKGROUND: Small intestinal neuroendocrine neoplasm (SI-NEN proliferation is quantified by Ki67 measurements which capture G1-G2M phases of the cell cycle. G0 and early G1 phases, typical of slow-growing cells, can be detected by minichromosome maintenance protein (MCM expression. We hypothesized that these replication licensing markers may provide clinically relevant information to augment Ki67 in low-grade neuroendocrine neoplasia. METHODS: Immunohistochemical staining (IHC, Western blot analysis, quantitative polymerase chain reaction, and copy number variations of MCM2, MCM3, and Ki67 were undertaken in SI-NENs (n = 22. MCM and Ki67 expression was compared by Kaplan-Meier survival analysis (tissue microarray, independent set [n = 55]. Forty-three pancreatic NENs and 14 normal tissues were included as controls. RESULTS: In SI-NENs, MCM2 (mean: 21.2%: range: 16%-25% and MCM3 (28.7%: 22%-34% were detected in significantly more cells than Ki67 (2.3%: 0%-7%, P < .01. MCM2 mRNA correlated with Ki67 IHC (P < .05. MCM3 protein expression was higher in metastases (38-fold than in normal small intestine (P = .06 and was largely absent in normal neuroendocrine cells. There was considerable variation at the MCM copy number level (0-4 copies. MCM3 expression in proliferating cells significantly predicted overall survival (P < .002. Combinations of Ki67 and MCM2/3 in algorithms differentiated low and higher proliferative lesions (overall survival: 12 vs 6.1 years, P = .06. MCM expression was not informative in pancreatic NENs. CONCLUSION: MCMs are expressed in a higher proportion of NEN cells than Ki67 in slow-growing small intestinal lesions and correlate with survival. Assessment can be used to augment Ki67 to improve prognostic classification in these low-grade tumors.

  10. Brain-gut axis in the pathogenesis of Helicobacter pylori infection

    Science.gov (United States)

    Budzyński, Jacek; Kłopocka, Maria

    2014-01-01

    Helicobacter pylori (H. pylori) infection is the main pathogenic factor for upper digestive tract organic diseases. In addition to direct cytotoxic and proinflammatory effects, H. pylori infection may also induce abnormalities indirectly by affecting the brain-gut axis, similar to other microorganisms present in the alimentary tract. The brain-gut axis integrates the central, peripheral, enteric and autonomic nervous systems, as well as the endocrine and immunological systems, with gastrointestinal functions and environmental stimuli, including gastric and intestinal microbiota. The bidirectional relationship between H. pylori infection and the brain-gut axis influences both the contagion process and the host’s neuroendocrine-immunological reaction to it, resulting in alterations in cognitive functions, food intake and appetite, immunological response, and modification of symptom sensitivity thresholds. Furthermore, disturbances in the upper and lower digestive tract permeability, motility and secretion can occur, mainly as a form of irritable bowel syndrome. Many of these abnormalities disappear following H. pylori eradication. H. pylori may have direct neurotoxic effects that lead to alteration of the brain-gut axis through the activation of neurogenic inflammatory processes, or by microelement deficiency secondary to functional and morphological changes in the digestive tract. In digestive tissue, H. pylori can alter signaling in the brain-gut axis by mast cells, the main brain-gut axis effector, as H. pylori infection is associated with decreased mast cell infiltration in the digestive tract. Nevertheless, unequivocal data concerning the direct and immediate effect of H. pylori infection on the brain-gut axis are still lacking. Therefore, further studies evaluating the clinical importance of these host-bacteria interactions will improve our understanding of H. pylori infection pathophysiology and suggest new therapeutic approaches. PMID:24833851

  11. Vulnerability to stroke: implications of perinatal programming of the hypothalamic-pituitary-adrenal axis

    Directory of Open Access Journals (Sweden)

    Tara K S Craft

    2009-12-01

    Full Text Available Chronic stress is capable of exacerbating each major, modifiable, endogenous risk factor for cerebrovascular and cardiovascular disease. Indeed, exposure to stress can increase both the incidence and severity of stroke, presumably through activation of the hypothalamic-pituitary-adrenal (HPA axis. Now that characterization of the mechanisms underlying epigenetic programming of the HPA axis is well underway, there has been renewed interest in examining the role of early environment on the evolution of health conditions across the entire lifespan. Indeed, neonatal manipulations in rodents that reduce stress-responsivity, and subsequent life-time exposure to glucocorticoids, are associated with a reduction in the development of neuroendocrine, neuroanatomical, and cognitive dysfunctions that typically progress with age. Although improved day to day regulation of the HPA axis also may be accompanied by a decrease in stroke risk, evidence from rodent studies suggest that an associated cost could be increased susceptibility to inflammation and neuronal death in the event that a stroke does occur and the individual is exposed to persistently elevated corticosteroids. Given its importance in regulation of health and disease states, any long-term modulation of the HPA axis is likely to be associated with both benefits and potential risks. The goals of this review article are to examine 1 the clinical and experimental data suggesting that neonatal experiences can shape HPA axis regulation, 2 the influence of stress and the HPA axis on stroke incidence and severity, and 3 the potential for neonatal programming of the HPA axis to impact adult cerebrovascular health.

  12. Brain-gut axis in the pathogenesis of Helicobacter pylori infection.

    Science.gov (United States)

    Budzyński, Jacek; Kłopocka, Maria

    2014-05-14

    Helicobacter pylori (H. pylori) infection is the main pathogenic factor for upper digestive tract organic diseases. In addition to direct cytotoxic and proinflammatory effects, H. pylori infection may also induce abnormalities indirectly by affecting the brain-gut axis, similar to other microorganisms present in the alimentary tract. The brain-gut axis integrates the central, peripheral, enteric and autonomic nervous systems, as well as the endocrine and immunological systems, with gastrointestinal functions and environmental stimuli, including gastric and intestinal microbiota. The bidirectional relationship between H. pylori infection and the brain-gut axis influences both the contagion process and the host's neuroendocrine-immunological reaction to it, resulting in alterations in cognitive functions, food intake and appetite, immunological response, and modification of symptom sensitivity thresholds. Furthermore, disturbances in the upper and lower digestive tract permeability, motility and secretion can occur, mainly as a form of irritable bowel syndrome. Many of these abnormalities disappear following H. pylori eradication. H. pylori may have direct neurotoxic effects that lead to alteration of the brain-gut axis through the activation of neurogenic inflammatory processes, or by microelement deficiency secondary to functional and morphological changes in the digestive tract. In digestive tissue, H. pylori can alter signaling in the brain-gut axis by mast cells, the main brain-gut axis effector, as H. pylori infection is associated with decreased mast cell infiltration in the digestive tract. Nevertheless, unequivocal data concerning the direct and immediate effect of H. pylori infection on the brain-gut axis are still lacking. Therefore, further studies evaluating the clinical importance of these host-bacteria interactions will improve our understanding of H. pylori infection pathophysiology and suggest new therapeutic approaches.

  13. Neuroendocrine stress reactivity of male C57BL/6N mice following chronic oral corticosterone exposure during adulthood or adolescence.

    Science.gov (United States)

    Shahanoor, Ziasmin; Sultana, Razia; Baker, Madelyn R; Romeo, Russell D

    2017-12-01

    Adolescence is associated with the maturation of the hypothalamic-pituitary-adrenal (HPA) axis, the major neuroendocrine axis mediating the hormonal stress response. Adolescence is also a period in development marked by a variety of stress-related vulnerabilities, including psychological and physiological dysfunctions. Many of these vulnerabilities are accompanied by a disrupted HPA axis. In adult mice, a model of disrupted HPA function has been developed using oral chronic corticosterone administration via the drinking water, which results in various physiological and neurobehavioral abnormalities, including changes in stress reactivity and anxiety-like behaviors. In an effort to further complement and extend this model, we tested the impact of HPA disruption in adolescent mice. We also examined whether this disruption led to different outcomes depending on whether the treatment happened during adolescence or adulthood. In the current set of experiments, we exposed adult (70days of age) or adolescent (30days of age) male C57BL/6N mice to 4 weeks of either 0 or 25μg/ml oral corticosterone via their drinking water. We measured body weight during treatment and plasma corticosterone levels and activation of the paraventricular nucleus (PVN), as indexed by FOS immunohistochemistry, before and after a 30min session of restraint stress. Our data indicate that adolescent animals exposed to chronic corticosterone showed weight loss during treatment, an effect not observed in adults. Further, we found stress failed to elevate plasma corticosterone levels in treated mice, regardless of whether exposure occurred in adulthood or adolescence. Despite this reduced hormonal responsiveness, we found significant neural activation in the PVN of both adult- and adolescent-treated mice, indicating a dissociation between stress-induced peripheral and central stress responses following chronic corticosterone exposure. Moreover, stress-induced neural activation in the PVN was unaffected

  14. Adipokines and the Female Reproductive Tract

    Directory of Open Access Journals (Sweden)

    Maxime Reverchon

    2014-01-01

    Full Text Available It is well known that adipose tissue can influence puberty, sexual maturation, and fertility in different species. Adipose tissue secretes molecules called adipokines which most likely have an endocrine effect on reproductive function. It has been revealed over the last few years that adipokines are functionally implicated at all levels of the reproductive axis including the gonad and hypothalamic-pituitary axis. Many studies have shown the presence and the role of the adipokines and their receptors in the female reproductive tract of different species. These adipokines regulate ovarian steroidogenesis, oocyte maturation, and embryo development. They are also present in the uterus and placenta where they could create a favorable environment for embryonic implantation and play a key role in maternal-fetal metabolism communication and gestation. Reproductive functions are strongly dependent on energy balance, and thereby metabolic abnormalities can lead to the development of some pathophysiologies such as polycystic ovary syndrome (PCOS. Adipokines could be a link between reproduction and energy metabolism and could partly explain some infertility related to obesity or PCOS.

  15. Spontaneous rupture of thymic neuroendocrine carcinoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yeong; Lee, In Jae; Min, Soo Kee [Hallym University College of Medicine, Chuncheon (Korea, Republic of)

    2015-11-15

    Thymic neuroendocrine carcinoma (NEC) is a rare neoplasm with tendencies of local invasion and metastasis. Usually, it is detected incidentally or by its symptoms caused by mass effect. Rupture of the tumor is extremely rare. In this study, we report a case of a ruptured thymic NEC that was combined with a potentially fatal hemorrhage. This lesion was manifested as a progressive bulging of the right cardiac border on serial chest radiographs, and on CT as a large anterior mediastinal mass with heterogeneous enhancement, internal necrosis, and hematoma.

  16. Update on the management of neuroendocrine hepatic metastases.

    Science.gov (United States)

    Madoff, David C; Gupta, Sanjay; Ahrar, Kamran; Murthy, Ravi; Yao, James C

    2006-08-01

    Neuroendocrine tumors (NETs) are rare and represent a diverse collection of malignancies that occur in many organ systems throughout the body, including the gastrointestinal and respiratory tracts. Unfortunately, the majority of patients with NETs have hepatic metastases at the time of diagnosis. Although some patients may be asymptomatic, others have unusual clinical presentations and variable tumor growth patterns. Although many patients have long indolent courses, without treatment, most patients die within 5 years of diagnosis. This article reviews the care of patients with NETs and hepatic metastases, with emphasis on the increasingly important role of oncologic image-guided interventions.

  17. Treatment of pancreatic neuroendocrine tumor with liver metastases

    Directory of Open Access Journals (Sweden)

    LI Zhao

    2015-05-01

    Full Text Available Pancreatic neuroendocrine tumor (pNET is a rare type of pancreatic tumors. The incidence of pNET shows a gradually increasing trend in recent years. The most common organ of distant metastases is the liver. Surgical resection is still the optimal treatment for resectable, well-differentiated liver metastases with no evidence of extrahepatic spread. For unresectable patients, a combination of multiple modalities, such as transarterial chemoembolization, radiofrequency ablation, systemic chemotherapy, and molecular targeted therapy, can prolong the survival time of patients. Liver transplantation should be strictly evaluated on an individual basis.

  18. Mucinous Carcinoma with Neuroendocrine Differentiation of Salivary Gland Origin

    OpenAIRE

    Wong, Frankie K.; Zumsteg, Zachary S.; Langevin, Claude-Jean; Ali, Nabilah; Maclary, Shawn; Balzer, Bonnie L.; Ho, Allen S.

    2016-01-01

    Primary mucinous adenocarcinomas of the salivary gland are rare malignancies defined by aggregates of epithelial cells suspended in large pools of extracellular mucin. We report a case of a giant mucinous adenocarcinoma of salivary gland origin, with low-grade cytoarchitectural features and neuroendocrine differentiation arising in the submental region. Grossly, the tumor measured 12.5 × 13.4 × 8.2 cm and replaced the bone and soft tissues of the anterior oral cavity. Microscopically, the neo...

  19. A multi-oscillatory circadian system times female reproduction

    Directory of Open Access Journals (Sweden)

    Valerie eSimonneaux

    2015-10-01

    Full Text Available Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei as an indicator of the time of the day. Herein we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the suprachiasmatic nucleus, arginine vasopressin and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis (kisspeptin neurons, GnRH neurons, gonadotropic cells, the ovary and the uterus. This review will point to the critical position of the kisspeptin neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift work conditions on female reproductive performance and fertility in both animal model and humans.

  20. Genetic associations with neuroendocrine tumor risk: results from a genome-wide association study.

    Science.gov (United States)

    Du, Yeting; Ter-Minassian, Monica; Brais, Lauren; Brooks, Nichole; Waldron, Amanda; Chan, Jennifer A; Lin, Xihong; Kraft, Peter; Christiani, David C; Kulke, Matthew H

    2016-08-01

    The etiology of neuroendocrine tumors remains poorly defined. Although neuroendocrine tumors are in some cases associated with inherited genetic syndromes, such syndromes are rare. The majority of neuroendocrine tumors are thought to be sporadic. We performed a genome-wide association study (GWAS) to identify potential genetic risk factors for sporadic neuroendocrine tumors. Using germline DNA from blood specimens, we genotyped 909,622 SNPs using the Affymetrix 6.0 GeneChip, in a cohort comprising 832 neuroendocrine tumor cases from Dana-Farber Cancer Institute and Massachusetts General Hospital and 4542 controls from the Harvard School of Public Health. An additional 241 controls from Dana-Farber Cancer Institute were used for quality control. We assessed risk associations in the overall cohort, and in neuroendocrine tumor subgroups. We identified no potential risk associations in the cohort overall. In the small intestine neuroendocrine tumor subgroup, comprising 293 cases, we identified risk associations with three SNPs on chromosome 12, all in strong LD. The three SNPs are located upstream of ELK3, a transcription factor implicated in angiogenesis. We did not identify clear risk associations in the bronchial or pancreatic neuroendocrine subgroups. This large-scale study provides initial evidence that presumed sporadic small intestine neuroendocrine tumors may have a genetic etiology. Our results provide a basis for further exploring the role of genes implicated in this analysis, and for replication studies to confirm the observed associations. Additional studies to evaluate potential genetic risk factors for sporadic pancreatic and bronchial neuroendocrine tumors are warranted. © 2016 Society for Endocrinology.

  1. Assisted Reproductive Technology (ART)

    Science.gov (United States)

    ... com/wp-content/uploads/2016/04/third-party-reproduction-booklet.pdf (PDF - 902 KB) [top] American Society for Reproductive Medicine. (2015). Assisted reproductive technologies: A guide for patients . Retrieved May ...

  2. Female Reproductive System

    Science.gov (United States)

    ... Kidney Transplant Vision Facts and Myths Female Reproductive System KidsHealth > For Parents > Female Reproductive System Print A ... or sperm. continue Parts of the Female Reproductive System Unlike the male, the human female has a ...

  3. Female reproductive disorders

    DEFF Research Database (Denmark)

    Crain, D Andrew; Janssen, Sarah J; Edwards, Thea M

    2008-01-01

    To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive...

  4. Reproduction, physiology and biochemistry

    Science.gov (United States)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  5. Assisted Reproductive Technology (ART)

    Science.gov (United States)

    ... Cancel Close Email Share Dialog × Print Assisted Reproductive Technology (ART) ART refers to treatments and procedures that ... American Society for Reproductive Medicine. (2015). Assisted reproductive technologies: A guide for patients . Retrieved May 31, 2016, ...

  6. Normal Female Reproductive Anatomy

    Science.gov (United States)

    ... historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : Small: 720x756 ... Large: 3000x3150 View Download Title: Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive system; drawing ...

  7. Patient-specific modeling of the neuroendocrine HPA-axis and its relation to depression: Ultradian and circadian oscillations

    DEFF Research Database (Denmark)

    Gudmand-Høyer, Johanne; Ottesen, Stine Timmermann; Ottesen, Johnny T.

    2014-01-01

    underlying physiological mechanisms controlling the average levels as well as the ultradian frequencies and amplitudes of the hormones ACTH and cortisol. The results are promising since they point toward an exact etiology for depression. As a consequence new biomarkers and pharmaceutical targets may...

  8. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration.

    Science.gov (United States)

    Zhang, Chong; Xu, Dan; Luo, Hanwen; Lu, Juan; Liu, Lian; Ping, Jie; Wang, Hui

    2014-11-05

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder.

    Science.gov (United States)

    Li, Q; Zhou, J-M

    2016-06-02

    Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders that are characterized by deficits in both social and cognitive functions. Although the exact etiology and pathology of ASD remain unclear, a disorder of the microbiota-gut-brain axis is emerging as a prominent factor in the generation of autistic behaviors. Clinical studies have shown that gastrointestinal symptoms and compositional changes in the gut microbiota frequently accompany cerebral disorders in patients with ASD. A disturbance in the gut microbiota, which is usually induced by a bacterial infection or chronic antibiotic exposure, has been implicated as a potential contributor to ASD. The bidirectional microbiota-gut-brain axis acts mainly through neuroendocrine, neuroimmune, and autonomic nervous mechanisms. Application of modulators of the microbiota-gut-brain axis, such as probiotics, helminthes and certain special diets, may be a promising strategy for the treatment of ASD. This review mainly discusses the salient observations of the disruptions of the microbiota-gut-brain axis in the pathogenesis of ASD and reveals its potential therapeutic role in autistic deficits. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Neuroendocrine Tumours : From Radiomolecular Imaging to Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    GEORGIOS eLIMOURIS

    2012-02-01

    Full Text Available Transhepatic radionuclide infusion (THRI has been introduced as a new treatment approach for unresectable liver neuroendocrine metastatic lesions with the prerequisite of a positive In-111 Pentetreotide (Octreoscan. Patients with multiple liver neuroendocrine metastases can be locally treated after selective hepatic artery catheterization and infusion of radiolabelled somatostatin analogues, and in case of extra-hepatic secondary spread, after simple i.v. application. According to the world wide references, the average dose per session to each patient is 6.3±0.3 GBq (~ 160-180 mCi of In-111-DTPA-Phe1- Pentetreotide, 10-12 fold in total, administered monthly or of 4.1± 0.2 GBq (~105-116 mCi of Y-90 DOTA TOC, 3 fold in total or of 7.0 ± 0.4 GBq (~178-200 mCi of Lu-177 DOTA TATE, 4-6 fold in total (the choice of which being based on the tumor size, assessed by CT or MRI . Follow-up at monthly intervals has to be performed by means of ultrasonography (US. Treat- ment response has to be assessed according to the WHO criteria (RECIST or SWOG.

  11. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms

    Directory of Open Access Journals (Sweden)

    Melpomeni Fani

    2017-03-01

    Full Text Available Abstract: Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs. Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr, other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.

  12. Irritable bowel syndrome: the role of gut neuroendocrine peptides.

    Science.gov (United States)

    El-Salhy, Magdy; Seim, Inge; Chopin, Lisa; Gundersen, Doris; Hatlebakk, Jan Gunnar; Hausken, Trygve

    2012-06-01

    Irritable bowel syndrome (IBS) is a common chronic disorder with a prevalence ranging from 5 to 10 percent of the world's population. This condition is characterised by abdominal discomfort or pain, altered bowel habits, and often bloating and abdominal distension. IBS reduces quality of life in the same degree of impairment as major chronic diseases such as congestive heart failure and diabetes and the economic burden on the health care system and society is high. Abnormalities have been reported in the neuroendocrine peptides/amines of the stomach, small- and large intestine in patients with IBS. These abnormalities would cause disturbances in digestion, gastrointestinal motility and visceral hypersensitivity, which have been reported in patients with IBS. These abnormalities seem to contribute to the symptom development and appear to play a central role in the pathogenesis of IBS. Neuroendocrine peptides/amines are potential tools in the treatment and diagnosis of IBS. In particular, the cell density of duodenal chromogranin A expressing cells appears to be a good histopathological marker for the diagnosis of IBS with high sensitivity and specificity.

  13. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  14. Structural and functional evolution of vertebrate neuroendocrine stress systems.

    Science.gov (United States)

    Denver, Robert John

    2009-04-01

    The vertebrate hypothalamus-pituitary-adrenal (HPA; or interrenal) axis plays pivotal roles in animal development and in physiological and behavioral adaptation to environmental change. The HPA, or stress axis, is organized in a hierarchical manner, with feedback operating at several points along the axis. Recent findings suggest that the proteins, gene structures, and signaling pathways of the HPA axis were present in the earliest vertebrates and have been maintained by natural selection owing to their critical adaptive roles. In all vertebrates studied, the HPA axis is activated in response to stressors and is controlled centrally by peptides of the corticotropin-releasing factor (CRF) family of which four paralogous members have been identified. Signaling by CRF-like peptides is mediated by at least two distinct G protein-coupled receptors and modulated by a secreted binding protein. These neuropeptides function as hypophysiotropins and as neurotransmitters/neuromodulators, influencing stress-related behaviors, such as anxiety and fear. In addition to modulating HPA activity and behavioral stress responses, CRF-like peptides are implicated in timing key life history transitions, such as metamorphosis in amphibians and birth in mammals. CRF-like peptides and signaling components are also expressed outside of the central nervous system where they have diverse physiological functions. Glucocorticoids are the downstream effectors of the HPA axis, playing essential roles in development, energy balance and behavior, and feedback actions on the activity of the HPA axis.

  15. The Development of Neuroendocrine Disturbances over Time: Longitudinal Findings in Patients after Traumatic Brain Injury and Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Anna Kopczak

    2015-12-01

    Full Text Available Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI or aneurysmal subarachnoid hemorrhage (SAH may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI and 87 patients after SAH in whom hormone levels had been determined at various time points to assess the course and pattern of hormonal insufficiencies. Data were analyzed using three different criteria: (1 patients with lowered basal laboratory values; (2 patients with lowered basal laboratory values or the need for hormone replacement therapy; (3 diagnosis of the treating physician. The first hormonal assessment after a median time of three months after the injury showed lowered hormone laboratory test results in 35% of cases. Lowered testosterone (23.1% of male patients, lowered estradiol (14.3% of female patients and lowered insulin-like growth factor I (IGF-I values (12.1% were most common. Using Criterion 2, a higher prevalence rate of 55.6% of cases was determined, which correlated well with the prevalence rate of 54% of cases using the physicians’ diagnosis as the criterion. Intraindividual changes (new onset insufficiency or recovery were predominantly observed for the somatotropic axis (12.5%, the gonadotropic axis in women (11.1% and the corticotropic axis (10.6%. Patients after TBI showed more often lowered IGF-I values at first testing, but normal values at follow-up (p < 0.0004. In general, most patients remained stable. Stable hormone results at follow-up were obtained in 78% (free thyroxine (fT4 values to 94.6% (prolactin values.

  16. High-Dose Lanreotide in the Treatment of Poorly Differentiated Pancreatic Neuroendocrine Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Frank Van Fraeyenhove

    2014-03-01

    Full Text Available Pancreatic neuroendocrine tumors (NETs, including poorly differentiated carcinomas (NECs, are rarely encountered. The majority of these tumors do not secrete excess hormones, but functioning NETs produce large amounts of vasoactive peptides and may cause carcinoid syndrome. Synthetic somatostatin analogs (SSAs have been widely used in NETs for control of hormonal syndromes. Here, we present a case of poorly differentiated, grade 3 pancreatic NEC associated with carcinoid syndrome, for which adequate symptom control was achieved for 2 years and 4 months using the long-acting SSA lanreotide Autogel®. In February 2009, a 55-year-old woman presented with episodes of flushing, diarrhea and epigastric pain. Imaging techniques revealed the presence of a metabolically active mass expressing somatostatin receptors in the hilar area of the liver. Histopathological examination confirmed the malignant nature of the mass, which was identified as a poorly differentiated grade 3 pancreatic NEC (TNM staging: T4NxM0. Therapeutic options were limited for the patient because of the extent of the primary mass involving the celiac axis, severe gastrointestinal toxicity experienced as a side effect of chemotherapy with cisplatin-etoposide and, later in the course of the disease, extensive liver metastases and carcinoid heart syndrome. Along with a palliative debulking surgery and right portal vein embolization, biotherapy with a high dose of lanreotide Autogel (120 mg/14 days contributed to alleviation of symptoms caused by hormone overproduction, even after the development of liver metastases. These results suggest that patients with poorly differentiated NECs who exhibit signs of carcinoid syndrome can benefit from treatment with somatostatin analogs.

  17. Study of the neuroendocrine and immunologic mechanism of fatigue caused by military operations

    Directory of Open Access Journals (Sweden)

    Xin LI

    2012-01-01

    Full Text Available Objective  To observe the regularity of the changes in neuroendocrine-immune system caused by fatigue due to military operations, and explore the mechanism by which fatigue occurs in military operations. Methods  The subjects were 240 soldiers belonging to a field artillery force. The medical history and physical examination were taken before military operations, and fatigue assessment scale was accomplished as well. The following variables were measured in all the subjects: pituitary-adrenal [adrenocorticotropic hormone (ACTH, cortical hormone (B, 24-h urinary free cortisol (UFC], pituitary-gonadal [luteinizing hormone (LH, testosterone (T, estradiol (E2], pituitary-thyroid functions [serum thyroid stimulating hormone (TSH, tetraiodothyronine (TT4, triiodothyronine (TT3, free thyroxine (FT4, and free triiodothyronine (FT3], and cellular immune parameters (CD3+, CD4+, CD8+, CD4+/CD8+, B, NK. After 7 d of large-scale and high-intensity field exercises, the above variables were again measured in all the subjects. Results  After high-intensity military operations, the unpleasant feelings were significantly increased, and the compulsive and psychotic scores significantly decreased in the soldiers. In addition, the pituitary-adrenal and pituitary-gonadal hormone levels also decreased (all PPPConclusion  The depressed psychological tolerance in soldiers is the psychological factor of fatigue after a high-intensity military operation. The hypocorticoidism and inhibition of hypothalamic-pituitary-gonadal axis are the pathophysiological basis of military operation fatigue. Suppression of immune function is an important reason for an increase of susceptibility to disease after high-intensity military operations.

  18. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD.

    Science.gov (United States)

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-02-16

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.

  19. Lead Toxicity and The Hypothalamic-Pituitary-Testicular Axis

    Directory of Open Access Journals (Sweden)

    Nadia AIT HAMADOUCHE

    2013-02-01

    Full Text Available Environmental exposure to toxic levels of lead (Pb occurs in a number of industries with potential adverse effects on the reproductive capacity of exposed men. Clinical and animal studies indicate that abnormalities of spermatogenesis result from toxic lead exposure, but eventual histopathologic alterations involved have not been identified. To explore putative abnormalities in the reproductive gonadotropic axis following lead intoxication, experimental animals when exposed to low levels of lead, 65 days old animals were treated with distilled water containing 0, 0 mg (control, 10 mg lead (Pb/Kg/day and 15 mg lead (Pb/Kg/day intraperitoneally for 20 days. At the end of treatment, the animals were sacrificed and the blood collected for luteinizing hormone (LH and testosterone assays. The testis was processed for histological analysis. The results showed a high serum concentration of LH and testosterone in lead-treated animals compared to controls. Histological examination of testis showed deformities in testicular morphology of lead intoxicated animals with gross damage within the somniferous tubules. A strong correlation was established between LH and testosterone suggesting an alteration in the endocrine components of the gonadotropic axis. Histological examination of pituitary gland showed some degenerative changes in endocrine cells of lead group. Changes in LH and testosterone levels suggest that Pb exposure during the critical time of sexual differentiation induces reproductive axis abnormalities in adulthood. In conclusion, lead has a gonadotoxic effect by decreasing LH and testosterone levels and damaging the testis seminiferous tubules. Catalase activity was significantly reduced in the lead group following 65 days of exposure which possibly indicates that lead might had other mechanisms of action, such as increasing oxidative damage.

  20. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition.

    Science.gov (United States)

    Keller, J; Gomez, R; Williams, G; Lembke, A; Lazzeroni, L; Murphy, G M; Schatzberg, A F

    2017-04-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of a variety of mood and cognitive disorders. Neuroendocrine studies have demonstrated HPA axis overactivity in major depression, a relationship of HPA axis activity to cognitive performance and a potential role of HPA axis genetic variation in cognition. The present study investigated the simultaneous roles HPA axis activity, clinical symptomatology and HPA genetic variation play in cognitive performance. Patients with major depression with psychotic major depression (PMD) and with nonpsychotic major depression (NPMD) and healthy controls (HC) were studied. All participants underwent a diagnostic interview and psychiatric ratings, a comprehensive neuropsychological battery, overnight hourly blood sampling for cortisol and genetic assessment. Cognitive performance differed as a function of depression subtype. Across all subjects, cognitive performance was negatively correlated with higher cortisol, and PMD patients had higher cortisol than did NPMDs and HCs. Cortisol, clinical symptoms and variation in genes, NR3C1 (glucocorticoid receptor; GR) and NR3C2 (mineralocorticoid receptor; MR) that encode for GRs and MRs, predicted cognitive performance. Beyond the effects of cortisol, demographics and clinical symptoms, NR3C1 variation predicted attention and working memory, whereas NR3C2 polymorphisms predicted memory performance. These findings parallel the distribution of GR and MR in primate brain and their putative roles in specific cognitive tasks. HPA axis genetic variation and activity were important predictors of cognition across the entire sample of depressed subjects and HR. GR and MR genetic variation predicted unique cognitive functions, beyond the influence of cortisol and clinical symptoms. GR genetic variation was implicated in attention and working memory, whereas MR was implicated in verbal memory.

  1. Neuroendocrine response to CRF stimulation in veterans with and without PTSD in consideration of war zone era.

    Science.gov (United States)

    Golier, Julia A; Caramanica, Kimberly; Yehuda, Rachel

    2012-03-01

    Alterations in hypothalamic-pituitary-adrenal (HPA) axis activity have been observed in Gulf War veterans with posttraumatic stress disorder (PTSD) which differ from those observed in other veteran groups, raising the possibility that there is a unique neuroendocrine profile in this group of veterans. This study seeks to further characterize the effects of PTSD, military cohort (Vietnam, 1991 Gulf War, Operations Enduring Freedom/Iraqi Freedom (OEF/OIF)), and their interaction on the neuroendocrine response to synthetic corticotrophin-releasing factor (CRF) stimulation. 51 male veterans were studied consisting of 21 from the Vietnam era, 16 from the Gulf War era, and 14 from the OEF/OIF era. 16 of these veterans were deployed to a war zone and had chronic PTSD (PTSD+), 25 were deployed to a war zone and did not have chronic PTSD (PTSD-), and 10 were not deployed to a war zone and did not have PTSD (non-exposed). The participants underwent the CRF stimulation test in the afternoon (approximately 2:00 p.m.), which measures the integrity and sensitivity of the pituitary-adrenal axis. Plasma cortisol and adrenocorticotropic hormone (ACTH) were measured at baseline and at intervals over a 2h period following intravenous administration of 1 μg/kg of ovine CRF (o-CRF, max 100 μg). In a small subset of participants, dehydroepiandrosterone (DHEA) and cortisol binding globulin (CBG) were also assessed. There was a significant group by era interaction in the response of ACTH to CRF, in addition to a main effect of group (PTSD+, PTSD-, non-exposed). The interaction reflected that group differences were only evident in the Gulf War cohort; among Gulf War era veterans, the PTSD+ group had higher elevations in ACTH levels following CRF than the PTSD- group and the non-exposed group. Additionally, the peak change in ACTH was associated with a self-reported environmental exposure (pyridostigmine bromide ingestion) which has been found to be linked to the excess morbidity found in

  2. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure.

    Science.gov (United States)

    van Bodegom, Miranda; Homberg, Judith R; Henckens, Marloes J A G

    2017-01-01

    -reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.

  3. Female reproductive disorders

    DEFF Research Database (Denmark)

    Crain, D Andrew; Janssen, Sarah J; Edwards, Thea M

    2008-01-01

    To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive...... disruptions warrant evaluation of the impact of EDCs on female reproductive health....

  4. Endocrine and neuroendocrine regulation of fathering behavior in birds.

    Science.gov (United States)

    Lynn, Sharon E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Although paternal care is generally rare among vertebrates, care of eggs and young by male birds is extremely common and may take on a variety of forms across species. Thus, birds provide ample opportunities for investigating both the evolution of and the proximate mechanisms underpinning diverse aspects of fathering behavior. However, significant gaps remain in our understanding of the endocrine and neuroendocrine influences on paternal care in this vertebrate group. In this review, I focus on proximate mechanisms of paternal care in birds. I place an emphasis on specific hormones that vary predictably and/or unpredictably during the parental phase in both captive and wild birds: prolactin and progesterone are generally assumed to enhance paternal care, whereas testosterone and corticosterone are commonly-though not always correctly-assumed to inhibit paternal care. In addition, because endocrine secretions are not the sole mechanistic influence on paternal behavior, I also explore potential roles for certain neuropeptide systems (specifically the oxytocin-vasopressin nonapeptides and gonadotropin inhibitory hormone) and social and experiential factors in influencing paternal behavior in birds. Ultimately, mechanistic control of fathering behavior in birds is complex, and I suggest specific avenues for future research with the goal of narrowing gaps in our understanding of this complexity. Such avenues include (1) experimental studies that carefully consider not only endocrine and neuroendocrine mechanisms of paternal behavior, but also the ecology, phylogenetic history, and social context of focal species; (2) investigations that focus on individual variation in both hormonal and behavioral responses during the parental phase; (3) studies that investigate mechanisms of maternal and paternal care independently, rather than assuming that the mechanistic foundations of care are similar between the sexes; (4

  5. Reclassification of neuroendocrine tumors improves the separation of carcinoids and the prediction of survival

    DEFF Research Database (Denmark)

    Skov, B.G.; Krasnik, M.; Lantuejoul, S.

    2008-01-01

    INTRODUCTION: The classification of neuroendocrine lung tumors has changed over the last decades. Reliable diagnoses are crucial for the quality of clinical databases. The purpose of this study is to determine to which extent the use of different diagnostic criteria of neuroendocrine lung tumors.......03). However, the number of removed lymph nodes were insufficient for definitive determination of the prognostic impact of node metastases. Regarding the revised diagnoses, a significant difference in survival between typical carcinoid, atypical carcinoid, large cell neuroendocrine carcinoma and small cell...

  6. Reproductive Medicine in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2017-05-01

    Reproduction of amphibians includes ovulation, spermiation, fertilization, oviposition, larval stage and development, and metamorphosis. A problem at any stage could lead to reproductive failure. To stimulate reproduction, environmental conditions must be arranged to simulate changes in natural habits. Reproductive life history is well documented in amphibians; a thorough knowledge of this subject will aid the practitioner in diagnosis and treatment. Technologies for artificial reproduction are developing rapidly, and some protocols may be transferable to privately kept or endangered species. Reproductive tract disorders are rarely described; no bacterial or viral diseases are known that specifically target the amphibian reproductive system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Structural plasticity of the adult central nervous system: insights from the neuroendocrine hypothalamus].

    Science.gov (United States)

    Girardet, Clémence; Bosler, Olivier

    2011-01-01

    Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation

  8. Reproductive Disorders in Snakes.

    Science.gov (United States)

    Di Girolamo, Nicola; Selleri, Paolo

    2017-05-01

    Reproduction of snakes is one of the challenging aspects of herpetology medicine. Due to the complexity of reproduction, several disorders may present before, during, or after this process. This article describes the physical examination, and radiographic, ultrasonographic, and endoscopic findings associated with reproductive disorders in snakes. Surgical techniques used to resolve reproductive disorders in snakes are described. Finally, common reproductive disorders in snakes are individually discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. VGF: an inducible gene product, precursor of a diverse array of neuro-endocrine peptides and tissue-specific disease biomarkers.

    Science.gov (United States)

    Ferri, Gian-Luca; Noli, Barbara; Brancia, Carla; D'Amato, Filomena; Cocco, Cristina

    2011-12-01

    The vgf gene (non-acronymic) is induced in vivo by neurotrophins including Nerve Growth Factor (NGF), Brain Derived Growth Factor (BDNF) and Glial Derived Growth Factor (GDNF), by synaptic activity and by homeostatic and other stimuli. Post-translational processing of a single VGF precursor gives raise to a varied multiplicity of neuro-endocrine peptides, some of which are secreted upon stimulation both in vitro and in vivo. Several VGF peptides, accounting for ∼20% of the VGF precursor sequence, have shown biological roles including regulation of food intake, energy balance, reproductive and homeostatic mechanisms, synaptic strengthening, long-term potentiation (LTP) and anti-depressant activity. From a further ∼50% of VGF derive multiple "fragments", largely identified in the human cerebro-spinal fluid by proteomic studies searching for disease biomarkers. These represent an important starting point for discovery of further VGF products relevant to neuronal brain functions, as well as to neurodegenerative and psychiatric disease conditions. A distinct feature of VGF peptides is their cell type specific diversity in all neuroendocrine organs studied so far. Selective differential profiles are found across the cell populations of pituitary, adrenal medulla and pancreatic islets, and in gastric neuroendocrine as well as some further mucosal cells, and are yet to be investigated in neuronal systems. At the same time, specific VGF peptide/s undergo selective modulation in response to organ or cell population relevant stimuli. Such pattern argues for a multiplicity of roles for VGF peptides, including endocrine functions, local intercellular communication, as well as the possible mediation of intracellular mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat.

    Science.gov (United States)

    Castrogiovanni, Daniel; Gaillard, Rolf C; Giovambattista, Andrés; Spinedi, Eduardo

    2008-01-01

    In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity. 2008 S. Karger AG, Basel.

  11. [Advances of circulating biomarkers in gastroenteropancreatic neuroendocrine neoplasms].

    Science.gov (United States)

    Chen, Luohai; Chen, Minhu; Chen, Jie

    2017-03-25

    Gastroenteropancreatic neuroendocrine neoplam (GEP-NEN) is a rare group of tumors with its incidence rising significantly in recent decades. Because of the late presentation of the disease and limitations in conventional biomarkers, about 50% of GEP-NEN patients manifests advanced disease when diagnosed. Therefore, it is vital to identify circulating biomarkers which can not only be used for early diagnosis but also accurately evaluating the biological behavior of GEP-NEN. This review summarizes the advances of circulating biomarkers in diagnosing and evaluating efficacy of treatment in GEP-NEN. Well-known circulating biomarkers include chromogranin A (CgA), pancreastatin (PST), chromogranin B (CgB), neuron-specific enolase (NSE) and pancreatic peptide(PP). Novel biomarkers including circulating tumor cell(CTC), microRNA and NETest are promising biomarkers with potential clinical benefit, but further researches are needed before their clinical applications.

  12. [Radioguided surgery in neuroendocrine tumors. A review of the literature].

    Science.gov (United States)

    García-Talavera, P; Ruano, R; Rioja, M E; Cordero, J M; Razola, P; Vidal-Sicart, S

    2014-01-01

    Radioguided surgery can be a useful technique in the localization of neuroendocrine tumors. It detects more and smaller lesions compared to pre-surgical imaging and intraoperative digital palpation by the surgeon. It detects residual lesions and also indicates the shortest access route to the lesion. Nevertheless, its use has not become widespread because of technical difficulties. There is a limited number of published series, a lack of standardized protocol because of the great variability regarding type of radiopharmaceutical, dose of radiotracer, timing between injection and surgery. In this paper, we review these issues, describing the experience of different authors in diverse tumors. Copyright © 2014 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  13. Pulmonary neuroendocrine tumor in a female wolf (Canis lupus lupus).

    Science.gov (United States)

    Shiraki, Ayako; Yoshida, Toshinori; Kawashima, Masahi; Murayama, Hirotada; Nagahara, Rei; Ito, Nanao; Shibutani, Makoto

    2017-03-23

    A 17-year-old female wolf (Canis lupus lupus) had a right lung mass that was adhered to the thoracic cavity. Histopathological examination revealed that the mass consisted of sheets, cord or ribbon-like structures of monotonous, small, cuboidal cells with round, oval or short-spindle nuclei and scant clear cytoplasm, demarcated by a fine fibrovascular stroma. Focal necrosis, congestion and thrombi were observed. Immunohistochemically, the tumor cells diffusely expressed cytokeratin AE1/AE3, and some expressed chromogranin A, neural cell adhesion molecule (CD56) and thyroid transcription factor-1. The number of proliferating cell nuclear antigen-positive tumor cells was low. A diagnosis of pulmonary neuroendocrine tumor was based on the resemblance to carcinoids.

  14. Neuroendocrine Tumour of the Prostate: A Rare Variant

    Directory of Open Access Journals (Sweden)

    Ozer Ural Cakici

    2013-12-01

    Full Text Available About 95% of prostate cancers are adenocarcinomas. Neuroendocrine differentiation (NED is seen in virtually all cases of prostatic carcinoma, mostly in a focal pattern. Extensive NED is associated to aggressive disease with a poor prognosis and most cases are diagnosed in advanced stages.We present a 79-year- old male who was admitted to our department with severe lower urinary tract obstructive symptoms and weight loss. On digital rectal examination, the prostate was fixed to the rectum with irregular margins. Serum prostate-specific antigen (PSA level was 1.9 ng/ml.Transrectal ultrasound-guided prostate biopsies revealed small-cell carcinoma of the prostate. Multiple metastatic lesions in vertebral bones and iliac lymph nodes were detected by nuclear bone scan and abdominal computerised tomography CT. Thereafter, the patient was treated with cisplatin-based chemotherapy and palliative radiotherapy.

  15. Immunohistochemical detection of dopamine D2 receptors in neuroendocrine tumours.

    Science.gov (United States)

    Pawlikowski, Marek; Pisarek, Hanna; Winczyk, Katarzyna

    2011-01-01

    Recently, dopamine D2 receptors (RD2) have been found to be expressed in neuroendocrine tumours (NET), the tumours which arise from the diffuse neuroendocrine cells. Moreover, successful trials of the treatment of NET with cabergoline - D2 agonist, have been reported. These findings increase the interest of investigating RD2 expression in NET. The expression of RD2 was investigated immunohistochemically using the antibody which recognises both short (S) and long (L) isoforms of the receptor in 17 NET samples taken from 15 patients. In 17 NET samples, a positive reaction with the anti-RD2 antibody occurred in 11 cases. In six cases, the localisation of the immunostaining was cytoplasmic and in nine cases it was nuclear. Only in one case was the receptor cell membrane-located, and in two cases the immunoreaction was also localised in the blood vessels walls. The relation between RD2 expression and the grade of malignancy examined by means of Ki-67 antigen expression needs further study. However, preliminary observations indicate that the nuclear localisation of RD2 is linked to higher tumour malignancy. The next investigated question was the co-expression of somatostatin and dopamine receptors. This question seems important because of the perspectives of somatostatin-dopamine chimeras application in NET treatment. In the samples examined by us, RD2 were co-expressed in 5/10 cases with sstr1, in 3/10 with sstr2A, in 2/9 with sstr2B, in 3/10 with sstr3, and in 5/10 with sstr5. Dopamine D2 receptors are revealed by means of immunohistochemistry in the majority of NET. They exhibit cytoplasmic and/or nuclear localisations, the latter being possibly linked to a higher grade of malignancy, and are often co-expressed with somatostatin receptors (mostly with subtypes1 and 5).

  16. Rb Loss is Characteristic of Prostatic Small Cell Neuroendocrine Carcinoma

    Science.gov (United States)

    Tan, Hsueh-Li; Sood, Akshay; Rahimi, Hameed A.; Wang, Wenle; Gupta, Nilesh; Hicks, Jessica; Mosier, Stacy; Gocke, Christopher D.; Epstein, Jonathan I.; Netto, George J.; Liu, Wennuan; Isaacs, William B.; De Marzo, Angelo M.; Lotan, Tamara L.

    2014-01-01

    Purpose Small cell neuroendocrine carcinoma of the prostate is likely to become increasingly common with recent advances in pharmacologic androgen suppression. Thus, developing molecular markers of small cell differentiation in prostate cancer will be important to guide diagnosis and therapy of this aggressive tumor. Experimental Design We examined the status of RB1, TP53 and PTEN in prostatic small cell and acinar carcinomas via immunohistochemistry (IHC), copy number alteration analysis and sequencing of formalin fixed paraffin-embedded specimens. Results We found Rb protein loss in 90% (26/29) of small cell carcinoma cases with RB1 allelic loss in 85% (11/13) of cases. Of acinar tumors occurring concurrently with prostatic small cell carcinoma, 43% (3/7) showed Rb protein loss. In contrast, only 7% (10/150) of primary high grade acinar carcinomas, 11% (4/35) of primary acinar carcinomas with neuroendocrine differentiation, and 15% (2/13) of metastatic castrate resistant acinar carcinomas showed Rb protein loss. Loss of PTEN protein was seen in 63% (17/27) of small cell carcinomas, with 38% (5/13) showing allelic loss. By IHC, accumulation of p53 was observed in 56% (14/25) of small cell carcinomas, with 60% (6/10) of cases showing TP53 mutation. Conclusions Loss of RB1 by deletion is a common event in prostatic small cell carcinoma and can be detected by validated IHC assay. As Rb protein loss rarely occurs in high grade acinar tumors, these data suggest that Rb loss is a critical event in the development of small cell carcinomas and may be a useful diagnostic and potential therapeutic target. PMID:24323898

  17. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals.

    Science.gov (United States)

    Bombardieri, E; Coliva, A; Maccauro, M; Seregni, E; Orunesu, E; Chiti, A; Lucignani, G

    2010-02-01

    Nuclear medicine can image some tumors by means of receptor specific radiopharmaceuticals, and offers the possibility to characterize cancer through the detection of its receptor expression. This is the case of neuroendocrine tumours (NETs), that are visualized by different radiolabelled somatostatin analogues that bind 5 distinct somatostatin receptor types (named sstr1-5) that show different tissue distribution. The subtypes sstr2 and sstr5 are the most commonly expressed in NETs. Until now the most widely used radiolabelled somatostatin analogue for planar and single photon emission computed tomography (SPECT) has been [(111)In]pentetreotide, because of its commercial availability. Other analogues labelled with gamma emitting radionuclides are [(99m)Tc]EDDA/HYNIC-TOC, [(99m)Tc]P829, [(111)In]DOTA-lanreotide, [(111)In]DOTA-NOC-ATE, [(111)In]DOTA-BOC-ATE. However, these compounds have not been successful for the routine use. Moreover, NETs express various receptors that can be depicted by different radiopharmaceuticals, such as [(123)I]VIP and [(111)In]GLP-1. Besides this, some precursors of the catecholamines metabolism, as meta-iodo-benzyl-guanidine (MIBG), labelled with (123)I or (131)I, accumulates in neuroendocrine tissues, in particular those of sympathoadrenal lineage. MIBG scintigraphy is currently indicated for neuroblastoma, paraganglioma and phaeocromocitoma. An impressive technological progress has been achieved recently with PET and, in particular, with the development of hybrid instrumentations (PET/CT) combining nuclear imaging with radiological imaging providing both functional and morphologic information. Among positron emitting tracers, the [(18)F]FDG is the most diffuse in oncology, but other more effective tracers are available for NETs, such as the analogues labelled with 68Ga. The diagnostic sensitivity and accuracy of these technology is superior to that of gamma emitting radiopharmaceuticals, but the fact that they are not still registered

  18. Morphological and immunohistochemical profile of pancreatic neuroendocrine neoplasms.

    Science.gov (United States)

    Simtniece, Zane; Vanags, Andrejs; Strumfa, Ilze; Sperga, Maris; Vasko, Ervins; Prieditis, Peteris; Trapencieris, Peteris; Gardovskis, Janis

    2015-06-01

    The study represents a comprehensive retrospective morphological and immunohistochemical profiling of pancreatic neuroendocrine neoplasms (PNENs) in order to reveal the associations between morphological and molecular parameters. The local tumour spread (T), presence of metastases in regional lymph nodes (N) and distant organs (M), tumour grade (G) and resection line status (R) by pathology findings (pTNMGR), mitotic activity, perineural, vascular and lymphatic invasion were assessed in 16 surgically resected PNENs. By immunohistochemistry, expression of Ki-67, p53, p27, p21, cyclin D1, Bcl-2, E-cadherin, CD44, vimentin, cyclooxygenase 2 (COX-2), microvascular density, and cytokeratin (CK) spectrum, along with neuroendocrine, intestinal and squamous markers were detected. Descriptive statistics, Chi-square test, Spearman's rank correlation, Mann-Whitney and Kruskal-Wallis methods were applied; p<0.05 was considered significant. Ki-67, CK19, p63, vimentin and COX-2 were significantly up-regulated in PNENs in comparison to benign pancreatic islets. A complex network of morphological and molecular associations was identified. Ki-67 correlated with PNEN size (p=0.022), the World Health Organization 2004 and 2010 classification grades (p=0.021 and p=0.002), stage (p=0.028) and mitotic count (p=0.007) but among molecular markers--with CK19 (p=0.033) and vimentin (p=0.045). CK19 was significantly up-regulated in PNENs, having higher pT (p=0.018), pR (p=0.025), vascular (p=0.020), perineural (p=0.026) and lymphatic invasion (p=0.043). In conclusion, proliferation activity (by Ki-67), E-cadherin, vimentin and CK19 are important molecular characteristics of PNENs due to significant associations with morphological tumour characteristics, pTNMGR and invasive growth.

  19. Clonality analysis of neuroendocrine cells in gastric adenocarcinoma

    Science.gov (United States)

    Wang, Ling-Ling; Yao, Gen-You; Zhao, Zhong-Sheng; Wei, Xiao-Li; Xu, Ru-Jun

    2013-01-01

    AIM: To achieve a better understanding of the origination of neuroendocrine (NE) cells in gastric adenocarcinoma. METHODS: In this study, 120 cases of gastric adenocarcinoma were obtained. First, frozen section-immunohistochemistrical samples were selected from a large quantity of neuroendocrine cells. Second, laser capture microdissection was used to get target cells from gastric adenocarcinoma and whole genome amplification was applied to get a large quantity of DNA for further study. Third, genome-wide microsatellite abnormalities [microsatellite instability (MSI), loss of heterozygosity (LOH)] and p53 mutation were detected by polymerase chain reaction (PCR)-single-strand conformation polymer- phism-silver staining and PCR-sequencing in order to identify the clonality of NE cells. RESULTS: The total incidence rate of MSI was 27.4%, while LOH was 17.9%. Ten cases had a highest concordance for the two types of cells. The other samples had similar microsatellite changes, except for cases 7 and 10. Concordant p53 mutations exhibited in sample 4, 14, 21 and 27, and there were different mutations between two kinds of cells in case 7. In case 17, mutation took place only in adenocarcinoma cells. p53 mutation was closely related with degree of differentiation, tumor-node-metastasis stage, vessel invasion and lymph node metastasis. In brief, NE and adenocarcinoma cells showed the same MSI, LOH or p53 mutation in most cases (27/30). In the other three cases, different MSI, LOH or p53 mutation occurred. CONCLUSION: NE and the gastric adenocarcinoma cells may mainly derive from the same stem cells, but the remaining cases showing different origin needs further investigation. PMID:23983439

  20. Malnutrition Predicts Clinical Outcome in Patients with Neuroendocrine Neoplasia.

    Science.gov (United States)

    Maasberg, Sebastian; Knappe-Drzikova, Barbora; Vonderbeck, Dorothée; Jann, Henning; Weylandt, Karsten H; Grieser, Christian; Pascher, Andreas; Schefold, Jörg C; Pavel, Marianne; Wiedenmann, Bertram; Sturm, Andreas; Pape, Ulrich-Frank

    2017-01-01

    Malnutrition is a common problem in oncological diseases, influencing treatment outcomes, treatment complications, quality of life and survival. The potential role of malnutrition has not yet been studied systematically in neuroendocrine neoplasms (NEN), which, due to their growing prevalence and additional therapeutic options, provide an increasing clinical challenge to diagnosis and management. The aim of this cross-sectional observational study, which included a long-term follow-up, was therefore to define the prevalence of malnutrition in 203 patients with NEN using various methodological approaches, and to analyse the short- and long-term outcome of malnourished patients. A detailed subgroup analysis was also performed to define risk factors for poorer outcome. When applying malnutrition screening scores, 21-25% of the NEN patients were at risk of or demonstrated manifest malnutrition. This was confirmed by anthropometric measurements, by determination of serum surrogate parameters such as albumin as well as by bioelectrical impedance analysis (BIA), particularly phase angle α. The length of hospital stay was significantly longer in malnourished NEN patients, while long-term overall survival was highly significantly reduced. Patients with high-grade (G3) neuroendocrine carcinomas, progressive disease and undergoing chemotherapy were at particular risk of malnutrition associated with a poorer outcome. Multivariate analysis confirmed the important and highly significant role of malnutrition as an independent prognostic factor for NEN besides proliferative capacity (G3 NEC). Malnutrition is therefore an underrecognized problem in NEN patients which should systematically be diagnosed by widely available standard methods such as Nutritional Risk Screening (NRS), serum albumin assessment and BIA, and treated to improve both short- and long-term outcomes. © 2015 S. Karger AG, Basel.

  1. Short-term treatment with the calcineurin inhibitor cyclosporine A decreases HPA axis activity and plasma noradrenaline levels in healthy male volunteers.

    Science.gov (United States)

    Albring, Antje; Wendt, Laura; Harz, Nino; Engler, Harald; Wilde, Benjamin; Witzke, Oliver; Schedlowski, Manfred

    2014-11-01

    Treatment with the selective calcineurin inhibitor and immunosuppressive drug cyclosporine A (CsA) is associated with neurotoxicity and neurocognitive impairments. Whether and to what extent CsA is inducing alterations of the neuroendocrine status is unknown so far. Therefore, the present study investigated the effect of short-term CsA treatment on hypothalamus-pituitary-adrenal (HPA) axis activity and catecholamine release as well as state anxiety in healthy male subjects. Treatment with CsA significantly reduced plasma concentrations of adrenocorticotropic hormone (ACTH), cortisol, and noradrenaline whereas adrenaline levels and state anxiety remained unaffected. Future studies should analyze the mechanisms of CsA-induced effects on neuroendocrine variables, neurocognitive functions and mood. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Pitfalls in the diagnosis of neuroendocrine tumors: atypical clinical and radiological findings as cause of medical mistakes.

    Science.gov (United States)

    Bajetta, Emilio; Catena, Laura; Ducceschi, Monika; Pusceddu, Sara; Milione, Massimo; Maccauro, Marco; Bajetta, Roberto; Procopio, Giuseppe; Buzzoni, Roberto; Formisano, Barbara; Di Guardo, Lorenza; Platania, Marco

    2009-01-01

    Carcinoids are infrequent neoplasms arising from neuroendocrine cells. Due to blurred symptoms and the presence of equivocal diagnostic findings, these tumors are sometimes misdiagnosed. Therefore, increased rates of false neuroendocrine tumors represent an emerging problem in clinical practice. Our aim is to alert clinicians on this matter by supplying them with useful warnings. In the specialized neuroendocrine tumor study Center Centro di Riferimento per lo Studio e la Cura dei Carcinoidi e dei Tumori Neuroendocrini (Ce.Ri.Ca), some patients highly suspected to have a neuroendocrine tumor have been recognized as having false neuroendocrine tumors. The related clinical and instrumental findings leading to a previous wrong neuroendocrine tumor diagnosis are reported. From July 2006 to December 2008, 88 consecutive cases of neuroendocrine tumors (Nets) were referred at Ce.Ri.Ca. In the former group, 8 cases of false Nets were discovered while in the remaining 80 cases a correct Net diagnosis was carried out. Watchful differential diagnoses and skill appraisal of laboratory investigations resulted in: chronic atrophic gastritis with enterochromaffin-like cell hyperplasia (4 cases), estrogen-deprivation syndrome (1), hypochondriac disorder (1), metabolic syndrome (1), and sarcoidosis (1). Neuroendocrine tumors are still relatively known clinical entities. To discriminate false neuroendocrine tumors from neuroendocrine tumors requires a good expertise and a large daily practice with the disease. Good knowledge and skillfulness in identifying biochemical alterations and false radiological positive results could avoid both patient inconvenience and very expensive workup. The importance of a multidisciplinary approach in specialized centers is emphasized.

  3. A Delphic consensus assessment : imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management

    NARCIS (Netherlands)

    Oberg, Kjell; Krenning, Eric; Sundin, Anders; Bodei, Lisa; Kidd, Mark; Tesselaar, Margot; Ambrosini, Valentina; Baum, Richard P.; Kulke, Matthew; Pavel, Marianne; Cwikla, Jaroslaw; Drozdov, Ignat; Falconi, Massimo; Fazio, Nicola; Frilling, Andrea; Jensen, Robert; Koopmans, Klaus; Korse, Tiny; Kwekkeboom, Dik; Maecke, Helmut; Paganelli, Giovanni; Salazar, Ramon; Severi, Stefano; Strosberg, Jonathan; Prasad, Vikas; Scarpa, Aldo; Grossman, Ashley; Walenkamp, Annemiek; Cives, Mauro; Virgolini, Irene; Kjaer, Andreas; Modlin, Irvin M.

    2016-01-01

    The complexity of the clinical management of neuroendocrine neoplasia (NEN) is exacerbated by limitations in imaging modalities and a paucity of clinically useful biomarkers. Limitations in currently available imaging modalities reflect difficulties in measuring an intrinsically indolent disease,

  4. Expression of p53 protein in high-grade gastroenteropancreatic neuroendocrine carcinoma

    DEFF Research Database (Denmark)

    Ali, Abir Salwa; Grönberg, Malin; Federspiel, Birgitte

    2017-01-01

    BACKGROUND: Gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs) are aggressive, rapidly proliferating tumors. Therapeutic response to current chemotherapy regimens is usually short lasting. The aim of this study was to examine the expression and potential clinical importance of immunoreac...

  5. Middle ear adenoma with neuroendocrine differentiation: relate of two cases and literature review

    Directory of Open Access Journals (Sweden)

    Bittencourt, Aline Gomes

    2014-01-01

    Full Text Available Introduction: Adenomas with neuroendocrine differentiation are defined as neuroendocrine neoplasms, and they are rarely found in the head and neck. Objective: To describe two cases of a middle ear adenoma with neuroendocrine differentiation, with a literature review. Case Report: Patient 1 was a 41-year-old woman who presented with a 3-year history of left aural fullness associated with ipsilateral “hammer beating” tinnitus. Patient 2 was a 41-year-old male who presented with unilateral conductive hearing loss. Conclusion: Adenoma with neuroendocrine differentiation of the middle ear is a rare entity, but it should be considered in patients with tinnitus, aural fullness, and a retrotympanic mass and remembered as a diferential diagnosis of tympanic paraganglioma.

  6. Genetic and molecular coordinates of neuroendocrine lung tumors, with emphasis on small-cell lung carcinomas

    National Research Council Canada - National Science Library

    Koutsami, Marilena K; Doussis-Anagnostopoulou, Ipatia; Papavassiliou, Athanasios G; Gorgoulis, Vassilis G

    2002-01-01

    .... Current information on established and putative diagnostic and prognostic markers of neuroendocrine tumors are evaluated, with a special reference to small-cell lung carcinoma, due to its higher...

  7. Chemotherapy for pulmonary large cell neuroendocrine carcinomas : Does the regimen matter?

    NARCIS (Netherlands)

    Derks, Jules L.; van Suylen, Robert Jan; Thunnissen, Erik; den Bakker, Michael A.; Groen, Harry J.; Smit, Egbert F.; Damhuis, Ronald A.; van den Broek, Esther C.; Speel, Ernst-Jan M.; Dingemans, Anne-Marie C.

    Pulmonary large cell neuroendocrine carcinoma (LCNEC) is rare. Chemotherapy for metastatic LCNEC ranges from small cell lung carcinoma (SCLC) regimens to nonsmall cell lung carcinoma (NSCLC) chemotherapy regimens. We analysed outcomes of chemotherapy treatments for LCNEC. The Netherlands Cancer

  8. Middle ear adenoma with neuroendocrine differentiation: relate of two cases and literature review

    Science.gov (United States)

    Bittencourt, Aline Gomes; Tsuji, Robinson Koji; Cabral, Francisco; Pereira, Larissa Vilela; Fonseca, Anna Carolina de Oliveira; Alves, Venâncio; Bento, Ricardo Ferreira

    2013-01-01

    Summary Introduction: Adenomas with neuroendocrine differentiation are defined as neuroendocrine neoplasms, and they are rarely found in the head and neck. Objective: To describe two cases of a middle ear adenoma with neuroendocrine differentiation, with a literature review. Case Report: Patient 1 was a 41-year-old woman who presented with a 3-year history of left aural fullness associated with ipsilateral “hammer beating” tinnitus. Patient 2 was a 41-year-old male who presented with unilateral conductive hearing loss. Conclusion: Adenoma with neuroendocrine differentiation of the middle ear is a rare entity, but it should be considered in patients with tinnitus, aural fullness, and a retrotympanic mass and remembered as a diferential diagnosis of tympanic paraganglioma. PMID:25992031

  9. Shift work and circadian dysregulation of reproduction

    Directory of Open Access Journals (Sweden)

    Karen L. Gamble

    2013-08-01

    Full Text Available Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans, the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift-work induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.

  10. Dual axis solar collector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Eiden, G.E.

    1991-02-19

    This patent describes a solar collector. It comprises: an elongate main boom having a longitudinal axis; a solar collector frame first mounting means for pivotally mounting the solar collector frame to the main boom for pivotal motion about first pivotal axis substantially parallel to the longitudinal axis of the main boom; and first motor means, separate from the first mounting means a generally horizontal countertop mounted on the frame means adapted for a placement and retention of an ostomy bag thereon during cleaning of the ostomy bag. The countertop having a sink formed therein for draining liquid and waste materials from the ostomy bag and from the countertop; a mirror mounted upright on the frame means; a light source mounted to the frame means for illuminating the countertop, a user and the mirror; and a drainage conduit, having a first end connected to the sink, the drainage conduit being adapted for carrying the waste materials and the liquid from the sink to the disposal location.

  11. Expression of Neuroendocrine Markers in Normal and Neoplastic Tissue with an Emphasis on Ghrelin and Obestatin

    OpenAIRE

    Grönberg, Malin

    2010-01-01

    The aim of this thesis was to characterize the expression of the peptides ghrelin and obestatin, as well as other neuroendocrine markers in human normal tissues, in invasive breast cancer and a wide panel of neuroendocrine tumors (NETs). In normal tissues the expression of ghrelin and obestatin was mainly localized to the gastric mucosa, and in lesser extent in the remaining gastrointestinal tract, endocrine pancreas and mammary glands. Double immunofluorescence studies demonstrated that ghre...

  12. Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP.

    OpenAIRE

    Bang, Y J; Pirnia, F; Fang, W G; Kang, W K; Sartor, O; Whitesell, L; Ha, M J; Tsokos, M.; Sheahan, M D; Nguyen, P.

    1994-01-01

    Recent clinicopathologic studies have shown that many prostatic adenocarcinomas express focal neuroendocrine differentiation and that neuroendocrine differentiation is most apparent in advanced anaplastic tumors. While studying growth-regulatory signal transduction events in human prostate carcinoma cell lines, we found that in two of four cell lines, the androgen-sensitive line LNCaP and the highly metastatic androgen-independent line PC-3-M, elevation of cAMP through addition of cAMP analog...

  13. Carcinome neuroendocrine du sein: à propos d'un cas et revue de ...

    African Journals Online (AJOL)

    Le carcinome neuroendocrine primitif du sein est une tumeur rare qui a été reconnue par la dernière édition de la classification OMS du cancer du sein publiée en 2003. Le diagnostic est évoqué sur des critères morphologiques et confirmé par l'expression des marqueurs neuroendocrines (chromogranine et ...

  14. A systematic comparison of on-axis and off-axis transmission Kikuchi diffraction

    DEFF Research Database (Denmark)

    Niessen, F.; Burrows, A.; Fanta, A. Bastos da Silva

    2018-01-01

    Abstract The capabilities of the novel on-axis transmission Kikuchi diffraction (TKD) technique were explored in a systematic comparison with conventional off-axis TKD. The effect of experimental parameters on the appearance of on-axis and off-axis Kikuchi patterns was measured and discussed. In ...... with the determined resolution, whereas off-axis TKD is more sensitive to beam drift. Band detection by the Hough-transform led to indexing of, on average, one additional Kikuchi band when measuring with on-axis TKD compared to off-axis TKD and operated more stable on on-axis patterns....

  15. Gut-Brain Axis: The Role of Gut Microbiota in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Alper Evrensel

    2015-12-01

    Full Text Available Gut microbiota is essential to human health, playing a major and important role in the bidirectional communication between the gut and the brain. There is significant evidence linking gut microbiota and metabolic disorders such as obesity, diabetes and neuropsychiatric disorders such as schizophrenia, autism, anxiety, depression. New studies show microbiota can activate immune system, neural pathways and central nervous system signaling systems, including commensal, probiotic and pathogenic microorganisms in the gastrointestinal tract. This microorganisms are capable of producing and delivering neuroactive substances such as gamma-aminobutyric acid and serotonin, which act on the gut-brain axis. Preclinical evaluation in rodents suggests that certain probiotics possess antidepressant or anxiolytic activity. Effects may be mediated via the vagus nerve, spinal cord, immune system or neuroendocrine systems. Here we review recent literature that examines the impact of gut microbiota on the brain, behavior and psychiatric disorders.

  16. Sex differences in the gut microbiome-brain axis across the lifespan.

    Science.gov (United States)

    Jašarević, Eldin; Morrison, Kathleen E; Bale, Tracy L

    2016-02-19

    In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan. © 2016 The Author(s).

  17. Sex differences in the gut microbiome–brain axis across the lifespan

    Science.gov (United States)

    Jašarević, Eldin; Morrison, Kathleen E.; Bale, Tracy L.

    2016-01-01

    In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome–brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan. PMID:26833840

  18. The Brain-Gut Axis Contributes to Neuroprogression in Stress-Related Disorders.

    Science.gov (United States)

    Rea, Kieran; Dinan, Timothy G; Cryan, John F

    2017-01-01

    There is a growing emphasis on the relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and brain health. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the brain, glands, gut, immune cells, and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis. Changes in this environment may contribute to the neuroprogression of stress-related disorders by altering physiological processes including hypothalamic-pituitary-adrenal axis activation, neurotransmitter systems, immune function, and inflammatory responses. While appropriate, coordinated physiological responses, such as immune or stress responses, are necessary for survival, the contribution of repeated or chronic exposure to stress may predispose individuals to a more vulnerable state leaving them more susceptible to stress-related disorders. In this chapter, the involvement of the gastrointestinal microbiota in stress- and immune-mediated modulation of neuroendocrine, immune, and neurotransmitter systems and the consequential behavior is considered. We also focus on the mechanisms by which commensal gut microbiota can regulate neuroinflammation and further aim to exploit our understanding of their role in the effects of the microbiota-gut-brain axis on the neuroprogression of stress-related disorders as a consequence of neuroinflammatory processes. © 2017 S. Karger AG, Basel.

  19. The influence of sleep on human hypothalamic-pituitary-adrenal (HPA) axis reactivity: A systematic review.

    Science.gov (United States)

    van Dalfsen, Jens H; Markus, C Rob

    2017-10-18

    Inadequate sleep is highly prevalent and known to decline both physical- and mental health. Literature suggests that altered functioning of the hypothalamic-pituitary-adrenal (HPA) axis might underlie this association. This assumption is mainly based on changes in basal neuroendocrine activity and it is of equal importance to elucidate whether sleep may also influence HPA stress responsiveness. The present review provides a complete outline of recent human studies that have investigated how different aspects of sleep influence cortisol reactivity to laboratory stress. From the available data it can be concluded that both objective and subjective decrements in sleep quality potentiate the stress reactivity of the HPA axis. On the contrary, normal variations in sleep duration do not seem to influence cortisol stress responsiveness whereas excessive daytime sleepiness is associated with a blunting of the cortisol response. Given its well-established health consequences, sensitization of the HPA axis might well be a crucial component linking inadequate sleep to stress-related pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Altered Neuroendocrine Immune Responses, a Two-Sword Weapon against Traumatic Inflammation.

    Science.gov (United States)

    Yang, Ce; Gao, Jie; Du, Juan; Yang, Xuetao; Jiang, Jianxin

    2017-01-01

    During the occurrence and development of injury (trauma, hemorrhagic shock, ischemia and hypoxia), the neuroendocrine and immune system act as a prominent navigation leader and possess an inter-system crosstalk between the reciprocal information dissemination. The fundamental reason that neuroendocrinology and immunology could mix each other and permeate toward the field of traumatology is owing to their same biological languages or chemical information molecules (hormones, neurotransmitters, neuropeptides, cytokines and their corresponding receptors) shared by the neuroendocrine and immune systems. The immune system is not only modulated by the neuroendocrine system, but also can modulate the biological functions of the neuroendocrine system. The interactive linkage of these three systems precipitates the complicated space-time patterns for the courses of traumatic inflammation. Recently, compelling evidence indicates that the network linkage pattern that initiating agents of neuroendocrine responses, regulatory elements of immune cells and effecter targets for immune regulatory molecules arouse the resistance mechanism disorders, which supplies the beneficial enlightenment for the diagnosis and therapy of traumatic complications from the view of translational medicine. Here we review the alternative protective and detrimental roles as well as possible mechanisms of the neuroendocrine immune responses in traumatic inflammation.

  1. The Structure of the Neuroendocrine Hypothalamus: The Neuroanatomical Legacy of Geoffrey Harris

    Science.gov (United States)

    Watts, Alan G.

    2015-01-01

    In November 1955 Geoffrey Harris published a paper based on the Christian A. Herter Lecture he had given earlier that year at Johns Hopkins University in Baltimore. The paper reviewed the contemporary research that was starting to explain how the hypothalamus controlled the pituitary gland. In the process of doing this Harris introduced a set of properties that would help define the neuroendocrine hypothalamus. They included: a) three criteria that putative releasing factors for adenohypophysial hormones would have to fulfill; b) an analogy between the representation of body parts in sensory and motor cortices and the spatial localization of neuroendocrine function in the hypothalamus; and c) the idea that neuroendocrine neurons were motor neurons, with the pituitary stalk functioning as a Sherringtonian final common pathway through which the impact of sensory and emotional events on neuroendocrine neurons had to pass to control pituitary hormone release. Were these properties a sign that the major neuroscientific discoveries being made in the early 1950s were beginning to influence neuroendocrinology? The present article discusses two main points: the context and significance of Harris's Herter Lecture for how our understanding of neuroendocrine anatomy (particularly as it relates to the control of the adenohypophysis) has developed since 1955; and within this framework, how novel and powerful techniques are taking our understanding of the structure of the neuroendocrine hypothalamus to new levels. PMID:25994006

  2. Thirty-five years of assisted reproductive technologies in Israel

    Directory of Open Access Journals (Sweden)

    Daphna Birenbaum-Carmeli

    2016-06-01

    Full Text Available Israel is known as a pronatalist country. Whether due to the Biblical commandment to ‘be fruitful and multiply’ or the traumas of the Holocaust and perennial wars, reproduction is a central life goal for most Israelis. Israeli women bear substantially more children than their counterparts in industrialized countries and view child-rearing as a key life accomplishment. These personal world-view and real-life individual quests take place in a context of equally pronatalist state policies and religious openness to assisted reproductive technologies. In this paper, I outline 35 years of assisted reproductive technologies in Israel by tracing a principal axis in the development of three major technologies of assisted reproduction: the proliferation of IVF-ICSI; the globalization of gamete donation; and the privatization of surrogacy. The paper is based on a policy analysis as well as various studies of assisted reproductive technologies, conducted in Israel over this period.

  3. The Radical Axis: A Motion Study

    Science.gov (United States)

    McGivney, Ray; McKim, Jim

    2006-01-01

    Interesting problems sometimes have surprising sources. In this paper we take an innocent looking problem from a calculus book and rediscover the radical axis of classical geometry. For intersecting circles the radical axis is the line through the two points of intersection. For nonintersecting, nonconcentric circles, the radical axis still…

  4. Insulin-like growth factors and fish reproduction.

    Science.gov (United States)

    Reinecke, Manfred

    2010-04-01

    Knowledge of fish reproduction is of high relevance to basic fish biology and comparative evolution. Furthermore, fish are excellent biomedical models, and the impact of aquaculture on worldwide food production is steadily increasing. Consequently, research on fish reproduction and the potential modes of its manipulation has become more and more important. Reproduction in fish is regulated by the integration of endogenous neuroendocrine (gonadotropins), endocrine, and autocrine/paracrine signals with exogenous (environmental) factors. The main endocrine regulators of gonadal sex differentiation and function are steroid hormones. However, recent studies suggest that other hormones are also involved. Most prominent among these hormones are the insulin-like growth factors (Igfs), i.e., Igf1, Igf2, and, most recently, Igf3. Thus, the present review deals with the expression patterns and potential physiological functions of Igf1 and Igf2 in male and female gonads. It further considers the potential involvement of growth hormone (Gh) and balances the reasons for endocrine vs. autocrine/paracrine action of the Igfs on the gonads of fish. Finally, this review discusses the early and late development of gonadal Igf1 and Igf2 and whether they are targets of endocrine-disrupting compounds. Future topics for novel research investigation on Igfs and fish reproduction are presented.

  5. Squalus cubensis Reproduction Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reproductive data from Squalus cubensis (Cuban dogfish) were opportunistically collected from 2005-2012. Data include those necessary to examine reproductive cycle,...

  6. Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms). Part II-specific NE tumour types

    DEFF Research Database (Denmark)

    Oberg, Kjell; Astrup, Lone Bording; Eriksson, Barbro

    2004-01-01

    Part II of the guidelines contains a description of epidemiology, histopathology, clinical presentation, diagnostic procedure, treatment, and survival for each type of neuroendocrine tumour. We are not only including gastroenteropancreatic tumours but also bronchopulmonary and thymic neuroendocrine...... tumours. These guidelines essentially cover basic knowledge in the diagnosis and management of the different forms of neuroendocrine tumour. We have, however, tried to give more updated information about the epidemiology and histopathology, which is essential for the clinical management of these tumours....

  7. TRIENNIAL REPRODUCTION SYMPOSIUM: Developmental programming of fertility.

    Science.gov (United States)

    Reynolds, L P; Vonnahme, K A

    2016-07-01

    The 2015 Triennial Reproduction Symposium focused on developmental programming of fertility. The topics covered during the morning session included the role of the placenta in programming of fetal growth and development, effects of feeding system and level of feeding during pregnancy on the annual production cycle and lifetime productivity of heifer offspring, effects of litter size and level of socialization postnatally on reproductive performance of pigs, effects of postnatal dietary intake on maturation of the hypothalamic-pituitary-gonadal axis and onset of puberty in heifers, effects of housing systems on growth performance and reproductive efficiency of gilts, and effects of energy balance on sexual differentiation in rodent models. The morning session concluded with presentation of the American Society of Animal Science L. E. Casida Award for Excellence in Graduate Education to Dr. Michael Smith from the University of Missouri, Columbia, who shared his philosophy of graduate education. The afternoon session included talks on the role of epigenetic modifications in developmental programming and transgenerational inheritance of reproductive dysfunction, effects of endocrine disrupting compounds on fetal development and long-term physiology of the individual, and potential consequences of real-life exposure to environmental contaminants on reproductive health. The symposium concluded with a summary talk and the posing of 2 questions to the audience. From an evolutionary standpoint, programming and epigenetic events must be adaptive; when do they become maladaptive? If there are so many environmental factors that induce developmental programming, are we doomed, and if not, what is or are the solution or solutions?

  8. Pulmonary neuroendocrine carcinoma mimicking neurocysticercosis: a case report.

    Science.gov (United States)

    Lam, John C; Robinson, Stephen R; Schell, Andrew; Vaughan, Stephen

    2016-06-02

    Neurocysticercosis occurs when the eggs of the pork tapeworm (Taenia solium) migrate and hatch into larvae within the central nervous system. Neurocysticercosis is the most common cause of seizures in the developing world and is characterized on brain imaging by cysts in different stages of evolution. In Canada, cases of neurocysticercosis are rare and most of these patients acquire the disease outside of Canada. We report the case of a patient with multiple intracranial lesions whose history and diagnostic imaging were consistent with neurocysticercosis. Pathological investigations ultimately demonstrated that her brain lesions were secondary to malignancy. Brain metastases are considered to be the most common cause of intracranial cystic lesions. We present the case of a 60-year-old Canadian-born Caucasian woman with a subacute history of ataxia, lower extremity hyper-reflexia, and otalgia who resided near a pig farm for most of her childhood. Computed tomography and magnetic resonance imaging showed that she had multiple heterogeneous intracranial cysts, suggestive of neurocysticercosis. Despite a heavy burden of disease, serological tests for cysticercosis were negative. This result and a lack of the central scolices on neuroimaging that are pathognomonic of neurocysticercosis prompted whole-body computed tomography imaging to identify another etiology. The whole-body computed tomography revealed right hilar lymphadenopathy associated with soft tissue nodules in her chest wall and abdomen. A biopsy of an anterior chest wall nodule demonstrated high-grade poorly differentiated carcinoma with necrosis, which stained strongly positive for thyroid transcription factor-1 and synaptophysin on immunohistochemistry. A diagnosis of stage 4 metastatic small cell neuroendocrine carcinoma was made and our patient was referred for oncological palliative treatment. This case illustrates the importance of the diagnostic approach to intracranial lesions. Our patient

  9. Spectrum of malignant somatostatin-producing neuroendocrine tumors.

    Science.gov (United States)

    Moayedoddin, Baback; Booya, Fargol; Wermers, Robert A; Lloyd, Ricardo V; Rubin, Joseph; Thompson, Geoffrey B; Fatourechi, Vahab

    2006-01-01

    To evaluate the clinical manifestations and outcome of patients with somatostatinomas--rare neuroendocrine tumors of pancreaticoduodenal origin. We searched the medical archives and tumor registry of our institution for somatostatinomas or somatostatin-staining tumors for the 12-year period from January 1990 to February 2002. In addition, we reviewed laboratory databases for patients who had an elevated serum somatostatin level. Patients with a neuroendocrine tumor and an elevated serum somatostatin level or somatostatin-positive tumor immunostaining were included in this study. Eleven patients qualified (9 men and 2 women; median age at diagnosis, 45 years; age range, 22 to 73). The diagnosis of a somatostatinoma was made by immunostaining of the tumor in 9 patients and by finding elevated serum somatostatin levels in 2. Five primary tumors were of duodenal and 6 of pancreatic origin. Psammoma body formation and association with neurofibromatosis were seen only in the duodenal tumors. The known primary tumor sizes varied from 2 to 6 cm. Liver metastatic lesions were present in 6 patients, abdominal lymph node involvement was found in 10 patients, and lung, spleen, and ovarian metastatic involvement was noted in 1 patient each. Diabetes was present in 4 patients (36%) and cholelithiasis in 7 (64%). The presence of a mass led to the diagnosis in most patients with primary duodenal tumors, whereas patients with pancreatic tumors were more likely to have endocrine manifestations. A Whipple procedure was performed in 6 patients, distal pancreatectomy in 3, hepatic artery embolization or ligation in 3, and partial hepatectomy in 1. Cancer-related death occurred in 4 patients, 1 to 8 years after diagnosis (median, 4.5 years). At last follow-up, 2 patients were alive without evidence of disease (8 and 10 years after diagnosis), and 3 were alive with liver metastatic lesions. The status of 2 patients was unclear. Somatostatinomas occurred with approximately equal frequency

  10. CLINICAL VALUE OF CHROMOGRANIN A IN GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS

    Directory of Open Access Journals (Sweden)

    N. V. Lyubimova

    2015-01-01

    Full Text Available Background: Neuroendocrine tumors (NET is a heterogeneous group of neoplasms characterized by hypersecretion of biologically active sub- stances that manifests by specific syndromes and determines the clinical course of the disease. The most common NET types are those of gastrointestinal tract. The obligatory biochemical marker used in the examination of NET patients is chromogranin A (CgA.Aim: Evaluation of the CgA value for diagnostics and monitoring of gastrointestinal NETs.Materials and methods: A comparative study of plasma CgA levels was performed in 146 patients with gastroenteropancreatic neuroendocrine tu- mors and 66 healthy individuals using the enzyme immunoassay “Chromogranin A ELISA kit” (Dako A/S, Denmark.Results: CgA levels were significantly higher in patients with NETs of all localizations, such as pancreas, stomach, gut, small and large bowel, than in the healthy subjects (р < 0.000001. In NET patients, CgA secretion was highly variable, with the highest value in the group of patients with gastric NETs (102000 U/l. The highest CgA medians were detected in patients with small intestinal (183.9 U/l, colon (148.4 U/l and pancreatic (135.9 U/l NETs. There was an association between CgA secretion and extension or activity of NETs, with the highest median values in patients with hepatic metastases (395 U/l and those with carcinoid syndrome (352 U/l. The clinical significance of CgA as a NET marker was assessed using the cut-off value of 33 U/l, calculated according to the results in the control group. Overall diagnostic sensitivity of CgA in NET patients was high (85.8% with a specificity of 98.5%. Conclusion: The results obtained confirm a high sensitivity of CgA as a NET marker whose determination helps to improve accuracy of diagnostics and to assess NET prevalence.

  11. Mercury's rotation axis and period

    Science.gov (United States)

    Klaasen, K. P.

    1976-01-01

    Recent measurements made from high-resolution Mariner 10 photography of the planet Mercury yield a rotation period of 58.6461 + or 0.005 days, in excellent agreement with the period required for a precise 2/3 resonance with its orbital period (58.6462 days). The axis of rotation of the planet was calculated to be offset about 2 deg from the perpendicular to its orbital plane within a 50% probability error ellipse of + or - 2.6 deg by + or - 6.5 deg. Dynamical considerations make it most likely that the true displacement from the orbit normal is less than 1 deg.

  12. Drug effects on neuroendocrine regulation; Proceedings of the International Symposium, Snowmass-at-Aspen, Colo., July 17-19, 1972

    Science.gov (United States)

    Zimmermann, E. (Editor); Gispen, W. H.; Marks, B. H.; De Wied, D.

    1973-01-01

    Subjects related to the characterization of neuroendocrine systems are discussed, taking into account the need for the precise identification and rigorous description of their operations. Steroid effects on neuroendocrine system performance are considered along with biogenic amine effects on neuroendocrine systems and the influence of drugs of abuse on neuroendocrine behavior. Other topics explored include pituitary-adrenal influences on avoidance and approach behavior of the rat, the adrenocortical mediation of the effects of early life experiences, and the implication of noradrenaline in avoidance learning in the rat. Individual items are announced in this issue.

  13. Male Reproductive System (For Teens)

    Science.gov (United States)

    ... Why Exercise Is Wise Are Detox Diets Safe? Male Reproductive System KidsHealth > For Teens > Male Reproductive System ... and female reproductive systems. continue What Is the Male Reproductive System? Most species have two sexes: male ...

  14. Neuroendocrine regulation of gonadotropin secretion in seasonally breeding birds

    Directory of Open Access Journals (Sweden)

    Takayoshi eUbuka

    2013-03-01

    Full Text Available Seasonally breeding birds detect environmental signals, such as light, temperature, food availability and presence of mates to time reproduction. Hypothalamic neurons integrate external and internal signals, and regulate reproduction by releasing neurohormones to the pituitary gland. The pituitary gland synthesizes and releases gonadotropins which in turn act on the gonads to stimulate gametogenesis and sex steroid secretion. Accordingly, how gonadotropin secretion is controlled by the hypothalamus is key to our understanding of the mechanisms of seasonal reproduction. A hypothalamic neuropeptide, gonadotropin-releasing hormone (GnRH, activates reproduction by stimulating gonadotropin synthesis and release. Another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH, inhibits gonadotropin synthesis and release directly by acting on the pituitary gland or indirectly by decreasing the activity of GnRH neurons. Therefore, the next step to understand seasonal reproduction is to investigate how the activities of GnRH and GnIH neurons in the hypothalamus and their receptors in the pituitary gland are regulated by external and internal signals. It is possible that locally-produced triiodothyronine resulting from the action of type 2 iodothyronine deiodinase on thyroxine stimulates the release of gonadotropins, perhaps by action on GnRH neurons. The function of GnRH neurons is also regulated by transcription of the GnRH gene. Melatonin, a nocturnal hormone, stimulates the synthesis and release of GnIH and GnIH may therefore regulate a daily rhythm of gonadotropin secretion. GnIH may also temporally suppress gonadotropin secretion when environmental conditions are unfavorable. Environmental and social milieus fluctuate seasonally in the wild. Accordingly, complex interactions of various neuronal and hormonal systems need to be considered if we are to understand the mechanisms underlying seasonal reproduction.

  15. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms.

    Science.gov (United States)

    Wang, Luoquan; Ignat, Ana; Axiotis, Constantine A

    2002-06-01

    Genetic alteration and loss of expression of tumor suppressor gene PTEN has been found in carcinomas of the breast, prostate, and endometrium, as well as in gliomas. PTEN expression in neural crest/neuroendocrine (NC/NE) tissues and in neoplasms has not been reported. This study examines PTEN expression in embryonal, fetal, and adult tissues by immunohistochemistry. The authors found high PTEN expression in embryonal, fetal, and adult NC/NE tissues. The authors also study the PTEN expression in NC/NE neoplasms (N = 37), including 5 melanocytic nevi, 2 melanomas, 9 carcinoids, 2 moderately differentiated neuroendocrine carcinomas, 13 poorly differentiated neuroendocrine carcinomas, 2 paragangliomas, 2 pheochromocytomas, 2 medullary thyroid carcinomas, and 1 neuroblastoma. All carcinoid tumors and melanocytic nevi showed moderate or strong immunostaining for PTEN. In contrast, the majority of poorly differentiated neuroendocrine carcinomas (7 of 13) were negative for PTEN (54%); the remainder showed diminished reactivity. The two melanomas studied were also negative for PTEN immunostaining. The paragangliomas, pheochromocytomas, medullary thyroid carcinomas, and neuroblastoma all showed a strong PTEN stain. The authors postulate that PTEN is a differentiation marker for NC/NE tissue and tumors and that loss of PTEN expression may represent an important step in the progression of NE tumors.

  16. High grade neuroendocrine lung tumors: pathological characteristics, surgical management and prognostic implications.

    Science.gov (United States)

    Grand, Bertrand; Cazes, Aurélie; Mordant, Pierre; Foucault, Christophe; Dujon, Antoine; Guillevin, Elizabeth Fabre; Barthes, Françoise Le Pimpec; Riquet, Marc

    2013-09-01

    Among non-small cell lung cancers (NSCLC), large cell carcinoma (LCC) is credited of significant adverse prognosis. Its neuroendocrine subtype has even a poorer diagnosis, with long-term survival similar to small cell lung cancer (SCLC). Our purpose was to review the surgical characteristics of those tumors. The clinical records of patients who underwent surgery for lung cancer in two French centers from 1980 to 2009 were retrospectively reviewed. We more particularly focused on patients with LCC or with high grade neuroendocrine lung tumors. High grade neuroendocrine tumors were classified as pure large cell neuroendocrine carcinoma (pure LCNEC), NSCLC combined with LCNEC (combined LCNEC), and SCLC combined with LCNEC (combined SCLC). There were 470 LCC and 155 high grade neuroendocrine lung tumors, with no difference concerning gender, mean age, smoking habits. There were significantly more exploratory thoracotomies in LCC, and more frequent postoperative complications in high grade neuroendocrine lung tumors. Pathologic TNM and 5-year survival rates were similar, with 5-year ranging from 34.3% to 37.6% for high grade neuroendocrine lung tumors and LCC, respectively. Induction and adjuvant therapy were not associated with an improved prognosis. The subgroups of LCNEC (pure NE, combined NE) and combined SCLC behaved similarly, except visceral pleura invasion, which proved more frequent in combined NE and less frequent in combined SCLC. Survival analysis showed a trend toward a lower 5-year survival in case of combined SCLC. Therefore, LCC, LCNEC and combined SCLC share the same poor prognosis, but surgical resection is associated with long-term survival in about one third of patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Locally-advanced primary neuroendocrine carcinoma of the breast: case report and review of the literature.

    Science.gov (United States)

    Angarita, Fernando A; Rodríguez, Jorge L; Meek, Eugenio; Sánchez, Jesus O; Tawil, Mauricio; Torregrosa, Lilian

    2013-06-05

    Primary neuroendocrine carcinoma of the breast is a heterogeneous group of rare tumors with positive immunoreactivity to neuroendocrine markers in at least 50% of cells. Diagnosis also requires that other primary sites be ruled out and that the same tumor show histological evidence of a breast in situ component. Primary neuroendocrine carcinoma of the breast rarely presents as locally advanced disease and less frequently with such widespread metastatic disease as described herein. The review accompanying this case report is the first to provide an overview of all the cases of primary neuroendocrine carcinoma of the breast published in the literature and encompasses detailed information regarding epidemiology, histogenesis, clinical and histologic diagnosis criteria, classification, surgical and adjuvant treatment, as well as prognosis. We also provide recommendations for common clinical and histologic pitfalls associated with this tumor. We describe a case of a 51-year-old Hispanic woman initially diagnosed with locally-advanced invasive ductal carcinoma that did not respond to neoadjuvant treatment. After undergoing modified radical mastectomy the final surgical pathology showed evidence of alveolar-type primary neuroendocrine carcinoma of the breast. The patient was treated with cisplatin/etoposide followed by paclitaxel/carboplatinum. Thirteen months after surgery the patient is alive, but developed pulmonary, bone, and hepatic metastasis. The breast in situ component of primary neuroendocrine carcinoma of the breast may prevail on a core biopsy samples increasing the probability of underdiagnosing this tumor preoperatively. Being aware of the existence of this disease allows for timely diagnosis and management. Optimal treatment requires simultaneous consideration of both the neuroendocrine and breast in situ tumor features.

  18. NOTCH SIGNALLING MODULATES HYPOXIA-INDUCED NEUROENDOCRINE DIFFERENTIATION OF HUMAN PROSTATE CANCER CELLS

    Science.gov (United States)

    Danza, Giovanna; Di Serio, Claudia; Rosati, Fabiana; Lonetto, Giuseppe; Sturli, Niccolò; Kacer, Doreen; Pennella, Antonio; Ventimiglia, Giuseppina; Barucci, Riccardo; Piscazzi, Annamaria; Prudovsky, Igor; Landriscina, Matteo; Marchionni, Niccolò; Tarantini, Francesca

    2012-01-01

    Prostate carcinoma is among the most common causes of cancer-related death in men, representing 15% of all male malignancies in developed countries. Neuroendocrine differentiation has been associated with tumor progression, poor prognosis and with the androgen-independent status. Currently, no successful therapy exists for advanced, castration-resistant disease. Because hypoxia has been linked to prostate cancer progression and unfavourable outcome, we sought to determine whether hypoxia would impact the degree of neuroendocrine differentiation of prostate cancer cells, in vitro. Results exposure of LNCaP cells to low oxygen tension induced a neuroendocrine phenotype, associated with an increased expression of the transcription factor neurogenin3 and neuroendocrine markers, such as neuron-specific enolase, chromogranin A and β3-tubulin. Moreover, hypoxia triggered a significant decrease of Notch 1 and Notch 2 mRNA and protein expression, with subsequent down regulation of Notch-mediated signalling, as demonstrated by reduced levels of the Notch target genes, Hes1 and Hey1. Neuroendocrine differentiation was promoted by attenuation of Hes1 transcription, as cells expressing a dominant negative form of Hes1 displayed increased levels of neuroendocrine markers under normoxic conditions. Although hypoxia down regulated Notch 1 and Notch 2 mRNA transcription and receptor activation also in the androgen independent cell lines, PC3 and Du145, it did not change the extent of NE differentiation in these cultures, suggesting that androgen sensitivity may be required for transdifferentiation to occur. Conclusions hypoxia induces neuroendocrine differentiation of LNCaP cells in vitro, which appears to be driven by the inhibition of Notch signalling with subsequent down-regulation of Hes1 transcription. PMID:22172337

  19. Flexible helical-axis stellarator

    Science.gov (United States)

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  20. Nutrition and reproduction in women.

    Science.gov (United States)

    2006-01-01

    Malnutrition is a major problem in developing countries, and obesity and eating disorders are increasingly common in developing as well as developed countries. The reproductive axis is closely linked to nutritional status, especially undernutrition in the female, and inhibitory pathways involving detectors in the hind brain suppress ovulation in subjects with weight loss. Recovery may occur after minimal reacquisition of weight because energy balance is more important than body fat mass. Anorexia nervosa and bulimia nervosa affect up to 5% of women of reproductive age causing amenorrhoea, infertility and, in those who do conceive, an increased likelihood of miscarriage. Obesity can affect reproduction through fat cell metabolism, steroids and secretion of proteins such as leptin and adiponectin and through changes induced at the level of important homeostatic factors such as pancreatic secretion of insulin, androgen synthesis by the ovary and sex hormone-binding globulin (SHBG) production by the liver. WHO estimates that 9 to 25% of women in developed countries are severely obese, and obese mothers are much more likely to have obese children, especially if they have gestational diabetes. Obesity-associated anovulation may lead to infertility and to a higher risk of miscarriage. Management of anovulation with obesity involves diet and exercise as well as standard approaches to ovulation induction. Many obese women conceive without assistance, but pregnancies in obese women have increased rates of pregnancy-associated hypertension, gestational diabetes, large babies, Cesarean section and perinatal mortality and morbidity. Among contraceptors, the fear of weight gain affects uptake and continuation of hormonal contraceptives, although existing trials indicate that any such effects are small. For all methods of hormonal contraception, weight above 70 kg is associated with increased failure rates.

  1. Epidemiology of neuroendocrine cancers in an Australian population.

    Science.gov (United States)

    Luke, Colin; Price, Timothy; Townsend, Amanda; Karapetis, Christos; Kotasek, Dusan; Singhal, Nimit; Tracey, Elizabeth; Roder, David

    2010-06-01

    The aim was to explore incidence, mortality and case survivals for invasive neuroendocrine cancers in an Australian population and consider cancer control implications. Directly age-standardised incidence and mortality rates were investigated from 1980 to 2006, plus disease-specific survivals. Annual incidence per 100,000 increased from 1.7 in 1980-1989 to 3.3 in 2000-2006. A corresponding mortality increase was not observed, although numbers of deaths were low, reducing statistical power. Increases in incidence affected both sexes and were more evident for female lung, large bowel (excluding appendix), and unknown primary site. Common sites were lung (25.9%), large bowel (23.3%) (40.9% were appendix), small intestine (20.6%), unknown primary (15.0%), pancreas (6.5%), and stomach (3.7%). Site distribution did not vary by sex (p = 0.260). Younger ages at diagnosis applied for lung (p = 0.002) and appendix (p colon (excluding appendix). Incidence rates are increasing. Research is needed into possible aetiological factors for lung and large-bowel sites, including tobacco smoking, and excess body weight and lack of exercise, respectively; and Crohn's disease as a possible precursor condition.

  2. An unusual association of neuroendocrine tumors in MEN 1A.

    Science.gov (United States)

    Varsavsky, Mariela; Reyes-García, Rebeca; Alonso García, Guillermo; Muñoz-Torres, Manuel

    2012-09-01

    Multiple Endocrine Neoplasia type 1 is an autonomic dominant disease with a high degree of penetrance. It is characterized by combinations of over 20 different endocrine and nonendocrine tumors. A 25-year-old woman was referred for 1 year-evolution amenorrhea and bilateral galactorrhea. She also had fasting hypoglycaemia and hypercalcemia, and she was diagnosed of Multiple Endocrine Neoplasia type 1A. Resection of three parathyroid glands was performed showing hyperplasia of principal cells. Post-parathyroidectomy serum levels of calcium and intact PTH were normal but 3 years later serum calcium levels rose again. A 99mTc-sestamibi scan showed increased uptake in the low right area compatible with adenoma. After biochemical test showing probable insulinoma, somatostatin receptor scintigraphy showed a focal captation in head and body of pancreas. MRI found two nodules in the same localization. An antral gastrectomy, total pancreatoduodenectomy, colecistectomy and truncal vagotomy was performed and histopathologic examination revealed a combination of neuroendocrine tumors: gastrinomas, somastotinomas, glucagonomas and insulinomas. After surgery she started with tingling in fingers, toes and lips, and calcium levels was 5.9 mg/dl and PTH intact 3 pg/ml. A new 99m Tc-sestamibi scan showed no captation and cervical ultrasonography was normal. Now, 2 years later, she continues with normal calcium and i-PTH levels. This report represents an unusual case of MEN 1A with association of insulinomas, gastrinomas glucagonomas and somatostatinomas in the same patient.

  3. [Genetic and neuroendocrine aspects in autism spectrum disorder].

    Science.gov (United States)

    Oviedo, Norma; Manuel-Apolinar, Leticia; de la Chesnaye, Elsa; Guerra-Araiza, Christian

    The autism spectrum disorder (ASD) was described in 1943 and is defined as a developmental disorder that affects social interaction and communication. It is usually identified in early stages of development from 18 months of age. Currently, autism is considered a neurological disorder with a spectrum covering cases of different degrees, which is associated with genetic factors, not genetic and environmental. Among the genetic factors, various syndromes have been described that are associated with this disorder. Also, the neurobiology of autism has been studied at the genetic, neurophysiological, neurochemical and neuropathological levels. Neuroimaging techniques have shown multiple structural abnormalities in these patients. There have also been changes in the serotonergic, GABAergic, catecholaminergic and cholinergic systems related to this disorder. This paper presents an update of the information presented in the genetic and neuroendocrine aspects of autism spectrum disorder. Copyright © 2014 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Evaluation of neuroendocrine markers in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Kauppila Saila

    2010-05-01

    Full Text Available Abstract Background The purpose of the study was to examine serotonin, CD56, neurone-specific enolase (NSE, chromogranin A and synaptophysin by immunohistochemistry in renal cell carcinomas (RCCs with special emphasis on patient outcome. Methods We studied 152 patients with primary RCCs who underwent surgery for the removal of kidney tumours between 1990 and 1999. The mean follow-up was 90 months. The expression of neuroendocrine (NE markers was determined by immunohistochemical staining using commercially available monoclonal antibodies. Results were correlated with patient age, clinical stage, Fuhrman grade and patient outcome. Results Eight percent of tumours were positive for serotonin, 18% for CD56 and 48% for NSE. Chromogranin A immunostaining was negative and only 1% of the tumours were synaptophysin immunopositive. The NSE immunopositivity was more common in clear cell RCCs than in other subtypes (p = 0.01. The other NE markers did not show any association with the histological subtype. Tumours with an immunopositivity for serotonin had a longer RCC-specific survival and tumours with an immunopositivity for CD56 and NSE had a shorter RCC-specific survival but the difference was not significant. There was no relationship between stage or Fuhrman grade and immunoreactivity for serotonin, CD56 and NSE. Conclusions Serotonin, CD56 and NSE but not synaptophysin and chromogranin A are expressed in RCCs. However, the prognostic potential of these markers remains obscure.

  5. Ileal neuroendocrine tumors and heart: not only valvular consequences.

    Science.gov (United States)

    Calissendorff, Jan; Maret, Eva; Sundin, Anders; Falhammar, Henrik

    2015-04-01

    Ileal neuroendocrine tumors (NETs) often progress slowly, but because of their generally nonspecific symptoms, they have often metastasized to local lymph nodes and to the liver by the time the patient presents. Biochemically, most of these patients have increased levels of whole blood serotonin, urinary 5-hydroxyindoleacetic acid, and chromogranin A. Imaging work-up generally comprises computed tomography or magnetic resonance imaging and somatostatin receptor scintigraphy, or in recent years positron emission tomography with 68Ga-labeled somatostatin analogs, allowing for detection of even sub-cm lesions. Carcinoid heart disease with affected leaflets, mainly to the right side of the heart, is a well-known complication and patients routinely undergo echocardiography to diagnose and monitor this. Multitasking surgery is currently recognized as first-line treatment for ileal NETs with metastases and carcinoid heart disease. Open heart surgery and valve replacement are advocated in patients with valvular disease and progressive heart failure. When valvulopathy in the tricuspid valve results in right-sided heart failure, a sequential approach, performing valve replacement first before intra-abdominal tumor-reductive procedures are conducted, reduces the risk of bleeding. Metastases to the myocardium from ileal NETs are seen in heart metastases are detected, with the addition of diuretics and fluid restriction in cases of heart failure. Myocardial metastases are rarely treated by surgical resection.

  6. Genetic and epigenetic drivers of neuroendocrine tumours (NET).

    Science.gov (United States)

    Di Domenico, Annunziata; Wiedmer, Tabea; Marinoni, Ilaria; Perren, Aurel

    2017-09-01

    Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development. © 2017 Society for Endocrinology.

  7. Outcome and CT differentiation of gallbladder neuroendocrine tumours from adenocarcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hyung [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Se Hyung [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital and Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Kyoung Boon [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Han, Joon Koo [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2017-02-15

    To retrospectively investigate clinical outcome and differential CT features of gallbladder (GB) neuroendocrine tumours (NETs) from adenocarcinomas (ADCs). Nineteen patients with poorly-differentiated (PD) NETs and 19 patients with PD ADCs were enrolled. Clinical outcome was compared by the Kaplan-Meier method. We assessed qualitative and quantitative CT features to identify significant differential CT features of PD NETs from ADCs using univariate and multivariate analyses. Receiver operating characteristic (ROC) analysis was used for quantitative CT features. PD NETs showed poorer prognosis with significantly shorter median survival days than ADCs (363 vs. 590 days, P = 0.03). On univariate analysis, NETs more frequently manifested as GB-replacing type and showed well-defined margins accompanied with intact overlying mucosa. On multivariate analysis, well-defined margin was the sole significant CT differentiator (odds ratio = 27.817, P = 0.045). Maximum size of hepatic and lymph node (LN) metastases was significantly larger in NETs (11.0 cm and 4.62 cm) than ADCs (2.40 cm and 2.41 cm). Areas under ROC curves for tumour-to-mucosa ratio, maximum size of hepatic and LN metastasis were 0.772, 0.932 and 0.919, respectively (P < 0.05). GB PD NETs show poorer prognosis than ADCs. Well-defined margin, larger hepatic and LN metastases are useful CT differentiators of GB NETs from ADCs. (orig.)

  8. The many faces of neuroendocrine differentiation in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Stephane eTerry

    2014-03-01

    Full Text Available In normal prostate, neuroendocrine (NE cells are rare and interspersed among the epithelium. These cells are believed to provide trophic signals to epithelial cell populations through the secretion of an abundance of neuropeptides that can diffuse to influence surrounding cells. In the setting of prostate cancer (PC, NE cells can also stimulate surrounding prostate adenocarcinoma cell growth, but in some cases adenocarcinoma cells themselves acquire NE characteristics. This epithelial plasticity is associated with decreased androgen receptor (AR signaling and the accumulation of neuronal and stem cell characteristics. Transformation to a NE phenotype is one proposed mechanism of resistance to contemporary AR targeted treatments, is associated with poor prognosis, and thought to represent up to 25% of lethal PCs. Importantly, the advent of high-throughput technologies has started to provide clues for understanding the complex molecular profiles of tumors exhibiting NE differentiation. Here, we discuss these recent advances, the multifaceted manner by which a NE-like state may arise during the different stages of disease progression, and the potential benefit of this knowledge for the management of patients with advanced PC

  9. Metabonomic profiling: a novel approach in neuroendocrine neoplasias.

    Science.gov (United States)

    Kinross, James M; Drymousis, Panagiotis; Jiménez, Beatriz; Frilling, Andrea

    2013-12-01

    A metabonomic phenotyping strategy was developed as part of a pilot study to define a diagnostic metabolic phenotype for neuroendocrine neoplasms (NEN). Twenty-eight patients with NEN were prospectively recruited: small bowel NEN, n = 8; pancreatic NEN, n = 10; and others, n = 10 (mean age 49.4 years [26–81] male/female ratio 17:11). There were 17 healthy control patients. Urine samples were subjected to 1H nuclear magnetic resonance spectroscopic profiling via the use of a Bruker Avance 600-MHz spectrometer (Bruker, Rheinstetten, Germany). Acquired spectral data were imported into SIMCA and MATLAB for supervised and unsupervised multivariate analysis. Partial least squares-discriminant analysis differentiated between NEN and healthy samples with accuracy (R(2)Y = 0.79, Q2Y = 0.53, area under the curve [AUC] 0.90). Orthogonal partial least squares-discriminant analysis was able to distinguish between small bowel NEN and pancreatic NEN (R2Y = 0.91, Q2Y = 0.35). Subclass analysis also demonstrated class separation between functional and nonfunctional NEN (R2Y = 0.98, Q2Y = 0.77, AUC 0.6) and those with metastases (R2Y = 0.72 , Q2 Y = 0.41, AUC 0.86) due to variations in hippurate metabolism (P < .0001). Metabonomic analysis suggests that subgroups of NEN may possess a stratified metabolic phenotype. Metabolic profiling could provide novel biomarkers for NEN.

  10. Reproductive isolation during domestication.

    Science.gov (United States)

    Dempewolf, Hannes; Hodgins, Kathryn A; Rummell, Sonja E; Ellstrand, Norman C; Rieseberg, Loren H

    2012-07-01

    It has been hypothesized that reproductive isolation should facilitate evolution under domestication. However, a systematic comparison of reproductive barrier strength between crops and their progenitors has not been conducted to test this hypothesis. Here, we present a systematic survey of reproductive barriers between 32 economically important crop species and their progenitors to better understand the role of reproductive isolation during the domestication process. We took a conservative approach, avoiding those types of reproductive isolation that are poorly known for these taxa (e.g., differences in flowering time). We show that the majority of crops surveyed are isolated from their progenitors by one or more reproductive barriers, despite the fact that the most important reproductive barrier in natural systems, geographical isolation, was absent, at least in the initial stages of domestication for most species. Thus, barriers to reproduction between crops and wild relatives are closely associated with domestication and may facilitate it, thereby raising the question whether reproductive isolation could be viewed as a long-overlooked "domestication trait." Some of the reproductive barriers observed (e.g., polyploidy and uniparental reproduction), however, may have been favored for reasons other than, or in addition to, their effects on gene flow.

  11. RFRP neurons - the doorway to understanding seasonal reproduction in mammals

    Directory of Open Access Journals (Sweden)

    Jo Beldring Henningsen

    2016-05-01

    Full Text Available Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24h light/dark ratio (i.e. photoperiod, which is translated into the nocturnal production of the pineal hormone melatonin. The annual rhythm in this melatonin signal acts as a synchronizer ensuring that breeding occurs when environmental conditions favor survival of the offspring. Although specific mechanisms might vary among seasonal species, the hypothalamic RF (Arg-Phe amide-related peptides (RFRP-1 and -3 are believed to play a critical role in the central control of seasonal reproduction and in all seasonal species investigated, the RFRP system is persistently inhibited in short photoperiod. Central chronic administration of RFRP-3 in short day-adapted male Syrian hamsters fully reactivates the reproductive axis despite photoinhibitory conditions, which highlights the importance of the seasonal changes in RFRP expression for proper regulation of the reproductive axis. The acute effects of RFRP peptides, however, depend on species, photoperiod and recent studies point towards a different role of RFRP in regulating female reproductive activity. In this review we summarize the recent advances made to understand the role and underlying mechanisms of RFRP in the seasonal control of reproduction, primarily focusing on mammalian species.

  12. Reproduction (II): Human Control of Reproductive Processes

    Science.gov (United States)

    Jost, Alfred

    1970-01-01

    Describes methods of intervening in reproduction of animals and humans (artificial insemination, contraception, ovular and blastodisc transplants, pre selection of sex, cloning) and discusses the social implications of their use with humans. (AL)

  13. [Psychological processes of stress management and neuroendocrine regulation in incarcerated adolescent offenders: A pilot study].

    Science.gov (United States)

    Guillod, L; Habersaat, S; Suter, M; Jeanneret, T; Bertoni, C; Stéphan, P; Urben, S

    2016-10-10

    Adolescence is a stressful period where important biological, psychological and social changes occur. Adolescents are particularly vulnerable during this developmental period and can use various strategies to deal with daily stress, such as substance use or externalizing behaviors. In previous studies, stress in adolescents with externalizing behaviors was often linked to ineffective cognitive coping strategies (i.e., constructive thinking) and overlooking the biological aspects involved in stress management such as neuroendocrine regulation. Indeed, repeated activation of the hypothalamic-pituitary-adrenal (HPA) axis in chronic stress situations may have long-term effects on subsequent cortisol regulation and lead to psychological difficulties. It was also shown that basal cortisol levels are lower in adolescents with externalizing behaviors. This study aims to assess the links between constructive thinking and neuroendocrine regulation in adolescent offenders and their association with externalizing symptoms (e.g., aggression, delinquency, psychopathic traits, substance use). Identifying particular biopsychological patterns can help to better understand stress management in youth with externalizing behaviors and to improve clinical treatments. Sixteen adolescent males aged from 12 to 18 years were recruited in an institution for juvenile offenders. Exclusion criteria were insufficient reasoning abilities assessed using the Raven Matrices Test. Regarding psychological dimensions, constructive thinking was assessed through the Constructive thinking inventory (CTI), psychopathic traits through the Youth psychopathic traits inventory (YPI), externalizing behaviors through 30 items (out of 113) and 2 subscales (aggressive behavior and delinquency problems) from the Child behavior checklist-youth self-report (CBCL), and substance use through the Dep-ado. Regarding biological dimensions, cortisol daily secretion and regulation were assessed through saliva samples

  14. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations.

    Directory of Open Access Journals (Sweden)

    Bruno Francou

    Full Text Available CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%. We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001 higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.

  15. Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era.

    Science.gov (United States)

    Stamou, M I; Cox, K H; Crowley, William F

    2016-02-01

    The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).

  16. Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the “-Omics” Era

    Science.gov (United States)

    Stamou, M. I.; Cox, K. H.

    2015-01-01

    The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the “known” genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. PMID:26394276

  17. Large cell neuroendocrine carcinoma of the kidney with cardiac metastasis: a case report

    Directory of Open Access Journals (Sweden)

    Moeka Shimbori

    2017-10-01

    Full Text Available Abstract Background Primary large cell neuroendocrine carcinoma of the kidney is a rare and generally very aggressive disease. We present a case of a patient with primary large cell neuroendocrine carcinoma of the kidney with cardiac metastasis. Case presentation A 59-year-old Japanese man presented to his previous physician with hematuria. Computed tomography revealed masses in the heart and right kidney, and fluorodeoxyglucose-positron emission tomography showed abnormal uptake in the heart. A cardiac biopsy under transesophageal echocardiographic guidance revealed a metastatic tumor. Subsequently, multiple lung lesions were detected, and a right nephrectomy was performed after these metastases were suspected to have originated from renal carcinoma. Large cell neuroendocrine carcinoma of the kidney was ultimately diagnosed. Pancreatic metastasis was detected on computed tomography postoperatively. Three courses of chemotherapy with carboplatin and irinotecan were administered, and were temporarily effective against the metastatic lesions in the lungs and pancreas. However, our patient’s general condition deteriorated with the progression of the lesions, and he died 9 months after his initial examination. Conclusions Multi-agent chemotherapy, including platinum-based drugs was effective against large cell neuroendocrine carcinoma metastases, albeit only temporarily. This is the first reported case of large cell neuroendocrine carcinoma with cardiac metastasis.

  18. Transformation of Nonfunctioning Pancreatic Neuroendocrine Carcinoma Cells into Insulin Producing Cells after Treatment with Sunitinib

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    2013-06-01

    Full Text Available We report a rare case of severe hypoglycemia after sunitinib treatment for pancreatic neuroendocrine carcinoma. We describe the initial clinical presentation, laboratory results, pathologic findings, and managment in a patient with a nonfunctioning pancreatic neuroendocrine carcinoma with liver metastases who developed life threatening hypoglycemia after 2 months of sunitinib therapy. A 46-year-old woman presented to the emergency department with loss of consciousness from hypoglycemia. Serum C-peptide and insulin levels at fasting state revealed that the hypoglycemia resulted from endogenous hyperinsulinemia. She had been diagnosed with nonfunctioning pancreatic neuroendocrine carcinoma based on a biopsy of metastatic cervical lymph node and was being treated with sunitinib, a small molecule tyrosine kinase inhibitor. Immunohistochemical stain of the metastatic liver mass demonstrated that the initially nonfunctioning neuroendocrine carcinoma cells had changed into insulin-producing cells after sunitinib therapy. Transarterial chemoembolization of the liver masses and systemic chemotherapy with streptozotocin/adriamycin relieved the hypoglycemia. A nonfunctioning pancreatic neuroendocrine carcinoma was transformed into an insulin-producing tumor after treatment with sunitinib, causing endogenous hyperinsulinemia and severe hypoglycemia.

  19. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones

    NARCIS (Netherlands)

    F.R.E. Nobels (Frank); D.J. Kwekkeboom (Dirk Jan); W. Coopmans; C.H.H. Schoenmakers (Christian); J. Lindemans (Jan); E.P. Krenning (Eric); R. Bouillon (Roger); S.W.J. Lamberts (Steven); W.W. de Herder (Wouter)

    1997-01-01

    textabstractChromogranin A (CgA) is gaining acceptance as a serum marker of neuroendocrine tumors. Its specificity in differentiating between neuroendocrine and nonneuroendocrine tumors, its sensitivity to detect small tumors, and its clinical value, compared with other

  20. CT differentiation of poorly-differentiated gastric neuroendocrine tumours from well-differentiated neuroendocrine tumours and gastric adenocarcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Ho; Kim, Se Hyung; Shin, Cheong-il; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University Hospital, Institute of Radiation Medicine, Jongno-gu, Seoul (Korea, Republic of); Kim, Min-A [Seoul National University Hospital, Department of Pathology, Jongno-gu, Seoul (Korea, Republic of)

    2015-07-15

    To evaluate the differential CT features of gastric poorly-differentiated neuroendocrine tumours (PD-NETs) from well-differentiated NETs (WD-NETs) and gastric adenocarcinomas (ADCs) and to suggest differential features of hepatic metastases from gastric NETs and ADCs. Our study population was comprised of 36 patients with gastric NETs (18 WD-NETs, 18 PD-NETs) and 38 patients with gastric ADCs who served as our control group. Multiple CT features were assessed to identify significant differential CT findings of PD-NETs from WD-NETs and ADCs. In addition, CT features of hepatic metastases including the metastasis-to-liver ratio were analyzed to differentiate metastatic NETs from ADCs. The presence of metastatic lymph nodes was the sole differentiator of PD-NETs from WD-NETs (P =.001, odds ratio = 56.67), while the presence of intact overlying mucosa with mucosal tenting was the sole significant CT feature differentiating PD-NETs from ADCs (P =.047, odds ratio = 15.3) For hepatic metastases, metastases from NETs were more hyper-attenuated than those from ADCs. The presence of metastatic LNs and intact overlying mucosa with mucosal tenting are useful CT discriminators of PD-NETs from WD-NETs and ADCs, respectively. In addition, a higher metastasis-to-liver ratio may help differentiate hepatic metastases of gastric NETs from those of gastric ADCs with high accuracy. (orig.)

  1. Poorly-differentiated colorectal neuroendocrine tumour: CT differentiation from well-differentiated neuroendocrine tumour and poorly-differentiated adenocarcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Hee [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Se Hyung [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Han, Joon Koo [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2017-09-15

    The differentiation of poorly-differentiated neuroendocrine tumours (PD-NETs), well-differentiated NETs (WD-NETs), and adenocarcinomas (ADCs) is important due to different management options and prognoses. This study is to find the differential CT features of colorectal PD-NETs from WD-NETs and ADCs. CT features of 25 colorectal WD-NETs, 36 PD-NETs, and 36 ADCs were retrospectively reviewed. Significant variables were assessed using univariate and multivariate analyses. Receiver operating characteristics analysis determined the optimal cut-off value of tumour and lymph node (LN) size. Large size, rectum location, ulceroinfiltrative morphology without intact overlying mucosa, heterogeneous attenuation with necrosis, presence of ≥3 enlarged LNs, and metastasis were significant variables to differentiate PD-NETs from WD-NETs (P < 0.05). High attenuation on arterial phase, persistently high enhancement pattern, presence of ≥6 enlarged LNs, large LN size, and wash-in/wash-out enhancement pattern of liver metastasis were significant variables to differentiate PD-NETs from ADCs (P < 0.05). Compared to WD-NETs, colorectal PD-NETs are usually large, heterogeneous, and ulceroinfiltrative mass without intact overlying mucosa involving enlarged LNs and metastasis. High attenuation on arterial phase, presence of enlarged LNs with larger size and greater number, and wash-in/wash-out enhancement pattern of liver metastasis can be useful CT discriminators of PD-NETs from ADCs. (orig.)

  2. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis.

    Science.gov (United States)

    Holzer, Peter; Reichmann, Florian; Farzi, Aitak

    2012-12-01

    The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers. Copyright © 2012 Elsevier Ltd. All rights

  3. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis

    Science.gov (United States)

    Holzer, Peter; Reichmann, Florian; Farzi, Aitak

    2012-01-01

    The gut–brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut–brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut–brain and brain–gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut–brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers. PMID:22979996

  4. Ghrelin in Female and Male Reproduction

    Directory of Open Access Journals (Sweden)

    Joëlle Dupont

    2010-01-01

    Full Text Available Ghrelin and one of its functional receptors, GHS-R1a (Growth Hormone Secretagogue Receptor 1a, were firstly studied about 15 years. Ghrelin is a multifunctional peptide hormone that affects several biological functions including food intake, glucose release, cell proliferation… Ghrelin and GHS-R1a are expressed in key cells of both male and female reproductive organs in several species including fishes, birds, and mammals suggesting a well-conserved signal through the evolution and a role in the control of fertility. Ghrelin could be a component of the complex series of nutrient sensors such as adipokines, and nuclear receptors, which regulate reproduction in function of the energy stores. The objective of this paper was to report the available information about the ghrelin system and its role at the level of the hypothalamic-pituitary-gonadal axis in both sexes.

  5. Primary small cell neuroendocrine carcinoma of the breast: a report of two cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Spinelli C

    2013-09-01

    Full Text Available Primary neuroendocrine carcinomas of the breast are extremely rare. Neuroendocrine tumors mainly occur in the broncopolmonary system and gastrointestinal tract. The diagnosis of small cell neuroendocrine carcinoma (SCNC of the breast can only be made if a non mammary site is excluded or if an in situ component can be found. We are going to describe two cases and to discuss their clinical, radiological and pathological manifestations. Introduction: Neuroendocrine tumors are rare and slow-growing neoplasias derived from neuroendocrine cells. We describe two cases of small cell neuroendocrine carcinoma of the breast and discuss their clinical, radiological and pathological manifestations. Case report: Our patients are two Italian females (38 and 36 year-old with no family history of breast disease. In both cases the diagnosis was confirmed after surgery, when immunohistochemistry revealed a neuroendocrine differentiation of the tumor. The patients are alive and disease free after more than ten years of follow-up. Conclusion: Primary neuroendocrine carcinomas of the breast are extremely rare. The diagnosis of SCNC of the breast can only be made if a non mammary site is excluded or if an in situ component can be found. After surgery, a strict follow-up including octreotide scan should be performed and this doesn’t differ from the one of the usual breast carcinoma.

  6. The Neuroendocrine System and Stress, Emotions, Thoughts and Feelings**

    Science.gov (United States)

    Vaillant, George E.

    2011-01-01

    The philosophy of mind is intimately connected with the philosophy of action. Therefore, concepts like free will, motivation, emotions (especially positive emotions), and also the ethical issues related to these concepts are of abiding interest. However, the concepts of consciousness and free will are usually discussed solely in linguistic, ideational and cognitive (i.e. “left brain”) terms. Admittedly, consciousness requires language and the left-brain, but the aphasic right brain is equally conscious; however, what it “hears” are more likely to be music and emotions. Joy can be as conscious as the conscious motivation produced by the left-brain reading a sign that says, “Danger mines!!” However, look in the index of a Western textbook of psychology, psychiatry or philosophy for positive emotions located in the limbic system. Notice how discussion of positive spiritual/emotional issues in consciousness and motivation are scrupulously ignored. For example, the popular notions of “love” being either Eros (raw, amoral instinct) or agape (noble, non-specific valuing of all other people) miss the motivational forest for the trees. Neither Eros (hypothalamic) nor agape (cortical) has a fraction of the power to relieve stress as attachment (limbic love), yet until the 1950s attachment was neither appreciated nor discussed by academic minds. This paper will point out that the prosocial, “spiritual” positive emotions like hope, faith, forgiveness, joy, compassion and gratitude are extremely important in the relief of stress and in regulation of the neuroendocrine system, protecting us against stress. The experimental work reviewed by Antonio Damasio and Barbara Fredrickson, and the clinical example of Alcoholics Anonymous, will be used to illustrate these points. PMID:21694965

  7. Maternal neuroendocrine serum levels in exclusively breastfeeding mothers.

    Science.gov (United States)

    Stuebe, Alison M; Meltzer-Brody, Samantha; Pearson, Brenda; Pedersen, Cort; Grewen, Karen

    2015-05-01

    Low milk supply is a common cause of early weaning, and supply issues are associated with dysregulation of thyroid function and prolactin. However, hormone levels compatible with successful breastfeeding are not well defined, limiting interpretation of clinical lab results. In this study we sought to quantify ranges for thyroid-stimulating hormone (TSH), free thyroxine (T4), total T4, and prolactin in a cohort of exclusively breastfeeding women. Women planning to breastfeed were recruited in the third trimester of pregnancy. Maternal endocrine function was assessed before and after a breastfeeding session at 2 and 8 weeks postpartum. We used paired t tests to determine whether values changed from the 2- to 8-week visit. Of 52 study participants, 28 were exclusively breastfeeding, defined as only breastmilk feeds in the prior 7 days, at both the 2- and 8-week study visits. Endocrine function changed with time since delivery: the TSH level was higher, whereas total T4, free T4, and prolactin levels were lower, at the 8-week visit than at the 2-week visit (by paired t test, p≤0.01). We found a wide range of prolactin values at the 8-week visit, with a 5th percentile value of 9 ng/dL before feeding and 74 ng/dL at 10 minutes after feeding. Neuroendocrine function changes during the first 8 weeks after birth, and a wide range of values is compatible with successful breastfeeding. Further studies are needed to define reference values in breastfeeding women.

  8. Lu-177 DOTATATE dosimetry for neuroendocrine tumor: single center experience

    Science.gov (United States)

    Said, MA; Masud, MA; Zaini, MZ; Salleh, RA; Lee, BN; Zainon, R.

    2017-05-01

    Lu-177 labelled with DOTATE is widely acceptable to treat Neuroendocrine Tumor (NET) disease and it better improvement of quality of patients’ life since few years ago. However, the radionuclide toxicity becomes the main limitation of the (NET) treatment. Therefore, we performed a pilot study aimed to estimate radiation absorbed doses to dose-limiting organs to develop a systemic therapy with Lu-177 in NET patients. In this study, five set of planar whole body images was acquired every 0.5 hour, 4 hours, 24 hours, 48 hours and 72 hours after Lu-177 administrations. The planar image acquisition was done using Philip Brightview X with Medium Energy General Purpose Collimator (MEGP) collimator. All patients’ images in Conjugate View (CV) format were transferred into PMOD 3.7 Software for Region of Interest (ROI) analysis. The ROI were drawn at selected organs such as kidneys, liver, spleen and bladder. This study found that the mean absorbed dose for kidneys 0.62 ± 0.26 Gy/GBq, liver 0.63 ± 0.28 Gy/GBq, spleen 0.83 ± 0.73 Gy/GBq and bladder 0.14 ± 0.07 Gy/GBq. The radionuclide kinetic for the whole body 99.7 ± 0.1 percent at 0.5 hours, 79.5 ± 10.7 percent at 4 hours, 56.6 ± 10.3 percent at 24 hours, 43.2 ± 7.9 percent at 48 hours and 37.1 ± 9.0 percent at 72 hours. This study verifies that this planar quantitative method able to determine organ at risk and the result line with other published data.

  9. The neuroendocrine system and stress, emotions, thoughts and feelings.

    Science.gov (United States)

    Vaillant, George E

    2011-01-01

    The philosophy of mind is intimately connected with the philosophy of action. Therefore, concepts like free will, motivation, emotions (especially positive emotions), and also the ethical issues related to these concepts are of abiding interest. However, the concepts of consciousness and free will are usually discussed solely in linguistic, ideational and cognitive (i.e. "left brain") terms. Admittedly, consciousness requires language and the left-brain, but the aphasic right brain is equally conscious; however, what it "hears" are more likely to be music and emotions. Joy can be as conscious as the conscious motivation produced by the left-brain reading a sign that says, "Danger mines!!" However, look in the index of a Western textbook of psychology, psychiatry or philosophy for positive emotions located in the limbic system. Notice how discussion of positive spiritual/emotional issues in consciousness and motivation are scrupulously ignored. For example, the popular notions of "love" being either Eros (raw, amoral instinct) or agape (noble, non-specific valuing of all other people) miss the motivational forest for the trees. Neither Eros (hypothalamic) nor agape (cortical) has a fraction of the power to relieve stress as attachment (limbic love), yet until the 1950s attachment was neither appreciated nor discussed by academic minds. This paper will point out that the prosocial, "spiritual" positive emotions like hope, faith, forgiveness, joy, compassion and gratitude are extremely important in the relief of stress and in regulation of the neuroendocrine system, protecting us against stress. The experimental work reviewed by Antonio Damasio and Barbara Fredrickson, and the clinical example of Alcoholics Anonymous, will be used to illustrate these points.

  10. Similar cold stress induces sex-specific neuroendocrine and working memory responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Urboniene, Daiva; Eimantas, Nerijus; Daniuseviciute, Laura; Brazaitis, Marius

    2015-01-01

    Men have higher cold-induced neuroendocrine response than women; nevertheless, it is not known whether a different stress hormone rise elicits different effects on cognition during whole body cooling. The objective was to compare the effect of cold-induced neuroendocrine responses on the performance of working memory sensitive tasks between men and women. The cold stress continued until rectal temperature reached 35.5 degree C or for a maximum of 170 min. Working memory performance and stress hormone concentrations were monitored. During cold stress, body temperature variables dropped in all subjects (P stress raised plasma epinephrine and serum cortisol levels only in men (P stress adversely affected memory performance in men but not in women (P stress in men and women induces sex-specific neuroendocrine and working memory responses.

  11. Failed Lactation and Perinatal Depression: Common Problems with Shared Neuroendocrine Mechanisms?

    Science.gov (United States)

    Grewen, Karen; Pedersen, Cort A.; Propper, Cathi; Meltzer-Brody, Samantha

    2012-01-01

    Abstract In the early postpartum period, mother and infant navigate a critical neuroendocrine transition from pregnancy to lactation. Two major clinical problems that occur during this transition are failed lactation and perinatal mood disorders. These disorders often overlap in clinical settings. Failed lactation is common. Although all major medical organizations recommend 6 months of exclusive breastfeeding, only 13% of women in the United States achieve this recommendation. Perinatal mood disorders affect 10% of mothers, with substantial morbidity for mother and child. We hypothesize that shared neuroendocrine mechanisms contribute to both failed lactation and perinatal mood disorders. In this hypothesis article, we discuss data from both animal models and clinical studies that suggest neuroendocrine mechanisms that may underlie these two disorders. Research to elucidate the role of these underlying mechanisms may identify treatment strategies both to relieve perinatal depression and to enable women to achieve their infant feeding goals. PMID:22204416

  12. Standardisation of imaging in neuroendocrine tumours: results of a European delphi process

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J. E-mail: jens@charite.de; Klose, K.-J.; Mignon, M.; Oeberg, K.; Wiedenmann, B

    2001-01-01

    In 1998 and 1999, a delphi consensus procedure was performed to establish guidelines for standardised diagnostic imaging of neuroendocrine tumours. The procedure included four consecutive workshops of a European group of experts in neuroendocrine tumours as well as feedback given by specialists from the departments of radiology, nuclear medicine, surgery and internal medicine of the according home institutions. Diverging approaches among the centres, which became apparent during the discussion, reflect a lack of controlled studies specifically for rare subgroups of neuroendocrine tumours. This paper summarises the standards for diagnostic imaging as developed during the delphi process. In particular, the diagnostic workflows as well as the technical properties of different imaging modalities are described in detail.

  13. [Aldehyde reductase activity and blood aldo-keto reductase spectrum in adolescents with neuroendocrine obesity].

    Science.gov (United States)

    Kuleshova, D K; Davydov, V V; Shvets, V N

    2012-01-01

    Investigation of aldehyde-reductase activity and blood aldo-keto reductase spectrum has been performed in 13-15 and 16-18-years old adolescents with obesity to clear up the mechanisms of neuroendocrine obesity at the age of puberty. It has been established that basal aldehyde reductase activity and blood aldo-keto reductase spectrum of healthy adolescents in early puberty do not differ from those of healthy adolescents in late puberty. A decreased aldehyde reductase activity and some alterations in blood aldo-keto reductase spectrum have been observed in late puberty in adolescents with neuroendocrine obesity. In adolescents with obesity there have been registered some changes in blood aldo-keto reductase spectrum which are not accompanied by any alterations in its aldehyde reductase activity. The results obtained suggest that certain prerequisites are formed in late puberty to complicate the course of neuroendocrine obesity.

  14. A review of reproductive toxicity of microcystins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang, E-mail: chan91@yeah.net [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jun, E-mail: chenjun@ihb.ac.cn [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Zhang, Xuezhen, E-mail: xuezhen@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping, E-mail: xieping@ihb.ac.cn [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2016-01-15

    Highlights: • Reproductive toxicity of MCs on mammals, fishes, amphibians, and birds is reviewed. • PP1/2A inhibition and oxidative stress are important toxic mechanisms of MCs. • Reproductive toxicity of MCs may be closely related to endocrine-disrupting effects. • The trans-generational toxicity of microcystins is a matter of concern. • Data concerning female reproductive and sex-specific effects of MCs are lacking. - Abstract: Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.

  15. Acute injuries of the axis vertebra

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J.T. (United General Hospital, Sedro Woolley, WA (USA)); Harris, J.H. (Texas Univ., Houston, TX (USA). Dept. of Radiology)

    1989-08-01

    A retrospective analysis of 165 patients admitted to Hermann Hospital with acute injuries of the axis vertebra revealed 68 (41%) dens fractures, 62 (38%) cases of traumatic spondylolisthesis ('hangman's' fracture), 21 (13%) extension teardrop fractures, 10 (6%) hyperextension dislocations, and 2 (1.0%) fractures each of the laminae and spinous processes. Of the axis injuries 31 (18%) were limited to the axis body alone. Of these, 21 (61%) were hyperextension teardrop fractures and 10 (32%) were hyperextension dislocations. Axis injuries were associated with acute injuries of other cervical vertebrae in 14 (8%) of the patients. (orig./GDG).

  16. Axis deviation without left bundle branch block.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo; Mancuso, Antonia

    2010-04-15

    It has been rarely reported changing axis deviation in the presence of left bundle branch block also during atrial fibrillation and with acute myocardial infarction too. It has also been rarely reported changing axis deviation with changing bundle branch block with onset of atrial fibrillation during acute myocardial infarction. We present a case of axis deviation without left bundle branch block and without atrial fibrillation and acute myocardial infarction in a 65-year-old Italian man. To our knowledge, this is the first report of axis deviation without left bundle branch block and without atrial fibrillation and acute myocardial infarction. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.

  17. Helical axis stellarator with noninterlocking planar coils

    Science.gov (United States)

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  18. Evidence for a Role of Adolescent Endocannabinoid Signaling in Regulating HPA Axis Stress Responsivity and Emotional Behavior Development.

    Science.gov (United States)

    Lee, Tiffany T-Y; Gorzalka, Boris B

    2015-01-01

    Adolescence is a period characterized by many distinct physical, behavioral, and neural changes during the transition from child- to adulthood. In particular, adolescent neural changes often confer greater plasticity and flexibility, yet with this comes the potential for heightened vulnerability to external perturbations such as stress exposure or recreational drug use. There is substantial evidence to suggest that factors such as adolescent stress exposure have longer lasting and sometimes more deleterious effects on an organism than stress exposure during adulthood. Moreover, the adolescent neuroendocrine response to stress exposure is different from that of adults, suggesting that further maturation of the adolescent hypothalamic-pituitary-adrenal (HPA) axis is required. The endocannabinoid (eCB) system is a potential candidate underlying these age-dependent differences given that it is an important regulator of the adult HPA axis and neuronal development. Therefore, this review will focus on (1) the functionality of the adolescent HPA axis, (2) eCB regulation of the adult HPA axis, (3) dynamic changes in eCB signaling during the adolescent period, (4) the effects of adolescent stress exposure on the eCB system, and (5) modulation of HPA axis activity and emotional behavior by adolescent cannabinoid treatment. Collectively, the emerging picture suggests that the eCB system mediates interactions between HPA axis stress responsivity, emotionality, and maturational stage. These findings may be particularly relevant to our understanding of the development of affective disorders and the risks of adolescent cannabis consumption on emotional health and stress responsivity. © 2015 Elsevier Inc. All rights reserved.

  19. Evaluation of hypothalamic-pituitary-adrenal axis in patients with atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Nutan

    2011-01-01

    Full Text Available Background: Most of the research on atopic dermatitis (AD has focused on the pathophysiological role of the immune system in AD, and the role of endocrine signals in the pathology of AD has not been explored. Current research has shown a link between the neuroendocrine and immune functions. Aim: The aim was to measure the serum basal cortisol levels and cortisol levels following a low-dose ACTH stimulation test in patients with AD before and after treatment with corticosteroids. Methods: Three groups of patients with AD were evaluated: mild, moderate, and severe. Basal cortisol levels following an ACTH stimulation test were measured before and after treatment with topical steroids when an improvement in the disease activity by 75% as determined by the SCORAD index was observed. Results: Eighteen patients of the severe group at baseline showed an impaired hypothalamic-pituitary-adrenal (HPA axis with cortisol levels <250 nmol/l during their first visit. A total of 13 of 18 patients regained their HPA axis activity when the baseline cortisol was measured after using topical corticosteroids which resulted in 75% improvement in the disease activity. Conclusions: The disease activity rather than the use of topical costicosteroids is responsible for the low basal levels in patients with severe AD.

  20. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    Science.gov (United States)

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Central Regulation of Hypothalamic-Pituitary-Thyroid Axis Under Physiological and Pathophysiological Conditions

    Science.gov (United States)

    Lechan, Ronald M.

    2014-01-01

    TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specialized glial cells called tanycytes. Hypophysiotropic TRH neurons also integrate other humoral and neuronal inputs that can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropic TRH may be pathophysiological. In this review, we discuss current knowledge about the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions. PMID:24423980

  2. Supernova Remnant Science with AXIS

    Science.gov (United States)

    Williams, Brian J.; Yamaguchi, Hiroya; AXIS Science Team

    2018-01-01

    We present an overview of the supernova remnant (SNR) science that will be achieved with the Advanced X-ray Imaging Satellite (AXIS). AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band. These capabilities enable major advances in several areas of SNR science. These include, but are not limited to: 1) a more thorough spatial mapping of the ejecta products of both intermediate-mass and iron-group elements in core-collapse and Type Ia SNRs, particularly in remnants with a small diameter. The iron-group elements, specifically Cr, Mn, and Ni, are extremely important for constraining the explosion mechanism for SNe, but are generally weak and difficult to detect with Chandra, XMM-Newton, and Suzaku. 2) Studying the interface of a shock wave with the ambient ISM/CSM to constrain the degree of particle heating and acceleration at shock fronts. Chandra has only provided upper limits on shock precursor emission, and a detailed study of the thermal and nonthermal emission at the shock with greatly increased photon count rates will constrain the properties of the immediate post-shock plasma. 3) A high spatial resolution X-ray observatory will continue to build on the legacy begun by Chandra of studying the proper motion of young remnants. Directly measuring the dynamics of an SNR's evolution is crucial for understanding the explosion mechanism, and with the order of magnitude increase collecting area, we can measure the expansion of individual elemental species in the ejecta. 4) We will greatly increase the statistics of SNRs in nearby galaxies, going much faster and deeper than Chandra's observations. The increased depth of coverage would allow us to do spectroscopy in places where it was previously possible only to do rudimentary statistics. We can compare the local SNR population with the local star-formation rates for galaxies

  3. Reproductive Disorders in Parrots.

    Science.gov (United States)

    Scagnelli, Alyssa M; Tully, Thomas N

    2017-05-01

    Disease affecting the reproductive tract of the companion parrot is often impacted by physiologic and environmental stimuli. In conjunction with appropriate medical management, some birds diagnosed with reproductive disorders may be successfully treated. Once the bird is diagnosed with a disease condition affecting the reproductive tract, therapeutic measures are focused on stabilizing and supporting the patient, and surgical intervention is required only in the most severe cases. Hormonal therapy with synthetic, long-acting GnRH agonists should be considered for chronic reproductive disease conditions in which decreasing ovarian activity can help alleviate certain disease processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Reproductive and developmental toxicology

    National Research Council Canada - National Science Library

    Gupta, Ramesh C

    2011-01-01

    .... Reproductive and Developmental Toxicology is a comprehensive and authoritative resource providing the latest literature enriched with relevant references describing every aspect of this area of science...

  5. [Small cell neuroendocrine tumour of the bladder: with reference to a case and bibliographical revision].

    Science.gov (United States)

    Lahoz Tornos, A; Marrón Penón, Maria C; Pardo López, Maria L; Nogueras Gimeno, M A; Pujol Obis, E; Del Villar Sordo, V

    2006-09-01

    The small cell neuroendocrine tumour is an infrecuent neoplasia, with inmunohistochemistry being the key to diagnosis. We present a new case making reference to treatment and its evolution there after. The clinic, diagnosis and treatment of this tumour is described. Bibliographical revision follours. The neuroendocrine tumour of small cell is an infrecuent neoplasia, in which the inmunohistochemistry study is key in the diagnosis. The differential diagnosis includes the high degree diferentiation transitionals cells carcinoma and primary and secondary linfoma. The standard treatment is based on chemotherapy plus surgery.

  6. Endoscopic diagnosis and treatment of neuroendocrine tumors of the digestive system

    Directory of Open Access Journals (Sweden)

    Sivero Luigi

    2016-01-01

    Full Text Available The authors evaluated the role of endoscopic techniques in the diagnosis and in the potential treatment of neuroendocrine tumors (NET localized in the gastro-entero-pancreatic system, on the basis of their experience and of the international literature. NET are rare tumors that arise from neuroendocrine cells of the gastrointestinal tract and pancreas. It is a possibility that both the digestive endoscopy and EUS play an important role in the diagnosis, staging and surveillance of this disease. In some cases, especially in the early stages, surgical endoscopy allows the treatment of such tumors.

  7. [Neuroendocrine tumors of digestive system: morphologic spectrum and cell proliferation (Ki67 index)].

    Science.gov (United States)

    Delektorskaia, V V; Kushliskiĭ, N E

    2013-01-01

    This review deals with the analysis of up-to-date concepts ofdiferent types of human neuroendocrine tumors of the digestive system. It summarizes the information on the specifics of recent histological classifications and criteria of morphological diagnosis accounting histological, ultrastructural and immunohistochemical parameters. Current issues of the nomenclature as well as various systems of grading and staging are discussed. In the light of these criteria the results of the own research clinical value of the determination of cell proliferation in primary and metastatic gastroenteropancreatic neuroendocrine neoplasms on the basis of evaluation of the Ki67 antigen expression are also presented.

  8. Primary neuroendocrine tumour of the breast: a case report and review of the literature.

    Science.gov (United States)

    Tato-Varela, Sara; Albalat-Fernández, Rosa; Pabón-Fernández, Sara; Zarco, Enrique Rodríguez; Calle-Marcos, Manolo La

    2015-01-01

    Primary neuroendocrine tumour of the breast is a rare entity that first appeared in the 2003 World Health Organisation (WHO) classification of breast tumours. The data currently available on its prognosis are contradictory, although it seems clear that histological varieties such as small cell neuroendocrine carcinoma have a worse prognosis, due to their low degree of differentiation. The treatment of choice is surgery, and the indications for chemotherapy or radiotherapy do not differ greatly from those used for other breast tumours. It is crucial to underline the difficulty of establishing treatment protocols due to the low incidence of this histological type.

  9. Leptin and Reproduction: Past Milestones, Present Undertakings and Future Endeavors

    Science.gov (United States)

    Chehab, Farid F.

    2014-01-01

    The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B and dynorphin and that could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that AgRP/NPY neurons project onto GnRH and kisspeptin neurons, allowing a crosstalk between food intake and reproduction. Finally, whereas puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. Mechanisms underlying leptin resistance in pregnancy have lagged, however the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the next decade to shed new light on these complex and essential pathways. PMID:25118207

  10. Acute myocardial infarction with changing axis deviation.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo

    2011-07-01

    Changing axis deviation has been rarely reported also during atrial fibrillation or atrial flutter. Changing axis deviation has been rarely reported also during acute myocardial infarction associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. Left anterior hemiblock development during acute inferior myocardial infarction can be an indicator of left anterior descending coronary artery lesions, multivessel coronary artery disease, and impaired left ventricular systolic function. We present a case of changing axis deviation in a 62-year-old Italian man with acute myocardial infarction. Also this case focuses attention on changing axis deviation during acute myocardial infarction. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Modeling the brain-pituitary-gonad axis in salmon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghan; Hayton, William L.; Schultz, Irv R.

    2006-08-24

    To better understand the complexity of the brain-pituitary-gonad axis (BPG) in fish, we developed a biologically based pharmacodynamic model capable of accurately predicting the normal functioning of the BPG axis in salmon. This first-generation model consisted of a set of 13 equations whose formulation was guided by published values for plasma concentrations of pituitary- (FSH, LH) and ovary- (estradiol, 17a,20b-dihydroxy-4-pregnene-3-one) derived hormones measured in Coho salmon over an annual spawning period. In addition, the model incorporated pertinent features of previously published mammalian models and indirect response pharmacodynamic models. Model-based equations include a description of gonadotropin releasing hormone (GnRH) synthesis and release from the hypothalamus, which is controlled by environmental variables such as photoperiod and water temperature. GnRH stimulated the biosynthesis of mRNA for FSH and LH, which were also influenced by estradiol concentration in plasma. The level of estradiol in the plasma was regulated by the oocytes, which moved along a maturation progression. Estradiol was synthesized at a basal rate and as oocytes matured, stimulation of its biosynthesis occurred. The BPG model can be integrated with toxico-genomic, -proteomic data, allowing linkage between molecular based biomarkers and reproduction in fish.

  12. Endoscopic treatment of sporadic small duodenal and ampullary neuroendocrine tumors.

    Science.gov (United States)

    Gincul, Rodica; Ponchon, Thierry; Napoleon, Bertrand; Scoazec, Jean-Yves; Guillaud, Olivier; Saurin, Jean-Christophe; Ciocirlan, Mihai; Lepilliez, Vincent; Pioche, Mathieu; Lefort, Christine; Adham, Mustapha; Pialat, Jean; Chayvialle, Jean-Alain; Walter, Thomas

    2016-11-01

    Background and study aim: As duodenal neuroendocrine tumors (NETs) are rare, their optimal management has not been clearly established. The aim of this study was to evaluate the feasibility and outcome of endoscopic treatment of duodenal NETs. Patients and methods: We reviewed the files of all patients who underwent endoscopic resection of a sporadic duodenal or ampullary NET between 1996 and 2014 at two centers. Results: A total of 29 patients with 32 uT1N0M0 NETs < 20 mm were included. Treatment consisted of endoscopic mucosal resection in 19 cases, and cap aspiration in 13 cases. Prior submucosal saline injection was used in 15 cases. Mortality was 3 % (one severe bleeding). Morbidity was 38 % (11/29). At post-resection analysis, mean tumor size was 8.9 mm (range 3 - 17 mm), 29 lesions were stage pT1, one was pT2, and 2 were pTx because of piecemeal resection. All NETs were well differentiated. A total of 27 lesions were classified as grade 1 and 5 were grade 2. The resection was R0, R1, and Rx for 16, 14, and 2 lesions, respectively. Three R1 patients underwent additional surgical treatment, with no residual tumor on the surgical specimen but with positive metastatic lymph nodes in two cases. One patient was lost to follow-up. Finally, 24 patients were included in the follow-up analysis. The median follow-up period was 56 months (range 6 - 175 months). Two patients presented a tumor recurrence during the follow-up period. Conclusions: Endoscopic treatment of small duodenal NETs was associated with significant morbidity, a difficulty in obtaining an R0 specimen, and the risk of lymph node metastasis. Nevertheless, it represents an interesting alternative in small grade 1 duodenal lesions and in patients at high surgical risk. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Aspectos neuroendocrinos de la obesidad Neuroendocrine aspects of obesity

    Directory of Open Access Journals (Sweden)

    Mario Perello

    2004-06-01

    Full Text Available En la fisiopatología de la obesidad intervienen factores genéticos, sociales, metabólicos, endocrinos y neurológicos. Esta multifactoriedad junto al hecho que estos factores se interrelacionan a través de mecanismos muy complejos, que son sólo parcialmente conocidos, ha llevado a que la comprensión íntima de este trastorno resulte una tarea sumamente ardua. Por estos motivos, el conocimiento integral de esta afección plantea un desafío al que actualmente están abocados numerosos grupos de investigadores. El análisis de la obesidad como un trastorno neuroendocrino, propone el estudio de este fenómeno desde una visión particular que implica disfunciones en casi todos los órganos endocrinos y en el sistema nervioso central, fundamentalmente en la actividad hipotalámica. Estas alteraciones afectan principalmente a los ejes neuroendocrinos hipotálamo-hipofiso-adrenal, adipo-insular y al control hipotalámico, tanto de la ingesta de alimento como del almacenamiento y gasto energético. Este artículo plantea una actualización en este campo; en primer lugar, se realiza una breve descripción, en forma independiente, de los principales sistemas antes mencionados y luego una descripción de su funcionamiento normal integrado. Finalmente, se describen desregulaciones de estos mecanismos y se discute como ellas contribuirían al desarrollo y/o mantenimiento de la obesidad.Genetic, social, metabolic, endocrine and neural events participate in the physiopathological development of obesity. Because of the multifactorial background of obesity, up to now, it has been very difficult to fully understand the whole disease. In fact, the relationship between several signals, through very complex mechanisms, is only partially known. Obesity, from a neuroendocrine point of view, implies taking into account abnormalities in both hypothalamic and endocrine functions. Among altered functions in obesity, namely those involving the hypothalamo

  14. Genomic alterations in neuroendocrine cancers of the ovary.

    Science.gov (United States)

    Yaghmour, George; Prouet, Philippe; Wiedower, Eric; Jamy, Omer Hassan; Feldman, Rebecca; Chandler, Jason C; Pandey, Manjari; Martin, Mike G

    2016-08-26

    As we have previously reported, small cell carcinoma of the ovary (SCCO) is a rare, aggressive form of ovarian cancer associated with poor outcomes. In an effort to identify new treatment options, we utilized comprehensive genomic profiling to assess the potential for novel therapies in SCCO. Patients with SCCO, SCCO-HT (hypercalcemic type), neuroendocrine tumors of the ovary (NET-O), and small cell carcinoma of the lung (SCLC) profiled by Caris Life Sciences between 2007-2015 were identified. Tumors were assessed with up to 21 IHC stains, in situ hybridization of cMET, EGFR, HER2 and PIK3CA, and next-generation sequencing (NGS) as well as Sanger sequencing of selected genes. Forty-six patients with SCCO (10 SCCO, 18 SCCO-HT, 18 NET-O) were identified as well as 58 patients with SCLC for comparison. Patients with SCCO and SCCO-HT were younger (median 42 years [range 12-75] and 26 years [range 8-40], respectively) than patients with NET-O 62 [range 13-76] or SCLC 66 [range 36-86]. SCCO patients were more likely to be metastatic (70 %) than SCCO-HT (50 %) or NET-O (33 %) patients, but at a similar rate to SCLC patients (65 %). PD1 expression varied across tumor type with SCCO (100 %), SCCO-HT (60 %), NET-O (33 %) vs SCLC (42 %). PDL1 expression also varied with SCCO (50 %), SCCO-HT (20 %), NET-O (33 %) and SCLC (0 %). No amplifications were identified in cMET, EGFR, or HER2 and only 1 was found in PIK3CA (NET-O). Actionable mutations were rare with 1 patient with SCCO having a BRCA2 mutation and 1 patient with NET-O having a PIK3CA mutation. No other actionable mutations were identified. No recurrent actionable mutations or rearrangements were identified using this platform in SCCO. IHC patterns may help guide the use of chemotherapy in these rare tumors.

  15. Cannabinoids and Reproduction: A Lasting and Intriguing History

    Directory of Open Access Journals (Sweden)

    Gilda Cobellis

    2010-10-01

    Full Text Available Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.

  16. Cannabinoids and Reproduction: A Lasting and Intriguing History

    Science.gov (United States)

    Cacciola, Giovanna; Chianese, Rosanna; Chioccarelli, Teresa; Ciaramella, Vincenza; Fasano, Silvia; Pierantoni, Riccardo; Meccariello, Rosaria; Cobellis, Gilda

    2010-01-01

    Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.

  17. Reproductive Physiology of Marsupials

    Science.gov (United States)

    Sharman, G. B.

    1970-01-01

    Describes some unique features of marsupial reproduction which include (1) chromosomal sex determination, (2) reproductive system, (3) birth, (4) location, and (5) embryonic diapause. These features suggest that viviparity evolved separately in eutherian and marsupial stocks after their derivation from a common oviparous ancestor. Bibliography.…

  18. Multichannel Sound Reproduction

    Science.gov (United States)

    Pulkki, Ville

    Spatial reproduction of sound is a field in which the spatial attributes of a real recording room or a virtual space are reproduced to the listener. Spatial attributes include for example directions of sound sources, directions of reflections and envelopment by reverberation. Many such systems employ more than two loudspeakers to create virtual sources. This is called multichannel sound or spatial sound reproduction.

  19. The Reproduction of Intelligence

    Science.gov (United States)

    Meisenberg, Gerhard

    2010-01-01

    Although a negative relationship between fertility and education has been described consistently in most countries of the world, less is known about the relationship between intelligence and reproductive outcomes. Also the paths through which intelligence influences reproductive outcomes are uncertain. The present study uses the NLSY79 to analyze…

  20. Single nucleotide polymorphisms in the growth hormone - insulin like growth factor axis in straight bred and crossbred Angus, Brahman, and Romosinuano heifers: population genetic analyses and association of genotypes

    Science.gov (United States)

    The growth endocrine axis influences reproduction. Objectives of this study were to evaluate population genetic characteristics of SNP genotypes within genes of the GH and IGF axis in straightbred and diallel-crossed Angus, Brahman and Romosinuano heifers (n = 650) and to test the associations of th...

  1. Obesity and reproductive function: a review of the evidence.

    Science.gov (United States)

    Klenov, Violet E; Jungheim, Emily S

    2014-12-01

    Over the last decade, the evidence linking obesity to impaired reproductive function has grown. In this article, we review this evidence and discuss the underlying pathophysiology. Obese women are less likely than normal-weight women to achieve pregnancy. Female obesity adversely affects reproductive function through alterations in the hypothalamic-pituitary-ovarian axis, oocyte quality, and endometrial receptivity. It is unclear which mechanism contributes the most to subfecundity, and it is likely a cumulative process. Emerging data highlight the contribution of male obesity to impaired reproductive function and that couple obesity has synergistic adverse effects. Once pregnant, obese women are at higher risk for adverse pregnancy outcomes. Weight loss improves reproductive potential in obese patients. As obese women surpass 35 years of age, age may be more important than body mass index in determining reproductive potential. Obstetrician gynecologists need to be aware of the negative impact of obesity on reproductive function so that they appropriately counsel their patients. Further work is needed to clarify the underlying pathophysiology responsible for adverse effects of obesity on reproduction so that novel treatment approaches may be developed.

  2. Neuroendocrine Alterations in Obese Patients with Sleep Apnea Syndrome

    Directory of Open Access Journals (Sweden)

    Fabio Lanfranco

    2010-01-01

    Full Text Available Obstructive sleep apnea syndrome (OSAS is a serious, prevalent condition that has significant morbidity and mortality when untreated. It is strongly associated with obesity and is characterized by changes in the serum levels or secretory patterns of several hormones. Obese patients with OSAS show a reduction of both spontaneous and stimulated growth hormone (GH secretion coupled to reduced insulin-like growth factor-I (IGF-I concentrations and impaired peripheral sensitivity to GH. Hypoxemia and chronic sleep fragmentation could affect the sleep-entrained prolactin (PRL rhythm. A disrupted Hypothalamus-Pituitary-Adrenal (HPA axis activity has been described in OSAS. Some derangement in Thyroid-Stimulating Hormone (TSH secretion has been demonstrated by some authors, whereas a normal thyroid activity has been described by others. Changes of gonadal axis are common in patients with OSAS, who frequently show a hypogonadotropic hypogonadism. Altogether, hormonal abnormalities may be considered as adaptive changes which indicate how a local upper airway dysfunction induces systemic consequences. The understanding of the complex interactions between hormones and OSAS may allow a multi-disciplinary approach to obese patients with this disturbance and lead to an effective management that improves quality of life and prevents associated morbidity or death.

  3. Reproductive health and justice.

    Science.gov (United States)

    Petchesky, R

    1993-01-01

    This article was based on a speech given in Rio de Janeiro in January 1994 at the Reproductive Health and Justice Conference. Questions were raised about the universality of reproductive rights. The suggestion was that Western norms and principles subordinated Southern meanings. A women's health advocate in Nigeria believed that poor and oppressed women were not able to consider limiting family size or to consider reproductive health when the critical concerns were health care, education, livelihood, and basic needs. Rights and needs go together. Reproductive and sexual rights must be understood in terms of social, economic, and political enabling conditions. The respect for women's bodily integrity and reproductive and sexual well-being was viewed as integral to being an effective social and political agent. Women group's have carved out distinct concepts of work, economic resources, education, and political empowerment. The differences in experiences between the North and the South must not be used to diminish the impact of population control forces and fundamentalists. Reproductive rights means giving women the power to make informed decisions about individual fertility, childrearing, and health and sexual activity and means the resources to make decisions effectively and safely. The origin of the definition must not be confused with the process of debate. Rights can be approached either as legal and formal entities and/or as political claims to change existing power structures. Reproductive rights when construed to be liberties or choices were viewed as ineffectual; the focus must be on gender, class, culture, ethnicity, and national needs. Social rights must be incorporated in the concept of reproductive rights and as such challenge structural adjustment programs that reduce expenditures on health and social services. Terminology that focused on "reproduction" obscured the larger focus on personal health and well being. The principles of reproductive rights

  4. Genetic strain differences in learned fear inhibition associated with variation in neuroendocrine, autonomic, and amygdala dendritic phenotypes.

    Science.gov (United States)

    Camp, Marguerite C; Macpherson, Kathryn P; Lederle, Lauren; Graybeal, Carolyn; Gaburro, Stefano; Debrouse, Lauren M; Ihne, Jessica L; Bravo, Javier A; O'Connor, Richard M; Ciocchi, Stephane; Wellman, Cara L; Lüthi, Andreas; Cryan, John F; Singewald, Nicolas; Holmes, Andrew

    2012-05-01

    Mood and anxiety disorders develop in some but not all individuals following exposure to stress and psychological trauma. However, the factors underlying individual differences in risk and resilience for these disorders, including genetic variation, remain to be determined. Isogenic inbred mouse strains provide a valuable approach to elucidating these factors. Here, we performed a comprehensive examination of the extinction-impaired 129S1/SvImJ (S1) inbred mouse strain for multiple behavioral, autonomic, neuroendocrine, and corticolimbic neuronal morphology phenotypes. We found that S1 exhibited fear overgeneralization to ambiguous contexts and cues, impaired context extinction and impaired safety learning, relative to the (good-extinguishing) C57BL/6J (B6) strain. Fear overgeneralization and impaired extinction was rescued by treatment with the front-line anxiety medication fluoxetine. Telemetric measurement of electrocardiogram signals demonstrated autonomic disturbances in S1 including poor recovery of fear-induced suppression of heart rate variability. S1 with a history of chronic restraint stress displayed an attenuated corticosterone (CORT) response to a novel, swim stressor. Conversely, previously stress-naive S1 showed exaggerated CORT responses to acute restraint stress or extinction training, insensitivity to dexamethasone challenge, and reduced hippocampal CA3 glucocorticoid receptor mRNA, suggesting downregulation of negative feedback control of the hypothalamic-pituitary-adrenal axis. Analysis of neuronal morphology in key neural nodes within the fear and extinction circuit revealed enlarged dendritic arbors in basolateral amygdala neurons in S1, but normal infralimbic cortex and prelimbic cortex dendritic arborization. Collectively, these data provide convergent support for the utility of the S1 strain as a tractable model for elucidating the neural, molecular and genetic basis of persistent, excessive fear.

  5. The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells.

    Science.gov (United States)

    Morell, C; Bort, A; Vara, D; Ramos-Torres, A; Rodríguez-Henche, N; Díaz-Laviada, I

    2016-09-01

    Neuroendocrine (NE) differentiation represents a common feature of prostate cancer and is associated with accelerated disease progression and poor clinical outcome. Nowadays, there is no treatment for this aggressive form of prostate cancer. The aim of this study was to determine the influence of the cannabinoid WIN 55,212-2 (WIN, a non-selective cannabinoid CB1 and CB2 receptor agonist) on the NE differentiation of prostate cancer cells. NE differentiation of prostate cancer LNCaP cells was induced by serum deprivation or by incubation with interleukin-6, for 6 days. Levels of NE markers and signaling proteins were determined by western blotting. Levels of cannabinoid receptors were determined by quantitative PCR. The involvement of signaling cascades was investigated by pharmacological inhibition and small interfering RNA. The differentiated LNCaP cells exhibited neurite outgrowth, and increased the expression of the typical NE markers neuron-specific enolase and βIII tubulin (βIII Tub). Treatment with 3 μM WIN inhibited NK differentiation of LNCaP cells. The cannabinoid WIN downregulated the PI3K/Akt/mTOR signaling pathway, resulting in NE differentiation inhibition. In addition, an activation of AMP-activated protein kinase (AMPK) was observed in WIN-treated cells, which correlated with a decrease in the NE markers expression. Our results also show that during NE differentiation the expression of cannabinoid receptors CB1 and CB2 dramatically decreases. Taken together, we demonstrate that PI3K/Akt/AMPK might be an important axis modulating NE differentiation of prostate cancer that is blocked by the cannabinoid WIN, pointing to a therapeutic potential of cannabinoids against NE prostate cancer.

  6. Prognostic value of 18F-FLT PET in patients with neuroendocrine neoplasms

    DEFF Research Database (Denmark)

    Johnbeck, Camilla B.; Knigge, Ulrich; Langer, Seppo W.

    2016-01-01

    Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of tumors arising in various organs and with a large span of aggressiveness and survival rates. The Ki-67 proliferation index is presently used as the key marker of prognosis, and treatment guidelines are largely based on this index...

  7. Occurrence of second primary malignancies in patients with neuroendocrine tumors of the digestive tract and pancreas

    NARCIS (Netherlands)

    K. Kamp (Kimberly); R.A. Damhuis (Ronald); R.A. Feelders (Richard); W.W. de Herder (Wouter)

    2012-01-01

    textabstractAn increased association between neuroendocrine tumors of the gastrointestinal tract and pancreas (GEP-NET) and other second primary malignancies has been suggested. We determined whether there is indeed an increased risk for second primary malignancies in GEP-NET patients compared with

  8. Neuroendocrine and cardiovascular reactions to acute psychological stress are attenuated in smokers

    NARCIS (Netherlands)

    Ginty, Annie T; Jones, Alexander; Carroll, Douglas; Roseboom, Tessa J; Phillips, Anna C; Painter, Rebecca; de Rooij, Susanne R

    2014-01-01

    A number of studies have now examined the association between smoking and the magnitude of physiological reactions to acute psychological stress. However, no large-scale study has demonstrated this association incorporating neuroendocrine in addition to cardiovascular reactions to stress. The

  9. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.

    Science.gov (United States)

    Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K

    2016-10-13

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.

  10. Topotecan Monotherapy in Heavily Pretreated Patients with Progressive Advanced Stage Neuroendocrine Carcinomas

    DEFF Research Database (Denmark)

    Olsen, Ingrid Marie Holst; Knigge, Ulrich; Federspiel, Birgitte

    2014-01-01

    neuroendocrine carcinomas (Ki67>20%, G3) successively treated with oral topotecan 2.3 mg/m(2) d1-5 every 3 weeks. All patients had previously received treatment with carboplatin/etoposide. Demographic, clinical and pathological features were recorded. CT-evaluations according to RECIST 1.1 were performed after...

  11. Effect of reserpine on development and its neuro-endocrine regulation in Galleria mellonella

    DEFF Research Database (Denmark)

    Cymborowski, B.; Sørensen, Ilona Kryspin

    1975-01-01

    1. Studies were made on the effect of reserpine on development and its neuro-endocrine regulation in Galleria mellonella. It was shown that resperine greatly restricts the development of this insect. 2. Reserpine causes inhibition of the activity of the neurosecretory cells of pars intercerebralis...

  12. Does Fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Floridon; Jensen, Charlotte Harken; Thorsen, Poul

    2000-01-01

    in the subcellular localisation indicating differential post-translational/post-transcriptional modifications during fetal development. FA1 may be a new marker of cellular subtypes with a regenerative potential and of specific cells with endocrine or neuroendocrine functions. Udgivelsesdato: 2000-Aug...

  13. Octreotide long-acting repeatable in the treatment of neuroendocrine tumors: patient selection and perspectives

    Directory of Open Access Journals (Sweden)

    Yau H

    2017-12-01

    Full Text Available Hanford Yau,1 Mustafa Kinaan,2 Suzanne L Quinn,3 Andreas G Moraitis3 1Division of Endocrinology, Diabetes, and Metabolism, University of California, San Francisco (Fresno Division, Fresno, CA, USA; 2Division of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA; 3Division of Endocrinology, Diabetes, and Metabolism, Orlando VA Medical Center, Orlando, FL, USA Abstract: Over the past three decades, the incidence and prevalence of neuroendocrine tumors have gradually increased. Due to the slow-growing nature of these tumors, most cases are diagnosed at advanced stages. Prognosis and survival are associated with location of primary lesion, biochemical functional status, differentiation, initial staging, and response to therapy. Octreotide, the first synthetic somatostatin analog, was initially used for the management of gastrointestinal symptoms associated with functional carcinoid tumors. Its commercial development over time led to long-acting repeatable octreotide acetate, a long-acting version that provided greater administration convenience. Recent research demonstrates that octreotide’s efficacy has evolved beyond symptomatic management to targeted therapy with antitumoral effects. This review examines the history and development of octreotide, provides a synopsis on the classification, grading, and staging of neuroendocrine tumors, and reviews the evidence of long-acting repeatable octreotide acetate as monotherapy and in combination with other treatment modalities in the management of non-pituitary neuroendocrine tumors with special attention to recent high-quality Phase III trials. Keywords: carcinoid, everolimus, neuroendocrine tumor, octreotide LAR, somatostatin analog, ITMO, NETTER-1, PROMID, RADIANT-2

  14. Paraneoplastic syndromes in patients with laryngeal neuroendocrine carcinomas : clinical manifestations and prognostic significance

    NARCIS (Netherlands)

    Ferlito, Alfio; Rinaldo, Alessandra; Bishop, Justin A.; Hunt, Jennifer L.; Vander Poorten, Vincent; Williams, Michelle D.; Triantafyllou, Asterios; Devaney, Kenneth O.; Gnepp, Douglas R.; Kusafuka, Kimihide; Halmos, Gyorgy B.; Westra, William H.; Takes, Robert P.; Thompson, Lester D. R.

    Paraneoplastic syndromes are associated with a variety of malignant neoplasms and are systemic and non-metastatic manifestations that develop in a minority of cancer patients. This review examines all published cases of paraneoplastic syndromes associated with neuroendocrine carcinomas of the

  15. Paraneoplastic syndromes in patients with laryngeal neuroendocrine carcinomas: clinical manifestations and prognostic significance

    NARCIS (Netherlands)

    Ferlito, A.; Rinaldo, A.; Bishop, J.A.; Hunt, J.L.; Poorten, V. Van der; Williams, M.D.; Triantafyllou, A.; Devaney, K.O.; Gnepp, D.R.; Kusafuka, K.; Halmos, G.B.; Westra, W.H.; Takes, R.P.; Thompson, L.D.

    2016-01-01

    Paraneoplastic syndromes are associated with a variety of malignant neoplasms and are systemic and non-metastatic manifestations that develop in a minority of cancer patients. This review examines all published cases of paraneoplastic syndromes associated with neuroendocrine carcinomas of the

  16. The combination of neuroendocrine tumor and mucinous neoplasm of the appendix: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Hie Bum; Lee, Nam Kyung; Kim, Suk; Park, Won Young; Kim, Jae Hun [Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of)

    2014-05-15

    Primary neoplasm of the appendix is an uncommon pathology, representing 0.5-1% of all appendix specimens. Especially, simultaneous occurrence of two tumors of the appendix was rarely documented. We report a case of the concomitant neuroendocrine tumor and the mucinous neoplasm of the appendix on abdominal computed tomography, in a 62-year-old female who came for a check-up.

  17. Rare neuroendocrine tumours : Results of the surveillance of rare cancers in Europe project

    NARCIS (Netherlands)

    van der Zwan, Jan Maarten; Trama, Annalisa; Otter, Renee; Larranaga, Nerea; Tavilla, Andrea; Marcos-Gragera, Rafael; Dei Tos, Angelo Paolo; Baudin, Eric; Poston, Graeme; Links, Thera

    Because of the low incidence, and limited opportunities for large patient volume experiences, there are very few relevant studies of neuroendocrine tumours (NETs). A large population-based database (including cancer patients diagnosed from 1978 to 2002 and registered in 76 population-based cancer

  18. Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI

    Directory of Open Access Journals (Sweden)

    Caroline I. E. Renner

    2015-09-01

    Full Text Available Traumatic brain injury is not a discrete event but an unfolding sequence of damage to the central nervous system. Not only the acute phase but also the subacute and chronic period after injury, i.e., during inpatient rehabilitation, is characterized by multiple neurotransmitter alterations, cellular dysfunction, and medical complications causing additional secondary injury. Neuroendocrine disturbances also influence neurological outcome and are easily overlooked as they often present with diffuse symptoms such as fatigue, depression, poor concentration, or a decline in overall cognitive function; these are also typical sequelae of traumatic brain injury. Furthermore, neurological complications such as hydrocephalus, epilepsy, fatigue, disorders of consciousness, paroxysmal sympathetic hyperactivity, or psychiatric-behavioural symptoms may mask and/or complicate the diagnosis of neuroendocrine disturbances, delay appropriate treatment and impede neurorehabilitation. The present review seeks to examine the interrelation between neuroendocrine disturbances with neurological complications frequently encountered after moderate to severe TBI during rehabilitation. Common neuroendocrine disturbances and medical complications and their clinical implications are discussed.

  19. Giant type III well-differentiated neuroendocrine tumor of the stomach: A case report

    Directory of Open Access Journals (Sweden)

    Omar Bellorin

    2016-01-01

    Conclusion: The incidence of gastric neuroendocrine tumors has been increasing during the last decade, underscoring the need to improve our understanding of their biology and behavior. When identified histologically, patient outcomes depend on appropriate determination of tumor biology and subsequent choice of treatment.

  20. Large Cell Neuroendocrine Carcinoma of the Rectum Presenting with Extensive Metastatic Disease

    Directory of Open Access Journals (Sweden)

    Vinay Minocha

    2014-01-01

    Full Text Available Introduction. Rectal large cell neuroendocrine carcinoma (LCNEC is a poorly differentiated neoplasm that is very rare and belongs within the poorest prognostic subgroup among primary colorectal neoplasms. Here, we describe a case of LCNEC of the rectum, which highlights the aggressive clinical course and poor prognosis associated with this disease. Case Presentation. We report a case of a 63-year-old male who presented to our hospital with a one-month history of lower abdominal pain, constipation, and weight loss. A computed tomography (CT scan of the chest, abdomen, and pelvis revealed a rectal mass as well as metastatic disease of the liver and lung. Flexible sigmoidoscopy revealed a fungating, ulcerated and partially obstructing rectal mass located 6 cm from the anal verge. This mass was biopsied and pathological examination of the resected specimen revealed features consistent with a large cell neuroendocrine carcinoma. Conclusion. Rectal large cell neuroendocrine carcinomas are rare and have a significantly worse prognosis than adenocarcinomas. At diagnosis, a higher stage and metastatic disease are likely to be found. It is important to differentiate large cell, poorly differentiated neuroendocrine carcinomas from adenocarcinomas of the colon and rectum pathologically because patients may benefit from alternative cytotoxic chemotherapeutic regimens.

  1. Neuroendocrine coupling across adolescence and the longitudinal influence of early life stress.

    Science.gov (United States)

    Ruttle, Paula L; Shirtcliff, Elizabeth A; Armstrong, Jeffrey M; Klein, Marjorie H; Essex, Marilyn J

    2015-09-01

    Drawing on conceptual models illustrating the advantages of a multisystemic, interactive, developmental approach to understanding development, the present study examines the covariation of stress and sex hormones across the adolescent transition and the effect of early life stress (ELS) on neuroendocrine coupling to gain insight into atypical development. Morning levels of cortisol, testosterone, and dehydroepiandrosterone (DHEA) were assessed at ages 11, 13, and 15; ELS was assessed during the infancy and preschool periods. Hierarchical linear modeling revealed that cortisol-DHEA coupling patterns progressed to tight, positive coupling across adolescence. Cortisol-testosterone coupling was positive at age 11 but became more negative at ages 13 and 15. Exposure to ELS resulted in more adultlike neuroendocrine coupling patterns earlier in life than non-exposed youth; however the effect of ELS on cortisol-testosterone coupling was unique to girls. Results illustrate trajectories of neuroendocrine coupling that may be unique to adolescence. Moderation by ELS suggests that early stress exposure may prompt earlier adultlike neuroendocrine coupling, particularly within girls, which may contribute to early pubertal development. © 2013 Wiley Periodicals, Inc.

  2. Tissue microarray analysis as a screening tool for neuroendocrine carcinoma of the breast.

    Science.gov (United States)

    Brask, Julie Benedicte; Talman, Maj-Lis Møller; Wielenga, Vera Timmermans

    2014-07-01

    Neuroendocrine carcinoma of the breast (NCB) is a fairly recent diagnostic entity added by WHO in 2003. Since then, studies have indicated that NCB potentially displays a worse prognosis than invasive ductal carcinoma. However, due to a lack of standard use of immunohistochemical staining for neuroendocrine markers and the fact that NCB may only show slight neuroendocrine morphology that can easily be overlooked, NCB is often underdiagnosed. Consequently, there is a need for fast and reliable detection method for NCB. Here, we take a first step toward finding an easy way of identifying NCB by investigating the usefulness of tissue microarray (TMA) analysis as a screening tool. We present our findings with regard to sensitivity and specificity compared with whole-mount sections. The material consists of 240 cases of breast cancer divided into 20 TMA blocks that were all immunohistochemically stained for the neuroendocrine markers chromogranin A and synaptophysin. Cases positive in more than 50% of the tumor cells were accepted in accordance with WHO (2003) standards of NCB. Sensitivity and specificity for TMA sections vs whole-mount sections were found to be 100% and 97.8%, respectively, suggesting that TMA analysis is a reliable method for NCB detection. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  3. Neuroendocrine tumor of the appendix inside an incarcerated Amyand’s hernia

    Directory of Open Access Journals (Sweden)

    Khaled Y. Elbanna

    2015-01-01

    An incidental finding of neuroendocrine tumor of the appendix in a patient with s hernia is extremely rare. A high index of suspicion is the key to diagnose such a coincidence in order to safely and optimally treat such a condition.

  4. Niacin (Vitamin B-3) Supplementation in Patients with Serotonin-Producing Neuroendocrine Tumor

    NARCIS (Netherlands)

    Bouma, Grietje; van Faassen, Martijn; Kats-Ugurlu, Gursah; Vries, de Elisabeth G. E.; Kema, Ido P.; Walenkamp, Annemiek M. E.

    2016-01-01

    BACKGROUND/AIMS: Tryptophan is the precursor of serotonin and niacin (vitamin B3). The latter is critical for normal cellular metabolism. Tryptophan and niacin can be deficient in patients with serotonin producing neuroendocrine tumors (NETs). Niacin deficiency can lead to severe symptoms including

  5. Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Kjaer, Andreas; Knigge, Ulrich

    2015-01-01

    Radionuclides are needed both for nuclear medicine imaging as well as for peptide-receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NET). Imaging is important in the initial diagnostic work-up and for staging NETs. In therapy planning, somatostatin receptor imaging (SRI) is used when...

  6. The influence of postnatal handling on adult neuroendocrine and behavioural stress reactivity

    NARCIS (Netherlands)

    Meerlo, P; Horvath, KM; Nagy, GM; Bohus, B; Koolhaas, JM

    1999-01-01

    Environmental stimuli during early stages of life can influence the development of an organism and may result in permanent changes in adult behaviour and physiology. In the present study we investigated the influence of early postnatal handling on adult neuroendocrine and behavioural stress

  7. Neuroendocrine and Behavioral Effects of Vasopressin in Resting and Mild Stress Conditions

    NARCIS (Netherlands)

    Buwalda, B.; Nyakas, C.; Koolhaas, J.M.; Bohus, B.

    1993-01-01

    Neuroendocrine and behavioral effects of subcutaneously administered AVP (6 mug/kg b.wt.) were determined in resting conditions and after the mild stress of transportation to and placement in a novel environment. In resting conditions, systemic administration of AVP caused a rapid increase in blood

  8. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    Science.gov (United States)

    Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.

    2016-01-01

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793

  9. Childhood neuroendocrine tumours : a descriptive study revealing clues for genetic predisposition

    NARCIS (Netherlands)

    Diets, I J; Nagtegaal, I D; Loeffen, J; de Blaauw, I; Waanders, E; Hoogerbrugge, N; Jongmans, M C J

    2017-01-01

    BACKGROUND: Neuroendocrine tumours (NETs) are rare in children and limited data are available. We aimed to specify tumour and patient characteristics and to investigate the role of genetic predisposition in the aetiology of paediatric NETs. METHODS: Using the Dutch Pathology Registry PALGA, we

  10. Genetics of Endocrine and Neuroendocrine Neoplasias (PDQ®)—Health Professional Version

    Science.gov (United States)

    Endocrine and neuroendocrine neoplasias may be inherited in syndromes such as multiple endocrine neoplasia types 1 and 2 (MEN1 and MEN2), familial pheochromocytoma and paraganglioma, and Carney-Stratakis syndrome. Learn about the genetics, clinical manifestations, and management of these hereditary cancer syndromes in this expert-reviewed summary.

  11. A case of giant prolactinoma, initially misdiagnosed as sinonasal neuroendocrine carcinoma

    Directory of Open Access Journals (Sweden)

    Yasaman Mohtasebi, M.D.

    2015-09-01

    Full Text Available Giant prolactinomas are defined as pituitary tumors greater than 4 cm, often associated with very high prolactin level (>1000 ng/mL. They are relatively rare tumors and can present differently from typical prolactinomas. They can be highly invasive, resulting in acute neurological complication at the time of presentation. We present a case of a young woman with giant prolactinoma initially misdiagnosed as sinonasal neuroendocrine carcinoma. The acute presentation of headache, ptosis and impending brain herniation, requiring emergent ventriculostomy and intubation, led to the clinical suspicion of a more sinister diagnosis. Transnasal biopsy of the mass was consistent with sinonasal neuroendocrine carcinoma, and chemotherapy was planned. Laboratory testing, however, revealed an elevated prolactin (27,400 ng/mL, after 1:100 dilution. Re-review of pathology with additional immunohistochemical staining was requested and confirmed the diagnosis of prolactinoma. After 5 months of cabergoline treatment, prolactin level has decreased to 118 ng/mL. There has been a marked reduction in tumor size and an almost complete resolution of neurological symptoms. Given their atypical presentation and potential for sharing common immunohistochemical stains with other neuroendocrine neoplasms, giant prolactinomas extending into the nasal cavity can be misdiagnosed as other neuroendocrine neoplasms which may develop at this site. Accurate diagnosis is imperative to prevent unnecessary surgery and/or radiation and to ensure implementation of dopamine agonist therapy.

  12. Nordic Guidelines 2010 for diagnosis and treatment of gastroenteropancreatic neuroendocrine tumours

    DEFF Research Database (Denmark)

    Janson, Eva Tiensuu; Sørbye, Halfdan; Welin, Staffan

    2010-01-01

    The diagnostic work-up and treatment of patients with neuroendocrine tumours has undergone a major change during the last decade. New diagnostic possibilities and treatment options have been developed. These Nordic guidelines, written by a group with a major interest in the subject, summarises ou...

  13. Neuroendocrine-immune interaction: regulation of inflammation via G-protein coupled receptors

    NARCIS (Netherlands)

    Verburg-van Kemenade, B.M.L.; Aa, van der L.M.; Chadzinska, M.K.

    2013-01-01

    Neuroendocrine- and immune systems interact in a bi-directional fashion to communicate the status of pathogen recognition to the brain and the immune response is influenced by physiological changes. The network of ligands and their receptors involved includes cytokines and chemokines,

  14. Carcinoid Syndrome and Carcinoid Heart Disease as Manifestations of Non-Metastatic Ovarian Neuroendocrine Tumour

    Directory of Open Access Journals (Sweden)

    Joana Simões-Pereira

    2017-05-01

    Full Text Available The carcinoid syndrome is rare but it is associated with carcinoid heart disease in more than a half of the cases. Carcinoid heart disease is typically characterised by morphological and functional modifications of right-sided valves. Its aetiology is probable multifactorial but serotonin appears to play a key role in the development of this valvular disease. Unlike gastrointestinal neuroendocrine tumours, ovarian neuroendocrine tumours can present with carcinoid syndrome and carcinoid heart disease in the absence of liver metastases; such ovarian neuroendocrine tumours are a unique clinical entity. The additional burden of cardiac impairment in these patients represents a significant reduction in survival. Early recognition and surgical valve replacement before advanced heart failure is established may improve the clinical outcome. We report the case of a woman with an ovarian neuroendocrine tumour and highly symptomatic carcinoid heart disease who was submitted to tumour resection followed by valvuloplasty. She demonstrated an outstanding clinical improvement and has remained free of tumour and symptomatology.

  15. Microbiota Modulate Anxiety-Like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal Axis

    Directory of Open Access Journals (Sweden)

    Ran Huo

    2017-11-01

    Full Text Available Intestinal microbes are an important system in the human body, with significant effects on behavior. An increasing body of research indicates that intestinal microbes affect brain function and neurogenesis, including sensitivity to stress. To investigate the effects of microbial colonization on behavior, we examined behavioral changes associated with hormones and hormone receptors in the hypothalamic-pituitary-adrenal (HPA axis under stress. We tested germ-free (GF mice and specific pathogen-free (SPF mice, divided into four groups. A chronic restraint stress (CRS protocol was utilized to induce external pressure in two stress groups by restraining mice in a conical centrifuge tube for 4 h per day for 21 days. After CRS, Initially, GF restraint-stressed mice explored more time than SPF restraint-stressed mice in the center and total distance of the OFT. Moreover, the CRH, ACTH, CORT, and ALD levels in HPA axis of GF restraint-stressed mice exhibited a significantly greater increase than those of SPF restraint-stressed mice. Finally, the Crhr1 mRNA levels of GF CRS mice were increased compared with SPF CRS mice. However, the Nr3c2 mRNA levels of GF CRS mice were decreased compared with SPF CRS mice. All results revealed that SPF mice exhibited more anxiety-like behavior than GF mice under the same external stress. Moreover, we also found that GF mice exhibited significant differences in, hormones, and hormone receptors compared with SPF mice. In conclusion, Imbalances of the HPA axis caused by intestinal microbes could affect the neuroendocrine system in the brain, resulting in an anxiety-like behavioral phenotype. This study suggested that intervention into intestinal microflora may provide a new approach for treating stress-related diseases.

  16. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    Science.gov (United States)

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  17. The future of human reproduction

    National Research Council Canada - National Science Library

    Overall, Christine

    1989-01-01

    ... Contradictions III SOCIAL POLICY QUESTIONS Pregnancy as Justification for Loss of Juridical Autonomy Sanda Rodgers 174 Prenatal Diagnosis: Reproductive Choice? Reproductive Control? Abby Lippman ...

  18. The hypothalamic–pituitary–adrenal axis and sex hormones in chronic stress and obesity: pathophysiological and clinical aspects

    Science.gov (United States)

    Pasquali, Renato

    2012-01-01

    Obesity, particularly the abdominal phenotype, has been ascribed to an individual maladaptation to chronic environmental stress exposure mediated by a dysregulation of related neuroendocrine axes. Alterations in the control and action of the hypothalamic–pituitary–adrenal axis play a major role in this context, with the participation of the sympathetic nervous system. The ability to adapt to chronic stress may differ according to sex, with specific pathophysiological events leading to the development of stress-related chronic diseases. This seems to be influenced by the regulatory effects of sex hormones, particularly androgens. Stress may also disrupt the control of feeding, with some differences according to sex. Finally, the amount of experimental data in both animals and humans may help to shed more light on specific phenotypes of obesity, strictly related to the chronic exposure to stress. This challenge may potentially imply a different pathophysiological perspective and, possibly, a specific treatment. PMID:22612409

  19. Chromophobe renal cell carcinoma with neuroendocrine differentiation/morphology: A clinicopathological and genetic study of three cases

    Directory of Open Access Journals (Sweden)

    Chisato Ohe, MD

    2014-09-01

    Full Text Available Chromophobe renal cell carcinoma (ChRCC with neuroendocrine differentiation/morphology (NED/NEM is exceedingly rare. We present three cases of ChRCC with NED/NEM, two of which showed positivity for neuroendocrine markers on immunohistochemical analysis. Patients ranged in age from 49 to 79 years (mean: 64.3 years. One of the three patients died of metastatic disease to multiple organs. Of the remaining two patients, one is currently alive without disease and the other is alive with disease. Histologically, all three tumors were composed of conventional ChRCC and NEM showed glandular and rosette formation. Immunohistochemically, tumor cells were positive for CK7, KAI1, E-cadherin, and c-kit in both ChRCC and neuroendocrine areas in three cases. CD56 and synaptophysin immunoreactivity were detected in two cases; in only the neuroendocrine area in one case and in both components in the other. Neuroendocrine granules were ultrastructurally observed at both neuroendocrine and conventional areas of ChRCC. Array comparative genomic hybridization (CGH study indicated losses of chromosomes 1, 2, 6, 10, 17, 21, and Y in both conventional ChRCC and NED in one case. In addition, losses of chromosomes 1, 2, 4, 6, 9, 10, 13, 16p, 17, and 21 were observed in both components of the remaining one tumor. Furthermore, loss of chromosome 5 was identified only in the neuroendocrine area in this case. We concluded that the neuroendocrine area may reflect dedifferentiation within ChRCC. It is possible that losses of chromosomes 4, 5, and 16p may be involved in the neuroendocrine differentiation or progression of ChRCC.

  20. Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review.

    Science.gov (United States)

    Juruena, Mario F; Bocharova, Mariia; Agustini, Bruno; Young, Allan H

    2017-10-06

    -melancholic or non-endogenous depression or controls; (2) 9 studies which compared atypical depression or atypical traits vs. non-atypical depression or controls; (3) 7 studies which compared melancholic or endogenous and atypical depression subtypes and (4) 5 studies which used a longitudinal design, comparing the measures of HPA-axis across two or more time points. While the majority of studies did confirm the association between melancholic depression and increased post-challenge cortisol levels, the association with increases in basal cortisol and basal ACTH were less consistent. Some studies, particularly those focusing on reversed vegetative symptoms, demonstrated a decrease in the activity of the HPA axis in atypical depression compared to controls, but the majority did not distinguish it from healthy controls. In conclusion, our findings indicate that there is a difference in the activity of the HPA-axis between melancholic and atypical depressive subtypes. However, these are more likely explained by hypercortisolism in melancholia; and most often normal than decreased function in atypical depression. Further research should seek to distinguish a particular subtype of depression linked to HPA-axis abnormalities, based on symptom profile, with a focus on vegetative symptoms, neuroendocrine probes, and the history of adverse childhood events. New insights into the dichotomy addressed in this review might be obtained from genetic and epigenetic studies of HPA-axis related genes in both subtypes, with an emphasis on the presence of vegetative symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.