WorldWideScience

Sample records for neurodegenerative disorders relevant

  1. Aquatherapy for neurodegenerative disorders.

    Science.gov (United States)

    Plecash, Alyson R; Leavitt, Blair R

    2014-01-01

    Aquatherapy is used for rehabilitation and exercise; water provides a challenging, yet safe exercise environment for many special populations. We have reviewed the use of aquatherapy programs in four neurodegenerative disorders: Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Results support the use of aquatherapy in Parkinson's disease and multiple sclerosis, however further evidence is required to make specific recommendations in all of the aforementioned disorders.

  2. Autophagy and neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Evangelia Kesidou; Roza Lagoudaki; Olga Touloumi; Kyriaki-Nefeli Poulatsidou; Constantina Simeonidou

    2013-01-01

    Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracel ular mechanism that removes damaged organelles and misfolded proteins in order to maintain cel homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.

  3. Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders.

    Science.gov (United States)

    Fagherazzi, Elen V; Garcia, Vanessa A; Maurmann, Natasha; Bervanger, Thielly; Halmenschlager, Luis H; Busato, Stefano B; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Schröder, Nadja

    2012-02-01

    Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.

  4. Molecular diagnostics of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Megha eAgrawal

    2015-09-01

    Full Text Available Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer’s and Parkinson’s disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  5. Molecular diagnostics of neurodegenerative disorders.

    Science.gov (United States)

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  6. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease.

    Science.gov (United States)

    Wang, Yan-Hong; Samoylenko, Volodymyr; Tekwani, Babu L; Khan, Ikhlas A; Miller, Loren S; Chaurasiya, Narayan D; Rahman, Md Mostafizur; Tripathi, Lalit M; Khan, Shabana I; Joshi, Vaishali C; Wigger, Frank T; Muhammad, Ilias

    2010-04-21

    Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of Banisteriopsis caapi has been established for alleviating symptoms of neurological disorders including Parkinson's disease. Primary objective of this study was to develop the process for preparing standardized extracts of Banisteriopsis caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of Banisteriopsis caapi. The Banisteriopsis caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Among the different aerial parts, leaves, stems/large branches and stem bark of Banisteriopsis caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied Banisteriopsis caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous Banisteriopsis caapi extracts

  7. The aging brain and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Braffman, B.H.; Trojanowski, J.Q.; Atlas, S.W.

    1991-01-01

    Both the aging brain and neurodegenerative disorders are characterized by a lack of vital endurance of affected neurons resulting in their premature death. Neuronal shrinkage or atrophy and death are normal and inevitable aspects of normal or successful aging; this is unexpected, excessive, and premature in neurodegenerative disorders. These histologic changes result in the neuroimaging findings of focal and/or diffuse atrophy with consequent enlargement of cerebrospinal fluid (CSF) spaces. The aging brain and neurodegenerative disorders share other magnetic resonance (MR) changes, i.e., markedly hypointense extrapyramidal nuclei and hyperintense white matter foci. The sequelae of senescent vascular changes result in additional characteristic features of the aging brain. This paper presents the MR and neuropathologic manifestations of both the normal aging brain and the brain affected by neurodegenerative disorders

  8. Transmission of Neurodegenerative Disorders Through Blood Transfusion

    DEFF Research Database (Denmark)

    Edgren, Gustaf; Hjalgrim, Henrik; Rostgaard, Klaus

    2016-01-01

    BACKGROUND: The aggregation of misfolded proteins in the brain occurs in several neurodegenerative disorders. Aberrant protein aggregation is inducible in rodents and primates by intracerebral inoculation. Possible transfusion transmission of neurodegenerative diseases has important public health...... implications. OBJECTIVE: To investigate possible transfusion transmission of neurodegenerative disorders. DESIGN: Retrospective cohort study. SETTING: Nationwide registers of transfusions in Sweden and Denmark. PARTICIPANTS: 1 465 845 patients who received transfusions between 1968 and 2012. MEASUREMENTS.......9% received a transfusion from a donor diagnosed with one of the studied neurodegenerative diseases. No evidence of transmission of any of these diseases was found, regardless of approach. The hazard ratio for dementia in recipients of blood from donors with dementia versus recipients of blood from healthy...

  9. Ghrelin and Neurodegenerative Disorders-a Review.

    Science.gov (United States)

    Shi, Limin; Du, Xixun; Jiang, Hong; Xie, Junxia

    2017-03-01

    Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.

  10. Neurodegenerative Disorders Treatment: The MicroRNA Role.

    Science.gov (United States)

    Ridolfi, Barbara; Abdel-Haq, Hanin

    2017-01-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and prion disease are not timely and effectively treated using conventional therapies. This emphasizes the need for alternative therapeutic approaches. In this respect, gene-based therapies have been adopted as potentially feasible alternative therapies, where the microRNA (miRNA) approach has experienced a great explosion in recent years. Because miRNAs have been shown to be implicated in the pathogenesis of several diseases including neurodegenerative diseases, they are intensely studied as candidates for diagnostic and prognostic biomarkers, as predictors of drug response and as therapeutic agents. In this review, we evaluate the feasibility of both direct and indirect miRNA mimics and inhibitors toward the regulation of neurodegenerative-related genes both in vivo and in vitro models, highlight the advantages and drawbacks associated with miRNA-based therapy, and summarize the relevant techniques and approaches attempted to deliver miRNAs to the central nervous system for therapeutic purposes, with particular regard to the exosomes. Additionally, we describe a new approach that holds great promise for the treatment of a wide range of diseases including neurodegenerative disorders. This approach is based on addressing the incorporation of miRNAs into exosomes to increase the quantity and quality of miRNA packed and delivered to the central nervous system and other sites of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Composition, Standardization and Chemical Profiling of Banisteriopsis caapi, a Plant for the Treatment of Neurodegenerative Disorders Relevant to Parkinson’s Disease†

    Science.gov (United States)

    Wang, Yan-Hong; Samoylenko, Volodymyr; Tekwani, Babu L.; Khan, Ikhlas A.; Miller, Loren S.; Chaurasiya, Narayan D.; Rahman, Md. Mostafizur; Tripathi, Lalit M.; Khan, Shabana I.; Joshi, Vaishali C.; Wigger, Frank T.; Muhammad, Ilias

    2010-01-01

    Ethnopharmacological relevance Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of B. caapi has been established for alleviating symptoms of neurological disorders including Parkinson’s disease. Aim of the study Primary objective of this study was to develop the process for preparing standardized extracts of B. caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Materials and methods Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of B. caapi. The B. caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Results Among the different aerial parts, leaves, stems/large branches and stem bark of B. caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied B. caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous B. caapi extracts and

  12. Comparative Incidence of Conformational, Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Jesús de Pedro-Cuesta

    Full Text Available The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs.We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD. We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD forms, amyotrophic lateral sclerosis (ALS, and sporadic rapidly progressing neurodegenerative dementia (sRPNDd. For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined.Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD, to 1589 and 2589 for AMD and Alzheimer's disease (AD respectively. Age-specific profiles varied from (a symmetrical, inverted V-shaped curves for low incidences to (b those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20-24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration.These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to incidence magnitude and survival might

  13. Comparative Incidence of Conformational, Neurodegenerative Disorders

    Science.gov (United States)

    de Pedro-Cuesta, Jesús; Rábano, Alberto; Martínez-Martín, Pablo; Ruiz-Tovar, María; Alcalde-Cabero, Enrique; Almazán-Isla, Javier; Avellanal, Fuencisla; Calero, Miguel

    2015-01-01

    Background The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs). Methods We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD). We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD) forms, amyotrophic lateral sclerosis (ALS), and sporadic rapidly progressing neurodegenerative dementia (sRPNDd). For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined. Findings Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD), to 1589 and 2589 for AMD and Alzheimer's disease (AD) respectively. Age-specific profiles varied from (a) symmetrical, inverted V-shaped curves for low incidences to (b) those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c) a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20–24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration. Interpretation These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to

  14. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  15. Ghrelin: a link between ageing, metabolism and neurodegenerative disorders

    NARCIS (Netherlands)

    Stoyanova, Irina

    2014-01-01

    Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics:

  16. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  17. Global warming and neurodegenerative disorders: speculations on their linkage

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders. PMID:25671171

  18. Global warming and neurodegenerative disorders: speculations on their linkage.

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  19. Predictive gene testing for Huntington disease and other neurodegenerative disorders.

    Science.gov (United States)

    Wedderburn, S; Panegyres, P K; Andrew, S; Goldblatt, J; Liebeck, T; McGrath, F; Wiltshire, M; Pestell, C; Lee, J; Beilby, J

    2013-12-01

    Controversies exist around predictive testing (PT) programmes in neurodegenerative disorders. This study sets out to answer the following questions relating to Huntington disease (HD) and other neurodegenerative disorders: differences between these patients in their PT journeys, why and when individuals withdraw from PT, and decision-making processes regarding reproductive genetic testing. A case series analysis of patients having PT from the multidisciplinary Western Australian centre for PT over the past 20 years was performed using internationally recognised guidelines for predictive gene testing in neurodegenerative disorders. Of 740 at-risk patients, 518 applied for PT: 466 at risk of HD, 52 at risk of other neurodegenerative disorders - spinocerebellar ataxias, hereditary prion disease and familial Alzheimer disease. Thirteen percent withdrew from PT - 80.32% of withdrawals occurred during counselling stages. Major withdrawal reasons related to timing in the patients' lives or unknown as the patient did not disclose the reason. Thirty-eight HD individuals had reproductive genetic testing: 34 initiated prenatal testing (of which eight withdrew from the process) and four initiated pre-implantation genetic diagnosis. There was no recorded or other evidence of major psychological reactions or suicides during PT. People withdrew from PT in relation to life stages and reasons that are unknown. Our findings emphasise the importance of: (i) adherence to internationally recommended guidelines for PT; (ii) the role of the multidisciplinary team in risk minimisation; and (iii) patient selection. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  20. Nanomedicine and neurodegenerative disorders: so close yet so far.

    Science.gov (United States)

    Tosi, Giovanni; Vandelli, Maria Angela; Forni, Flavio; Ruozi, Barbara

    2015-07-01

    This editorial provides an overview of the main advantages of the use of nanomedicine-based approach for innovation in the treatment of neurodegenerative diseases. Besides these aspects, a critical analysis on the main causes that slow the application of nanomedicine to brain disorders is given along with the identification of possible solutions and possible interventions. Better communication between the main players of research in this field and a detailed understanding of the most critical issues to be addressed should help in defining future directions towards the improvement and, finally, the clinical application of nanomedicine to neurodegenerative diseases.

  1. Evidence-based therapy for sleep disorders in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    LIU Ling

    2013-08-01

    Full Text Available Objective To evaluate the effectiveness of the treatments for sleep disorders in neurodegenerative diseases so as to provide the best therapeutic regimens for the evidence-based treatment. Methods Search PubMed, MEDLINE, Cochrane Library, Wanfang Data and China National Knowledge Infrastructure (CNKI databases with "sleep disorder or sleep disturbance", "neurodegenerative diseases", "Parkinson's disease or PD", "Alzheimer's disease or AD", "multiple system atrophy or MSA" as retrieval words. The quality of the articles were evaluated with Jadad Scale. Results A total of 35 articles, including 2 systematic reviews, 5 randomized controlled trials, 13 clinical controlled trials, 13 case series and 2 epidemiological investigation studies were included for evaluation, 13 of which were high grade and 22 were low grade articles. Clinical evidences showed that: 1 advice on sleep hygiene, careful use of dopaminergic drugs and hypnotic sedative agents should be considered for PD. Bright light therapy (BLT may improve circadian rhythm sleep disorders and clonazepam may be effective for rapid eye movement sleep behavior disorder (RBD. However, to date, very few controlled studies are available to make a recommendation for the management of sleep disorders in PD; 2 treatments for sleep disorders in AD include drug therapy (e.g. melatonin, acetylcholinesterase inhibitors, antipsychotic drugs, antidepressants and non-drug therapy (e.g. BLT, behavior therapy, but very limited evidence shows the effectiveness of these treatments; 3 the first line treatment for sleep-related breathing disorder in MSA is nasal continuous positive airway pressure (nCPAP, and clonazepam is effective for RBD in MSA; 4 there is rare evidence related to the treatment of sleep disorders in dementia with Lewy body (DLB and amyotrophic lateral sclerosis (ALS. Conclusion Evidence-based medicine can provide the best clinical evidence on sleep disorders' treatment in neurodegenerative

  2. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Wanhe Li

    Full Text Available Elevated expression of specific transposable elements (TEs has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  3. REM behaviour disorder detection associated with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sorensen, Gertrud; Zoetmulder, Marielle

    2010-01-01

    Abnormal skeleton muscle activity during REM sleep is characterized as REM Behaviour Disorder (RBD), and may be an early marker for different neurodegenerative diseases. Early detection of RBD is therefore highly important, and in this ongoing study a semi-automatic method for RBD detection......, a computerized algorithm has been attempted implemented. By analysing the REM and non-REM EMG activity, using advanced signal processing tools combined with a statistical classifier, it is possible to discriminate normal and abnormal EMG activity. Due to the small number of patients, the overall performance...

  4. Support system and method for detecting neurodegenerative disorder

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a system and a method for detection of abnormal motor activity during REM sleep, and further to systems and method for assisting in detecting neurodegenerative disorders such as Parkinson's. One embodiment relates to a method for detection of abnormal motor activity...... during REM sleep comprising the steps of: performing polysomnographic recordings of a sleeping subject, thereby obtaining one or more electromyography (EMG) derivations, preferably surface EMG recordings, and one or more EEG derivations, and/or one or more electrooculargraphy (EOG) derivations, detecting...... one or more REM sleep stages, preferably based on the one or more EEG and/or EOG derivations, determining the level of muscle activity during the one or more REM sleep stages based on the one or more EMG derivations, wherein a subject having an increased level of muscle activity during REM sleep...

  5. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  6. Motor Phenotype in Neurodegenerative Disorders: Gait and Balance Platform Study Design Protocol for the Ontario Neurodegenerative Research Initiative (ONDRI).

    Science.gov (United States)

    Montero-Odasso, Manuel; Pieruccini-Faria, Frederico; Bartha, Robert; Black, Sandra E; Finger, Elizabeth; Freedman, Morris; Greenberg, Barry; Grimes, David A; Hegele, Robert A; Hudson, Christopher; Kleinstiver, Peter W; Lang, Anthony E; Masellis, Mario; McLaughlin, Paula M; Munoz, Douglas P; Strother, Stephen; Swartz, Richard H; Symons, Sean; Tartaglia, Maria Carmela; Zinman, Lorne; Strong, Michael J; McIlroy, William

    2017-01-01

    The association of cognitive and motor impairments in Alzheimer's disease and other neurodegenerative diseases is thought to be related to damage in the common brain networks shared by cognitive and cortical motor control processes. These common brain networks play a pivotal role in selecting movements and postural synergies that meet an individual's needs. Pathology in this "highest level" of motor control produces abnormalities of gait and posture referred to as highest-level gait disorders. Impairments in cognition and mobility, including falls, are present in almost all neurodegenerative diseases, suggesting common mechanisms that still need to be unraveled. To identify motor-cognitive profiles across neurodegenerative diseases in a large cohort of patients. Cohort study that includes up to 500 participants, followed every year for three years, across five neurodegenerative disease groups: Alzheimer's disease/mild cognitive impairment, frontotemporal degeneration, vascular cognitive impairment, amyotrophic lateral sclerosis, and Parkinson's disease. Gait and balance will be assessed using accelerometers and electronic walkways, evaluated at different levels of cognitive and sensory complexity, using the dual-task paradigm. Comparison of cognitive and motor performances across neurodegenerative groups will allow the identification of motor-cognitive phenotypes through the standardized evaluation of gait and balance characteristics. As part of the Ontario Neurodegenerative Research Initiative (ONDRI), the gait and balance platform aims to identify motor-cognitive profiles across neurodegenerative diseases. Gait assessment, particularly while dual-tasking, will help dissect the cognitive and motor contribution in mobility and cognitive decline, progression to dementia syndromes, and future adverse outcomes including falls and mortality.

  7. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    International Nuclear Information System (INIS)

    Agarwal, Swati; Yadav, Anuradha; Chaturvedi, Rajnish Kumar

    2017-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.

  8. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders?

    Science.gov (United States)

    Luchowska-Kocot, Dorota; Kiełczykowska, Małgorzata; Musik, Irena; Kurzepa, Jacek

    2017-01-01

    Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders. PMID:28654017

  9. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders.

    Science.gov (United States)

    Han, Chanshuai; Chaineau, Mathilde; Chen, Carol X-Q; Beitel, Lenore K; Durcan, Thomas M

    2018-01-01

    Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs) from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop "first-of-their-kind" disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI) and its partners are piloting an "Open Science" model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  10. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Chanshuai Han

    2018-02-01

    Full Text Available Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop “first-of-their-kind” disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI and its partners are piloting an “Open Science” model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  11. Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders.

    Science.gov (United States)

    Saniotis, Arthur; Henneberg, Maciej; Sawalma, Abdul-Rahman

    2018-01-01

    Recent neuroscientific research demonstrates that the human brain is becoming altered by technological devices. Improvements in biotechnologies and computer based technologies are now increasing the likelihood for the development of brain augmentation devices in the next 20 years. We have developed the idea of an "Endomyccorhizae like interface" (ELI) nanocognitive device as a new kind of future neuroprosthetic which aims to facilitate neuronal network properties in individuals with neurodegenerative disorders. The design of our ELI may overcome the problems of invasive neuroprosthetics, post-operative inflammation, and infection and neuroprosthetic degradation. The method in which our ELI is connected and integrated to neuronal networks is based on a mechanism similar to endomyccorhizae which is the oldest and most widespread form of plant symbiosis. We propose that the principle of Endomyccorhizae could be relevant for developing a crossing point between the ELI and neuronal networks. Similar to endomyccorhizae the ELI will be designed to form webs, each of which connects multiple neurons together. The ELI will function to sense action potentials and deliver it to the neurons it connects to. This is expected to compensate for neuronal loss in some neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

  12. Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Arthur Saniotis

    2018-03-01

    Full Text Available Recent neuroscientific research demonstrates that the human brain is becoming altered by technological devices. Improvements in biotechnologies and computer based technologies are now increasing the likelihood for the development of brain augmentation devices in the next 20 years. We have developed the idea of an “Endomyccorhizae like interface” (ELI nanocognitive device as a new kind of future neuroprosthetic which aims to facilitate neuronal network properties in individuals with neurodegenerative disorders. The design of our ELI may overcome the problems of invasive neuroprosthetics, post-operative inflammation, and infection and neuroprosthetic degradation. The method in which our ELI is connected and integrated to neuronal networks is based on a mechanism similar to endomyccorhizae which is the oldest and most widespread form of plant symbiosis. We propose that the principle of Endomyccorhizae could be relevant for developing a crossing point between the ELI and neuronal networks. Similar to endomyccorhizae the ELI will be designed to form webs, each of which connects multiple neurons together. The ELI will function to sense action potentials and deliver it to the neurons it connects to. This is expected to compensate for neuronal loss in some neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

  13. The emergence of designed multiple ligands for neurodegenerative disorders.

    Science.gov (United States)

    Geldenhuys, Werner J; Youdim, Moussa B H; Carroll, Richard T; Van der Schyf, Cornelis J

    2011-09-01

    The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline. Copyright © 2011. Published by Elsevier Ltd.

  14. Prions, prion-like prionoids, and neurodegenerative disordersVacancy

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2016-01-01

    Full Text Available Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like “prionoids” are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains.

  15. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders.

    Science.gov (United States)

    Jęśko, Henryk; Wencel, Przemysław; Strosznajder, Robert P; Strosznajder, Joanna B

    2017-03-01

    Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD + levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD + -dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.

  16. Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders.

    Science.gov (United States)

    Ikonomovic, Milos D; Mi, Zhiping; Abrahamson, Eric E

    2017-03-01

    Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of

  17. Research progress on the pathogenesis of rapid eye movement sleep behavior disorder and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hai-yang JIANG

    2017-10-01

    Full Text Available Rapid eye movement sleep behavior disorder (RBD is a sleep disorder characterized by the disappearance of muscle relaxation and enacting one's dreams during rapid eye movement (REM, with most of the dreams being violent or aggressive. Prevalence of RBD, based on population, is 0.38%-2.01%, but it becomes much higher in patients with neurodegenerative diseases, especially α - synucleinopathies. RBD may herald the emergence of α-synucleinopathies by decades, thus it may be used as an effective early marker of neurodegenerative diseases. In this review, we summarized the progress on the pathogenesis of RBD and its relationship with neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2017.10.003

  18. Tremor in neurodegenerative ataxias, Huntington disease and tic disorder.

    Science.gov (United States)

    Rudzińska, M; Krawczyk, M; Wójcik-Pędziwiatr, M; Szczudlik, A; Tomaszewski, T

    2013-01-01

    Tremor is the most prevalent movement disorder, defined as rhythmic oscillations of a body part, caused by alternating or synchronic contractions of agonistic or antagonistic muscles. The aim of the study was to assess prevalence and to characterize parameters of tremor accompanying de-generative ataxias, Huntington disease (HD) and tic disorders in comparison with a control group. Forty-three patients with degenerative ataxias, 28 with HD and 26 with tic disorders together with 51 healthy controls were included in the study. For each participant, clinical and instrumental assessment (accelerometer, electromyography [EMG], graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor), with hands extended (postural tremor), during the 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, the type of tremor was determined as essential tremor type or enhanced physiological tremor type. The incidence of tremor in the accelerometry in patients with degenerative ataxia (50%) significantly differs from controls (10%) (p = 0.001). The dominant tremor was postural, low-intense, with 7-Hz frequency, essential tremor (23%) or other tremor type (23%), while enhanced physiological tremor was the least frequent (2%). Tremor in patients with HD and tic disorders was found in 10% and 20% of patients, respectively, similarly to the control group. Tremor was mild, postural and of essential tremor type, less frequently of enhanced physiological tremor type. No correlation between severity of tremor and severity of disease was found. The prevalence of tremor is considerably higher among patients with degenerative ataxias compared with HD, tic disorder and the control group. The most common type of tremor accompanying ataxias, HD and tic disorders is essential tremor type.

  19. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Heeok Hong

    2016-05-01

    Full Text Available Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration.

  20. Lower urinary tract dysfunction in patients with parkinsonism and other neurodegenerative disorders

    DEFF Research Database (Denmark)

    Winge, Kristian

    2015-01-01

    of incontinence in Alzheimer's disease, but higher cognitive function including attention and self-management may play a role. Incontinence is a major risk factor for loss of independence. The complex pathophysiologic mechanisms of neurodegenerative disorders and hence complex symptoms play important roles......Progressive neurodegenerative disorders are devastating diseases with often fatal outcomes. Lower urinary tract symptoms (LUTS) add to morbidity and increase the risk of becoming dependent on the help of others (e.g., nursing-home referral). In Parkinson's disease (PD), the specific loss...... in LUTS and patient quality of life. Nocturia, incontinence, and urgency as well as poor bladder emptying are the most common symptoms. These symptoms may interact with the core symptoms of the disorders, increasing the risk of incontinence and infection. In rarer neurogenerative disorder LUTS may...

  1. Trends in the Molecular Pathogenesis and Clinical Therapeutics of Common Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Sibongile R. Sibambo

    2009-06-01

    Full Text Available The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.

  2. Iron in neurodegenerative disorders: being in the wrong place at the wrong time?

    Science.gov (United States)

    Apostolakis, Sotirios; Kypraiou, Anna-Maria

    2017-11-27

    Brain iron deposits have been reported consistently in imaging and histologic examinations of patients with neurodegenerative disorders. While the origins of this finding have not been clarified yet, it is speculated that impaired iron homeostasis or deficient transport mechanisms result in the accumulation of this highly toxic metal ultimately leading to formation of reactive oxygen species and cell death. On the other hand, there are also those who support that iron is just an incidental finding, a by product of neuronal loss. A literature review has been performed in order to present the key findings in support of the iron hypothesis of neurodegeneration, as well as to identify conditions causing or resulting from iron overload and compare and contrast their features with the most prominent neurodegenerative disorders. There is an abundance of experimental and observational findings in support of the hypothesis in question; however, as neurodegeneration is a rare incident of commonly encountered iron-associated disorders of the nervous system, and this metal is found in non-neurodegenerative disorders as well, it is possible that iron is the result or even an incidental finding in neurodegeneration. Understanding the underlying processes of iron metabolism in the brain and particularly its release during cell damage is expected to provide a deeper understanding of the origins of neurodegeneration in the years to come.

  3. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders.

    Science.gov (United States)

    Singh, Abhijeet; Chokriwal, Ankit; Sharma, Madan Mohan; Jain, Devendra; Saxena, Juhi; Stephen, Bjorn John

    2017-08-16

    Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.

  4. Role of Abca7 in mouse behaviours relevant to neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Warren Logge

    Full Text Available ATP-binding cassette transporters of the subfamily A (ABCA are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer's disease. However, Abca7's role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs and Alzheimer's disease (i.e. cognitive domains. Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.

  5. Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds

    Directory of Open Access Journals (Sweden)

    Mahmood Rasool

    2014-01-01

    Full Text Available Neurodegenerative diseases are characterized by protein aggregates and inflammation as well as oxidative stress in the central nervous system (CNS. Multiple biological processes are linked to neurodegenerative diseases such as depletion or insufficient synthesis of neurotransmitters, oxidative stress, abnormal ubiquitination. Furthermore, damaging of blood brain barrier (BBB in the CNS also leads to various CNS-related diseases. Even though synthetic drugs are used for the management of Alzheimer’s disease, Parkinson’s disease, autism, and many other chronic illnesses, they are not without side effects. The attentions of researchers have been inclined towards the phytochemicals, many of which have minimal side effects. Phytochemicals are promising therapeutic agents because many phytochemicals have anti-inflammatory, antioxidative as well as anticholinesterase activities. Various drugs of either synthetic or natural origin applied in the treatment of brain disorders need to cross the BBB before they can be used. This paper covers various researches related to phytochemicals used in the management of neurodegenerative disorders.

  6. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    Science.gov (United States)

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    Science.gov (United States)

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the

  8. Glucose 6 phosphatase dehydrogenase (G6PD and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Manju Tiwari

    2017-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD is a key and rate limiting enzyme in the pentose phosphate pathway (PPP. The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH. There are preponderance research findings that demonstrate the enzyme (G6PD role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.

  9. Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment

    Science.gov (United States)

    Li, Min; Wang, Li; Liu, Jiang-Hong; Zhan, Shu-Qin

    2018-01-01

    Objective: Rapid eye movement sleep behavior disorder (RBD) is characterized by dream enactment and loss of muscle atonia during rapid eye movement sleep. RBD is closely related to α-synucleinopathies including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Many studies have investigated the markers of imaging and neurophysiological, genetic, cognitive, autonomic function of RBD and their predictive value for neurodegenerative diseases. This report reviewed the progress of these studies and discussed their limitations and future research directions. Data Sources: Using the combined keywords: “RBD”, “neurodegenerative disease”, “Parkinson disease”, and “magnetic resonance imaging”, the PubMed/MEDLINE literature search was conducted up to January 1, 2018. Study Selection: A total of 150 published articles were initially identified citations. Of the 150 articles, 92 articles were selected after further detailed review. This study referred to all the important English literature in full. Results: Single-nucleotide polymorphisms in SCARB2 (rs6812193) and MAPT (rs12185268) were significantly associated with RBD. The olfactory loss, autonomic dysfunction, marked electroencephalogram slowing during both wakefulness and rapid eye movement sleep, and cognitive impairments were potential predictive markers for RBD conversion to neurodegenerative diseases. Traditional structural imaging studies reported relatively inconsistent results, whereas reduced functional connectivity between the left putamen and substantia nigra and dopamine transporter uptake demonstrated by functional imaging techniques were relatively consistent findings. Conclusions: More longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated

  10. Hippocampal-Prefrontal Circuit and Disrupted Functional Connectivity in Psychiatric and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Ming Li

    2015-01-01

    Full Text Available In rodents, the hippocampus has been studied extensively as part of a brain system responsible for learning and memory, and the prefrontal cortex (PFC participates in numerous cognitive functions including working memory, flexibility, decision making, and rewarding learning. The neuronal projections from the hippocampus, either directly or indirectly, to the PFC, referred to as the hippocampal-prefrontal cortex (Hip-PFC circuit, play a critical role in cognitive and emotional regulation and memory consolidation. Although in certain psychiatric and neurodegenerative diseases, structural connectivity viewed by imaging techniques has been consistently found to be associated with clinical phenotype and disease severity, the focus has moved towards the investigation of connectivity correlates of molecular pathology and coupling of oscillation. Moreover, functional and structural connectivity measures have been emerging as potential intermediate biomarkers for neuronal disorders. In this review, we summarize progress on the anatomic, molecular, and electrophysiological characters of the Hip-PFC circuit in cognition and emotion processes with an emphasis on oscillation and functional connectivity, revealing a disrupted Hip-PFC connectivity and electrical activity in psychiatric and neurodegenerative disorders as a promising candidate of neural marker for neuronal disorders.

  11. Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies

    International Nuclear Information System (INIS)

    Drzezga, Alexander

    2008-01-01

    Rising life-expectancy in the modern society has resulted in a rapidly growing prevalence of dementia, particularly of Alzheimer's disease (AD). Dementia turns into one of the most common age-related disorders with deleterious consequences for the concerned patients and their relatives, as well as worrying effects on the socio-economic systems. These facts justify strengthened scientific efforts to identify the pathologic origin of dementing disorders, to improve diagnosis, and to interfere therapeutically with the disease progression. In the recent years, remarkable progress has been made concerning the identification of molecular mechanisms underlying the pathology of neurodegenerative disorders. Growing evidence indicates that a common basis of many neurodegenerative dementias can be found in increased production, misfolding and pathological aggregation of proteins, such as ss-amyloid, tau protein, a-synuclein, or the recently described ubiquitinated TDP-43. This progressive insight in pathological processes is paralleled by the development of new therapeutic approaches. However, the exact contribution or mechanism of different pathologies with regard to the development of disease is not yet sufficiently clear. Considerable overlap of pathologies has been documented in different types of clinically defined dementias post mortem, and it has been difficult to correlate post mortem histopathology data with disease-expression during life. Molecular imaging procedures may play a valuable role to circumvent this limitation. In general, methods of molecular imaging have recently experienced an impressive advance, with numerous new and improved technologies emerging. These exciting tools may play a key role in the future regarding the evaluation of pathomechanisms, preclinical evaluation of new diagnostic procedures in animal models, selection of patients for clinical trials, and therapy monitoring. In this overview, molecular key pathologies, which are currently

  12. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  13. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  14. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    Science.gov (United States)

    Iturria-Medina, Yasser; Sotero, Roberto C; Toussaint, Paule J; Evans, Alan C

    2014-11-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  15. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Yasser Iturria-Medina

    2014-11-01

    Full Text Available Misfolded proteins (MP are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database. Furthermore, this model strongly supports a the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  16. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support.

    Science.gov (United States)

    Marsh, Samuel E; Blurton-Jones, Mathew

    2017-06-01

    Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease currently affect tens of millions of people worldwide. Unfortunately, as the world's population ages, the incidence of many of these diseases will continue to rise and is expected to more than double by 2050. Despite significant research and a growing understanding of disease pathogenesis, only a handful of therapies are currently available and all of them provide only transient benefits. Thus, there is an urgent need to develop novel disease-modifying therapies to prevent the development or slow the progression of these debilitating disorders. A growing number of pre-clinical studies have suggested that transplantation of neural stem cells (NSCs) could offer a promising new therapeutic approach for neurodegeneration. While much of the initial excitement about this strategy focused on the use of NSCs to replace degenerating neurons, more recent studies have implicated NSC-mediated changes in neurotrophins as a major mechanism of therapeutic efficacy. In this mini-review we will discuss recent work that examines the ability of NSCs to provide trophic support to disease-effected neuronal populations and synapses in models of neurodegeneration. We will then also discuss some of key challenges that remain before NSC-based therapies for neurodegenerative diseases can be translated toward potential clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  18. The interplay between iron accumulation, mitochondrial dysfunction and inflammation during the execution step of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Pamela J. Urrutia

    2014-03-01

    Full Text Available A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

  19. Assessing Executive Dysfunction in Neurodegenerative Disorders: A Critical Review of Brief Neuropsychological Tools

    Directory of Open Access Journals (Sweden)

    Helena S. Moreira

    2017-11-01

    Full Text Available Executive function (EF has been defined as a multifaceted construct that involves a variety of high-level cognitive abilities such as planning, working memory, mental flexibility, and inhibition. Being able to identify deficits in EF is important for the diagnosis and monitoring of several neurodegenerative disorders, and thus their assessment is a topic of much debate. In particular, there has been a growing interest in the development of neuropsychological screening tools that can potentially provide a reliable quick measure of EF. In this review, we critically discuss the four screening tools of EF currently available in the literature: Executive Interview-25 (EXIT 25, Frontal Assessment Battery (FAB, INECO Frontal Screening (IFS, and FRONTIER Executive Screen (FES. We first describe their features, and then evaluate their psychometric properties, the existing evidence on their neural correlates, and the empirical work that has been conducted in clinical populations. We conclude that the four screening tools generally present appropriate psychometric properties, and are sensitive to impairments in EF in several neurodegenerative conditions. However, more research will be needed mostly with respect to normative data and neural correlates, and to determine the extent to which these tools add specific information to the one provided by global cognition screening tests. More research directly comparing the available tools with each other will also be important to establish in which conditions each of them can be most useful.

  20. Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders.

    Science.gov (United States)

    Taha, Masoumeh Fakhr

    2010-03-01

    Cell based-gene delivery has provided an important therapeutic strategy for different disorders in the recent years. This strategy is based on the transplantation of genetically modified cells to express specific genes and to target the delivery of therapeutic factors, especially for the treatment of cancers and neurological, immunological, cardiovascular and heamatopoietic disorders. Although, preliminary reports are encouraging, and experimental studies indicate functionally and structurally improvements in the animal models of different disorders, universal application of this strategy for human diseases requires more evidence. There are a number of parameters that need to be evaluated, including the optimal cell source, the most effective gene/genes to be delivered, the optimal vector and method of gene delivery into the cells and the most efficient route for the delivery of genetically modified cells into the patient. Also, some obstacles have to be overcome, including the safety and usefulness of the approaches and the stability of the improvements. Here, recent studies concerning with the cell-based gene delivery for spinal cord injury and some neurodegenerative disorders such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease are briefly reviewed, and their exciting consequences are discussed.

  1. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders.

    Science.gov (United States)

    Meldrum, B

    1993-01-01

    The possibility that some acidic amino acids occurring naturally or as additives in the diet can act as excitotoxins producing central nervous system pathology has been the subject of extensive debate in the last 20 years and is here reviewed. High doses of glutamate, aspartate or related excitatory amino acids given in isolation to neonatal rodents produce acute degeneration organs. Neuropathology resulting from consumption of glutamate or aspartate has not been described in man. Various unusual amino acids of plant origin can produce acute excitotoxic syndromes. In man domoate (consumed in mussels that have fed on (Nitschia pungens) can produce an acute syndrome associated with limbic system lesions and anterograde amnesia. Kainate and domoate produce similar syndromes in rodents; acromelate produces spinal pathology. The mechanisms and manifestations of chronic excitotoxicity are less clearly established. A combination of impaired energy metabolism or impaired buffering of calcium and free radicals and endogenous or exogenous excitotoxins may contribute to neuronal loss in human neurodegenerative disorders.

  2. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Alisia Carnemolla

    Full Text Available The heat shock response (HSR is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.

  3. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders.

    Science.gov (United States)

    Goemaere, Julie; Knoops, Bernard

    2012-02-01

    Redox changes are observed in neurodegenerative diseases, ranging from increased levels of reactive oxygen/nitrogen species and disturbance of antioxidant systems, to nitro-oxidative damage. By reducing hydrogen peroxide, peroxynitrite, and organic hydroperoxides, peroxiredoxins (Prdxs) represent a major potential protective barrier against nitro-oxidative insults in the brain. While recent works have investigated the putative role of Prdxs in neurodegenerative disorders, less is known about their expression in the healthy brain. Here we used immunohistochemistry to map basal expression of Prdxs throughout C57BL/6 mouse brain. We first confirmed the neuronal localization of Prdx2-5 and the glial expression of Prdx1, Prdx4, and Prdx6. Then we performed an in-depth analysis of neuronal Prdx distribution in the brain. Our results show that Prdx2-5 are widely detected in the different neuronal populations, and especially well expressed in the olfactory bulb, in the cerebral cortex, in pons nuclei, in the red nucleus, in all cranial nerve nuclei, in the cerebellum, and in motor neurons of the spinal cord. In contrast, Prdx expression is very low in the dopaminergic neurons of substantia nigra pars compacta and in the CA1/2 pyramidal cells of hippocampus. This low basal expression may contribute to the vulnerability of these neurons to nitro-oxidative attacks occurring in Parkinson's disease and Alzheimer's disease. In addition, we found that Prdx expression levels are unevenly distributed among neurons of a determined region and that distinct regional patterns of expression are observed between isoforms, reinforcing the hypothesis of the nonredundant function of Prdxs. Copyright © 2011 Wiley-Liss, Inc.

  4. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools.

    Science.gov (United States)

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Flávia; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andréia; Gonçalves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, Márcia

    2015-08-18

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer's Disease, Parkinson's Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.

  5. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders

    NARCIS (Netherlands)

    Kos, Claire; van Tol, Marie-Jose; Marsman, Jan-Bernard C.; Knegtering, Henderikus; Aleman, Andre

    2016-01-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar

  6. Neurodevelopmental Versus Neurodegenerative Model of Schizophrenia and Bipolar Disorder: Comparison with Physiological Brain Development and Aging.

    Science.gov (United States)

    Buoli, Massimiliano; Serati, Marta; Caldiroli, Alice; Cremaschi, Laura; Altamura, Alfredo Carlo

    2017-03-01

    Available data support a contribution of both neurodevelopmental and neurodegenerative factors in the etiology of schizophrenia (SCH) and bipolar disorder (BD). Of note, one of the most important issue of the current psychiatric research is to identify the specific factors that contribute to impaired brain development and neurodegeneration in SCH and BD, and especially how these factors alter normal brain development and physiological aging process. Our hypothesis is that only specific damages, taking place in precise brain development stages, are associated with future SCH /BD onset and that neurodegeneration consists of an acceleration of brain aging after SCH /BD onset. In support of our hypothesis, the results of the present narrative mini-review shows as neurodevelopmental damages generally contribute to neuropsychiatric syndromes (e.g. hypothyroidism or treponema pallidum), but only some of them are specifically associated with adult SCH and BD (e.g. toxoplasma or substance abuse), particularly if they happen in specific stages of brain development. On the other hand, cognitive impairment and brain changes, associated with long duration of SCH /BD, look like what happens during aging: memory, executive domains and prefrontal cortex are implicated both in aging and in SCH /BD progression. Future research will explore possible validity of this etiological model for SCH and BD.

  7. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    Science.gov (United States)

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  8. An overview of the molecular mechanisms and novel roles of Nrf2 in neurodegenerative disorders.

    Science.gov (United States)

    Yang, Yang; Jiang, Shuai; Yan, Juanjuan; Li, Yue; Xin, Zhenlong; Lin, Yan; Qu, Yan

    2015-02-01

    Recently, growing evidence has demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of endogenous defense systems that function via the activation of a set of protective genes, and this is particularly clear in the central nervous system (CNS). Therefore, it is highly useful to summarize the current literature on the molecular mechanisms and role of Nrf2 in the CNS. In this review, we first briefly introduce the molecular features of Nrf2. We then discuss the regulation, cerebral actions, upstream modulators and downstream targets of Nrf2 pathway. Following this background, we expand our discussion to the role of Nrf2 in several major neurodegenerative disorders (NDDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Lastly, we discuss some potential future directions. The information reviewed here may be significant in the design of further experimental research and increase the potential of Nrf2 as a therapeutic target in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Adriana Covarrubias-Pinto

    2015-11-01

    Full Text Available Ascorbic acid is a key antioxidant of the Central Nervous System (CNS. Under brain activity, ascorbic acid is released from glial reservoirs to the synaptic cleft, where it is taken up by neurons. In neurons, ascorbic acid scavenges reactive oxygen species (ROS generated during synaptic activity and neuronal metabolism where it is then oxidized to dehydroascorbic acid and released into the extracellular space, where it can be recycled by astrocytes. Other intrinsic properties of ascorbic acid, beyond acting as an antioxidant, are important in its role as a key molecule of the CNS. Ascorbic acid can switch neuronal metabolism from glucose consumption to uptake and use of lactate as a metabolic substrate to sustain synaptic activity. Multiple evidence links oxidative stress with neurodegeneration, positioning redox imbalance and ROS as a cause of neurodegeneration. In this review, we focus on ascorbic acid homeostasis, its functions, how it is used by neurons and recycled to ensure antioxidant supply during synaptic activity and how this antioxidant is dysregulated in neurodegenerative disorders.

  10. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. Copyright © 2016. Published by Elsevier Ltd.

  11. Cannabinoids and value-based decision making: Implications for neurodegenerative disorders

    NARCIS (Netherlands)

    Lee, AM; Oleson, E.B.; Diergaarde, L.; Cheer, J.F.; Pattij, T.

    2012-01-01

    In recent years, disturbances in cognitive function have been increasingly recognized as important symptomatic phenomena in neurodegenerative diseases, including Parkinson's disease (PD). Value-based decision making in particular is an important executive cognitive function that is not only impaired

  12. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.; Essack, Magbubah

    2015-01-01

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer's Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent

  13. Confocal Synaptology: Synaptic Rearrangements in Neurodegenerative Disorders and upon Nervous System Injury

    Directory of Open Access Journals (Sweden)

    Maja Vulovic

    2018-02-01

    Full Text Available The nervous system is a notable exception to the rule that the cell is the structural and functional unit of tissue systems and organs. The functional unit of the nervous system is the synapse, the contact between two nerve cells. As such, synapses are the foci of investigations of nervous system organization and function, as well as a potential readout for the progression of various disorders of the nervous system. In the past decade the development of antibodies specific to presynaptic terminals has enabled us to assess, at the optical, laser scanning microscopy level, these subcellular structures, and has provided a simple method for the quantification of various synapses. Indeed, excitatory (glutamatergic and inhibitory synapses can be visualized using antibodies against the respective vesicular transporters, and choline-acetyl transferase (ChAT immunoreactivity identifies cholinergic synapses throughout the central nervous system. Here we review the results of several studies in which these methods were used to estimate synaptic numbers as the structural equivalent of functional outcome measures in spinal cord and femoral nerve injuries, as well as in genetic mouse models of neurodegeneration, including Alzheimer’s disease (AD. The results implicate disease- and brain region-specific changes in specific types of synapses, which correlate well with the degree of functional deficit caused by the disease process. Additionally, results are reproducible between various studies and experimental paradigms, supporting the reliability of the method. To conclude, this quantitative approach enables fast and reliable estimation of the degree of the progression of neurodegenerative changes and can be used as a parameter of recovery in experimental models.

  14. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C

    Directory of Open Access Journals (Sweden)

    Manuel E. Lopez

    2013-09-01

    Full Text Available Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.

  15. Neurodegenerative Dementia

    International Nuclear Information System (INIS)

    Allard, Michelle

    2006-01-01

    Full text: With increasing life expectancy across the world, the number of elderly people at risk of developing dementia is growing rapidly. Thus, progressive neurodegenerative disorders such as dementia represent a growing public health concern. These diseases are characterized by a progressive loss in most of the cognitive functions. The promise, possibly in a near future, of disease-modifying therapies has made the characterization of the early stages of dementia a topic of major interest. The assessment of these early stages is a challenge for neuroimaging studies. In order to conceive prevention trials; it is of major outcome to fully understand the mechanisms of the cognitive system impairment and its evolution, with a particular reference to the symptomatic pre-dementia stage, when subjects just begin to depart from normality. In this article we review recent progress in neuroimaging, and their potentiality for increasing a diagnostic accuracy. (author)

  16. Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment

    Directory of Open Access Journals (Sweden)

    Min Li

    2018-01-01

    Conclusions: More longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated. There is a need for more treatment trials to determine the effectiveness of interventions of RBD on preventing the conversion to neurodegenerative diseases.

  17. Pig Models of Neurodegenerative Disorders: Utilization in Cell Replacement-Based Preclinical Safety and Efficacy Studies

    Czech Academy of Sciences Publication Activity Database

    Doležalová, D.; Hruška-Plocháň, M.; Bjarkam, C. R.; Sorensen, J. C. H.; Cunningham, M.; Weingarten, D.; Ciacci, J. D.; Juhás, Štefan; Juhásová, Jana; Motlík, Jan; Hefferan, M. P.; Hazel, T.; Johe, K.; Carromeu, C.; Muotri, A.; Bui, J. D.; Strnádel, J.; Marsala, M.

    2014-01-01

    Roč. 522, č. 12 (2014), s. 2784-2801 ISSN 0021-9967 R&D Projects: GA TA ČR(CZ) TA01011466; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : pig * neurodegenerative models * stem cells Subject RIV: FH - Neurology Impact factor: 3.225, year: 2014

  18. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  19. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  1. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Martin Hofmann-Apitius

    2015-12-01

    Full Text Available Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI; which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations

  2. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?

    Science.gov (United States)

    Doty, Kevin R; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2015-08-18

    Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders.

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-08-03

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.

  4. Development and validation of brain and spinal cord vector and cell-delivery techniques in pre-clinical minipig models of neurodegenerative disorders

    Czech Academy of Sciences Publication Activity Database

    Juhás, Štefan; Juhásová, Jana; Klíma, Jiří; Maršala, M.; Maršala, S.; Atsushi, Y.; Johe, K.; Motlík, Jan

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 9-10 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : minipig models of neurodegenerative disorders * brin and spinal cord cell delivery techniques Subject RIV: EB - Genetics ; Molecular Biology

  5. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders.

    Science.gov (United States)

    Fanjul-Vélez, Félix; Salas-García, Irene; Ortega-Quijano, Noé; Arce-Diego, José Luis

    2015-01-01

    Non-invasive treatment of neurodegenerative diseases is particularly challenging in Western countries, where the population age is increasing. In this work, magnetic propagation in human head is modelled by Finite-Difference Time-Domain (FDTD) method, taking into account specific characteristics of Transcranial Magnetic Stimulation (TMS) in neurodegenerative diseases. It uses a realistic high-resolution three-dimensional human head mesh. The numerical method is applied to the analysis of magnetic radiation distribution in the brain using two realistic magnetic source models: a circular coil and a figure-8 coil commonly employed in TMS. The complete model was applied to the study of magnetic stimulation in Alzheimer and Parkinson Diseases (AD, PD). The results show the electrical field distribution when magnetic stimulation is supplied to those brain areas of specific interest for each particular disease. Thereby the current approach entails a high potential for the establishment of the current underdeveloped TMS dosimetry in its emerging application to AD and PD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.

    Science.gov (United States)

    Nakamura, T; Lipton, S A

    2007-07-01

    Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.

  7. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Amin Mottahedin

    2017-07-01

    Full Text Available The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.

  8. Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders- a review

    Directory of Open Access Journals (Sweden)

    Fatemeh Ayoobi

    2017-06-01

    Full Text Available The Achillea millefolium L. (Yarrow is a common herb which is widely being used, worldwide. Achillea is being used for treatment of many disorders since centuries. It is considered safe for supplemental use and flavonoids such as kaempferol, luteolin and apigenin are of main constituents present in Achillea. Most of both antioxidant and anti-inflammatory properties of this herb have been attributed to its flavonoid content. Oxidative and inflammatory processes play important roles in pathogenesis of neurodegenerative diseases. Present review was aimed to review the latest literature evidences regarding application of Achillea and/or its three main flavonoid constituents on epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and stroke.

  9. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Yoshida, S.

    1999-01-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  10. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Department of Neurology, Wakayama Medical College, Wakayama (Japan)

    1999-07-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  11. The glial response to intracerebrally delivered therapies for neurodegenerative disorders: Is this a critical issue?

    Directory of Open Access Journals (Sweden)

    Francesca eCicchetti

    2014-07-01

    Full Text Available The role of glial cells in the pathogenesis of many neurodegenerative conditions of the central nervous system (CNS is now well established (as is discussed in other reviews in this special issue of Frontiers in Neuropharmacology. What is less clear is whether there are changes in these same cells in terms of their behaviour and function in response to invasive experimental therapeutic interventions for these diseases. This has, and will continue to, become more of an issue as we enter a new era of novel treatments which require the agent to be directly placed/infused into the CNS such as deep brain stimulation, cell transplants, gene therapies and growth factor infusions. To date, all of these treatments have produced variable outcomes and the reasons for this have been widely debated but the host astrocytic and/or microglial response induced by such invasively delivered agents has not been discussed in any detail. In this review, we have attempted to summarise the limited published data on this, in particular we discuss the small number of human post-mortem studies reported in this field. By so doing, we hope to provide a better description and understanding of the extent and nature of both the astrocytic and microglial response, which in turn could lead to modifications in the way these therapeutic interventions are delivered.

  12. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    OpenAIRE

    Manju Tiwari

    2017-01-01

    Glucose 6 phosphate dehydrogenase (G6PD) is a key and rate limiting enzyme in the pentose phosphate pathway (PPP). The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). There are preponderance research findings that demonstrate the enzyme (G6PD) role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted f...

  13. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    OpenAIRE

    Risacher, Shannon L.; Saykin, Andrew J.

    2013-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, famili...

  14. Prodromal Parkinsonism and Neurodegenerative Risk Stratification in REM Sleep Behavior Disorder.

    Science.gov (United States)

    Barber, Thomas R; Lawton, Michael; Rolinski, Michal; Evetts, Samuel; Baig, Fahd; Ruffmann, Claudio; Gornall, Aimie; Klein, Johannes C; Lo, Christine; Dennis, Gary; Bandmann, Oliver; Quinnell, Timothy; Zaiwalla, Zenobia; Ben-Shlomo, Yoav; Hu, Michele T M

    2017-08-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is the most specific marker of prodromal alpha-synucleinopathies. We sought to delineate the baseline clinical characteristics of RBD and evaluate risk stratification models. Clinical assessments were performed in 171 RBD, 296 control, and 119 untreated Parkinson's (PD) participants. Putative risk measures were assessed as predictors of prodromal neurodegeneration, and Movement Disorders Society (MDS) criteria for prodromal PD were applied. Participants were screened for common leucine-rich repeat kinase 2 (LRRK2)/glucocerebrosidase gene (GBA) gene mutations. Compared to controls, participants with RBD had higher rates of solvent exposure, head injury, smoking, obesity, and antidepressant use. GBA mutations were more common in RBD, but no LRRK2 mutations were found. RBD participants performed significantly worse than controls on Unified Parkinson's Disease Rating Scale (UPDRS)-III, timed "get-up-and-go", Flamingo test, Sniffin Sticks, and cognitive tests and had worse measures of constipation, quality of life (QOL), and orthostatic hypotension. For all these measures except UPDRS-III, RBD and PD participants were equally impaired. Depression, anxiety, and apathy were worse in RBD compared to PD participants. Stratification of people with RBD according to antidepressant use, obesity, and age altered the odds ratio (OR) of hyposmia compared to controls from 3.4 to 45.5. 74% (95% confidence interval [CI] 66%, 80%) of RBD participants met the MDS criteria for probable prodromal Parkinson's compared to 0.3% (95% CI 0.009%, 2%) of controls. RBD are impaired across a range of clinical measures consistent with prodromal PD and suggestive of a more severe nonmotor subtype. Clinical risk stratification has the potential to select higher risk patients for neuroprotective interventions. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  15. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  16. Synopsis on Managment Strategies for Neurodegenerative Disorders: Challenges from Bench to Bedside in Successful Drug Discovery and Development.

    Science.gov (United States)

    Bhat, Sheraz Ahmad; Kamal, Mohammad Amjad; Yarla, Nagendra Sastry; Ashraf, Ghulam Md

    2017-01-01

    The maintenance of health requires successful cell functioning, which in turn depends upon the proper and active conformation of proteins besides other biomolecules. However, occasionally these proteins may misfold and lead to the appearance and progression of protein conformational diseases. These diseases apart from others include several neurodegenerative disorders (NDDs) such as Alzheimer's disease, Parkinson disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and other lesser known diseases. Although much knowledge has been gained, these NDDs still warrant advance research in the elucidation of their mechanisms as well as effective therapeutic interventions and proper management. There is an ever-growing and urgent need to improve the diagnosis and management of NDDs due to their devastating nature, serious social impact and neuropsychiatric symptoms. It is also envisioned that we may be able to encourage, develop, and strengthen the cell defenses against amyloid toxicity and prevent neuronal destruction and consequently neurodegeneration. In this review, the implications of protein misfolding and aggregation in NDDs are discussed along with some of the most recent findings on the curative and beneficial effects of natural molecules such as polyphenols. This paper also reviews the anti-aggregation and protective effects of some organic and peptidic compounds duly supported experimentally, as prospective future therapeutics for NDDs. The synopses presented in this review shall prove helpful in further understanding of the causes, cures and management of lethal NDDs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Madoka Ogawa; Robert Lester; Hiroshi Akima; Ashraf S. Gorgey

    2017-01-01

    Ectopic adiposity has gained considerable attention because of its tight association with metabolic and cardiovascular health in persons with spinal cord injury (SCI). Ectopic adiposity is characterized by the storage of adipose tissue in non-subcutaneous sites. Magnetic resonance imaging (MRI) has proven to be an effective tool in quantifying ectopic adiposity and provides the opportunity to measure different adipose depots including intermuscular adipose tissue (IMAT) and intramuscular adipose tissue (IntraMAT) or in-tramuscular fat (IMF). It is highly important to distinguish and clearly define these compartments, because controversy still exists on how to accurately quantify these adipose depots. Investigators have relied on separating muscle from fat pixels based on their characteristic signal intensities. A common technique is plotting a threshold histogram that clearly separates between muscle and fat peaks. The cut-offs to separate between muscle and fat peaks are still not clearly defined and different cut-offs have been identified. This review will outline and compare the Midpoint and Otsu techniques, two methods used to determine the threshold between muscle and fat pixels on T1 weighted MRI. The process of water/fat segmentation using the Dixon method will also be outlined. We are hopeful that this review will trigger more research towards accurately quantifying ectopic adiposity due to its high relevance to cardiometabolic health after SCI.

  18. Potential contribution of the neurodegenerative disorders risk loci to cognitive performance in an elderly male gout population.

    Science.gov (United States)

    Han, Lin; Jia, Zhaotong; Cao, Chunwei; Liu, Zhen; Liu, Fuqiang; Wang, Lin; Ren, Wei; Sun, Mingxia; Wang, Baoping; Li, Changgui; Chen, Li

    2017-09-01

    Cognitive impairment has been described in elderly subjects with high normal concentrations of serum uric acid. However, it remains unclear if gout confers an increased poorer cognition than those in individuals with asymptomatic hyperuricemia. The present study aimed at evaluating cognitive function in patients suffering from gout in an elderly male population, and further investigating the genetic contributions to the risk of cognitive function.This study examined the cognitive function as assessed by Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) in 205 male gout patients and 204 controls. The genetic basis of these cognitive measures was evaluated by genome-wide association study (GWAS) data in 102 male gout patients. Furthermore, 7 loci associated with cognition in GWAS were studied for correlation with gout in 1179 male gout patients and 1848 healthy male controls.Compared with controls, gout patients had significantly lower MoCA scores [22.78 ± 3.01 vs 23.42 ± 2.95, P = .023, adjusted by age, body mass index (BMI), education, and emotional disorder]. GWAS revealed 7 single-nucleotide polymorphisms (SNPs) associations with MoCA test at a level of conventional genome-wide significance (P gout in further analysis (all P > .05).Elderly male subjects with gout exhibit accelerated decline in cognition performance. Several neurodegenerative disorders risk loci were identified for genetic contributors to cognitive performance in our Chinese elderly male gout population. Larger prospective studies of the cognitive performance and genetic analysis in gout subjects are recommended.

  19. Neuroregeneration in neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Mureşanu Dafin F

    2011-06-01

    Full Text Available Abstract Background Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach. Discussion Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies. Summary In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.

  20. Potential contribution of the neurodegenerative disorders risk loci to cognitive performance in an elderly male gout population

    Science.gov (United States)

    Han, Lin; Jia, Zhaotong; Cao, Chunwei; Liu, Zhen; Liu, Fuqiang; Wang, Lin; Ren, Wei; Sun, Mingxia; Wang, Baoping; Li, Changgui; Chen, Li

    2017-01-01

    Abstract Cognitive impairment has been described in elderly subjects with high normal concentrations of serum uric acid. However, it remains unclear if gout confers an increased poorer cognition than those in individuals with asymptomatic hyperuricemia. The present study aimed at evaluating cognitive function in patients suffering from gout in an elderly male population, and further investigating the genetic contributions to the risk of cognitive function. This study examined the cognitive function as assessed by Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) in 205 male gout patients and 204 controls. The genetic basis of these cognitive measures was evaluated by genome-wide association study (GWAS) data in 102 male gout patients. Furthermore, 7 loci associated with cognition in GWAS were studied for correlation with gout in 1179 male gout patients and 1848 healthy male controls. Compared with controls, gout patients had significantly lower MoCA scores [22.78 ± 3.01 vs 23.42 ± 2.95, P = .023, adjusted by age, body mass index (BMI), education, and emotional disorder]. GWAS revealed 7 single-nucleotide polymorphisms (SNPs) associations with MoCA test at a level of conventional genome-wide significance (P gene (Padjusted = 4.2 × 10−9, Padjusted = 4.7 × 10–9) at 14q22. The next best signal was in RELN gene (rs155333, Padjusted = 1.3 × 10–8) at 7q22, while the other variants at rs17458357 (Padjusted = 3.98 × 10–8), rs2572683 (Padjusted = 8.9 × 10–8), rs12555895 (Padjusted = 2.6 × 10–8), and rs3764030 (Padjusted = 9.4 × 10–8) were also statistically significant. The 7 SNPs were not associated with gout in further analysis (all P > .05). Elderly male subjects with gout exhibit accelerated decline in cognition performance. Several neurodegenerative disorders risk loci were identified for genetic contributors to cognitive performance in our

  1. Fetal programming of the human brain: is there a link with insurgence of neurodegenerative disorders in adulthood?

    Science.gov (United States)

    Faa, G; Marcialis, M A; Ravarino, A; Piras, M; Pintus, M C; Fanos, V

    2014-01-01

    In recent years, evidence is growing on the role played by gestational factors in shaping brain development and on the influence of intrauterine experiences on later development of neurodegenerative diseases including Parkinson's (PD) and Alzheimer's disease (AD). The nine months of intrauterine development and the first three years of postnatal life are appearing to be extremely critical for making connections among neurons and among neuronal and glial cells that will shape a lifetime of experience. Here, the multiple epigenetic factors acting during gestation - including maternal diet, malnutrition, stress, hypertension, maternal diabetes, fetal hypoxia, prematurity, low birth weight, prenatal infection, intrauterine growth restriction, drugs administered to the mother or to the baby - are reported, and their ability to modulate brain development, resulting in interindividual variability in the total neuronal and glial burden at birth is discussed. Data from recent literature suggest that prevention of neurodegeneration should be identified as the one method to halt the diffusion of neurodegenerative diseases. The "two hits" hypothesis, first introduced for PD and successfully applied to AD and other neurodegenerative human pathologies, should focus our attention on a peculiar period of our life: the intrauterine and perinatal periods. The first hit to our nervous system occurs early in life, determining a PD or AD imprinting to our brain that will condition our resistance or, alternatively, our susceptibility to develop a neurodegenerative disease later in life. In conclusion, how early life events contribute to late-life development of adult neurodegenerative diseases, including PD and AD, is emerging as a new fascinating research focus. This assumption implies that research on prevention of neurodegenerative diseases should center on events taking place early in life, during gestation and in the perinatal periods, thus presenting a new challenge to

  2. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha.

    Science.gov (United States)

    Ven Murthy, M R; Ranjekar, Prabhakar K; Ramassamy, Charles; Deshpande, Manasi

    2010-09-01

    nontoxic medication that normalizes physiological functions, disturbed by chronic stress, through correction of imbalances in the neuroendocrine and immune systems [9, 10]. The scientific research that has been carried out on Ashwagandha and other ayurvedic herbal medicines may be classified into three major categories, taking into consideration the endogenous or exogenous phenomena that are known to cause physiological disequilibrium leading to the pathological state; (A) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on specific non-neurological diseases; (B) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on neurodegenerative disorders; and (C) biochemical, physiological and genetic studies on the herbal plants themselves, in order to distinguish between those originating from different habitats, or to improve the known medicinal quality of the indigenous plant. Some of the major points on its use in the treatment of neurodegenerative disorders are described below.

  3. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010.

    Science.gov (United States)

    Forrester, Joseph D; Kugeler, Kiersten J; Perea, Anna E; Pastula, Daniel M; Mead, Paul S

    2015-11-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.

  4. Cerebral Blood Flow and A beta-Amyloid Estimates by WARAM Analysis of [C-11]PiB Uptake Distinguish among and between Neurodegenerative Disorders and Aging

    DEFF Research Database (Denmark)

    Rodell, Anders B.; O'Keefe, Graeme; Rowe, Christopher C.

    2017-01-01

    Alzheimer’s disease, and healthy volunteers. The method introduces two approaches to the identification of brain pathology related to amyloid accumulation, (1) a novel analysis of amyloid binding based on the late washout of the tracer from brain tissue, and (2) the simultaneous estimation of absolute...... metabolism and reduction of blood flow by neurovascular coupling in neurodegenerative disorders, including Alzheimer’s disease. Methods: Previously reported images of [11C]PiB retention in brain of 29 subjects with cognitive impairment or dementia [16 Alzheimer’s Disease (AD), eight subjects with dementia...

  5. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools

    OpenAIRE

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Fl?via; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andr?ia; Gon?alves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, M?rcia

    2015-01-01

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for...

  6. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  7. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  8. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    that CM from SPCs favorable influence neural cell proliferation and survival. Understanding the mechanisms governing the characterization and humoral activity of subsets of SPCs may yield new therapeutic strategies that might be more effective in treating neurodegenerative disorders.

  9. Convergent molecular defects underpin diverse neurodegenerative diseases.

    Science.gov (United States)

    Tofaris, George K; Buckley, Noel J

    2018-02-19

    In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders.

    Science.gov (United States)

    Di Domenico, Fabio; Tramutola, Antonella; Butterfield, D Allan

    2017-10-01

    Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. REM Sleep Behavior Disorder: Updated Review of the Core Features, the RBD-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions

    Science.gov (United States)

    Boeve, Bradley F.

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to “act out their dreams,” in which the exhibited behaviors mirror the content of the dreams, and the dream content often involves a chasing or attacking theme. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straight-forward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail. PMID:20146689

  12. Pain in Neurodegenerative Disease : Current Knowledge and Future Perspectives

    NARCIS (Netherlands)

    de Tommaso, Marina; Arendt-Nielsen, Lars; Defrin, Ruth; Kunz, Miriam; Pickering, Gisele; Valeriani, Massimiliano

    2016-01-01

    Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD),

  13. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis.

    Science.gov (United States)

    Leveugle, B; Spik, G; Perl, D P; Bouras, C; Fillit, H M; Hof, P R

    1994-07-04

    Lactotransferrin is a glycoprotein that specifically binds and transports iron. This protein is also believed to transport other metals such as aluminum. Several lines of evidence indicate that iron and aluminum are involved in the pathogenesis of many dementing diseases. In this context, the analysis of the iron-binding protein distribution in the brains of patients affected by neurodegenerative disorders is of particular interest. In the present study, the distribution of lactotransferrin was analyzed by immunohistochemistry in the cerebral cortex from patients presenting with Alzheimer's disease, Down syndrome, amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam, sporadic amyotrophic lateral sclerosis, or Pick's disease. The results show that lactotransferrin accumulates in the characteristic lesions of the different pathologic conditions investigated. For instance, in Alzheimer's disease and Guamanian cases, a subpopulation of neurofibrillary tangles was intensely labeled in the hippocampal formation and inferior temporal cortex. Senile plaques and Pick bodies were also consistently labeled. These staining patterns were comparable to those obtained with antibodies to the microtubule-associated protein tau and the amyloid beta A4 protein, although generally fewer neurofibrillary tangles were positive for lactotransferrin than for tau protein. Neuronal cytoplasmic staining with lactotransferrin antibodies, was observed in a subpopulation of pyramidal neurons in normal aging, and was more pronounced in Alzheimer's disease, Guamanian cases, Pick's disease, and particularly in Down syndrome. Lactotransferrin was also strongly associated with Betz cells and other motoneurons in the primary motor cortex of control, Alzheimer's disease, Down syndrome, Guamanian and Pick's disease cases. These same lactotransferrin-immunoreactive motoneurons were severely affected in the cases with amyotrophic lateral sclerosis. It is possible that in these

  14. Management of work-relevant upper limb disorders: a review.

    Science.gov (United States)

    Burton, A Kim; Kendall, Nicholas A S; Pearce, Brian G; Birrell, Lisa N; Bainbridge, L Christopher

    2009-01-01

    Upper limb disorders (ULDs) are clinically challenging and responsible for considerable work loss. There is a need to determine effective approaches for their management. To determine evidence-based management strategies for work-relevant ULDs and explore whether a biopsychosocial approach is appropriate. Literature review using a best evidence synthesis. Data from articles identified through systematic searching of electronic databases and citation tracking were extracted into evidence tables. The information was synthesized into high-level evidence statements, which were ordered into themes covering classification/diagnosis, epidemiology, associations/risks and management/treatment, focusing on return to work or work retention and taking account of distinctions between non-specific complaints and specific diagnoses. Neither biomedical treatment nor ergonomic workplace interventions alone offer an optimal solution; rather, multimodal interventions show considerable promise, particularly for occupational outcomes. Early return to work, or work retention, is an important goal for most cases and may be facilitated, where necessary, by transitional work arrangements. The emergent evidence indicates that successful management strategies require all the players to be on side and acting in a coordinated fashion; this requires engaging employers and workers to participate. The biopsychosocial model applies: biological considerations should not be ignored, but psychosocial factors are more influential for occupational outcomes. Implementation of interventions that address the full range of psychosocial issues will require a cultural shift in the way the relationship between upper limb complaints and work is conceived and handled. Dissemination of evidence-based messages can contribute to the needed cultural shift.

  15. Protection against neurodegenerative disease on Earth and in space

    Science.gov (United States)

    Takamatsu, Yoshiki; Koike, Wakako; Takenouchi, Takato; Sugama, Shuei; Wei, Jianshe; Waragai, Masaaki; Sekiyama, Kazunari; Hashimoto, Makoto

    2016-01-01

    All living organisms have evolutionarily adapted themselves to the Earth’s gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through ‘anti-diabetes’ and ‘hypergravity’ approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought. PMID:28725728

  16. Neuroprotective effects of the anti-cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders.

    Science.gov (United States)

    Wrasidlo, Wolf; Crews, Leslie A; Tsigelny, Igor F; Stocking, Emily; Kouznetsova, Valentina L; Price, Diana; Paulino, Amy; Gonzales, Tania; Overk, Cassia R; Patrick, Christina; Rockenstein, Edward; Masliah, Eliezer

    2014-12-01

    Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity. Inhibitors of CDK5, such as roscovitine, have neuroprotective effects; however, CNS penetration is low. Interestingly, tyrosine kinase inhibitors (TKIs) display some CDK inhibitory activity and ability to cross the blood-brain barrier. We screened a small group of known TKIs for a candidate with additional CDK5 inhibitory activity and tested the efficacy of the candidate in in vitro and in vivo models of HIV-gp120 neurotoxicity. Among 12 different compounds, sunitinib inhibited CDK5 with an IC50 of 4.2 μM. In silico analysis revealed that, similarly to roscovitine, sunitinib fitted 6 of 10 features of the CDK5 pharmacophore. In a cell-based model, sunitinib reduced CDK5 phosphorylation (pCDK5), calpain-dependent p35/p25 conversion and protected neuronal cells from the toxic effects of gp120. In glial fibrillary acidic protein-gp120 transgenic (tg) mice, sunitinib reduced levels of pCDK5, p35/p25 and phosphorylated tau protein, along with amelioration of the neurodegenerative pathology. Compounds such as sunitinib with dual kinase inhibitory activity could ameliorate the cognitive impairment associated with chronic HIV infection of the CNS. Moreover, repositioning existing low MW compounds holds promise for the treatment of patients with neurodegenerative disorders. © 2014 The British Pharmacological Society.

  17. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases.

    Science.gov (United States)

    Artusi, Carlo Alberto; Mishra, Murli; Latimer, Patricia; Vizcarra, Joaquin A; Lopiano, Leonardo; Maetzler, Walter; Merola, Aristide; Espay, Alberto J

    2018-01-01

    We sought to review the landscape of past, present, and future use of technology-based outcome measures (TOMs) in clinical trials of neurodegenerative disorders. We systematically reviewed PubMed and ClinicalTrials.gov for published and ongoing clinical trials in neurodegenerative disorders employing TOMs. In addition, medical directors of selected pharmaceutical companies were surveyed on their companies' ongoing efforts and future plans to integrate TOMs in clinical trials as primary, secondary, or exploratory endpoints. We identified 164 published clinical trials indexed in PubMed that used TOMs as outcome measures in Parkinson disease (n = 132) or other neurodegenerative disorders (n = 32). The ClinicalTrials.gov search yielded 42 clinical trials using TOMs, representing 2.7% of ongoing trials. Sensor-based technology accounted for over 75% of TOMs applied. Gait and physical activity were the most common targeted domains. Within the next 5 years, 83% of surveyed pharmaceutical companies engaged in neurodegenerative disorders plan to deploy TOMs in clinical trials. Although promising, TOMs are underutilized in clinical trials of neurodegenerative disorders. Validating relevant endpoints, standardizing measures and procedures, establishing a single platform for integration of data and algorithms from different devices, and facilitating regulatory approvals should advance TOMs integration into clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Essential Tremor: A Neurodegenerative Disease?

    Directory of Open Access Journals (Sweden)

    Julian Benito-Leon

    2014-07-01

    Full Text Available Background: Essential tremor (ET is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non‐motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition.Methods: A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic.Results/Discussion: There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells as well as other post‐mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required.

  19. Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: two case reports.

    Science.gov (United States)

    Dastsooz, Hassan; Nemati, Hamid; Fard, Mohammad Ali Farazi; Fardaei, Majid; Faghihi, Mohammad Ali

    2017-08-18

    Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous group of disorders associated with progressive impairment of movement, vision, and cognition. The disease is initially diagnosed on the basis of changes in brain magnetic resonance imaging which indicate an abnormal brain iron accumulation in the basal ganglia. However, the diagnosis of specific types should be based on both clinical findings and molecular genetic testing for genes associated with different types of NBIA, including PANK2, PLA2G6, C19orf12, FA2H, ATP13A2, WDR45, COASY, FTL, CP, and DCAF17. The purpose of this study was to investigate disease-causing mutations in two patients with distinct NBIA disorders. Whole Exome sequencing using Next Generation Illumina Sequencing was used to enrich all exons of protein-coding genes as well as some other important genomic regions in these two affected patients. A deleterious homozygous four-nucleotide deletion causing frameshift deletion in PANK2 gene (c.1426_1429delATGA, p.M476 fs) was identified in an 8 years old girl with dystonia, bone fracture, muscle rigidity, abnormal movement, lack of coordination and chorea. In addition, our study revealed a novel missense mutation in PLA2G6 gene (c.3G > T:p.M1I) in one and half-year-old boy with muscle weakness and neurodevelopmental regression (speech, motor and cognition). The novel mutations were also confirmed by Sanger sequencing in the proband and their parents. Current study uncovered two rare novel mutations in PANK2 and PLA2G6 genes in patients with NBIA disorder and such studies may help to conduct genetic counseling and prenatal diagnosis more accurately for individuals at the high risk of these types of disorders.

  20. Automatic sleep scoring in normals and in individuals with neurodegenerative disorders according to new international sleep scoring criteria

    DEFF Research Database (Denmark)

    Jensen, Peter S.; Sørensen, Helge Bjarup Dissing; Jennum, P. J.

    2010-01-01

    Medicine (AASM). Methods: A biomedical signal processing algorithm was developed, allowing for automatic sleep depth quantification of routine polysomnographic (PSG) recordings through feature extraction, supervised probabilistic Bayesian classification, and heuristic rule-based smoothing. The performance......Introduction: Reliable polysomnographic classification is the basis for evaluation of sleep disorders in neurological diseases. Aim: To develop a fully automatic sleep scoring algorithm on the basis of a reproduction of new international sleep scoring criteria from the American Academy of Sleep....... Conclusion: The developed algorithm was capable of scoring normal sleep with an accuracy around the manual inter-scorer reliability, it failed in accurately scoring abnormal sleep as encountered for the PD/MSA patients, which is due to the abnormal micro- and macrostructure pattern in these patients....

  1. When cytokinin, a plant hormone, meets the adenosine A2A receptor: a novel neuroprotectant and lead for treating neurodegenerative disorders?

    Directory of Open Access Journals (Sweden)

    Yi-Chao Lee

    Full Text Available It is well known that cytokinins are a class of phytohormones that promote cell division in plant roots and shoots. However, their targets, biological functions, and implications in mammalian systems have rarely been examined. In this study, we show that one cytokinin, zeatin riboside, can prevent pheochromocytoma (PC12 cells from serum deprivation-induced apoptosis by acting on the adenosine A(2A receptor (A(2A-R, which was blocked by an A(2A-R antagonist and a protein kinase A (PKA inhibitor, demonstrating the functional ability of zeatin riboside by mediating through A(2A-R signaling event. Since the A(2A-R was implicated as a therapeutic target in treating Huntington's disease (HD, a cellular model of HD was applied by transfecting mutant huntingtin in PC12 cells. By using filter retardation assay and confocal microscopy we found that zeatin riboside reversed mutant huntingtin (Htt-induced protein aggregations and proteasome deactivation through A(2A-R signaling. PKA inhibitor blocked zeatin riboside-induced suppression of mutant Htt aggregations. In addition, PKA activated proteasome activity and reduced mutant Htt protein aggregations. However, a proteasome inhibitor blocked both zeatin riboside-and PKA activator-mediated suppression of mutant Htt aggregations, confirming mediation of the A(2A-R/PKA/proteasome pathway. Taken together, zeatin riboside might have therapeutic potential as a novel neuroprotectant and a lead for treating neurodegenerative disorders.

  2. Objectification Theory: Of Relevance for Eating Disorder Researchers and Clinicians?

    Science.gov (United States)

    Tiggemann, Marika

    2013-01-01

    Background: There is a large and expanding body of research on Objectification Theory. Central to the theory is the proposition that self-objectification results in shame and anxiety surrounding the body, and as a consequence, the development of eating disorders. However, the theory and research have been developed and reported in the gender and…

  3. Evolution of disorder in Mediator complex and its functional relevance.

    Science.gov (United States)

    Nagulapalli, Malini; Maji, Sourobh; Dwivedi, Nidhi; Dahiya, Pradeep; Thakur, Jitendra K

    2016-02-29

    Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of 'junction-MoRF' has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein-protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Longitudinal Study of Neurodegenerative Disorders

    Science.gov (United States)

    2018-01-31

    MLD; Krabbe Disease; ALD; MPS I; MPS II; MPS III; Vanishing White Matter Disease; GM3 Gangliosidosis; PKAN; Tay-Sachs Disease; NP Deficiency; Osteopetrosis; Alpha-Mannosidosis; Sandhoff Disease; Niemann-Pick Diseases; MPS IV; Gaucher Disease; GAN; GM1 Gangliosidoses; Morquio Disease; S-Adenosylhomocysteine Hydrolase Deficiency; Batten Disease; Pelizaeus-Merzbacher Disease; Leukodystrophy; Lysosomal Storage Diseases; Purine Nucleoside Phosphorylase Deficiency; Multiple Sulfatase Deficiency Disease

  5. Coenzyme Q10 effects in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Meredith Spindler

    2009-11-01

    Full Text Available Meredith Spindler1, M Flint Beal1,2, Claire Henchcliffe1,21Department of Neurology, 2Department of Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Coenzyme Q10 (CoQ10 is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.Keywords: coenzyme Q10, neurodegenerative disease, Parkinson’s disease, Huntington’s disease, mitochondrial dysfunction

  6. Heme-coordinated histidine residues form non-specific functional "ferritin-heme" peroxidase system: Possible and partial mechanistic relevance to oxidative stress-mediated pathology in neurodegenerative diseases.

    Science.gov (United States)

    Esmaeili, Sajjad; Kooshk, Mohammad Reza Ashrafi; Asghari, Seyyed Mohsen; Khodarahmi, Reza

    2016-10-01

    Ferritin is a giant protein composed of 24 subunits which is able to sequester up to 4500 atoms of iron. We proposed two kinds of heme binding sites in mammalian ferritins and provided direct evidence for peroxidase activity of heme-ferritin, since there is the possibility that "ferritin-heme" systems display unexpected catalytic behavior like heme-containing enzymes. In the current study, peroxidase activity of heme-bound ferritin was studied using TMB(1), l-DOPA, serotonin, and dopamine, in the presence of H2O2, as oxidant substrate. The catalytic oxidation of TMB was consistent with first-order kinetics with respect to ferritin concentration. Perturbation of the binding affinity and catalytic behavior of heme-bound His-modified ferritin were also documented. We also discuss the importance of the peroxidase-/nitrative-mediated oxidation of vital molecules as well as ferritin-induced catalase inhibition using in vitro experimental system. Uncontrollable "heme-ferritin"-based enzyme activity as well as up-regulation of heme and ferritin may inspire that some oxidative stress-mediated cytotoxic effects in AD-affected cells could be correlated to ferritin-heme interaction and/or ferritin-induced catalase inhibition and describe its contribution as an important causative pathogenesis mechanism in some neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Stigma: The relevance of social contact in mental disorder.

    Science.gov (United States)

    Frías, Víctor M; Fortuny, Joan R; Guzmán, Sergio; Santamaría, Pilar; Martínez, Montserrat; Pérez, Víctor

    The stigma associated with mental illness is a health problem, discriminating and limiting the opportunities for sufferers. Social contact with people suffering a mental disorder is a strategy used to produce changes in population stereotypes. The aim of the study was to examine differences in the level of stigma in samples with social contact and the general population. The study included two experiments. The first (n=42) included players in an open football league who played in a team with players with schizophrenia. In the second included, a sample without known contact (n=62) and a sample with contact (n=100) were compared. The evaluation tool used was AQ-27, Spanish version (AQ-27-E). The mean difference between the two samples of each of the 9 subscales was analyzed. In the first experiment, all the subscales had lower scores in post-contact than in pre-contact, except for responsibility. The two subscales that showed significant differences were duress (t=6.057, p=.000) and Pity (t=3.661, p=.001). In the second experiment, seven subscales showed a significance level (p=responsibility and did not. It is observed that the social contact made in daily situations can have a positive impact on the reduction of stigma. This can help to promote equality of opportunity. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  8. The ELISA-measured increase in cerebrospinal fluid tau that discriminates Alzheimer's disease from other neurodegenerative disorders is not attributable to differential recognition of tau assembly forms.

    Science.gov (United States)

    O'Dowd, Seán T; Ardah, Mustafa T; Johansson, Per; Lomakin, Aleksey; Benedek, George B; Roberts, Kinley A; Cummins, Gemma; El Agnaf, Omar M; Svensson, Johan; Zetterberg, Henrik; Lynch, Timothy; Walsh, Dominic M

    2013-01-01

    Elevated cerebrospinal fluid concentrations of tau discriminate Alzheimer's disease from other neurodegenerative conditions. The reasons for this are unclear. While commercial assay kits are widely used to determine total-tau concentrations, little is known about their ability to detect different aggregation states of tau. We demonstrate that the leading commercial enzyme-linked immunosorbent assay reliably detects aggregated and monomeric tau and evinces good recovery of both species when added into cerebrospinal fluid. Hence, the disparity between total-tau levels encountered in Alzheimer's disease and other neurodegenerative conditions is not due to differential recognition of tau assembly forms or the extent of degeneration.

  9. Clinical relevance of comorbidity in anxiety disorders : A report from the Netherlands Study of Depression and Anxiety (NESDA)

    NARCIS (Netherlands)

    Hofmeijer-Sevink, Mieke Klein; Batelaan, Neeltje M.; van Megen, Harold J. G. M.; Penninx, Brenda W.; Cath, Danielle C.; van den Hout, Marcel A.; van Balkom, Anton J. L. M.

    Background: To study the clinical relevance of type of comorbidity and number of comorbid disorders in anxiety disorders. Four groups were compared according to sociodemographic-, vulnerability- and clinical factors: single anxiety disorder, anxiety-anxiety comorbidity, anxiety-depressive

  10. Clinical relevance of comorbidity in anxiety disorders: A report from the Netherlands Study of Depression and Anxiety (NESDA)

    NARCIS (Netherlands)

    Klein Hofmeijer-Sevink, M.; Batelaan, N.M.; van Megen, H.J.G.M.; Penninx, B.W.J.H.; Cath, D.C.; van Hout, M.A.; van Balkom, A.J.L.M.

    2012-01-01

    Background: To study the clinical relevance of type of comorbidity and number of comorbid disorders in anxiety disorders. Four groups were compared according to sociodemographic-, vulnerability- and clinical factors: single anxiety disorder, anxiety-anxiety comorbidity, anxiety-depressive

  11. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    Science.gov (United States)

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  12. Olfactory memory impairment in neurodegenerative diseases.

    Science.gov (United States)

    Bahuleyan, Biju; Singh, Satendra

    2012-10-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the present review was to discuss the available scientific knowledge on the olfactory memory and to relate its impairment with neurodegenerative diseases.

  13. Curcumin and neurodegenerative diseases

    Science.gov (United States)

    Monroy, Adriana; Lithgow, Gordon J.; Alavez, Silvestre

    2013-01-01

    Over the last ten years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anti-carcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several pre-clinical trials for neurodegenerative diseases has created considerable excitement mainly due to its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. Since aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases. PMID:23303664

  14. Mental disorder and legal responsibility: The relevance of stages of decision-making

    NARCIS (Netherlands)

    Kalis, A.; Meynen, G.

    2014-01-01

    The paper discusses the relevance of decision-making models for evaluating the impact of mental disorder on legal responsibility. A three-stage model is presented that analyzes decision making in terms of behavioral control. We argue that understanding dysfunctions in each of the three stages of

  15. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  16. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Michael eStuart

    2015-09-01

    Full Text Available Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells, however recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the HPA axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 which has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer’s disease and depression in the elderly, and prenatal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, proinflammatory cytokines secretion, expression of ICAM-1 and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and/or therapeutic targets in

  17. Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders.

    Science.gov (United States)

    Stuart, Michael J; Singhal, Gaurav; Baune, Bernhard T

    2015-01-01

    Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however, the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells; however, recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the hypothalamus-pituitary-adrenal axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 that has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer's disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cytokines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and

  18. Assisted delivery of antisense therapeutics in animal models of heritable neurodegenerative and neuromuscular disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    van der Bent, M Leontien; Paulino da Silva Filho, Omar; van Luijk, Judith; Brock, Roland; Wansink, Derick G

    2018-03-08

    Antisense oligonucleotide (AON)-based therapies hold promise for a range of neurodegenerative and neuromuscular diseases and have shown benefit in animal models and patients. Success in the clinic is nevertheless still limited, due to unfavourable biodistribution and poor cellular uptake of AONs. Extensive research is currently being conducted into the formulation of AONs to improve delivery, but thus far there is no consensus on which of those strategies will be the most effective. This systematic review was designed to answer in an unbiased manner which delivery strategies most strongly enhance the efficacy of AONs in animal models of heritable neurodegenerative and neuromuscular diseases. In total, 95 primary studies met the predefined inclusion criteria. Study characteristics and data on biodistribution and toxicity were extracted and reporting quality and risk of bias were assessed. Twenty studies were eligible for meta-analysis. We found that even though the use of delivery systems provides an advantage over naked AONs, it is not yet possible to select the most promising strategies. Importantly, standardisation of experimental procedures is warranted in order to reach conclusions about the most efficient delivery strategies. Our best practice guidelines for future experiments serve as a step in that direction.

  19. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  20. Mental disorder and legal responsibility: the relevance of stages of decision making.

    Science.gov (United States)

    Kalis, Annemarie; Meynen, Gerben

    2014-01-01

    The paper discusses the relevance of decision-making models for evaluating the impact of mental disorder on legal responsibility. A three-stage model is presented that analyzes decision making in terms of behavioral control. We argue that understanding dysfunctions in each of the three stages of decision making could provide important insights in the relation between mental disorder and legal responsibility. In particular, it is argued that generating options for action constitutes an important but largely ignored stage of the decision-making process, and that dysfunctions in this early stage might undermine the whole process of making decisions (and thus behavioral control) more strongly than dysfunctions in later stages. Lastly, we show how the presented framework could be relevant to the actual psychiatric assessment of a defendant's decision making within the context of an insanity defense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Olfactory Memory Impairment in Neurodegenerative Diseases

    OpenAIRE

    Bahuleyan, Biju; Singh, Satendra

    2012-01-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the prese...

  2. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Progranulin in neurodegenerative disease.

    Science.gov (United States)

    Petkau, Terri L; Leavitt, Blair R

    2014-07-01

    Loss-of-function mutations in the progranulin gene are a common cause of familial frontotemporal dementia (FTD). The purpose of this review is to summarize the role of progranulin in health and disease, because the field is now poised to begin examining therapeutics that alter endogenous progranulin levels. We first review the clinical and neuropathological phenotype of FTD patients carrying mutations in the progranulin gene, which suggests that progranulin-mediated neurodegeneration is multifactorial and influenced by other genetic and/or environmental factors. We then examine evidence for the role of progranulin in the brain with a focus on mouse model systems. A better understanding of the complexity of progranulin biology in the brain will help guide the development of progranulin-modulating therapies for neurodegenerative disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Investigation of eating disorders in cancer patients and its relevance with body image

    Directory of Open Access Journals (Sweden)

    Seyyed Abbas Hossein

    2015-01-01

    Full Text Available Background: Eating disorder is one of the most common health problems with clinical and psychological consequences, which can affect body image in cancer patients. Similar studies in this area for checking the status of this disorder and its relevance with body image in patients with cancer are limited. Therefore, this study was designed with the aim of determination of eating disorders in patients with cancer and their relevance with body image. Materials and Methods: The research was a cross-correlation study. It was carried out in Sayed-Al-Shohada Hospital affiliated to the Isfahan University of Medical Sciences in 2013. Two hundred and ten patients with cancer were selected and were asked tocomplete the demographic and disease characteristics questionnaire, the Multidimensional Body-Self Relations Questionnaire (MBSRQ, and eating disorders questionnaire. SPSS statistical software, version 14 was used for statistical analysis′-Test, analysis of variance (ANOVA, and Pearson correlation coefficient were used for analyzing the obtained data. Results: The mean values of age, body mass index (BMI, and duration of illness were 48.2 ± 13.20 years, 24.6 ± 4.6kg/m 2 , and 25.64 ± 21.24months, respectively. Most patients were married (87%, without university education (96%, unemployed (67%, and with incomes below their requirement (52%. Most patients were diagnosed with breast cancer (36.5%. They received chemotherapy as the main treatment (56.2%. In addition, mean ± SD of eating disorders and body image were 12.84 ± 4.7 and184.40 ± 43.68, respectively. Also, 49.7% of patients with cancer had an eating disorder. Among these, 29% had experiences of anorexia and 20.7% had bulimia. There was a significant negative correlation between the score of body image and eating disorders (r = −0.47, P = 0.01. Conclusions: Findings of this study showed that most patients with cancer had experienced symptoms of eating disorders. This may lead to a negative

  5. Sleep disturbance in mental health problems and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anderson KN

    2013-05-01

    Full Text Available Kirstie N Anderson1 Andrew J Bradley2,3 1Department of Neurology, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK; 2Eli Lilly and Company Limited, Lilly House, Basingstoke, UK; 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK Abstract: Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. Keywords: sleep, mental health, neurodegenerative disorders, cognition

  6. [EDNOS is an eating disorder of clinical relevance, on a par with anorexia and bulimia nervosa].

    Science.gov (United States)

    Dingemans, A E; van Furth, E F

    2015-01-01

    The category 'eating disorder 'not otherwise specified'' (EDNOS) in DSM-IV is restricted to eating disorders of clinical severity that do not completely fulfil the criteria for anorexia and bulimia nervosa. The EDNOS category is, by definition, often regarded as a a residual category and in principle designed to incorporate a small group of patients with atypical characteristics. Health insurance companies argue that the treatment of patients diagnosed with EDNOS should not be treated in mental health institutions and therefore should not get their treatment costs reimbursed by the insurance companies. The most important argument of the insurance companies is that patients in the EDNOS category do not display serious psychiatric symptoms. The aim of this paper is to show that EDNOS is an eating disorder category of clinical relevance. The article provides a critical overview of literature on EDNOS which studies the prevalence, severity and course of the disorder. We also discuss to what extent the fifth version of dsm solves the problems relating to this residual category. We reviewed the literature. The classification given in DSM-IV is not an accurate reflection of clinical reality. Half of the patients presenting with an eating disorder and seeking treatment do meet the criteria for EDNOS. The duration and the severity of eating disorder psychopathology, the presence of comorbidity, the mortality, and the use of the mental health care services by individuals with an eating disorder appear to be very similar in EDNOS patients and in patients with anorexia and bulimia nervosa. Eating disorder classifications can be regarded as snapshots taken throughout the course of an illness. Over of the years patients can be afflicted with various subtypes of an eating disorder. DSM-5 places fewer patients in the EDNOS category that did DSM-IV. In the latest version of dsm, namely DSM-5, the number of patients with an eating disorder classified as EDNOS has declined. There

  7. Nutraceutical Potential of Phenolics from ′Brava′ and ′Mansa′ Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of ′Picual′ and ′Cornicabra′

    Directory of Open Access Journals (Sweden)

    María Figueiredo-González

    2018-03-01

    Full Text Available The increasing interest in the Mediterranean diet is based on the protective effects against several diseases, including neurodegenerative disorders. Polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for these disorders. Extra-virgin olive oils (EVOOs obtained from ′Brava′ and ′Mansa′, varieties recently identified from Galicia (northwestern Spain, were selected for in vitro screening to evaluate their capacity to inhibit key enzymes involved in Alzheimer′s disease (AD (acetylcholinesterase (AChE, butyrylcholinesterase (BuChE and 5-lipoxygenase (5-LOX, major depressive disorder (MDD and Parkinson′s disease (PD (monoamine oxidases: hMAO-A and hMAO-B respectively. ′Brava′ oil exhibited the best inhibitory activity against all enzymes, when they are compared to ′Mansa′ oil: BuChE (IC50 = 245 ± 5 and 591 ± 23 mg·mL−1, 5-LOX (IC50 = 45 ± 7 and 106 ± 14 mg·mL−1, hMAO-A (IC50 = 30 ± 1 and 72 ± 10 mg·mL−1 and hMAO-B (IC50 = 191 ± 8 and 208 ± 14 mg·mL−1, respectively. The inhibitory capacity of the phenolic extracts could be associated with the content of secoiridoids, lignans and phenolic acids.

  8. Spiritual beliefs in bipolar affective disorder: their relevance for illness management.

    Science.gov (United States)

    Mitchell, Logan; Romans, Sarah

    2003-08-01

    There has been growing interest in investigating religion as a relevant element in illness outcome. Having religious beliefs has been shown repeatedly to be associated with lessened rates of depression. Most of the limited published research has been restricted to elderly samples. Religious coping is thought to play a key role in religion's effects. Strangely, psychiatric research has neglected this area. A questionnaire covering religious, spiritual and philosophical beliefs and religious practice was given to a sample of patients with bipolar affective disorder in remission. Most patients often held strong religious or spiritual beliefs (78%) and practised their religion frequently (81.5%). Most saw a direct link between their beliefs and the management of their illness. Many used religious coping, and often religio-spiritual beliefs and practice put them in conflict with illness models (24%) and advice (19%) used by their medical advisors. This was a cross-sectional design without a control group and thus it is not possible to determine causal associations from the data set. Religio-spiritual ideas are of great salience to many patients with bipolar disorder and shape the ways in which they think about their illness. Many reported experiencing significant paradigm conflict in understanding and managing their illness between medical and their spiritual advisors. These data suggest that the whole area of religion and spirituality is directly relevant to people living with a chronic psychiatric illness and should be firmly on the discussion agenda of clinicians working with patients with bipolar disorder.

  9. Autism Spectrum Disorder Updates – Relevant Information for Early Interventionists to Consider

    Science.gov (United States)

    Allen-Meares, Paula; MacDonald, Megan; McGee, Kristin

    2016-01-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social communication skills as well as repetitive, restricted or stereotyped behaviors (1). Early interventionists are often found at the forefront of assessment, evaluation, and early intervention services for children with ASD. The role of an early intervention specialist may include assessing developmental history, providing group and individual counseling, working in partnership with families on home, school, and community environments, mobilizing school and community resources, and assisting in the development of positive early intervention strategies (2, 3). The commonality among these roles resides in the importance of providing up-to-date, relevant information to families and children. The purpose of this review is to provide pertinent up-to-date knowledge for early interventionists to help inform practice in working with individuals with ASD, including common behavioral models of intervention. PMID:27840812

  10. Autism Spectrum Disorder Updates - Relevant Information for Early Interventionists to Consider.

    Science.gov (United States)

    Allen-Meares, Paula; MacDonald, Megan; McGee, Kristin

    2016-01-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social communication skills as well as repetitive, restricted or stereotyped behaviors (1). Early interventionists are often found at the forefront of assessment, evaluation, and early intervention services for children with ASD. The role of an early intervention specialist may include assessing developmental history, providing group and individual counseling, working in partnership with families on home, school, and community environments, mobilizing school and community resources, and assisting in the development of positive early intervention strategies (2, 3). The commonality among these roles resides in the importance of providing up-to-date, relevant information to families and children. The purpose of this review is to provide pertinent up-to-date knowledge for early interventionists to help inform practice in working with individuals with ASD, including common behavioral models of intervention.

  11. Autism spectrum disorder updates – relevant information for early interventionists to consider

    Directory of Open Access Journals (Sweden)

    Paula Allen-Meares

    2016-10-01

    Full Text Available Autism spectrum disorder (ASD is a pervasive developmental disorder characterized by deficits in social communication skills as well as repetitive, restricted or stereotyped behaviors (1. Early interventionists are often found at the forefront of assessment, evaluation and early intervention services for children with ASD. The role of an early intervention specialist may include, assessing developmental history, providing group and individual counseling, working in partnership with families on home, school, and community environments, mobilizing school and community resources and assisting in the development of positive early intervention strategies (2, 3. The commonality amongst these roles resides in the importance of providing up-to-date, relevant information to families and children. The purpose of this review is to provide pertinent up-to-date knowledge for early interventionists to help inform practice in working with individuals with ASD, including common behavioral models of intervention.

  12. ERP investigation of attentional disengagement from suicide-relevant information in patients with major depressive disorder.

    Science.gov (United States)

    Baik, Seung Yeon; Jeong, Minkyung; Kim, Hyang Sook; Lee, Seung-Hwan

    2018-01-01

    Previous studies suggest the presence of attentional bias towards suicide-relevant information in suicidal individuals. However, the findings are limited by their reliance on behavioral measures. This study investigates the role of difficulty in disengaging attention from suicide-relevant stimuli using the P300 component of event-related potentials (ERPs). Forty-four adults with Major Depressive Disorder (MDD) were administered the spatial cueing task using suicide-relevant and negatively-valenced words as cue stimuli. Disengagement difficulty was measured using reaction time and P300 during invalid trials. P300 amplitudes at Pz were higher in suicide-relevant compared to negatively-valenced word condition on invalid trials for participants with low rates of suicidal behavior. However, no such difference was found among participants with high rates of suicidal behavior. P300 amplitudes for suicide-relevant word condition were negatively correlated with "lifetime suicide ideation and attempt" at Pz. No significant results were found for the reaction time data, indicating that the ERP may be more sensitive in capturing the attentional disengagement effect. The groups were divided according to Suicidal Behaviors Questionnaire-Revised (SBQ-R) total score. Neutral stimulus was not included as cue stimuli. Most participants were under medication during the experiment. Our results indicate that patients with MDD and low rates of suicidal behavior show difficulty in disengaging attention from suicide-relevant stimuli. We suggest that suicide-specific disengagement difficulties may be related to recentness of suicide attempt and that acquired capability for suicide may contribute to reduced disengagement difficulties. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The relevance of personality traits in impulsivity-related disorders: From substance use disorders and gambling disorder to bulimia nervosa

    Science.gov (United States)

    del Pino-Gutiérrez, Amparo; Jiménez-Murcia, Susana; Fernández-Aranda, Fernando; Agüera, Zaida; Granero, Roser; Hakansson, Anders; Fagundo, Ana B.; Bolao, Ferran; Valdepérez, Ana; Mestre-Bach, Gemma; Steward, Trevor; Penelo, Eva; Moragas, Laura; Aymamí, Neus; Gómez-Peña, Mónica; Rigol-Cuadras, Assumpta; Martín-Romera, Virginia; Menchón, José M.

    2017-01-01

    Background and aims The main aim of this study was to analyze and describe the clinical characteristics and shared personality traits in different impulsivity–compulsivity spectrum disorders: substance use disorders (SUD), gambling disorder (GD), and bulimia nervosa (BN). The specific aims were to compare personality differences among individuals with pure SUD, BN with and without SUD, and GD with and without SUD. In addition, we assessed the differential predictive capacity of clinical and personality variables in relation to diagnostic subtype. Methods The sample comprised 998 subjects diagnosed according to DSM-IV-TR criteria: 101 patients were diagnosed with SUD, 482 with GD, 359 with BN, 11 with GD + SUD, and 45 patients with BN + SUD. Various assessment instruments were administered, as well as other clinical measures, to evaluate their predictive capacity. Results Marked differences in personality traits were observed between groups. Novelty seeking, harm avoidance, self-directedness, cooperation, and self-transcendence best differentiated the groups. Notably, novelty seeking was significantly higher in the two dual pathology subgroups. Patients with dual pathology showed the most dysfunctional personality profiles. Discussion and conclusion Our results indicate the existence of shared dysfunctional personality traits among the groups studied, especially in novelty seeking and self-directedness. PMID:28838248

  14. The relevance of personality traits in impulsivity-related disorders: From substance use disorders and gambling disorder to bulimia nervosa.

    Science.gov (United States)

    Del Pino-Gutiérrez, Amparo; Jiménez-Murcia, Susana; Fernández-Aranda, Fernando; Agüera, Zaida; Granero, Roser; Hakansson, Anders; Fagundo, Ana B; Bolao, Ferran; Valdepérez, Ana; Mestre-Bach, Gemma; Steward, Trevor; Penelo, Eva; Moragas, Laura; Aymamí, Neus; Gómez-Peña, Mónica; Rigol-Cuadras, Assumpta; Martín-Romera, Virginia; Menchón, José M

    2017-09-01

    Background and aims The main aim of this study was to analyze and describe the clinical characteristics and shared personality traits in different impulsivity-compulsivity spectrum disorders: substance use disorders (SUD), gambling disorder (GD), and bulimia nervosa (BN). The specific aims were to compare personality differences among individuals with pure SUD, BN with and without SUD, and GD with and without SUD. In addition, we assessed the differential predictive capacity of clinical and personality variables in relation to diagnostic subtype. Methods The sample comprised 998 subjects diagnosed according to DSM-IV-TR criteria: 101 patients were diagnosed with SUD, 482 with GD, 359 with BN, 11 with GD + SUD, and 45 patients with BN + SUD. Various assessment instruments were administered, as well as other clinical measures, to evaluate their predictive capacity. Results Marked differences in personality traits were observed between groups. Novelty seeking, harm avoidance, self-directedness, cooperation, and self-transcendence best differentiated the groups. Notably, novelty seeking was significantly higher in the two dual pathology subgroups. Patients with dual pathology showed the most dysfunctional personality profiles. Discussion and conclusion Our results indicate the existence of shared dysfunctional personality traits among the groups studied, especially in novelty seeking and self-directedness.

  15. Promoting the use of personally relevant stimuli for investigating patients with disorders of consciousness.

    Science.gov (United States)

    Perrin, Fabien; Castro, Maïté; Tillmann, Barbara; Luauté, Jacques

    2015-01-01

    Sensory stimuli are used to evaluate and to restore cognitive functions and consciousness in patients with a disorder of consciousness (DOC) following a severe brain injury. Although sophisticated protocols can help assessing higher order cognitive functions and awareness, one major drawback is their lack of sensitivity. The aim of the present review is to show that stimulus selection is crucial for an accurate evaluation of the state of patients with disorders of consciousness as it determines the levels of processing that the patient can have with stimulation from his/her environment. The probability to observe a behavioral response or a cerebral response is increased when her/his personal history and/or her/his personal preferences are taken into account. We show that personally relevant stimuli (i.e., with emotional, autobiographical, or self-related characteristics) are associated with clearer signs of perception than are irrelevant stimuli in patients with DOC. Among personally relevant stimuli, music appears to be a promising clinical tool as it boosts perception and cognition in patients with DOC and could also serve as a prognostic tool. We suggest that the effect of music on cerebral processes in patients might reflect the music's capacity to act both on the external and internal neural networks supporting consciousness.

  16. Promoting the use of personally-relevant stimuli for investigating patients with disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Fabien ePerrin

    2015-07-01

    Full Text Available Sensory stimuli are used to evaluate and to restore cognitive functions and consciousness in patients with a disorder of consciousness (DOC following a severe brain injury. Although sophisticated protocols can help assessing higher order cognitive functions and awareness, one major drawback is their lack of sensitivity. The aim of the present review is to show that stimulus selection is crucial for an accurate evaluation of the state of patients with disorders of consciousness as it determines the levels of processing that the patient can have with stimulation from his/her environment. The probability to observe a behavioral response or a cerebral response is increased when her/his personal history and/or her/his personal preferences are taken into account. We show that personally-relevant stimuli (i.e. with emotional, autobiographical or self-related characteristics are associated with clearer signs of perception than are irrelevant stimuli in patients with DOC. Among personally-relevant stimuli, music appears to be a promising clinical tool as it boosts perception and cognition in patients with DOC and could also serve as a prognostic tool. We suggest that the effect of music on cerebral processes in patients might reflect the music’s capacity to act both on the external and internal neural networks supporting consciousness.

  17. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making.

    Science.gov (United States)

    Scholl, Jacqueline; Klein-Flügge, Miriam

    2017-09-28

    Recent research in cognitive neuroscience has begun to uncover the processes underlying increasingly complex voluntary behaviours, including learning and decision-making. Partly this success has been possible by progressing from simple experimental tasks to paradigms that incorporate more ecological features. More specifically, the premise is that to understand cognitions and brain functions relevant for real life, we need to introduce some of the ecological challenges that we have evolved to solve. This often entails an increase in task complexity, which can be managed by using computational models to help parse complex behaviours into specific component mechanisms. Here we propose that using computational models with tasks that capture ecologically relevant learning and decision-making processes may provide a critical advantage for capturing the mechanisms underlying symptoms of disorders in psychiatry. As a result, it may help develop mechanistic approaches towards diagnosis and treatment. We begin this review by mapping out the basic concepts and models of learning and decision-making. We then move on to consider specific challenges that emerge in realistic environments and describe how they can be captured by tasks. These include changes of context, uncertainty, reflexive/emotional biases, cost-benefit decision-making, and balancing exploration and exploitation. Where appropriate we highlight future or current links to psychiatry. We particularly draw examples from research on clinical depression, a disorder that greatly compromises motivated behaviours in real-life, but where simpler paradigms have yielded mixed results. Finally, we highlight several paradigms that could be used to help provide new insights into the mechanisms of psychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Conditioned Subjective Responses to Socially Relevant Stimuli in Social Anxiety Disorder and Subclinical Social Anxiety.

    Science.gov (United States)

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Pailhez, Guillem; Farré, Magí; Andión, Oscar; Perez, Víctor; Torrubia, Rafael

    2015-01-01

    Although enhanced fear conditioning has been implicated in the origins of social anxiety disorder (SAD), laboratory evidence in support of this association is limited. Using a paradigm employing socially relevant unconditioned stimuli, we conducted two separate studies to asses fear conditioning in individuals with SAD and non-clinical individuals with high social anxiety (subclinical social anxiety [SSA]). They were compared with age-matched and gender-matched individuals with another anxiety disorder (panic disorder with agoraphobia) and healthy controls (Study 1) and with individuals with low social anxiety (Study 2). Contrary to our expectations, in both studies, self-report measures (ratings of anxiety, unpleasantness and arousal to the conditioned stimuli) of fear conditioning failed to discriminate between SAD or SSA and the other participant groups. Our results suggest that enhanced fear conditioning does not play a major role in pathological social anxiety. We used a social conditioning paradigm to study fear conditioning in clinical and subclinical social anxiety. We found no evidence of enhanced fear conditioning in social anxiety individuals. Enhanced fear conditioning may not be a hallmark of pathological social anxiety. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Aptamer and its applications in neurodegenerative diseases.

    Science.gov (United States)

    Qu, Jing; Yu, Shuqing; Zheng, Yuan; Zheng, Yan; Yang, Hui; Zhang, Jianliang

    2017-02-01

    Aptamers are small single-stranded DNA or RNA oligonucleotide fragments or small peptides, which can bind to targets by high affinity and specificity. Because aptamers are specific, non-immunogenic and non-toxic, they are ideal materials for clinical applications. Neurodegenerative disorders are ravaging the lives of patients. Even though the mechanism of these diseases is still elusive, they are mainly characterized by the accumulation of misfolded proteins in the central nervous system. So it is essential to develop potential measures to slow down or prevent the onset of these diseases. With the advancements of the technologies, aptamers have opened up new areas in this research field. Aptamers could bind with these related target proteins to interrupt their accumulation, subsequently blocking or preventing the process of neurodegenerative diseases. This review presents recent advances in the aptamer generation and its merits and limitations, with emphasis on its applications in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathy, Huntington's disease and multiple sclerosis.

  20. [Sense of smell, physiological ageing and neurodegenerative diseases: II. Ageing and neurodegenerative diseases].

    Science.gov (United States)

    Fusari, A; Molina, J A

    The sense of smell, which was once studied because of its biological and evolutionary significance, is today one of the centres of interest in research on normal and pathological ageing. The latest scientific developments point to an inversely proportional relationship between age and olfactory sensitivity. In certain neurodegenerative diseases this sensory decline is one of the first symptoms of the disorder and is correlated with the progression of the disease. In this work we are going to review the scientific knowledge on loss of sense of smell in ageing and in neurodegenerative diseases, with special attention given to Alzheimer's and Parkinson's diseases. A survey of studies that have examined the olfactory deficits in ageing and in some neurodegenerative diseases offers conclusive results about the presence of these impairments in the early stages of these disorders and even among healthy elderly persons. Although a number of causes contribute to these sensory losses in physiological ageing, a common neurological foundation has been proposed for Alzheimer's and Parkinson's diseases. Nevertheless, despite certain initial similarities, the olfactory deficits shown in these disorders seem to be qualitatively different.

  1. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

    Science.gov (United States)

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T.; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  2. Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders.

    Science.gov (United States)

    Erhardt, Sophie; Pocivavsek, Ana; Repici, Mariaelena; Liu, Xi-Cong; Imbeault, Sophie; Maddison, Daniel C; Thomas, Marian A R; Smalley, Joshua L; Larsson, Markus K; Muchowski, Paul J; Giorgini, Flaviano; Schwarcz, Robert

    2017-11-15

    Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo -/- ) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo -/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo -/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo -/- mice showed potentiated horizontal activity in the open field paradigm. Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Inc.

  3. Facial emotion processing in pediatric social anxiety disorder: Relevance of situational context.

    Science.gov (United States)

    Schwab, Daniela; Schienle, Anne

    2017-08-01

    Social anxiety disorder (SAD) typically begins in childhood. Previous research has demonstrated that adult patients respond with elevated late positivity (LP) to negative facial expressions. In the present study on pediatric SAD, we investigated responses to negative facial expressions and the role of social context information. Fifteen children with SAD and 15 non-anxious controls were first presented with images of negative facial expressions with masked backgrounds. Following this, the complete images which included context information, were shown. The negative expressions were either a result of an emotion-relevant (e.g., social exclusion) or emotion-irrelevant elicitor (e.g., weight lifting). Relative to controls, the clinical group showed elevated parietal LP during face processing with and without context information. Both groups differed in their frontal LP depending on the type of context. In SAD patients, frontal LP was lower in emotion-relevant than emotion-irrelevant contexts. We conclude that SAD patients direct more automatic attention towards negative facial expressions (parietal effect) and are less capable in integrating affective context information (frontal effect). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    Science.gov (United States)

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  5. Role of sigma-1 receptors in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Linda Nguyen

    2015-01-01

    Full Text Available Neurodegenerative diseases with distinct genetic etiologies and pathological phenotypes appear to share common mechanisms of neuronal cellular dysfunction, including excitotoxicity, calcium dysregulation, oxidative damage, ER stress and mitochondrial dysfunction. Glial cells, including microglia and astrocytes, play an increasingly recognized role in both the promotion and prevention of neurodegeneration. Sigma receptors, particularly the sigma-1 receptor subtype, which are expressed in both neurons and glia of multiple regions within the central nervous system, are a unique class of intracellular proteins that can modulate many biological mechanisms associated with neurodegeneration. These receptors therefore represent compelling putative targets for pharmacologically treating neurodegenerative disorders. In this review, we provide an overview of the biological mechanisms frequently associated with neurodegeneration, and discuss how sigma-1 receptors may alter these mechanisms to preserve or restore neuronal function. In addition, we speculate on their therapeutic potential in the treatment of various neurodegenerative disorders.

  6. Opioid antagonists for pharmacological treatment of gambling disorder: Are they relevant?

    Science.gov (United States)

    Victorri-Vigneau, Caroline; Spiers, Andrew; Caillet, Pascal; Bruneau, Mélanie; Challet-Bouju, Gaëlle; Grall-Bronnec, Marie

    2017-07-18

    Background: To date, no drugs have been approved for gambling disorder. Numerous publications have described the value of opioid antagonists. Indeed, the mesocorticolimbic dopaminergic pathway has been suggested as the underlying cause of reward-seeking behaviour, and it is modulated by the opioid system. Objective: This study aims to evaluate the relevance of opioid antagonists for treating GD. Method A systematic literature review was conducted. A search of the PubMed electronic database, PsycINFO and the Cochrane Systematic Review Database without any limits was performed. Results: There is little information concerning the effects of opioid antagonists on GD. The total search with "nalmefene and gambling" without any limits revealed only 11 articles. The search with "naltrexone and gambling" without any limits generated 47 articles. Nevertheless, the best available data support the use of opioid antagonists, particularly in individuals with a history of alcohol use disorder or strong gambling urges. Conclusion: Future trials are still needed. Indeed, opioid antagonists effectiveness has been investigated in only a limited number of patients, clinical trials do not reflect the heterogeneity of GD and there is little knowledge of the predictive factors of response to treatments. Moreover, differential affinity to nalmefene for kappa receptors may be associated with a particular effect in a yet to be defined addiction phenotype. Head to head comparisons between naltrexone and nalmefene would be helpful in combining with other medication or psychotherapy. The identification of subgroups of patients that are more likely to benefit from opioid antagonists should be a goal. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. NSAIDs and cardiovascular drugs in neurodegenerative and cerebrovascular diseases

    NARCIS (Netherlands)

    M.D.M. Haag (Mendel)

    2009-01-01

    textabstractNeurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and

  8. Effects of erythropoietin on memory-relevant neurocircuitry activity and recall in mood disorders.

    Science.gov (United States)

    Miskowiak, K W; Macoveanu, J; Vinberg, M; Assentoft, E; Randers, L; Harmer, C J; Ehrenreich, H; Paulson, O B; Knudsen, G M; Siebner, H R; Kessing, L V

    2016-09-01

    Erythropoietin (EPO) improves verbal memory and reverses subfield hippocampal volume loss across depression and bipolar disorder (BD). This study aimed to investigate with functional magnetic resonance imaging (fMRI) whether these effects were accompanied by functional changes in memory-relevant neuro-circuits in this cohort. Eighty-four patients with treatment-resistant unipolar depression who were moderately depressed or BD in remission were randomized to eight weekly EPO (40 000 IU) or saline infusions in a double-blind, parallel-group design. Participants underwent whole-brain fMRI at 3T, mood ratings, and blood tests at baseline and week 14. During fMRI, participants performed a picture encoding task followed by postscan recall. Sixty-two patients had complete data (EPO: N = 32, saline: N = 30). EPO improved picture recall and increased encoding-related activity in dorsolateral prefrontal cortex (dlPFC) and temporo-parietal regions, but not in hippocampus. Recall correlated with activity in the identified dlPFC and temporo-parietal regions at baseline, and change in recall correlated with activity change in these regions from baseline to follow-up across the entire cohort. The effects of EPO were not correlated with change in mood, red blood cells, blood pressure, or medication. The findings highlight enhanced encoding-related dlPFC and temporo-parietal activity as key neuronal underpinnings of EPO-associated memory improvement. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Diabetic retinopathy is a neurodegenerative disorder.

    Science.gov (United States)

    Lynch, Stephanie K; Abràmoff, Michael D

    2017-10-01

    Since 1875, controversy has ensued over whether ocular diabetic complications are primarily vasculopathic or neuropathic in nature. Here, we discuss the historical context by which diabetic retinopathy (DR) came to be considered a primary vasculopathy, in contrast to more recent data suggesting the importance of diabetic retinal neurodegeneration (DRN) as the primary manifestation of ocular diabetic damage. Unsurprisingly, DRN parallels other diabetic complications related to neuropathy. In general, there are three possible relationships between microvascular DR and DRN: i) microvasculopathy causes neurodegeneration; ii) neurodegeneration causes microvasculopathy or iii) they are mutually independent. The authors' group has recently produced experimental data showing that DRN precedes even the earliest manifestations of DR microvasculopathy. In combination with earlier studies showing that focal implicit time delays predicted future development of DR microvasculopathy in the same location, relationships i) and iii) are unlikely. As such, ii) is the most likely relationship: DRN is a cause of DR. Granted, additional studies are needed to confirm this hypothesis and elucidate the mechanism of diabetes-induced neurodegeneration. We conclude this review by proposing experimental approaches to test the hypothesis that DRN causes DR. If confirmed, this new paradigm may lead to earlier detection of ocular diabetic damage and earlier treatment of early DR, thereby preventing visual loss in people with diabetes. Published by Elsevier Ltd.

  10. DNA triplex structures in neurodegenerative disorder, Friedreich's ...

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... clearly suggests that the shape of DNA is the determining factor in the cellular function. FRDA is the only ..... SCA VII. CAG. 4–35. 28–35. 37 –200. SBMA. CAG. 15–31. –. 40–62 ... production of Frataxin (Babcock et al. 1997).

  11. Echography of clinically relevant disorders in the genital tract of female dromedary camels.

    Science.gov (United States)

    Ali, Ahmed; Derar, Derar; Alsamri, Ali; Al Sobayil, Fahd

    2017-07-01

    The aim of this study was to characterize the clinically relevant genital tract disorders of dromedary camels. Reproductive tract examinations were performed via transrectal palpation, ultrasonography and vaginal exploration. The ultrasonic appearance of the reproductive pathology was described and compared with its morphology at laparotomy, after surgical removal, during postmortem examination or upon slaughter. Diagnosis was also confirmed by histopathology. The most frequently encountered follicular structures were larger than typical follicles (56/338, 16.6%) having three echo textures: 1) thin walls and clear hyperechogenic content (11.6%); 2) thick walls and few fibrous trabeculae (33.7%); and 3) thick walls and many echogenic transecting fibrinous strands (54.7%). Corpora lutea with non-echoic central cavity (5/31, 16.1%) were greater in diameter than those with no cavity (26/31, 83.9%) (P=0.03). A granulosa cell tumor (1/338, 0.3%) was multilocular and honeycombed in shape. Presence of a large, well-demarcated, hypoechogenic sac lateral to or beneath the uterine horn encasing the ovary was diagnostic for ovarian hydrobursitis (102/338, 30.2%). Hydrosalpinx and pyosalpinx (6/338, 1.8%) were beaded in appearance, with the ovary located outside these structures. Clinical endometritis/cervicitis (122, 36.1%) was characterized by changes in the homogeneity in about half of the cases. A greatly dilated uterus with clear, hypoechogenic or echogenic contents with signs of hydrometra and pyometra, respectively, was another categorization of a reproductive pathology (24/338, 7.1%). Highly reflective, linear structures were observed in cases with intrauterine fetal bone retention (1/338, 0.3%). In conclusion, reproductive pathologies in dromedary camels can be efficiently imaged by use of ultrasonic technologies, thus familiarizing the practitioner with these disorders and facilitating application of these technologies so that suitable treatment can occur is important

  12. Estrogen enhances stress-induced prefrontal cortex dysfunction: relevance to Major Depressive Disorder in women

    OpenAIRE

    Shansky, Rebecca M.; Arnsten, Amy F. T.

    2006-01-01

    It is well documented that exposure to stress can precipitate or exacerbate many mental illnesses, 1,2 including major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). Women are twice as likely as men to develop these disorders, 3 4 as well as most anxiety disorders and phobias, 5 but the biological causes of this discrepancy are poorly understood. Interestingly, there is evidence that the increased prevalence of MDD in women occurs primarily during the childbearing years,...

  13. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.

  14. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Dolores Limongi

    2016-01-01

    Full Text Available Reactive oxygen species (ROS are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson’s disease (PD, Alzheimer’s disease (AD, and amyotrophic lateral sclerosis (ALS.

  15. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Science.gov (United States)

    Damiani, Ernesto; Bosco, Gerardo

    2014-01-01

    An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson's disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review. PMID:25101284

  16. Clinicians' emotional responses and Psychodynamic Diagnostic Manual adult personality disorders: A clinically relevant empirical investigation.

    Science.gov (United States)

    Gazzillo, Francesco; Lingiardi, Vittorio; Del Corno, Franco; Genova, Federica; Bornstein, Robert F; Gordon, Robert M; McWilliams, Nancy

    2015-06-01

    The aim of this study is to explore the relationship between level of personality organization and type of personality disorder as assessed with the categories in the Psychodynamic Diagnostic Manual (PDM; PDM Task Force, 2006) and the emotional responses of treating clinicians. We asked 148 Italian clinicians to assess 1 of their adult patients in treatment for personality disorders with the Psychodiagnostic Chart (PDC; Gordon & Bornstein, 2012) and the Personality Diagnostic Prototype (PDP; Gazzillo, Lingiardi, & Del Corno, 2012) and to complete the Therapist Response Questionnaire (TRQ; Betan, Heim, Zittel-Conklin, & Westen, 2005). The patients' level of overall personality pathology was positively associated with helpless and overwhelmed responses in clinicians and negatively associated with positive emotional responses. A parental and disengaged response was associated with the depressive, anxious, and dependent personality disorders; an exclusively parental response with the phobic personality disorder; and a parental and criticized response with narcissistic disorder. Dissociative disorder evoked a helpless and parental response in the treating clinicians whereas somatizing disorder elicited a disengaged reaction. An overwhelmed and disengaged response was associated with sadistic and masochistic personality disorders, with the latter also associated with a parental and hostile/criticized reaction; an exclusively overwhelmed response with psychopathic patients; and a helpless response with paranoid patients. Finally, patients with histrionic personality disorder evoked an overwhelmed and sexualized response in their clinicians whereas there was no specific emotional reaction associated with the schizoid and the obsessive-compulsive disorders. Clinical implications of these findings were discussed. (c) 2015 APA, all rights reserved).

  17. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  18. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    Science.gov (United States)

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  20. Internet Gaming Disorder: Investigating the Clinical Relevance of a New Phenomenon.

    Science.gov (United States)

    Przybylski, Andrew K; Weinstein, Netta; Murayama, Kou

    2017-03-01

    The American Psychiatric Association (APA) identified Internet gaming disorder as a new potential psychiatric disorder and has recognized that little is known about the prevalence, validity, or cross-cultural robustness of proposed Internet gaming disorder criteria. In response to this gap in our understanding, the present study, a first for this research topic, estimated the period prevalence of this new potential psychiatric disorder using APA guidance, examined the validity of its proposed indicators, evaluated reliability cross-culturally and across genders, compared it to gold-standard research on gambling addiction and problem gaming, and estimated its impact on physical, social, and mental health. Four survey studies (N=18,932) with large international cohorts employed an open-science methodology wherein the analysis plans for confirmatory hypotheses were registered prior to data collection. Among those who played games, more than 2 out of 3 did not report any symptoms of Internet gaming disorder, and findings showed that a very small proportion of the general population (between 0.3% and 1.0%) might qualify for a potential acute diagnosis of Internet gaming disorder. Comparison to gambling disorder revealed that Internet-based games may be significantly less addictive than gambling and similarly dysregulating as electronic games more generally. The evidence linking Internet gaming disorder to game engagement was strong, but links to physical, social, and mental health outcomes were decidedly mixed.

  1. Role of the endocannabinoid system in human brain functions relevant for psychiatric disorders

    NARCIS (Netherlands)

    Bossong, M.G.

    2012-01-01

    Impaired cognitive function is a fundamental characteristic of many psychiatric and neurological disorders such as schizophrenia or Alzheimer’s disease. The endocannabinoid (eCB) system, consisting of cannabinoid receptors and accompanying ligands, has been implicated in these disorders. In

  2. Chameleon sequences in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-01-01

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  3. Chameleon sequences in neurodegenerative diseases.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Tau imaging in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Dani, M.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Brooks, D.J. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark)

    2016-06-15

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [{sup 18}F]THK523, [{sup 18}F]THK5117, [{sup 18}F]THK5105 and [{sup 18}F]THK5351, [{sup 18}F]AV1451(T807) and [{sup 11}C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. (orig.)

  5. Chameleon sequences in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bahramali, Golnaz [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of); Salari, Ali [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of)

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  6. Steroid sulfatase-deficient mice exhibit endophenotypes relevant to Attention Deficit Hyperactivity Disorder

    OpenAIRE

    Trent, Simon; Dennehy, Alison; Richardson, Heather; Ojarikre, Obah A.; Burgoyne, Paul S.; Humby, Trevor; Davies, William

    2012-01-01

    Summary Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental condition characterised by inattention, impulsivity and hyperactivity; it is frequently co-morbid with anxiety and conduct disorders, sleep perturbation and abnormal consummatory behaviours. Recent studies have implicated the neurosteroid-modulating enzyme steroid sulfatase (STS) as a modulator of ADHD-related endophenotypes. The effects of steroid sulfatase deficiency on homecage activity, feeding/drinking...

  7. How fear-relevant illusory correlations might develop and persist in anxiety disorders: A model of contributing factors.

    Science.gov (United States)

    Wiemer, Julian; Pauli, Paul

    2016-12-01

    Fear-relevant illusory correlations (ICs) are defined as the overestimation of the relationship between a fear-relevant stimulus and aversive consequences. ICs reflect biased cognitions affecting the learning and unlearning of fear in anxiety disorders, and a deeper understanding might help to improve treatment. A model for the maintenance of ICs is proposed that highlights the importance of amplified aversiveness and salience of fear-relevant outcomes, impaired executive contingency monitoring and an availability heuristic. The model explains why ICs are enhanced in high fearful individuals and allows for some implications that might be applied to augment the effectiveness of cognitive behavior therapy, such as emotion regulation and the direction of attention to non-aversive experiences. Finally, we suggest possible future research directions and an alternative measure of ICs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Eng-Tat Ang

    2010-07-01

    Full Text Available Currently, there is still no effective therapy for neurodegenerative diseases (NDD such as Alzheimer’s disease (AD and Parkinson’s disease (PD despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician’s and the scientist’s needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

  9. Cervical muscle dysfunction in chronic whiplash-associated disorder grade 2: the relevance of the trauma.

    Science.gov (United States)

    Nederhand, Marc J; Hermens, Hermie J; IJzerman, Maarten J; Turk, Dennis C; Zilvold, Gerrit

    2002-05-15

    Surface electromyography measurements of the upper trapezius muscles were performed in patients with a chronic whiplash-associated disorder Grade 2 and those with nonspecific neck pain. To determine the etiologic relation between acceleration-deceleration trauma and the presence of cervical muscle dysfunction in the chronic stage of whiplash-associated disorder. From a biopsychosocial perspective, the acceleration-deceleration trauma in patients with whiplash-associated disorder is not regarded as a cause of chronicity of neck pain, but rather as a risk factor triggering response systems that contribute to the maintenance of neck pain. One of the contributing factors is dysfunction of the cervical muscles. Considering the limited etiologic significance of the trauma, it is hypothesized that in patients with neck pain, there are no differences in muscle activation patterns between those with and those without a history of an acceleration-deceleration trauma. Muscle activation patterns, expressed in normalized smooth rectified electromyography levels of the upper trapezius muscles, in patients with whiplash-associated disorder Grade 2 were compared with those of patients with nonspecific neck pain. The outcome parameters were the mean level of muscle activity before and after a physical exercise, the muscle reactivity in response to the exercise, and the time-dependent behavior of muscle activity after the exercise. There were no statistical significant differences in any of the outcome parameters between patients with whiplash-associated disorder Grade 2 and those with nonspecific neck pain. There was only a tendency of higher muscle reactivity in patients with whiplash-associated disorder Grade 2. It appears that the cervical muscle dysfunction in patients with chronic whiplash-associated disorder Grade 2 is not related to the specific trauma mechanism. Rather, cervical muscle dysfunction appears to be a general sign in diverse chronic neck pain syndromes.

  10. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders.

    Science.gov (United States)

    Tesei, Alessandra; Crippa, Alessandro; Ceccarelli, Silvia Busti; Mauri, Maddalena; Molteni, Massimo; Agostoni, Carlo; Nobile, Maria

    2017-09-01

    Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined-depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)-the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.

  11. LSTM for diagnosis of neurodegenerative diseases using gait data

    Science.gov (United States)

    Zhao, Aite; Qi, Lin; Li, Jie; Dong, Junyu; Yu, Hui

    2018-04-01

    Neurodegenerative diseases (NDs) usually cause gait disorders and postural disorders, which provides an important basis for NDs diagnosis. By observing and analyzing these clinical manifestations, medical specialists finally give diagnostic results to the patient, which is inefficient and can be easily affected by doctors' subjectivity. In this paper, we propose a two-layer Long Short-Term Memory (LSTM) model to learn the gait patterns exhibited in the three NDs. The model was trained and tested using temporal data that was recorded by force-sensitive resistors including time series, such as stride interval and swing interval. Our proposed method outperforms other methods in literature in accordance with accuracy of the predicted diagnostic result. Our approach aims at providing the quantitative assessment so that to indicate the diagnosis and treatment of these neurodegenerative diseases in clinic

  12. [Pilot study to investigate sleep disorders in the blind and persons with relevant visual impairment].

    Science.gov (United States)

    Dirks, C; Grünewald, D; Young, P; Heidbreder, A

    2018-05-22

    Sleep disorders are associated with serious health problems in blind and visually impaired persons. Loss of light perception may result in a shift of sleep-wake pattern, which may lead to significant impairments in daily life--the so-called non-24-hour sleep-wake disorder. To date, epidemiologic data on non-24 only exist for the USA. This pilot study was conducted to provide first epidemiologic data for the prevalence of non-24 and other sleep disorders among blind and visually impaired persons in Germany. Recruited were 111 blind and visually impaired subjects (36 subjects without light perception; male [m] = 56, 27-85 years, average [Mx] = 59.53, standard deviation [SD] = 14.69) and 111 sighted controls (m = 41, 27-88 years, Mx = 58.32, SD = 14.21), who answered a set of validated questionnaires referring to general health status (SF-36), sleep characteristics (PSQI), and daytime sleepiness (ESS). In addition, a questionnaire to predict non-24-hour sleep-wake disorder, which is not yet validated in German, was provided. The prevalence of 72.2% for the non-24-hour sleep-wake disorder in blind people is in accordance with results from the USA. In contrast, our results indicated non-24 in only 21.3% of the subjects with residual light perception. Furthermore, other sleep disorders like problems falling asleep (100% vs. 79.9%), maintaining sleep (90% vs. 88.1%), sleep-disordered breathing (19.4% vs. 32%), or sleep-related movement disorders (28.1% vs. 32.9%) were also common in the group of blind or visually impaired persons. The non-24-hour sleep-wake disorder is a frequent problem among people with no light perception, associated with problems falling asleep, maintaining sleep, and daytime sleepiness. The perception of light as an external cue for our circadian rhythm plays a key role. However, sleep disruption is not fully explained by non-24, making a detailed sleep history essential.

  13. Cerebral correlates of psychotic syndromes in neurodegenerative diseases

    OpenAIRE

    Jellinger, Kurt A

    2012-01-01

    Abstract Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer?s disease, synucleinopathies (Parkinson?s disease, dementia with Lewy bodies), Huntington?s disease, frontotemporal degenerations, motoneuron and prion...

  14. Psychiatric family history and schizophrenia risk in Denmark: which mental disorders are relevant?

    Science.gov (United States)

    Mortensen, P B; Pedersen, M G; Pedersen, C B

    2010-02-01

    A family history of schizophrenia is the strongest single indicator of individual schizophrenia risk. Bipolar affective disorder and schizo-affective disorders have been documented to occur more frequently in parents and siblings of schizophrenia patients, but the familial occurrence of the broader range of mental illnesses and their role as confounders have not been studied in large population-based samples. All people born in Denmark between 1955 and 1991 (1.74 million) were followed for the development of schizophrenia (9324 cases) during 28 million person-years at risk. Information of schizophrenia in cohort members and psychiatric history in parents and siblings was established through linkage with the Danish Psychiatric Central Register. Data were analysed using log-linear Poisson regression. Schizophrenia was, as expected, strongly associated with schizophrenia and related disorders among first-degree relatives. However, almost any other psychiatric disorder among first-degree relatives increased the individual's risk of schizophrenia. The population attributable risk associated with psychiatric family history in general was 27.1% whereas family histories including schizophrenia only accounted for 6.0%. The general psychiatric family history was a confounder of the association between schizophrenia and urbanization of place of birth. Clinically diagnosed schizophrenia is associated with a much broader range of mental disorders in first-degree relatives than previously reported. This may suggest risk haplotypes shared across many disorders and/or shared environmental factors clustering in families. Failure to take the broad range of psychiatric family history into account may bias results of all risk-factor studies of schizophrenia.

  15. Cerebral correlates of psychotic syndromes in neurodegenerative diseases.

    Science.gov (United States)

    Jellinger, Kurt A

    2012-05-01

    Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer's disease, synucleinopathies (Parkinson's disease, dementia with Lewy bodies), Huntington's disease, frontotemporal degenerations, motoneuron and prion diseases. Many of these psychiatric manifestations may be early expressions of cognitive impairment, but often there is a dissociation between psychotic/behavioural symptoms and the rather linear decline in cognitive function, suggesting independent pathophysiological mechanisms. Strictly neuropathological explanations are likely to be insufficient to explain them, and a large group of heterogeneous factors (environmental, neurochemical changes, genetic factors, etc.) may influence their pathogenesis. Clinico-pathological evaluation of behavioural and psychotic symptoms (PS) in the setting of neurodegenerative and dementing disorders presents a significant challenge for modern neurosciences. Recognition and understanding of these manifestations may lead to the development of more effective preventive and therapeutic options that can serve to delay long-term progression of these devastating disorders and improve the patients' quality of life. A better understanding of the pathophysiology and distinctive pathological features underlying the development of PS in neurodegenerative diseases may provide important insights into psychotic processes in general. © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  16. Role of Ionizing Radiation in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Neel K. Sharma

    2018-05-01

    Full Text Available Ionizing radiation (IR from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.

  17. Role of Ionizing Radiation in Neurodegenerative Diseases

    Science.gov (United States)

    Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.

    2018-01-01

    Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445

  18. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  19. Cervical Muscle Dysfunction in Chronic Whiplash-Associated Disorder Grade 2: The Relevance of the Trauma

    NARCIS (Netherlands)

    Nederhand, Marcus Johannes; Hermens, Hermanus J.; IJzerman, Maarten Joost; Turk, Dennis C.; Zilvold, Gerrit

    2002-01-01

    Study Design. Surface electromyography measurements of the upper trapezius muscles were performed in patients with a chronic whiplash-associated disorder Grade 2 and those with nonspecific neck pain. Objective. To determine the etiologic relation between acceleration–deceleration trauma and the

  20. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Science.gov (United States)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  1. Occurrence and prognostic relevance of CD30 expression in post-transplant lymphoproliferative disorders

    DEFF Research Database (Denmark)

    Vase, Maja Ølholm; Maksten, Eva Futtrup; Bendix, Knud

    2015-01-01

    Post-transplant lymphoproliferative disorders (PTLDs) are potentiallyfatal, often Epstein-Barr virus (EBV)-driven neoplasias developing in immunocompromised hosts. Initial treatment usually consists of a reduction in immunosuppressive therapy and/or rituximab with or without chemotherapy. However...... favorable outcome. For diffuse large B-cell lymphoma (DLBCL)-type PTLD this was regardless of EBV status, and remained significant in multivariate analysis. Cell-of-origin had no independent prognostic value in our series of DLBCL PTLD....

  2. Relationship of premenstrual syndrome and premenstrual dysphoric disorder with major depression: relevance to clinical practice.

    Science.gov (United States)

    Padhy, Susanta Kumar; Sarkar, Sidharth; Beherre, Prakash B; Rathi, Rajesh; Panigrahi, Mahima; Patil, Pradeep Sriram

    2015-01-01

    Premenstrual syndrome (PMS), premenstrual dysphoric disorder (PMDD) and depressive disorder are fairly common; symptoms do overlap, often under-identified and under-emphasized, particularly in rural India. The objective was to assess the occurrence of PMS and PMDD in a sample of students and staff of a nursing college and to find their correlation with depression. A prospective cohort study; Tertiary Care Hospital in Rural India (Wardha, Maharashtra); 118 female nursing students or staff aged between 18 and 40 years, who were likely to stay within the institution for the study period. The participants were rated on Penn daily symptom report prospectively for a period of 3-month. Those who scored positive were applied diagnostic and statistical manual of mental disorders, 4(th) edition, text revision (DSM-IV TR) criteria for PMDD; and were applied primary care evaluation of mental disorders depression screening followed by DSM-IV TR criteria for depression. Severity of depression was measured using Hamilton Depression Rating Scale. Main outcome measures were frequency and severity of depression in individuals with PMS and PMDD and their clinical and sociodemographic correlation. The age range of the sample was 18-37 years. Some PMS symptoms were observed in 67%; diagnosis of PMDD in 10%; depressive symptoms in 28% of the sample. 46.4% of those with depressive symptoms had major depression. The diagnosis of major depression was significantly associated with the severity of PMS symptoms as well as the presence of PMDD. Premenstrual syndrome is present in a substantial proportion of young females. Concurrent depression is increased by the severity of PMS symptoms and the presence of PMDD. Gynecologist needs to screen such subjects for depression and refer to mental-health professional early, in routine clinical practice.

  3. Co-occurrence of alcohol use disorder and behavioral addictions: relevance of impulsivity and craving.

    Science.gov (United States)

    Di Nicola, Marco; Tedeschi, Daniela; De Risio, Luisa; Pettorruso, Mauro; Martinotti, Giovanni; Ruggeri, Filippo; Swierkosz-Lenart, Kevin; Guglielmo, Riccardo; Callea, Antonino; Ruggeri, Giuseppe; Pozzi, Gino; Di Giannantonio, Massimo; Janiri, Luigi

    2015-03-01

    The aims of the study were to evaluate the occurrence of behavioral addictions (BAs) in alcohol use disorder (AUD) subjects and to investigate the role of impulsivity, personality dimensions and craving. 95 AUD outpatients (DSM-5) and 140 homogeneous controls were assessed with diagnostic criteria and specific tests for gambling disorder, compulsive buying, sexual, internet and physical exercise addictions, as well as with the Barratt Impulsiveness Scale (BIS-11) and Temperamental and Character Inventory-Revised (TCI-R). The Obsessive Compulsive Drinking Scale (OCDS) and Visual Analogue Scale for craving (VASc) were also administered to the AUD sample. 28.4% (n=27) of AUD subjects had at least one BA, as compared to 15% (n=21) of controls (χ(2)=6.27; p=.014). In AUD subjects, direct correlations between BIS-11 and Compulsive Buying Scale (CBS), Internet Addiction Disorder test (IAD), Exercise Addiction Inventory-Short Form (EAI-SF) scores (paddictive behaviors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. The paraphilia-related disorders: an investigation of the relevance of the concept in sexual murderers.

    Science.gov (United States)

    Briken, Peer; Habermann, Niels; Kafka, Martin P; Berner, Wolfgang; Hill, Andreas

    2006-05-01

    Paraphilic disorders (PAs) and sexual preoccupation are known risk factors for recidivism in sexual offenders. Nonparaphilic sexual excessive behaviors-so-called paraphilia-related disorders (PRDs), like paraphilias, are also characterized by sexual preoccupation and volitional impairment and can be diagnosed in paraphilic men. The prevalence and clinical significance of PRDs in sexual homicide perpetrators, however, is unknown. We investigated the relationship between PAs and PRDs retrospectively in a sample of 161 sexual murderers. Four groups were compared: men without a PA or a PRD diagnosis, men with at least one PRD but no PA, men with at least one PA but no PRD, and finally, those with a combination of both (PA+PRD). The PA+PRD group had the most lifetime cumulative sexual impulsivity disorders, more developmental problems, the highest persistent frequency of sexual activity, the highest number of previous sexual offences, more sexual sadism, and compulsive masturbation. Men of the PRD subsample had suffered more from childhood sexual abuse, showed more promiscuity, psychopathy, and alcohol problems. The use of the PRD concept in this special offender group should be further investigated with prospectively designed studies.

  5. Of 'disgrace' and 'pain'--corticolimbic interaction patterns for disorder-relevant and emotional words in social phobia.

    Science.gov (United States)

    Laeger, Inga; Dobel, Christian; Radenz, Britta; Kugel, Harald; Keuper, Kati; Eden, Annuschka; Arolt, Volker; Zwitserlood, Pienie; Dannlowski, Udo; Zwanzger, Peter

    2014-01-01

    Limbic hyperactivation and an impaired functional interplay between the amygdala and the prefrontal cortex are discussed to go along with, or even cause, pathological anxiety. Within the multi-faceted group of anxiety disorders, the highly prevalent social phobia (SP) is characterized by excessive fear of being negatively evaluated. Although there is widespread evidence for amygdala hypersensitivity to emotional faces in SP, verbal material has rarely been used in imaging studies, in particular with an eye on disorder-specificity. Using functional magnetic resonance imaging (fMRI) and a block design consisting of (1) overall negative, (2) social-phobia related, (3) positive, and (4) neutral words, we studied 25 female patients with social phobia and 25 healthy female control subjects (HC). Results demonstrated amygdala hyperactivation to disorder-relevant but not to generally negative words in SP patients, with a positive correlation to symptom severity. A functional connectivity analysis revealed a weaker coupling between the amygdala and the left middle frontal gyrus in patients. Symptom severity was negatively related to connectivity strength between the amygdala and the ventromedial prefrontal and orbitofrontal cortex (Brodmann Area 10 and 11). The findings clearly support the view of a hypersensitive threat-detection system, combined with disorder-related alterations in amygdala-prefrontal cortex connectivity in pathological anxiety.

  6. Perspectives on creating clinically relevant blast models for mild traumatic brain injury and post traumatic stress disorder symptoms

    Directory of Open Access Journals (Sweden)

    Lisa eBrenner

    2012-03-01

    Full Text Available Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic, behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI and/or post traumatic stress disorder (PTSD. Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast TBI can be used to facilitate the development of clinically relevant blast models.

  7. Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders.

    Science.gov (United States)

    Lee, Jonathan L C; Bertoglio, Leandro J; Guimarães, Francisco S; Stevenson, Carl W

    2017-10-01

    Learning to associate cues or contexts with potential threats or rewards is adaptive and enhances survival. Both aversive and appetitive memories are therefore powerful drivers of behaviour, but the inappropriate expression of conditioned responding to fear- and drug-related stimuli can develop into anxiety-related and substance abuse disorders respectively. These disorders are associated with abnormally persistent emotional memories and inadequate treatment, often leading to symptom relapse. Studies show that cannabidiol, the main non-psychotomimetic phytocannabinoid found in Cannabis sativa, reduces anxiety via 5-HT 1A and (indirect) cannabinoid receptor activation in paradigms assessing innate responses to threat. There is also accumulating evidence from animal studies investigating the effects of cannabidiol on fear memory processing indicating that it reduces learned fear in paradigms that are translationally relevant to phobias and post-traumatic stress disorder. Cannabidiol does so by reducing fear expression acutely and by disrupting fear memory reconsolidation and enhancing fear extinction, both of which can result in a lasting reduction of learned fear. Recent studies have also begun to elucidate the effects of cannabidiol on drug memory expression using paradigms with translational relevance to addiction. The findings suggest that cannabidiol reduces the expression of drug memories acutely and by disrupting their reconsolidation. Here, we review the literature demonstrating the anxiolytic effects of cannabidiol before focusing on studies investigating its effects on various fear and drug memory processes. Understanding how cannabidiol regulates emotion and emotional memory processing may eventually lead to its use as a treatment for anxiety-related and substance abuse disorders. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit

  8. New Developments in Insomnia Medications of Relevance to Mental Health Disorders.

    Science.gov (United States)

    Krystal, Andrew D

    2015-12-01

    Many insomnia medications with high specificity have become available recently. They provide a window into the clinical effects of modulating specific brain systems and establish a new guiding principal for conceptualizing insomnia medications: "mechanism matters." A new paradigm for insomnia therapy in which specific drugs are selected to target the specific type of sleep difficulty for each patient includes administering specific treatments for patients with insomnia comorbid with particular psychiatric disorders. This article reviews insomnia medications and discusses the implications for optimizing the treatment of insomnia occurring comorbid with psychiatric conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mobile health systems for bipolar disorder: the relevance of non-functional requirements in MONARCA project

    DEFF Research Database (Denmark)

    Mayora, Oscar; Frost, Mads; Arnrich, Bert

    2016-01-01

    This paper presents a series of challenges for developing mobile health solutions for mental health as a result of MONARCA project three-year activities. The lessons learnt on the design, development and evaluation of a mobile health system for supporting the treatment of bipolar disorder....... The findings presented here are the result of over 3 years of activity within the MONARCA EU project. The challenges listed and detailed in this paper may be used in future research as a starting point for identifying important non-functional requirements involved in mobile health provisioning...

  10. Nanobiomaterials' applications in neurodegenerative diseases.

    Science.gov (United States)

    Silva Adaya, Daniela; Aguirre-Cruz, Lucinda; Guevara, Jorge; Ortiz-Islas, Emma

    2017-02-01

    The blood-brain barrier is the interface between the blood and brain, impeding the passage of most circulating cells and molecules, protecting the latter from foreign substances, and maintaining central nervous system homeostasis. However, its restrictive nature constitutes an obstacle, preventing therapeutic drugs from entering the brain. Usually, a large systemic dose is required to achieve pharmacological therapeutic levels in the brain, leading to adverse effects in the body. As a consequence, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. One such tool is nanotechnology, in which nanostructures that are 1-100 nm are designed to deliver drugs to the brain. In this review, we examine many nanotechnology-based approaches to the treatment of neurodegenerative diseases. The review begins with a brief history of nanotechnology, followed by a discussion of its definition, the properties of most reported nanomaterials, their biocompatibility, the mechanisms of cell-material interactions, and the current status of nanotechnology in treating Alzheimer's, Parkinson's diseases, and amyotrophic lateral sclerosis. Of all strategies to deliver drug to the brain that are used in nanotechnology, drug release systems are the most frequently reported.

  11. Comparative Genomics and Disorder Prediction Identify Biologically Relevant SH3 Protein Interactions.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that diverged very recently from Saccharomyces cerevisiae(S. mikatae, S. bayanus, and S. paradoxus, or a long time ago (Neurospora crassa and Schizosaccharomyces pombe, contain less information for accurate prediction of SH3 targets than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.

  12. Comparative genomics and disorder prediction identify biologically relevant SH3 protein interactions.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2005-08-01

    Full Text Available Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that diverged very recently from Saccharomyces cerevisiae(S. mikatae, S. bayanus, and S. paradoxus, or a long time ago (Neurospora crassa and Schizosaccharomyces pombe, contain less information for accurate prediction of SH3 targets than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.

  13. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders

    Science.gov (United States)

    Dayer, Alexandre

    2014-01-01

    Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants. PMID:24733969

  14. Mapping Neurodegenerative Disease Onset and Progression.

    Science.gov (United States)

    Seeley, William W

    2017-08-01

    Brain networks have been of long-standing interest to neurodegeneration researchers, including but not limited to investigators focusing on conventional prion diseases, which are known to propagate along neural pathways. Tools for human network mapping, however, remained inadequate, limiting our understanding of human brain network architecture and preventing clinical research applications. Until recently, neuropathological studies were the only viable approach to mapping disease onset and progression in humans but required large autopsy cohorts and laborious methods for whole-brain sectioning and staining. Despite important advantages, postmortem studies cannot address in vivo, physiological, or longitudinal questions and have limited potential to explore early-stage disease except for the most common disorders. Emerging in vivo network-based neuroimaging strategies have begun to address these issues, providing data that complement the neuropathological tradition. Overall, findings to date highlight several fundamental principles of neurodegenerative disease anatomy and pathogenesis, as well as some enduring mysteries. These principles and mysteries provide a road map for future research. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Computed tomography of neurodegenerative disease in childhood

    International Nuclear Information System (INIS)

    Kataoka, Kenkichi; Nakagawa, Yoshihiro; Hojo, Hiroatsu

    1984-01-01

    Serial computed tomographic scans were performed on seven children with neurodegenerative disorders. In two cases of white-matter diseases (Krabbe's disease and metachromatic leukodystrophy), diffuse, low-density lesions of white matter were visible in the early stage of the diseases. In one case of adrenoleukodystrophy, regional low-density lesions of the white matter around the posterior horns and peculiar high-density strip lesions were visible in the early stage. In two cases of storage-type gray-matter diseases (Tay-Sachs' and infantile Gaucher's disease), there were no abnormalities in the early stage, but diffuse cortical atrophies in the late stage. In one case of Leigh's disease, there were small, low-density lesions of the basal ganglia and multiple low-density lesions of the gray matter in the early stage. In one case of subacute sclerosing panencephalitis, there were no abnormalities in the early stage, but small, low-density lesions of the basal ganglia and diffuse cerebral atrophies in the late stage. Diagnostic values were recognized dominantly in two cases of adrenoleukodystrophy and Leigh's disease. In the other cases, however, serial CT scans were useful in the diagnostic process. (author)

  16. Whole-Exome Sequencing Reveals Clinically Relevant Variants in Family Affected with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jiaxiu Zhou

    2016-10-01

    Full Text Available Chromosomal microarray (CMA has been suggested as a first tier clinical diagnostic test for ASD. High-throughput sequencing (HTS has associated hundreds of genes associated with ASD. Whole Exome Sequencing (WES was used in combination with CMA to identify clinically-relevant ASD variants. In prior work, a trio-based (father, mother, and proband WGS (Whole Genome Sequencing was used to reveal clinically-relevant de novo, or inherited, rare variants in half (16 / 32 of the ASD families in which all probands had normal, or VOUS (Variant of Uncertain Clinical Significance, CMA results. In this study, after CMA screening chromosome structural abnormalities of a proband affected with ASD, a WES was performed on the patient and parents. Some rare de novo, and inherited, variants were detected using trio-based bioinformatics analysis. ASD variants were ranked by SFARI Gene score, HPO (human phenotype ontology, protein function damage, and manual searching PubMed. Sanger sequencing was used to validated some candidate variants in family members. A de novo homozygous mutation in SPG11 (p.C209F, two inherited, compound-heterozygote mutations in SCN9A (p.Q10R and p.R1893H and BEST1 (p.A135V and p.A297V were confirmed. Heterozygous mutations in TSC1 (p.S487C and SHANK2 (p.Arg569His inherited from mother were also confirmed.

  17. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases

    OpenAIRE

    Melki, Ronald

    2015-01-01

    Abstract Misfolded protein aggregates are the hallmark of several neurodegenerative diseases in humans. The main protein constituent of these aggregates and the regions within the brain that are affected differ from one neurodegenerative disorder to another. A plethora of reports suggest that distinct diseases have in common the ability of protein aggregates to spread and amplify within the central nervous system. This review summarizes briefly what is known about the nature of the protein ag...

  18. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  19. Effects of erythropoietin on memory-relevant neurocircuitry activity and recall in mood disorders

    DEFF Research Database (Denmark)

    Miskowiak, K W; Macoveanu, J; Vinberg, M

    2016-01-01

    MRI at 3T, mood ratings, and blood tests at baseline and week 14. During fMRI, participants performed a picture encoding task followed by postscan recall. RESULTS: Sixty-two patients had complete data (EPO: N = 32, saline: N = 30). EPO improved picture recall and increased encoding-related activity......OBJECTIVE: Erythropoietin (EPO) improves verbal memory and reverses subfield hippocampal volume loss across depression and bipolar disorder (BD). This study aimed to investigate with functional magnetic resonance imaging (fMRI) whether these effects were accompanied by functional changes in memory...... in dorsolateral prefrontal cortex (dlPFC) and temporo-parietal regions, but not in hippocampus. Recall correlated with activity in the identified dlPFC and temporo-parietal regions at baseline, and change in recall correlated with activity change in these regions from baseline to follow-up across the entire...

  20. Relevance of Conduction Disorders in Bachmann's Bundle During Sinus Rhythm in Humans.

    Science.gov (United States)

    Teuwen, Christophe P; Yaksh, Ameeta; Lanters, Eva A H; Kik, Charles; van der Does, Lisette J M E; Knops, Paul; Taverne, Yannick J H J; van de Woestijne, Pieter C; Oei, Frans B S; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S

    2016-05-01

    Bachmann's bundle (BB) is considered to be the main route of interatrial conduction and to play a role in development of atrial fibrillation (AF). The goals of this study are to characterize the presence of conduction disorders in BB during sinus rhythm and to study their relation with AF. High-resolution epicardial mapping (192 unipolar electrodes, interelectrode distance: 2 mm) of sinus rhythm was performed in 185 patients during coronary artery bypass surgery of whom 13 had a history of paroxysmal AF. Continuous rhythm monitoring was used to detect postoperative AF during the first 5 postoperative days. In 67% of the patients, BB was activated from right to left; in the remaining patients from right and middle (21%), right, central, and left (8%), or central (4%) site. Mean effective conduction velocity was 89 cm/s. Conduction block was present in most patients (75%; median 1.1%, range 0-12.8) and was higher in patients with paroxysmal AF compared with patients without a history of AF (3.2% versus 0.9%; P=0.03). A high amount of conduction block (>4%) was associated with de novo postoperative AF (P=0.02). Longitudinal lines of conduction block >10 mm were also associated with postoperative AF (P=0.04). BB may be activated through multiple directions, but the predominant route of conduction is from right to left. Conduction velocity across BB is around 90 cm/s. Conduction is blocked in both longitudinal and transverse direction in the majority of patients. Conduction disorders, particularly long lines of longitudinal conduction block, are more pronounced in patients with AF episodes. © 2016 American Heart Association, Inc.

  1. The relevance of attention deficit hyperactivity disorder in self-limited childhood epilepsy with centrotemporal spikes.

    Science.gov (United States)

    Lima, Ellen Marise; Rzezak, Patricia; Dos Santos, Bernardo; Gentil, Letícia; Montenegro, Maria A; Guerreiro, Marilisa M; Valente, Kette D

    2018-05-01

    In this study, we aimed to evaluate the attentional and executive functions in patients with benign childhood epilepsy with centrotemporal spikes (BCECTS) with and without attention-deficit hyperactivity disorder (ADHD) compared with controls and compared with patients with ADHD without epilepsy. We evaluated 12 patients with BCECTS and ADHD (66.7% boys; mean age of 9.67years); 11 children with non-ADHD BCECTS (63.6% boys; mean age of 11.91years); 20 healthy children (75% boys; mean age of 10.15years); and 20 subjects with ADHD without epilepsy (60% boys; mean age of 10.9years). We used a comprehensive battery of neuropsychological tests to evaluate attentional and executive functions in their broad domains. Patients with BCECTS and ADHD had worse performance in Conners' Continuous Performance Test II (reaction time standard error [p=0.008], variability [p=0.033], perseverations [p=0.044] and in reaction time interstimuli interval [p=0.016]). Patients with ADHD showed worse performance in Trail Making Test B errors [p=0.012]. In conclusion, patients with BCECTS and ADHD had worse executive and attentional performance compared with controls than non-ADHD patients with BCECTS. Regardless of the presence of epilepsy, ADHD also negatively impacted executive and attentional functions but in different executive subdomains compared with patients with epilepsy. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Sex-related effects of nutritional supplementation of Escherichia coli: relevance to eating disorders.

    Science.gov (United States)

    Tennoune, Naouel; Legrand, Romain; Ouelaa, Wassila; Breton, Jonathan; Lucas, Nicolas; Bole-Feysot, Christine; do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-03-01

    The biological background of sex-related differences in the development of eating disorders (EDs) is unknown. Recent data showed that gut bacteria Escherichia coli induce autoantibodies against anorexigenic α-melanocyte-stimulating hormone (α-MSH) associated with psychopathology in ED. The aim of this study was to compare the effects of E. coli on feeding and autoantibodies against α-MSH and adrenocorticotropic hormone (ACTH), between female and male rats. Commensal E. coli K12 were given in a culture medium daily to adult Wistar rats by intragastric gavage over a 3-wk period; control rats received culture medium only. Before gavage, E. coli K12 DNA was detected in feces of female but not male rats. E. coli provision was accompanied by an increase in body weight gain in females, but a decrease in body weight gain and food intake in males. Independent of E. coli treatment, plasma levels of anti-α-MSH and ACTH immunoglobulin (Ig)G were higher in female than male rats. Females responded to E. coli by increasing α-MSH IgG levels and affinity, but males by increasing α-MSH IgM levels. Affinity of IgG for ACTH was increased in both E. coli-treated females and males, although with different kinetics. IgG from females stimulated more efficiently α-MSH-induced cyclic adenosine monophosphate production by melanocortin 4 receptor-expressing cells compared with IgG from males. Sex-related response to how E. coli affects feeding and anti-melanocortin hormone antibody production may depend on the presence of these bacteria in the gut before E. coli supplementation. These data suggest that sex-related presence of certain gut bacteria may represent a risk factor for ED development. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. DOPAMINE BETA HYDROXYLASE: ITS RELEVANCE IN THE ETIOLOGY OF ATTENTION DEFICIT HYPERACTIVITY DISORDER

    Directory of Open Access Journals (Sweden)

    Nipa Bhaduri

    2012-12-01

    Full Text Available Attention Deficit Hyperactivity Disorder (ADHD is a common neurodevelopmental condition characterized by impairing symptoms of inattention, hyperactivity, and impulsivity. Though symptoms of hyperactivity diminish with age, inattention and impulsivity persists through adulthood and often leads to behavioral as well as cognitive deficits. Majority of the patients respond to psychostimulants which forms the first line of therapy for ADHD. Some cases however fail to do so and treatment targeting the norepinephrine (NE system has been found to be an alternative for them. Dopamine (DA is metabolized to NE by the enzyme dopamine β-hydroxylase (DβH and availability of these neurotransmitters in the prefrontal cortex is regulated by DβH. The enzyme is encoded by the DBH gene and polymorphisms in DBH have been found to exert independent influence on the enzymatic activity. We have explored association between DBH and two functional genetic polymorphisms, rs1611115 and rs1108580, in families with ADHD probands and compared with ethnically matched control individuals. Genomic DNA was subjected to PCR amplification followed by restriction fragment length polymorphism analysis. Plasma DβH activity was measured using a photometric assay. Age-wise DβH activity and its correlation with genetic polymorphisms were analyzed in ADHD subjects. Data obtained were subjected to statistical evaluations. Though the genotypes failed to show any statistically significant association individually, strong correlation was observed between DβH activity and the studied SNPs. Statistically significant correlation between the rs1108580 “A” allele and hyperactive/oppositional traits were also noticed. The present investigation thus supports a role of DBH in the etiology of ADHD.

  4. Maintaining the clinical relevance of animal models in translational studies of post-traumatic stress disorder.

    Science.gov (United States)

    Cohen, Hagit; Matar, Michael A; Zohar, Joseph

    2014-01-01

    The diagnosis of Post-Traumatic Stress Disorder (PTSD) is conditional on directly experiencing or witnessing a significantly threatening event and the presence of a certain minimal number of symptoms from each of four symptom clusters (re-experiencing, avoidance, negative cognition and mood, and hyperarousal) at least one month after the event (DSM 5) (American Psychiatric Association 2013). Only a proportion of the population exposed develops symptoms fulfilling the criteria. The individual heterogeneity in responses of stress-exposed animals suggested that adapting clearly defined and reliably reproducible "diagnostic", i.e. behavioral, criteria for animal responses would augment the clinical validity of the analysis of study data. We designed cut-off (inclusion/exclusion) behavioral criteria (CBC) which classify study subjects as being severely, minimally or partially affected by the stress paradigm, to be applied retrospectively in the analysis of behavioral data. Behavioral response classification enables the researcher to correlate (retrospectively) specific anatomic, bio-molecular and physiological parameters with the degree and pattern of the individual behavioral response, and also introduces "prevalence rates" as a valid study-parameter. The cumulative results of our studies indicate that, by classifying the data from individual subjects according to their response patterns, the animal study can more readily be translated into clinical "follow-up" studies and back again. This article will discuss the concept of the model and its background, and present a selection of studies employing and examining the model, alongside the underlying translational rationale of each. © The Author 2014. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Implications of glial nitric oxyde in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jose Enrique eYuste

    2015-08-01

    Full Text Available Nitric oxide (NO is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.

  6. Neural Substrates of Spontaneous Narrative Production in Focal Neurodegenerative Disease

    Science.gov (United States)

    Gola, Kelly A.; Thorne, Avril; Veldhuisen, Lisa D.; Felix, Cordula M.; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P.; Stanley, Christine M.; Glenn, Shenly; Miller, Bruce L.; Rankin, Katherine P.

    2016-01-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups and may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics in these patients. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls) were analysed for storytelling characteristics and frequency, and videos of the interactions were rated for patients' social attentiveness. Compared to controls, svPPAs also told more stories and autobiographical stories, and perseverated on aspects of self during storytelling. ADs told fewer autobiographical stories than NCs, and svPPAs and bvFTDs failed to attend to social cues. Storytelling characteristics were associated with a processing speed and mental flexibility, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, evaluations, and social attention correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  7. Amnestic Disorders

    NARCIS (Netherlands)

    Kessels, R.P.C.; Savage, G.; Cautin, R.L.; Lilienfeld, S.O.

    2015-01-01

    Amnestic disorders may involve deficits in the encoding or storage of information in memory, or in retrieval of information from memory. Etiologies vary and include traumatic brain injury, neurodegenerative disease, and psychiatric illness. Different forms of amnesia can be distinguished:

  8. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    areas, which is consistent with the Braak hypothesis. In the narcolepsy patients, it was shown that a reduced HRR to arousals was primarily predicted by hypocretin deficiency in both rapid-eye-movement (REM) and non-REM sleep, independent of cataplexy and other factors. The results confirm...... that hypocretin deficiency affects the autonomic nervous system of patients with narcolepsy and that the hypocretin system is important for proper heart rate modulation at rest.Furthermore, it was shown that hypocretin deficiency and cataplexy are associated with signs of destabilized sleep-wake and REM sleep...... control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. The increased frequency of transitions may cause increased sympathetic activity during sleep and thereby increased heart rate, or the increased heart rate could be caused by decreased...

  9. Quinoline Fluorescent Probes for Zinc - from Diagnostic to Therapeutic Molecules in Treating Neurodegenerative Diseases.

    Science.gov (United States)

    Czaplinska, Barbara; Spaczynska, Ewelina; Musiol, Robert

    2018-01-01

    Fluorescent compounds had gained strong attention due to their wide and appealing applications. Microscopic techniques and visualization are good examples among others. Introduction of fluorescent dyes into microbiology opens the possibility to observe tissues, organisms or organelle with exceptional sensitivity and resolution. Probes for detection of biologically relevant metals as zinc, iron or copper seems to be particularly important for drug design and pharmaceutical sciences. Quinoline derivatives are well known for their good metal affinity and wide spectrum of biological activity. In this regard, molecular sensors built on this scaffold may be useful not only as analytical but also as therapeutic agents. In the present review, application of quinoline moiety in designing of novel fluorescent probes for zinc is presented and discussed. Zinc cations are relevant for vast majority of processes and recently attract a great deal of attention for their role in neurodegenerative diseases. Compounds interacting with Zn2+ may be used for early diagnosis of such disorders, for example the Alzheimer disease. Quinoline-based zinc probes may exert some beneficial role in organism acting as theranostic agents. First preliminary drugs for Alzheimer therapy that are based on quinoline moiety are good example of this trend. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases.

    Science.gov (United States)

    Ita, Kevin

    2017-06-01

    With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.

  11. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  12. Exploring the role of obsessive-compulsive relevant self-worth contingencies in obsessive-compulsive disorder patients.

    Science.gov (United States)

    García-Soriano, Gemma; Belloch, Amparo

    2012-06-30

    This article examines whether self-worth contingencies in the personal domains of cleanliness, morality, hoarding, certainty, accuracy, religion and respect for others have specific associations with obsessive symptoms and cognitions in individuals with obsessive-compulsive disorder (OCD). Fifty-seven patients with a primary diagnosis of OCD completed the Obsessional Concerns and Self Questionnaire (OCSQ), designed to assess the extent to which respondents consider OCD content domains relevant to their self-worth, along with a battery of other instruments. Results indicate that the OCSQ is more associated with OCD than with non-OCD anxiety symptoms, and that it is also associated with comorbid depressive symptoms in OCD patients. Moreover, the OCSQ-Order and Cleanliness and Hoarding dimensions are associated with their symptom counterparts (i.e., contamination, checking, order, hoarding and neutralizing). OCSQ domains were highly associated with dysfunctional beliefs about obsessions. However, only the OCSQ scores, but not the dysfunctional beliefs, predicted OCD symptoms. These results support cognitive conceptualizations implicating self-concept in OCD development, and they suggest the need to further analyze the influence of self-worth in OCD development and maintenance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Role of agmatine in neurodegenerative diseases and epilepsy.

    Science.gov (United States)

    Moretti, Morgana; Matheus, Filipe C; de Oliveira, Paulo A; Neis, Vivian B; Ben, Juliana; Walz, Roger; Rodrigues, Ana Lucia S; Prediger, Rui Daniel

    2014-06-01

    Agmatine, a cationic polyamine synthesized after decarboxylation of L-arginine by the enzyme arginine decarboxylase, is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, there is increasing number of preclinical studies demonstrating the beneficial effects of exogenous agmatine administration on depression, anxiety, hypoxic ischemia, nociception, morphine tolerance, memory, Parkinson`s disease, Alzheimer`s disease, traumatic brain injury related alterations/disorders and epilepsy. The aim of this review is to summarize the knowledge about the effects of agmatine in CNS and point out its potential as new pharmacological treatment for diverse neurological and neurodegenerative diseases. Moreover, some molecular mechanisms underlying the neuroprotective effects of agmatine will be discussed.

  14. Home video monitoring system for neurodegenerative diseases based on commercial HD cameras

    NARCIS (Netherlands)

    Abramiuc, B.; Zinger, S.; De With, P.H.N.; De Vries-Farrouh, N.; Van Gilst, M.M.; Bloem, B.; Overeem, S.

    2016-01-01

    Neurodegenerative disease (ND) is an umbrella term for chronic disorders that are characterized by severe joint cognitive-motor impairments, which are difficult to evaluate on a frequent basis. HD cameras in the home environment could extend and enhance the diagnosis process and could lead to better

  15. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention.

    Science.gov (United States)

    Spencer, Peter S; Palmer, Valerie S; Kisby, Glen E

    2016-09-01

    Pathological changes of the aging brain are expressed in a range of neurodegenerative disorders that will impact increasing numbers of people across the globe. Research on the causes of these disorders has focused heavily on genetics, and strategies for prevention envision drug-induced slowing or arresting disease advance before its clinical appearance. We discuss a strategic shift that seeks to identify the environmental causes or contributions to neurodegeneration, and the vision of primary disease prevention by removing or controlling exposure to culpable agents. The plausibility of this approach is illustrated by the prototypical neurodegenerative disease amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC). This often-familial long-latency disease, once thought to be an inherited genetic disorder but now known to have a predominant or exclusive environmental origin, is in the process of disappearing from the three heavily affected populations, namely Chamorros of Guam and Rota, Japanese residents of Kii Peninsula, Honshu, and Auyu and Jaqai linguistic groups on the island of New Guinea in West Papua, Indonesia. Exposure via traditional food and/or medicine (the only common exposure in all three geographic isolates) to one or more neurotoxins in seed of cycad plants is the most plausible if yet unproven etiology. Neurotoxin dosage and/or subject age at exposure might explain the stratified epidemic of neurodegenerative disease on Guam in which high-incidence ALS peaked and declined before that of PD, only to be replaced today by a dementing disorder comparable to Alzheimer's disease. Exposure to the Guam environment is also linked to the delayed development of ALS among a subset of Chamorro and non-Chamorro Gulf War/Era veterans, a summary of which is reported here for the first time. Lessons learned from this study and from 65 years of research on ALS-PDC include the exceptional value of initial, field-based informal investigation of

  16. Congo red and protein aggregation in neurodegenerative diseases.

    Science.gov (United States)

    Frid, Petrea; Anisimov, Sergey V; Popovic, Natalija

    2007-01-01

    Congo red is a commonly used histological dye for amyloid detection. The specificity of this staining results from Congo red's affinity for binding to fibril proteins enriched in beta-sheet conformation. Unexpectedly, recent investigations indicate that the dye also possesses the capacity to interfere with processes of protein misfolding and aggregation, stabilizing native protein monomers or partially folded intermediates, while reducing concentration of more toxic protein oligomers. Inhibitory effects of Congo red upon amyloid toxicity may also range from blockade of channel formation and interference with glycosaminoglycans binding or immune functions, to the modulation of gene expression. Particularly, Congo red exhibits ameliorative effect in models of neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's and prion diseases. Another interesting application of Congo red analogues is the development of imaging probes. Based on their small molecular size and penetrability through blood-brain barrier, Congo red congeners can be used for both antemortem and in vivo visualization and quantification of brain amyloids. Therefore, understanding mechanisms involved in dye-amyloidal fibril binding and inhibition of aggregation will provide instructive guides for the design of future compounds, potentially useful for monitoring and treating neurodegenerative diseases.

  17. Neuronal network disintegration: common pathways linking neurodegenerative diseases.

    Science.gov (United States)

    Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C

    2016-11-01

    Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. An investigation into the role of noradrenergic receptors in conditioned fear : relevance for posttraumatic stress disorder / Erasmus M.M.

    OpenAIRE

    Erasmus, Madeleine Monique

    2011-01-01

    Posttraumatic stress disorder is a debilitating anxiety disorder that can develop in the aftermath of a traumatic or life–threatening event involving extreme horror, intense fear or bodily harm. The disorder is typified by a symptom triad consisting of re–experiencing, hyperarousal and avoidance symptoms. Approximately 15–25% of trauma–exposed individuals go on to develop PTSD, depending on the nature and severity of the trauma. Although dysfunctional adaptive responses exist i...

  19. Non-coding RNA and pseudogenes in neurodegenerative diseases: "The (unUsual Suspects"

    Directory of Open Access Journals (Sweden)

    Valerio eCosta

    2012-10-01

    Full Text Available Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration.Alteration in regulatory networks affecting gene expression contribute to human diseases' onset, including neurodegenerative disorders, and deregulation of non-coding RNAs - particularly microRNAs - is supposed to have a significant impact.Recently, competitive endogenous RNAs - acting as sponges - have been identified in cancer, indicating a new and intricate regulatory network. Given that neurodegenerative disorders and cancer share altered genes and pathways, and considering the emerging role of microRNAs in neurogenesis, we hypothesize competitive endogenous RNAs may be implicated in neurodegenerative diseases. Here we propose, and computationally predict, such regulatory mechanism may be shared between the diseases. It is predictable that similar regulation occurs in other complex diseases, and further investigation is needed.

  20. Amyloid PET in neurodegenerative diseases with dementia.

    Science.gov (United States)

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Lixia Zhao

    Full Text Available HIV-1 associated neurocognitive disorders (HAND develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS, glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN α specifically activated the glutaminase 1 (GLS1 promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1 phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1 mRNA levels in HIV associated-dementia (HAD individuals correlate with STAT1 (p<0.01, IFN-α (p<0.05 and IFN-β (p<0.01. Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and

  2. [The Relationship of Suicide Attempts with Affective Temperament and Relevant Clinical Features in Patients with Mood Disorders].

    Science.gov (United States)

    Ekşioğlu, Sevgin; Güleç, Hüseyin; Şimşek, Gülnihal; Semiz, Ümit Başar

    2015-01-01

    In this study, patients with affective disorders with or without suicide attempts were examined according to whether their disorder was unipolar or bipolar. An analysis was made of their socio-demographic variables, comorbid psychiatric symptoms, and affective temperament dimensions in order to understand the effects of these variables on suicide risk. The study populations consisted of 246 inpatients with affective disorders who had been admitted to the Erenköy Research and Training Hospital for Mental and Neurological Disorders (93 patients with unipolar disorders, 153 with bipolar disorders). The TEMPS-A (Temperament Evaluation of Memphis, Pisa, Paris and San Diego Auto-questionnaire), the Beck Hopelessness Scale (BHS) and the Symptom Checklist-90-Revised (SCL-90-R) psychological symptom screening tests were applied to all patients. In order to determine the affective disorder diagnosis and to identify suicide attempts, a Mini International Neuropsychiatric Interview (MINI) was performed during the first 48 hours of hospitalization. The cyclothymic and anxious temperament dimensions measured using TEMPS-A, somatic symptoms obtained from a symptom checklist, and psychiatric disorders in the family were found to be good indicators of suicide attempts in patients with unipolar disorders in this study. An investigation of predictors of suicide attempts in bipolar patients showed that cyclothymic temperament pattern, paranoid symptoms, evaluated through symptom screening test and having a psychiatric disorder in the family are good predictors of a suicide attempt. The findings are expected to guadiance to preventing suicide in patients with affective disorders. The inclusion in this study of patients with different index episodes of illness, including manic, depressive and mixed periods, can be accepted as a significant limitation of this study.

  3. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Masaaki Akagi

    2015-02-01

    Full Text Available Developed regions, including Japan, have become “aged societies,” and the number of adults with senile dementias, such as Alzheimer's disease (AD, Parkinson's disease, and Huntington's disease, has also increased in such regions. Neurotrophins (NTs may play a role in the treatment of AD because endogenous neurotrophic factors (NFs prevent neuronal death. However, peptidyl compounds have been unable to cross the blood–brain barrier in clinical studies. Thus, small molecules, which can mimic the functions of NFs, might be promising alternatives for the treatment of neurodegenerative diseases. Natural products, such as or nutraceuticals or those used in traditional medicine, can potentially be used to develop new therapeutic agents against neurodegenerative diseases. In this review, we introduced the neurotrophic activities of polyphenols honokiol and magnolol, which are the main constituents of Magnolia obovata Thunb, and methanol extracts from Zingiber purpureum (BANGLE, which may have potential therapeutic applications in various neurodegenerative disorders.

  4. Methods for the prognosus and suagnosis of neurodegenerative diseases

    OpenAIRE

    Naranjo, José Ramón; Mellström, Britt; Rábano, Alberto

    2014-01-01

    [EN] The present invention corresponds to the field of neurobiology and relates to methods for predicting the appearance of a neurodegenerative disease in a subject, for diagnosing the prodromic stage of a neurodegenerative disease in a subject, for predicting whether a subject diagnosed of a prodromic stage of a neurodegenerative disease will develop said neurodegenerative disease and for selecting a subject for a therapy for the prevention and/or treatment of a prodromic stage of a neurode...

  5. An approximate method for calculating electron-phonon matrix element of a disordered transition metal and relevant comments on superconductivity

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given

  6. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases.

    Science.gov (United States)

    Lanza, Valeria; Milardi, Danilo; Di Natale, Giuseppe; Pappalardo, Giuseppe

    2018-02-12

    There is mounting urgency to find new drugs for the treatment of neurodegenerative disorders. A large number of reviews have exhaustively described either the molecular or clinical aspects of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD). Conversely, reports outlining how known drugs in use for other diseases can also be effective as therapeutic agents in neurodegenerative diseases are less reported. This review focuses on the current uses of some copper(II) chelating molecules as potential drug candidates in neurodegeneration. Starting from the well-known harmful relationships existing between the dyshomeostasis and mis-management of metals and AD onset, we surveyed the experimental work reported in the literature, which deals with the repositioning of metal-chelating drugs in the field of neurodegenerative diseases. The reviewed papers were retrieved from common literature and their selection was limited to those describing the biomolecular aspects associated with neuroprotection. In particular, we emphasized the copper(II) coordination abilities of the selected drugs. Copper, together with zinc and iron, are known to play a key role in regulating neuronal functions. Changes in copper homeostasis are crucial for several neurodegenerative disorders. The studies included in this review may provide an overview on the current strategies aimed at repurposing copper (II) chelating drugs for the treatment of neurodegenerative disorders. Starting from the exemplary case of clioquinol repurposing, we discuss the challenge and the opportunities that repurposing of other metal-chelating drugs may provide (e.g. PBT-2, metformin and cyclodipeptides) in the treatment of neurodegenerative disease. In order to improve the success rate of drug repositioning, comprehensive studies on the molecular mechanism and therapeutic efficacy are still required. The present review upholds that drug repurposing makes significant advantages over drug discovery since

  7. Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Tarozzi

    2013-01-01

    Full Text Available A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer’s disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration.

  8. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases.

    Science.gov (United States)

    Costa, Silvia Lima; Silva, Victor Diogenes Amaral; Dos Santos Souza, Cleide; Santos, Cleonice Creusa; Paris, Irmgard; Muñoz, Patricia; Segura-Aguilar, Juan

    2016-07-01

    Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.

  9. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders.

    Science.gov (United States)

    Lindström, Veronica; Ihse, Elisabet; Fagerqvist, Therese; Bergström, Joakim; Nordström, Eva; Möller, Christer; Lannfelt, Lars; Ingelsson, Martin

    2014-01-01

    Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.

  10. Spanish validation of the adult Attention Deficit/Hyperactivity Disorder Rating Scale (ADHD-RS): relevance of clinical subtypes.

    Science.gov (United States)

    Richarte, Vanesa; Corrales, Montserrat; Pozuelo, Marian; Serra-Pla, Juanfran; Ibáñez, Pol; Calvo, Eva; Corominas, Margarida; Bosch, Rosa; Casas, Miquel; Ramos-Quiroga, Josep Antoni

    Adult attention deficit hyperactivity disorder (ADHD) has a prevalence between 2.5% and 4% of the general adult population. Over the past few decades, self-report measures have been developed for the current evaluation of adult ADHD. The ADHD-RS is a 18-items scale self-report version for assessing symptoms for ADHD DSM-IV. A validation of Spanish version of the ADHD-RS was performed. The sample consisted of 304 adult with ADHD and 94 controls. A case control study was carried out (adult ADHD vs. non ADHD). The diagnosis of ADHD was evaluated with the Structured Clinical Interview for DSM-IV (SCID-I) and the Conners Adult ADHD Diagnostic Interview for DSM-IV (CAADID-II). To determinate the internal validity of the two dimensions structure of ADHD-RS an exploratory factor analysis was performed. The α-coefficients were taken as a measure of the internal consistency of the dimensions considered. A logistic regression study was carried out to evaluate the model in terms of sensitivity, specificity, positive predictive value (PPV) and negative predictive values (NPV). Average age was 33.29 (SD=10.50) and 66% of subjects were men (there were no significant differences between the two groups). Factor analysis was done with a principal component analysis followed by a normalized varimax rotation. The Kaiser-Meyer-Olkin measure of sampling adequacy tests was .868 (remarkable) and the Bartlett's test of sphericity was 2 (153)=1,835.76, P<.0005, indicating the appropriateness of the factor analysis. This two-factor model accounted for 37.81% of the explained variance. The α-coefficient of the two factors was .84 and .82. The original strategy proposed 24 point for cut-off: sensitivity (81.9%), specificity (74.7%), PPV (50.0%), NPV (93.0%), kappa coefficient .78 and area under the curve (AUC) .89. The new score strategy proposed by our group suggests different cut-off for different clinical presentations. The 24 point is the best cut-off for ADHD combined presentation

  11. Non-equilibrium dynamics of disordered systems: understanding the broad continuum of relevant time scales via a strong-disorder RG in configuration space

    International Nuclear Information System (INIS)

    Monthus, Cecile; Garel, Thomas

    2008-01-01

    We show that an appropriate description of the non-equilibrium dynamics of disordered systems is obtained through a strong disorder renormalization procedure in configuration space that we define for any master equation with transitions rates W(C→C') between configurations. The idea is to eliminate iteratively the configuration with the highest exit rate W out (C)+Σ C' W(C→C') to obtain renormalized transition rates between the remaining configurations. The multiplicative structure of the new generated transition rates suggests that for a very broad class of disordered systems, the distribution of renormalized exit barriers defined as B out (C)≡-ln W out (C) will become broader and broader upon iteration, so that the strong disorder renormalization procedure should become asymptotically exact at large time scales. We have checked numerically this scenario for the non-equilibrium dynamics of a directed polymer in a two-dimensional random medium

  12. Marked Body Shape Concerns in Female Patients Suffering from Eating Disorders: Relevance of a Clinical Sub-Group.

    Directory of Open Access Journals (Sweden)

    Lucie Gailledrat

    Full Text Available Concerns about body shape and weight are core diagnostic criteria for eating disorders although intensity varies between patients. Few studies have focused on the clinical differences relative to the intensity of these concerns. Nonetheless, they might have a prognostic value. This study was aimed at identifying the characteristics associated with marked body shape concerns in patients with an eating disorder. Data was collected from a systematic and standardized clinical assessment of outpatients seeking treatment in our department for eating disorders. Only female patients, suffering from anorexia nervosa or bulimia nervosa, and with "no / mild" or "marked" body shape concerns according to the Body Shape Questionnaire, were included for the present study. We focused on sociodemographic characteristics, eating disorder characteristics, axis 1 disorders, types of attachment, self-esteem and dissociation. A multiple logistic regression was performed to identify factors related to "marked" body shape concerns. In our sample (123 participants, with a mean age of 24.3 years [range 16-61], 56.9% had marked concerns with body shape. Marked body shape concerns were associated with a major depressive episode (OR = 100.3, the use of laxatives (OR = 49.8, a high score on the item "body dissatisfaction" of the Eating Disorders Inventory scale (OR = 1.7, a higher minimum body mass index (OR = 1.73, and a high score on the item "loss of control over behavior, thoughts and emotions" from the dissociation questionnaire (OR = 10.74. These results are consistent with previous studies, and highlight the importance of denial.

  13. The role of thiamine in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Irena Bubko

    2015-09-01

    Full Text Available Vitamin B1 (thiamine plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of “reassurance of the spirit”. Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson’s disease, Alzheimer’s disease, Wernicke’s encephalopathy or Wernicke-Korsakoff syndrome and Huntington’s disease.

  14. TRPM2, calcium and neurodegenerative diseases

    Science.gov (United States)

    Xie, Yu-Feng; MacDonald, John F; Jackson, Michael F

    2010-01-01

    NMDA receptor overactivation triggers intracellular Ca2+ dysregulation, which has long been thought to be critical for initiating excitotoxic cell death cascades associated with stroke and neurodegenerative disease. The inability of NMDA receptor antagonists to afford neuroprotection in clinical stroke trials has led to a re-evaluation of excitotoxic models of cell death and has focused research efforts towards identifying additional Ca2+ influx pathways. Recent studies indicate that TRPM2, a member of the TRPM subfamily of Ca2+-permeant, non-selective cation channel, plays an important role in mediating cellular responses to a wide range of stimuli that, under certain situations, can induce cell death. These include reactive oxygen and nitrogen species, tumour necrosis factor as well as soluble oli-gomers of amyloid beta. However, the molecular basis of TRPM2 channel involvement in these processes is not fully understood. In this review, we summarize recent studies about the regulation of TRPM2, its interaction with calcium and the possible implications for neurodegenerative diseases. PMID:21383889

  15. Chronic traumatic encephalopathy and other neurodegenerative proteinopathies

    Directory of Open Access Journals (Sweden)

    Maria Carmela Tartaglia

    2014-01-01

    Full Text Available Chronic traumatic encephalopathy (CTE is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer’s disease and frontotemporal lobar degeneration. The aim of this perspective is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment.

  16. Heat shock protein 90 in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rodina Anna

    2010-06-01

    Full Text Available Abstract Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1, the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.

  17. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases.

    Science.gov (United States)

    González, Hugo; Elgueta, Daniela; Montoya, Andro; Pacheco, Rodrigo

    2014-09-15

    Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases.

    Science.gov (United States)

    Dodge, James C

    2017-01-01

    Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.

  19. The Big Bluff of Amyotrophic Lateral Sclerosis Diagnosis: The Role of Neurodegenerative Disease Mimics.

    Science.gov (United States)

    Bicchi, Ilaria; Emiliani, Carla; Vescovi, Angelo; Martino, Sabata

    2015-01-01

    Neurodegenerative diseases include a significant number of pathologies affecting the nervous system. Generally, the primary cause of each disease is specific; however, recently, it was shown that they may be correlated at molecular level. This aspect, together with the exhibition of similar symptoms, renders the diagnosis of these disorders difficult. Amyotrophic lateral sclerosis is one of these pathologies. Herein, we report several cases of amyotrophic lateral sclerosis misdiagnosed as a consequence of features that are common to several neurodegenerative diseases, such as Parkinson's, Huntington's and Alzheimer's disease, spinal muscular atrophy, progressive bulbar palsy, spastic paraplegia and frontotemporal dementia, and mostly with the lysosomal storage disorder GM2 gangliosidosis. Overall reports highlight that the differential diagnosis for amyotrophic lateral sclerosis should include correlated mechanisms. © 2015 S. Karger AG, Basel.

  20. Recent progress in translational research on neurovascular and neurodegenerative disorders

    DEFF Research Database (Denmark)

    Demuth, Hans-Ulrich; Dijkhuizen, Rick M; Farr, Tracy D

    2017-01-01

    in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given...

  1. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...

  2. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2007-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  3. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2006-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  4. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2004-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  5. Neurotrophin Therapy of Neurodegenerative Disorders With Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2005-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  6. Non-suicidal Self-injury in Different Eating Disorder Types: Relevance of Personality Traits and Gender.

    Science.gov (United States)

    Islam, Mohammed A; Steiger, Howard; Jimenez-Murcia, Susana; Israel, Mimi; Granero, Roser; Agüera, Zaida; Castro, Rita; Sánchez, Isabel; Riesco, Nadine; Menchón, José M; Fernández-Aranda, Fernando

    2015-11-01

    The study explored lifetime prevalence of non-suicidal self-injury (NSSI) in female and male individuals with eating disorders (ED) and compared ED symptoms, general psychopathology and personality traits across individuals with and without a history of NSSI. The incremental discriminative capacity of gender on the manifestation of lifetime NSSI was also studied. A total sample of 1649 consecutively admitted ED patients (1515 women and 134 men) participated in the current study [339 ED + NSSI (ED with NSSI) and 1310 ED - NSSI (ED without NSSI)]. Specific self-report measures were included and other clinical and psychopathological indices. The observed lifetime prevalence of NSSI was 20.6% (20.9% in women and 17.2% in men). NSSI was not associated with ED type or gender. However, ED + NSSI patients exhibited more impulsive behaviour, substance-abuse disorders and additional impulse-control disorders, were younger and had more previous treatments. Age was shown to affect the presentation of NSSI. Additionally, ED + NSSI patients exhibited more severe ED and general psychopathological symptoms and had more dysfunctional personality traits when compared with ED - NSSI. ED + NSSI was found to be positively associated with harm avoidance and self-transcendence but negatively with reward dependence, self-directedness and cooperativeness. Thus, the variables with stronger capacity to identify the presence of ED + NSSI were younger age, harm avoidance, self-directedness and self-transcendence. A lack of association between sex and ED subtype with the presence of NSSI was observed. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  7. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases.

    Science.gov (United States)

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2014-01-01

    Neurodegenerative diseases commonly induce irreversible destruction of central nervous system (CNS) neuronal networks, resulting in permanent functional impairments. Effective medications against neurodegenerative diseases are currently lacking. Ashwagandha (roots of Withania somnifera Dunal) is used in traditional Indian medicine (Ayurveda) for general debility, consumption, nervous exhaustion, insomnia, and loss of memory. In this review, we summarize various effects and mechanisms of Ashwagandha extracts and related compounds on in vitro and in vivo models of neurodegenerative diseases such as Alzheimer's disease and spinal cord injury.

  8. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elżbieta Miller

    2014-01-01

    Full Text Available Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs especially F4-neuroprotanes (F4-NPs are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  9. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    Science.gov (United States)

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Relevance of the Thought-Shape Fusion Trait Questionnaire for healthy women and women presenting symptoms of eating disorders and mixed mental disorders.

    Science.gov (United States)

    Wyssen, Andrea; Debbeler, Luka J; Meyer, Andrea H; Coelho, Jennifer S; Humbel, Nadine; Schuck, Kathrin; Lennertz, Julia; Messerli-Bürgy, Nadine; Trier, Stephan N; Isenschmid, Bettina; Milos, Gabriella; Flury, Hanspeter; Schneider, Silvia; Munsch, Simone

    2018-03-23

    Thought-shape fusion (TSF) describes the experience of marked concerns about body weight/shape, feelings of fatness, the perception of weight gain, and the impression of moral wrongdoing after thinking about eating fattening/forbidden foods. This study sets out to evaluate the short version of the TSF trait questionnaire (TSF). The sample consists of 315 healthy control women, 244 women with clinical and subthreshold eating disorders, and 113 women with mixed mental disorders (mixed). The factor structure of the TSF questionnaire was examined using exploratory and subsequent confirmatory factor analyses. The questionnaire distinguishes between a Concept scale and a Clinical Impact scale. However, a lack of measurement invariances refers to significant differences between groups in terms of factor loadings, thresholds, and residuals, which questions cross-group validity. Results indicate that the concept is understood differently in the 3 groups and refers to the suitability of the questionnaire primarily for individuals presenting with symptoms of eating disorders. Copyright © 2018 John Wiley & Sons, Ltd.

  11. A Brief Historic Overview of Clinical Disorders Associated with Tryptophan: The Relevance to Chronic Fatigue Syndrome (CFS and Fibromyalgia (FM.

    Directory of Open Access Journals (Sweden)

    Adele Blankfield

    2012-01-01

    Full Text Available Last century there was a short burst of interest in the tryptophan related disorders of pellagra and related abnormalities that are usually presented in infancy. 1 , 2 Nutritional physiologists recognized that a severe human dietary deficiency of either tryptophan or the B group vitamins could result in central nervous system (CNS sequelae such as ataxia, cognitive dysfunction and dysphoria, accompanied by skin hyperpigmentation. 3 , 4 The current paper will focus on the emerging role of tryptophan in chronic fatigue syndrome (CFS and fibromyalgia (FM.

  12. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities.

    Science.gov (United States)

    Faraone, Stephen V

    2018-04-01

    Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech.

    Science.gov (United States)

    Josephs, Keith A; Duffy, Joseph R; Strand, Edythe A; Machulda, Mary M; Senjem, Matthew L; Master, Ankit V; Lowe, Val J; Jack, Clifford R; Whitwell, Jennifer L

    2012-05-01

    Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [(18)F]-fluorodeoxyglucose and [(11)C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49-82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy

  14. Text-mining as a methodology to assess eating disorder-relevant factors: Comparing mentions of fitness tracking technology across online communities.

    Science.gov (United States)

    McCaig, Duncan; Bhatia, Sudeep; Elliott, Mark T; Walasek, Lukasz; Meyer, Caroline

    2018-05-07

    Text-mining offers a technique to identify and extract information from a large corpus of textual data. As an example, this study presents the application of text-mining to assess and compare interest in fitness tracking technology across eating disorder and health-related online communities. A list of fitness tracking technology terms was developed, and communities (i.e., 'subreddits') on a large online discussion platform (Reddit) were compared regarding the frequency with which these terms occurred. The corpus used in this study comprised all comments posted between May 2015 and January 2018 (inclusive) on six subreddits-three eating disorder-related, and three relating to either fitness, weight-management, or nutrition. All comments relating to the same 'thread' (i.e., conversation) were concatenated, and formed the cases used in this study (N = 377,276). Within the eating disorder-related subreddits, the findings indicated that a 'pro-eating disorder' subreddit, which is less recovery focused than the other eating disorder subreddits, had the highest frequency of fitness tracker terms. Across all subreddits, the weight-management subreddit had the highest frequency of the fitness tracker terms' occurrence, and MyFitnessPal was the most frequently mentioned fitness tracker. The technique exemplified here can potentially be used to assess group differences to identify at-risk populations, generate and explore clinically relevant research questions in populations who are difficult to recruit, and scope an area for which there is little extant literature. The technique also facilitates methodological triangulation of research findings obtained through more 'traditional' techniques, such as surveys or interviews. © 2018 Wiley Periodicals, Inc.

  15. From Narcissistic Personality Disorder to Frontotemporal Dementia: A Case Report

    OpenAIRE

    Michele Poletti; Ubaldo Bonuccelli

    2011-01-01

    Premorbid personality characteristics could have a pathoplastic effect on behavioral symptoms and personality changes related to neurodegenerative diseases. Patients with personality disorders, in particular of the dramatic cluster, may present functional frontolimbic abnormalities. May these neurobiological vulnerabilities linked to a premorbid personality disorder predispose or represent a risk factor to subsequently develop a neurodegenerative disorder? Are subjects with personality disord...

  16. The Role of Copper in Neurodegenerative Disease

    Science.gov (United States)

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  17. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    Science.gov (United States)

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  18. Targeting glia with N-Acetylcysteine modulates brain glutamate and behaviours relevant to neurodevelopmental disorders in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Alice Marie Sybille Durieux

    2015-12-01

    Full Text Available An imbalance between excitatory (E glutamate and inhibitory (I GABA transmission may underlie neurodevelopmental conditions such as Autism Spectrum Disorder (ASD and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC, which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in-vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviours relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span.

  19. Is escitalopram really relevantly superior to citalopram in treatment of major depressive disorder? A meta-analysis of head-to-head randomized trials.

    Science.gov (United States)

    Trkulja, Vladimir

    2010-02-01

    To evaluate clinical relevance of differences between escitalopram and citalopram (equimolar) for major depressive disorder. Review and meta-analysis of comparative randomized controlled trials (RCT). Comparisons were in relation to Montgomery-Asberg depression rating scale (MADRS) score reduction at weeks 1 (5 RCTs), 4 (5 RCTs), 6 (4 RCTs), 8 (5 RCTs), and 24 (1 RCT); proportion of responders at weeks 2, 4, 6 (2 RCTs for each time point), 8 (5 RCTs), and 24 (1 RCT); clinical global impression-severity (CGI-S) reduction at weeks 6 (1 RCT), 8 (5 RCTs), and 24 (1 RCT), and discontinuation due to adverse events or inefficacy during short-term (up to 8 weeks) and medium-term (24 weeks) treatment. MADRS reduction was greater with escitalopram, but 95% confidence intervals (CI) around the mean difference were entirely or largely below 2 scale points (minimally important difference) and CI around the effect size (ES) was below 0.32 ("small") at all time points. Risk of response was higher with escitalopram at week 8 (relative risk, 1.14; 95% CI, 1.04 to 1.26) but number needed to treat was 14 (95% CI, 7 to 111). All 95% CIs around the mean difference and ES of CGI-S reduction at week 8 were below 0.32 points and the limit of "small," respectively. Data for severe patients (MADRS> or =30) are scarce (only 1 RCT), indicating somewhat greater efficacy (response rate and MADRS reduction at week 8, but not CGI-S reduction) of escitalopram, but without compelling evidence of clinically relevant differences. Discontinuations due to adverse events or inefficacy up to 8 weeks of treatment were comparable. Data for the period up to 24 weeks are scarce and inconclusive. Presently, the claims about clinically relevant superiority of escitalopram over citalopram in short-to-medium term treatment of major depressive disorder are not supported by evidence.

  20. THE MITOCHONDRIAL DERANGEMENTS IN NEURONAL DEGENER ATION AND NEURODEGENERATIVE DISEASES

    Institute of Scientific and Technical Information of China (English)

    Xue, Qi-ming; Gao, Feng; Chen, Qin-tang

    2000-01-01

    @@There are diverse concepts on the pathogenesis of neuronal degeneration and the neurodegenerative diseases. Among them there are different factors which might influence the initiation of neuronal degeneration as well as the pathogenesis of neurodegenerative diseases, such as Alzheimer′s disease, Parkinson′s disease, motor neuron disease, and so on.

  1. Neurodegenerative diseases of the central motor system in MRI

    International Nuclear Information System (INIS)

    Alfke, K.

    2005-01-01

    Neurodegenerative diseases of the central motor system often lead to discrete but functionally important parenchymal abnormalities in various parts of the brain. MRI is the most sensitive imaging method to detect these abnormalities. Various neurodegenerative diseases are presented with their clinical symptoms and MRI findings. Criteria for differential diagnosis are provided as well. (orig.)

  2. Building an integrated neurodegenerative disease database at an academic health center.

    Science.gov (United States)

    Xie, Sharon X; Baek, Young; Grossman, Murray; Arnold, Steven E; Karlawish, Jason; Siderowf, Andrew; Hurtig, Howard; Elman, Lauren; McCluskey, Leo; Van Deerlin, Vivianna; Lee, Virginia M-Y; Trojanowski, John Q

    2011-07-01

    It is becoming increasingly important to study common and distinct etiologies, clinical and pathological features, and mechanisms related to neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. These comparative studies rely on powerful database tools to quickly generate data sets that match diverse and complementary criteria set by them. In this article, we present a novel integrated neurodegenerative disease (INDD) database, which was developed at the University of Pennsylvania (Penn) with the help of a consortium of Penn investigators. Because the work of these investigators are based on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration, it allowed us to achieve the goal of developing an INDD database for these major neurodegenerative disorders. We used the Microsoft SQL server as a platform, with built-in "backwards" functionality to provide Access as a frontend client to interface with the database. We used PHP Hypertext Preprocessor to create the "frontend" web interface and then used a master lookup table to integrate individual neurodegenerative disease databases. We also present methods of data entry, database security, database backups, and database audit trails for this INDD database. Using the INDD database, we compared the results of a biomarker study with those using an alternative approach by querying individual databases separately. We have demonstrated that the Penn INDD database has the ability to query multiple database tables from a single console with high accuracy and reliability. The INDD database provides a powerful tool for generating data sets in comparative studies on several neurodegenerative diseases. Copyright © 2011 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  3. Genetics of homocysteine metabolism and associated disorders

    Directory of Open Access Journals (Sweden)

    S. Brustolin

    2010-01-01

    Full Text Available Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

  4. Regulation of basal tone, relaxation and contraction of the lower oesophageal sphincter. Relevance to drug discovery for oesophageal disorders.

    Science.gov (United States)

    Farré, R; Sifrim, D

    2008-03-01

    The lower oesophageal sphincter (LOS) is a specialized region of the oesophageal circular smooth muscle that allows the passage of a swallowed bolus to the stomach and prevents the reflux of gastric contents into the oesophagus. The anatomical arrangement of the LOS includes semicircular clasp fibres adjacent to the lesser gastric curvature and sling fibres following the greater gastric curvature. Such anatomical arrangement together with an asymmetric intrinsic innervation and distinct proportion of neurotransmitters in both regions produces an asymmetric pressure profile. The LOS tone is myogenic in origin and depends on smooth muscle properties that lead to opening of L-type Ca(2+) channels; however it can be modulated by enteric motor neurons, the parasympathetic and sympathetic extrinsic nervous system and several neurohumoral substances. Nitric oxide synthesized by neuronal NOS is the main inhibitory neurotransmitter involved in LOS relaxation. Different putative neurotransmitters have been proposed to play a role together with NO. So far, only ATP or related purines have shown to be co-transmitters with NO. Acetylcholine and tachykinins are involved in the LOS contraction acting through acetylcholine M(3) and tachykinin NK(2) receptors. Nitric oxide can also be involved in the regulation of LOS contraction. The understanding of the mechanisms that originate and modulate LOS tone, relaxation and contraction and the characterization of neurotransmitters and receptors involved in LOS function are important to develop new pharmacological tools to treat primary oesophageal motor disorders and gastro-oesophageal reflux disease.

  5. Methamphetamine and inflammatory cytokines increase neuronal Na+/K+-ATPase isoform 3: relevance for HIV associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Gurudutt Pendyala

    Full Text Available Methamphetamine (METH abuse in conjunction with human immunodeficiency virus (HIV exacerbates neuropathogenesis and accelerates neurocognitive impairments in the central nervous system (CNS, collectively termed HIV Associated Neurocognitive Disorders (HAND. Since both HIV and METH have been implicated in altering the synaptic architecture, this study focused on investigating alterations in synaptic proteins. Employing a quantitative proteomics approach on synaptosomes isolated from the caudate nucleus from two groups of rhesus monkeys chronically infected with simian immunodeficiency virus (SIV differing by one regimen, METH treatment, we identified the neuron specific Na(+/K(+-ATPase alpha 1 isoform 3 (ATP1A3 to be up regulated after METH treatment, and validated its up regulation by METH in vitro. Further studies on signaling mechanisms revealed that the activation of ATP1A3 involves the extracellular regulated kinase (ERK pathway. Given its function in maintaining ionic gradients and emerging role as a signaling molecule, changes in ATP1A3 yields insights into the mechanisms associated with HAND and interactions with drugs of abuse.

  6. NF-κB Mediated Regulation of Adult Hippocampal Neurogenesis: Relevance to Mood Disorders and Antidepressant Activity

    Directory of Open Access Journals (Sweden)

    Valeria Bortolotto

    2014-01-01

    Full Text Available Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.

  7. Expression of Nrf2 in neurodegenerative diseases.

    Science.gov (United States)

    Ramsey, Chenere P; Glass, Charles A; Montgomery, Marshall B; Lindl, Kathryn A; Ritson, Gillian P; Chia, Luis A; Hamilton, Ronald L; Chu, Charleen T; Jordan-Sciutto, Kelly L

    2007-01-01

    In response to oxidative stress, the nuclear factor E2-related factor 2 (Nrf2) transcription factor translocates from the cytoplasm into the nucleus and transactivates expression of genes with antioxidant activity. Despite this cellular mechanism, oxidative damage is abundant in Alzheimer and Parkinson disease (AD and PD). To investigate mechanisms by which Nrf2 activity may be aberrant or insufficient in neurodegenerative conditions, we assessed Nrf2 localization in affected brain regions of AD, Lewy body variant of AD (LBVAD), and PD. By immunohistochemistry, Nrf2 is expressed in both the nucleus and the cytoplasm of neurons in normal hippocampi with predominant expression in the nucleus. In AD and LBVAD, Nrf2 was predominantly cytoplasmic in hippocampal neurons and was not a major component of beta amyloid plaques or neurofibrillary tangles. By immunoblotting, we observed a significant decrease in nuclear Nrf2 levels in AD cases. In contrast, Nrf2 was strongly nuclear in PD nigral neurons but cytoplasmic in substantia nigra of normal, AD, and LBVAD cases. These findings suggest that Nrf2-mediated transcription is not induced in neurons in AD despite the presence of oxidative stress. In PD, nuclear localization of Nrf2 is strongly induced, but this response may be insufficient to protect neurons from degeneration.

  8. Health benefits of methylxanthines in neurodegenerative diseases.

    Science.gov (United States)

    Oñatibia-Astibia, Ainhoa; Franco, Rafael; Martínez-Pinilla, Eva

    2017-06-01

    Methylxanthines (MTXs) are consumed by almost everybody in almost every area of the world. Caffeine, theophylline and theobromine are the most well-known members of this family of compounds; they are present, inter alia, in coffee, tea, cacao, yerba mate and cola drinks. MTXs are readily absorbed in the gastrointestinal tract and are able to penetrate into the central nervous system, where they exert significant psychostimulant actions, which are more evident in acute intake. Coffee has been paradigmatic, as its use was forbidden in many diseases, however, this negative view has radically changed; evidence shows that MTXs display health benefits in diseases involving cell death in the nervous system. This paper reviews data that appraise the preventive and even therapeutic potential of MTXs in a variety of neurodegenerative diseases. Future perspectives include the use of MTXs to advance the understanding the pathophysiology of, inter alia, Alzheimer's disease (AD) and Parkinson's disease (PD), and the use of the methylxanthine chemical moiety as a basis for the development of new and more efficacious drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Folic acid, neurodegenerative and neuropsychiatric disease.

    Science.gov (United States)

    Kronenberg, Golo; Colla, Michael; Endres, Matthias

    2009-04-01

    Folic acid plays an important role in neuroplasticity and in the maintenance of neuronal integrity. Folate is a co-factor in one-carbon metabolism during which it promotes the regeneration of methionine from homocysteine, a highly reactive sulfur-containing amino acid. Methionine may then be converted to S-adenosylmethionine (SAM), the principal methyl donor in most biosynthetic methylation reactions. On the cellular level, folate deficiency and hyperhomocysteinemia exert multiple detrimental effects. These include induction of DNA damage, uracil misincorporation into DNA and altered patterns of DNA methylation. Low folate status and elevated homocysteine increase the generation of reactive oxygen species and contribute to excitotoxicity and mitochondrial dysfunction which may lead to apoptosis. Strong epidemiological and experimental evidence links derangements of one-carbon metabolism to vascular, neurodegenerative and neuropsychiatric disease, including most prominently cerebral ischemia, Alzheimer's dementia and depression. Although firm evidence from controlled clinical trials is largely lacking, B-vitamin supplementation and homocysteine reduction may have a role especially in the primary prevention of stroke and dementia as well as as an adjunct to antidepressant pharmacotherapy.

  10. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    G. Natale

    2013-03-01

    Full Text Available Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-to-cell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs; mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs. The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.

  11. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    Science.gov (United States)

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  12. PENN neurodegenerative disease research - in the spirit of Benjamin Franklin.

    Science.gov (United States)

    Trojanowski, John Q

    2008-01-01

    Benjamin Franklin (1706-1790) was entrepreneur, statesman, supporter of the public good as well as inventor, and his most significant invention was the University of Pennsylvania (PENN). Franklin outlined his plans for a college providing practical and classical instruction to prepare youth for real-world pursuits in his 'Proposals Relating to the Education of Youth in Pensilvania' (1749), and Franklin's spirit of learning to serve society guides PENN to the present day. This is evidenced by the series of articles in this special issue of Neurosignals, describing research conducted by seasoned and newly recruited PENN faculty, addressing consequences of the longevity revolution which defines our epoch at the dawn of this millennium. While aging affects all organ systems, the nervous system is most critical to successful aging. Thus, the articles in this special issue of Neurosignals focus on research at PENN that is designed to prevent or ameliorate aging-related neurodegenerative disorders such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. This research could enhance our chances of aging successfully in the continuing longevity revolution, and the essay here provides context and background on this research.

  13. Neuropharmacological and neurobiological relevance of in vivo ¹H-MRS of GABA and glutamate for preclinical drug discovery in mental disorders.

    Science.gov (United States)

    Waschkies, Conny F; Bruns, Andreas; Müller, Stephan; Kapps, Martin; Borroni, Edilio; von Kienlin, Markus; Rudin, Markus; Künnecke, Basil

    2014-09-01

    Proton magnetic resonance spectroscopy ((1)H-magnetic resonance spectroscopy (MRS)) is a translational modality with great appeal for neuroscience since the two major excitatory and inhibitory neurotransmitters, glutamate, and GABA, can be noninvasively quantified in vivo and have served to explore disease state and effects of drug treatment. Yet, if (1)H-MRS shall serve for decision making in preclinical pharmaceutical drug discovery, it has to meet stringent requirements. In particular, (1)H-MRS needs to reliably report neurobiologically relevant but rather small changes in neurometabolite levels upon pharmacological interventions and to faithfully appraise target engagement in the associated molecular pathways at pharmacologically relevant doses. Here, we thoroughly addressed these matters with a three-pronged approach. Firstly, we determined the sensitivity and reproducibility of (1)H-MRS in rat at 9.4 Tesla for detecting changes in GABA and glutamate levels in the striatum and the prefrontal cortex, respectively. Secondly, we evaluated the neuropharmacological and neurobiological relevance of the MRS readouts by pharmacological interventions with five well-characterized drugs (vigabatrin, 3-mercaptopropionate, tiagabine, methionine sulfoximine, and riluzole), which target key nodes in GABAergic and glutamatergic neurotransmission. Finally, we corroborated the MRS findings with ex vivo biochemical analyses of drug exposure and neurometabolite concentrations. For all five interventions tested, (1)H-MRS provided distinct drug dose-effect relationships in GABA and glutamate over preclinically relevant dose ranges and changes as low as 6% in glutamate and 12% in GABA were reliably detected from 16 mm(3) volumes-of-interest. Taken together, these findings demonstrate the value and limitation of quantitative (1)H-MRS of glutamate and GABA for preclinical pharmaceutical research in mental disorders.

  14. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine.

    Science.gov (United States)

    Kovacs, Gabor G

    2016-02-02

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.

  15. SysBioCube: A Data Warehouse and Integrative Data Analysis Platform Facilitating Systems Biology Studies of Disorders of Military Relevance.

    Science.gov (United States)

    Chowbina, Sudhir; Hammamieh, Rasha; Kumar, Raina; Chakraborty, Nabarun; Yang, Ruoting; Mudunuri, Uma; Jett, Marti; Palma, Joseph M; Stephens, Robert

    2013-01-01

    SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.

  16. Association between environmental exposure to pesticides and neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parron, Tesifon [University of Almeria, Department of Neurosciences and Health Sciences, Almeria (Spain); Andalusian Council of Health at Almeria province, Almeria (Spain); Requena, Mar [Andalusian Council of Health at Almeria province, Almeria (Spain); Hernandez, Antonio F., E-mail: ajerez@ugr.es [University of Granada School of Medicine, Granada (Spain); Alarcon, Raquel [Andalusian Council of Health at Almeria province, Almeria (Spain)

    2011-11-15

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: Black-Right-Pointing-Pointer Environmental exposure to pesticides and neurodegenerative-psychiatric disorders. Black-Right-Pointing-Pointer Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. Black

  17. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    Science.gov (United States)

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  18. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  19. Potential application of lithium in Parkinson’s and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Carol A Lazzara

    2015-10-01

    Full Text Available Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson’s disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of Calpain-1. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.

  20. Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases.

    Science.gov (United States)

    Phan, Chia-Wei; David, Pamela; Sabaratnam, Vikineswary

    2017-01-01

    There is an exponential increase in dementia in old age at a global level because of increasing life expectancy. The prevalence of neurodegenerative diseases such as dementia and Alzheimer's disease (AD) will continue to rise steadily, and is expected to reach 42 million cases worldwide in 2020. Despite the advancement of medication, the management of these diseases remains largely ineffective. Therefore, it is vital to explore novel nature-based nutraceuticals to mitigate AD and other age-related neurodegenerative disorders. Mushrooms and their extracts appear to hold many health benefits, including immune-modulating effects. A number of edible mushrooms have been shown to contain rare and exotic compounds that exhibit positive effects on brain cells both in vitro and in vivo. In this review, we summarize the scientific information on edible and culinary mushrooms with regard to their antidementia/AD active compounds and/or pharmacological test results. The bioactive components in these mushrooms and the underlying mechanism of their activities are discussed. In short, these mushrooms may be regarded as functional foods for the mitigation of neurodegenerative diseases.

  1. Pharmacogenetics in Neurodegenerative Diseases: Implications for Clinical Trials.

    Science.gov (United States)

    Tortelli, Rosanna; Seripa, Davide; Panza, Francesco; Solfrizzi, Vincenzo; Logroscino, Giancarlo

    2016-01-01

    Pharmacogenetics has become extremely important over the last 20 years for identifying individuals more likely to be responsive to pharmacological interventions. The role of genetic background as a predictor of drug response is a young and mostly unexplored field in neurodegenerative diseases. Mendelian mutations in neurodegenerative diseases have been used as models for early diagnosis and intervention. On the other hand, genetic polymorphisms or risk factors for late-onset Alzheimer's disease (AD) or other neurodegenerative diseases, probably influencing drug response, are hardly taken into account in randomized clinical trial (RCT) design. The same is true for genetic variants in cytochrome P450 (CYP), the principal enzymes influencing drug metabolism. A better characterization of individual genetic background may optimize clinical trial design and personal drug response. This chapter describes the state of the art about the impact of genetic factors in RCTs on neurodegenerative disease, with AD, frontotemporal dementia, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease as examples. Furthermore, a brief description of the genetic bases of drug response focusing on neurodegenerative diseases will be conducted. The role of pharmacogenetics in RCTs for neurodegenerative diseases is still a young, unexplored, and promising field. Genetic tools allow increased sophistication in patient profiling and treatment optimization. Pharmaceutical companies are aware of the value of collecting genetic data during their RCTs. Pharmacogenetic research is bidirectional with RCTs: efficacy data are correlated with genetic polymorphisms, which in turn define subjects for treatment stratification. © 2016 S. Karger AG, Basel.

  2. Cell ageing: a flourishing field for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Dora Brites

    2015-06-01

    Full Text Available Cellular senescence is viewed as an irreversible cell-cycle arrest mechanism involving a complexity of biological progressive processes and the acquisition of diverse cellular phenotypes. Several cell-intrinsic and extrinsic causes (stresses may lead to diverse cellular signaling cascades that include oxidative stress, mitochondrial dysfunction, DNA damage, excessive accumulation of misfolded proteins, impaired microRNA processing and inflammation. Here we review recent advances in the causes and consequences of brain cell ageing, including the senescence of endothelial cells at the central nervous system barriers, as well as of neurons and glial cells. We address what makes ageing an important risk factor for neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and cerebrovascular disease. In particular, we highlight the importance of defects in mitochondrial dynamics, in the cathepsin activity imbalance, in cell-cell communication, in the accumulation of misfolded and unfolded proteins and in the microRNA profiling as having potential impact on cellular ageing processes. Another important aspect is that the absence of specific senescence biomarkers has hampered the characterization of senescent cells in ageing and age-associated diseases. In accordance, the senescence-associated secretory phenotype (SASP or secretome was shown to vary in distinct cell types and upon different stressors, and SASP heterogeneity is believed to create subsets of senenescent cells. In addition to secreted proteins, we then place extracellular vesicles (exosomes and ectosomes as important mediators of intercellular communication with pathophysiological roles in disease spreading, and as emerging targets for therapeutic intervention. We also discuss the application of engineered extracellular vesicles as vehicles for drug delivery. Finally, we summarize current knowledge on methods to rejuvenate senescent cells

  3. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    Science.gov (United States)

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  4. [Retinal imaging of the macula and optic disc in neurodegenerative diseases].

    Science.gov (United States)

    Turski, G N; Schmitz-Valckenberg, S; Holz, F G; Finger, R P

    2017-02-01

    Due to current demographic trends, the prevalence of mild cognitive impairment and dementia is expected to increase considerably. For potential new therapies it is important to identify patients at risk as early as possible. Currently, there is no population-based screening. Therefore, identification of biomarkers that will help screen the population at risk is urgently needed. Thus, a literature review on retinal pathology in neurodegenerative diseases was performed. PubMed was searched for studies published up to August 2016 using the following keywords: "mild cognitive impairment", "dementia", "eye", "ocular biomarkers", "OCT" and "OCT angiography". Relevant publications were selected and summarized qualitatively. Multiple studies using noninvasive in vivo optical coherence tomography (OCT) imaging showed nonspecific retinal pathological changes in patients with neurodegenerative diseases such as mild cognitive impairment, Alzheimer's and Parkinson's disease. Pathological changes in macular volume, optic nerve fiber layer thickness and the ganglion cell complex were observed. However, based on available evidence, no ocular biomarkers for neurodegeneration which could be integrated in routine clinical diagnostics have been identified. The potential use of OCT in the early diagnostic workup and monitoring of progression of neurodegenerative diseases needs to be further explored in longitudinal studies with large cohorts.

  5. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Laura Foucault-Fruchard

    2017-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.

  6. Transcranial Direct Current Stimulation in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Argye E. Hillis

    2014-04-01

    Full Text Available We review rationale, challenges, study designs, reported results, and future directions in the use of transcranial direct cranial stimulation (tDCS in neurodegenerative disease, focusing on treatment of spelling in primary progressive aphasia (PPA. Rationale Evidence from both animal studies and human studies indicates that anodal and cathodal tDCS over the brain result in a temporary change in membrane potentials, reducing the threshold for long-term potentiation of neurons in the affected area. This may allow unaffected brain regions to assume functions of diseased regions. Challenges Special challenges in treating individuals with progressive conditions include altered goals of treatment and the possibility that participants may accumulate new deficits over the course of the treatment program that interfere with their ability to understand, retain, or cooperate with aspects of the program. The most serious challenge – particularly for single case designs - is that there may be no stable baseline against which to measure change with treatment. Thus, it is essential to demonstrate that treatment results in a statistically significant change in the slope of decline or improvement. Therefore, demonstration of a significant difference between tDCS and control (sham requires either a large number of participants or a large effect size. Designs The choice of a treatment design reflects these limitations. Group studies with a randomized, double-blind, sham control trial design (without cross-over provide the greatest power to detect a difference between intervention and control conditions, with the fewest participants. A cross-over design, in which all participants (from 1 to many receive both active and sham conditions, in randomized order, requires a larger effect size for the active condition relative to the control condition (or little to no maintenance of treatment gains or carry-over effect to show significant differences between treatment

  7. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC technologies

    Directory of Open Access Journals (Sweden)

    Elodie J Siney

    2018-03-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSC 12 years ago has fostered the development of innovative patient-derived in vitro models for better understanding of disease mechanisms. This is particularly relevant to neurodegenerative diseases, where availability of live human brain tissue for research is limited and post-mortem interval changes influence readouts from autopsy-derived human tissue. Hundreds of iPSC lines have now been prepared and banked, thanks to several large scale initiatives and cell banks. Patient- or engineered iPSC-derived neural models are now being used to recapitulate cellular and molecular aspects of a variety of neurodegenerative diseases, including early and pre-clinical disease stages. The broad relevance of these models derives from the availability of a variety of differentiation protocols to generate disease-specific cell types and the manipulation to either introduce or correct disease-relevant genetic modifications. Moreover, the use of chemical and physical three-dimensional (3D matrices improves control over the extracellular environment and cellular organization of the models. These iPSC-derived neural models can be utilised to identify target proteins and, importantly, provide high-throughput screening for drug discovery. Choosing Alzheimer’s disease (AD as an example, this review describes 3D iPSC-derived neural models and their advantages and limitations. There is now a requirement to fully characterise and validate these 3D iPSC-derived neural models as a viable research tool that is capable of complementing animal models of neurodegeneration and live human brain tissue. With further optimization of differentiation, maturation and aging protocols, as well as the 3D cellular organisation and extracellular matrix to recapitulate more closely, the molecular extracellular-environment of the human brain, 3D iPSC-derived models have the potential to deliver new knowledge, enable discovery of novel

  8. In silico studies in drug research against neurodegenerative diseases.

    Science.gov (United States)

    Makhouri, Farahnaz Rezaei; Ghasemi, Jahan B

    2017-08-22

    Neurodegenerative diseases such as Alzheimer's disease (AD), progressive neurodegenerative forms of Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis, spinal cerebellar ataxias, and spinal and bulbar muscular atrophy are described by slow and selective dysfunction and degeneration of neurons and axons in the central nervous system (CNS). Computer-aided or in silico design methods have matured into powerful tools for reducing the number of ligands that should be screened in experimental assays. In the present review, the authors provide a basic background about neurodegenerative diseases and in silico techniques in the drug research. Furthermore, they review the various in silico studies reported against various targets in neurodegenerative diseases, including homology modeling, molecular docking, virtual high-throughput screening, quantitative structure activity relationship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design, support vector machines, and machine learning approaches. Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting of multiple proteins (and therefore etiologies) involved in the development of a disease is recommended in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Silvia Vanni

    2018-01-01

    Full Text Available Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively and in different genetic forms of prion diseases (gPrD in comparison to Alzheimer's disease (AD subjects and age-matched controls.Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20, iCJD (n = 11, sCJD (n = 23, gPrD (n = 30, and AD (n = 14 patients and age-matched controls (n = 30. RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis.Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level.Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue—together with specific molecular and conformational features of the pathological agent of the disease—seem to dictate the peculiar

  10. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  11. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    Science.gov (United States)

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Self-relevant disgust and self-harm urges in patients with borderline personality disorder and depression: a pilot study with a newly designed psychological challenge.

    Directory of Open Access Journals (Sweden)

    Sawsan Abdul-Hamid

    Full Text Available Borderline personality disorder (BPD is a common psychiatric condition associated with self-harm. Self-harm is poorly understood and there is currently no treatment for acute presentations with self-harm urges.By using a new task (Self-relevant Task; SRT, to explore emotions related to one's own person (PERSON task and body (BODY task, to study the correlations of these emotions, specifically disgust, with self-harm urge level changes, and to test the task's potential to be developed into an experimental model of self-harming for treatment trials.17 BPD patients, 27 major depressive disorder (MDD patients, and 25 healthy volunteers performed the SRT. Emotion labels were extracted from task narratives and disgust and self-harm urge level changes measured by visual analogue scales. We used validated rating scales to measure symptom severity.The SRT was effective at inducing negative emotions and self-harm urge changes. Self-harm urge changes correlated with borderline symptom severity. Post-task disgust levels on the visual analogue scales were higher in BPD patients than in healthy controls in the PERSON task, and higher than in both control groups in the BODY task. Changes in disgust levels during the task were significantly greater in the patient groups. Post-task disgust levels or changes in disgust were not associated with self-harm urge changes (except the latter in MDD in the PERSON task, but self-harm urge changes and disgust (but no other emotion narrative labels were on a whole sample level.Although associations with the analogue scale measures were not significant, self-disgust reported in the narrative of patients may be associated with a higher probability of self-harm urges. Further research with larger sample sizes is needed to confirm this relationship and to examine whether reducing self-disgust could reduce self-harm urges. The SRT was effective and safe, and could be standardized for experimental studies.

  13. Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease?

    Science.gov (United States)

    Gitler, Aaron D

    2008-01-01

    For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker's yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson's disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.

  14. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    Science.gov (United States)

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies. Copyright © 2014 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  15. Identifying diagnostically-relevant resting state brain functional connectivity in the ventral posterior complex via genetic data mining in autism spectrum disorder.

    Science.gov (United States)

    Baldwin, Philip R; Curtis, Kaylah N; Patriquin, Michelle A; Wolf, Varina; Viswanath, Humsini; Shaw, Chad; Sakai, Yasunari; Salas, Ramiro

    2016-05-01

    Exome sequencing and copy number variation analyses continue to provide novel insight to the biological bases of autism spectrum disorder (ASD). The growing speed at which massive genetic data are produced causes serious lags in analysis and interpretation of the data. Thus, there is a need to develop systematic genetic data mining processes that facilitate efficient analysis of large datasets. We report a new genetic data mining system, ProcessGeneLists and integrated a list of ASD-related genes with currently available resources in gene expression and functional connectivity of the human brain. Our data-mining program successfully identified three primary regions of interest (ROIs) in the mouse brain: inferior colliculus, ventral posterior complex of the thalamus (VPC), and parafascicular nucleus (PFn). To understand its pathogenic relevance in ASD, we examined the resting state functional connectivity (RSFC) of the homologous ROIs in human brain with other brain regions that were previously implicated in the neuro-psychiatric features of ASD. Among them, the RSFC of the VPC with the medial frontal gyrus (MFG) was significantly more anticorrelated, whereas the RSFC of the PN with the globus pallidus was significantly increased in children with ASD compared with healthy children. Moreover, greater values of RSFC between VPC and MFG were correlated with severity index and repetitive behaviors in children with ASD. No significant RSFC differences were detected in adults with ASD. Together, these data demonstrate the utility of our data-mining program through identifying the aberrant connectivity of thalamo-cortical circuits in children with ASD. Autism Res 2016, 9: 553-562. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  16. The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease.

    Science.gov (United States)

    Amaral, Marta; Outeiro, Tiago F; Scrutton, Nigel S; Giorgini, Flaviano

    2013-06-01

    Metabolites of the kynurenine pathway (KP), which arise from the degradation of tryptophan, have been studied in detail for over a century and garnered the interest of the neuroscience community in the late 1970s and early 1980s with work uncovering the neuromodulatory potential of this pathway. Much research in the following decades has found that perturbations in the levels of KP metabolites likely contribute to the pathogenesis of several neurodegenerative diseases. More recently, it has become apparent that targeting KP enzymes, in particular kynurenine 3-monooxygenase (KMO), may hold substantial therapeutic potential for these disorders. Here we provide an overview of the KP, the neuroactive properties of KP metabolites and their role in neurodegeneration. We also discuss KMO as a therapeutic target for these disorders, and our recent resolution of the crystallographic structure of KMO, which will permit the development of new and improved KMO inhibitors which may ultimately expedite clinical application of these compounds.

  17. Mechanisms of action of brain insulin against neurodegenerative diseases.

    Science.gov (United States)

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  18. Prediction of neurodegenerative diseases from functional brain imaging data

    NARCIS (Netherlands)

    Mudali, Deborah

    2016-01-01

    Neurodegenerative diseases are a challenge, especially in the developed society where life expectancy is high. Since these diseases progress slowly, they are not easy to diagnose at an early stage. Moreover, they portray similar disease features, which makes them hard to differentiate. In this

  19. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    Directory of Open Access Journals (Sweden)

    Panchanan Maiti

    2014-01-01

    Full Text Available The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.

  20. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases.

    LENUS (Irish Health Repository)

    Byrne, Susan

    2012-04-01

    A small proportion of cases seen in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS), Parkinson\\'s disease and Alzheimer disease are familial. These familial cases are usually clinically indistinguishable from sporadic cases. Identifying familial cases is important both in terms of clinical guidance for family members and for gene discovery.

  1. Movement and Other Neurodegenerative Syndromes in Patients with Systemic Rheumatic Diseases: A Case Series of 8 Patients and Review of the Literature.

    Science.gov (United States)

    Menezes, Rikitha; Pantelyat, Alexander; Izbudak, Izlem; Birnbaum, Julius

    2015-08-01

    Patients with rheumatic diseases can present with movement and other neurodegenerative disorders. It may be underappreciated that movement and other neurodegenerative disorders can encompass a wide variety of disease entities. Such disorders are strikingly heterogeneous and lead to a wider spectrum of clinical injury than seen in Parkinson's disease. Therefore, we sought to stringently phenotype movement and other neurodegenerative disorders presenting in a case series of rheumatic disease patients. We integrated our findings with a review of the literature to understand mechanisms which may account for such a ubiquitous pattern of clinical injury.Seven rheumatic disease patients (5 Sjögren's syndrome patients, 2 undifferentiated connective tissue disease patients) were referred and could be misdiagnosed as having Parkinson's disease. However, all of these patients were ultimately diagnosed as having other movement or neurodegenerative disorders. Findings inconsistent with and more expansive than Parkinson's disease included cerebellar degeneration, dystonia with an alien-limb phenomenon, and nonfluent aphasias.A notable finding was that individual patients could be affected by cooccurring movement and other neurodegenerative disorders, each of which could be exceptionally rare (ie, prevalence of ∼1:1000), and therefore with the collective probability that such disorders were merely coincidental and causally unrelated being as low as ∼1-per-billion. Whereas our review of the literature revealed that ubiquitous patterns of clinical injury were frequently associated with magnetic resonance imaging (MRI) findings suggestive of a widespread vasculopathy, our patients did not have such neuroimaging findings. Instead, our patients could have syndromes which phenotypically resembled paraneoplastic and other inflammatory disorders which are known to be associated with antineuronal antibodies. We similarly identified immune-mediated and inflammatory markers of injury

  2. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  3. Aspirin-Mediated Acetylation Protects Against Multiple Neurodegenerative Pathologies by Impeding Protein Aggregation.

    Science.gov (United States)

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Kakraba, Samuel; Alla, Ramani; Mehta, Jawahar L; Shmookler Reis, Robert J

    2017-12-10

    Many progressive neurological disorders, including Alzheimer's disease (AD), Huntington's disease, and Parkinson's disease (PD), are characterized by accumulation of insoluble protein aggregates. In prospective trials, the cyclooxygenase inhibitor aspirin (acetylsalicylic acid) reduced the risk of AD and PD, as well as cardiovascular events and many late-onset cancers. Considering the role played by protein hyperphosphorylation in aggregation and neurodegenerative diseases, and aspirin's known ability to donate acetyl groups, we asked whether aspirin might reduce both phosphorylation and aggregation by acetylating protein targets. Aspirin was substantially more effective than salicylate in reducing or delaying aggregation in human neuroblastoma cells grown in vitro, and in Caenorhabditis elegans models of human neurodegenerative diseases in vivo. Aspirin acetylates many proteins, while reducing phosphorylation, suggesting that acetylation may oppose phosphorylation. Surprisingly, acetylated proteins were largely excluded from compact aggregates. Molecular-dynamic simulations indicate that acetylation of amyloid peptide energetically disfavors its association into dimers and octamers, and oligomers that do form are less compact and stable than those comprising unacetylated peptides. Hyperphosphorylation predisposes certain proteins to aggregate (e.g., tau, α-synuclein, and transactive response DNA-binding protein 43 [TDP-43]), and it is a critical pathogenic marker in both cardiovascular and neurodegenerative diseases. We present novel evidence that acetylated proteins are underrepresented in protein aggregates, and that aggregation varies inversely with acetylation propensity after diverse genetic and pharmacologic interventions. These results are consistent with the hypothesis that aspirin inhibits protein aggregation and the ensuing toxicity of aggregates through its acetyl-donating activity. This mechanism may contribute to the neuro-protective, cardio

  4. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Science.gov (United States)

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  5. Infectivity versus Seeding in Neurodegenerative Diseases Sharing a Prion-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Natalia Fernández-Borges

    2013-01-01

    Full Text Available Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term “prion-like” is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's diseases (PD, and amyotrophic lateral sclerosis (ALS have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term “infection” that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as “seeding” or “de novo induction” are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of “disease-causing agents” to include those already accepted as well as other misfolded proteins. In this new scenario, “seeding” would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole “infection” process.

  6. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    Science.gov (United States)

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.

    Science.gov (United States)

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-03-13

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.

  8. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    Science.gov (United States)

    Bellingham, Shayne A; Guo, Belinda B; Coleman, Bradley M; Hill, Andrew F

    2012-01-01

    Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP) which is associated with Alzheimer's disease. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I and alpha-synuclein (involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively) are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics, and diagnostics for these diseases.

  9. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis.

    Science.gov (United States)

    Devitt, George; Howard, Kelly; Mudher, Amrit; Mahajan, Sumeet

    2018-03-21

    The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.

  10. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    Directory of Open Access Journals (Sweden)

    Godoy, Maria Dantas Costa Lima

    2015-01-01

    Full Text Available Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia.

  11. Progranulin: at the interface of neurodegenerative and metabolic diseases.

    Science.gov (United States)

    Nguyen, Andrew D; Nguyen, Thi A; Martens, Lauren Herl; Mitic, Laura L; Farese, Robert V

    2013-12-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor-like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic function. We review here progranulin biology in both neurodegenerative and metabolic diseases. In particular, we highlight the growth factor-like, trophic, and anti-inflammatory properties of progranulin as potential unifying themes in these seemingly divergent conditions. We also discuss potential therapeutic options for raising progranulin levels to treat progranulin-deficient FTD, as well as the possible consequences of such treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    Science.gov (United States)

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  13. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  14. Memory in neurodegenerative disease: biological, cognitive, and clinical perspectives

    National Research Council Canada - National Science Library

    Tröster, Alexander I

    1998-01-01

    ... of memory dysfunction in neurodegenerative disease  . ,  . ,     .  100 6 Functional neuroimaging correlates...

  15. Progranulin: At the interface of neurodegenerative and metabolic diseases

    OpenAIRE

    Nguyen, Andrew D.; Nguyen, Thi A.; Martens, Lauren Herl; Mitic, Laura L.; Farese, Robert V.

    2013-01-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor–like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin’s function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic fun...

  16. [Caregivers of people with neurodegenerative diseases: from help to delegation].

    Science.gov (United States)

    Delzescaux, Sabine; Blondel, Frédéric

    2015-01-01

    Being a caregiver is difficult, even more so when it comes to helping people with a neurodegenerative disease. These caregivers, either family members or close friends, are confronted with an unexpected delegation which can prove to be highly complex as the pitfalls can indeed be significant. Moreover, the support the caregivers can provide depends on the support they can get for themselves. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Medicinal Plants in Neurodegenerative Diseases: Perspective of Traditional Persian Medicine.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Shahpiri, Zahra; Mehri, Mohammad Reza; Bahramsoltani, Roodabeh; Rezaei, Mahdi; Raeesdana, Azade; Rahimi, Roja

    2018-01-01

    Neurodegenerative diseases are a progressive loss of structure and/or function of neurons. Weak therapeutic response and progressive nature of the diseases, as well as a wide range of side effects caused by conventional therapeutic approaches make patients seek for complementary and alternative medicine. The aim of the present paper is to discuss the neuropharmacological basis of medicinal plants and their principle phytochemicals which have been used in traditional Persian medicine for different types of neurodegenerative diseases. Medicinal plants introduced in traditional Persian medicine perform beneficial effects in neurodegenerative diseases via various cellular and molecular mechanisms including suppression of apoptosis mediated by an increase in the expression of anti-apoptotic agents (e.g. Bcl-2) as well as a decrease in the expression and activity of proapoptotic proteins (e.g. Bax, caspase 3 and 9). Alleviating inflammatory responses and suppressing the expression and function of pro-inflammatory cytokines like Tumor necrosis factor α and interleukins, as well as improvement in antioxidative performance mediated by superoxide dismutase and catalase, are among other neuroprotective mechanisms of traditional medicinal plants. Modulation of transcription, transduction, intracellular signaling pathways including ERK, p38, and MAPK, with upstream regulatory activity on inflammatory cascades, apoptosis and oxidative stress associated pathways, play an essential role in the preventive and therapeutic potential of the plants in neurodegenerative diseases. Medicinal plants used in traditional Persian medicine along with their related phytochemicals by affecting various neuropharmacological pathways can be considered as future drugs or adjuvant therapies with conventional pharmacotherapeutics; though, further clinical studies are necessary for the confirmation of their safety and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at

  18. Sleep and caregiving : sleeping practices of couples facing neurodegenerative diseases

    OpenAIRE

    Casini , Elisa

    2017-01-01

    This doctoral dissertation in sociology examines the sleep practices of ageing couples confronted with neuro-degenerative conditions. It aims to understand the time- and space-related aspects of these sleep practices, so central to couples’ lives, throughout the different stages of illness, and places particular emphasis on gender-based relations. Thirty couples were interviewed in their homes, 12 of whom were affected by Lewy Body Dementia and 18 by Alzheimer’s Disease. Empirical methods suc...

  19. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  20. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  1. Sublethal RNA Oxidation as a Mechanism for Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2008-05-01

    Full Text Available Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.

  2. The Emerging Role of Proteomics in Precision Medicine: Applications in Neurodegenerative Diseases and Neurotrauma.

    Science.gov (United States)

    Alaaeddine, Rana; Fayad, Mira; Nehme, Eliana; Bahmad, Hisham F; Kobeissy, Firas

    2017-01-01

    Inter-individual variability in response to pharmacotherapy has provoked a higher demand to personalize medical decisions. As the field of pharmacogenomics has served to translate personalized medicine from concept to practice, the contribution of the "omics" disciplines to the era of precision medicine seems to be vital in improving therapeutic outcomes. Although we have observed significant advances in the field of genomics towards personalized medicine , the field of proteomics-with all its capabilities- is still in its infancy towards the area of personalized precision medicine. Neurodegenerative diseases and neurotrauma are among the areas where the implementation of neuroproteomics approaches has enabled neuroscientists to broaden their understanding of neural disease mechanisms and characteristics. It has been shown that the influence of epigenetics, genetics and environmental factors were among the recognized factors contributing to the diverse presentation of a single disease as well as its treatment establishing the factor-disease interaction. Thus, management of these variable single disease presentation/outcome necessitated the need for factoring the influence of epigenetics, genetics, epigenetics, and other factors on disease progression to create a custom treatment plan unique to each individual. In fact, neuroproteomics with its high ability to decipher protein alterations along with their post translational modifications (PTMs) can be an ideal tool for personalized medicine goals including: discovery of molecular mechanisms underlying disease pathobiology, development of novel diagnostics, enhancement of pharmacological neurotherapeutic approaches and finally, providing a "proteome identity" for patients with certain disorders and diseases. So far, neuroproteomics approaches have excelled in the areas of biomarker discovery arena where several diagnostic, prognostic and injury markers have been identified with a direct impact on the

  3. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases.

    Science.gov (United States)

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2017-09-04

    Progression of pathology in neurodegenerative diseases is hypothesized to be a non-cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a "donor cell" that is the source of misfolded aggregates to an "acceptor cell" in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer's, Huntington's, and Parkinson's diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies. © 2017 Victoria and Zurzolo.

  4. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jocelyn M Madeira

    2015-01-01

    Full Text Available Neurodegenerative disorders including Alzheimer′s disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.

  5. Translocator Protein-18 kDa (TSPO Positron Emission Tomography (PET Imaging and Its Clinical Impact in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Anne-Claire Dupont

    2017-04-01

    Full Text Available In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO. In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.

  6. Autism and Related Disorders

    Science.gov (United States)

    McPartland, James; Volkmar, Fred R.

    2012-01-01

    The Pervasive Developmental Disorders are a group of neurodevelopmental disorders that include Autistic Disorder, Asperger’s Disorder, Pervasive Developmental Disorder - Not Otherwise Specified (PDD-NOS), Childhood Disintegrative Disorder (CDD), and Rett’s Disorder. All feature childhood onset with a constellation of symptoms spanning social interaction and communication and including atypical behavior patterns. The first three disorders (Autistic Disorder, Asperger’s Disorder, and PDD-NOS) are currently referred to as Autism Spectrum Disorders, reflecting divergent phenotypic and etiologic characteristics compared to Rett’s Disorder and CDD. This chapter reviews relevant research and clinical information relevant to appropriate medical diagnosis and treatment. PMID:22608634

  7. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  8. Relevance of Five-Factor Model personality traits for obsessive-compulsive symptoms in patients with psychotic disorders and their un-affected siblings

    NARCIS (Netherlands)

    Schirmbeck, Frederike; Boyette, Lindy-Lou; van der Valk, Renate; Meijer, Carin; Dingemans, Peter; van, Rien; de Haan, Lieuwe; Kahn, René S.; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; Myin-Germeys, Inez

    2015-01-01

    High rates of obsessive-compulsive symptoms (OCS) in schizophrenia require pathogenic explanations. Personality traits may represent risk and resiliency factors for the development of mental disorders and their comorbidities. The aim of the present study was to explore the associations between

  9. Relevance of individual participant data meta-analysis for studies in obstetrics: delivery versus expectant monitoring for hypertensive disorders of pregnancy

    NARCIS (Netherlands)

    Broekhuijsen, Kim; Bernardes, Thomas; van Baaren, Gert-Jan; Tajik, Parvin; Novikova, Natalia; Thangaratinam, Shakila; Boers, Kim; Koopmans, Corine M.; Wallace, Kedra; Shennan, Andrew H.; Langenveld, Josje; Groen, Henk; van den Berg, Paul P.; Mol, Ben Willem J.; Franssen, Maureen T. M.

    2015-01-01

    Like many other research subjects in obstetrics, research on immediate delivery versus expectant monitoring for women with hypertensive disorders of pregnancy faces certain challenges when it comes to interpretation and generalisation of the results; relatively rare outcomes are studied, in a

  10. Relevance of individual participant data meta-analysis for studies in obstetrics : delivery versus expectant monitoring for hypertensive disorders of pregnancy

    NARCIS (Netherlands)

    Broekhuijsen, Kim; Bernardes, Thomas; van Baaren, Gert-Jan; Tajik, Parvin; Novikova, Natalia; Thangaratinam, Shakila; Boers, Kim; Koopmans, Corine M.; Wallace, Kedra; Shennan, Andrew H.; Langenveld, Josje; Groen, Henk; van den Berg, Paul P.; Mol, Ben Willem J.; Franssen, Maureen T. M.

    Like many other research subjects in obstetrics, research on immediate delivery versus expectant monitoring for women with hypertensive disorders of pregnancy faces certain challenges when it comes to interpretation and generalisation of the results; relatively rare outcomes are studied, in a

  11. The search for relevant outcome measures for cost-utility analysis of systemic family interventions in adolescents with substance use disorder and delinquent behavior: A systematic literature review

    NARCIS (Netherlands)

    S.J. Schawo (Saskia); C.A.M. Bouwmans-Frijters (Clazien); van der Schee, E. (E.); V. Hendriks (Vincent); W.B.F. Brouwer (Werner); L. van Hakkaart-van Roijen (Leona)

    2017-01-01

    textabstractPurpose: Systemic family interventions have shown to be effective in adolescents with substance use disorder and delinquent behavior. The interventions target interactions between the adolescent and involved systems (i.e. youth, family, peers, neighbors, school, work, and society). Next

  12. A Network Analysis of DSM-5 posttraumatic stress disorder symptoms and clinically relevant correlates in a national sample of U.S. military veterans

    NARCIS (Netherlands)

    Armour, C.; Fried, E.I.; Deserno, M.K.; Tsai, J.; Pietrzak, R.H.

    Objective Recent developments in psychometrics enable the application of network models to analyze psychological disorders, such as PTSD. Instead of understanding symptoms as indicators of an underlying common cause, this approach suggests symptoms co-occur in syndromes due to causal interactions.

  13. Relevance of Five-Factor Model personality traits for obsessive-compulsive symptoms in patients with psychotic disorders and their un-affected siblings

    NARCIS (Netherlands)

    Schirmbeck, Frederike; Boyette, Lindy-Lou; van der Valk, Renate; Meijer, Carin; Dingemans, Peter; Van, Rien; de Haan, Lieuwe; Kahn, Rene S.; de Haan, Lieuwe; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; Meijer, Carin; Myin-Germeys, Inez

    High rates of obsessive-compulsive symptoms (OCS) in schizophrenia require pathogenic explanations. Personality traits may represent risk and resiliency factors for the development of mental disorders and their comorbidities. The aim of the present study was to explore the associations between

  14. [Investigation of Genetic Aetiology in Neurodegenerative Ataxias: Recommendations from the Group of Neurogenetics of Centro Hospitalar São João, Portugal].

    Science.gov (United States)

    Gomes, Tiago; Guimaraes, Joana; Leão, Miguel

    2017-06-30

    In recent decades, a long and increasing list of monogenic neurodegenerative ataxias has been identified, allowing for better characterization of the pathophysiology, phenotype and prognosis of this heterogeneous group of disorders, while also revealing potential new therapeutic targets. However, the heterogeneity and complexity of the genotype-phenotype relationships and the high costs of molecular genetics often make it difficult for clinicians to decide on a molecular investigation based on an unbiased rational plan. Clinical history is essential to guide the diagnostic workup, but often the phenotype does not hold enough specificity to allow for predicting the genotype. The Group of Neurogenetics of the Centro Hospitalar São João, a multidisciplinary team of neurologists and geneticists with special interest in neurogenetic disorders, devised consensus recommendations for the investigation of the genetic aetiology of neurodegenerative ataxias in clinical practice, based on international consensus documents (currently containing potentially outdated information) and published scientific evidence on this topic. At the time these recommendations were written, there were around 10 well described autosomal recessive loci and more than 27 autosomal dominant loci for neurodegenerative ataxias. This document covers, in a pragmatic way, the rational process used for the genetic diagnosis of neurodegenerative ataxias, with specific recommendations for the various groups of these heterogeneous diseases, per the Portuguese reality.

  15. Investigation of Genetic Aetiology in Neurodegenerative Ataxias: Recommendations from the Group of Neurogenetics of Centro Hospitalar São João, Portugal

    Directory of Open Access Journals (Sweden)

    Tiago Gomes

    2017-06-01

    Full Text Available In recent decades, a long and increasing list of monogenic neurodegenerative ataxias has been identified, allowing for better characterization of the pathophysiology, phenotype and prognosis of this heterogeneous group of disorders, while also revealing potential new therapeutic targets. However, the heterogeneity and complexity of the genotype-phenotype relationships and the high costs of molecular genetics often make it difficult for clinicians to decide on a molecular investigation based on an unbiased rational plan. Clinical history is essential to guide the diagnostic workup, but often the phenotype does not hold enough specificity to allow for predicting the genotype. The Group of Neurogenetics of the Centro Hospitalar São João, a multidisciplinary team of neurologists and geneticists with special interest in neurogenetic disorders, devised consensus recommendations for the investigation of the genetic aetiology of neurodegenerative ataxias in clinical practice, based on international consensus documents (currently containing potentially outdated information and published scientific evidence on this topic. At the time these recommendations were written, there were around 10 well described autosomal recessive loci and more than 27 autosomal dominant loci for neurodegenerative ataxias. This document covers, in a pragmatic way, the rational process used for the genetic diagnosis of neurodegenerative ataxias, with specific recommendations for the various groups of these heterogeneous diseases, per the Portuguese reality.

  16. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?

    Science.gov (United States)

    Washington, Patricia M; Villapol, Sonia; Burns, Mark P

    2016-01-01

    Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson's disease. Further, human post-mortem studies on both single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a 'polypathology'. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Monira Pervin

    2018-05-01

    Full Text Available Tea is one of the most consumed beverages in the world. Green tea, black tea, and oolong tea are made from the same plant Camellia sinensis (L. O. Kuntze. Among them, green tea has been the most extensively studied for beneficial effects on diseases including cancer, obesity, diabetes, and inflammatory and neurodegenerative diseases. Several human observational and intervention studies have found beneficial effects of tea consumption on neurodegenerative impairment, such as cognitive dysfunction and memory loss. These studies supported the basis of tea’s preventive effects of Parkinson’s disease, but few studies have revealed such effects on Alzheimer’s disease. In contrast, several human studies have not reported these favorable effects with regard to tea. This discrepancy may be due to incomplete adjustment of confounding factors, including the method of quantifying consumption, beverage temperature, cigarette smoking, alcohol consumption, and differences in genetic and environmental factors, such as race, sex, age, and lifestyle. Thus, more rigorous human studies are required to understand the neuroprotective effect of tea. A number of laboratory experiments demonstrated the benefits of green tea and green tea catechins (GTCs, such as epigallocatechin gallate (EGCG, and proposed action mechanisms. The targets of GTCs include the abnormal accumulation of fibrous proteins, such as Aβ and α-synuclein, inflammation, elevated expression of pro-apoptotic proteins, and oxidative stress, which are associated with neuronal cell dysfunction and death in the cerebral cortex. Computational molecular docking analysis revealed how EGCG can prevent the accumulation of fibrous proteins. These findings suggest that GTCs have the potential to be used in the prevention and treatment of neurodegenerative diseases and could be useful for the development of new drugs.

  18. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.

    Science.gov (United States)

    LaMarca, Elizabeth A; Powell, Samuel K; Akbarian, Schahram; Brennand, Kristen J

    2018-01-01

    Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

  19. Clinical neurogenetics: behavioral management of inherited neurodegenerative disease.

    Science.gov (United States)

    Wexler, Eric

    2013-11-01

    Psychiatric symptoms often manifest years before overt neurologic signs in patients with inherited neurodegenerative disease. The most frequently cited example of this phenomenon is the early onset of personality changes in "presymptomatic" Huntington patients. In some cases the changes in mood and cognition are even more debilitating than their neurologic symptoms. The goal of this article is to provide the neurologist with a concise primer that can be applied in a busy clinic or private practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.

    Science.gov (United States)

    Healy, Sinead; McMahon, Jill M; FitzGerald, Una

    2017-11-01

    Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders.

    Science.gov (United States)

    Shepard, Ryan; Page, Chloe E; Coutellier, Laurence

    2016-09-22

    Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  2. Circulating progranulin as a biomarker for neurodegenerative diseases.

    Science.gov (United States)

    Ghidoni, Roberta; Paterlini, Anna; Benussi, Luisa

    2012-01-01

    Progranulin is a growth factor involved in the regulation of multiple processes including tumorigenesis, wound repair, development, and inflammation. The recent discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD), and other neurodegenerative diseases leading to dementia, has brought renewed interest in progranulin and its functions in the central nervous system. GRN null mutations cause protein haploinsufficiency, leading to a significant decrease in progranulin levels that can be detected in plasma, serum and cerebrospinal fluid (CSF) of mutation carriers. The dosage of circulating progranulin sped up the identification of GRN mutations thus favoring genotype-phenotype correlation studies. Researchers demonstrated that, in GRN null mutation carriers, the shortage of progranulin invariably precedes clinical symptoms and thus mutation carriers are "captured" regardless of their disease status. GRN is a particularly appealing gene for drug targeting, in the way that boosting its expression may be beneficial for mutation carriers, preventing or delaying the onset of GRN-related neurodegenerative diseases. Physiological regulation of progranulin expression level is only partially known. Progranulin expression reflects mutation status and, intriguingly, its levels can be modulated by some additional factor (i.e. genetic background; drugs). Thus, factors increasing the production and secretion of progranulin from the normal gene are promising potential therapeutic avenues. In conclusion, peripheral progranulin is a nonintrusive highly accurate biomarker for early identification of mutation carriers and for monitoring future treatments that might boost the level of this protein.

  3. The epigenetic bottleneck of neurodegenerative and psychiatric diseases.

    Science.gov (United States)

    Sananbenesi, Farahnaz; Fischer, Andre

    2009-11-01

    The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.

  4. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Samantha Giordano

    2014-01-01

    Full Text Available Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1 radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2 radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3 since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

  5. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  6. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade.

    Science.gov (United States)

    Vasconcelos, Mailton; Stein, Dirson João; de Almeida, Rosa Maria M

    2015-01-01

    Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.

  7. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade

    Directory of Open Access Journals (Sweden)

    Mailton Vasconcelos

    2015-06-01

    Full Text Available Introduction: Social defeat (SD in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior.Methods: A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors.Results: Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology.Conclusion: The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.

  8. Exploring factors relevant in the assessment of the return-to-work process of employees on long-term sickness absence due to a depressive disorder: a focus group study

    Directory of Open Access Journals (Sweden)

    Muijzer Anna

    2012-02-01

    Full Text Available Abstract Background Efforts undertaken during the Return-to-Work (RTW process need to be sufficient in order to optimize the quality of the RTW process. The purpose of this study was to explore factors relevant to Return-to-Work Effort Sufficiency (RTW-ES in cases of sick-listed employees with a Depressive Disorder (DD. Method A case of a long-term sick-listed employee with a DD applying for disability benefits was used to gather arguments and grounds relevant to the assessment of RTW-ES. Two focus group meetings were held, consisting of Labor Experts working at the Dutch Social Insurance Institute. Factors were collected and categorized using the International Classification of Functioning, Disability and Health (ICF model. Results Sixteen factors relevant to RTW-ES assessment in a case of DD were found, categorized in the ICF-model under activities (e.g. functional capacity, personal (e.g. competencies, attitude and environmental domain (e.g. employer-employee relationship, or categorized under interventions, job accommodations and measures. Conclusions This study shows that 16 factors are relevant in the assessment of RTW-ES in employees sick-listed due to DD. Further research is necessary to expand this knowledge to other health conditions, and to investigate the impact of these results on the quality of the RTW-ES assessment.

  9. Relevance of individual participant data meta-analysis for studies in obstetrics: delivery versus expectant monitoring for hypertensive disorders of pregnancy.

    Science.gov (United States)

    Broekhuijsen, Kim; Bernardes, Thomas; van Baaren, Gert-Jan; Tajik, Parvin; Novikova, Natalia; Thangaratinam, Shakila; Boers, Kim; Koopmans, Corine M; Wallace, Kedra; Shennan, Andrew H; Langenveld, Josje; Groen, Henk; van den Berg, Paul P; Mol, Ben Willem J; Franssen, Maureen T M

    2015-08-01

    Like many other research subjects in obstetrics, research on immediate delivery versus expectant monitoring for women with hypertensive disorders of pregnancy faces certain challenges when it comes to interpretation and generalisation of the results; relatively rare outcomes are studied, in a clinically heterogeneous population, while the clinical practice in some countries has dictated that studies in term pregnancy were completed before earlier gestational ages could be studied. This has resulted in multiple smaller studies, some studying surrogate outcome measures, with different in- and exclusion criteria, and without enough power for reliable subgroup analyses. All this complicates the generation of definitive answers and implementation of the results into clinical practice. Performing multiple studies and subsequently pooling their results in a meta-analysis can be a way to overcome the difficulties of studying relatively rare outcomes and subgroups with enough power, as well as a solution to reach a final answer on questions involving an uncertain and possibly harmful intervention. However, in the case of the current studies on delivery versus expectant monitoring in women with hypertensive disorders of pregnancy, differences regarding eligibility criteria, outcome measures and subgroup definitions make it difficult to pool their results in an aggregate meta-analysis. Individual patient data meta-analysis (IPDMA) has the potential to overcome these challenges, because it allows for flexibility regarding the choice of endpoints and standardisation of inclusion and exclusion criteria across studies. In addition, it has more statistical power for informative subgroup analyses. We therefore propose an IPDMA on immediate delivery versus expectant monitoring for hypertensive disorders of pregnancy, and advocate the use of IPDMA for research questions in obstetrics that face similar challenges. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Bipolar Disorder and Cognitive Dysfunction: A Complex Link.

    Science.gov (United States)

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Cammisuli, Davide Maria; Di Fiorino, Mario

    2017-10-01

    The aim of this article was to describe the current evidence regarding phenomenon of cognitive functioning and dementia in bipolar disorder (BD). Cochrane Library and PubMed searches were conducted for relevant articles, chapters, and books published before 2016. Search terms used included "bipolar disorder," "cognitive dysfunction," and "dementia." At the end of the selection process, 159 studies were included in our qualitative synthesis. As result, cognitive impairments in BD have been previously considered as infrequent and limited to the affective episodes. Nowadays, there is evidence of stable and lasting cognitive dysfunctions in all phases of BD, including remission phase, particularly in the following domains: attention, memory, and executive functions. The cause of cognitive impairment in BD raises the question if it subtends a neurodevelopmental or a neurodegenerative process. Impaired cognitive functioning associated with BD may contribute significantly to functional disability, in addition to the distorted affective component usually emphasized.

  11. Comprehensive behavioural analysis of Long Evans and Sprague-Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Karly M Turner

    Full Text Available Genetic (G and environmental (E manipulations are known to alter behavioural outcomes in rodents, however many animal models of neuropsychiatric disorders only use a restricted selection of strain and housing conditions. The aim of this study was to examine GxE interactions comparing two outbred rat strains, which were housed in either standard or enriched cages. The strains selected were the albino Sprague-Dawley rat, commonly used for animal models, and the other was the pigmented Long Evans rat, which is frequently used in cognitive studies. Rats were assessed using a comprehensive behavioural test battery and included well-established tests frequently employed to examine animal models of neuropsychiatric diseases, measuring aspects of anxiety, exploration, sensorimotor gating and cognition. Selective strain and housing effects were observed on a number of tests. These included increased locomotion and reduced pre-pulse inhibition in Long Evans rats compared to Sprague Dawley rats; and rats housed in enriched cages had reduced anxiety-like behaviour compared to standard housed rats. Long Evans rats required fewer sessions than Sprague Dawley rats to learn operant tasks, including a signal detection task and reversal learning. Furthermore, Long Evans rats housed in enriched cages acquired simple operant tasks faster than standard housed Long Evans rats. Cognitive phenotypes in animal models of neuropsychiatric disorders would benefit from using strain and housing conditions where there is greater potential for both enhancement and deficits in performance.

  12. Dopamine and μ-opioid receptor dysregulation in the brains of binge-eating female rats - possible relevance in the psychopathology and treatment of binge-eating disorder.

    Science.gov (United States)

    Heal, David J; Hallam, Michelle; Prow, Michael; Gosden, Jane; Cheetham, Sharon; Choi, Yong K; Tarazi, Frank; Hutson, Peter

    2017-06-01

    Adult, female rats given irregular, limited access to chocolate develop binge-eating behaviour with normal bodyweight and compulsive/perseverative and impulsive behaviours similar to those in binge-eating disorder. We investigated whether (a) dysregulated central nervous system dopaminergic and opioidergic systems are part of the psychopathology of binge-eating and (b) these neurotransmitter systems may mediate the actions of drugs ameliorating binge-eating disorder psychopathology. Binge-eating produced a 39% reduction of striatal D 1 receptors with 22% and 23% reductions in medial and lateral caudate putamen and a 22% increase of striatal μ-opioid receptors. There was no change in D 1 receptor density in nucleus accumbens, medial prefrontal cortex or dorsolateral frontal cortex, striatal D 2 receptors and dopamine reuptake transporter sites, or μ-opioid receptors in frontal cortex. There were no changes in ligand affinities. The concentrations of monoamines, metabolites and estimates of dopamine (dopamine/dihydroxyphenylacetic acid ratio) and serotonin/5-hydroxyindolacetic acid ratio turnover rates were unchanged in striatum and frontal cortex. However, turnover of dopamine and serotonin in the hypothalamus was increased ~20% and ~15%, respectively. Striatal transmission via D 1 receptors is decreased in binge-eating rats while μ-opioid receptor signalling may be increased. These changes are consistent with the attenuation of binge-eating by lisdexamfetamine, which increases catecholaminergic neurotransmission, and nalmefene, a μ-opioid antagonist.

  13. Prenatal stress alters progestogens to mediate susceptibility to sex-typical, stress-sensitive disorders, such as drug abuse: a review

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2011-10-01

    Full Text Available Maternal-offspring interactions begin prior to birth. Experiences of the mother during gestation play a powerful role in determining the developmental programming of the central nervous system. In particular, stress during gestation alters developmental programming of the offspring resulting in susceptibility to sex-typical and stress-sensitive neurodevelopmental, neuropsychiatric and neurodegenerative disorders. However, neither these effects, nor the underlying mechanisms, are well understood. Our hypothesis is that allopregnanolone, during gestation, plays a particularly vital role in mitigating effects of stress on the developing fetus and may mediate, in part, alterations apparent throughout the lifespan. Specifically, altered balance between glucocorticoids and progestogens during critical periods of development (stemming from psychological, immunological, and/or endocrinological stressors during gestation may permanently influence behavior, brain morphology, and/or neuroendocrine-sensitive processes. 5α-reduced progestogens are integral in the developmental programming of sex-typical, stress-sensitive, and/or disorder-relevant phenotypes. Prenatal stress may alter these responses and dysregulate allopregnanolone and its normative effects on stress axis function. As an example of a neurodevelopmental, neuropsychiatric and/or neurodegenerative process, this review focuses on responsiveness to drugs of abuse, which is sensitive to prenatal stress and progestogen milieu. This review explores the notion that allopregnanolone may effect, or be influenced by, prenatal stress, with consequences for neurodevelopmental-, neuropsychiatric- and/or neurodegenerative- relevant processes, such as addiction.

  14. Interaction of reelin and stress on immobility in the forced swim test but not dopamine-mediated locomotor hyperactivity or prepulse inhibition disruption: Relevance to psychotic and mood disorders.

    Science.gov (United States)

    Notaras, Michael J; Vivian, Billie; Wilson, Carey; van den Buuse, Maarten

    2017-07-13

    Psychotic disorders, such as schizophrenia, as well as some mood disorders, such as bipolar disorder, have been suggested to share common biological risk factors. One such factor is reelin, a large extracellular matrix glycoprotein that regulates neuronal migration during development as well as numerous activity-dependent processes in the adult brain. The current study sought to evaluate whether a history of stress exposure interacts with endogenous reelin levels to modify behavioural endophenotypes of relevance to psychotic and mood disorders. Heterozygous Reeler Mice (HRM) and wildtype (WT) controls were treated with 50mg/L of corticosterone (CORT) in their drinking water from 6 to 9weeks of age, before undergoing behavioural testing in adulthood. We assessed methamphetamine-induced locomotor hyperactivity, prepulse inhibition (PPI) of acoustic startle, short-term spatial memory in the Y-maze, and depression-like behaviour in the Forced-Swim Test (FST). HRM genotype or CORT treatment did not affect methamphetamine-induced locomotor hyperactivity, a model of psychosis-like behaviour. At baseline, HRM showed decreased PPI at the commonly used 100msec interstimulus interval (ISI), but not at the 30msec ISI or following challenge with apomorphine. A history of CORT exposure potentiated immobility in the FST amongst HRM, but not WT mice. In the Y-maze, chronic CORT treatment decreased novel arm preference amongst HRM, reflecting reduced short-term spatial memory. These data confirm a significant role of endogenous reelin levels on stress-related behaviour, supporting a possible role in both bipolar disorder and schizophrenia. However, an interaction of reelin deficiency with dopaminergic regulation of psychosis-like behaviour remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The role of the motor system in action naming in patients with neurodegenerative extrapyramidal syndromes.

    Science.gov (United States)

    Cotelli, Maria; Manenti, Rosa; Brambilla, Michela; Borroni, Barbara

    2018-03-01

    Previous studies of patients with brain damage have suggested a close relationship between aphasia and movement disorders. Neurodegenerative extrapyramidal syndromes associated with cognitive impairment provide an interesting model for studying the neural substrates of cognitive and motor symptoms. In this review, we focused on studies investigating language production abilities in patients with Parkinson's disease (PD), Corticobasal Syndrome (CBS) and Progressive Supranuclear Palsy (PSP). According to some reports, these patients exhibit a reduction in performance in both action and object naming or verb production compared to healthy individuals. Furthermore, a disproportional impairment of action naming compared to object naming was systematically observed in patients with these disorders. The study of these clinical conditions offers the unique opportunity to examine the close link between linguistic features and motor characteristics of action. This particular pattern of language impairment may contribute to the debate on embodiment theory and on the involvement of the basal ganglia in language and in integrating language and movement. From a translational perspective, we suggest that language ability assessments are useful in the clinical work-up, along with neuropsychological and motor evaluations. Specific protocols should be developed in the near future to better characterize language deficits and to permit an early cognitive diagnosis. Moreover, the link between language deficits and motor impairment opens a new issue for treatment approaches. Treatment of one of these two symptoms may ameliorate the other, and treating both may produce a greater improvement in patients' global clinical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  17. The search for relevant outcome measures for cost-utility analysis of systemic family interventions in adolescents with substance use disorder and delinquent behavior: a systematic literature review.

    Science.gov (United States)

    Schawo, S; Bouwmans, C; van der Schee, E; Hendriks, V; Brouwer, W; Hakkaart, L

    2017-09-19

    Systemic family interventions have shown to be effective in adolescents with substance use disorder and delinquent behavior. The interventions target interactions between the adolescent and involved systems (i.e. youth, family, peers, neighbors, school, work, and society). Next to effectiveness considerations, economic aspects have gained attention. However, conventional generic quality of life measures used in health economic evaluations may not be able to capture the broad effects of systemic interventions. This study aims to identify existing outcome measures, which capture the broad effects of systemic family interventions, and allow use in a health economic framework. We based our systematic review on clinical studies in the field. Our goal was to identify effectiveness studies of psychosocial interventions for adolescents with substance use disorder and delinquent behavior and to distill the instruments used in these studies to measure effects. Searched databases were PubMed, Education Resource Information Center (ERIC), Cochrane and Psychnet (PsycBOOKSc, PsycCRITIQUES, print). Identified instruments were ranked according to the number of systems covered (comprehensiveness). In addition, their use for health economic analyses was evaluated according to suitability characteristics such as brevity, accessibility, psychometric properties, etc. One thousand three hundred seventy-eight articles were found and screened for eligibility. Eighty articles were selected, 8 instruments were identified covering 5 or more systems. The systematic review identified instruments from the clinical field suitable to evaluate systemic family interventions in a health economic framework. None of them had preference-weights available. Hence, a next step could be to attach preference-weights to one of the identified instruments to allow health economic evaluations of systemic family interventions.

  18. Developmental Vulnerability of Synapses and Circuits Associated with Neuropsychiatric Disorders

    OpenAIRE

    Penzes, Peter; Buonanno, Andres; Passafarro, Maria; Sala, Carlo; Sweet, Robert A.

    2013-01-01

    Psychiatric and neurodegenerative disorders, including intellectual disability (ID), autism spectrum disorders (ASD), schizophrenia (SZ), and Alzheimer's disease (AD), pose an immense burden to society. Symptoms of these disorders become manifest at different stages of life: early childhood, adolescence, and late adulthood, respectively. Progress has been made in recent years toward understanding the genetic substrates, cellular mechanisms, brain circuits, and endophenotypes of these disorder...

  19. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth A. LaMarca

    2018-04-01

    Full Text Available Human-induced pluripotent stem cells (hiPSCs have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional “mini-brains” and clustered, regularly interspersed short palindromic repeats (CRISPR-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson’s disease, and consider the future of this groundbreaking research.

  20. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  1. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  2. Glial hemichannels and their involvement in aging and neurodegenerative diseases.

    Science.gov (United States)

    Orellana, Juan A; von Bernhardi, Rommy; Giaume, Christian; Sáez, Juan C

    2012-01-26

    During the last two decades, it became increasingly evident that glial cells accomplish a more important role in brain function than previously thought. Glial cells express pannexins and connexins, which are member subunits of two protein families that form membrane channels termed hemichannels. These channels communicate intra- and extracellular compartments and allow the release of autocrine/paracrine signaling molecules [e.g., adenosine triphosphate (ATP), glutamate, nicotinamide adenine dinucleotide, and prostaglandin E2] to the extracellular milieu, as well as the uptake of small molecules (e.g., glucose). An increasing body of evidence has situated glial hemichannels as potential regulators of the beginning and maintenance of homeostatic imbalances observed in diverse brain diseases. Here, we review and discuss the current evidence about the possible role of glial hemichannels on neurodegenerative diseases. A subthreshold pathological threatening condition leads to microglial activation, which keeps active defense and restores the normal function of the central nervous system. However, if the stimulus is deleterious, microglial cells and the endothelium become overactivated, both releasing bioactive molecules (e.g., glutamate, cytokines, prostaglandins, and ATP), which increase the activity of glial hemichannels, reducing the astroglial neuroprotective functions, and further reducing neuronal viability. Because ATP and glutamate are released via glial hemichannels in neurodegenerative conditions, it is expected that they contribute to neurotoxicity. More importantly, toxic molecules released via glial hemichannels could increase the Ca2+ entry in neurons also via neuronal hemichannels, leading to neuronal death. Therefore, blockade of hemichannels expressed by glial cells and/or neurons during neuroinflammation might prevent neurodegeneration.

  3. Early Diagnosis and Monitoring of Neurodegenerative Langerhans Cell Histiocytosis.

    Directory of Open Access Journals (Sweden)

    Elena Sieni

    Full Text Available Neurodegenerative Langerhans Cell Histiocytosis (ND-LCH is a rare, unpredictable consequence that may devastate the quality of life of patients cured from LCH. We prospectively applied a multidisciplinary diagnostic work-up to early identify and follow-up patients with ND-LCH, with the ultimate goal of better determining the appropriate time for starting therapy.We studied 27 children and young adults with either ND-LCH verified by structural magnetic resonance imaging (MRI (group 1 or specific risk factors for (diabetes insipidus, craniofacial bone lesions, but no evidence of, neurodegenerative MRI changes (group 2. All patients underwent clinical, neurophysiological and MRI studies.Seventeen patients had MRI alterations typical for ND-LCH. Nine showed neurological impairment but only three were symptomatic; 11 had abnormal somatosensory evoked potentials (SEPs, and five had abnormal brainstem auditory evoked potentials (BAEPs. MR spectroscopy (MRS showed reduced cerebellar NAA/Cr ratio in nine patients. SEPs showed sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV for predicting ND-LCH of 70.6% (95%CI, 44.0%-89.7%, 100% (69.2%-100%, 100% (73.5%-100%, and 66.7% (38.4%-88.2%, respectively. Repeated investigations in group 1 revealed increasingly abnormal EP parameters, or neurological examination, or both, in nine of fifteen patients while MRI remained unchanged in all but one patient.A targeted MRI study should be performed in all patients with risk factors for ND-LCH for early identification of demyelination. The combined use of SEPs and careful neurological evaluation may represent a valuable, low-cost, well-tolerated and easily available methodology to monitor patients from pre-symptomatic to symptomatic stages. We suggest a multidisciplinary protocol including clinical, MRS, and neurophysiological investigations to identify a population target for future therapeutic trials.

  4. Adult Neurogenesis and Neurodegenerative Diseases: A Systems Biology Perspective

    Science.gov (United States)

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J.

    2016-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. PMID:26879907

  5. A neurodegenerative vascular burden index and the impact on cognition

    Directory of Open Access Journals (Sweden)

    Sebastian eHeinzel

    2014-07-01

    Full Text Available A wide range of vascular burden factors have been identified to impact vascular function and structure as indicated by carotid intima-media thickness (IMT. On the basis of their impact on IMT, vascular factors may be selected and clustered in a vascular burden index (VBI. Since many vascular factors increase the risk of Alzheimer's disease (AD, a multifactorial neurodegenerative VBI may be related to early pathological processes in AD and cognitive decline in its preclinical stages.We investigated an elderly cohort at risk for neurodegeneration (TREND study, n = 1102 for the multifactorial influence of vascular burden factors on IMT measured by ultrasound. To create a VBI for this cohort, vascular factors and their definitions (considering medical history, medication and/or blood marker data were selected based on their statistical effects on IMT in multiple regressions including age and sex. The impact of the VBI on cognitive performance was assessed using the Trail-Making Test (TMT and the CERAD neuropsychological battery.IMT was significantly predicted by age (standardized β = .26, sex (.09; males > females and the factors included in the VBI: obesity (.18, hypertension (.14, smoking (.08, diabetes (.07, and atherosclerosis (.05, whereas other cardiovascular diseases or hypercholesterolemia were not significant. Individuals with 2 or more VBI factors compared to individuals without had an odds ratio of 3.17 regarding overly increased IMT (≥1.0 mm. The VBI showed an impact on executive control (log(TMT B-A, p = .047 and a trend towards decreased global cognitive function (CERAD total score, p = .057 independent of age, sex and education.A VBI established on the basis of IMT may help to identify individuals with overly increased vascular burden linked to decreased cognitive function indicating neurodegenerative processes. The longitudinal study of this risk cohort will reveal the value of the VBI as prodromal marker for cognitive decline and

  6. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases

    Science.gov (United States)

    de Souza, Jessica M.; Goncalves, Bruno D. C.; Gomez, Marcus V.; Vieira, Luciene B.; Ribeiro, Fabiola M.

    2018-01-01

    Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, brain

  7. Affective disorders in neurological diseases

    DEFF Research Database (Denmark)

    Nilsson, F M; Kessing, L V; Sørensen, T M

    2003-01-01

    OBJECTIVE: To investigate the temporal relationships between a range of neurological diseases and affective disorders. METHOD: Data derived from linkage of the Danish Psychiatric Central Register and the Danish National Hospital Register. Seven cohorts with neurological index diagnoses and two...... of affective disorder was lower than the incidence in the control groups. CONCLUSION: In neurological diseases there seems to be an increased incidence of affective disorders. The elevated incidence was found to be particularly high for dementia and Parkinson's disease (neurodegenerative diseases)....

  8. Pituitary gland in Bipolar Disorder and Major Depression: Evidence from structural MRI studies: Special Section on "Translational and Neuroscience Studies in Affective Disorders". Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summarise relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders.

    Science.gov (United States)

    Delvecchio, G; Altamura, A C; Soares, J C; Brambilla, P

    2017-08-15

    The function of the hypothalamo-pituitary-adrenal axis (HPA) has been widely investigated in mood disorders based on its role in regulating stress response. Particularly, Magnetic Resonance Imaging (MRI) reports have explored pituitary gland (PG) in both bipolar disorder (BD) and major depressive disorder (MDD). In this context, the present review summarizes the results from MRI studies with the final aim of commenting on the presence of common or distinct PG structural alterations between these two disabling illnesses. A bibliographic search on PUBMED of all MRI studies exploring PG volumes in BD and MDD as well as first-degree relatives (RELs) from 2000 up to October 2016 was performed. Following the screening process of the available literature it can be said that a) PG enlargement has been found in both BD and MDD, therefore potentially representing a common neurobiological marker characterizing mood disorders, and b) PG volumes are moderated by age and sex in both illnesses, although the direction and the extent of this moderation are still not fully clear. Few MRI studies with heterogeneous results. These hypotheses must be taken with caution especially because the heterogeneity of the results of the studies reviewed does not allow for a definite answer about the role of PG in affective disorders. Therefore, larger longitudinal studies investigating PG volumes in BD and MDD patients at the early phases of the illness, by considering females and males separately, are needed to further corroborate these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Laparoscopic splenectomy is a better surgical approach for spleen-relevant disorders: a comprehensive meta-analysis based on 15-year literatures.

    Science.gov (United States)

    Cheng, Ji; Tao, Kaixiong; Yu, Peiwu

    2016-10-01

    Currently, whether laparoscopic or open splenectomy is a gold standard option for spleen abnormalities remains in controversy. There is in deficiency of academic evidence concerning the surgical efficacy and safety of both comparative managements. In order to surgically appraise the applied potentials of both approaches, we hence performed this comprehensive meta-analysis on the basis of 15-year literatures. Via searching of PubMed, EMBASE, Web of Science, and Cochrane Library databases, overall 37 original articles were eligibly incorporated into our meta-analysis and subdivided into six sections. In accordance with the Cochrane Collaboration protocol, all statistical procedures were mathematically conducted in a standard manner. Publication bias was additionally evaluated by funnel plot and Egger's test. Irrespective of the diversified splenic disorders, laparoscopic splenectomy was superior to open technique owing to its fewer estimated blood loss, shorter postoperative hospital stay as well as lower complication rate (P  0.05). Technically, laparoscopic splenectomy should be recommended as a prior remedy with its advantage of rapid recovery and minimally physical damage, in addition to its comparably surgical efficacy against that of open manipulation.

  10. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori

    2011-02-01

    in patients with certain neurological disorders.

  11. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Science.gov (United States)

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  12. Neuroanatomy of Shared Conversational Laughter in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Peter S. Pressman

    2018-06-01

    Full Text Available Perceiving another person's emotional expression often sparks a corresponding signal in the observer. Shared conversational laughter is a familiar example. Prior studies of shared laughter have made use of task-based functional neuroimaging. While these methods offer insight in a controlled setting, the ecological validity of such controlled tasks has limitations. Here, we investigate the neural correlates of shared laughter in patients with one of a variety of neurodegenerative disease syndromes (N = 75, including Alzheimer's disease (AD, behavioral variant frontotemporal dementia (bvFTD, right and left temporal variants of semantic dementia (rtvFTD, svPPA, nonfluent/agrammatic primary progressive aphasia (nfvPPA, corticobasal syndrome (CBS, and progressive supranuclear palsy (PSP. Patients were recorded in a brief unrehearsed conversation with a partner (e.g., a friend or family member. Laughter was manually labeled, and an automated system was used to assess the timing of that laughter relative to the partner's laughter. The probability of each participant with neurodegenerative disease laughing during or shortly after his or her partners' laughter was compared to differences in brain morphology using voxel-based morphometry, thresholded based on cluster size and a permutation method and including age, sex, magnet strength, disease-specific atrophy and total intracranial volumes as covariates. While no significant correlations were found at the critical T value, at a corrected voxelwise threshold of p < 0.005, a cluster in the left posterior cingulate gyrus demonstrated a trend at p = 0.08 (T = 4.54. Exploratory analysis with a voxelwise threshold of p = 0.001 also suggests involvement of the left precuneus (T = 3.91 and right fusiform gyrus (T = 3.86. The precuneus has been previously implicated in the detection of socially complex laughter, and the fusiform gyrus has a well-described role in the recognition and processing of others

  13. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    OpenAIRE

    Martin, Antonio; De Vivo, Giulia; Gentile, Vittorio

    2011-01-01

    Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Pa...

  14. The applications of pharmacogenomics to neurological disorders.

    Science.gov (United States)

    Gilman, C; McSweeney, C; Mao, Y

    2014-01-01

    The most common neurological disorders, including neurodegenerative diseases and psychiatric disorders, have received recent attention with regards to pharmacogenomics and personalized medicine. Here, we will focus on a neglected neurodegenerative disorder, cerebral ischemic stroke (CIS), and highlight recent advances in two disorders, Parkinson's disease (PD) and Alzheimer's diseases (AD), that possess both similar and distinct mechanisms in regards to potential therapeutic targets. In the first part of this review, we will focus primarily on mechanisms that are somewhat specific to each disorder which are involved in neurodegeneration (i.e., protease pathways, calcium homeostasis, reactive oxygen species regulation, DNA repair mechanisms, neurogenesis regulation, mitochondrial function, etc.). In the second part of this review, we will discuss the applications of the genome-wide technology on pharmacogenomics of mental illnesses including schizophrenia (SCZ), autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD).

  15. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia.

    Science.gov (United States)

    Benussi, Alberto; Dell'Era, Valentina; Cotelli, Maria Sofia; Turla, Marinella; Casali, Carlo; Padovani, Alessandro; Borroni, Barbara

    Neurodegenerative cerebellar ataxias represent a group of disabling disorders for which we currently lack effective therapies. Cerebellar transcranial direct current stimulation (tDCS) is a non-invasive technique, which has been demonstrated to modulate cerebellar excitability and improve symptoms in patients with cerebellar ataxias. The present study investigated whether a two-weeks' treatment with cerebellar anodal tDCS could improve symptoms in patients with neurodegenerative cerebellar ataxia and could modulate cerebello-motor connectivity, at short and long term. We performed a double-blind, randomized, sham controlled trial with cerebellar tDCS (5 days/week for 2 weeks) in twenty patients with ataxia. Each patient underwent a clinical evaluation pre- and post-anodal tDCS or sham stimulation. A follow-up evaluation was performed at one and three months. Cerebello-motor connectivity was evaluated using transcranial magnetic stimulation (TMS) at baseline and at follow-up. Patients who underwent anodal tDCS showed a significant improvement in all performance scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale, 9-hole peg test, 8-m walking time) and in cerebellar brain inhibition compared to patients who underwent sham stimulation. A two-weeks' treatment with anodal cerebellar tDCS improves symptoms in patients with ataxia and restores physiological cerebellar brain inhibition pathways. Cerebellar tDCS might represent a promising future therapeutic and rehabilitative approach in patients with neurodegenerative ataxia. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role?

    Directory of Open Access Journals (Sweden)

    Santa Cirmi

    2016-09-01

    Full Text Available Neurodegenerative diseases (ND result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.

  17. Recommendations for the Design of Serious Games in Neurodegenerative Diseases.

    Science.gov (United States)

    Ben-Sadoun, Grégory; Manera, Valeria; Alvarez, Julian; Sacco, Guillaume; Robert, Philippe

    2018-01-01

    The use of Serious Games (SG) in the health domain is expanding. In the field of Neurodegenerative Diseases (ND) such as Alzheimer's Disease, SG are currently employed to provide alternative solutions for patients' treatment, stimulation, and rehabilitation. The design of SG for people with ND implies collaborations between professionals in ND and professionals in SG design. As the field is quite young, professionals specialized in both ND and SG are still rare, and recommendations for the design of SG for people with ND are still missing. This perspective paper aims to provide recommendations in terms of ergonomic choices for the design of SG aiming at stimulating people with ND, starting from the existing SG already tested in this population: "MINWii", "Kitchen and Cooking", and "X-Torp". We propose to rely on nine ergonomic criteria: eight ergonomic criteria inspired by works in the domain of office automation: Compatibility, Guidance, Workload, Adaptability, Consistency, Significance of codes, Explicit control and Error management; and one ergonomic criterion related to videogame: the game rules. Perspectives derived from this proposal are also discussed.

  18. Improving drug delivery technology for treating neurodegenerative diseases.

    Science.gov (United States)

    Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Pillay, Viness

    2016-07-01

    Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.

  19. Molecular origin of polyglutamine aggregation in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Expansion of polyglutamine (polyQ tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35-40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel beta-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the beta-helices observed in simulations, all residues adopt beta-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 +/- 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel beta-hairpins in their ground state, in agreement with experiments. The lower stability of mutant beta-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation.

  20. Recommendations for the Design of Serious Games in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Grégory Ben-Sadoun

    2018-02-01

    Full Text Available The use of Serious Games (SG in the health domain is expanding. In the field of Neurodegenerative Diseases (ND such as Alzheimer’s Disease, SG are currently employed to provide alternative solutions for patients’ treatment, stimulation, and rehabilitation. The design of SG for people with ND implies collaborations between professionals in ND and professionals in SG design. As the field is quite young, professionals specialized in both ND and SG are still rare, and recommendations for the design of SG for people with ND are still missing. This perspective paper aims to provide recommendations in terms of ergonomic choices for the design of SG aiming at stimulating people with ND, starting from the existing SG already tested in this population: “MINWii”, “Kitchen and Cooking”, and “X-Torp”. We propose to rely on nine ergonomic criteria: eight ergonomic criteria inspired by works in the domain of office automation: Compatibility, Guidance, Workload, Adaptability, Consistency, Significance of codes, Explicit control and Error management; and one ergonomic criterion related to videogame: the game rules. Perspectives derived from this proposal are also discussed.

  1. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Ailton Melo

    2011-01-01

    Full Text Available The incidence and prevalence of neurodegenerative diseases (ND increase with life expectancy. This paper reviews the role of oxidative stress (OS in ND and pharmacological attempts to fight against reactive oxygen species (ROS-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.

  2. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Sahar eAl-Mahdawi

    2014-12-01

    Full Text Available DNA methylation primarily occurs within human cells as a 5-methylcytosine (5mC modification of the cytosine bases in CpG dinucleotides. 5mC has proven to be an important epigenetic mark that is involved in the control of gene transcription for processes such as development and differentiation. However, recent studies have identified an alternative modification, 5-hydroxymethylcytosine (5hmC, which is formed by oxidation of 5mC by ten-eleven translocation (TET enzymes. The overall levels of 5hmC in the mammalian genome are approximately 10% of 5mC levels, although higher levels have been detected in tissues of the central nervous system (CNS. The functions of 5hmC are not yet fully known, but evidence suggests that 5hmC may be both an intermediate product during the removal of 5mC by passive or active demethylation processes and also an epigenetic modification in its own right, regulating chromatin or transcriptional factors involved in processes such as neurodevelopment or environmental stress response. This review highlights our current understanding of the role that 5hmC plays in neurodegenerative diseases, including Alzheimer’s disease (AD, amyotrophic lateral sclerosis (ALS, fragile X-associated tremor/ataxia syndrome (FXTAS, Friedreich ataxia (FRDA, Huntington’s disease (HD, and Parkinson’s disease (PD.

  3. From narcissistic personality disorder to frontotemporal dementia: a case report.

    Science.gov (United States)

    Poletti, Michele; Bonuccelli, Ubaldo

    2011-01-01

    Premorbid personality characteristics could have a pathoplastic effect on behavioral symptoms and personality changes related to neurodegenerative diseases. Patients with personality disorders, in particular of the dramatic cluster, may present functional frontolimbic abnormalities. May these neurobiological vulnerabilities linked to a premorbid personality disorder predispose or represent a risk factor to subsequently develop a neurodegenerative disorder? Are subjects with personality disorders more at risk to develop a dementia than mentally healthy subjects? This topic is discussed presenting the clinical case of a patient who suffered of a probable Narcissistic Personality Disorder and subsequently developed a clinically diagnosed Frontotemporal Dementia.

  4. Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview

    Directory of Open Access Journals (Sweden)

    Yenisetti SC

    2016-06-01

    Full Text Available Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Amyotrophic Lateral Sclerosis (ALS. The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.

  5. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    Science.gov (United States)

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications

    Science.gov (United States)

    Santamaría-García, Hernando; Santangelo, Gabriella

    2018-01-01

    Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM), emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs), most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients' management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD), or may emerge during the disease course as critical aspects, such as for Parkinson's and Alzheimer's diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients' well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits. PMID:29854017

  7. Computed tomography of neurodegenerative disease in childhood. Serial CT findings and their diagnostic values

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Kenkichi; Nakagawa, Yoshihiro; Hojo, Hiroatsu

    1984-12-01

    Serial computed tomographic scans were performed on seven children with neurodegenerative disorders. In two cases of white-matter diseases (Krabbe's disease and metachromatic leukodystrophy), diffuse, low-density lesions of white matter were visible in the early stage of the diseases. In one case of adrenoleukodystrophy, regional low-density lesions of the white matter around the posterior horns and peculiar high-density strip lesions were visible in the early stage. In two cases of storage-type gray-matter diseases (Tay-Sachs' and infantile Gaucher's disease), there were no abnormalities in the early stage, but diffuse cortical atrophies in the late stage. In one case of Leigh's disease, there were small, low-density lesions of the basal ganglia and multiple low-density lesions of the gray matter in the early stage. In one case of subacute sclerosing panencephalitis, there were no abnormalities in the early stage, but small, low-density lesions of the basal ganglia and diffuse cerebral atrophies in the late stage. Diagnostic values were recognized dominantly in two cases of adrenoleukodystrophy and Leigh's disease. In the other cases, however, serial CT scans were useful in the diagnostic process. (author).

  8. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  9. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases.

    Science.gov (United States)

    Felder, Christian C; Goldsmith, Paul J; Jackson, Kimberley; Sanger, Helen E; Evans, David A; Mogg, Adrian J; Broad, Lisa M

    2018-01-25

    The cholinergic signalling system has been an attractive pathway to seek targets for modulation of arousal, cognition, and attention which are compromised in neurodegenerative and neuropsychiatric diseases. The acetylcholine muscarinic receptor M1 and M4 subtypes which are highly expressed in the central nervous system, in cortex, hippocampus and striatum, key areas of cognitive and neuropsychiatric control, have received particular attention. Historical muscarinic drug development yielded first generation agonists with modest selectivity for these two receptor targets over M2 and M3 receptors, the major peripheral sub-types hypothesised to underlie the dose-limiting clinical side effects. More recent compound screening and medicinal chemistry optimization of orthosteric and allosteric agonists, and positive allosteric modulators binding to sites distinct from the highly homologous acetylcholine binding pocket have yielded a collection of highly selective tool compounds for preclinical validation studies. Several M1 selective ligands have progressed to early clinical development and in time will hopefully lead to useful therapeutics for treating symptoms of Alzheimer's disease and related disorders. Copyright © 2018. Published by Elsevier Ltd.

  10. Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Foteini Christidi

    2018-01-01

    Full Text Available Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM, emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs, most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients’ management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD, or may emerge during the disease course as critical aspects, such as for Parkinson’s and Alzheimer’s diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients’ well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits.

  11. [Cost of therapy for neurodegenerative diseases. Applying an activity-based costing system].

    Science.gov (United States)

    Sánchez-Rebull, María-Victoria; Terceño Gómez, Antonio; Travé Bautista, Angeles

    2013-01-01

    To apply the activity based costing (ABC) model to calculate the cost of therapy for neurodegenerative disorders in order to improve hospital management and allocate resources more efficiently. We used the case study method in the Francolí long-term care day center. We applied all phases of an ABC system to quantify the cost of the activities developed in the center. We identified 60 activities; the information was collected in June 2009. The ABC system allowed us to calculate the average cost per patient with respect to the therapies received. The most costly and commonly applied technique was psycho-stimulation therapy. Focusing on this therapy and on others related to the admissions process could lead to significant cost savings. ABC costing is a viable method for costing activities and therapies in long-term day care centers because it can be adapted to their structure and standard practice. This type of costing allows the costs of each activity and therapy, or combination of therapies, to be determined and aids measures to improve management. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  12. Memory consolidation of socially relevant stimuli during sleep in healthy children and children with attention-deficit/hyperactivity disorder and oppositional defiant disorder: What you can see in their eyes.

    Science.gov (United States)

    Prehn-Kristensen, Alexander; Molzow, Ina; Förster, Alexandra; Siebenhühner, Nadine; Gesch, Maxime; Wiesner, Christian D; Baving, Lioba

    2017-02-01

    Children with attention-deficit/hyperactivity disorder (ADHD) display deficits in sleep-dependent memory consolidation, and being comorbid with oppositional defiant disorder (ODD), results in deficits in face processing. The aim of the present study was to investigate the role of sleep in recognizing faces in children with ADHD+ODD. Sixteen healthy children and 16 children diagnosed with ADHD+ODD participated in a sleep and a wake condition. During encoding (sleep condition at 8p.m.; wake condition at 8a.m.) pictures of faces were rated according to their emotional content; the retrieval session (12h after encoding session) contained a recognition task including pupillometry. Pupillometry and behavioral data revealed that healthy children benefited from sleep compared to wake with respect to face picture recognition; in contrast recognition performance in patients with ADHD+ODD was not improved after sleep compared to wake. It is discussed whether in patients with ADHD+ODD social stimuli are preferentially consolidated during daytime. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); S.M. Rollins; C. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); R.M. Myers (Richard M.); J.D. Barchas (Jack D.); A.F. Schatzberg (Alan F); S.J. Watson (Stanley J); H. Akil (Huda); W.E. Bunney (William E.); M.P. Vawter (Marquis)

    2015-01-01

    textabstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear

  14. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Marta Pajares

    2017-04-01

    Full Text Available Neurodegenerative diseases are linked to the accumulation of specific protein aggregates, suggesting an intimate connection between injured brain and loss of proteostasis. Proteostasis refers to all the processes by which cells control the abundance and folding of the proteome thanks to a wide network that integrates the regulation of signaling pathways, gene expression and protein degradation systems. This review attempts to summarize the most relevant findings about the transcriptional modulation of proteostasis exerted by the transcription factor NRF2 (nuclear factor (erythroid-derived 2-like 2. NRF2 has been classically considered as the master regulator of the antioxidant cell response, although it is currently emerging as a key component of the transduction machinery to maintain proteostasis. As we will discuss, NRF2 could be envisioned as a hub that compiles emergency signals derived from misfolded protein accumulation in order to build a coordinated and perdurable transcriptional response. This is achieved by functions of NRF2 related to the control of genes involved in the maintenance of the endoplasmic reticulum physiology, the proteasome and autophagy.

  15. Skin disorders in Parkinson's disease

    DEFF Research Database (Denmark)

    Ravn, Astrid-Helene; Thyssen, Jacob P; Egeberg, Alexander

    2017-01-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by a symptom triad comprising resting tremor, rigidity, and akinesia. In addition, non-motor symptoms of PD are well recognized and often precede the overt motor manifestations. Cutaneous manifestations...

  16. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Science.gov (United States)

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  17. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.

    Science.gov (United States)

    Son, Mi-Young; Kwak, Jae Eun; Seol, Binna; Lee, Da Yong; Jeon, Hyejin; Cho, Yee Sook

    2015-09-01

    GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. The Mircen project, neuro-degenerative disease: mechanisms, therapeutics and imaging research Unit URA Cea Cnrs 2210

    International Nuclear Information System (INIS)

    Hantraye, Ph.

    2006-01-01

    During the post-genomic era, significant advances in our understanding of the molecular basis of disease have been made. The power of functional and molecular imaging in translating this knowledge into effective therapy is now being more and more recognized. Thus, molecular imaging plays a vital role in the early identification of disease-related molecular markers, in the development of molecular-targeted therapies, and in monitoring phenotypic response to therapy both in experimental animals and in human patients. In this context, MIRCen (acronym for Molecular Imaging Research Center ) provides a comprehensive resource available to empower basic, translational, and clinical research through the application of imaging and drug, cell, and gene based technologies. The MIR center will be dedicated to the development of pre-clinical trials for the treatment of various seriously debilitating diseases such as neuro-degenerative diseases, cardiac and hepatic disorders, and infectious diseases (AIDS). Despite the fact that many of these pathologies are still incurable, recent advances in drug, cell and gene therapy point to the feasibility of new therapeutic approaches. The long term goals of MIRCen are therefore to develop and validate: - pertinent animal models for neuro-degenerative, hepatic, cardiac and infectious diseases in rodents as well as non-human primates, - novel technologies for in vivo sensing and imaging of disease-related molecular events,- drug, gene and cell based palliative and or curative therapeutic strategies aiming at protecting and /or restoring damaged or lost functions. (author)

  19. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  20. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  1. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Ke-Xin Wen

    Full Text Available Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND such as Alzheimer's disease (AD and Parkinson's disease (PD.To systematically review studies investigating epigenetic marks in AD or PD.Eleven bibliographic databases (Embase.com, Medline (Ovid, Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost, Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form.Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes. There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD.Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.

  2. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Graciela Cristina dos Santos

    2009-12-01

    Full Text Available According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10 has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP. The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.De acordo com estudos clínicos e pré-clínicos, o estresse oxidativo e suas conseqüências podem ser a causa, ou, no mínimo, o fator que contribui para grande número de doenças degenerativas. Estas doenças incluem problemas comuns e debilitantes, caracterizados por perda progressiva e irreversível de neurônios em regiões específicas do cérebro. As doenças degenerativas mais comuns são doença de Parkinson, de Hutington, de Alzheimer e esclerose amiotrófica lateral. A Coenzima Q10 (CoQ10 tem sido intensamente estudada desde sua descoberta, em 1957. É um componente da cadeia de transporte eletrônico e participa da respiração aeróbica celular, gerando energia na forma de trifosfato de

  3. Genomic and Epigenomic Insights into Nutrition and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Margaret Joy Dauncey

    2013-03-01

    Full Text Available Considerable evidence links many neuropsychiatric, neurodevelopmental and neurodegenerative disorders with multiple complex interactions between genetics and environmental factors such as nutrition. Mental health problems, autism, eating disorders, Alzheimer’s disease, schizophrenia, Parkinson’s disease and brain tumours are related to individual variability in numerous protein-coding and non-coding regions of the genome. However, genotype does not necessarily determine neurological phenotype because the epigenome modulates gene expression in response to endogenous and exogenous regulators, throughout the life-cycle. Studies using both genome-wide analysis of multiple genes and comprehensive analysis of specific genes are providing new insights into genetic and epigenetic mechanisms underlying nutrition and neuroscience. This review provides a critical evaluation of the following related areas: (1 recent advances in genomic and epigenomic technologies, and their relevance to brain disorders; (2 the emerging role of non-coding RNAs as key regulators of transcription, epigenetic processes and gene silencing; (3 novel approaches to nutrition, epigenetics and neuroscience; (4 gene-environment interactions, especially in the serotonergic system, as a paradigm of the multiple signalling pathways affected in neuropsychiatric and neurological disorders. Current and future advances in these four areas should contribute significantly to the prevention, amelioration and treatment of multiple devastating brain disorders.

  4. Phenolic Extracts from Clerodendrum volubile Leaves Inhibit Cholinergic and Monoaminergic Enzymes Relevant to the Management of Some Neurodegenerative Diseases.

    Science.gov (United States)

    Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti

    2017-05-04

    This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.

  5. The role of lipid nanoparticles and its surface modification in reaching the brain: an approach for neurodegenerative diseases treatment.

    Science.gov (United States)

    Pedraz, Jose Luis; Igartua, Manoli; Maria, Rosa; Hernando, Sara

    2018-05-09

    Nanomedicine is a field of science that employs materials in the nanometer scale. Specifically, the use of nanoparticles (NPs) has some medical applications due to their structure, for example, the ability to cross the biological barriers, and their effectiveness avoiding some drug delivery problems. Because of that, in the last years, the use of NPs has been raised as a workable solution for neurodegenerative diseases (ND) treatment [1,2]. NDs are characterized by a continuous structural and functional neuronal loss, usually correlated with neuronal death. Between NDs, Alzheimer disease (AD) and Parkinson's disease (PD) are the most common disorders worldwide, becoming a serious economic burden and public health problem [3]. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  7. Angiogenin induces modifications in the astrocyte secretome: relevance to amyotrophic lateral sclerosis.

    Science.gov (United States)

    Skorupa, Alexandra; Urbach, Serge; Vigy, Oana; King, Matthew A; Chaumont-Dubel, Séverine; Prehn, Jochen H M; Marin, Philippe

    2013-10-08

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting lower and upper motoneurons. Recent studies have shown that both motor neurons and non-neuronal neighbouring cells such as astrocytes and microglia contribute to disease pathology. Loss-of-function mutations in the angiogenin (ANG) gene have been identified in ALS patients. Angiogenin is enriched in motor neurons and exerts neuroprotective effects in vitro and in vivo. We have recently shown that motoneurons secrete angiogenin, and that secreted angiogenin is exclusively taken up by astrocytes, suggesting a paracrine mechanism of neuroprotection. To gain insights into astrocyte effectors of angiogenin-induced neuroprotection, we examined alterations in the astrocyte secretome induced by angiogenin treatment using quantitative proteomics based on Stable Isotope Labelling by Amino Acids in Cell Culture (SILAC). We identified 2128 proteins in conditioned media from primary cultured mouse astrocytes, including 1247 putative secreted proteins. Of these, 60 proteins showed significant regulation of secretion in response to angiogenin stimulation. Regulated proteins include chemokines and cytokines, proteases and protease inhibitors as well as proteins involved in reorganising the extracellular matrix. In conclusion, this proteomic analysis increases our knowledge of the astrocyte secretome and reveals potential molecular substrates underlying the paracrine, neuroprotective effects of angiogenin. This study provides the most extensive list of astrocyte-secreted proteins available and reveals novel potential molecular substrates of astrocyte-neuron communication. It also identifies a set of astrocyte-derived proteins that might slow down ALS disease progression. It should be relevant to a large readership of neuroscientists and clinicians, in particular those with an interest in the physiological and pathological roles of astrocytes and in the molecular and cellular mechanisms underlying

  8. Differential diagnosis of neurodegenerative dementias with nuclear medicine methods

    International Nuclear Information System (INIS)

    Kluge, R.

    2015-01-01

    Full text: Neurodegenerative dementias (NDD) are characterized by insidious onset and gradual progression of cognitive dysfunction, initially relatively focal with respect to cognitive domains and brain regions involved. Nuclear medicine techniques help to clarify differential diagnoses of syndromes such as Alzheimer’s disease (AD), dementia with Lewy bodies (DlB), posterior cortical atrophy (PCA), logopenic primary progressive aphasia (PPA), agrammatic PPA, semantic dementia (SD), behavioral variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy syndrome (PSPS). The process of pathologic changes in the brain may start decades before first clinical symptoms become evident. An early diagnosis already in the pre-clinical phase of the diseases will be of immense importance when expected effective therapeutic options have been introduced. NDDs are histopathologically characterized by accumulation of pathological proteins in the brain like beta amyloid or protein tau. While radiotracers for labeling of protein tau are in preclinical evaluation, different radiotracers labeling amyloid plaques ([11C]PIB, [18F]Florbetapir (Amyvid, Fa. EliLilly), [18F]Florbetaben (Neuraceq, Fa. Piramal), [18F]Flutemetamol (vVzamyl, Fa. Ge) have already been established in clinical use during the last years. In AD these tracers are intensively accumulated in the whole cortical brain. Even an early disease can be excluded in case of a negative amyloid PET. The method is, however, not highly specific since amyloid plaques may also be present in DlB (70 – 80%), FTD (30%) orlogopenicPPA (100%). Neuronal dysfunction goes along with decreased glucose consumption. Different diseases are characterized by different topographical zones of reduced [18F]FDG uptake. In AD the posterior cingular, temporopariatal and (later) frontal cortex are affected, in DlB the pattern is similar, including the occipital cortex, in FTD the frontal cortex is affected, in nonfluent PPA the

  9. Autoimmune Aspects of Neurodegenerative and Psychiatric Diseases : A Template for Innovative Therapy

    NARCIS (Netherlands)

    de Haan, Peter; Klein, Hans C; 't Hart, Bert A

    2017-01-01

    Neurodegenerative and psychiatric diseases (NPDs) are today's most important group of diseases, surpassing both atherosclerotic cardiovascular disease and cancer in morbidity incidence. Although NPDs have a dramatic impact on our society because of their high incidence, mortality, and severe

  10. The role of DNA methylation and histone modifications in neurodegenerative diseases: A systematic review

    NARCIS (Netherlands)

    K.-X. Wen (Ke-Xin); J. Milic (Jelena); El-Khodor, B. (Bassem); K. Dhana (Klodian); J. Nano (Jana); Pulido, T. (Tammy); B. Kraja (Bledar); A. Zaciragic (Asija); W.M. Bramer (Wichor); J. Troup; R. Chowdhury (Rajiv); Arfam Ikram, M.; A. Dehghan (Abbas); T. Muka (Taulant); O.H. Franco (Oscar)

    2016-01-01

    textabstractImportance Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Objective To systematically review studies

  11. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    NARCIS (Netherlands)

    Jansen, Anne H. P.; Reits, Eric A. J.; Hol, Elly M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's,

  12. 4 Tesla Whole Body MRI MRSI System for Investigation of Neurodegenerative Diseases

    National Research Council Canada - National Science Library

    Weiner, Michael W

    2004-01-01

    The overall long-term goal of imaging research to be performed with this 4 Tesla Siemens/Bruker MRI system is the development of improved diagnostic methods for accurate detection of neurodegenerative...

  13. Connectivity analysis is essential to understand neurological disorders

    Directory of Open Access Journals (Sweden)

    James Rowe

    2010-09-01

    Full Text Available Neurological and neuropsychiatric disorders are major causes of morbidity worldwide. A systems level analysis including functional and structural neuroimaging is particularly useful when the pathology leads to disorders of higher order cognitive functions in human patients. However, an analysis that is restricted to regional effects is impoverished and insensitive, compared to the analysis of distributed brain networks. We discuss the issues to consider when choosing an appropriate connectivity method, and compare the results from several different methods that are relevant to fMRI and PET data. These include psychophysiological interactions in general linear models, structural equation modeling, dynamic causal modeling and independent components analysis. The advantages of connectivity analysis are illustrated with a range of structural and neurodegenerative brain disorders. We illustrate the sensitivity of these methods to the presence or severity of disease and/or treatment, even where analyses of voxel-wise activations are insensitive. However, functional and structural connectivity methods should be seen as complementary to, not a substitute for, other imaging and behavioral approaches. The functional relevance of changes in connectivity, to motor or cognitive performance, are considered alongside the complex relationship between structural and functional changes with neuropathology. Finally some of the problems associated with connectivity analysis are discussed. We suggest that the analysis of brain connectivity is an essential complement to the analysis of regionally specific dysfunction, in order to understand neurological and neuropsychiatric disease, and to evaluate the mechanisms of effective therapies.

  14. Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders.

    Science.gov (United States)

    Lattante, Serena; Millecamps, Stéphanie; Stevanin, Giovanni; Rivaud-Péchoux, Sophie; Moigneu, Carine; Camuzat, Agnès; Da Barroca, Sandra; Mundwiller, Emeline; Couarch, Philippe; Salachas, François; Hannequin, Didier; Meininger, Vincent; Pasquier, Florence; Seilhean, Danielle; Couratier, Philippe; Danel-Brunaud, Véronique; Bonnet, Anne-Marie; Tranchant, Christine; LeGuern, Eric; Brice, Alexis; Le Ber, Isabelle; Kabashi, Edor

    2014-09-09

    The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS. © 2014 American Academy of Neurology.

  15. The Wnt antagonist, Dickkopf-1, as a target for the treatment of neurodegenerative disorders

    NARCIS (Netherlands)

    Caraci, Filippo; Busceti, Carla; Biagioni, Francesca; Aronica, Eleonora; Mastroiacovo, Federica; Cappuccio, Irene; Battaglia, Giuseppe; Bruno, Valeria; Caricasole, Andrea; Copani, Agata; Nicoletti, Ferdinando

    2008-01-01

    The canonical Wnt pathway contributes to the regulation of neuronal survival and homeostasis in the CNS. Recent evidence suggests that an increased expression of Dickkopf-1 (Dkk-1), a secreted protein that negatively modulates the canonical Wnt pathway, is causally related to processes of

  16. Neurotoxins and Neurodegenerative Disorders in Japanese-American Men Living in Hawaii

    Science.gov (United States)

    2008-09-01

    Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate . Nature 2003;424:1013. 19. Jenner P, Olanow CW...0.004). Additional adjustment for insomnia, cognitive function, depressed mood , midlife cigarette smoking and coffee drinking, and other factors failed...coffee intake, daily bowel movement frequency, cognitive performance, depressed mood , and the use of antidepressants, antipsychotics, and sedatives

  17. Krabbe Disease: Report of a Rare Lipid Storage and Neurodegenerative Disorder.

    Science.gov (United States)

    Pavuluri, Pratyusha; Vadakedath, Sabitha; Gundu, Rajkumar; Uppulety, Sushmitha; Kandi, Venkataramana

    2017-01-01

    Krabbe disease is a rare (one in 100,000 births) autosomal recessive condition, usually noticed among children. It causes sphingolipidosis (dysfunctional metabolism of sphingolipids) and leads to fatal degenerative changes affecting the myelin sheath of the nervous system. We report a case of a six-year-old male child who presented with symptoms of muscle spasticity and irritability. Diagnosis of this disease can only be made with clinical suspicion. Laboratory diagnosis includes brain magnetic resonance imaging (MRI), magnetic resonance (MR) spectroscopy, biochemical analysis of cerebrospinal fluid, and genetic analysis for detecting mutation in genes coding for galactosyl cerebroside (GALC). We report a case of late infantile Krabbe disease.

  18. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Browne, Susan E

    2004-01-01

    ... Generation in Parkinson's Disease", which was appended to the original grant number. This project is to assess in vivo whether mitochondria are the source of free radical generation in animal models of Parkinson's disease (PD...

  19. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Sidharth Mehan

    2017-01-01

    Full Text Available Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity, resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  20. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan

    1999-01-01

    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  1. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    Science.gov (United States)

    2005-06-01

    perman- ganate, fungicides, and gasoline additives containing manganese (Albin, 2000). The symptom phenotype of manganese toxicity results from the...activity, followed by hypokinesis and locomotor de- chromosome were inserted into the appropriate position in Hdh terioration. Mice die prematurely (24-32

  2. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future.

    Science.gov (United States)

    Moos, Walter H; Faller, Douglas V; Glavas, Ioannis P; Harpp, David N; Irwin, Michael H; Kanara, Iphigenia; Pinkert, Carl A; Powers, Whitney R; Steliou, Kosta; Vavvas, Demetrios G; Kodukula, Krishna

    2017-01-01

    Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.

  3. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils.

    Science.gov (United States)

    Loizzo, Monica Rosa; Ben Jemia, Mariem; Senatore, Felice; Bruno, Maurizio; Menichini, Francesco; Tundis, Rosa

    2013-09-01

    The chemical composition of Cistus creticus, Cistus salvifolius, Cistus libanotis, Cistus monspeliensis and Cistus villosus essential oils has been examined by GC and GC-MS analysis. Height-nine constituents were identified in C. salvifolius oil, sixty in C. creticus, fifty-six in C. libanotis, fifty-four in C. villosus, forty-five in C. monspeliensis. Although the five species belong to the same genus, the composition showed interesting differences. Essential oils were screened also for their potential antioxidant effects (by DPPH, ABTS, FRAP and β-carotene bleaching test) and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, useful for prevention and treatment of Alzheimer's disease. C. monspeliensis exhibited the most promising activity in β-carotene bleaching test (IC₅₀ of 54.7 μg/mL). In FRAP test C. libanotis showed a value of 19.2 μM Fe(II)/g. C. salvifolius showed the highest activity against AChE (IC₅₀ of 58.1 μg/mL) while C. libanotis, C. creticus, C. salvifolius demonstrated a good inhibitory activity against BChE with IC₅₀ values of 23.7, 29.1 and 34.2 μg/mL, respectively. Overall our results could promote the use of the essential oil of different Cistus species as food additives and for formulation of herbal infusion or nutraceutical products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Felicity Johnson

    Full Text Available The mitochondrial protease OMI (also known as HtrA2 has been implicated in Parkinson's Disease (PD and deletion or protease domain point mutations have shown profound neuropathologies in mice. A beneficial role by OMI, in preserving cell viability, is assumed to occur via the avoidance of dysfunctional protein turnover. However relatively few substrates for mitochondrial Omi are known. Here we report our identification of three novel mitochondrial substrates that impact metabolism and ATP production. Using a dual proteomic approach we have identified three interactors based upon ability to bind to OMI, and/or to persist in the proteome after OMI activity has been selectively inhibited. One candidate, the chaperone HSPA8, was common to each independent study. Two others (PDHB subunit and IDH3A subunit did not appear to bind to OMI, however persisted in the mito-proteome when OMI was inhibited. Pyruvate dehydrogenase (PDH and isocitrate dehydrogenase (IDH are two key Kreb's cycle enzymes that catalyse oxidative decarboxylation control points in mitochondrial respiration. We verified both PDHB and IDH3A co-immunoprecipitate with HSPA8 and after elution, were degraded by recombinant HtrA2 in vitro. Additionally our gene expression studies, using rotenone (an inhibitor of Complex I showed Omi expression was silenced when pdhb and idh3a were increased when a sub-lethal dose was applied. However higher dose treatment caused increased Omi expression and decreased levels of pdhb and idh3a transcripts. This implicates mitochondrial OMI in a novel mechanism relating to metabolism.

  5. Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA Mode of Action within the Neurodegenerative Pathway: Facts and Controversy

    Directory of Open Access Journals (Sweden)

    Nicolas Delcourt

    2017-12-01

    Full Text Available The implication of the cyanotoxin β-N-methylamino-l-alanine (BMAA in long-lasting neurodegenerative disorders is still a matter of controversy. It has been alleged that chronic ingestion of BMAA through the food chain could be a causative agent of amyotrophic lateral sclerosis (ALS and several related pathologies including Parkinson syndrome. Both in vitro and in vivo studies of the BMAA mode of action have focused on different molecular targets, demonstrating its toxicity to neuronal cells, especially motoneurons, and linking it to human neurodegenerative diseases. Historically, the hypothesis of BMAA-induced excitotoxicity following the stimulation of glutamate receptors has been established. However, in this paradigm, most studies have shown acute, rather than chronic effects of BMAA. More recently, the interaction of this toxin with neuromelanin, a pigment present in the nervous system, has opened a new research perspective. The issues raised by this toxin are related to its kinetics of action, and its possible incorporation into cellular proteins. It appears that BMAA neurotoxic activity involves different targets through several mechanisms known to favour the development of neurodegenerative processes.

  6. Association between environmental exposure to pesticides and neurodegenerative diseases

    International Nuclear Information System (INIS)

    Parrón, Tesifón; Requena, Mar; Hernández, Antonio F.; Alarcón, Raquel

    2011-01-01

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: ► Environmental exposure to pesticides and neurodegenerative–psychiatric disorders. ► Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. ► Males from areas with high pesticide exposure had a higher risk of polyneuropathy.

  7. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases12

    Science.gov (United States)

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases. PMID:25593144

  8. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  9. Neuro degenerative diseases: clinical concerns; Les maladies neuro-degeneratives: problemes cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, V. [Hopitaux Universitaires de Geneve (HUG), Unite de Neuroimagerie, Dept. de Psychiatrie (Switzerland)

    2005-04-15

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [{sup 18}F]-deoxyglucose and [{sup 18}F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [{sup 18}F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [{sup 18}F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  10. The influence of Na+,K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence

    Directory of Open Access Journals (Sweden)

    Paula Fernanda Kinoshita

    2016-06-01

    Full Text Available Decreased Na+,K+-ATPase (NKA activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β and γ, with four distinct isoforms of the catalytic α subunit (α1-4. Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS, the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2, while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP and alternating hemiplegia of childhood (AHC, as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2/3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP and cGMP‐dependent protein kinase (PKG pathway. Glutamate, through nitric oxide synthase (NOS, cGMP and PKG, stimulates brain α2/3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid‐β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.

  11. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fabio Guerriero

    2016-01-01

    Full Text Available Increasing evidence shows that extremely low frequency electromagnetic fields (ELF-EMFs stimulation is able to exert a certain action on autoimmunity and immune cells. In the past, the efficacy of pulsed ELF-EMFs in alleviating the symptoms and the progression of multiple sclerosis has been supported through their action on neurotransmission and on the autoimmune mechanisms responsible for demyelination. Regarding the immune system, ELF-EMF exposure contributes to a general activation of macrophages, resulting in changes of autoimmunity and several immunological reactions, such as increased reactive oxygen species-formation, enhanced phagocytic activity and increased production of chemokines. Transcranial electromagnetic brain stimulation is a non-invasive novel technique used recently to treat different neurodegenerative disorders, in particular Alzheimer's disease. Despite its proven value, the mechanisms through which EMF brain-stimulation exerts its beneficial action on neuronal function remains unclear. Recent studies have shown that its beneficial effects may be due to a neuroprotective effect on oxidative cell damage. On the basis of in vitro and clinical studies on brain activity, modulation by ELF-EMFs could possibly counteract the aberrant pro-inflammatory responses present in neurodegenerative disorders reducing their severity and their onset. The objective of this review is to provide a systematic overview of the published literature on EMFs and outline the most promising effects of ELF-EMFs in developing treatments of neurodegenerative disorders. In this regard, we review data supporting the role of ELF-EMF in generating immune-modulatory responses, neuromodulation, and potential neuroprotective benefits. Nonetheless, we reckon that the underlying mechanisms of interaction between EMF and the immune system are still to be completely understood and need further studies at a molecular level.

  12. [Schizophrenia: neurodevelopmental disorder or degenerative brain process?].

    Science.gov (United States)

    Gross, G; Huber, G

    2008-05-01

    of an irreversible pure dynamic-cognitive deficiency can be correlated with distinct brain imaging changes. There are associations between brain imaging and psychopathological findings and also between the progression of neuroradiological and psychopathological changes. The investigation of the long-term course of schizophrenia with progression to different residual syndromes has shown some hints that schizophrenia certainly is not a neurodegenerative process in the usual sense, but may be a special neuroregressive illness in the majority of cases. Data, relevant for this assumption are, that the disorder in 78% shows no full remitting courses; that the progression concerns only 5 until 10 years after onset; that chronic defect psychoses can remit still after decades of course to non-psychotic pure deficiency syndromes; that some cases (15%) can progress even after years and decades of remitting course and, finally, that altogether no correlation exists between the duration of course and outcome. The data prove that schizophrenia is not an illness progressing continuously over the whole lifelong course in the sense of a primary neurodegenerative process, but rather a disorder, progressing transiently in brief stages and afterwards coming to a standstill. That schizophrenia is not neurodegenerative in the traditional sense, does not mean that it is a ND disorder. This applies only to a small subgroup, while the assumption of a non-ND subgroup with an only transitory, in short periods advancing special regressive brain process seems to be plausible. There are analogies to organic brain disorders . Hence ensues the interpretation of the brain findings in a subgroup of schizophrenia as "premature, locally accentuated involution of advanced age". The argument that at time of the first psychotic episode the brain changes already have developed without progressing in the further course, can be refuted by neuropsychiatric observations in brain atrophic processes and the

  13. Bipolar disorder, a precursor of Parkinson's disease?

    Directory of Open Access Journals (Sweden)

    Tânia M.S. Novaretti

    Full Text Available ABSTRACT Parkinson's disease is a neurodegenerative disorder predominantly resulting from dopamine depletion in the substantia nigra pars compacta. Some psychiatric disorders may have dopaminergic dysfunction as their substrate. We describe a well-documented case of Parkinson's disease associated with Bipolar Disorder. Although there is some knowledge about the association between these diseases, little is known about its pathophysiology and correlation. We believe that among various hypotheses, many neurotransmitters are linked to this pathophysiology.

  14. Huntington's Disease in a Patient Misdiagnosed as Conversion Disorder.

    Science.gov (United States)

    Nogueira, João Machado; Franco, Ana Margarida; Mendes, Susana; Valadas, Anabela; Semedo, Cristina; Jesus, Gustavo

    2018-01-01

    Huntington's disease (HD) is an inherited, progressive, and neurodegenerative neuropsychiatric disorder caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide in Interested Transcript (IT) 15 gene on chromosome 4. This pathology typically presents in individuals aged between 30 and 50 years and the age of onset is inversely correlated with the length of the CAG repeat expansion. It is characterized by chorea, cognitive deficits, and psychiatric symptoms. Usually the psychiatric disorders precede motor and cognitive impairment, Major Depressive Disorder and anxiety disorders being the most common presentations. We present a clinical case of a 65-year-old woman admitted to our Psychiatric Acute Unit. During the 6 years preceding the admission, the patient had clinical assessments made several times by different specialties that focused only on isolated symptoms, disregarding the syndrome as a whole. In the course of her last admission, the patient was referred to our Neuropsychiatric Team, which made the provisional diagnosis of late-onset Huntington's disease, later confirmed by genetic testing. This clinical vignette highlights the importance of a multidisciplinary approach to atypical clinical presentations and raises awareness for the relevance of investigating carefully motor symptoms in psychiatric patients.

  15. The retina as a window to the brain-from eye research to CNS disorders.

    Science.gov (United States)

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  16. Molecular Imaging and Precision Medicine in Dementia and Movement Disorders.

    Science.gov (United States)

    Mallik, Atul K; Drzezga, Alexander; Minoshima, Satoshi

    2017-01-01

    Precision medicine (PM) has been defined as "prevention and treatment strategies that take individual variability into account." Molecular imaging (MI) is an ideally suited tool for PM approaches to neurodegenerative dementia and movement disorders (MD). Here we review PM approaches and discuss how they may be applied to other associated neurodegenerative dementia and MD. With ongoing major therapeutic research initiatives that include the use of molecular imaging, we look forward to established interventions targeted to specific molecular pathophysiology and expect the potential benefit of MI PM approaches in neurodegenerative dementia and MD will only increase. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease

    Science.gov (United States)

    King, Oliver D.; Gitler, Aaron D.; Shorter, James

    2012-01-01

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable ‘prion domain’ enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer’s disease and Huntington’s disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the

  18. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  19. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2011-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB. Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.

  20. Paraneoplastic autoimmune movement disorders.

    Science.gov (United States)

    Lim, Thien Thien

    2017-11-01

    To provide an overview of paraneoplastic autoimmune disorders presenting with various movement disorders. The spectrum of paraneoplastic autoimmune disorders has been expanding with the discovery of new antibodies against cell surface and intracellular antigens. Many of these paraneoplastic autoimmune disorders manifest as a form of movement disorder. With the discovery of new neuronal antibodies, an increasing number of idiopathic or neurodegenerative movement disorders are now being reclassified as immune-mediated movement disorders. These include anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis which may present with orolingual facial dyskinesia and stereotyped movements, CRMP-5 IgG presenting with chorea, anti-Yo paraneoplastic cerebellar degeneration presenting with ataxia, anti-VGKC complex (Caspr2 antibodies) neuromyotonia, opsoclonus-myoclonus-ataxia syndrome, and muscle rigidity and episodic spasms (amphiphysin, glutamic acid decarboxylase, glycine receptor, GABA(A)-receptor associated protein antibodies) in stiff-person syndrome. Movement disorders may be a presentation for paraneoplastic autoimmune disorders. Recognition of these disorders and their common phenomenology is important because it may lead to the discovery of an occult malignancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury

    Science.gov (United States)

    Bakhru, Sasha H.

    The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI. Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years. In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for

  2. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Martin

    2011-01-01

    Full Text Available Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

  3. Progress of the relationship between serum uric acid and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Yang FU

    2018-04-01

    Full Text Available Serum uric acid (sUA, a natural antioxidant in human body, has been found to be related to the occurrence and development of various neurodegenerative diseases in recent years, including Parkinson's disease (PD, multiple system atrophy (MSA, Alzheimer's disease (AD and amyotrophic lateral sclerosis (ALS. Increasing of sUA level has been found to reduce the incidence of PD and ALS, but the relationship between sUA and AD, MSA remains largely unknown. The in vitro studies and animal experiments revealed that sUA can enhance the antioxidant capacity of neurons and delay neurodegeneration and apoptosis. This paper mainly reviews the progress in epidemiological and basic studies of the relationship between sUA and neurodegenerative diseases in recent years, and aims to provide a reference for future novel prevention and treatment strategies for neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2018.03.010

  4. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review.

    Science.gov (United States)

    Wajda, Douglas A; Mirelman, Anat; Hausdorff, Jeffrey M; Sosnoff, Jacob J

    2017-03-01

    Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.

  5. The Role of Musk in Relieving the Neurodegenerative Changes Induced After Exposure to Chronic Stress.

    Science.gov (United States)

    Abd El Wahab, Manal Galal; Ali, Soad Shaker; Ayuob, Nasra Naeim

    2018-06-01

    This study aimed to evaluate the effect induced by musk on Alzheimer's disease-such as neurodegenerative changes in mice exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice were divided into 4 groups (n = 10); control, CUMS, CUMS + fluoxetine, CUMS + musk. At the end of the experiment, behavior of the mice was assessed. Serum corticosterone level, hippocampal protein level of the glucocorticoid receptors, and brain-derived neurotropic factor were also assessed. Hippocampus was histopathologically examined. Musk improved depressive status induced after exposure to CUMS as evidenced by the forced swimming and open field tests and improved the short-term memory as evidenced by the elevated plus maze test. Musk reduced both corticosterone levels and the hippocampal neurodegenerative changes observed after exposure to CUMS. These improvements were comparable to those induced by fluoxetine. Musk alleviated the memory impairment and neurodegenerative changes induced after exposure to the chronic stress.

  6. Content analysis of neurodegenerative and mental diseases social groups.

    Science.gov (United States)

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; Bargiela-Flórez, Beatriz; López-Coronado, Miguel; Rodrigues, Joel J P C

    2015-12-01

    This article aims to characterize the different types of Facebook and Twitter groups for different mental diseases, their purposes, and their functions. We focused the search on depressive disorders, dementia, and Alzheimer's and Parkinson's diseases and examined the Facebook (www.facebook.com) and Twitter (www.twitter.com) groups. We used four assessment criteria: (1) purpose, (2) type of creator, (3) telehealth content, and (4) free-text responses in surveys and interviews. We observed a total of 357 Parkinson groups, 325 dementia groups, 853 Alzheimer groups, and 1127 depression groups on Facebook and Twitter. Moreover, we analyze the responses provided by different users. The survey and interview responses showed that many people were interested in using social networks to support and help in the fight against these diseases. The results indicate that social networks are acceptable by users in terms of simplicity and utility. People use them for finding support, information, self-help, advocacy and awareness, and for collecting funds. © The Author(s) 2014.

  7. High-school football and late-life risk of neurodegenerative syndromes, 1956–1970

    Science.gov (United States)

    Janssen, Pieter HH; Mandrekar, Jay; Mielke, Michelle M; Ahlskog, J. Eric; Boeve, Bradley F; Josephs, Keith; Savica, Rodolfo

    2017-01-01

    BACKGROUND Repeated head trauma has been associated with risk of neurodegenerative diseases. Few studies have evaluated the long-term risk of neurodegenerative diseases in collision sports like football. OBJECTIVE To assess whether athletes who played American varsity high-school football between 1956 and 1970 have an increased risk of neurodegenerative diseases later in life. PATIENTS AND METHODS We identified all male varsity football players between 1956 and 1970 in the public high schools of Rochester, Minnesota, compared to non-football-playing male varsity swimmers, wrestlers or basketball players. Using the records-linkage system of the Rochester Epidemiology Project, we ascertained the incidence of late-life neurodegenerative diseases: dementia, parkinsonism, or amyotrophic lateral sclerosis. We also recorded medical record-documented head trauma during high school years. RESULTS We identified 296 varsity football players and 190 athletes engaging in other sports. Football players had an increased risk of medically documented head trauma, especially if they played football for more than one year. Compared to non-football athletes, football players did not have an increased risk of neurodegenerative disease overall, nor the individual conditions of dementia, parkinsonism, or amyotrophic lateral sclerosis. CONCLUSION In this community based study, varsity high school football players from 1956 to 1970 did not have an increased risk of developing neurodegenerative diseases compared with athletes engaged in other varsity sports. This was from an era where there was a generally nihilistic view of concussion dangers, less protective equipment and without prohibition of spearing (head-first tackling). However, size and strength of players from prior eras may not be comparable to current high-school athletes. PMID:27979411

  8. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease.

    Science.gov (United States)

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Dubois, Evelyn; Hobert, Markus A; Müller vom Hagen, Jennifer; Krüger, Stefanie; Biskup, Saskia; Blauwendraat, Cornelis; Hruscha, Michael; Kaeser, Stephan A; Heutink, Peter; Maetzler, Walter; Synofzik, Matthis

    2016-01-01

    Altered progranulin levels play a major role in neurodegenerative diseases, like Alzheimer's dementia (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), even in the absence of GRN mutations. Increasing progranulin levels could hereby provide a novel treatment strategy. However, knowledge on progranulin regulation in neurodegenerative diseases remains limited. We here demonstrate that cerebrospinal fluid progranulin levels do not correlate with its serum levels in AD, FTD and ALS, indicating a differential regulation of its central and peripheral levels in neurodegeneration. Blood progranulin levels thus do not reliably predict central nervous progranulin levels and their response to future progranulin-increasing therapeutics.

  9. Aging leads to altered microglial function that reduces brain resiliency increasing vulnerability to neurodegenerative diseases.

    Science.gov (United States)

    Bickford, Paula C; Flowers, Antwoine; Grimmig, Bethany

    2017-08-01

    Aging is the primary risk factor for many neurodegenerative diseases. Thus, understanding the basic biological changes that take place with aging that lead to the brain being less resilient to disease progression of neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease or insults to the brain such as stroke or traumatic brain injuries. Clearly this will not cure the disease per se, yet increasing the ability of the brain to respond to injury could improve long term outcomes. The focus of this review is examining changes in microglia with age and possible therapeutic interventions involving the use of polyphenol rich dietary supplements. Published by Elsevier Inc.

  10. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Directory of Open Access Journals (Sweden)

    Katerina Markopoulou

    Full Text Available Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L, which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may

  11. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Science.gov (United States)

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the

  12. Circadian Rhythms, Sleep, and Disorders of Aging.

    Science.gov (United States)

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  14. Dysregulation of the HPA axis as a core pathophysiology mediating co-morbid depression in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Xin eDu

    2015-03-01

    Full Text Available There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease. These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression, and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioural deficits and/or mood disorders. Dysregulation of the HPA axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, anti-depressant drugs such as the selective serotonin reuptake inhibitors (SSRI have been shown to alter HPA axis activity. In this review, we will summarize the current state of knowledge regarding HPA axis pathology in Alzheimer’s, Parkinson’s and Huntington’s diseases, differentiating between prodromal and later stages of disease progression where possible. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the pre-clinical evidence to better inform prospective, intervention studies.

  15. The Diagnosis and Understanding of Apraxia of Speech: Why Including Neurodegenerative Etiologies May Be Important

    Science.gov (United States)

    Duffy, Joseph R.; Josephs, Keith A.

    2012-01-01

    Purpose: To discuss apraxia of speech (AOS) as it occurs in neurodegenerative disease (progressive AOS [PAOS]) and how its careful study may contribute to general concepts of AOS and help refine its diagnostic criteria. Method: The article summarizes our current understanding of the clinical features and neuroanatomical and pathologic correlates…

  16. High School Football and Late-Life Risk of Neurodegenerative Syndromes, 1956-1970.

    Science.gov (United States)

    Janssen, Pieter H H; Mandrekar, Jay; Mielke, Michelle M; Ahlskog, J Eric; Boeve, Bradley F; Josephs, Keith; Savica, Rodolfo

    2017-01-01

    To assess whether athletes who played American varsity high school football between 1956 and 1970 have an increased risk of neurodegenerative diseases later in life. We identified all male varsity football players between 1956 and 1970 in the public high schools of Rochester, Minnesota, and non-football-playing male varsity swimmers, wrestlers, and basketball players. Using the medical records linkage system of the Rochester Epidemiology Project, we ascertained the incidence of late-life neurodegenerative diseases: dementia, parkinsonism, and amyotrophic lateral sclerosis. We also recorded medical record-documented head trauma during high school years. We identified 296 varsity football players and 190 athletes engaging in other sports. Football players had an increased risk of medically documented head trauma, especially if they played football for more than 1 year. Compared with nonfootball athletes, football players did not have an increased risk of neurodegenerative disease overall or of the individual conditions of dementia, parkinsonism, and amyotrophic lateral sclerosis. In this community-based study, varsity high school football players from 1956 to 1970 did not have an increased risk of neurodegenerative diseases compared with athletes engaged in other varsity sports. This was from an era when there was a generally nihilistic view of concussion dangers, less protective equipment, and no prohibition of spearing (head-first tackling). However, the size and strength of players from previous eras may not be comparable with that of current high school athletes. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    NARCIS (Netherlands)

    Reijs, B.L.; Teunissen, C.E.; Goncharenko, N.; Betsou, F.; Blennow, K.; Baldeiras, I.; Brosseron, F.; Cavedo, E.; Fladby, T.; Froelich, L.; Gabryelewicz, T.; Gurvit, H.; Kapaki, E.; Koson, P.; Kulic, L.; Lehmann, S.; Lewczuk, P.; Lleo, A.; Maetzler, W.; Mendonca, A. de; Miller, A.M.; Molinuevo, J.L.; Mollenhauer, B.; Parnetti, L.; Rot, U.; Schneider, A.; Simonsen, A.H.; Tagliavini, F.; Tsolaki, M.; Verbeek, M.M.; Verhey, F.R.J.; Zboch, M.; Winblad, B.; Scheltens, P.; Zetterberg, H.; Visser, P.J.

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid

  18. Neurodegenerative diseases : Lessons from genome-wide screens in small model organisms

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Breitling, Rainer; Swertz, Morris A.; Nollen, Ellen A. A.

    2009-01-01

    Various age-related neurodegenerative diseases, including Parkinson's disease, polyglutamine expansion diseases and Alzheimer's disease, are associated with the accumulation of misfolded proteins in aggregates in the brain. How and why these proteins form aggregates and cause disease is still poorly

  19. Percutaneous Endoscopic Gastrostomy Tube Insertion in Neurodegenerative Disease: A Retrospective Study and Literature Review

    Directory of Open Access Journals (Sweden)

    Pamela Sarkar

    2017-05-01

    Full Text Available Background/Aims With the notable exceptions of dementia, stroke, and motor neuron disease, relatively little is known about the safety and utility of percutaneous endoscopic gastrostomy (PEG tube insertion in patients with neurodegenerative disease. We aimed to determine the safety and utility of PEG feeding in the context of neurodegenerative disease and to complete a literature review in order to identify whether particular factors need to be considered to improve safety and outcome. Methods A retrospective case note review of patients referred for PEG insertion by neurologists in a single neuroscience center was conducted according to a pre-determined set of standards. For the literature review, we identified references from searches of PubMed, mainly with the search items “percutaneous endoscopic gastrostomy” and “neurology” or “neurodegenerative disease.” Results Short-term mortality and morbidity associated with PEG in patients with neurological disease were significant. Age greater than 75 years was associated with poor outcome, and a trend toward adverse outcome was observed in patients with low serum albumin. Conclusions This study highlights the relatively high risk of PEG in patients with neurodegenerative disease. We present points for consideration to improve outcome in this particularly vulnerable group of patients.

  20. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Marjana Brkic

    2015-01-01

    Full Text Available Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs, a protein family of zinc-containing endopeptidases, are essential in (neuroinflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer’s disease (AD, Parkinson’s disease (PD, amyotrophic lateral sclerosis (ALS, Huntington’s disease (HD, and multiple sclerosis (MS. We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  1. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases.

    Science.gov (United States)

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  2. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Hammad, Mirza A; Tahir, Rana Adnan; Akram, Hafiza Nisha; Ahmad, Faheem

    2018-03-15

    As the number of elderly persons increases, neurodegenerative diseases are becoming ubiquitous. There is currently a great need for knowledge concerning management of old-age neurodegenerative diseases; the most important of which are: Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease. To summarize the potential of computationally predicted molecules and targets against neurodegenerative diseases. R